Striving for Influence:
The Effect of Performance on Candidate Selection

Silje Synnøve Lyder Hermansen *

Silje Synnøve Lyder Hermansen is a PhD candidate in Political Science at the University of Oslo

August 13, 2016

Abstract

I consider how asymmetric information between the party selectorate and members of Parliament affects the renomination of incumbent candidates. By applying an adverse-selection model I argue that the selectorate looks to past performance to select candidates it expects will gain influence. However, the impact of performance varies according to the need for and availability of information. The European Parliament (EP) provides a most-likely case for information asymmetry. Studying three elections in 11 member states, I find that the allocation of influential positions in office improves chances of reselection. The effect increases when the allocation is more selective, and when the prior uncertainty around candidacies is high. The study thus proposes a new approach to the relationship between national parties and transnational groups in the EP. It also suggests venues for research on parliamentary politics and candidate selection in general.

*I would like to thank Bjørn Høyland for critical comments and helpful suggestions at all stages of this project. I would further thank Elin Hauggjørd Allern, Elena Frech, Seth Kincaid Jolly, Ethan Bueno de Mesquita, Cesar Garcia Perez de Leon, Guri Rosén, Håvard Strand, Tatjana Stankovic and Nina Merethe Vestlund. Thanks also to Olivier Costa, Nathalie Brack, Michael Kæling, Emilie Cazenave, Nicla Chelotti, Edoardo Bressanelli and all the other participants at the 2015 PADEMIA workshop.
How does access to information affect the renomination of incumbent candidates? Procedures of candidate selection are commonly categorized according to their inclusiveness and decentralization (Rahat and Hazan, 2001). Both axes refer to the distance between the party selectorate – acting as principal – and members of Parliament (MPs) – acting as agents. This article explores how asymmetric information affects the selectorate’s choice in a similar way to what has previously been suggested for voters in studies of electoral accountability (e.g., Fearon, 1999; Persson and Tabellini, 2013). In closed-list electoral systems the selectorate can affect political outcomes by picking candidates who obtain influence. However, since the candidates’ ability is initially unknown, renomination hinges on the information available.

The European Parliament (EP) provides a most-likely case to test implications of asymmetric information. First, parliamentary groups are transnational and organizationally separated from national parties, which are responsible for candidate selection. Thus, parties have no means of direct monitoring, but still wish to know how their members perform. Second, influential members of Parliament (MEPs) are easily identifiable, so that parties have access to relevant information.

Performance – in terms of influential positions – provides information about ability, but it is also the result of effort and luck. The extent to which performance reveals candidates’ ability consequently depends on the institutional setting and the candidate’s motivation to exert effort. This article shows how variations in the allocation of parliamentary positions affect the selectorate’s choice, while holding self-selection constant.

Moreover, the greater the variation in the candidates’ ability, the greater the prior uncertainty around candidacies. This again, increases the effect of performance, as the selectorate needs more information. I test this implication by identifying categories of MEPs whose ability to influence is particularly uncertain.

The following study is based on the allocation of safe seats to incumbent members in 11 member-states of the European Union across three elections. The analysis is based on original data on the list placement of 1134 incumbent MEPs, their political background, as well as their effort and performance in office. Results show that
national parties reward MEPs who have obtained influential positions. The effect increases when the random component of allocations in Parliament decreases, as well as when uncertainty around candidatures is greater.

The next section reviews the literature on candidate selection and argues which insights from models of electoral accountability may be fruitful. The second section presents the case of the European Parliament, and then derives expectations about how the informational context influences candidate reselection. Then, I present the data and the empirical strategy to test the hypotheses; i.e., the statistical model and operationalizations. The last section displays the results and discusses their validity. The conclusion then summarizes my argument and suggests venues for future research.

Candidate selection and accountability

In party-centered electoral systems, the party selectorate determines reélection. Its choice of candidates can be analyzed in the adverse selection model usually applied to voters.

Candidate selection: inclusiveness and decentralization

Attempts to theorize the candidate selection process have remained few (Hazan and Rahat, 2006, p. 109). Commonly the selection has been characterized along two axes: The degree of inclusiveness (i.e., the size of the selectorate) and the degree of centralization (Rahat and Hazan, 2001; Hazan and Rahat, 2006, p. 112).

Most studies are centered on the effect of inclusiveness; and notably its effects on party membership (e.g., Webb, Farrell, and Holliday, 2002) and the representativeness of parties (e.g., Pennings and Hazan, 2001). A few studies also explore the effect of decentralization. They have drawn on the literature on electoral systems (Carey and Shugart, 1995). Results suggest a positive effect on activities aiming to build a personal reputation (Hazan and Rahat, 2000; although contested by Shomer, 2009), and on MP responsiveness to local demands (Norris, 2006, p. 105), as well as a negative effect on responsiveness to party requirements (Gallagher and Marsh, 2003).
Both axes of the selection process refer to situations of asymmetric information between the party selectorate and members of Parliament. While not a central element in the literature on party nominations, information asymmetry has been thoroughly explored in the literature on electoral accountability. In this article, I use a principal-agent framework to model implications of information asymmetry between MPs and their parties. Specifically, I use an adverse selection model to explore parties’ choice of candidates. This approach contrasts with models assuming that the party selectorate is able and willing to sanction their members in Parliament.

Accountability and information

Theories of political agency have evolved the last 15 years from mainly focusing on risks of moral hazard to include an element of adverse selection (for an overview, see Ashworth, 2012). Democratic accountability implies that voters hold elected representatives responsible for their performance. Availability and need for information on performance have thus emerged as essential to whether accountability takes place.

Studies have long shown how identifiable lines of responsibility favor accountability (G. Bingham, 1993). Earlier works modelled elections mainly as a sanction mechanism provided to voters (e.g.: Key, Cummings, and Maass, 1966; Barro, 1973; Fiorina, 1981; Ferejohn, 1986; Austen-Smith and Banks, 1999, for an application on candidate selection in mixed-member electoral systems, see also Hennl, 2014). The focus was on how voters’ choice influences behavior. The quality of information provided to voters was crucial, as voters need to know which outcomes are attributable to political actions.

More recent works tend to consider elections as an opportunity to select or deselect candidates for the future (Fearon, 1999). Politicians do not value reelection equally, so that post hoc sanctions may not prove efficient. Similarly, voters cannot recover their past losses – but they can influence future gains – so that threats of
sanctions are not credible. As a consequence, voters look to the past for information about future performance.

Performance is a function of a candidate’s actions, talents and luck. Hence there are two elements of uncertainty in the model: Voters need to know whether performance is attributable to qualities of the candidate, or to chance. Also, representatives are no longer considered as *a priori* identical. Rather, they enter into politics with different qualities, such as preferences (e.g.: Fearon, 1999) or talent (e.g.: Persson and Tabellini, 2013, pp. 81-89; for a combination of the two, see Ashworth and Mesquita, 2006). Voters – knowing that they cannot sanction behavior – will seek to select the most talented politicians. Ability is a latent trait which voters will have to deduce from a candidate’s performance.

Candidates seeking reelection thus have an incentive to exert effort to perform well as a signal of their ability. This has several implications: First, the level of effort depends on how incumbents value reelection (Janvry, Finan, and Sadoulet, 2012), implying that term limits decrease the efforts of incumbent members (Besley and Case, 1995; Alt, Bueno de Mesquita, and Rose, 2011), while they encourage rent-seeking (Ferraz and Finan, 2011).

Second, studies have explored candidate responsiveness as a function of the information provided to voters. They point to the enhancing role of mediating sources of information such as media coverage (Berry and Howell, 2007; Snyder and Strömberg, 2010) and competitors (Gordon, Huber, and Landa, 2007). The higher the visibility, the higher is the overall level of effort.

The MP’s behavior is also influenced by the quality of the signal he can send. The signal is a more or less accurate description of reality. Legislators may gain more from other activities intended to signal ability (such as constituency service or electoral campaigning) (e.g., Daley and Snowberg, 2009; Ashworth and Mesquita, 2006). Recent empirical works have, for example, gone as far as showing how the number of credit-claiming messages is more effective for voter-approval than the actual size of the pork (Grimmer, Messing, and Westwood, 2012).

These studies show how the presence and precision of signals affect voters’ choice, and representatives’ actions. The differences in candidacies further means that vot-
ers’ responsiveness varies as a function of their prior uncertainty about the candidates’ ability. As the initial uncertainty decreases, voters pay less attention to past performance. For example, repeated reelectors reduce the uncertainty around candidacies, as representatives have been selected and reselected several times based on information about their performance (Banks and Sundaram, 1998). As a consequence, reelected representatives are free to spend less time on signaling (Ashworth, 2005).

The following analysis describes the interactions between a party selectorate and their members of Parliament. It is based on expectations derived from a two-period version of Holmström canonical model (also related to a political context by Gehlbach, 2013) on career considerations and manager hiring. The limited number of periods implies that voters disregard effort, while paying close attention to ability. A formalized description of the model is presented in the online appendix.

Theoretical model

I assume that all parties seek political influence in Parliament. Everything else being equal, they always prefer the best-performing candidate. In party-centered systems the selectorate obtains policy impact from its allocation of safe seats to candidates who obtain influence. Ability is a latent trait, and thus unknown both to the candidate himself and his party (Persson and Tabellini, 2013, p. 83-84). Over time, however, performance gives an indication of ability, and helps parties decide whether to retain members of Parliament in office.

Parties decide on a cut rule for performance. They assume that MPs perform differently at equal levels of effort as a result of differing levels of ability. Absent any information, parties further expect that an MP’s ability is equal to the mean in the chamber. Ideally, the party would consistently prefer a freshman to incumbent members who perform below average, while retaining MPs who perform above. There are two sources of uncertainty, however, which determine the extent to which parties learn from performance.

On the one hand, not all performance conveys the same amount of information. Influence in Parliament depends on a series of random components which neither
the MP nor the party can influence or foresee. In committee-oriented legislatures where expertise is highly valued, some skills pay off more than others. Which skills are needed, depends on the issues on the agenda. When the agenda is not controlled by the party, the actual impact of specific MPs is unforeseeable. Coalition patterns may also change throughout the term, especially in separation-of-powers systems. More generally, the distribution of influence within Parliament may be only partially conditional on merit. The precision of the signal therefore depends on the institutional and political context.

On the other hand, parties have varying needs for information. Ability is a continuous variable which is not uniformly distributed. The more heterogeneity there is among members of Parliament, the more often the party is wrong in their expectations about newcomers. Parties rely, in these situations, more heavily on the signals before setting the cut rule. Candidate lists in multi-member districts generally consist in a mix of several types of candidates: Some may represent different factions within the party. Others may attract more media attention. Some candidates are experienced, while others are freshmen, etc. These groups are more or less heterogeneous. As a consequence, parties put more emphasis on the performance of some categories of members, due to the uncertainty they entail.

It is important to note here that the effect of a signal does not depend on whether the selectorate initially believes a candidate is of low value. It is the uncertainty surrounding the candidacy which leads the selectorate to rely on performance. Thus, a candidacy may entail high prior expectations, but can also be considered risky. For example, a candidate may have performed very well in another elective office. However, the transfer makes it uncertain if he or she will repeat the feat. In the empirical part of this study I hold the value of a selectorate’s prior expectation constant, while exploring how the uncertainty induce parties to rely on signals.

While Ashworth (2005) assumes a censored prior distribution for candidates who have been repeatedly reelected, I here assume that legislators are drawn from different distributions entirely.
Member competences and the allocation of key-positions

The European Parliament (EP) is an ideal case for exploring the implications of information asymmetry between the party selectorate and representatives. This is because the organization of the EP follows a division of labor between transnational groups which organize legislative work in Parliament, and national parties which select candidates and organize elections. This has spurred a debate over whether and how national parties use their control over the nomination process to influence behavior in office.

Information asymmetry: Control of performance and reselection

Internal rules put transnational parliamentary groups in a key position for the organization of activities. Being selected by the parliamentary group is a prerequisite for legislative influence. Leadership positions, committee seats and drafts of legislation are distributed to political groups according to strict proportionality rules before they are allotted to individual members. The control over such positions puts groups in a powerful position over members who seek influence (Cox and McCubbins, 1993).

Group allocations are efficient identifiers of MEPs who are in a position to gain impact. This is true for the parliamentary leadership, but also for rank-and-file members: Parliament is a committee-oriented legislature in which information gathering and political bargaining is done in committees prior to plenary reading (Strøm, 1998). The EP uses a system of “reports” by which selected committee members (“rapporteurs”) are in charge of preparing proposals on behalf of the committee. If the proposal is adopted, they also represent Parliament in inter-institutional bargaining. The rapporteur is the most influential MEP pertaining to particular pieces of legislation.

The ensuing question is whether transnational groups are autonomous actors. Groups consist of national party delegations, and parties have control over their MEPs’ future career; both on the national and the European level.

groups’ cohesiveness is the artifact of members sharing preferences. While the official rules give parliamentary groups authority to distribute positions in Parliament, unofficial rules impose a second round of proportional allocation to national party contingents. Positions, she argues, are allotted to members by their parties, and not by the group (Kreppel, 2002, pp. 177-221). The real decision makers would, according to this line of argument, be the party contingents – and especially the larger ones – because they are able to impose discipline through candidate selection. This leads Kreppel (2002, p. 206) to conclude that “[...] the impotence of the group elite to control member reelection leads to a palpable inequality between the leaders of the national delegations and the leaders of the party groups.”

As Parliament’s powers have grown; parties are expected to increasingly pay heed to allocations. There is some evidence that national parties ensure representation on committees with particularly salient policy domains (Whitaker, 2011). Raunio (2000) further finds that contacts between MEPs and their national parties increased during the 1990s in parallel with the enhanced role of the EP.

Nonetheless, active monitoring of MEPs requires a clear agenda for what to obtain and what strategy to adopt. Yet, the legislative agenda is mainly set by the Commission. MEPs take positions on a multitude of issues which were not covered by the electoral program. This furthermore happens in a separation-of-powers system where coalitions are transnational and inter-institutional, and not designed to uphold any governmental majority. Parliamentary groups are better fit to address this situation than national parties. Empirically, one study shows that the control remains sporadic – with parties mostly paying attention to specific issues to avoid embarrassments. National delegations give few voting instructions, and most communications between MEPs and their national party are based on personal ties (Raunio, 2000, p. 215-218).

National parties thus have limited information about in-house politics, and the responsibility for day-to-day work is delegated to transnational groups. Yet, parties seek political influence, and can use their control over the nomination process to select appropriate candidates. Past performance provides, in this context, indications of future influence. Bivariate statistics displayed in figure 1 already suggest
how parties tend to allocate safer seats to members who draft legislation.

![Attribution of safe seats based on performance](image)

Figure 1: The probability of garnering a “safe seat” increases with legislative impact. The calculation is done only among MEPs who claim they would like to make a career in the EP.

Research on the impact of legislative service on party renomination to the EP has been limited. Frech (2016) finds that assignments to powerful committees positively impact German MEPs’ probability of reelection. Report allocations and plenary attendance only have a positive impact under some specifications, while committee leadership positions have no effect. Thomme, Ringe, and Victor (2015), on their part, make an analysis of all incumbent candidates to the 2014 election. They show how performance – such as group leadership and reports drafted – improves candidates’ chances of reelection, although – here too – EP leadership positions seem to have no effect. The authors also find mixed evidence that efforts to obtain influence – such as policy specialization and attendance – have an impact. Overall, I make a distinction between activities to which MEPs need to be selected by the group (“performance”) and activities which are dependent only on the MEP’s choice (“effort”).
Effort leads to performance

Parliamentary groups not only decide who gains influence, but also under what conditions it is given. The selective element of report allocation has increased over time as the EP has gained in power and in policy domains where the EP has a stronger institutional standing. The more selective groups are, the more they reduce the random element in the allocation of influential positions. Such positions are thus more informative than, for example, allotments following the national party size or MEP self-selection.

An extensive literature shows that allocations serve the group as a whole: Groups need information about the implications and political feasibility of policies (Krehbiel, 1991). Allocations of committee seats, chairs and vice-chairs, as well as reports thus follow a system in which competence – and in particular policy expertise – is valued (e.g., Bowler and Farrell, 1995; Yordanova, 2009; Yoshinaka, McElroy, and Bowler, 2010; Yordanova, 2011b,a; Whitaker, 2011; Daniel, 2013). Group leaders limit policy drift by naming more loyal members to draft legislation (Yoshinaka et al., 2010; Yordanova, 2011a). Although voting cohesiveness in the European groups is less impressive than that of the national party delegations, their overall coherence is greater than in the U.S. Congress (Hix, Noury, and Roland, 2009, p. 823).

Recent studies further point out that work-intensive and high-impact activities such as drafting reports require an initial investment on the part of the MEP. Attendance in plenary sessions has, for example, proven a strong predictor (Yoshinaka et al., 2010; Hurka and Kaeding, 2012; Hurka, Kaeding, and Obholzer, 2015).

Following the literature on allocations in Parliament, we see that groups reward defined skills/abilities, but also the efforts MEPs exert to obtain influence. On the other hand, according to the theoretical framework, national parties are concerned with the performance of their MEPs; namely the influence they obtain.

Ambition leads to effort

There is a growing literature on how reelection concerns affect legislative behavior (and thus performance) in the EP. An MEP’s loyalty to the national party is higher when parties are gatekeepers to reelection (Hix, 2004), as well as among those
who are expected to run for office on the national level (Meserve, Pemstein, and Bernhard, 2009). A recent study further shows that participation levels increase with an MEP’s intention to seek reelection (Høyland, Hobolt, and Hix, 2013). These findings are in line with the claim that ambition leads to efforts.

Ambition levels vary substantially in the EP, and should therefore not be assumed to be fixed. EP elections are second-order: This implies that MEPs do not necessarily value reelection, and that voters and parties do not necessarily consider EP politics when making their choice.

First, between 1999 and 2014, the median MEP had stayed in Parliament only one term. A number of MEPs reside in Brussels either as a forced retirement or as a “training camp” (Scarrow, 1997). The EP is sometimes used as a final retreat from national elected office, a place to parachute in case of electoral defeat, or by national politicians who want to get rid of competitors. The EP may also be used as an arena in which young politicians can gain political experience before they “graduate” to the national level (Meserve et al., 2009). It therefore makes sense to model renomination to the European Parliament within a framework robust to limited career spans, and to emphasize implications of the risks of adverse selection.

Second, voters have little information on the political life in the EP. National campaigns are run by national parties on mainly national issues. As a consequence, the electorate tends to sanction their governing parties (Reif and Schmitt, 1980; Marsh, 1998; Hix and Marsh, 2007), and candidatures are evaluated based on political experience from the national – rather than the European – level (Hobolt and Høyland, 2011). This gives incentives for parties to put forward a mix of candidates who have a broader appeal. I assume, however, that parties prefer – everything else being equal – incumbent candidates who obtain influence.

The model in a European context

Little literature exists on the national parties’ choice. Gherghina and Chiru (2010) find that the political experience and economic resources of candidates improved their list position in Romania in the 2009 election. Their contribution has – together with Frech (2016) – remained unique. In contrast, there are several empirical studies
of MEPs’ effort which can be understood in the same theoretical framework.

While the EP has been plagued with high levels of absenteeism, this has not prevented it from developing a core of active and influential long-timers (Scarrow, 1997). The varying impact of members suggests a great spread in the types of MEPs: In the 1999-2014 period one member in four did not draft any report during their term, whereas one MEP drafted no less than 53. Parties’ prior uncertainty about their candidates’ type would therefore be high. In terms of equation 10in the appendix this would imply a higher level of σ_θ, which impacts effort. This heterogeneity would be the reason why some researchers have felt the need to control for effort level when they model report allocation (e.g.: Yoshinaka et al., 2010).

A similar effect would ensue from a situation in which groups convey little information about the MEP’s type (when σ_ε is high). This would be the case, for example, when groups organize EP work, and report allocations are done mechanically according to party size within the group. Following Daniel’s (2013) observation that reports have been increasingly allocated as a function of competence, this would imply that some of the increase in participation observed in the same period is due to changes in the information conveyed to parties.

Empirical findings are in line with the intuition that the effort exerted in office increases with the value MEPs put on reelection (B). Considering participation in roll-call votes, Høyland et al. (2013) find that MEPs’ expressed and/or realized ambition to stay in Parliament has a positive effect on attendance levels, while ambitions for a national career have a negative effect. The finding is robust across national electoral systems. The European Parliament is partially populated by MEPs who aspire to higher national offices – either they are in the beginning of their career or they use Parliament as a second base in case their party’s electoral fortune dries up at home. Notably, Mamadouh and Raunio (2003) suggest that France’s under-representation among rapporteurs is the consequence of their practice of dual mandates. Similarly Scarrow (1997) identifies a group of former national politicians who are put to grass awaiting their retirement. None of these MEPs have vested interests in a future in the EP.

In the empirical part of this study I will strive to keep the value that MEPs place
on reelection constant, while I explore the effect of uncertainty on parties’ selection of candidates.

Hypotheses

Although there are no term limits in the European Parliament, only 33 percent of all the MEPs in the study sought reelection for a third time. Thus, it is logical to select candidates according to their assumed ability rather than their behavior (which cannot be sanctioned post hoc).

MEPs’ performance in office – in terms of influential positions – informs parties about abilities. I test two implications of this expectation. Being a part of the EP leadership signals quality. So does the institution of rapporteurs. The latter offers a particularly good chance for observers to identify back-benchers’ political work.

Hypothesis 1. Candidates who have obtained influential positions (EP leadership or reports) in Parliament are more likely to receive a safe seat.

When the selective element for obtaining a position in Parliament increases, less is left to chance. Such allocations carry more information back to national parties. Parliament’s position relative to the Council depends on the legislative procedure under which legislation is passed. The selection criteria are more stringent when the potential impact of reports is high. The EP is a co-equal legislator to the Council under the ‘codecision’ and ‘budgetary’ procedures. This leads to the expectation that such reports have a higher impact on the party’s choice than ordinary reports.

Hypothesis 2. The most competitive report allocations – such as codecision and budget procedures – have a stronger positive effect on the likelihood of receiving a safe seat.

Similarly, the MEP’s potential for influence is unknown when he enters Parliament. This entails a high prior uncertainty about abilities, leading parties to put more weight on the information provided by the parliamentary groups. I test four implications of this expectation:

22 percent of all MEPs received a safe seat, and 27 percent were reelected for a third time.
First, it is likely that an MEP’s initial allocation(s) in Parliament carry more weight than succeeding positions, since the party is increasingly better informed. Hence, I expect the effect of report allocations on candidate selection to have a parabolic shape.\(^3\)

There are furthermore three categories of MEPs whose potential for influence is particularly uncertain upon their arrival: First, MEPs in their first term have no proven record from the European Parliament. I therefore expect freshmen to have a greater effect of allocations than MEPs who have already served in the EP.

Second, it is more likely that parties fill the more uncertain part of their list with candidates of whom they are more uncertain.

The third category includes members who have previously held higher office on the national level (former ministers and members of Parliament). They have extensive political experience, but it is uncertain how they adapt to the European environment. On the one hand, performance is higher among the most assiduous committee members\(^4\) if they also have experience from the national level (4.91 against 3.01 reports). On the other hand, former national politicians write on average fewer reports (2.97 against 3.45 reports). Their candidacy thus entails a potential gain, but also a risk.

Hypothesis 3. *Reports drafted by MEPs whose ability to obtain influence is more uncertain, have greater positive effect on the likelihood of receiving a safe seat.*

While the first hypothesis is a common corollary to the entire literature on accountability, the second and third hypotheses pertain to the uncertainty derived from signaling models.

Data and variables

At the basis of the following analysis is a list of all 1134 MEPs from closed-list electoral systems who were registered as members at the end of the 5\(^{th}\) (1999-

\(^3\)The only way to test this is through cross-sectional data. The proportion of renominations is compared between MEPs who have written different numbers of reports. However, the theoretical argument implies a temporal dimension in which the first report in an MEP’s career carries more information than the second.

\(^4\)Only 22 per cent of the MEPs attended more than half of the committee meetings.
2004), 6th (2004-09) or 7th Parliament (2009-14). Data on MEPs, their curricula and activities in Parliament are drawn from the EP website. Membership data are provided by Høyland, Sirkar, and Hix (2009), while committee attendance is coded from minutes of committee meetings (own data). The dependent variable is drawn from lists of candidates collected from the European Parliament website, its informational offices and national informational websites.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Median</th>
<th>Mean</th>
<th>Max</th>
<th>Missing obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe seat</td>
<td>0</td>
<td>0.00</td>
<td>0.46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Renominated</td>
<td>0</td>
<td>1.00</td>
<td>0.69</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reelected</td>
<td>0</td>
<td>1.00</td>
<td>0.54</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>All reports</td>
<td>0</td>
<td>2.00</td>
<td>3.31</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Low-impact reports</td>
<td>0</td>
<td>1.00</td>
<td>2.21</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>High-impact reports</td>
<td>0</td>
<td>0.00</td>
<td>1.10</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Committee Attendance</td>
<td>0</td>
<td>0.35</td>
<td>0.37</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>EP leadership</td>
<td>0</td>
<td>0.00</td>
<td>0.10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Former National Politician</td>
<td>0</td>
<td>0.00</td>
<td>0.26</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Incumbent</td>
<td>0</td>
<td>1.00</td>
<td>0.51</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Barely Elected</td>
<td>0</td>
<td>0.00</td>
<td>0.25</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>Ambition in EP</td>
<td>0</td>
<td>0.00</td>
<td>0.27</td>
<td>1</td>
<td>829</td>
</tr>
<tr>
<td>Safe Seat Last Election</td>
<td>0</td>
<td>1.00</td>
<td>0.68</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 1: Descriptive statistics (N=1134)

Dependent variable

Renominated to a safe seat: Not all candidacies imply a realistic probability of being reelected. The dependent variable indicates whether the incumbent decided to run for reelection and received a rather safe placement on an ordered list. A "safe seat" is calculated as the number of seats obtained by the party in each legislative district during the last election, subtracted one seat. In regions where the party only has one seat, this seat has been coded as safe.

6 Replication files are available online.
7 Independent members, technical and euroskeptic groups (EDD, IND/DEM, UEN, TDI and NI) are excluded from the analysis. These members either have no EP group which selectively allocates positions, or hail from national parties which explicitly do not seek European level influence. That is, there is either no provider or no receiver of the signal.

7 Models with less restrictive and more restrictive operationalizations are included in the appendix: One in which all renominations are counted – irrespective of list placement – and one in which only reelection is counted.
Closed list PR
in European Parliament elections

Figure 2: Eleven countries used closed list systems in at least one of the three elections under study.
Figure 3: Safe seats are operationalized as a function of list placement and the number of seats held by the party. Observations are jittered.

By focusing on renominations rather than reelection, I am able to isolate the party’s choice from that of the voters. The analysis thus concentrates on the 11 member states which used closed-list systems. Figure 2 details the electoral system of each member state.

Independent variables

According to H_1 MEPs who gain important positions within the EP are rewarded with a safe seat in the hopes that they will obtain influence also in the future. The hypothesis is tested through two operationalizations.

EP Leadership is a binary variable and captures whether an MEP was a part of the EP leadership. It includes committee chairs, group leaders, EP questors and EP

8Following Daubler and Hix (2013), Austria and Bulgaria are classified as closed lists.
Committee chairs draft more legislation than common members, but this effect is controlled for by the count variable on reports.

Reports is a count variable and indicates the extent to which rank-and-file members are able to garner influential positions. The variable is skewed. 20 percent of the MEPs in the sample garnered no reports during their mandate, while the mean number of reports is slightly above 3. The first model also includes a quadric term to account for the decreasing utility of allocations as parties gain information about their MEPs' abilities. In models 3a, b and c, the count number is truncated to 10 reports.

H_2 explicitly explores the effect of the informational environment defined by the institutional setting. A second model therefore divides allocations into precise and less precise signals.

High-Impact Reports: Parliament groups react to the enhanced role of the EP relative to the Council during the codecision and budget procedures by a more selective allocation of reports. This provides more information back to national parties about which MEPs are considered competent. These allocations are expected to have a stronger effect on renominations than issues on which the EP position has a lower impact. Descriptive statistics already indicate the increased selection effect: 58 percent of all MEPs never drafted any high impact report, while 15 percent drafted 3 or more.

Low-Impact Reports provides a count of all other report allocations. They include everything from housekeeping activities such as waiver of immunities, to own-initiative reports which put issues on the agenda, but cannot translate to legislation. These allocations are more evenly distributed. 20 percent never drafted any report, while 44 percent drafted 3 or more during the term.

H_3 suggests that parties are more active in seeking information on MEPs whose abilities are initially more uncertain. The first model already tests the expectation that the first report allocations carry more weight than the succeeding ones through the quadric term. Models 3a, b and c furthermore test the effect of allocations among *incumbent*, *barely elected* MEPs and members with *national experience*. The first variable marks all MEPs who were members during the previous term. The
second variable indicates MEPs who figured at a placement equal to or below the number of seats the party had in Parliament prior to last election. The third is an indicator of former members of a national parliaments or former (prime) ministers from the national government. All categories of MEPs entail a heightened prior uncertainty which is expected to make report allocations particularly effectual.

Control variables

The model controls for two different sources of endogeneity: The party’s prior belief about a candidate, and the candidate’s choice to stand for reelection.

Safe Seat Last Election: I seek to capture how the party selectorate updates its beliefs about incumbent candidates in light of their legislative service. The model thus includes a lagged version of the dependent variable in order to control for the initial level of expectations. This also controls for the alternative expectation by which EP groups are run by national parties, which would choose the same MEPs to positions in Parliament and on electoral lists.

Ambition in the EP: A second source of endogeneity comes from the candidate’s own choice to rerun for office. While we can safely assume that an incumbent MEP appears on the ballot on a common accord with his party, it is less certain why he does not stand for reelection. Furthermore, since the party cannot sanction representatives post hoc, it seeks to make its decision based on ability rather than results obtained through efforts. This is a corollary of the limited time span of MEPs careers. I therefore control for the MEP’s intention to seek reelection. Intentions are, by nature, an unobserved, latent variable. I, as a researcher, and the party selectorate can only infer from the actions of MEPs (including their expressed wishes) and the opportunity structure. I model the control variable accordingly:

First, I rely on the expressed ambition by respondents in a survey conducted by the European Parliament Research Group (Farrell, Hix, and Scully, 2011). Their ambition level is considered as fixed and coded as 0 (does not want to stay) or 1 (wants to stay). For the remainder of the MEPs, I model intentions as a function of the causes for seeking reelection (career opportunities in the EP, where MEPs are in their individual careers, etc.), as well as some of the known effects of ambition
(efforts provided to gain influence). Figure 4 displays my empirical strategy to measure the party choice in isolation from MEPs’ career choices.

Figure 4: Empirical strategy to isolate national party decision to renominate from the MEP’s decision to seek reelection.

The empirical strategy

In order to isolate the party’s choice of incumbent candidates, I estimate three interconnected equations. All three are optimized simultaneously. First, I model the allocation of safe seats and include a control for the propensity to seek renomination (level of ambition). The latter variable is estimated in a separate submodel. Last, I run a second submodel to check whether the information I use to measure ambition, is representative for the entire population of MEPs. I do this by including the dependent variable from the main model as a predictor. Details of these calculations will be treated in the next sub-sections.
The analysis is done in a Bayesian framework using MCMC methods. Bayesian analysis is convenient given the ease with which such methods simulate unobserved data: They treat observed quantities as fixed and conditioned upon, while unobserved quantities – such as latent and missing values10 – are inferred (Gill, 2009, p. 43). This presents the advantage that all equations are optimized simultaneously, and that the uncertainty surrounding estimated variables is considered in all equations where these are included.

9Convergence statistics for the main parameters are displayed in the online appendix.
10There are few missing observations in the data. Information about how they are imputed is given in the appendix.
\[Pr(\text{Safe Seat}_i = 1) = \alpha_i \]
\[+ \alpha_{\text{Election},i} \]
\[+ \alpha_{\text{EPGroup},i} \]
\[+ \alpha_{\text{Nationality},i} \]
\[+ \beta_1 \times \text{Reports}_i \]
\[+ \beta_2 \times \text{Reports}_i^2 \]
\[+ \beta_3 \times \text{EP Leadership} \]
\[+ \beta_4 \times \text{National Politician} \]
\[+ \beta_5 \times \text{Incumbent} \]
\[+ \beta_6 \times \text{Ambition}_i \]
\[+ \beta_7 \times \text{Safe Seat Last Election}_i \]

\[Pr(\text{Ambition}_i = 1) = \gamma_1 \]
\[+ \gamma_2 \times \text{Age}_i \]
\[+ \gamma_3 \times \text{Party Size} \]
\[+ \gamma_4 \times \text{MEPs to National Politics} \]
\[+ \gamma_5 \times \text{Committee Attendance}_i \]

\[Pr(\text{Ambition}_i = NA) = \delta_1 \]
\[+ \delta_2 \times \text{Safe Seat}_i \]
\[+ \delta_3 \times \text{Years of Term Served} \]

The main model – the allocation of safe seats

I seek to explain national parties’ allocation of safe seats: With a binary dependent variable, the main model is binary logistic. The unit of observation is members of the EP prior to each election. To account for potential national specificities in career patterns and diverging political opportunities across parliamentary groups, the model further includes varying intercepts for the election in question, the national-
ity and the transnational group. Alternative models include interaction terms in order to test hypotheses 2 and 3. For ease of interpretation, only total effects are reported.

The model also includes a predictor of MEPs’ level of ambition. The estimation of this variable is done in a separate submodel.

The first submodel – controlling for endogeneity

The dependent variable in the first submodel is the level of ambition. It draws on information from a survey among MEPs. The EPRG (Farrell et al., 2011) has regularly surveyed newly elected MEPs, asking whether they see themselves as members of the EP in 10 years. The response rate is moderate (27 percent). The remaining 73 percent of the observations are estimated through a logistic regression, using information from respondents to estimate nonrespondents’ motivation to stay in Parliament.

Several predictors capture career opportunities in the EP and at the national level. A first variable expresses the probability of returning to the national level. It is measured as the proportion of MEPs who returned to domestic politics following the last EP election. Meserve et al. (2009) further claim that younger MEPs and members of smaller party contingents are more likely to kindle ambitions outside of the EP. There have also been claims that large national party delegations are particularly attractive, as these offer better opportunities in Parliament (Raunio, 2000). Thus, the model includes the size of the party delegation – operationalized as the percentage of seats – and age as a proxy for where the MEP is in his career.

Second, the model includes attendance level in committees as a measure of the MEP’s effort. The variable ranges from 0 to 1, and expresses the proportion of meetings an MEP has attended compared to the most assiduous member. Legislative work is done in committees, so MEPs who seek influence need to attend meetings. Previous studies have shown that attendance in plenary is the effect of ambition (Høyland et al., 2013), and that it is a prerequisite for obtaining positions (e.g., Yoshinaka et al., 2010). Attendance in committee is a more accurate measure of

\[11\] Coefplots of all intercepts are reported in figure 7 in the online appendix.
hard-working and influence-seeking members: In contrast to plenary sessions, MEPs receive no per diem for attending committee meetings, the media coverage is low, and participation levels are not publicly available. The measure is based on close to 300,000 observations of MEPs in committees and has not previously been used.

The results from the first submodel are reported in the first part of table 2. The estimation performs rather well: Rounding off the predicted probability of a respondent answering ‘Yes’ at the relevant cutting point,12 the model predicts 66 percent correctly in-sample.

The second submodel — controlling for selection bias

The respondents in the survey may not be randomly sampled. This would skew the results in the main model. The simulation therefore includes a second submodel to check if missing information in the predictor (“Ambition”) is correlated with the dependent variable (“Safe Seat”) of the main model. Including the dependent variable from the main model into the submodel for unobserved values induces the estimator to account for eventual skeweness when evaluating the parameters of the main model.

The second submodel is a binary logistic estimation of the probability of a non-response to the EPRG survey. Covariates capture whether the MEP obtained a safe seat and the number of years the MEP was a member of Parliament during the term.

Results reported in the second part of table 2 show that safe-seat allocations are not related to the probability of answering the survey. The estimation of MEP ambition is done on a representative subsample. On the other hand, MEPs who have not stayed in Parliament during the entire term, are more likely to be missing: This is natural as the survey was distributed at the beginning of the legislature, while the data include MEPs who were present at the end.

12Some 27 percent of the respondents claimed they would like to stay on for another decade. All estimations above this probability are coded as 1.
Table 2: Results from the two submodels estimating the level of ambition and controlling for eventual selection bias.
<table>
<thead>
<tr>
<th>Dependent variable: "Safe seat"</th>
<th>H1</th>
<th>H2</th>
<th>H3 (Nat. Pol.)</th>
<th>H3 (Incumbent)</th>
<th>H3 (Barely elected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: Reports</td>
<td>0.121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.06 , 0.184]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports2</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.005 , -0.001]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP Leadership</td>
<td>0.487</td>
<td>0.525</td>
<td>0.493</td>
<td>0.505</td>
<td>0.508</td>
</tr>
<tr>
<td></td>
<td>[0.036 , 0.944]</td>
<td>[0.061 , 0.986]</td>
<td>[0.047 , 0.944]</td>
<td>[0.046 , 0.971]</td>
<td>[0.062 , 0.968]</td>
</tr>
<tr>
<td>Low-Impact Reports</td>
<td>0.058</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.017 , 0.136]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Impact Reports2</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.004 , 0.002]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Impact Reports</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.158 , 0.404]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Impact Reports2</td>
<td>-0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.028 , -0.007]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3: Reports - Low Prior Uncertainty</td>
<td>0.086</td>
<td>0.066</td>
<td>0.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.027 , 0.145]</td>
<td>[0.005 , 0.131]</td>
<td>[0.027 , 0.139]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports - High Prior Uncertainty</td>
<td>-0.126</td>
<td>-0.117</td>
<td>-0.226</td>
<td>-0.109</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>[-0.448 , 0.205]</td>
<td>[-0.437 , 0.211]</td>
<td>[-0.556 , 0.102]</td>
<td>[-0.43 , 0.222]</td>
<td>[-0.444 , 0.205]</td>
</tr>
<tr>
<td>Controls: National Politician</td>
<td>-0.737</td>
<td>-0.77</td>
<td>-0.757</td>
<td>-0.432</td>
<td>-0.74</td>
</tr>
<tr>
<td></td>
<td>[-1.046 , -0.43]</td>
<td>[-1.086 , -0.464]</td>
<td>[-1.066 , -0.446]</td>
<td>[-0.851 , -0.022]</td>
<td>[-1.048 , -0.435]</td>
</tr>
<tr>
<td>Incumbent</td>
<td>1.207</td>
<td>1.302</td>
<td>1.249</td>
<td>1.279</td>
<td>0.924</td>
</tr>
<tr>
<td></td>
<td>[0.494 , 1.951]</td>
<td>[0.574 , 2.086]</td>
<td>[0.542 , 2.024]</td>
<td>[0.561 , 2.075]</td>
<td>[0.135 , 1.805]</td>
</tr>
<tr>
<td>Barely elected</td>
<td>1.171</td>
<td>1.22</td>
<td>1.172</td>
<td>1.174</td>
<td>1.158</td>
</tr>
<tr>
<td></td>
<td>[0.637 , 1.729]</td>
<td>[0.688 , 1.774]</td>
<td>[0.582 , 1.733]</td>
<td>[0.624 , 1.721]</td>
<td>[0.61 , 1.694]</td>
</tr>
<tr>
<td>Ambition</td>
<td>1.856</td>
<td>1.973</td>
<td>1.889</td>
<td>1.898</td>
<td>1.877</td>
</tr>
<tr>
<td></td>
<td>[1.195 , 2.602]</td>
<td>[1.266 , 2.728]</td>
<td>[1.218 , 2.657]</td>
<td>[1.229 , 2.677]</td>
<td>[1.194 , 2.659]</td>
</tr>
<tr>
<td>Safe Seat Last Election</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
</tr>
</tbody>
</table>

Table 3: Allocation of safe seats in closed-list systems. Median effects from binary logit model. 95 percent HDI reported in parantheses.
Results

Effect of signal (H_1)

The results displayed in table 3 offer ample support for the first hypothesis. Parties tend to update their evaluation of MEPs in light of their performance in office.

Leadership positions – either as a group leader, committee chair or as a (vice-) president in the chamber – have a positive effect on an MEP’s career. The odds of obtaining a safe seat in the upcoming election is 63 percent higher among these members. Leadership only provides information about a few MEPs, however.\(^\text{13}\)

The institution of rapporteurships, on the other hand, offers a unique opportunity to observe accomplishments among rank-and-file members. Report allocations are selective delegations which reflect the MEP’s ability to gain influence. Writing one’s first report increases the odds of receiving a safe seat by 13 percent. Among those who have captured three reports the odds of reselection is 43 percent higher than among non-rapporteurs.

The relative effect decreases for every additional delegation. This is in line with the expectations from H_3 that parties update their belief to the extent that they need new information. The first appointment carries more information about an MEP than – say – the tenth.

It is worth noting that the curvilinear effect does not lend support to the alternative expectation that the best MEPs are systematically recruited out of Parliament. This would imply a peak effect at around 3 reports (the mean). Candidates performing better than the average MEP would be increasingly likely to gain positions outside of the EP. The empirical tipping point in this model, however, is beyond the realistic scope of the predictions (20 reports).\(^\text{14}\) The effect of report allocations will in practice never become negative.

\(^{13}\)10 percent of the incumbent members were registered as leaders, while 44 percent had drafted at least one report.

\(^{14}\)Only 1 percent of the candidates drafted more than 20 reports. Similarly, only 3 percent of the MEPs wrote more than four high-impact reports.
Figure 5: Members of the EP who are selected by parliamentary groups, are also more likely to be reselected by their national parties. The effect is the highest when the signal is informative. (95% HDI)

Effect when signal is precise (H₂)

The second model lends support to H₂. When the signal increases in precision, the effect of holding rapporteurships grows. Low-impact reports increase the odds of a safe seat by 6 percent, while the similar effect of high-impact legislation is 32 percent. Three such reports would more than double an MEP’s chances of reselection to office.

This is because parliamentary groups pay more attention to the group’s collective needs when the potential impact of a proposal is high. Personal attributes such as experience and expertise are treasured, but also the ability to enter into inter-institutional bargaining. The latter quality is less required when reports merely contain policy statements or concern housekeeping.
More stringent selection criteria convey, in turn, more information about how
groups assess the MEP. National parties do not only consider the precision of the
signal, however, but also their need for further information.

Effect when there is uncertainty about ability (H_3)

The model provides ample evidence of H_3. When parties are uncertain about an
MEP’s ability to obtain influence, they rely more heavily on information supplied
by the parliamentary groups. This is already discernable in the greater effect of an
MEP’s first rapporteurships, compared to later allocations. Moreover, some MEPs
also stand more to gain from performing well: EP freshmen, MEPs who were only
barely elected last election and former national politicians.

EP freshmen have yet to prove that they are accomplished legislators, while
incumbent members have been tried several times in the past. One allocation to a
member in his first term would increase his odds of a safe seat by 20 percent, while
those who are in their second term (or more) have a substantially lower effect of
reports (7 percent).

Model 3c illustrates this same point again: MEPs who were only barely elected
to the EP last election may increase their odds of a safe seat by garnering reports.
One report increases his odds by 25 percent, compared to 9 percent among those
who entered Parliament on a safe seat. This figure increases to 57 percent after
three reports.

The results are somewhat less clear for former national politicians. They make a
heterogeneous group, and parties are likely to know that. While highly experienced,
these members need to adapt to the European setting by defining new standards
for political success, forming new networks and adjusting their behavior to new
requirements. The third model in table 3 indicates that those who make this trans-
formation and obtain influential positions, are more likely to return to Parliament.
Each report allocation increases the odds of a safe seat by 16 percent among former
national politicians, compared to 9 among other members. The difference between
the two falls just short of conventional statistical significance, however. Three re-
ports would increase chances of reselection by 35 percent.
Validity and alternative explanations

The model predicts 73 percent of the observations in the sample correctly (cut value: 0.46)\(^{15}\). Hence, the model seems to capture some of the essential traits of parties’ candidate selection. This is not to say that parties do not have other reasons for nominating candidates: Party lists with high-profile public figures tend to garner more votes, different political factions of the party may have to be represented, key-figures in the party may need a parachute or are shuffled off to an early retirement. These considerations may also vary across parties. However, the model indicates that national parties on average take into account accomplishments in the EP.

There are two alternative explanations to why influential positions in Parliament would correlate with the allocation of safe seats: On the one hand, MEPs who wish to stand for reelection could be self-selecting into influential positions. On the other, positions in Parliament and on electoral lists could both be allotted by national parties alone.

First, the analysis includes a control for the MEP’s ambition, and it behaves as expected. Those who are the most likely to wish reelection, are also over 3 times more likely to obtain a safe seat. In alternative operationalizations of the dependent variable we furthermore see that the effect of ambition is stronger for renominations in general than for safe seats (table 14 in the appendix). This indicates a greater element of party selection for the most salient list positions. Admittedly, the estimation of ambition may be insufficient. However, in models which do not include this control, we see that the effects overall remain the same (see table 12 in the appendix).

Second, the effect of performance could be a consequence of national parties allocating both EP positions and safe seats to their most preferred candidates. If this was the case, we would see a positive effect of incumbency, as MEPs who have been selected and reselected by their party, would be a natural choice for positions in Parliament. The effect of performance would furthermore be the same among incumbent candidates as among freshmen. The results give no support for this.

\(^{15}\)46 percent of the MEPs obtained a safe seat. This would be the prediction of a null model. A correct prediction rate above this level shows the improvement represented by the present model.
The model furthermore includes a lagged version of the dependent variable which effectively controls for the party’s initial appreciation of their MEP. MEPs who have already been awarded a safe seat in the previous election are more than twice as likely to obtain a safe position once again. The findings are in line with predictions from a model in which groups and parties are separate.

Conclusion

Effect of information in the European Parliament

This study shows how the informational context influences how the party selectorate considers the performance of incumbent candidates. Studies of candidate selection commonly characterize the process along two lines: the degree of inclusiveness and centralization. I have argued that both axes involve asymmetric information between the members of a parliamentary group and the party selectorate. The situation has been thoroughly explored in the literature on electoral accountability. I have, consequently, applied a baseline adverse selection model drawn from this literature on a most-likely case of asymmetric information where accountability may take place.

In the European Parliament, the national party (the selectorate) is organizationally separated from the parliamentary group. Parties seek political sway by selecting candidates they believe are able to obtain influence. For incumbent candidates this belief can be informed by their past performance. The internal organization in Parliament, furthermore, provides ample information on performance: Strong committees involve numerous committee chairmanships and rapporteurships which imply that performance – in terms of influential positions – is readily observable even on backbenchers.

Parties perceive this information as signals. Their responsiveness thus depends both on how informative the signal is, and to what extent parties feel they need new information. After analyzing 3 elections in 11 different member states, I find that performance in Parliament has a consistently positive effect on re-selection by the national party. This is true both for leadership positions and legislative drafts.
obtained in office.

Results further show that when positions in Parliament are reserved for a more select group, the effect of the signal increases, because of the information it carries. In the European Parliament this is observable through the differences in legislative procedures under which proposals can be made.

Last, signals have more effect when parties are initially more uncertain. In the European Parliament this is apparent through the increased weight of the first allocations in office as well as the increased impact of allocations among freshmen, MEPs who barely were elected initially and former high-ranking national politicians.

Implications for future studies of the European Parliament

This article differs from previous research on the European Parliament by suggesting an alternative conception of the power-relationship between transnational groups and national parties. Parties delegate authority to better informed groups in order to gain influence. The relative autonomy of groups can therefore be analyzed from the perspective of agency loss. This reasoning has three rather counterintuitive implications.

First, the empowerment of the European Parliament would imply *more* delegation to transnational groups – not less – because the potential gains lead parties to seek greater influence and accept greater agency loss.

Parties keep control over the process as long as they are in charge of candidate selection. This leads to the second implication. Parties from closed-list systems are more likely to receive and act upon information on performance than voters in other PR systems. The very strength of nomination, which usually empowers parties from closed-list systems, would also make them more dependent on transnational groups.

Third, the loyalty which parties from closed-list systems can impose on their MEPs would also be transferred to transnational groups. This is because parties use the groups’ assessment as a criterion in their own selection process.
Effect of information in a broader context

The theoretical framework suggests interesting venues for future research on party politics in at least two directions: The effect of performance varies as a function of the institutional context in Parliament, as well as the procedures of candidate selection in the party.

First, the internal organization of Parliament affects the information contained in the signal. In contrast to the bill sponsor in the U.S. Congress, the European counterpart is selected. This increases its informational value and empowers those who control such positions. In the current study, the selective element in group allocations is considered as exogenously given by the legislative procedure (which is set in the European treaties). Future studies could explore how parliamentary groups can manipulate allocation criteria and influence candidate selection.\(^{16}\)

A second venue would be to explore the effect of the selection process itself. One possibility is to explore how prior uncertainty impacts legislative behavior and the quality of democratic representation. Incumbent candidates whose initial ability was particularly uncertain are held to higher standards. This again gives stronger incentives to exert effort during the term.

Coordination problems in the selectorate may also impact how signals are received. A decentralized selectorate implies a greater information asymmetry, which again would involve a greater reliance on signals. Decentralization would consequently empower those who effectively control individual performance: This could be the MP himself, but it could also be the parliamentary group, committees or the parliamentary leadership. On the other hand, as the size of the selectorate increases, the cost of obtaining information from Parliament increases. The use and empowerment of rapporteurs could help lower the cost. In the US Congress, it is for example, common to claim credit for bill sponsorships as part of a strategy to inform voters.

\(^{16}\)In a formal model this would imply a game with three players in which Nature’s second move is replaced by a parliamentary group.
References

Appendix

Theorizing party choice

The following analysis describes the interactions between a party selectorate and their members of Parliament. It is based on expectations derived from a two-period version of Holmström’s (1999) canonical model (also related to a political context by Gehlbach, 2013) on career considerations and manager hiring. The limited number of periods implies that voters disregard effort, while paying close attention to ability.

When parties nominated their candidates for the first time, they had already acquired beliefs about how they would perform in office. Prior to the next election, parties update their belief in light of how a candidate has performed in office. More specifically, it uses the positions garnered by the MEP to determine his ability to obtain influence.

Game sequence, types and efforts

Consider two players, the party \((P)\) and an incumbent MEP \((M)\). They play a game in two periods where Nature \((N)\) moves twice.

1. The game starts with Nature selecting the quality of the MEP: \(\theta_1, \theta_2, ...\). Each type is drawn from a continuous variable which is normally distributed: \(\theta_j \sim N(m, \sigma^2_{\theta_j})\). While the players know the shape of the distribution, neither observes the particular quality of the MEP in office. We can think of the type as a bundle of qualities which define the MEP’s ability to gain influence. While the MEP might know his own skills, he doesn’t know exactly how they translate in the EP.

2. The incumbent MEP picks his effort level, \(e_1\), unobserved by the party.

 Effort is here understood as any action an MEP can freely undertake which increases his chances of garnering positions.

3. Nature decides the outcome, \(\pi_1\), of the MEP’s term in office.

 The parliamentary group allocates positions in Parliament as a function of the MEP type and his efforts: \(\pi_1 = \theta_1 + e_1 + \epsilon_1\). In addition there is a random element
which introduces uncertainty in the mapping from type and effort to the actual outcome: \(\epsilon_1 \sim N(0, \sigma^2_\epsilon) \). In this game, the uncertainty is exogenously given by the legislative procedure. The uncertainty is reduced when allocations are more selective, as they convey more information about MEP type than – say – a proportional allocation according to party size.

4. The Party observes the outcome, and decides whether to renominate the incumbent or pick a freshman who is also randomly drawn from a similar distribution. Payoffs are distributed.

At the end of the first period, the party receives \(\pi_1 \). If the MEP is renominated, he gets the payoff \(B - c(e_1) \), and 0 otherwise. \(B \) denotes the value the MEP puts on being renominated, while \(c(e_1) \) denotes the cost of the effort.

The game then starts a second period similar to the first, except that this time, the MEP moves last.

5. Nature chooses the type (\(\theta_2 \)): Incumbent members keep their type. For new members, the type is drawn at random from the same distribution as before.

6. The elected MEP picks his effort level, \(e_2 \).

7. Nature decides the outcome, \(\pi_2 \). Payoffs are distributed.

At the end of the game, the MEP who was reelected receives \(B - c(e_1) - c(e_2) \), while the party receives \(\pi_1 + \pi_2 \).

Equilibrium

The equilibrium concept is perfect Bayesian equilibrium. Players proceed by backward induction and sequentially choose weakly dominant strategies, given their knowledge of the other players’ options.

In his last period, the MEP cannot increase his payoff by exerting effort. He thus provides none. Hence, the political outcome \(\pi_2 \) from the second period only depends on the MEP’s type. Knowing this, a forward-looking party will discount the effort provided during the first period in order to deduce his type.
This means that the incumbent MEP has to make believe that his quality is higher than that of the average candidate:

\[\bar{\theta} \leq \theta_1 \] (1)

The party doesn’t know the MEP’s level of effort, nor his type, so it bases its choice on the outcome and the effort level which it can reasonably expect from any rational incumbent seeking reelection. In order to find the equilibrium we must look for a pair of \(e^*_1 \) and \(\bar{\pi} \) which maximizes the MEP’s chances of reelection:

\[
\max_{e_1} \left(\Pr(\pi_1 \geq \bar{\pi}|e_1)B - c(e_1) \right) \] (2)

The party’s beliefs

To infer a signal, the party uses the outcome, knowing that it is a function of the MEP’s quality and effort as well as a stochastic element.

\[\pi_1 = \theta_{j1} + e_1 + \epsilon_1 \Leftrightarrow \pi_1 - e_1 = \theta_{j1} + \epsilon_1 \] (3)

This implies that the signal has an expected value of \(\theta_j \), but is surrounded by some uncertainty: \(N(\pi_1 - e^*, \sigma^2_\epsilon) \). The party’s posterior belief depends on both the precision of the signal and its prior belief about the MEP: \(N(m, \sigma^2_\theta) \). In this case, the party’s belief is informed by the distribution from which the MEP was first drawn. Upon receiving the signal, the party does a Bayesian updating to form new expectations. (This is detailed in the next subsection.) In this case, both the prior and the signal are normally distributed, and thus conjugate. This yields a posterior expectation about the MEP’s type which is a weighted sum of the prior belief and the signal.

\[\bar{\theta} = \frac{\sigma^2_\epsilon}{\sigma^2_\theta + \sigma^2_\epsilon} m + \frac{\sigma^2_\theta}{\sigma^2_\theta + \sigma^2_\epsilon} (\pi_1 - e_1) \] (4)

This implies that the party’s posterior belief depends on the relative uncertainty about the MEP’s type and the group’s choice. Figure 6 illustrates how either signal
or the prior belief influences posterior beliefs when uncertainty increases. The other is held constant with a standard normal distribution. The figure shows how the effect of the signal increases when the prior uncertainty increases, or when the uncertainty of the signal itself decreases. This article aims at testing implications derived from this insight.

![Figure 6: The party’s posterior belief is a function of his prior uncertainty and the prediction of new information.](image)

The party then picks her best voting rule in equilibrium: It prefers the incumbent to a freshman as long as his expected quality, \bar{m} is higher than the average candidate running against him, m.

$$\bar{m} \geq m$$

(5)

Plotting the party’s posterior belief from equation 4 into the voting rule, we see that the MEP’s outcome must be at least as good as what an average MEP would obtain by optimizing his effort (detailed in the next subsection). This defines the party’s indifference point.

$$\pi_1 \geq m + \epsilon_1^* \equiv \bar{\pi}$$

(6)
The MEP’s beliefs

The MEP doesn’t know the outcome when he picks his effort level. Nor does he know his type, so he cannot adjust his level of effort to the average outcome (Persson and Tabellini, 2013, p. 83-84). This also means that – absent any information about his own quality – he assumes that his type is equivalent to the expected value of the prior distribution, \(m \) (i.e., any other MEP). The uncertainty surrounding his belief comes both from the uncertainty he has about the future outcome as well as the initial uncertainty about his type: \(\sigma^2 = \sigma^2_\theta + \sigma^2_\epsilon \). The incumbent thus knows his probability of being renominated to a safe seat with some uncertainty:

\[
Pr(\text{Renominated}|e_1) = 1 - \Phi\left(\frac{\bar{\pi} - e_1 - m}{\sigma}\right) \quad (7)
\]

He will therefore seek to optimize his final payoff by by solving:

\[
\max_{e_1} \left(1 - \Phi\left(\frac{\bar{\pi} - e_1 - m}{\sigma}\right)\right) B - c(e_1) \quad (8)
\]

Differentiating with respect to \(e_1 \) yields the first order condition. Rearranging, this expresses the effect of the MEP’s cost of effort as a function of his value of renomination as well as the informational environment:

\[
\phi\left(\frac{\bar{\pi} - e_1^* - m}{\sigma}\right) \frac{B}{\sigma} = c'(e_1^*) \quad (9)
\]

Since the prior expectation about MEP type ought to be equal to the average MEP output excepted his maximized effort, the parameter value of the PDF is set to zero.

\[
\phi(0) \frac{B}{\sigma} = c'(e_1^*) \quad (10)
\]

The MEP’s equilibrium effort is increasing in the value of reelection (\(B \)) and decreasing in the uncertainty (\(\sigma \)) surrounding both his type and the realization of the outcome.

\[17\text{It is possible to think of this as if the MEP picks his level of effort before Nature makes the first choice.}\]
Proofs

Conjugate priors and likelihood

Bayes law requires a prior belief and a likelihood derived from data to obtain a posterior probability: \(\text{Posterior} \propto \text{Prior} \times \text{Likelihood} \)

- Prior: \(\theta \sim N(m, \sigma^2_\theta) \)
- Likelihood/signal: \(s \sim N(\pi - e, \sigma^2_\epsilon) \)
- Posterior: \(N(\bar{m}, \sigma^2) \)

The party’s expected belief about the MEP after receiving the signal is the same as the posterior mean prediction:

\[
\bar{m} = \frac{m \sigma^2_\theta + \sum_{i=1}^{n} x_i}{\sigma^2_\theta + n \sigma^2_\epsilon} \tag{11}
\]

Multiplying two distributions, the formula reduces to: \(n = 1 \) and \(\sum_{i=1}^{n} x_i = \pi - e \).

\[
\frac{m}{\sigma^2_\theta} + \frac{\pi - e}{\sigma^2_\epsilon}
\]

\[
\frac{m \sigma^2_\theta + (\pi - e) \sigma^2_\epsilon}{\sigma^2_\theta + \sigma^2_\epsilon}
\]

\[
\frac{m \times \sigma^2_\theta \sigma^2_\epsilon}{\sigma^2_\theta + \sigma^2_\epsilon} + \frac{(\pi - e) \times \sigma^2_\theta \sigma^2_\epsilon}{\sigma^2_\theta + \sigma^2_\epsilon}
\tag{12}
\]

\[
\frac{m \times \sigma^2_\theta}{\sigma^2_\theta + \sigma^2_\epsilon} + \frac{(\pi - e) \times \sigma^2_\theta}{\sigma^2_\theta + \sigma^2_\epsilon}
\]

\[
\frac{m \times \sigma^2_\epsilon}{\sigma^2_\theta + \sigma^2_\epsilon} + \frac{(\pi - e) \times \sigma^2_\theta}{\sigma^2_\theta + \sigma^2_\epsilon}
\]

The party’s uncertainty about the MEP’s type is the same as the posterior variance parameter:

\[
\sigma^2 = \left(\frac{1}{\sigma^2_\theta} + \frac{n}{\sigma^2_\epsilon} \right)^{-1}
\]

\[
\sigma^2 = \left(\frac{1}{\sigma^2_\theta} + \frac{1}{\sigma^2_\epsilon} \right)^{-1}
\]

\[
\sigma^2 = \left(\frac{\sigma^2_\theta}{\sigma^2_\theta \sigma^2_\epsilon} + \frac{\sigma^2_\epsilon}{\sigma^2_\theta \sigma^2_\epsilon} \right)^{-1}
\tag{13}
\]

\[
\sigma^2 = \frac{\sigma^2_\theta \sigma^2_\epsilon}{\sigma^2_\theta + \sigma^2_\epsilon}
\]
The voting rule

The weighted average of the party’s updating is symmetric, so that the two weights may be expressed in terms of each other: \(\lambda = \frac{\sigma^2}{\sigma^2_\theta + \sigma^2_i} \) and \(1 - \lambda = \frac{\sigma^2_i}{\sigma^2_\theta + \sigma^2_i} \).

\[
\bar{m} \geq m \iff \\
\lambda(\pi_1 - e^*_1) + (1 - \lambda)m \geq m \iff \\
\lambda\pi_1 - \lambda e^* - 1 + m - \lambda m \geq m \iff \\
\lambda\pi_1 \geq \lambda e^* - 1 + \lambda m \\
\pi_1 \geq e^*_1 + m \equiv \bar{\pi} \tag{14}
\]
Details on the data sample

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Austria</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Austria</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Austria</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Bulgaria</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Bulgaria</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Estonia</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>France</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>France</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>France</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>Germany</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>99</td>
</tr>
<tr>
<td>11</td>
<td>Germany</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>Germany</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>99</td>
</tr>
<tr>
<td>13</td>
<td>Greece</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Greece</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>Hungary</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>Hungary</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>Portugal</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>Portugal</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>Portugal</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>Romania</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>33</td>
</tr>
<tr>
<td>21</td>
<td>Romania</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>Spain</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>63</td>
</tr>
<tr>
<td>23</td>
<td>Spain</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>52</td>
</tr>
<tr>
<td>24</td>
<td>Spain</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>52</td>
</tr>
<tr>
<td>25</td>
<td>Great Britain</td>
<td>5</td>
<td>1999</td>
<td>2004</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>Great Britain</td>
<td>6</td>
<td>2004</td>
<td>2009</td>
<td>62</td>
</tr>
<tr>
<td>27</td>
<td>Great Britain</td>
<td>7</td>
<td>2009</td>
<td>2014</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 4: Member states using closed list PR for the subsequent election (N=1134). Number of observations included in the analysis are also reported. The Conservative party in the United Kingdom joined the ECR group in the 7th legislature, and is thus excluded from the analysis.

On the selection of countries Daubler and Hix (2013) have studied how list systems used in European Parliament elections (2004 and 2009) function in practice. Austria and Bulgaria have formally flexible list systems, meaning that voters may give preference votes. However, the lists are only reordered if one or several candidates reach a certain (relative) number of preference votes. When the threshold is set high, the system will tend towards a closed-list ballot. The number of candidates on a list further influences negatively the probability of a reordering.
Few candidates passed the hurdle, causing the authors to reclassify Austria and Bulgaria as *de facto* closed list systems.

Missing observations There are few missing values in the data. Missing values on committee attendance (3 percent) are imputed using information from plenary attendance and EP leadership status (a simple linear regression). All other missing observations are treated as missing at random. They are given prior distributions with mean and deviation informed by the observed data.

The most substantial imputation is done in the lagged dependent variable (7 percent). Most of these unobserved values concern the 2009 election (reelection of the 6th Parliament). The lagged dependent variable requires information on party seat share following the 1999 election as well as list placement in the 2004 election. This information does not exist for new member states which joined the EU in the 2004/2007 EU enlargement. Where this information was available and meaningful (i.e. the parties were represented prior to the first EP elections), I used the number of appointed observers to the EP. These members were appointed from the national parliament on the basis of their representation at home.

A similar problem exists for France which switched from a national circumscription in the late 1990-ies to several subnational units. A listwise exclusion would remove many of the newer member states from the analysis, which would lessen the generalizability of the present results. In these cases, I therefore treat the information as missing at random by giving the variable a prior binomial distribution with a probability informed by the data.

Details on the main model

Random intercepts and convergence statistics are only reported for model 1.

Random intercepts

It is evident from figure 7 that there is no baseline time trend in the allocation of safe seats. There is also little cross-national variation in the propensity to reselect MEPs, with the exception of Greece and Hungary (which tend to reselect to a lesser
extent) and Spain (which tends to reselect more often than the general mean). We also see that MEPs seating in the two largest EP groups (the socialists and the conservatives) tend to be reselected more often. This may be because these groups include large national parties with more safe seats to allocate.

Figure 7: Random intercepts (median values surrounded by 95% HDI) from model 1. The number of observations within each group are reported in parantheses.

Convergence statistics

The analysis is done in a Bayesian framework using MCMC methods. Regression coefficients, β_i, γ_i and δ_i, are given a multivariate normal prior with a of mean zero and precision parameter 10. All effects are therefore vaguely assumed to be independent, although allowing variables to control for each other. Detailed BUGs
code is available with the online reproduction material. The model is run with 50,000 iterations. I use a 2000-iterations burn-in, keeping every 10th iteration. The two chains show no signs of non-convergence.
Figure 8: Equation 1: traceplots and density plots for main parameters.
<table>
<thead>
<tr>
<th>Variable</th>
<th>10000</th>
<th>30000</th>
<th>50000</th>
<th>1.00</th>
<th>1.10</th>
<th>1.20</th>
<th>1.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>Reports2</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>EPLeadership</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>NationalPolitician</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>Incumbent</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>BarelyElected</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>Ambition</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>SafeSeatLastElection</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Figure 9: Equation 1: Gelman-Rubin diagnostics.

Figure 10: Equation 1: Autocorrelation (chain 1).
<table>
<thead>
<tr>
<th></th>
<th>Point est.</th>
<th>Upper C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports</td>
<td>1.000</td>
<td>1.001</td>
</tr>
<tr>
<td>Reports2</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>EPLeadership</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>NationalPolitician</td>
<td>1.000</td>
<td>1.001</td>
</tr>
<tr>
<td>Incumbent</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>BarelyElected</td>
<td>1.000</td>
<td>1.001</td>
</tr>
<tr>
<td>Ambition</td>
<td>1.001</td>
<td>1.003</td>
</tr>
<tr>
<td>SafeSeatLastElection</td>
<td>1.001</td>
<td>1.004</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.001</td>
<td>1.004</td>
</tr>
</tbody>
</table>

Table 5: Equation 1: Gelman and Rubin’s scale reduction factors

<table>
<thead>
<tr>
<th></th>
<th>Chain 1</th>
<th>Chain 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports</td>
<td>0.403</td>
<td>0.235</td>
</tr>
<tr>
<td>Reports2</td>
<td>0.208</td>
<td>0.307</td>
</tr>
<tr>
<td>EPLeadership</td>
<td>0.341</td>
<td>0.456</td>
</tr>
<tr>
<td>NationalPolitician</td>
<td>0.205</td>
<td>-0.783</td>
</tr>
<tr>
<td>Incumbent</td>
<td>-1.035</td>
<td>1.435</td>
</tr>
<tr>
<td>BarelyElected</td>
<td>-0.231</td>
<td>-0.484</td>
</tr>
<tr>
<td>Ambition</td>
<td>-0.289</td>
<td>-1.505</td>
</tr>
<tr>
<td>SafeSeatLastElection</td>
<td>-0.267</td>
<td>-0.573</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.087</td>
<td>0.230</td>
</tr>
</tbody>
</table>

Table 6: Equation 1: Geweke’s z-scores for both chains.
Figure 12: Equation 2: Gelman-Rubin diagnostics.

Figure 13: Equation 2: Autocorrelation (chain 1).
Table 7: Equation 2: Gelman and Rubin’s scale reduction factors

<table>
<thead>
<tr>
<th></th>
<th>Chain 1</th>
<th>Chain 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.586</td>
<td>0.873</td>
</tr>
<tr>
<td>Age</td>
<td>-0.943</td>
<td>-0.856</td>
</tr>
<tr>
<td>Party Size</td>
<td>-0.416</td>
<td>-1.450</td>
</tr>
<tr>
<td>MEPs To National Politics</td>
<td>0.987</td>
<td>-1.293</td>
</tr>
<tr>
<td>Committee Attendance</td>
<td>-0.981</td>
<td>-1.182</td>
</tr>
</tbody>
</table>

Table 8: Equation 2: Geweke’s z-scores for both chains.

Figure 14: Equation 3: traceplots and density plots for main parameters.
Figure 15: Equation 3: Gelman-Rubin diagnostics.

Figure 16: Equation 3: Autocorrelation (chain 1).
Table 9: Equation 3: Gelman and Rubin’s scale reduction factors

<table>
<thead>
<tr>
<th></th>
<th>Chain 1</th>
<th>Chain 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.711</td>
<td>-1.017</td>
</tr>
<tr>
<td>Safe Seat</td>
<td>1.472</td>
<td>-1.329</td>
</tr>
<tr>
<td>Years of Term Served</td>
<td>0.625</td>
<td>1.169</td>
</tr>
</tbody>
</table>

Table 10: Equation 3: Geweke’s z-scores for both chains.

The BUGs code for the model

```plaintext
model{

for(i in 1:N){
    SafeSeat[i]~dbern(p[i])

    logit(p[i])<-mu.SafeSeat[i]

    mu.SafeSeat[i]<-a
    +a.group[EPGroup[i]]
    +a.nat[National[i]]
    +a.ep[EP[i]]
    +a.list[1]*Reports[i]
    +a.list[2]*Reports[i]*Reports[i]
    +a.list[3]*EPLeader[i]
    +a.list[4]*NatPol[i]
    +a.list[5]*Inc[i]
    +a.list[6]*Uncert[i]
    +a.list[7]*Future[i]
    +a.list[8]*SS_lag[i]
}
```

#

59
##Impute missing variables##

###Predictors of missing values on Future###

FutureNA[i] ~ dbern(p.fut.na[i])

\[
\text{logit}(p.fut.na[i]) = -\mu.fut.na[i]
\]

\[
\mu.fut.na[i] = \beta_{NA[1]} + \beta_{NA[2]} \cdot \text{SafeSeat}[i] + \beta_{NA[3]} \cdot \text{Time}[i]
\]

##Impute missing values on Future##

Future[i] ~ dbern(p.fut[i])

\[
\text{logit}(p.fut[i]) = -\mu.fut[i]
\]

\[
\mu.fut[i] = \beta[1] + \beta[2] \cdot \text{Age}[i] + \beta[3] \cdot \text{Seats}[i] + \beta[4] \cdot \text{Career}[i] + \beta[5] \cdot \text{AttCom}[i]
\]

##Impute missing values on committee attendance##

AttCom[i] ~ dnorm(mu.att[i], tau.att)

\[
\mu.att[i] = -\beta.att[1] + \beta.att[2] \cdot \text{Attend}[i] + \beta.att[3] \cdot \text{NoCom}[i]
\]
##Priors on missing values; other variables##

#Binary variables#
NatPol[i] ~ dbin(NatPol.m, 1)
EPLeader[i] ~ dbin(EPLead.m, 1)
Inc[i] ~ dbin(Inc.m, 1)
Uncert[i] ~ dbin(Uncert.m, 1)
Career[i] ~ dbin(Career.m, 1)

#Count variables#
Time[i] ~ dnorm(Time.m, Time.sd)
Seats[i] ~ dnorm(Seats.m, Seats.sd)
Attend[i] ~ dnorm(Attend.m, Attendsd)
Age[i] ~ dnorm(Age.m, Age.sd)
SS_lag[i] ~ dbin(Lag.m, 1)

}

##Set general mean##
a.star <- a + mean(a.group[]) +
mean(a.ep[]) +
mean(a.nat[])

################################
###Priors on regression coefficients:###
################################

###Prior for general mean###
a~dnorm(a.mu, a.tau)

a.mu~dnorm(0,1)

a.tau~dgamma(0.001, 0.001)

###Priors for national intercepts###
for(j in 1:N.nat){
a.nat[j]~dnorm(mu.nat, tau.nat)
}

mu.nat~dnorm(0,1)

tau.nat~dgamma(0.001, 0.001)

for(j in 1:N.nat){
a.nat.star[j]<-a.nat[j]-mean(a.nat[])
}

###Priors for EP intercepts###
for(j in 1:N.ep){
a.ep[j]~dnorm(mu.ep, tau.ep)
}

mu.ep~dnorm(0,1)

tau.ep~dgamma(0.001, 0.001)

for(j in 1:N.ep){
a.ep.star[j]<-a.ep[j]-mean(a.ep[])
}

###Priors for group intercepts###
for(j in 1:N.group){
a.group[j]~dnorm(mu.group, tau.gr)
mu.group~dnorm(0,1)

tau.gr~dgamma(0.001, 0.001)

for(j in 1:N.group){
a.group.star[j]<-a.group[j]-mean(a.group[])
}

a.list[1:N.fixef]~dmnorm(a0[], A[,,])

##Priors on fixed effects##

beta[1:N.beta]~dmnorm(b0[], B[,,])
betaNA[1:N.betaNA]~dmnorm(c0[], C[,,])
beta.att[1:N.b.att]~dmnorm(d0[], D[,,])

tau.att~dgamma(0.001, 0.001)
Alternative models

I have fitted a number of alternative models to explore the validity of the dependent variable, as well as the measure of MEPs’ ambition.

Table 11 displays the results from the interaction included in the main models so that the reader may evaluate the size and the precision of the difference in effect of reports between groups.

Table 14 displays the effect of performance and ambition on the probability of being renominated, renominated to a safe seat and reelected, respectively.

Table 12 displays the effect of excluding the control for ambition: The first column displays the model fit reported in the article. The second column displays the effect of excluding the control. From the results, we see that the inclusion of ambition mainly alters the effect of incumbency. This is logical, given that MEPs who have stayed in Parliament several terms are more likely to retire. Columns 3 and 4 display the same model fit run only on respondents to the EPRG survey. While the direction of effects remains consistent with the main model, we see that the low number of observations makes it difficult to effectively test the effect of performance on renomination.

Table 13 displays the results using other ways of modelling ambition. The first column displays the model fit reported in the article. The second column displays effects on safe seat allocation only among MEPs who figured on the electoral list ("renominated"). This is another way of including only MEPs who are likely to wish reelection. The third column displays a kitchen-sink model in which all covariates used to measure ambition are directly included into the main model. The fourth column displays the results from a model in which unobserved values on ambition are drawn from a binomial distribution with an empirically informed probability \(p = 0.27 \). This is the Bayesian version of "replacement by mean". Results in all models are similar.
<table>
<thead>
<tr>
<th>Dependent variable: "Safe seat"</th>
<th>H1</th>
<th>H2</th>
<th>H3 (Nat. Pol.)</th>
<th>H3 (Incumbent)</th>
<th>H3 (Barely elected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: Reports</td>
<td>0.121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.06, 0.184]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reports2</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.005, -0.001]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP Leadership</td>
<td>0.487</td>
<td>0.525</td>
<td>0.493</td>
<td>0.505</td>
<td>0.508</td>
</tr>
<tr>
<td></td>
<td>[0.036, 0.944]</td>
<td>[0.061, 0.986]</td>
<td>[0.047, 0.944]</td>
<td>[0.046, 0.971]</td>
<td>[0.062, 0.968]</td>
</tr>
<tr>
<td>H2: Low-Impact Reports</td>
<td></td>
<td>0.058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-0.017, 0.136]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Impact Reports2</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.004, 0.002]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Impact Reports</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.158, 0.404]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Impact Reports2</td>
<td>-0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.028, -0.007]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3: Reports (trunc. 10)</td>
<td></td>
<td></td>
<td>0.086</td>
<td>0.179</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.027, 0.145]</td>
<td>[0.092, 0.27]</td>
<td>[0.027, 0.139]</td>
</tr>
<tr>
<td>Reports*Group with Prior Uncertainty (Nat.Pol/Incumbent/Barely elected)</td>
<td>0.065</td>
<td>-0.112</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>[-0.014, 0.15]</td>
<td>[-0.22, -0.008]</td>
<td></td>
<td></td>
<td>[-0.003, 0.285]</td>
</tr>
<tr>
<td>Controls: National Politician</td>
<td>-0.126</td>
<td>-0.117</td>
<td>-0.226</td>
<td>-0.109</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>[-0.448, 0.205]</td>
<td>[-0.437, 0.211]</td>
<td>[-0.556, 0.102]</td>
<td>[-0.43, 0.222]</td>
<td>[-0.444, 0.205]</td>
</tr>
<tr>
<td>Incumbent</td>
<td>-0.737</td>
<td>-0.77</td>
<td>-0.757</td>
<td>-0.432</td>
<td>-0.74</td>
</tr>
<tr>
<td></td>
<td>[-1.046, -0.43]</td>
<td>[-1.086, -0.464]</td>
<td>[-1.066, -0.446]</td>
<td>[-0.851, -0.022]</td>
<td>[-1.048, -0.435]</td>
</tr>
<tr>
<td>Barely elected</td>
<td>1.207</td>
<td>1.302</td>
<td>1.249</td>
<td>1.279</td>
<td>0.924</td>
</tr>
<tr>
<td></td>
<td>[0.494, 1.951]</td>
<td>[0.574, 2.086]</td>
<td>[0.542, 2.024]</td>
<td>[0.561, 2.075]</td>
<td>[0.135, 1.805]</td>
</tr>
<tr>
<td>Ambition</td>
<td>1.171</td>
<td>1.22</td>
<td>1.172</td>
<td>1.174</td>
<td>1.158</td>
</tr>
<tr>
<td></td>
<td>[0.637, 1.729]</td>
<td>[0.688, 1.774]</td>
<td>[0.582, 1.733]</td>
<td>[0.624, 1.721]</td>
<td>[0.61, 1.694]</td>
</tr>
<tr>
<td>Safe Seat Last Election</td>
<td>1.856</td>
<td>1.973</td>
<td>1.889</td>
<td>1.898</td>
<td>1.877</td>
</tr>
<tr>
<td></td>
<td>[1.195, 2.602]</td>
<td>[1.266, 2.728]</td>
<td>[1.218, 2.657]</td>
<td>[1.229, 2.677]</td>
<td>[1.194, 2.659]</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
</tr>
</tbody>
</table>

Table 11: Allocation of safe seats in closed-list systems. Median effects from binary logit model. 95 percent HDI reported in parantheses.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.437</td>
<td>-1.998</td>
<td>-2.168</td>
<td>-1.824</td>
</tr>
<tr>
<td></td>
<td>[-3.239, -1.693]</td>
<td>[-2.731, -1.321]</td>
<td>[-3.532, -1.064]</td>
<td>[-3.121, -0.763]</td>
</tr>
<tr>
<td>Reports</td>
<td>0.121</td>
<td>0.12</td>
<td>0.025</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>[0.06 , 0.184]</td>
<td>[0.06 , 0.181]</td>
<td>[-0.088 , 0.133]</td>
<td>[-0.095 , 0.125]</td>
</tr>
<tr>
<td>Reports2</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>[-0.005 , -0.001]</td>
<td>[-0.005 , -0.001]</td>
<td>[-0.003 , 0.005]</td>
<td>[-0.003 , 0.005]</td>
</tr>
<tr>
<td>EP Leadership</td>
<td>0.487</td>
<td>0.506</td>
<td>0.694</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>[0.036 , 0.944]</td>
<td>[0.061 , 0.954]</td>
<td>[-0.115 , 1.575]</td>
<td>[-0.03 , 1.634]</td>
</tr>
<tr>
<td>National Politician</td>
<td>-0.126</td>
<td>-0.157</td>
<td>-0.369</td>
<td>-0.368</td>
</tr>
<tr>
<td></td>
<td>[-0.448 , 0.205]</td>
<td>[-0.473 , 0.157]</td>
<td>[-0.952 , 0.219]</td>
<td>[-0.965 , 0.229]</td>
</tr>
<tr>
<td>Incumbent</td>
<td>-0.737</td>
<td>-0.793</td>
<td>-0.764</td>
<td>-0.868</td>
</tr>
<tr>
<td></td>
<td>[-1.046 , -0.43]</td>
<td>[-1.084 , -0.502]</td>
<td>[-1.331 , -0.218]</td>
<td>[-1.432 , -0.338]</td>
</tr>
<tr>
<td>Barely Elected</td>
<td>1.207</td>
<td>1.163</td>
<td>2.039</td>
<td>1.975</td>
</tr>
<tr>
<td></td>
<td>[0.494 , 1.951]</td>
<td>[0.48 , 1.87]</td>
<td>[0.913 , 3.382]</td>
<td>[0.822 , 3.293]</td>
</tr>
<tr>
<td>Ambition</td>
<td>1.171</td>
<td></td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.637 , 1.729]</td>
<td></td>
<td>[0.152 , 1.366]</td>
<td></td>
</tr>
<tr>
<td>Safe Seat Last Election</td>
<td>1.856</td>
<td>1.737</td>
<td>2.409</td>
<td>2.252</td>
</tr>
<tr>
<td></td>
<td>[1.195 , 2.602]</td>
<td>[1.1 , 2.436]</td>
<td>[1.358 , 3.721]</td>
<td>[1.176 , 3.528]</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1134</td>
<td>1134</td>
<td>305</td>
<td>305</td>
</tr>
</tbody>
</table>

Table 12: Allocation of safe seats in closed-list systems: Controlling for MEP ambition.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Main model</th>
<th>Among renominated</th>
<th>Kitchen sink</th>
<th>Ambition imputed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.437</td>
<td>-1.626</td>
<td>-1.117</td>
<td>-2.245</td>
</tr>
<tr>
<td></td>
<td>[-3.239, -1.693]</td>
<td>[-2.533, -0.821]</td>
<td>[-2.399, 0.202]</td>
<td>[-3.054, -1.509]</td>
</tr>
<tr>
<td>Reports</td>
<td>0.121</td>
<td>0.111</td>
<td>0.08</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>[0.06, 0.184]</td>
<td>[0.032, 0.194]</td>
<td>[0.017, 0.144]</td>
<td>[0.063, 0.185]</td>
</tr>
<tr>
<td>Reports2</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>[-0.005, -0.001]</td>
<td>[-0.006, 0]</td>
<td>[-0.004, 0]</td>
<td>[-0.006, -0.001]</td>
</tr>
<tr>
<td>EP Leadership</td>
<td>0.487</td>
<td>0.928</td>
<td>0.604</td>
<td>0.475</td>
</tr>
<tr>
<td></td>
<td>[0.036, 0.944]</td>
<td>[0.292, 1.612]</td>
<td>[0.151, 1.074]</td>
<td>[0.036, 0.926]</td>
</tr>
<tr>
<td>National Politician</td>
<td>-0.126</td>
<td>-0.025</td>
<td>-0.001</td>
<td>-0.155</td>
</tr>
<tr>
<td></td>
<td>[-0.448, 0.205]</td>
<td>[-0.444, 0.395]</td>
<td>[-0.321, 0.32]</td>
<td>[-0.474, 0.159]</td>
</tr>
<tr>
<td>Incumbent</td>
<td>-0.737</td>
<td>-0.644</td>
<td>-0.729</td>
<td>-0.778</td>
</tr>
<tr>
<td></td>
<td>[-1.046, -0.43]</td>
<td>[-1.043, -0.252]</td>
<td>[-1.042, -0.418]</td>
<td>[-1.084, -0.48]</td>
</tr>
<tr>
<td>Barely Elected</td>
<td>1.207</td>
<td>1.295</td>
<td>1.33</td>
<td>1.194</td>
</tr>
<tr>
<td></td>
<td>[0.494, 1.951]</td>
<td>[0.535, 2.136]</td>
<td>[0.603, 2.102]</td>
<td>[0.509, 1.96]</td>
</tr>
<tr>
<td>Ambition</td>
<td>1.171</td>
<td>0.608</td>
<td>0.672</td>
<td>0.672</td>
</tr>
<tr>
<td></td>
<td>[0.637, 1.729]</td>
<td>[-0.101, 1.366]</td>
<td>[0.098, 1.268]</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.051</td>
<td>-0.069</td>
<td>-0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.069, -0.033]</td>
<td>[-0.069, -0.033]</td>
<td>[-0.069, -0.033]</td>
<td></td>
</tr>
<tr>
<td>Party Size</td>
<td>0.133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.016, 0.253]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEPs to National Politics</td>
<td>0.961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.657, 3.266]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Committee Attendance</td>
<td>0.483</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.365, 1.326]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days of Term Served</td>
<td>0.288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.12, 0.473]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe Seat Last Election</td>
<td>1.856</td>
<td>2.066</td>
<td>1.792</td>
<td>1.806</td>
</tr>
<tr>
<td></td>
<td>[1.195, 2.602]</td>
<td>[1.332, 2.891]</td>
<td>[1.089, 2.537]</td>
<td>[1.141, 2.544]</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1134</td>
<td>781</td>
<td>1134</td>
<td>1134</td>
</tr>
</tbody>
</table>

Table 13: Allocation of safe seats in closed-list systems: Different ways of controlling for MEP ambition.
<table>
<thead>
<tr>
<th></th>
<th>Renomination</th>
<th>Safe Seat</th>
<th>Reelection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.24</td>
<td>-2.437</td>
<td>-0.46</td>
</tr>
<tr>
<td></td>
<td>[-0.452, 0.922]</td>
<td>[-3.239, -1.693]</td>
<td>[-1.116, 0.173]</td>
</tr>
<tr>
<td>Reports</td>
<td>0.085</td>
<td>0.121</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>[0.022, 0.15]</td>
<td>[0.06, 0.184]</td>
<td>[0.037, 0.155]</td>
</tr>
<tr>
<td>Reports2</td>
<td>-0.002</td>
<td>-0.003</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>[-0.003, 0]</td>
<td>[-0.005, -0.001]</td>
<td>[-0.003, 0]</td>
</tr>
<tr>
<td>EP Leadership</td>
<td>0.11</td>
<td>0.487</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>[-0.386, 0.624]</td>
<td>[0.036, 0.944]</td>
<td>[-0.231, 0.683]</td>
</tr>
<tr>
<td>National Politician</td>
<td>-0.239</td>
<td>-0.126</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>[-0.571, 0.103]</td>
<td>[-0.448, 0.205]</td>
<td>[-0.299, 0.351]</td>
</tr>
<tr>
<td>Incumbent</td>
<td>-0.675</td>
<td>-0.737</td>
<td>-0.644</td>
</tr>
<tr>
<td></td>
<td>[-0.991, -0.354]</td>
<td>[-1.046, -0.43]</td>
<td>[-0.945, -0.35]</td>
</tr>
<tr>
<td>Barely Elected</td>
<td>0.14</td>
<td>1.207</td>
<td>-0.567</td>
</tr>
<tr>
<td></td>
<td>[-0.537, 0.821]</td>
<td>[0.494, 1.951]</td>
<td>[-1.184, 0.064]</td>
</tr>
<tr>
<td>Ambition</td>
<td>1.604</td>
<td>1.171</td>
<td>1.107</td>
</tr>
<tr>
<td></td>
<td>[0.961, 2.373]</td>
<td>[0.637, 1.729]</td>
<td>[0.529, 1.681]</td>
</tr>
<tr>
<td>Safe Seat Last Election</td>
<td>0.451</td>
<td>1.856</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>[-0.181, 1.094]</td>
<td>[1.195, 2.602]</td>
<td>[-0.196, 0.98]</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1134</td>
<td>1134</td>
<td>1134</td>
</tr>
</tbody>
</table>

Table 14: Alternative operationalizations of candidate selection in closed-list systems.