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Vertically varying Eulerian mean currents induced by internal
coastal Kelvin waves
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Abstract The lost momentum in spatially damped internal Kelvin waves reappears as Eulerian mean
currents through the action of the nonlinear wave-wave interaction terms. A novel expression is derived for
the steady balance between the frictional force on the coastally trapped horizontal Eulerian mean flow, and
the forcing from the wavefield in terms of the mean wave Reynolds stresses and the horizontal divergence
of the Stokes drift. The forcing can be expressed in terms of orthogonal eigenfunctions for internal waves,
yielding the vertical variation of the Eulerian mean flow. For arbitrary values of the Brunt-V€ais€al€a frequency
N, it is shown that the wave forcing on the Eulerian mean is always negative, yielding a Poiseuille type flow.
Therefore, unlike the Stokes drift velocity in internal Kelvin waves which exhibits a backward drift for the
first mode in the region of maximum N, the wave-induced horizontal Eulerian mean current is always in the
direction of the waves. The results are illustrated by an example from Van Mijenfjorden in Svalbard, which is
an arctic sill fjord where internal waves are generated by the action of the barotropic semidiurnal tide.

1. Introduction

Csanady [1972] was apparently the first to suggest that the mean flow associated with internal Kelvin waves
may have a significant impact on the transport of nearshore effluents in lakes. Motivated by this, Wunsch
[1973] derived the solution for an internal Kelvin wave forced by wind stress. He then calculated the Stokes
drift of this wave, assuming that the Eulerian drift contribution was negligible. His results indicated that the
drift in internal Kelvin waves may explain certain observed circulation patterns in lakes. Ou and Bennett
[1979] argued that the Stokes drift itself was not observable by conventional current meters, and that the
Eulerian mean should be included in the derivations to second order in wave amplitude. They studied a
hypothetical circular lake, where the applied forcing was a horizontally uniform, diurnally oscillating wind
stress. Ou and Bennett claimed that the resulting drift pattern may explain observed circulation patterns in
Lake Kinneret, Israel.

As pointed out by Wunsch, a variable wind stress can excite internal Kelvin waves. But also tidal forcing is
important in this connection. For example, in layered systems with strong barotropic tidal flow over bottom
sills, we may find pronounced internal waves, e.g., Farmer and Smith [1980]. In Arctic regions, with ice cover
for a long period of the year, the barotropic tide will constitute the main generating mechanism for internal
waves. Along the Siberian Shelf and in the Canadian Archipelago, we find considerable internal wave activi-
ty due to tidal forcing [see e.g., Levine, 1990; Morozov and Pisarev, 2002, 2003; Morozov et al., 2003, 2008].

Since the Stokes drift associated with Kelvin waves in a continuously stratified fluid is well described in the
literature [Wunsch, 1973; Weber et al., 2014; Weber and Ghaffari, 2014], the main focus of the present study is
the wave-induced Eulerian mean current. As pointed out for two-layer models by Ou and Bennett [1979]
and Støylen and Weber [2010], this current depends on the effect of friction on the waves as well as on the
mean flow. We here consider the case of continuous stratification, writing the vertical part of the linear
wave solutions in terms of orthogonal eigenfunctions for arbitrary values of the Brunt-V€ais€al€a frequency
[see e.g., Gill and Clarke, 1974]. The nonlinear forcing of the Eulerian mean current can then be expressed in
terms of these functions, yielding the vertical variation of this flow. The rest of this paper is organized as fol-
lows: in section 2, we state the basic assumptions and the governing equations, and in section 3, we consid-
er spatially damped linear wave motion. Here the details have been deferred to Appendix A. Section 4
presents the Stokes drift in terms of the eigenfunctions for the linear problem, while section 5 discusses the
wave-induced Eulerian mean velocity with emphasis on its vertical variation. In section 6, the theory is

Key Points:
� The horizontal Eulerian mean current

exhibits a Poiseuille type behavior
� The Eulerian current is stronger than

the Stokes drift in Van Mijenfjorden

Correspondence to:
J. E. H. Weber,
j.e.weber@geo.uio.no

Citation:
Weber, J. E. H. (2017), Vertically varying
Eulerian mean currents induced by
internal coastal Kelvin waves,
J. Geophys. Res. Oceans, 122, 1222–
1231, doi:10.1002/2016JC012377.

Received 27 SEP 2016

Accepted 24 JAN 2017

Accepted article online 31 JAN 2017

Published online 15 FEB 2017

VC 2017. American Geophysical Union.

All Rights Reserved.

WEBER INTERNAL KELVIN WAVES 1222

Journal of Geophysical Research: Oceans

PUBLICATIONS

http://dx.doi.org/10.1002/2016JC012377
http://orcid.org/0000-0002-2310-3649
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/
http://publications.agu.org/


applied to Van Mijenfjorden in Svalbard, arctic Norway. Finally, section 7 contains a short discussion and
some concluding remarks.

2. Basic Assumptions and Governing Equations

We consider a semi-infinite viscous ocean of constant depth H, bounded laterally by a straight coast. We chose a
Cartesian coordinate system ðx; y; zÞ such that the origin is situated at the undisturbed surface, the x axis is
directed along the coast, and the y axis is positive toward the sea with the coast at y50. The z axis is directed
vertically upward, and the respective unit vectors are ð~i ;~j ;~kÞ. The reference system rotates about the vertical
axis with angular velocity f=2, where f is the constant Coriolis parameter. Furthermore, we use an Eulerian
description of motion, which means that all dependent variables are functions of x; y; z and time t. We take that
the horizontal scale of the motion is so large compared to the depth that we can make the hydrostatic approxi-
mation in the vertical. Furthermore, we apply the Boussinesq approximation for the density q. We also take that
the density of an individual fluid particle is conserved. The governing equations for this problem then become

@~v h

@t
1~v � r~v h52f~k3~v h2

1
qr
rhp1mT

@2~v h

@z2
; (1)

@p
@z

52qg; (2)

@q
@t

1~v � rq50; (3)

r �~v50: (4)

Here ~v5ðu; v;wÞ is the velocity vector, p is the pressure, subscript h means horizontal values, qr is a con-
stant reference density, and g the acceleration due to gravity. A simple eddy formulation has been assumed
for the effect of friction, where mT is a constant eddy coefficient for the diffusion of momentum. Further-
more, we have assumed that the vertical variation of the turbulent stresses is much larger than the corre-
sponding horizontal variation.

In the future analysis, we separate the variables into mean quantities (marked by an over-bar) and periodic
wave components with zero mean (marked by a tilde).

3. Linear Internal Coastal Kelvin Waves

We consider coastally trapped internal waves propagating in the x direction. The waves result from small
perturbations from a state of rest characterized by a horizontally uniform stable stratification q0ðzÞ. We take
that the velocity in the y direction vanishes identically (~v50), characterizing the Kelvin wave. Introducing
the vertical displacement nðx; y; z; tÞ of the isopycnals from their original horizontal position, linear theory
yields @~n=@t5~w , where the tilde is used to denote linear time-periodic perturbation quantities. The linear
theory is trivial, and well described in the literature. For didactic reasons we have deferred some details to
Appendix A. However, we state the linear equations here, since they are needed when we later on calculate
the wave-wave interaction terms. We obtainfrom (1) to (4):
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(5)

Here N is the Brunt-V€ais€al€a frequency defined by
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N252
g
qr

dq0ðzÞ
dz

: (6)

The variables may be separated into normal modes [Lighthill, 1969], and we refer to Gill and Clarke [1974]
for details; see also Appendix A.

4. The Stokes Drift

For historic reasons we first recapitulate the Stokes drift in internal waves. As first shown by Stokes [1847],
periodic waves possess nonzero mean wave momentum, leading to a net drift of particles in the fluid. This
mean drift is referred to as the Stokes drift, and is basically related to the inviscid part of the wavefield,
eventually modified by a slow temporal or spatial viscous decay of wave amplitude. To second order in
wave steepness the Stokes drift �uS in the x direction can be expressed by the Eulerian wavefield [Longuet-
Higgins, 1953]:

�uS5ð
ð

~udtÞ@~u=@x1ð
ð

~v dtÞ@~u=@y1ð
ð

~w dtÞ@~u=@z ; (7)

where the over-bar denotes average over one wave period T52p=x. In the present problem we have ~v50,
~w5@~n=@t, and @~u=@x52@2~n=@t@z. Hence, from (7) for internal Kelvin waves:

�uS5
@
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~u~n
� �

: (8)

By inserting from (A4):
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h i
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The expression (9) is valid for arbitrary NðzÞ. We write

�uS5
X1
n51

�uSnðzÞ exp 22anx22y=anð Þ: (10)

Substituting from (A2), and defining Z5z=H, we obtain that

�uSn5Bn
d/n
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2
H2N2
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/2
nðZÞ

" #
; (11)

where Bn is the Stokes velocity scale given by

Bn5
cnA2

n

2H2
: (12)

Since the second term in (11) is always negative, we realize that the Stokes drift component for the mode in
question must be negative at the z-level where the horizontal wave velocity is zero. This was first shown by
Wunsch [1973] for baroclinic Kelvin waves in the case of constant Brunt-V€ais€al€a frequency. In fact, by inte-
gration in the vertical, and application of the boundary conditions ~n50 for z52H; 0 for baroclinic flow; see
(A3), we find from (8) for the Stokes volume flux in internal coastal Kelvin waves that

�US5

ð0
2H

�uSdz50; (13)

see also Weber et al. [2014] for internal equatorial Kelvin waves.

5. Equations for the Eulerian Mean Velocity

The mean horizontal Lagrangian (particle) velocity can generally be written as a sum of the Stokes drift
velocity ð�uS; �v SÞ and an Eulerian mean current ð�uE ; �v EÞ [Longuet-Higgins, 1953]. Like the Stokes drift, we
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derive the Eulerian mean current to second order in wave steepness. We here consider steady motion. Uti-
lizing the fact that ~v50 for this problem, we find from (1) and (4) for the Eulerian mean second order
variables:

2f �v E52
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qr
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2
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:

(14)

Note that even though ~v50 for the linear Kelvin wave, the mean velocity �v E in the y direction will be nonze-
ro (but small), as we show later. Finally, �w E is a small vertical Eulerian mean velocity due to the nonzero hor-
izontal divergence.

The conservation of density (3) yields to the same order, utilizing that ~q5qr N2~n=g:

N2 �w E5
@ðN2~u~nÞ
@x

1
@ðN2~n@~n=@tÞ

@z
: (15)

We realize from (A4) that the last term on the right-hand side is identically zero. Hence, if N2ðzÞ 6¼ 0, we
have for the vertical mean velocity

�w E5
@ð~u~nÞ
@x

; (16)

representing the wave-induced mean upwelling. Interestingly, by combining (8) and (16), we obtain the
novel result:

@ �w E

@z
5
@�uS

@x
; (17)

relating the upwelling to the divergence of the Stokes drift. This is an extension of Weber et al. [2014], where
it was shown that �w E50 for undamped internal waves (i.e., when @�uS=@x50).

By taking the curl of (14), and assuming that j@�v E=@xj � j@�uE=@yj (to be verified later), we obtain
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By utilizing (17):
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Assuming a coastally trapped solution, i.e., �uE ! 0, when y !1, and noticing that all the terms on the
right-hand side are proportional to exp ð22anx22y=anÞ, we find from (19):

mT
@2�uE

@z2 5
@

@x
~u~u
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ð
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� 	
: (20)

This equation, which appears to be new, expresses the steady balance in the fluid between the frictional
force on the mean flow and the forcing from the wavefield. On the right-hand side the first two terms repre-
sent the action of the mean wave Reynolds stresses. The last term is particularly interesting. It originates
from the combination of the vertical mean vorticity and the conservation of mean density in a rotating
stratified fluid. The result is proportional to the horizontal divergence of the Stokes drift; see (17). The solu-
tion of (20) can be written

�uE5
X
n51

�uEnðzÞexp ð22anx22y=anÞ: (21)

Inserting from (A4) and (9), utilizing that fan5cn, we find
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mT
d2�uEn

dz2
52anA2

nN2ðzÞ/2
nðzÞ: (22)

The right-hand side here is negative for all z. The solution to this equation yields a flow in the positive x
direction, which is similar to what we find for pressure driven viscous flow in channels or pipes (Poiseuille
flow).

We write the Brunt-V€ais€al€a frequency as N2ðzÞ5N2
0FðzÞ, where N0 denotes the maximum value of N.

From (A5) we recall that an=mT 5N̂
2
=ð2c3

nÞ. Introducing the dimensionless height scale Z5z=H, we can
write (22)

d2�uEn

dZ2
52

H2N̂
2

N2
0A2

n

2c3
n

FðZÞ/2
nðZÞ: (23)

Assuming a free-slip condition at the surface (no external forcing), i.e., d�uEn=dZ50 at Z50, and a no-slip
condition at the bottom, �uEnðZ521Þ50, the solution is quite simply

�uEnðZÞ5
H2N̂

2
N2

0A2
n

2c3
n

ðZ

21
GðqÞdq; (24)

where

GðqÞ5
ð0

q
FðZÞ/2

nðZÞdZ: (25)

For constant N, i.e., N5N0, and F51, the normalized eigenmodes are /n5sin ðnpZÞ=np. Hence, from (24):

�uEn5
H2N4

0A2
n

8n2p2c3
n

12Z21
1

2n2p2
12cos ð2npZÞ½ �

� �
; (26)

demonstrating that the Eulerian mean current is always positive above the bottom. In the next section we
specify N2ðZÞ for a given location (Van Mijenfjorden in Svalbard). Then we solve (23) numerically.

Again, we emphasize that the Eulerian mean current derived here is caused by the mean momentum loss
from the wavefield due to friction. In a steady state, there is a balance between this forcing from the waves
and the action of bulk friction on the Eulerian mean flow; see (20). In Wunsch [1973], the effect of friction
was not taken into account. Then an in (22) is identically zero, and there is no forcing from the waves.
Accordingly, the Eulerian mean current vanishes, as pointed out by Wunsch.

The offshore Eulerian mean velocity is obtained from the continuity equation in (14), using (17):

@�v E

@y
52

@�uE

@x
2
@ �w E

@z
52

@

@x
�uE1�uSð Þ: (27)

We note that the right-hand side represents the horizontal divergence of the alongshore Lagrangian mean
velocity. Applying the boundary condition �v E50 at y50, we find that

�v E5
X
n51

ananð�uEn1�uSnÞ 12exp ð22y=anÞ½ �exp ð22anxÞ: (28)

Since anan is a small quantity, we realize that j�v E j � j�uE j; j�uSj. This justifies the assumption j@�v E=@xj � j@�uE

=@yj in the vorticity equation (18). The result (28) implies a small flux of mass into the region outside the
coastally trapped zone. We return to this flux in the discussion of the mean horizontal circulation in sections
6 and 7.

From (16) we finally obtain for the wave-induced upwelling velocity:

�w E5
X
n51

�w Enexp ð22anx22y=anÞ: (29)

Here
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�w En52
mT N̂

2
A2

n

2c2
n

/nðzÞ
d/n

dz
; (30)

where we have utilized (A5). We note that �w E satisfies the boundary conditions at the surface and at the
bottom for any value of N2ðzÞ, since /nð0Þ5/nð2HÞ50 in this problem. Ideally, in ice-covered sill fjords this
upwelling could be of importance, but as shown in the example in the next section, the upwelling velocities
due to damped internal waves are very small.

6. Application to Van Mijenfjorden

Van Mijenfjorden is a 50 km long sill fjord at the west coast of Spitsbergen. The mean width of the fjord is
about 10 km (see Figure 1). The island Akseløya lies across the mouth of the fjord, leaving two narrow
sounds where the exchange between the fjord and the outside waters takes place. The sounds north and
south of Akseløya, Akselsundet, and Mariasundet, both exhibit considerable tidal currents. The current is
especially strong in Akselsundet, where numerical models and drifter experiments yield velocities of 2–3 m s21

[Kowalik et al., 2015]. In the present paper, we do not consider the complicated flow in the vicinity of the
sills, but focus on the internal wave motion in the stratified fjord induced by the semidiurnal tidal pumping
[Støylen and Weber, 2010; Skard-hamar and Svendsen, 2010; Støylen and Fer, 2014]. Although it is evident that
periodic internal waves occur in Van Mijenfjorden, it should be pointed out that we cannot exclude the pos-
sibility that some of the variability in this fjord may be due to internal solitary waves [see e.g., Vlasenko et al.,
2005], or nonlinear wave packets [Grimshaw and Helfrich, 2012]. However, a discussion of the mean drift in
solitary waves is outside the scope of the present paper.

We intend to apply our previous results obtained for a vertical coastal wall and a flat bottom to the real Van
Mijenfjorden. Obviously, we then have to make some compromises. Since the wave motion basically occurs
within one Rossby radius (here: 4–5 km) from the coast, and the displacement amplitude has its maximum
at the coastal wall, the effective depth H in our model is less than the maximum depth in the fjord. To cover
both the outer and the inner (more shallow) basin, we take that H560 m in our analysis.

Støylen and Weber [2010] modeled the density distribution under the ice-covered Van Mijenfjorden as a
two-layer system. In the summer season, when the fjord is ice free, the density distribution is far from a
two-layer structure [see e.g., Skard-hamar and Svendsen, 2010, their Figure 3]. Measurements in July–August
show variations of the vertical distribution of salinity and temperature in the surface layer due to varying
wind conditions. But basically, the increasing salinity is reasonably well modeled by a hyperbolic tangent.
We take for the salinity variation during summer conditions that

S5S01S1tanh ð2bz=HÞ; (31)

where S0525 psu, S159 psu, and b54. In cold polar waters, the density change due to small temperature
variations can be neglected. Furthermore, we assume that the density varies linearly with respect to the
salinity. The expansion coefficient b due to salt is taken to be b5831024 psu21. Then the summer (model)
Brunt-V€ais€al€a frequency N in the Van Mijenfjorden is obtained from

N252
g
qr

dq0

dz
5N2

0FðZÞ; (32)

where

N2
05

gbbS1

H
; FðZÞ51=cosh 2ð2bZÞ: (33)

The graph of N2 is displayed in Figure 2. The eigenvalue problem (A2) and (A3) is easily solved by a simple
shooting procedure. The various baroclinic modes are readily obtained, but we assume that most of the
wave energy resides in the first mode [Lighthill, 1969]. We therefore concentrate on this mode for the rest
of this analysis.

Utilizing (32), we obtain numerically for the phase speed and the Rossby radius for first baroclinic mode
that
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c150:59 m s21;

a15c1=f 54:9 km:
(34)

Earlier estimates from two-layer models for the baroclinic phase speed are c150:6 m s21 [Skard-hamar and
Svendsen, 2010], and c150:55 m s21 [Støylen and Weber, 2010] which fit well with the first mode (34) for con-
tinuous stratification. Utilizing that the semidiurnal barotropic tidal forcing M2 at the sill has a period of
12.4 h, the wavelength k1 of the first baroclinic mode becomes 26:2 km.

Scaling the Stokes drift for the first mode by

B15
c1A2

1

2H2
; (35)

we obtain from (11) that

�uS15B1
d/1

dZ

� �2

2
H2N2

c2
1

/2
1

" #
: (36)

From the numerical results for /1ðZÞ, the
Z-dependence of the nondimensional Stokes
drift uS5�uS1=B1 is plotted in Figure 3. An ear-
lier study of the Stokes drift in Van Mijenfjor-
den [Støylen and Weber, 2010] applied a two-
layer model. This configuration produced
positive Stokes drifts in both layers (negligi-
ble in the deep lower layer), and failed to
yield the negative Stokes drift as found in
the pycnocline for the first baroclinic mode
(see Figure 3).

The Eulerian mean velocity for the first mode
is obtained numerically from (23), with FðZÞ
51=cosh 2ð2bZÞ from (33), again with free-
slip at the surface and no-slip at the bottom.
The result, scaled with (35), is plotted in Fig-
ure 4. We note that the Eulerian mean cur-
rent increases monotonically with height,
with a maximum at the surface.

For the bulk value of the stratification used
in the friction term (A5), we take N̂

2
523

Figure 1. Coastline and bottom topography in Van Mijenfjorden in Svalbard, situated at 77.88N, 15.58E. Akseløya is displayed in gray.

Figure 2. Idealized N2 as function of nondimensional depth Z5z=H for
summer conditions in Van Mijenfjorden.
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1023 s22 which is a fairly average value (see
Figure 2). A typical value for the amplitude of
the first baroclinic mode in Van Mijenfjorden
near the right-hand shore is about 10 m. This
order of magnitude is consistent with the
observations of Skard-hamar and Svendsen
[2010] and Støylen and Fer [2014]. Hence, we
take A1510 m in our analysis. From (35), we
then obtain that B150:815 cm s21. The maxi-
mum wave-induced Lagrangian drift velocity
at the surface then becomes from our calcula-
tions (see Figures 3 and 4):

�uL15�uS11�uE15ð1:012:64Þ3B153 cm s21:

(37)

In Figure 5, we have displayed the dimension-
al Stokes drift and the Eulerian mean velocity
variation with depth. We note that the Euler-
ian mean velocity dominates in the entire
water column. In Figures 3–5, we have only
displayed the z-dependence of the drift cur-
rents. For a practical discussion, it is important
to include the exponential decay from the

coast within the internal Rossby radius as well as the weak exponential decay along the coast.

In this example, the maximum cross-shore surface velocity for the first mode at the outer edge of the trap-
ping region ðy > a1Þ, is obtained from (28). It becomes �v E15a1a1�uL1, where �uL1 is given by (37). A middle-
of-the-road value for the eddy viscosity in van Mijenfjorden is assessed to be mT 51023 m2s21 [Støylen and
Weber, 2010]. Hence, with a154:9 km from (34), we find that �v E150:02 �uL150:06 cm s21 at the surface. The
small cross-shore mean velocity decreases with depth, yielding a positive volume flux into the interior fjord
basin.

The upwelling velocity from (30) is even smaller. We note the change in sign of the upwelling where the
first mode horizontal wave velocity has its zero crossing. For the same parameters as before:

c150:59 m s21; A1510 m, and mT 51023 m2 s21;

N̂
2
5231023 s22, we find that the maximum

upwelling velocity is about 331025 cm s21.
Accordingly, wave-induced upwelling is probably
negligible compared to the effect of turbulent dia-
pycnal mixing in Van Mijenfjorden.

7. Discussion and Concluding
Remarks

The Lagrangian drift velocity induced by spa-
tially damped internal coastal Kelvin waves is
parallel to the coast, and trapped within the
internal Rossby radius. For the first baroclinic
mode in the ice-free Van Mijenfjorden, the
Eulerian mean drift velocity is significantly
larger than the Stokes drift, and is at all
depths directed in the wave propagation
direction. The alongshore mass transport
associated with the Lagrangian mean drift
�uL5ð�uS11�uE1Þ exp ð22a1x22y=a1Þ, and the

Figure 3. The nondimensional Stokes drift uS5�uS1=B1 for the first Kelvin
mode versus nondimensional depth Z (blue curve). The red curve is the
corresponding Stokes drift obtained for constant Brunt-V€ais€al€a frequen-
cy [see e.g., Wunsch, 1973].

Figure 4. The nondimensional Eulerian mean current uE 5�uE1=B1 for the
first Kelvin mode versus nondimensional depth Z.
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offshore transport related to �v E in (28) will ulti-
mately lead to mass accumulation in the interi-
or of the fjord causing a geostrophic return
flow; see the numerical results by Støylen and
Weber [2010] for a two-layer model. Hence, the
regular generation of internal Kelvin waves by
action of the semidiurnal barotropic tide at the
sills of Van Mijenfjorden is likely to produce a
cyclonic horizontal mean circulation in the
fjord. This circulation will be superimposed on
the flow driven directly by the barotropic tide
itself [see Kowalik et al., 2015].

As far as the wave-induced circulation in Van
Mijenfjorden is concerned, we do not think that
the presence of an ice cover matters very much.
In an ice-covered fjord a somewhat different
density stratification will modify the eigenfunc-
tions, without changing the Stokes drift very
much. For the Eulerian mean current, it would
be natural to suppose a no-slip condition at the
contact with the ice. This would cause a current

maximum below the surface (the ice). But the tidal pumping will keep up the turbulent eddy activity in the
fjord, and hence the wave damping, so major changes of the magnitude of the Eulerian mean current is not
expected.

Appendix A: Linear Internal Coastal Kelvin Waves

According to the adopted approach, we assume that

~u5
X1
n51

unðx; y; tÞ/0nðzÞ;

~v50;

~p5qr

X1
n51

pnðx; y; tÞ/0nðzÞ;

~n5
X1
n51

nnðx; y; tÞ/nðzÞ;

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(A1)

where the primes denote differentiation with respect to z. Separation of variables requires that pn5c2
nnn,

where cn is the constant eigenvalue. The eigenfunctions /n are solutions of

/
00

n1
N2

c2
n

/n50: (A2)

For the baroclinic modes we assume a rigid lid at the surface [see Gill and Clarke, 1974]. Hence, the bound-
ary conditions become

/n50; z52H; 0: (A3)

Letting real parts represent the physical solution, we find for spatially damped waves:

nn5An exp 2anx2y=anð Þcos knx1lny2xtð Þ;

un5cnAn exp 2anx2y=anð Þ cos knx1lny2xtð Þ1 an

kn
sin knx1lny2xtð Þ

� 	
;

(A4)

where x is a prescribed wave frequency. The wave number kn and the small spatial attenuation coefficient
an in the x direction become, respectively

Figure 5. The dimensional Stokes drift �uS1 (blue curve) and the
dimensional Eulerian mean velocity �uE1 (red curve) versus nondimen-
sional depth.
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kn5
x
cn
; an5

mT N̂
2

2c3
n
; (A5)

where N̂
2

is a characteristic constant bulk value of N2. The results above rest on the assumption
janj=kn � 1. Finally, the baroclinic Rossby radius an and the small frictionally induced wave number ln in the
y direction are given by

an5
x

knf
5

cn

f
; ln5

fan

x
: (A6)

Details of this analysis are found in Weber and Ghaffari [2014]. The only difference is that we here for the
product mT N2 in the friction terms assume that mT is constant, and that N2 takes on the constant value N̂

2
. In

principle, the displacement amplitudes A1;A2;A3 . . . in (A4) must be determined from field observations, or
analytical/numerical models runs with appropriate forcing.
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