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Abstract

The paper discusses the development of a frequency dependent directional spread

from an initial condition of frequency-independence. The study applies basin

directional measurements from the Maritime Research Institute Netherlands

(MARIN), simulated data from a nonlinear wave equation and field measure-

ments from the Ekofisk field. The basin experiments and numerical simula-

tions are initialized with a JONSWAP spectrum with frequency-independent

directional distributions. In both cases we observe the development of a strong

frequency-dependence of the directional spread. The numerical simulations sug-

gest that static nonlinear contributions to the surface elevation partially explain

the behavior below the spectral peak in accordance with [1]. There are also dy-

namic nonlinear contributions on both sides of the spectral peak.

Keywords: Frequency dependent directional distribution

1. Introduction

In Gaussian linear wave theory (LWT), the ocean wave field is characterized

by the directional spectrum

E(ω, θ) = S(ω)D(θ, ω), (1)
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where S is the frequency spectrum, D the directional distribution, ω the angular

frequency and θ is the direction [2]. If the required assumptions are made, the

directional spectrum can easily be extracted from ocean wave data recorded

using instruments ranging from the simplest single point triplet and gauge arrays5

to the more recent stereo video-based [3, 4, 5, 6] and remote-sensing [7] systems.

Many studies dealing with the frequency dependent behavior of ocean wave

directional distribution often assume the cos-2s distribution [8] as a primary

choice, and express the spreading parameter, s, in terms of the dimensionless

frequency to optimize the fit to measured directional characteristics. Proposed10

parameteric representations can be found from the recent studies of [9, 10, 11]

and early work of [12, 13, 14] for practical applications. However, there are

also several other idealized directional distributions with equivalent parameters

as in the cos-2s distribution, suitable to describe the frequency dependence of

the directional spread, or the circular standard deviation of D, [15]. A more15

comprehensive review of many of the parameterizations are given in [16]. Almost

all analysis based on ocean wave data show that the directional spread is strongly

dependent on frequency, with minimum spread near the spectral peak.

Since the pioneering work of Hasselmann [13], the frequency dependence of

the angular distribution has been speculated to be due to the dominance of20

nonlinear interactions over generation effects. Second order spectral contribu-

tions derived from perturbation expansion of the surface elevation up to the

4th order in wave steepness [e.g. 17], reveal nonlinear influence on the shape

of the directional spread. In particular, the difference-frequency contribution is

the principal cause for the strong increase in the spread, and the discrepancy25

between the RMS and the linear wave theory wavenumber below the spectral

peak [1]. The three-dimensional MNLS simulations of [18], carried out to study

the establishment of high frequency power-law and the corresponding shift in

the spectral peak, lead to the same conclusion.

We are not aware that basin wave spectra have yet been investigated whether30

they develop a frequency dependent directional spread on their own. However, in

advanced basin wave makers, calibration of directional seas sometimes employs
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realistic frequency dependent directional distributions [e.g. 19].

In the present paper, we take advantage of available experimental data to in-

vestigate the development of frequency dependent directional spread. The corre-35

sponding numerical simulations are done using the modified nonlinear Schrödinger

equation [20, 21, 22, 23, 24].

We also present observations from the Ekofisk laser array, discuss data

analysis methods, and observe bimodal nature of the directional distributions

[25, 9, 26, 27].40

The next section presents the theoretical background and analysis methods.

Sec. 3 and 4 summarize data sources and results, respectively, followed by the

conclusions in Sec. 5.

2. Background theory

2.1. Wave spectra45

We consider a zero mean, weakly stationary and homogeneous ocean surface,

z = η(x, t), where x = (x, y) is the horizontal position, t is time, and the z-

axis pointing upwards. The spectral representation of η is a stochastic Fourier

integral over the wavenumber-frequency (k, ω)-space,

η(x, t) =

∫

k,ω

ei(k·x−ωt)dZ(k, ω). (2)

The Fourier transform in this context, Z, is called the spectral amplitude.

From the properties of Z, the covariance function, ρ(x, t), and the spectrum of

the surface are related by the integral

ρ(x, t) = E[η(x, t)η(0, 0)] =

∫

k,ω

ei(k·x−ωt)dχ(k, ω). (3)

It is convenient to write dχ (k, ω) = S (ω)φω (k) dωdk. Here φω (k) is the

wavenumber distribution at frequency ω, normalized so that
∫

k
φω (k) dk = 1

for all ω ∈ R, where dk ≡ dkxdky is a short-hand notation. In the simplest case

with only linear free waves, k and ω are connected by the dispersion relation,

e.g. ω =
√

g|k| tanh(|k|h), kx = |k| cos θ, ky = |k| sin θ, and φω may be50
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written as φω (k) = δ (|k| − kLWT (ω))D (θ, ω) , where kLWT is the solution of

the dispersion relation for a fixed ω, and D (θ, ω) is the angular distribution

located at the intersection of the dispersion manifold and the plane ω = const.

Following the discussion in [2], φω (k) will in general have contributions

also off the dispersion manifold. Being a two-dimensional distribution, it is

reasonable to consider its basic moments up to second order,

〈

(kx)
i (ky)

j
〉

(ω) =

∫

k

(kx)
i (ky)

j φω (k) dk, 0 ≤ i+ j ≤ 2. (4)

Apart from rather crude large-area remote-sensing systems, direct field mea-

surements of φω (k) are out of reach. However, estimates of these moments are55

possible from single point surface heave/pitch/roll (HPR) systems. The method

is well established, but unfortunately, the leading five moments are far from de-

termining the actual shape of φω, as illustrated by the following two possible

solutions. The first solution is a two-dimensional Gaussian distribution, whereas

the second is a quasi-LWT solution where the wave number is estimated from60

the data without enforcing by the dispersion relation [2, 28]. The first has hardly

been used, but the second has become a standard for heave/pitch/roll systems

where four Fourier coefficients of D (θ, ω) may be uniquely obtained from the

moments.

The preferred object in research, in particular in remote sensing is the

wavenumber spectrum

Ψ (k) dk = 2

∫

dk,ω>0

dχ (k, ω) = 2

∫

ω>0

S (ω)φω (k) dkdω. (5)

However, in the general case, Ψ (k) will contain contributions from several φω-

distributions for each k, and there is no way to discriminate between contri-

butions from linear and nonlinear waves without further information about the

φω-functions. Inversion from Ψ back to χ is thus only possible assuming the

dispersion relation, such as σ(|k|) =
√

g|k| tanh(|k|h),

dχ(k, ω) =
1

2
[Ψ(k)δ(ω − σ(|k|)) + Ψ(−k)δ(ω + σ(|k|))]dkdω. (6)

The transformation from the wavenumber spectrum to the commonly used
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directional spectrum, E (ω, θ) = S (ω)D (θ, ω) , is carried out by change in vari-

ables:

E (ω, θ) = S (ω)D (θ, ω) = Ψ (|k| (ω) , θ) |k| (ω)
d|k| (ω)

dω
. (7)

It is convenient to normalize S and Ψ so that

Var[η] =

∫

k,ω

dχ(k, ω) =

∫

k

Ψ(k)dk = 2

∫

∞

0

S (ω) dω. (8)

The angular distribution function D(θ, ω) may be viewed as a probability

distribution function distributed over the direction θ of k, often stated in terms

of its Fourier series expansion,

D(θ, ω) =
1

2π

[

1 + 2

∞
∑

n=1

[an(ω) cosnθ + bn(ω) sinnθ]

]

. (9)

The main parameters of the distribution are expressed in terms of the Fourier

coefficients a1(ω) and b1(ω) [see 29, 2]. The mean direction is given by θ1(ω) =

atan2(b1(ω), a1(ω)), whereas the directional spread, σ1(ω) =
√

2(1− r1(ω)),

where r1(ω) =
√

a1(ω)2 + b1(ω)2. The cos-2s distribution is a favored choice in

modeling directional wave fields:

D(θ) = Ds(s) cos
2s (θ − θ1)

2
, Ds(s) =

1

π
22s−1 Γ

2(s+ 1)

Γ(2s+ 1)
, σ1 =

√

2

s+ 1
,

(10)

here s can be constant or in accordance with one of the empirical frequency

dependent forms proposed by e.g. [14, 13] or [9]. For example, the Mitsuyasu

parameterization [14] takes the form

s(ω) =











sp(
ω
ωp

)5 if ω ≤ ωp,

sp(
ω
ωp

)−2.5 if ω > ωp,

(11)

where sp = 11.5(U/cp)
−2.5, U is the wind speed and cp the phase speed at the65

spectral peak.

It is possible to relate the Fourier coefficients directly to the moments of

φω-functions, [2]. In particular, introducing the mean wavenumber, 〈k〉 (ω) =
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〈(kx, ky)〉, and RMS wavenumber, kRMS(ω) =
〈

k2x + k2y
〉1/2

, we obtain the gen-

eral expressions

θ1(ω) = ∠r(ω), σ1(ω) =
√

2(1− |r|(ω)), r(ω) =
〈k〉 (ω)

kRMS(ω)
. (12)

These definitions can be used independently of any additional assumptions

beyond stationarity and homogeneity. We also employ the useful Check Ratio,

CR(ω) = kRMS(ω)
kLWT (ω) , where kLWT (ω) is obtained from the dispersion relation.

2.2. Methods of data analysis70

Stochastic wave data analysis mostly applies Fourier-based methods. This

is ideal for Gaussian linear wave theory, where any linear and shift invariant

filter, η (x,t) → ξ (x, t), may be expressed as

ξm =

∫

k,ω

Tm(k, ω)ei(k·xm−ωt)dZ(k, ω). (13)

Here Tm is the transfer function and eik·xm the location exponential. A first

step in the analysis, following the data inspection and restoration, is to estimate

the auto- and cross-spectral matrix, ΣΣΣ(ω) = [σmn]
M
m,n=1, defined by

σmn(ω) =

∫

k

Tm(k, ω)TH
n (k, ω)eik·(xm−xn)dχ(k, ω), m, n = 1, . . . ,M, (14)

where H stands for Hermitian transposed [2]. The transfer functions in the

integral Eq. 14, including the location exponentials may be expressed in terms

of ω and θ as Ti(ω, θ) = Ri(ω)hi(ω, θ), where Ri(ω) and hi(ω, θ) contain the

direction-independent and dependent parts, respectively [30]. If we further as-

sume a directional spectrum of the form given in Eq. 7, then Eq. 14, may be

rewritten as

ΣΣΣ(ω) = S(ω)R(ω)ΦΦΦ(ω)RH(ω), R = diag(R1, . . . , RN ), (15)

where

ΦΦΦ(ω) =

∫ 2π

0

h(ω, θ)hH(ω, θ)D(θ, ω)dθ. (16)

We refer to [2] for computational details, but recall that estimation of ΣΣΣ is

made by averaging the products of the discrete Fourier transform of the time
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series provided the data are well-sampled. This means that the data records

are considerably longer than the temporal correlation, and the sampling fre-

quency is well above the most energetic parts of the spectrum. In addition,75

data windowing and spectral averaging are used for decreasing spectral leakage

and enhance the quality of the estimate.

There are many different estimation techniques for wave spectra, each having

their own principle of analysis and merits [31]. We consider the estimation

of directional wave spectra from spatial arrays of wave gauges applying the

maximum likelihood (ML) method, the iterative maximum likelihood (IML)

method, the heave/pitch/roll (HPR) method, and directly from χ(k, ω) when

feasible. The ML estimate has the form [32]

DML(θ, ω) =
κ

hH(ω, θ)ΦΦΦ−1(ω)h(ω, θ)
, (17)

where

κ−1 =

∫ 2π

0

(hH(θ, ω)ΦΦΦ−1h(θ, ω))−1dθ. (18)

Data redundancy may sometimes require use of generalized inverses. How-

ever, cross-spectra computed from a certain D (θ) and then used to compute

DML from Eq. 17 do not always match. Therefore, Pawka [33] introduced an

iterative improvement of ML method called iterative maximum likelihood (IML)

method, later modified to an iterative scheme of the form

Dn+1 = Dn + ωR[D̂ML −M(Dn)] with D0 = D̂ML. (19)

In Eq. 19, D̂ML is the ML estimate based on the data, M(Dn) the ML

estimate based on cross-spectrum of D̂ML, ωR a relaxation parameter, and

Dn+1 is normalized to have integral equal 1, [32, 34].80

One may alternatively analyze three sensors as HPR data by adding a plane

through the three measurements and approximate the surface elevation, η, and

slopes, ∂η
∂x and ∂η

∂y at the center of gravity. In this case, we get single-point

triplet measurements which may be analyzed using the standard buoy processing

techniques [see, 35, p.184], leading to, among others, the Burg [36] maximum85
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entropy (ME-B) and the Shannon [37] maximum entropy (ME-S) directional

distributions.

3. The different data sources

3.1. Laboratory measurements

Data for this study were collected by MARIN as part of the On board90

Wave and Motion Estimator (OWME) project. The experiment was conducted

between Dec. 10 to Dec. 13, 2007, and was initiated with the main objective of

developing an on board decision support system for vessel motions prediction.

A detailed description of the facilities and experiments is presented in [38].

Model experiments at a scale of 1 : 70 were performed in the 40m long and95

170mwide MARIN seakeeping and manoeuvring basin. The wave measurements

were carried out using a 1.8m by 1.8m 10 × 10 wave probe array of grid size

0.2m in both directions as shown in Fig. 1a. The array was connected to a

movable carriage which could be moved to various locations in the basin between

tests, each such location will in the following be referred to as array location.100

Arrangement of the wave gauge arrays, as well as their layouts throughout the

5m deep (350m in full scale) model basin is shown in Fig. 1b, the main wave

propagation direction is along the positive x-axis. The waves are generated by

a flap type wave maker at one end and damped by an absorbing beaches on the

opposing end. The wave maker is located -740m from the y-axis.105

The wave maker was programmed with a JONSWAP spectrum with a di-

rectional distribution independent of frequency. The JONSWAP spectrum was

generated with peakedness factor γ = 3.3, significant wave height Hs = 2.5m, a

peak period of Tp = 9s. Three different directional distributions were employed,

narrow (σ1I = 5.7◦), medium (σ1I = 12.5◦) and broad (σ1I = 19.1◦). The direc-110

tional distribution was similar to the standard cos-2s-distribution introduced,

see [8]. The spectral peak frequency in the measurement was fp = 0.113Hz,

corresponding to kp = 0.0514rad/m, wavelength λp = 122m and dimensionless
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Figure 1: Wave gauge array locations and probe arrangement

depth kph = 19. In the following, we define the steepness ǫ as ǫ = kp
√

2〈η2〉,

accordingly the steepness in MARIN data is found to be ǫ = 0.05.115

Analysis results presented in Sec. 4.1 are based on measurements either from

array type 1 or from array type 2. The former formed by probes B2, B3 and

C3, while the latter formed by probes B2, B4, C3, D2 and D4 as depicted in

Fig. 1b. The target location in the basin will be indicated in the caption when

needed. The noise level in the auto-spectra is about 40dB below the peak and120

limits the useful part of the spectra to an interval, [0, 4ωp].

Due to some noise of unknown origin, neighboring data series show lack of

coherence in the cross-spectra above twice the spectral peak. The noise in the

individual time series implies a fast drop in coherence in the cross-spectrum and

a corresponding poor quality of the estimated wave parameters. In addition,125

data from managable subarrays from the full arrays suffer from spatial aliasing

and limits the usable frequency range for the directional analysis even further.

In the MARIN probe set-up, the smallest leg in the array is 14m, resulting in

a limiting wavelength of 28m. The corresponding frequency is 0.24Hz, or about

9



two times the spectral peak frequency.130

3.2. Field measurements

The Ekofisk laser array consists of four down-looking OptechTM lasers

mounted on a bridge connecting the Kilo and Bravo platforms near the Ekofisk

complex. The lasers are placed at the four corners of a 2.6m by 2.6m square

located approximately 20 meters above the mean surface of a 70m deep sea.135

The system has been designed by the Norwegian Meteorological Institute

in cooperation with the University of Miami, and the data collection is carried

out under the operational responsibility of ConocoPhillips Inc. The lasers use

continuous 5Hz sampling frequency which was down-sampled to 1.7Hz for time

series of duration 20 minutes [39]. Sophisticated data check and restoration140

techniques have been implemented on the raw data [40]. The present analysis

is limited to records with moderate to high sea states, that is, Hs ≥ 3.5m. The

spectral peak frequency is found to be fp = 0.12Hz, the dispersion relation gives

kp = 0.0616rad/m, λp = 2π/kp = 102m and thus kph = 4.3.

Even if the full array consists of four lasers, the results are virtually un-145

changed when using only three lasers because of the array’s compact size. The

shortest leg in the array is 2.6m, resulting in a limiting wavelength λSA = 5.2m.

The corresponding frequency, fSA ≈ 0.56Hz = 4.4fp, which is well below the

temporal Nyquist limit fs = 0.85Hz.

3.3. Numerical model150

We shall employ a modified nonlinear Schrödinger model that describes the

evolution of the surface elevation using the evolution of its complex envelope,

B. In this section all expressions are non-dimensionalized by a characteristic

wavenumber (kc) and the corresponding characteristic angular frequency (ωc).

In practice we let the characteristic frequency be the peak frequency of the initial

spectrum. Assuming a two dimensional, irrotational flow of an incompressible

inviscid fluid, we expand the velocity potential φ and surface elevation η of the
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free surface in harmonic series

φ = φ̄+
1

2
(Aei(x−t) +A2e

2i(x−t) +A3e
3i(x−t) + · · ·+ c.c.), (20)

and

η = η̄ +
1

2
(Bei(x−t) +B2e

2i(x−t) +B3e
3i(x−t) + · · ·+ c.c.). (21)

Here c.c. denotes the complex conjugate, (x, y) and z are horizontal and

vertical coordinates, t is time and η̄, B2 and B3 are the zeroth, second and

third harmonic bound waves. They are slowly varying functions of space and

time given by

η̄ = −φ̄t, B2 =
1

2
B2 + iBBt, and B3 =

3

8
B3. (22)

Detailed representations of temporal and spatial Schrödinger equations are

given in [23]. The temporal evolution equations have nice properties to in-

vestigate temporal sequences of measurements obtained from large-area remote

sensing systems. However, for a meaningful study of the spatial development

of frequency dependent directional spread away from a wave maker in a basin155

it is desirable to employ spatial MNLS equation. In particular, when the mea-

surements are in the form of simultaneously recorded time series of certain wave

properties taken at different spatial locations, the spatial MNLS equation is

more suitable than the temporal MNLS. Moreover, conventional analysis meth-

ods often use time series to estimate the basic directional parameters.160

Provided that the steepness is small ǫ = kcac ≪ 1, the bandwidth is nar-

row |∆k|/kc ≪ 1, large depth (kch)
−1 ≪ 1, and neglecting terms of relative

order of magnitude higher than ǫ4, we get the modified nonlinear Schrödinger

(MNLS) equation. Here ac =
√

2〈η〉2 is the characteristic amplitude, |∆k| is a

characteristic modulation wave vector relative to the characteristic wave vector,

[21] and h is depth set to infinity for the present numerical simulations. The

potential φ̄ of the induced mean flow is governed by the equations

φ̄z = −(|B|2)t at z = 0,

4φ̄tt + φ̄yy + φ̄zz = 0 for −∞ < z < 0,

φ̄z = 0 at z → −∞.

(23)
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The first, second and third harmonic complex amplitudes of the potential,

A, A2 and A3, will not be considered here. The slowly varying functions η̄

and φ̄ contain the difference-frequency contributions. The modified nonlinear

Schrödinger equation [41, 42] is the lowest order that can capture the behavior

observed in [1]. The spatial evolution form of MNLS equation is given by [20,

21, 24]

Bx+2Bt+ iBtt−
i

2
Byy + i|B|2B−Btyy − 8|B|2Bt− 2B2B∗

t − 4iφ̄tB = 0, (24)

superscript ∗ is complex conjugate. We employ the numerical method of [43, 44]

with periodic boundary conditions in time and transverse direction. Evolution

in the x-direction is achieved with a splitting scheme in which the linear part of

Eq. 24 is integrated exactly in Fourier space and the nonlinear part is integrated

by finite differences. We employ temporal and transversal grids with Nt = 512165

and Ny = 256 points for simulation of B. The computational domain is set

to 200 peak periods in time and 100 peak wavelengths in transversal direction

with discretization ∆ω = 1/200 and ∆ky = 1/100. However, a different grid size

namely, Nt = 4096 and Ny = 2048 points, is employed for the reconstruction of

the surface elevation using Eq. 21, in this case we set the discretization of the170

(t, y)-plane to be ∆t = ∆y = 0.3. For the directional analysis, evolution results

are extracted at ten positions for every 10λc interval over a total length of about

100λc in the x-direction. The computational efforts range from an hour to few

hours on office computers.

All simulations are started by a JONSWAP frequency spectrum with γ = 3.3,

multiplied by directional distributions of the form [2]

D(θ) = Dk(k) cos
k (θ − θ1), for |θ − θ1| ≤

π

2
, (25)

where Dk(k) is a normalization factor. This distribution is slightly advanta-

geous for MNLS-type simulations in comparison with cos-2s, because it does

not prescribe waves going backward. We recall that σ1 =
√

2/(s+ 1) for the

cos-2s-distribution, on the contrary there is no simple analytic expression for

k as a function of σ1. Nevertheless, since the distribution in Eq. 25 and the

12



cos-2s-distribution are practically indistinguishable when k = (s−1)/2 is larger

than about 5 [2], one may use the approximation

k = (s− 1)/2 =
1

σ2
1

− 1, (26)

for σ1 < 1.175

The spectra shown below are obtained by analysing a 3D surface data

η(x, y, t), from MNLS simulation. The squared modulus of the 3D Fast Fourier

Transform (3D-FFT) of the data is a 3D wave spectrum χ(k, ω) = |η̂(k, ω)|2,

often interpreted as the distribution of wave energy in the (k, ω)-space. Spec-

tral leakage has been reduced by applying a cosine-bell tapering window on the180

data. Besides, all the spectra have been smoothed with a 3D moving average.

The kxω-slice of χ(k, ω) at ky = 0, is shown in Fig. 2. It displays the

spectrum of the free waves including the zeroth harmonic and higher order

nonlinear harmonics.

The wavenumber distribution, φω(k), has extracted from χ(k, ω) and shown185

in Fig. 3, for a set of positive frequencies. It demonstrates the kxky-slices

carrying the k-distributions near the most energetic parts of the zeroth, first,

second and third order spectra. The zeroth harmonic spectrum has localized

itself near the origin while the first order spectrum dominates the region around

the spectral peak. It fulfills the linear dispersion, |k| = klwt(ω) (white solid190

circle). The 2nd and 3rd order spectra dominate the region around twice and

three times the peak frequency respectively. They fulfill |k| = 1/2klwt(ω) (yellow

dash-dot circle) and |k| = 1/3klwt(ω) (red dashed circle) respectively.

4. Results

4.1. Laboratory observations195

Full 3-D spectra were obtained from three-dimensional discrete Fourier trans-

form in space and time of MARIN’s 10 × 10-array data. To reduce spectral

leakage, the Fourier transform has been tapered with a cosine-bell window. In

addition, we have applied a three-dimensional moving average to smooth the

13



Figure 2: MNLS: kxω-slice obtained from 3-D spectrum at ky = 0. Color scale in dB relative

to the peak. White solid curve, deep water dispersion relation; yellow dash-dot curve, second

order contribution; red dashed curve, third order contribution.
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Figure 3: MNLS: Slices through (k, ω)-spectrum showing φω(k) for constant frequencies.

White solid circle, deep water dispersion relation; yellow dash-dot circle, second order contri-

bution; red dashed circle, third order contribution.

15



data. In Fig. 4, kxky-slices of χ(k, ω), for selected ω, are shown. Since the200

resolution in the k-plane is coarse, 40 neighboring slices have been averaged

in the ω-direction. The result is heavily smeared and biased compared to the

corresponding distributions obtained from simulated data (see Fig. 3). Never-

theless, the maximum distribution lies outside the dispersion circle for ω < ωp

and within the dispersion circle for ω > ωp.

Figure 4: MARIN (location 2, full 3-D analysis, σ1I = 19.1◦): φω(k) for fixed ω. All the plots

are scaled with the maximum value of φω(k) for the given ω. Solid circle, linear dispersion

relation at specific frequency; dashed circle, second order contribution.

205

From the estimate of χ(k, ω), one may obtain the moments for each frequency

and then determine the directional parameters as discussed in Sec. 2.1. The

data may also be analyzed using the standard ML and IML algorithms. These

provide estimates of the directional distributions, D(θ, ω), from which we then

determine the directional parameters. Alternatively, the time series data may be210
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interpolated into HPR time series, and analyzed in that way, leading to estimates

of the five basic moments. Figure 5 shows frequency spectra on the three sensors

and estimated directional spectra, obtained by ML, IML and ME-B algorithms.

The frequency spectra, in the upper left corner, are almost identical. Observe

also the bend, slightly below twice the spectral peak, where the noise takes over215

the spectra. The spectra from the three algorithms are also very similar, with

no distinct bi-modality which is perhaps masked by spatial aliasing in the high

frequency region.

Figure 5: MARIN (location 2, array type 1, σ1I = 19.1◦): Frequency spectra on the three

sensors and their median (upper left), ML, IML and ME-B directional spectra.
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In Fig. 6, estimates of the directional spread from the three wave conditions

are shown in the upper row. Even if the experiments are initialized by frequency220

independent directional distributions at the wave maker, the spectra develop

directional spread strongly dependent on frequency with minimum spread near

the spectral peak. For the narrow input spread (σ1I = 5.7◦), the increase

in the spread below the spectral peak is not so strong, and in this case, the

increase in the check ratio toward the low frequency starts near the spectral225

peak. Increasing the input spread to σ1I = 12.5◦ (medium) and σ1I = 19.1◦

(broad) changes the result moderately, in both cases, there is a strong increase in

the spread below the spectral peak, however, there is no major difference in the

check ratio. In all of the three cases, the directional spread increases smoothly

from the spectral peak to about ω = 1.5ωp and then rapidly to maximum at230

about twice the spectral peak. The observed rapid increase to maximum is

combined effect of spatial aliasing and lack of spectral coherence. The effect

of spatial aliasing is also evident in the estimates of the mean directions in the

lower row. The ML and IML directions veer off from the HPR directions above

about two times the spectral peak. In these particular situations, there is a235

good agreement between the ML and Ekofisk spread around the spectral peak

and for the three wave types while the agreement between Mitsuyasu and IML

and HPR is best for the broader input spread.

Estimates of the directional spread by the standard ML-algorithm, around

the peak spectrum, is too large compared to the HPR spread, whereas IML and240

HPR fit surprisingly well, in particular for the broader distributions.

Seven more datasets from each wave condition were analyzed to examine the

spreading behavior more closely, in almost all of them, results were consistent

and in agreement with the ones shown in Fig. 6.

When using array type 2, the ML results enhance significantly and become245

virtually similar to IML and HPR results on array type 1. The spatial devel-

opment of the various wave parameters in the MARIN wave tank is shown in

Fig. 7 for the broad spread (σ1I = 19.1◦). In each plot, the graphs represent

results from six locations along the propagation direction designated by 1 − 4,

18
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Figure 6: MARIN (location 2, array type 1): Frequency spectra (top row), directional spread

(second row), check ratio (third row) and mean directions (bottom row) for narrow, medium

and broad input spread. Black curve: standard triplet analysis (HPR); blue curve: ML

analysis; red curve: IML analysis; dash-dot line: Ekofisk spread; dashed line: Mitsuyasu

spread. The IML analysis is performed with ωR = 0.2 and 3 iterations.

19



0 1 2 3 4
−4

−3

−2

−1

0

ω/ω
p

lo
g(

S
(ω

)/
S

(ω
p))

−100 −50 0 50 100
0

0.5

1

1.5

2

θ [deg]

D
(θ

,ω
p)

 

 

0 1 2 3 4

20

40

60

80

ω/ω
p

σ 1 [d
eg

]

0 0.5 1 1.5 2
−90

0

90

180

270

ω/ω
p

θ 1 [d
eg

]

 loc. 1
 loc. 2
 loc. 3
 loc. 4
 loc. 8
loc. 12
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trum, directional distribution for peak frequency, directional spread, and the mean direction.

Dotted line: input frequency spectrum; dash-dot line: Ekofisk spread; dashed line: Mitsuyasu

spread.

8 and 12 in Fig. 1b, where the evolution distance between location 12 and 1 is250

about 14 peak wavelengths. Results are very similar, regardless of measurement

locations, it is likely that the similarity observed is linked to a lack of spectral

evolution. In the upper left corner, the input frequency spectrum is narrow

compared to the estimate from the data. In the lower left corner, field direc-

tional spread from the Ekofisk laser array is shown. It is an averaged spread255

from ten records with large Hs. The MARIN spread deviates from the Ekofisk

spread at about 1.5 the spectral peak and increases to maximum at twice the

spectral peak due to an effect of spatial aliasing and apparent lack of spectral

coherence, see Sec. 3.1.
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4.2. Field observations260

We shall consider estimates of directional spread and distributions based

on the ML, IML and HPR methods, all described in Sec. 2.2. The ML and

IML algorithms provide estimates of the directional distributions from which

we then determine θ1(ω) and σ1(ω), whereas the HPR method provides the

four leading Fourier coefficients to, among others, the Burg-ME and Shannon-265

ME directional distributions. The Burg-ME produces two peaks when applied

to the Fourier coefficients of, for instance, the cos-2s distribution. This peak

splitting tendency is sometimes considered to be a weakness of the method [2].

We leave the details to a separate paper and concentrate here on illustrating

some of the results in Fig. 8 and 9. Frequency spectra of the three lasers (L) are270

almost identical and the agreement between the mean direction is perfect for

the range of frequencies up to about four times the spectral peak. Above about

four times the spectral peak, the ML and IML directions veer off from the HPR

direction. This is a well known effect of spatial aliasing in the ML algorithms.

Estimates of the directional spread are shown on the upper left corner, there275

is a significant bias in the directional spread between ML and HPR estimates,

whereas the IML and HPR spreads are surprisingly similar up to about four

times the spectral peak. The HPR method gives the opportunity to study the

estimator for the spread without making any assumptions about LWT. Besides,

it can be used as a benchmark to evaluate other directional analysis methods280

when possible.

For the directional spectra, the estimate by the standard ML differs sig-

nificantly from both IML and ME estimates. The IML and ME spectra show

more details compared to the rather smeared ML spectrum. Many ME ana-

lyzed data suggest a bimodal directional distribution for high frequencies, and285

in many situations, this bi-modality is even observed in the IML spectra for

moderately high frequencies and in the Shannon based ME results for relatively

higher frequencies. The highly different treatment for the data analysis of ME

and IML suggests that in these situations, the bi-modality is real. However, in

many circumstances, the peaks in the Burg ME distributions are pronounced290

21



Figure 8: Ekofisk data recorded on the 12th of Oct. 2004 at 12:00, Hs = 3.58m. Upper

left: Frequency spectra for the three input time series. Upper centre: Mean wave directions.

Upper right: Directional spread. Lower row: Directional spectra.
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compared to the moderate peaks observed in both IML and the Shannon based

ME distributions ( see Fig. 9).
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Figure 9: Ekofisk data recorded on the 12th of Oct. 2004 at 12:00, Hs = 3.58m. Directional

distributions, D(θ, ω), for selected frequencies.

4.3. Linear simulation with nonlinear reconstruction

In order to show that the reconstruction in Eq. 21, together with linear wave

evolution, recovers the frequency dependent spread reported in [1], we present295

in Fig. 10 an HPR analysis of results from simulations carried out for infinitely

deep water and with steepness ǫ = 0.05 and spread σ1I = 5.7◦, 12.5◦ and 19.1◦

similar to the MARIN experiments. In the simulations, only the linear part of

Eq. 24 is integrated to discard the dynamic nonlinearity; on the other hand, the

reconstruction in Eq. 21 takes the static nonlinear contributions into account.300

The estimated directional spread is different in shape from the input to the

23



model, it is strongly dependent on frequency and remains the same everywhere

in the numerical basin.
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Figure 10: Simulation with the linear part of Eq. 24 together with reconstruction according

to Eq. 21: Similar to Fig. 6 with the HPR method alone. Dashed line: Mitsuyasu spread.

For the narrow distribution (σ1I = 5.7◦), the spread clearly increases towards

both high and low frequencies, whereas, for broad distribution (σ1I = 19.1◦) the305

increase toward the high frequencies is quite weak. In all of the above cases, the

minimum spread lies below the spectral peak. The check ratio, in the middle

row, shows a strong increase towards the low frequencies and a drop from 1 for

frequencies higher than twice the spectral peak, where the second order spectral

contribution is expected to dominate.310

The numerical experiment has been checked by not including η̄ in the recon-

struction equation, Eq. 21. The resulting spread and check ratio did not show

frequency dependent variations demonstrating that it is primarily the contribu-
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tion from η̄ that produces the directional spread reported in [1]. Except for very

wide spectrum the agreement between our results and results in [1] is quite good.315

The observed behavior in the spread and check ratio, below the spectral peak,

is therefore originated from second order difference-frequency contributions.

4.4. Nonlinear simulation

Finally we show numerical simulations using the full eqs. (21)–(24) demon-

strating that the establishment of frequency dependent directional spread is not320

only a matter of static nonlinear reconstruction. In Fig. 11, the input direc-

tional spread has been set to 5.7◦, 12.5◦ and 19.1◦, and the steepness has been

set to 0.05 and 0.1. With the dynamic nonlinearity in the evolution equation,

the directional spread is found to grow with an increase in input wave steepness,

the minimum spread is also moved toward the spectral peak. This is shown even325

more clearly in Fig. 12 which employs six different steepnesses between 0.05 to

0.1, inclusive.

Depending on the steepness of the waves, the numerical simulations demon-

strate the necessary propagation distance required for sufficient development

of the spread. As seen in Fig. 11, for ǫ = 0.05 the directional spread, σ1(ω),330

does not change significantly with evolution distance. This result is supported

by the observations from the MARIN experiment. For ǫ = 0.1, the directional

spread develops over a distance of 80 peak wavelengths before it becomes nearly

stationary. We thus draw the conclusion that the distance for the frequency de-

pendent directional spread to become fully established increases as the steepness335

increases.

From Fig. 11 it can be appreciated that the crest length decreases with

increasing propagation distance. From Fig. 12 it can furthermore be appreciated

that this effect is enhanced with increasing input steepness.

5. Conclusion340

We have found both experimental and numerical evidence that a frequency

dependent directional spread naturally develops from an initial state of no fre-
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Figure 11: MNLS: Effects of dynamic nonlinearity and wave steepness on the development of

the directional spread for σ1I = 5.7◦, 12.5◦ and 19.1◦; dashed line, Mitsuyasu spread.
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quency dependence. The frequency dependence is partly a consequence of static

nonlinear contributions which act instantaneously, and partly a consequence of

dynamic nonlinear contributions which need some evolution distance to develop.345

The static contribution occurs primarily below spectral peak, the dynamic con-

tribution occurs both above and below spectral peak. The necessary distance for

developing a steady frequency dependent directional spread seems to increase

with increasing steepness of the wave field.

An important consequence of these observations is that it is not necessary to350

generate a frequency dependent directional spread in wave basins since the wave

field will tend to develop an adequate frequency dependent directional spread

by itself, care just needs to be taken that the wave field has been allowed to

develop over a sufficiently long distance that a steady frequency dependence has

been established.355

The analysis of datasets from the Ekofisk field indicates that a large fraction

of the directional wave spectra have a bimodal character above the spectral

peak. The bi-modality is observed for all four algorithms employed in the paper

suggesting that the bi-modality is not limited to, as often claimed, an artifact

of the Burg ME algorithm.360
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