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Equatorial Stokes drift and Rossby rip currents
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Abstract The Stokes drift in long baroclinic equatorial Rossby waves is investigated theoretically by
using eigenfunction expansions in the vertical. These waves are nondispersive and propagate westward
along the equator. Particular attention is paid to the first baroclinic, first meridional Rossby wave mode
which has been observed in the equatorial Pacific. It is demonstrated that the Stokes drift depends very
much on the depth-variation of the Brunt-V€ais€al€a frequency. Even more importantly, it is found that, for
arbitrary stable stratification, the total zonal Stokes volume transport induced by the Rossby wave mode
(1,1) is identically zero. The eastward drift due reflected wave energy in the form of internal equatorial
Kelvin waves is also addressed. Due to the very long period of the incident Rossby wave mode (1,1), the
reflected equatorial Kelvin wave must at least be a 2. mode component in the vertical. The corresponding
Stokes drift only induces a minor change near the surface of the total westward drift velocity at the equator.
The implication for the existence of compensating Rossby rip currents along the equator is discussed.

1. Introduction

The region near the western oceanic boundary is known to be a significant sink of energy for westward
propagating Rossby waves and eddies; see e.g., Zhai et al. [2010]. Therefore, this region is often referred to
as the Rossby graveyard. By analogy with surface waves breaking at the beach, and the associated genera-
tion of rip currents, Marshall et al. [2013] discuss a similar effect for baroclinic Rossby waves at mid-latitudes.
They argue that to upheld mass balance, their calculated westward Stokes mass transport in baroclinic
Rossby waves and eddies, vanishing at the Rossby graveyard, must be compensated by eastward Eulerian
mean (rip) currents.

In their analysis, Marshall et al. [2013] apply a reduced gravity model. In such models, the major part of the
Stokes drift occurs in the upper layer and is independent of depth. If we turn to Kelvin waves, it is known
that reduced gravity models for internal Kelvin waves, which only reproduce the first baroclinic mode (the
interfacial wave), fail to yield the backward Stokes drift found in the case of a continuous stratification
[Wunsch, 1973; Weber et al., 2014]. The reduced gravity model also fails to yield the vanishing Stokes volume
transport in each baroclinic mode, independent of the vertical variation of the Brunt-V€ais€al€a frequency N
[Weber et al., 2014; Weber and Ghaffari, 2014].

No such investigation has been undertaken for long Rossby waves when N varies with depth, and this has
motivated the present study. However, baroclinic Rossby waves are unstable at mid-latitudes and high lati-
tudes [LaCasce and Pedlosky, 2004; Isachsen et al., 2007], while at low latitudes they are able to cross the
ocean basin before they succumb to unstable perturbations. Therefore, within the equatorial band (latitudes
|h|� 58), it appears reasonable to consider constant amplitude Rossby wave modes as a basis for nonlinear
drift calculations. This has been done for example by Thompson and Kawase [1993] and Li et al. [1996],
applying reduced gravity models. But since the two-layer model produces erroneous results for the Stokes
drift in baroclinic Kelvin waves, it is also likely to do so for long equatorial Rossby waves. Indeed, in the pre-
sent paper, we demonstrate that a 2-D study of Rossby waves is not adequate for calculating the total zonal
Stokes volume transport in such waves.

The source of long baroclinic equatorial Rossby waves is located at the oceanic east coasts, where they can
be generated by local wind-induced upwelling, or as a reflection of wave energy from an incoming Kelvin
wave [Busalacchi and O’Brien, 1980]. The sink is at the west coasts, earlier referred to as the Rossby grave-
yard. However, in the equatorial region, nondissipated wave energy in the west can be reflected eastward
as equatorial Kelvin waves [McCreary, 1983].
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The Rossby wave signal emanating from the eastern boundary will in fact be composed of several meridio-
nal components, but since the first baroclinic, first meridional mode has the fastest group velocity, and suf-
fers the least dissipation, it is the most likely candidate to be observed in the ocean basin away from the
boundaries. In fact, the first baroclinic, first meridional equatorial Rossby wave mode has been verified from
hydrographic measurements in the central equatorial Pacific [Yu and McPhaden, 1999], and by satellite
observations [Delcroix et al., 1991; Polito and Cornillon, 1997; Chelton et al., 2003] (the early observation by
Harvey and Patzert [1976] in the Pacific had probably a too short period (25 days) for qualifying as a long
Rossby (1,1) mode).

The present analysis neglects the effect of background currents. Although this is a simplification anywhere,
it is perhaps easier to defend at mid-latitudes than in the equatorial wave guide. Here zonal currents may
distort Rossby wave eigenfunctions and dispersion relations [Chelton et al., 2003; Durland et al., 2011]. Fur-
thermore, it is known that various meridional Rossby modes, in the presence of a background current, may
interact to produce tropical instability waves [Lyman et al., 2005].

The rest of this paper is organized as follows: In section 2, we derive a general expression for the Stokes drift
in baroclinic equatorial Rossby waves, and in section 3, we find the explicit Stokes drift for the first baro-
clinic, first meridional component. In section 4, we discuss the effect of stratification and calculate the
eigenfunctions and the Stokes drift for a peaked Brunt-V€ais€al€a frequency typical of the equatorial Pacific.
This is compared to the result for a constant N. In section 5, we demonstrate that the total Stokes volume
transport vanishes for arbitrary (stable) vertical density distributions. Section 6 discusses the possibility that
some of the Rossby wave energy may be reflected at the western boundary and propagate eastward along
the equator as a Kelvin wave. Finally, section 7 contains some concluding remarks. For didactic reasons, we
give a brief review of baroclinic equatorially trapped waves in Appendix A.

2. The Stokes Drift

We consider the drift in freely propagating baroclinic equatorial Rossby waves and choose a Cartesian coordi-
nate system ðx; y; zÞ such that the origin is situated at the undisturbed surface. The x axis is directed eastward
along the equator, the y axis points northward, and the z axis is directed vertically upward. The respective unit
vectors are ði; j; kÞ. The reference system rotates about the vertical axis with angular velocity f=2, where f is
the Coriolis parameter. We discuss motion close to the equator and apply the beta-plane approximation, i.e.,
f 5by, where b52:3310211 m21 s21. The description of motion is Eulerian, which means that all dependent
variables are functions of x; y; z and time t. We take that the horizontal scale of the motion is so large com-
pared to the depth that we can make the hydrostatic approximation in the vertical. Furthermore, we apply
the Boussinesq approximation for the density q. In the analysis, v5ðu; v;wÞ is the velocity vector and p
denotes pressure. The effect of eddy diffusion on momentum and density is entirely omitted.

The waves result from small perturbations from a state of rest characterized by a horizontally uniform stable
stratification q0ðzÞ in the gravity field. Details of this problem can be found in text books like LeBlond and
Mysak [1978], or Gill [1982]. We here give a very brief account. In principle, we expand our solutions in series
after the wave steepness as a small parameter (but we retain our dimensional variables). The first-order (lin-
ear) equations for the conservation of momentum are, marking the linear periodic wave variables by a tilde:

@~u
@t

2by~v52
@~P
@x
;

@~v
@t

1by~u52
@~P
@y
;

052
@~P
@z

2
~q
qr

g:

(1)

Here ~P5~p=qr is the pressure per unit reference density qr and g the acceleration due to gravity. The conser-
vation of density for an incompressible fluid implies

@~q
@t

1~w
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dz
50: (2)
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Introducing the Brunt-V€ais€al€a frequency NðzÞ defined by
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g
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; (4)

it follows straight away from (1) and (2) that

~w52
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: (5)

The expression for the Stokes drift [Stokes, 1847] along the x axis, valid to second order in the wave steep-
ness, can be written [Longuet-Higgins, 1953]:
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where the over-bar denotes averaging over the wave cycle. The waves in our study are periodic and propagate
in the x direction with constant phase speed c without changing shape. For such waves, we must have that
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Utilizing (1), (4), and (7), we arrive at
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The Stokes drift in the meridional direction can be written
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From the continuity equation (3), we note that for a progressive periodic wave in the x direction, ~u is 908

out of phase with ~v , while ~v and ~w are in phase. Accordingly, all three terms in (9) are zero when averaged
over the period (or the wavelength), so �v S50.

What now remains is to insert for the linear solutions of this problem into (8). The equatorial wave problem
has been thoroughly reviewed and discussed in various textbooks. We give a short overview in Appendix A
for didactic reasons.

3. Calculations for the First Baroclinic, First Meridional Mode

Long baroclinic equatorial Rossby waves are approximatively nondispersive and propagate westward along
the equator. They consist of n baroclinic modes in the vertical, and each mode has m independent horizon-
tal modes in the meridional direction. The calculation of the complete Stokes drift for baroclinic equatorial
Rossby waves is a formidable task and will not be done here. However, some modes are more interesting in
the sense that they have considerably more energy than others. This is particularly so for the first baroclinic
mode in the vertical [Lighthill, 1969]. This mode is also relevant for the comparison with 1.5-layer models
with a discontinuity in density between the upper (active) and lower (passive) layer [McCreary, 1976;
Busalacchi and O’Brien, 1980]. Hence, we take n51. For the modes in the meridional direction, m51 is partic-
ular interesting, since this mode has been verified from hydrographic measurements in the equatorial
Pacific [Yu and McPhaden, 1999], and by satellite observations [Delcroix et al., 1991; Polito and Cornillon,
1997; Chelton et al., 2003].

Inserting from (A12) and (A13) into (8), we can write the Stokes drift for this mode:
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Here we have introduced the nondimensional length scale Y5y=a1, where a1 is given by (A10), and defined
’ 5d=dY . For the zonal and meridional velocity components of the n51;m51 mode, we have from (A11) to (A13):

U15
A1

3
32Y2
� �

exp ð2Y2=4Þ;

V152
8ka1A1

9
Yexp ð2Y2=4Þ:

(11)

Here A1 is the dimensional amplitude of the zonal velocity. This is a natural choice, since for long Rossby
waves ka1 � 1, and hence the zonal component is the most energetic one (and the easiest one to mea-
sure). Finally, we obtain for the pressure per unit density:

P152
c1A1

3
11Y2
� �

exp ð2Y2=4Þ: (12)

By inserting into (10), we finally obtain

�uS115u0 2
ð27246Y217Y4Þ
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Q2
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Here we have defined the dimensional scaling factor u0 by

u05
3A2

1

2c1
: (14)

In Figure 1, we have plotted the nondimensional Stokes drift from (13) at the surface, where
Q151; dQ1=dZ50; see (A6). We note that the meridional distribution of the Stokes drift at the surface is sim-
ilar to that that obtained in the upper layer from a reduced gravity model; see e.g., Thompson and Kawase
[1993] and Li et al. [1996]. However, a two-layer model gives a false picture of the variation with depth of
the Stokes drift in a stratified ocean, and it also fails to yield the correct total volume transport by the
Rossby wave mode (1,1). These points will be discussed in detail in the next sections.

4. The Effect of Stratification

When N is constant, one readily finds [see e.g., LeBlond and Mysak, 1978], that cn5NH=ðnpÞ and Qn5cos
npz=Hð Þ which can be inserted into (13). One easily obtains for mode (1,1) at the equator:

�uS11ðY50Þ5u0 2cos 2 p z
H

� �
1

1
9

sin 2 p z
H

� �� 	
:

(15)

We not that the Stokes drift for constant N at
the equator that is symmetric about the mid-
depth z52H=2. Here the drift is eastward
and small, while at the top and bottom there
are much larger westward drift velocities.

However, a constant Brunt-V€ais€al€a frequency
is not a good approximation for the equato-
rial region. Here we find a pronounced ther-
mocline; see e.g., Colin et al., [1971] for the
Pacific. In Kessler [2005], the depth at which
N attains its maximum is estimated to about
250 m. In Hayes et al. [1985] and Tang et al.
[1988], the peak of N is located much closer
to the surface. We can approximate N2ðzÞ in
a very simple way by taking:

N2ðzÞ5N2
d2

z
D

N2
0exp

�
z
D

�
: (16)Figure 1. The meridional variation of the nondimensional drift uSR5�uS11

ðz50Þ=u0 at the surface from (13). Here Y5y=a1.
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By assuming N2
05831024 s22, N2

d5431026

s22, and D550 m, we have plotted NðzÞ in
Figure 2. The distribution of N with depth in
Figure 2 reproduces quite well a smoothed
plot of NðzÞ in Tang et al. [1988, their Figure
7], based on observations at 08W, 1108W in
the Pacific. Applying (16), a simple shooting
procedure yields c15ðgh1Þ1=2

52:36 m s21

from (A4)–(A6) for the first baroclinic mode
in the vertical. This value fits well with that
given by Tang et al. The eigenfunction Q1 is
proportional to the first mode horizontal
velocity; see e.g., (A2). From (5), we note that
the first mode vertical velocity is propor-
tional to W15ðN2

0=N2ÞdQ1=dZ. The vertical
variation of these modes is plotted in Figure
3. We note from the figure that these vertical
distribution as fairly similar to those plotted
by Tang et al. [1988, their Figure 8]. In partic-
ular, the zero crossing of the first mode hori-
zontal velocity occurs at a depth of about

1500 m, where we also find the maximum of the first mode vertical velocity. It should be noted that these
distributions, as well as the eigenvalue c1, are extremely sensitive to the variation of N with depth, and we
must look on (16) only as a simplified and qualitative representation of real ocean data. For the first baro-
clinic, first meridional equatorial Rossby wave mode, we now obtain from (A9):

c1152
c1

3
520:8 m s21: (17)

This fits well with earlier estimates by Yu and McPhaden [1999] of 20:9 and 20:81 m s21 for the (1,1) mode.

With the modal structure displayed in Figure 3, we may now proceed to calculate the vertical variation of
the Stokes drift. In Figure 4, we have plotted the nondimensional Stokes drift uSR5�uS11ðy50Þ=u0 from (13)
for the Rossby wave mode (1,1) at the equator as function of nondimensional depth. For comparison, we
have also displayed the result (15) for constant N. We note that the Stokes drift at the equator is basically
directed westward (in the same direction as the waves), with a small eastward drift near middepth, while

for constant Brunt-V€ais€al€a frequency there is a
slightly larger eastward drift at middepth. For a
variable N, the largest drift velocities are con-
fined to the upper 1000 m. Although there is no
symmetry about middepth anymore, as for con-
stant N, there is still a nonnegligible westward
Stokes drift in the bottom layer.

5. The Stokes Volume Transport

Applying the rigid lid approximation at the sur-
face, it has been demonstrated that the Stokes
volume transport in baroclinic equatorial Kelvin
waves is zero [Weber et al., 2014]. This is due to
the fact that the direction of the Stokes drift
alternates in the vertical direction, independent
of the y coordinate. For the Rossby mode (1,1),
the situation is more complicated since the
Stokes drift changes sign in the vertical as well

Figure 2. The Brunt-V€ais€al€a frequency N from (16) as function of depth.

Figure 3. Vertical variation of the normalized eigenfunction Q1 for the
first mode horizontal velocity (solid line) and the first mode vertical
velocity W1 (dotted line) when N is given by (16). Here Z5z=D.
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as in meridional direction. By integrating in the y direction, using the well-known results

ð1
21

exp ð2n2=2Þdn5ð2pÞ1=2

ð1
21

n2exp ð2n2=2Þdn5ð2pÞ1=2

ð1
21

n4exp ð2n2=2Þdn53ð2pÞ1=2

g; (18)

we find for the various terms in (13) that
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ð1
21

exp ð2Y2=2Þð27246Y217Y4ÞdY522ð2pÞ1=2; (19)
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Hence, the zonal transport FMðzÞ per unit depth becomes

FMðzÞ5
ð1

21

�uS11dy52F0 Q2
12

c2
1

N2

dQ1

dz

� �2
 !

; (21)

where

F05
2ð2pÞ1=2a1u0

27
: (22)

In Figure 5, we have plotted F5FM=F0 versus nondimensional depth. We note that the 1.5-layer model yields
a net westward zonal flux. Actually, since the linear wave fluxes are equal and oppositely directed in each layer
in this case, and the Stokes drift scales as the square of the wave velocity divided by the (negative) phase
speed, the Stokes drift is westward in each layer. Moreover, if the thickness of the deep lower layer is H2, the

ratio between the Stokes fluxes in the upper
layer and the lower layer is of the order
H1=H2 � 1. The small westward Stokes flux in
the lower layer for the 1.5-layer model has been
neglected in Figure 5.

Our model with a continuous equatorial pycno-
cline yields a completely different picture (Figure
5, blue line). We now have a considerable east-
ward flux near middepth that compensates
exactly the westward fluxes in the surface and
bottom layers. We can in fact prove that vanish-
ing total zonal Stokes transport in the Rossby
mode (1,1) is not limited to the pycnocline model
(16) used here but is generally true for any (stable)
continuous stratification. This is seen by integrat-
ing (21) and using (A4). We then obtain for the
total Stokes zonal volume transport:

Ftot5

ð0
2H

FMðzÞdz5F0
c2

1

N2
Q1

dQ1

dz

� 	z50

z52H
: (23)

Figure 4. The nondimensional Stokes drift uSR5�uS11ðy50Þ=u0 at the
equator from (13) as function of the nondimensional depth Z5z=D,
when NðzÞ is given by (16) (blue line), and when N is constant (red
line).
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Now by applying (A5) and (A6), we find that

Ftot5

ð0
2H

ð1
21

�uS11dydz50; (24)

which proves our point.

6. Reflection of Wave Energy

Unlike the western oceanic boundaries in general, the
western region close to the equator need not be a com-
plete Rossby graveyard. As pointed out by McCreary
[1983], some of the Rossby wave energy could be
reflected as an eastward propagating equatorial Kelvin
wave. In this process, the wave period must be con-
served. A typical period T for a long Rossby wave in the
eastern equatorial Pacific could be about 35 days [Farrar
and Durland, 2012]. In the present problem, the phase
speed for the first baroclinic mode, when the Brunt-
V€ais€al€a is given by (16), is found to be c152:36 m s21.
With T535 days, the equivalent wavelength for the first
Kelvin mode becomes about 7140 km, which appears

to be too long for an equatorial wave in the ocean. It is then more realistic that the reflected signal could be repre-
sented by the second baroclinic Kelvin mode (or even higher modes). Again, with N2 given by (16), a shooting pro-
cedure yields c251:61 m s21 for the second mode. Incidentally, this value fits well with that reported by Kessler and
McPhaden [1995] from the Hawaii-Tahiti Shuttle Experiment ðc251:74 m s21Þ. This corresponds to a second mode
wavelength of 4876 km, which could occur in the equatorial Pacific. To make things simple, we assume that the
reflected wave (the second mode Kelvin wave) has a horizontal amplitude given by RA1, where R is a reflection coef-
ficient (R 2 0; 1½ �), and A1 is the amplitude of the zonal Rossby (1,1) component; see (11). From Weber et al. [2014], it
is easy to show that the Stokes drift for the second baroclinic Kelvin component in this case can be written as

�uSK25
c1R2u0

3c2

d/2

dZ

� �2

2
N2D2

c2
2

/2
2

" #
exp ð2y2=ð2a2

2ÞÞ; (25)

where a25ðc2=ð2bÞÞ1=2 is the Rossby radius for
the second mode and /nðzÞ is the eigenfunc-
tions for the vertical isopycnal displacement. Fur-
thermore, the scaling factor u0 is given by (14).

Due to irregular bottom and coastal conditions
near the western boundary, it seems unlikely
that the entire wave amplitude should be pre-
served. Even in that case, with R51, we find
from (25) that the total westward drift at the
surface is reduced by a about factor 1=2. Since in
this case, the Rossby radii are a15226 km and
a25187 km, this reduction at the surface occurs
only within a distance a1 at both sides of the
equator; see Figure 1. Beneath the surface layer,
the reduction is negligible.

A more reasonable value for the reflection
coefficient could be R51=2. In Figure 6, we
have depicted uSR5�uS11=u0 from (13) and uSK 5

�uSK2=u0 from (25) when y50. The total drift
along the equator is just the sum of the two

Figure 5. The nondimensional zonal transport F5FM=F0 per unit
depth from (21) as function of Z5z=D when NðzÞ is given by (16)
(blue line). The red line depicts the result from applying a 1.5-
layer reduced gravity model with upper layer depth H151000 m;
see e.g., Thompson and Kawase [1993] and Li et al. [1996].

Figure 6. The nondimensional Stokes drift uSR in the Rossby mode
(1,1) (blue line), and uSK in the Kelvin wave mode 2 (red line) at the
equator as function of nondimensional depth when R51=2.
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curves in Figure 6. We note that the contribution from the Kelvin wave only gives a small correction near
the surface.

7. Concluding Remarks

The present investigation of the Stokes drift in the first baroclinic, first meridional Rossby wave mode with a
realistic Brunt-V€ais€al€a frequency shows that drift at the equator is basically westward. The largest westward
drift occurs in the surface layer, with a maximum at the surface and extending down to about 1000 m. The
drift velocity is slightly eastward at middepth, while in the bottom layer there is a nonnegligible westward
Stokes drift. At the bottom, it is nearly 1/4 of the surface value. At any depth level, the mean drift varies in
the meridional direction. At the surface the drift is westward along the equator in a meridional section of
about 2a1. In the region between y � a1 and y � 2a1 on both sides of the equator, the drift is eastward,
which is similar to the findings of Thompson and Kawase [1993] and Li et al. [1996] from reduced gravity
models. But such modes produce a net westward zonal Stokes transport. The inclusion of a continuous
stratification in the present paper corrects this result and shows that the total zonal volume transport must
be zero. We think that this is a novel and important result. It means that if the west coast acts as a sink for
this wave component, no compensating eastward Eulerian mean currents (e.g., equatorial Rossby rip cur-
rents) are needed for the zonal mass balance. Even if some of the Rossby wave energy should be reflected
at the west coast as an eastward propagating internal equatorial Kelvin wave [see e.g., McCreary, 1983], this
would not matter, since also the total Stokes mass transport in internal Kelvin waves is zero [Weber et al.,
2014]. For the vertical variation of the total drift velocity, the presence of a 2. mode Kelvin wave as a result
of reflection only yields a minor correction near the surface, as seen from Figure 6.

Appendix A: Equatorial Baroclinic Waves

Assuming separation of variables, we can write for a Fourier component of an equatorially trapped internal
wave:

~P5QnðzÞPnðyÞsin ðkx2xtÞ; (A1)

~u5QnðzÞUnðyÞsin ðkx2xtÞ; (A2)

~v5QnðzÞVnðyÞcos ðkx2xtÞ; (A3)

where x is the wave frequency and k is the wave number. We here take that Qn is dimensionless. Utilizing
the Boussinesq approximation, one finds [LeBlond and Mysak, 1978]

d
dz

dQn=dz
N2

� �
1

1
ghn

Qn50: (A4)

Here cn5ðghnÞ1=2 is the eigenvalue in this problem, where hn is the equivalent depth [Lighthill, 1969]. The
boundary conditions are

dQn

dz
1

N2

g
Qn50; z50;

dQn

dz
50; z52H:

(A5)

In the present problem, we have that jN2H=gj � 1, so the boundary condition at the surface can be written
approximately as [LeBlond and Mysak, 1978]

dQn

dz
50; z50: (A6)

The meridional variation VnðyÞ is given by [LeBlond and Mysak, 1978, their equation (21.3)]

d2Vn

dy2
1

x2

c2
n

2k22
bk
x

2
b2y2

c2
n

� �
Vn50; (A7)

subject to
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Vn ! 0; y ! 61: (A8)

Trapping at the equator of very long, low-frequency Rossby waves requires from (A7) that

cnm5
x
k

52
cn

2m11
; m51; 2; 3; ::: (A9)

Within the equatorial band, the appropriate baroclinic Rossby radius for this problem is [Gill, 1982]

an5
cn

1=2

ð2bÞ1=2
: (A10)

The trapped solution of (A7) can be written in terms of Hermite functions, which are Hermite polynomials
multiplied by a Gaussian. The simplest expression is obtained in terms of the nondimensional coordinate
r5y=ð

ffiffiffi
2
p

anÞ. The solution then becomes

VnðrÞ5
X

m

Cnmð21Þmexp
r2

2

� �
dm

drm
exp ð2r2Þ
� �

: (A11)

Finally, in order to calculate the various terms in the Stokes drift (8), we must express PnðyÞ and UnðyÞ in
(A1) and (A2) as functions of VnðyÞ. We find from (1) to (3) after some algebra that

PnðyÞ5
ð2m11Þ2

4mðm11Þk byVn2cnm
dVn

dy

� 	
; (A12)

and

UnðyÞ52
1

kcnm
byVn2kPn½ �: (A13)
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