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Abstract
Computational models of cardiac mechanics, personalized to a patient, offer access
to mechanical information above and beyond direct medical imaging. Addition-
ally, such models can be used to optimize and plan therapies in-silico, thereby
reducing risks and improving patient outcome. Model personalization has tradi-
tionally been achieved by data assimilation, which is the tuning or optimization
of model parameters to match patient observations. Current data assimilation pro-
cedures for cardiac mechanics are limited in their ability to efficiently handle
high-dimensional parameters. This restricts parameter spatial resolution, and thereby
the ability of a personalized model to account for heterogeneities that are often
present in a diseased or injured heart. In this paper, we address this limitation
by proposing an adjoint gradient–based data assimilation method that can effi-
ciently handle high-dimensional parameters. We test this procedure on a synthetic
data set and provide a clinical example with a dyssynchronous left ventricle with
highly irregular motion. Our results show that the method efficiently handles a
high-dimensional optimization parameter and produces an excellent agreement for
personalized models to both synthetic and clinical data.
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1 INTRODUCTION

Computational models of cardiac mechanics, personalized
to the level of the individual through the use of clini-
cal imaging, have potential to be a powerful aid in the
diagnosis and treatment of cardiac disease. By relating
image-based data to fundamental physical processes, models
can give additional insight into the function or dysfunction
of the individual’s heart, beyond what can be directly mea-
sured or observed in the images. This is becoming more
important as the resolution and accuracy of clinical imag-
ing continues to improve. This increasingly detailed data
combined with biophysical models have promise in anal-
ysis of regionally and temporally resolved differences in
the mechanics of the heart, important in diseases such as
heart failure and the application of cardiac resynchronization
therapy.

A key step in making these clinically useful cardiac
mechanics models is proper data assimilation from patient
observations into a fit model. This involves the optimiza-
tion, or tuning, of individual model parameters to make the
model match the observations of the patient’s heart. Over
the last decade several data assimilation methods have been
developed and proposed for this problem. The earliest studies
used gradient-based optimization to minimize the discrep-
ancy between model-derived data and clinical observations.
The gradients necessary for these optimizations were cal-
culated using direct differentiation1 or finite difference.2–4

More recent efforts include the use of global optimiza-
tion methods: in particular, genetic algorithms,5,6 a Monte
Carlo method,7 subplex algorithm,8 and parameter sweeps.9,10

Finally, reduced order unscented Kalman filtering has also
been successfully applied as a data assimilation tool for
patient-specific model creation.11–13
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The increasingly large amount of easily obtainable geo-
metric and motion data, however, is a challenge for data
assimilation into personalized computational models using
the techniques mentioned above. This is as the computational
expense scales badly with the number of model parameters to
be fit. In the case of the Kalman filtering strategies, at least 1
extra evaluation of the model is required per additional model
parameter to be optimized. The calculation of model-data
mismatch gradients by finite difference or direct differenti-
ation suffers from the same limitation. Global methods on
the other hand are affected by the curse of dimensionality,
that is, a rapid expansion of the space of parameters that
must be searched as the number of dimensions increases. For
high-dimensional problems, the run time needed to conduct a
global search can be computationally prohibitive.

In contrast, the calculation of a functional gradient by the
adjoint formula is nearly independent of the number of opti-
mization parameters, requiring 1 forward and 1 backward
adjoint solve of the mathematical model. The forward solve
is typically needed to evaluate the functional, and the eval-
uation of the gradient at the same point requires only an
additional backward solve of the adjoint system. Further-
more, this backward solve is always linear and, therefore,
computationally less expensive than the forward solve if the
mathematical model is nonlinear. These methods have been
widely explored in model optimization, with adjoint-based
data assimilation techniques having previously been used for
cardiac mechanics, specifically using linear elastic models
and clinical data,14,15 and also nonlinears model combined
with experimental data.16

In this work, we provide an improved data assimilation
pipeline for high-resolution optimization, demonstrating the
parameterization of mechanical contraction in high spatial
resolution driven by 4D echocardiography patient data. This
high-dimensional optimization problem is efficiently solved
using an adjoint gradient–based technique, described in detail
in our previous work.16 We demonstrate our method on the
pathological case of a dyssynchronous left ventricle (LV),
which has complex and irregular motion, as well as on a syn-
thetic case consisting of data generated by our mechanical
model. This study is to the best of our knowledge, the first
to use adjoint-based data assimilation for nonlinear cardiac
mechanics with clinical data, and the first to consider the res-
olution of a parameter at the same scale as the discretization
of the cardiac geometry. These are important considerations
as better understanding of myocardial properties emerges and
the collection of high-resolution clinical data continues to
expand.

The rest of this paper is organized as follows: In
Section 2, we present a mathematical model that accounts
for the 3 main drivers of ventricular mechanics: blood
pressure, tissue elasticity, and muscle contraction. We also
describe clinical measurements of a patient suffering from
dyssynchrony and our data assimilation procedure for fit-
ting the model to these measurements. Numerical results are

presented in Section 3 and discussed in Section 4. Finally, we
provide some concluding remarks in Section 5.

2 MATERIALS AND METHODS

2.1 Wall motion modelling

To estimate the position of the myocardial walls through the
cardiac cycle, we adopt a continuum mechanics description of
cardiac wall motion. In this description, we consider a fixed
left ventricular (LV) reference geometry Ω, with endocardial
boundary 𝜕Ωendo and basal boundary 𝜕Ωbase.

Our fundamental quantity of interest is the vector-valued
displacement map u(X), where X ∈ Ω. At any given point in
time in the cardiac cycle, u(X) relates the current geometry 𝜔
to the reference geometry by

X + u(X) = x, x ∈ 𝜔, X ∈ Ω. (1)

Assuming that the cardiac walls are in equilibrium, it is pos-
sible to determine the value of u from the principle of virtual
work

𝛿W(u) = 0, (2)

which states that the virtual work, 𝛿W(u), of all forces applied
to a mechanical system vanishes in equilibrium. For our ven-
tricular wall motion model, the virtual work 𝛿W(u), is given
by

𝛿W(u, p) = ∫Ω
P ∶ Grad 𝛿u dV + ∫Ω

(J − 1) 𝛿p

+ pJF−T ∶ Grad 𝛿u dV

+ pblood∫
𝜕Ωendo

JF−TN · 𝛿u dS

+ ∫
𝜕Ωbase

ku · 𝛿u dS.

(3)

Here, we have introduced the hydrostatic pressure p to enforce
the incompressibility constraint J = 1, with J = det F =
det (Grad u + I), and I being the second-order identity ten-
sor. Furthermore, N denotes the unit outward normal vector,
k the constant of a spring that we introduce at the basal
boundary, and pblood the intraventricular blood pressure. The
virtual variables 𝛿u and 𝛿p are test functions whose values
are arbitrary when the system (Equation 2) is in mechanical
equilibrium.

To anchor the computational geometry, we fix u in the lon-
gitudinal direction at the base by using a Dirichlet boundary
condition. At the epicardial boundary, normal forces are set
to 0, and so there is no term for this boundary in Equation 3.

The internal stresses of our model are given by P, the first
Piola-Kirchhoff tensor, which can be calculated as a deriva-
tive of a strain energy functional in the case of a hyperelastic
material. In our model, we use a reduced version9,10,17,18 of the
Holzapfel-Ogden strain energy law,19
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𝜓(C) = a
2b

(
eb(I1(C)−3) − 1

)
+

af

2bf

(
ebf (I4f (C)−1)2+ − 1

)
, (4)

which gives the amount of strain energy, 𝜓 , stored per unit
volume myocardium undergoing the deformation C = FTF.
The notation (·) + refers here to max{·, 0}. Furthermore, the
mechanical invariants I1 and I4f are defined as

I1(C) = tr C, I4f = ef · Cef , (5)

with ef indicating the local myocardial fiber direction. The
material parameters a, af, b, and bf are scalar quantities, which
influence the shape of the stress-strain relationship, and can be
adapted to personalize the elastic properties of a myocardial
tissue model to a specific patient.

The Lagrange multiplier formulation of incompressibility
that we use enforces its constraint only weakly. This can cause
convergence issues in the numerical solution of the work
balance equation (Equation 2). We therefore eliminate vol-
umetric strains from the energy function (Equation 4) by a
simple modification

�̃�(C) = 𝜓

(
J−

2
3 C

)
. (6)

This modification has been shown to improve the robust-
ness of Newton-Raphson methods applied to incompressible
hyperelastic problems [Figure 3C20].

To account for muscle contraction, we apply the active
strain framework.21 In this framework, the amount of mus-
cle fiber shortening is specified by a field 𝛾 via a split of the
deformation gradient

F = FeFa(𝛾), (7)

where Fe is the elastic part and Fa(𝛾) is the active part of
the deformation gradient. For the value of Fa(𝛾), we adopt
a simple relation18,22 that satisfies the incompressibility con-
straint by design and directly relates the amount of active fiber
shortening to the value of 𝛾

Fa = (1 − 𝛾)ef ⊗ ef +
1√

1 − 𝛾
(I − ef ⊗ ef ). (8)

In the case 𝛾 = 0, there is no muscle shortening at all, and
the amount of shortening increases with increased 𝛾 up to the
theoretical limit of 𝛾 = 1. Physiologically, 𝛾 models the length
change along muscle fibers neglecting elastic effects. This,
together with the elastic resistance gives the strength of the
muscle contraction.

Muscle contraction is accounted for in terms of virtual
work by modifying the first Piola-Kirchhoff stress tensor so
that the strain energy only depends on the elastic part of the
deformation

P = 𝜕�̃�

𝜕F
= 𝜕�̃�(Ce)

𝜕F
(9)

with Ce = FT
e Fe.

Given an amount of fiber shortening 𝛾 , the value of the
elastic parameters a, b, af, and bf, the intraventricular blood
pressure pblood and the spring constant k, the myocardial wall
displacement u and hydrostatic pressure p can be obtained by
solving the principle of virtual work (Equation 2).

2.2 Clinical measurements

Clinical data were obtained at the Oslo University Hospital
in the context of the Impact study.23 Specifically, we consider
the case of an 82-year-old man in New York Heart Associ-
ation functional class III systolic heart failure with coronary
artery disease and left bundle branch block. A left bundle
branch block normally causes both electrical and mechani-
cal dyssynchrony. In this case, electrocardiography revealed a
QRS width of 140 ms and the echocardiographically derived
ejection fraction was 30 %.

Prior to cardiac resynchronization therapy implant, the
patient had echocardiographic and LV pressure measurements
taken, which are the basis for the clinical data used in this
study. Pressure recordings were conducted with an intravas-
cular pressure sensor catheter (Millar microcatheter) that was
positioned in the LV via the right femoral artery. Pressure data
were obtained automatically and digitized (Powerlab system,
AD Instruments) before off-line analyses were performed
with a low pass filter of 10 Hz.

Images of the patient’s LV were captured with 4-D echocar-
diography using a GE Vingmed E9 machine (GE healthcare
Vingmed, Horten, Norway). Speckle tracking motion analy-
sis was conducted with GE’s software package EchoPac. Data
from 6 beats were combined in EchoPac to obtain a single
sequence of images for a single heartbeat. Analysis of these
images resulted in LV cavity volume measurements as well as
regional strain curves defined for a 17 segment delineation of
the LV according to the American heart association (AHA)
representation.24 The strain curves were measured in the local
LV longitudinal, radial, and circumferential directions. Both
strains and volumes were measured 34 times throughout the
cardiac cycle.

Valvular events were used to synchronize the pressure to the
strain and volume data. The timing of the observed valvular
events in the images were matched with the observed valvu-
lar events in the pressure trace. In the pressure trace, aortic
valve opening was selected after the steepest increase of the
pressure ( dp

dt
max ) and mitral valve closure just before dp

dt
max . Aortic valve closure was chosen just before the pres-
sure had its largest decrease after aortic valve opening, and
the mitral valve opening before the pressure dropped down
to baseline after aortic valve closure. A pressure-volume
(PV) loop based on the synchronization is displayed in
Figure 2.

Finally, a linear correction of the strain curves was per-
formed to eliminate drift, with drift being defined as the value
of the strain obtained at the end of the cardiac cycle. Theoret-
ically, drift should be zero for a stable cyclical heartbeat. The
linear correction enforces the cyclical property.
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2.3 Ventricular geometry generation

The computational mechanics framework used for our wall
motion model, described in Section 2.1, requires a reference
stress-free geometry from which to define displacements.
Such a geometry typically does not exist in vivo due to the
presence of blood pressure on the endocardial walls. Algo-
rithms exist for calculating stress-free geometries given a
loaded state.25,26 However, for the sake of simplicity, we derive
our reference geometry from an echocardiographic image of
the LV at the beginning of atrial systole, as the pressure is near
minimal at this point, and the ventricular myocardium can be
assumed to be relaxed.

From the image at the beginning of atrial systole, triangu-
lated data points for LV endocardial and epicardial surfaces,
along with a 17 segment delineation, were extracted using
the EchoPac software package. The segment delineation was
given on a so called strain mesh, which is a 2-D surface con-
structed by EchoPac and located approximately in the mid
wall of the LV.

We constructed a flat ventricular base by cutting the raw
geometry with a plane that was fit via least squares to the
points at the base. After the fitting, the longitudinal position
of the cutting plane was adjusted so that the cavity volume
of the resulting mesh agreed with the measured volume to a
tolerance of 1 mL. Points on the epicardial and endocardial
surfaces that lay above the cutting plane were removed.

We used Gmsh27 to create a linear tetrahedral volumet-
ric mesh between the endocardial and epicardial surfaces.
This mesh had 1262 elements and is shown in Figure 1B.

Myocardial fiber orientations were assigned using a
rule-based method, with a fiber helix angle of 40◦ on the
endocardium rotated clockwise throughout the ventricular
wall to − 50◦ on the epicardium.28 A streamline repre-
sentation of the local myocardial fibers is displayed in
Figure 1C.

Finally, the AHA segments from the strain mesh were
transferred onto the volumetric mesh. This was accom-
plished by computing prolate spherical coordinates for
the barycenter of each tetrahedron and then assigning
an AHA zone to the tetrahedron based on the corre-
sponding prolate spherical coordinate in the strain mesh.
AHA segments on the volumetric mesh are shown in
Figure 1D.

2.4 Parameter estimation

Now that we have a mathematical description of cardiac
motion, along with a personalized computational geometry
and target data, we next turn to the problem of personalizing
the motion model via the estimation of the elastic parameters
and the fiber contraction. As dyssynchrony is a disease which
primarily affects the contraction properties of the ventricle,
we focus our efforts on contraction modelling and use a very
simple personalization of stiffness properties. That is, only
the parameter a is optimized to fit the ventricular volumes,
and the other elastic parameters are kept fixed at the values
(af = 1.685 kPa, b = 9.726, bf = 15.779), which were obtained
from a bi-axial loading experiment [Table 1 row 319].

FIGURE 1 Ventricular geometry generation. Endocardial and epicardial surfaces are marked on 3-D ultrasound images. A, The endocardial marking for a
2-D slice of 1 such image. B, A computational geometry is generated from epicardial and endocardial surfaces. C, Rule-based fibers are assigned. D, AHA
segments are assigned to the geometry, according to E, standardized scheme
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FIGURE 2 Patient pressure-volume relationship for the left ventricle.
Measurements in the blue solid line are used to estimate contraction,
whereas measurements in the red dashed line are used to estimate elasticity

Fiber contraction varies throughout the cardiac cycle, and
so we estimate the parameter 𝛾 separately at each time mea-
surements were taken. Furthermore, as the contraction of the
LV may occur dyssynchronously, we allow for 𝛾 to vary in
space as well as in time.

Muscle shortening is typically present in the ventricles
throughout systole and in early diastole until the muscles fully
release their contraction. During the phase of atrial systole,
we do not expect muscle contraction in the ventricle, and so
we set 𝛾 = 0 for this phase. This allows us to estimate elastic
properties independently of contraction during atrial systole,
and then estimate contraction at each point in the rest of the
cardiac cycle with the material parameters fixed. In Figure 2,
we show the pressure-volume loop of the patient under con-
sideration and highlight the phases where we estimate the
contraction and elastic parameters.

2.5 Definition of functionals

As described in Section 2.2, the data available for our per-
sonalization of the wall motion model are pressure, volume,
and strain measurements throughout the cardiac cycle. The
pressure measurements are included in the model as a bound-
ary condition via the virtual work (Equation 2), and thus
our data assimilation only needs to fit the model to the vol-
ume and strain measurements. This requires that we define a
suitable set of functionals that quantify the model-strain and
model-volume mismatches. The personalization of the wall
motion model can then be achieved by optimizing the contrac-
tion and elastic parameters to minimize the total model-data
mismatch.

Let i denote the index of an observed cavity volume
Vi, or strain 𝜀i, in the cardiac cycle. Furthermore, let j ∈
{1, .., 17} be the index of an AHA segment Ωj and k ∈ {c,
r, l} indicate a direction: circumferential, radial or longitudi-
nal, respectively. Given a measurement point i, we define the
model-strain mismatch

Ii
strain =

17∑
j=1

∑
k∈{c,r,l}

(
𝜀i

kj − �̃�
i
kj

)2
, (10)

for model strain �̃�i
kj and measured strain 𝜀i

kj. The speckle
tracking software we use provides the measured strain 𝜀i

kj.
This strain is regionally averaged and of Lagrangian type. To
mimic this in our model, we define the model strain as

�̃�i
kj =

1|Ωj|∫Ωj

eT
k ∇u ek dx, (11)

where ek denotes a unit direction field and |Ωj| the volume of
segment j.

Furthermore, we also define the model-volume mismatch

Ii
vol =

(
Vi − Ṽ i

Vi

)2

, (12)

where the model volume is calculated by the formula

Ṽ i = −1
3∫𝜕Ωendo

(X + u) · JF−TN dS. (13)

We note that this method of calculating the model volume
depends upon (X + u)·N = 0 at the basal plane. These con-
ditions hold in our model as the basal plane is defined with
0 longitudinal coordinate and longitudinal displacements are
also set to 0 in this plane.

To have a single optimization target to describe the fit
to data, we combine the strain (Equation 10) and volume
(Equation 13) mismatches into 1 single functional

Ii
data(𝛼) = 𝛼Ii

vol + (1 − 𝛼)Ii
strain. (14)

Here, the parameter 𝛼 controls the relative emphasis of the
parameter estimation on volume or strain matching.

In our study, we consider a high-dimensional representation
of 𝛾 to more accurately capture the details of a dyssyn-
chronous contraction. However, this can easily lead to an
over-parametrized problem in which many parameter combi-
nations produce the same functional values. To further con-
strain the optimization, we introduce a first-order Tikohonov
regularization functional
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Ii
smooth(𝜆) = 𝜆||∇𝛾 i||2, (15)

where ||·|| represents the standard L2 norm. This func-
tional discriminates between 𝛾 parameter sets based on their
smoothness. The parameter 𝜆 can be adjusted to control the
size of the functional and hence the relative emphasis on
smoothing.

2.6 Parameter estimation as an optimization problem

The elastic parameters of the reduced Holzapfel-Ogden law
(Equation 4) represent the passive elastic properties of the
myocardium. We personalize these properties by adjusting the
parameter a to match measured LV volumes. Mathematically,
this problem is formulated as

minimize
a

NAS∑
i=1

Ii
vol

subject to 𝛿W
(
pi

blood, a
)
= 0 ∀ i ∈ {1, ...NAS},

(16)
where 𝛿W is given by Equation 3 and NAS = 3 indicates the
total number of measurements available in atrial systole.

The contraction field that we seek should fit the data as
closely as possible while also being as smooth as possible.
To achieve this, we minimize both the data and smoothness
functionals as follows:

minimize
𝛾

Ii
data(𝛼) + Ii

smooth(𝜆)

subject to 𝛿W
(
pi

blood, a, 𝛾
i) = 0

𝛾 i(X) ∈ [0, 1), X ∈ Ω.

(17)

This problem is solved for every measurement point i not in
atrial systole.

The optimization problems (Equations 16 and 17) have 2
free parameters whose values must be chosen, namely, the
strain-volume weighing 𝛼 and the regularization 𝜆. The value
of 𝜆 can be expected to influence the trade-off between the
optimized values of the data functional Ii

data and the regu-
larization functional Ii

smooth. Similarly, 𝛼 can be expected to
influence the trade-off between Ii

strain and Ii
vol. In our study, we

choose the values of 𝛼 and 𝜆 by examining their effects on the
functionals that they weigh. The choices we made are further
described in Section 3.3

The spatial resolution of the parameter 𝛾 affects the amount
of detail that can be captured by the model and simultaneously
the number of variables that need to be optimized. We there-
fore test 3 different resolutions of 𝛾 . The lowest resolution,
“scalar,” is simply a single global value. The next resolution
is “regional” and consists of a separate value for each of the
17 AHA zones. Finally, the highest resolution we consider is
“P1” and consists of a separate value at each of the vertices of
the mesh, with a linear interpolation between vertices. Using
our ventricular mesh, a P1 resolution of 𝛾 has 1262 separate
variables.

2.7 Implementation of mechanics and optimization
solvers

For the numerical solution of the work balance equation
(Equation 2), we use a Galerkin finite element method with
Taylor-Hood tetrahedral elements,29 that is, a continuous
piecewise quadratic representation of the displacement field
and a continuous piecewise linear representation of the pres-
sure field.

The software implementation of our finite element method
is based on the package FEniCS,30 which automatically gen-
erates matrix and vector assembly code from a symbolic
representation of the work balance equation (Equation 2).
The resulting nonlinear systems were solved using the PETSc
implementation of a Newton trust region algorithm,31 while
the inner linear solves were handled by a distributed memory
parallel LU solver.32

To solve the optimization problems (Equations 16 and
17), we apply a sequential quadratic programming (SQP)
algorithm.33 This algorithm requires the derivatives of
the function to be optimized, which in our case are
the gradients of the mismatch functionals in problems
(Equations 16 and 17) with respect to a and 𝛾 , respectively.
These gradients are automatically computed by solving a
machine derived adjoint equation via the software framework
dolfin-adjoint.34

In addition to gradients, the SQP algorithm requires evalua-
tions of the mismatch functionals for given values of the con-
trol variables, which again relies on the solution of the work
balance equation (Equation 2). In the case of the problem
(Equation 17), the control variable is 𝛾 , which has a large
influence on the solution of Equation 2. Numerical solution of
Equation 2 by Newton method depends upon having a good
initial guess, which in our case are the values of the mechan-
ical state variables, u, p, resulting from the previous solve of
Equation 2. If the value of 𝛾 differs too greatly from one solve
to the next, the Newton algorithm might fail due to the root
of the system being too far away from the initial guess. To
avoid this problem, we make use of a homotopy procedure
that moves from one value of 𝛾 to the next in small increments
and solves Equation 2 each time the value of 𝛾 is changed.
This procedure is presented as Algorithm 1 and is similar to
one that has been previously published.35

All algorithms, solvers, and relevant data are publicly avail-
able online.36

2.8 Error estimation

The optimization functionals introduced in Section 2.5 are
defined separately for each measurement point. For the pur-
poses of evaluating goodness of fit over the entire car-
diac cycle, we consider metrics that are averaged over
measurement points. Furthermore, we relate errors to the
sizes of the data for ease of interpretation. In the case
of the model-volume error, we introduce the volume
metric
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Ivol =
||Vi − Ṽ i||𝓁1||Vi||𝓁1

, (18)

where the 𝓁1 norm is taken with respect to the measure-
ment point index i. Furthermore, we consider 2 average strain
metrics

Istrain = 1
51

17∑
j=1

∑
k∈{c,r,l}

||𝜀i
k,j − �̃�

i
k,j||𝓁1

||𝜀i
k,j||𝓁1

, (19)

I
relmax
strain = 1

51

∑
k∈{c,r,l}

∑17
j=1 ||𝜀i

k,j − �̃�
i
k,j||𝓁1

maxj||𝜀i
k,j||𝓁1

. (20)

Here, N specifies the number of measurement points used
in the optimization, and the factor 51 is 17 × 3, the number
of AHA segments times the number of strain measurements
per segment. The first metric considers relative differences
between norms, whereas the second relates errors norms
to the maximum strain norm over all segments. This sec-
ond metric emphasizes larger features in the strain curves
more heavily and deemphasizes small scale features such
as noise.

Similar to the average data errors introduced above, we
also introduce a smoothness metric that is averaged across
measurement points

Ismooth = 1
N

N∑
i=1

Ii
smooth, (21)

and a combined data metric based on the strain and volume

metrics

Idata = Ivol + Istrain. (22)

Finally, we also define an error metric for a synthetic data test
of the contraction optimization (Equation 17). In this test, a
contraction field 𝛾ground is chosen and synthetic data are gen-
erated from the mechanics model. These data are then used to
calculate a reproduction of the contraction, 𝛾 repr. In order to
compare the ground truth and reproduced contraction fields,
we use a relative L2 norm

||𝜀𝛾 ||avg = 1
N

N∑
i=1

||𝛾 i
repr − 𝛾 i

ground||L2

||𝛾 i
ground||L2

. (23)

3 NUMERICAL EXPERIMENTS

In this section, we present the results of our numerical
experiments. We first estimate the parameter a using vol-
ume measurements in atrial systole. We then test the esti-
mation of contraction 𝛾 using synthetic data generated by
the wall motion model. This gives an idea of how well
the algorithm can perform under idealized circumstances.

Next, we conduct the contraction estimation using the clin-
ical strain and volume data. Finally, we consider lower
resolution representations of 𝛾 and compare the resolu-
tions based on computational expense and data matching
capability.

In all of the experiments below, optimizations were termi-
nated if the difference between the value of the mismatch
in the current and previous iteration was less than 10 − 9 for
the passive material parameter optimization and 10 − 6 for the
contraction parameter optimization or if the SQP algorithm
was not able to further reduce the mismatch value. In the con-
traction optimization, the SQP algorithm was initialized with
the value of 𝛾 from the previous measurement point in the
cardiac cycle.

To obtain convergence of Newton method for the solu-
tion of the virtual work (Equation 2), we set 𝛿𝛾max = 0.02
in the homotopy Newton solver (Algorithm 1) and limited
𝛾 to the interval [0, 0.9]. In the cases that Newton method
did not converge, 𝛿𝛾max was halved until convergence
was obtained.

Strains were calculated with respect to the measurement
point defined as start of atrial systole, as the reference geom-
etry taken from the image corresponding to this point was
assumed to be stress and strain free. Similarly, pressures for
the clinical data were adjusted downward by the pressure mea-
sured at the start of atrial systole, 2.8 kPa, so that the adjusted
start of atrial systole pressure was 0, and therefore compatible
with the stress free assumption.

The value of the basal spring constant was set to k= 1.0 kPa.
This allowed for some motion in the basal plane and was
shown in a sensitivity analysis (see Appendix B) to give opti-
mal 𝛾 values whose spatial average is close to that obtained
with a completely fixed boundary.
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3.1 Estimation of elastic parameter a

An estimate of the parameter a was obtained by minimizing
the mismatch between model-derived and clinically measured
volumes in atrial systole, as described in Equation 16. The
optimal a value obtained was 0.435, with goodness of fit
Ivol = 0.0035. The same optimal a value was also obtained
from 8 randomly chosen starting points between 0 and 45.

3.2 Synthetic dataset creation

To evaluate the performance of our contraction estimation
method (Equation 17) under idealized conditions, we have
performed synthetic data tests. The data for these tests was
constructed by solving the virtual work (Equation 2) for a
given set of elastic parameters (a, af, b, and bf), contraction
𝛾 , and cavity pressures. The a parameter was set to 0.435
kPa, as obtained previously by fitting the model to the patient
atrial systolic volume data. The other 3 elastic parameters
were fixed to the values mentioned in Section 2.4. The
contraction 𝛾 was chosen to be a wave with Gaus-
sian shape and P1 resolution traveling along the
longitudinal axis.

Eight points of measurement were used in the synthetic
tests. This was fewer than the number of in vivo measurement
points, which allowed for faster computations. The pressure
values that were chosen for the synthetic measurement points
can be seen in Figure 5. These pressures start at 0, increase
to the maximum atrial systole pressure that was measured in
vivo and then decrease linearly back to 0.

For the synthetic strain data, we considered 3 different
cases. The first case consisted of the displacement gradient
tensor defined over the entire ventricular geometry. Next, we
considered regionally averaged values of the diagonal com-
ponents of the displacement gradient. The regional averaging
mimics the strain curves generated by the speckle tracking
software. Finally, we consider 30 noisy realizations of the
regional strain curves. The noise that was added to these
curves was estimated from the drift values of the in vivo strain
and is described in Appendix E.

3.3 Choice of functional weights 𝛼 and 𝜆

The optimization functional weights 𝛼 and 𝜆 were chosen
based on trial optimizations using the synthetic and in vivo
datasets. The strains in the synthetic data were regionally aver-
aged and noisy. In these trials, we first set 𝜆 = 0 and tested
𝛼 values ranging from 0 to 1.0 in increments of 0.1, in addi-
tion to the values 0.95, 0.99, 0.999, and 0.9999. For each level
of 𝛼, we recorded the values of the fit metrics, Ivol and Istrain,
and plotted them against each other (Figure 3). On the basis
of the plot, we chose 𝛼 = 0.95 as this value gave a good bal-
ance between volume and strain matching. With the value of
𝛼 fixed to 0.95, we tested 𝜆 from 10 − 6 to 100.0 in increasing
powers of 10. The effect of the choice of 𝜆 on the smoothness
and data functionals is shown in Figure 3. On the basis of this
plot, we selected points that gave near optimal fit values with
a high level of smoothness. These points were 𝜆 = 1.0 for the
synthetic case and 𝜆 = 0.01 for the patient case.

FIGURE 3 Trade-off curves for various 𝛼 and 𝜆 values used in model personalization with synthetic strain data and in vivo patient data. The synthetic strains
are noisy and regionally averaged. The contraction parameter is represented at P1 resolution. Top: optimal strain mismatch (Equation 20) versus average volume
mismatch (Equation 18) for a range of 𝛼 values and 𝜆 = 0.0. Bottom: Total data mismatch versus contraction gradient size for a range of 𝜆 values and 𝛼 = 0.95



BALABAN ET AL. 9 of 17

3.4 Contraction estimation with synthetic data

Using the synthetic datasets described in Section 3.2 as
a target, we calculated optimized contraction fields. All
elastic parameters were kept fixed throughout the optimiza-
tion so that the test was restricted to the contraction field.
We quantified the error in the reproduction of 𝛾 using P1
resolution for the 3 cases of strain. Errors in the relative norm,||𝜖𝛾 ||avg, were 0.033 for the full displacement gradient tensor
and 0.227 for the regionally averaged diagonal of the dis-
placement gradient without noise. The average error for the
30 noisy regionally averaged cases was 0.224 with a stan-
dard deviation of 0.009. We note that the reproduction error
was lowest for the full clean strains, and an order of magni-
tude higher for the regional clean and regional noisy strains.
We also note that the reproduction error using regional clean
strains was very close to the average reproduction error from

the 30 regional noisy strains. The maximum error for all 3
cases of strain occured in the apex and was 0.06, 0.0701,
0.0724 for the full, regional clean, and regional noisy cases,
respectively.

For the case of the full clean strains, we have plotted the
reconstructed contraction field alongside the ground truth
in Figure 4. We note that the ground truth and reproduc-
tion appear very similar. To visualize the effect of the
noise in strain on the optimized contraction field, we plot-
ted the mean and standard deviation of the 30 synthetic
strain curves and mean and standard deviation of the average
of the contraction field resulting from the 30 strain curves.
Both of these plots are restricted to the anterior basal seg-
ment and are shown in Figure 5. We note that the effect
of the noise on the optimized average contraction field is
minimal.

FIGURE 4 Lateral view of the ground truth and reconstructed contraction fields at 7 measurement points during the synthetic data test. The target for the
optimization is the full strain field with no noise. At each pressure the reconstruction is displayed on the left and the ground truth on the right
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FIGURE 5 On the left are the mean (solid line) and standard deviation (highlighted area) of 30 synthetic longitudinal strain curves in the anterior basal
segment corrupted by Gaussian noise. On the right are the mean and standard deviations of 𝛾 estimated averaged over the same segment

FIGURE 6 Posterior view of the contraction field 𝛾 optimized to in vivo
data at P1 resolution. A snapshot is shown for every third in vivo
measurement point

3.5 Contraction estimation with in vivo data

Using the in vivo data described in Section 2.2 as a target,
we calculated optimized contraction fields at P1 resolution.
These contraction fields are shown in Figure 6. We note
that the value of the contraction varies significantly in space
and time. A comparison of the estimated to the measured
pressure - volume (PV) loop is shown in Figure 7. Optimized
and measured strains are compared in Figure 8.

FIGURE 7 Clinically measured (red) versus optimized wall motion model
(blue) left ventricular cavity volumes

3.6 Effect of contraction parameter resolution

To quantify the effects of the resolution of the contraction
field 𝛾 , we have repeated the contraction estimation from in
vivo data using regional and scalar resolutions. The fit values
obtained for these resolutions are compared with the fit value
of the P1 resolution in Table 2. The results show that the P1
resolution of 𝛾 gives an order of magnitude better strain and
volume matches than the scalar and regional resolutions, and

that I
relmax
strain is about an order of magnitude lower than Istrain

in all 3 cases.
The computational cost of the data assimilation using the

3 resolutions of 𝛾 is compared in Table 1. We note that the
number of forward and adjoint solves increases with the reso-
lution and that the average run time of an adjoint solve in the
scalar and P1 resolutions are almost the same.

4 DISCUSSION

In our study, we have created a personalized model of
whole cycle ventricular mechanics based on strain, volume,
and pressure measurements of a dyssynchronous LV. The
contraction parameter in our study was resolved at a high
P1 level of resolution. Previous studies8,11 have considered
contraction parameters that were resolved up to the regional
level of AHA zones. By comparing our P1 results to those
generated with a regional resolution, we have shown that it is
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TABLE 1 Performance of the contraction optimization with the clinical data for different resolutions of
contraction parameter 𝛾 . The second and third column display the average number of forward and adjoint
solves required to optimize 𝛾 at a single measurement point. The fourth column shows the total run time over
all measurement points and the final column the average run time of an adjoint solve

Forward solves Adjoint solves Adjoint evaluation
Resolution of 𝛾 Average Average Total run time (s) Average run time (s)

Scalar 4.6 2.8 280 7.4

Regional 12 6.5 210 19.3

P1 46 46 1100 7.9

FIGURE 8 Comparison of regional strain curves starting in end diastole. In red: optimized wall motion model data. In blue: clinical data from speckle
tracking echocardiography. In each plot, the y-axis represents strain while the x-axis shows the progression in time of the cardiac cycle as a percentage

possible to greatly increase the fitting ability of a data assimi-
lation method by increasing the parameter resolution. Indeed,

Table 2 shows that the fits Ivol, Istrain, and I
relmax
strain are an order

of magnitude better for the P1 resolution as compared to the
regional or scalar resolutions.

Errors in strain fitting were significant at the P1 resolu-
tion when compared to the sizes of the strain curves (Istrain =
0.17). These errors can stem from a fundamental model-data
mismatch, and or an inability of the data assimilation to fit
the model to the data. In the case of a model-data mismatch,



12 of 17 BALABAN ET AL.

TABLE 2 Relative misfit for different representation of 𝛾

Resolution of 𝛾 Ivol Istrain I
relmax
strain

Scalar 0.044 1.5 0.27

Regional 0.024 1.1 0.16

P1 0.0037 0.17 0.029

the limitations of the model may play a role (see Section 4.1).
Another cause of model-data mismatch is inaccuracy or noise
in measurements, in which case, the model can be used to
improve the measurements. This is the case when models are
used to regularize image-based motion.37,38

The SQP optimization algorithm that we used is a local
search only, so that is possible that our fitting was suboptimal,
possibly contributing to the mismatch in strain. Adding regu-
larization has been shown to prevent such suboptimal results
in fluid control problems [39 page 123]. This partially moti-
vated our use of regularization in the contraction optimization
(Equation 17).

The discrepancies between our model-based and measured
strains are very small, however, when compared to the sizes
of the largest strain curves of a given strain type, longitudinal,
circumferential, or radial. This can clearly be seen in Figure 8

and in the low value of the metric I
relmax
strain . This shows that our

method was able to accurately capture the larger amplitude
features of the heterogeneity in contraction. Such features are
less prone to distortion by noise then those with smaller strain
values and are therefore more relevant for potential medical
use. However, the question of how much model resolution
is actually needed to provide medically useful information
remains an open one.

As a consequence of increased dimensionality in the opti-
mization, estimating the contraction 𝛾 took just under 4
times longer with the P1 resolution than the scalar resolu-
tion. This was due to an increase in the number of forward
and adjoint evaluations needed at the higher resolution. How-
ever, the average run time of an adjoint gradient evaluation
did not differ significantly in the P1 case. This near invari-
ance of the gradient calculation cost to the number of opti-
mization parameters is an advantage of the adjoint-gradient
method. In the case of the regional resolution, the average
adjoint-gradient run time was nearly double that of the other
2 cases. This was due to increased symbolic computation
required by the software dolfin-adjoint to differentiate char-
acteristic functions defined over each AHA segment. The
total run time for the scalar case was higher than for the
regional case, despite the scalar case requiring fewer forward
and adjoint evaluations. This was due to a greater number of
Newton iterations required per forward solve in the scalar
case.

To test the effects of mesh resolution on the contraction
estimation, we have considered alternative mesh resolutions
in Appendix C. The analysis shows that the tested increase
and decrease in the resolution of the mesh did not signif-
icantly change the fit quality of the contraction estimation

(Table C1). There were, however, slight differences in the
spatial average of the contraction field between the 3 cases
tested (Figure C1). This was most likely due to differences in
the quality of the discrete approximation of the work balance
equation (2).

In the current study, the resolution of the computational
mesh affected both the resolution of the contraction field
and the resolution of the displacement-pressure variables in
the finite element model. The results of the mesh resolution
tests suggest our contraction field may have been too highly
resolved and that it might be beneficial to select the resolu-
tion of the contraction variable independently of the mesh in
future studies. This would require specifying a set of basis
functions for 𝛾 , which could be designed to allow for a good
fit of model to data while at the same time minimizing the
number of degrees of freedom. Such a procedure has been pre-
viously implemented for parameter estimation in groundwater
modelling.40

To test the accuracy of the contraction estimation, we have
conducted synthetic data tests for which the true contraction
field was known. The results of these tests show that our
data assimilation is greatly effected by the sparsity of data.
Indeed, the approximation of 𝛾 was an order of magnitude bet-
ter with strains that had all 6 components and were defined
everywhere on the geometry, as compared to the regionally
averaged strains limited to the tensor diagonal. This result did
not hold at the apex where the maximum errors were the same
for all 3 cases.

The regionally averaged strain representation is easier for
a human to interpret and is widely used in medical research.
However, for the purposes of building accurate personalized
models, more resolution of strain is highly advantageous. The
synthetic tests also showed that our data assimilation is not
greatly effected by noise in the echocardiographic measure-
ments. This is most likely due to our use of regularization,
which favoured smoother solutions that averaged out the
effects of the noise.

In addition to noise in strain, we can also expect inaccura-
cies in volume measurements from echocardiography. This is
an issue for the estimation of the elastic parameter a, which we
conducted purely from volume measurements. Experiments
with gel phantoms have quantified this inaccuracy for assess-
ments of a single image.41 However, for the estimation of
the elastic parameter a, relative differences in errors between
images are more relevant. These have to the best of our knowl-
edge not been studied and so we have conducted estimations
of a with volume curves perturbed by a range of errors (see
Appendix 3.1). These experiments show that the estimated
stiffness parameter is indeed sensitive to volume errors. The
effect on the average of the contraction field is, however,
quite minimal. An alternative to the current stiffness estima-
tion procedure would be to allow for greater spatial resolution
from strain measurements as per the contraction parameter.
This might allow for a regularized stiffness field to average
out the effects of noisy measurements.
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The volume fit between model and data was close for the
3 points in atrial systole, but differed in early isovolumic
contraction. Indeed, the model underestimated the measured
volumes, indicating an overestimation of ventricular stiff-
ness at these points. This is a consequence of fitting the
stiffness parameters to the atrial systolic points, and not to
the points in early isovolumic contraction afterwards. If the
effects of contraction could be isolated from the effects of
elasticity, it would be possible to include these points in the
elastic parameter fitting and possibly obtain a better match of
volumes.

In our study, we personalized only a single elastic parameter
a, which was done for the sake of simplicity. Previous studies
have successfully estimated greater numbers of elastic param-
eters for the reduced Holzapfel law9 and the fully orthortropic
Holzapfel law.3 Such procedures could be potentially com-
bined with our contraction estimation to increase the level of
model personalization. Another potential improvement of the
elastic parameter estimation we used is the inclusion of aggre-
gated geometry measures, such as short axis and long axis
diameters. Such measures have been shown to improve iden-
tifiability of elastic parameters in experiments with mouse
ventricles.42

Several data assimilation studies5,6 have included objective
functionals consisting of strain and volume components with
equal weighing given to both. We have shown that it may
be possible to improve such data assimilation procedures by
tuning the relative weight of strain and volume components.
Indeed, in the top right plot of Figure 3, there is a definite cor-
ner in the strain-volume fitting space consisting of 4 points
beneath 𝛼 = 0.95. Choosing 𝛼 among these points gives a fair
trade-off between strain and volume matching whereas any
choice outside this corner simply worsens the fit of strain or
volume without much improving the other.

In Figure 3, we have shown how the parameters 𝛼 and 𝜆
affect the fitting and smoothness metrics related to the con-
traction field 𝛾 . Additionally, we have tested the effects of
variations in 𝛼 and 𝜆 on the spatial average of the contrac-
tion field. These experiments are presented in Appendix D.
Figure D1 shows that varying 𝛼 in the region [0, 0.5] had lit-
tle to no effect on the spatial average of 𝛾 , whereas increases
in 𝛼 outside of this region tended to increase the amount of
contraction. This behaviour correlates with the value of Istrain

in (Figure 3 top right). Similarly, increasing 𝜆 beyond 0.001
tended to increase the misfit in the data functional (Figure 3
bottom right) and also increase the average amount of contrac-
tion (Figure D1 right). We hypothesize that additional levels
of misfit in strain introduced by increasing 𝛼 beyond 0.5 and
or 𝜆 beyond 0.001 lead to overestimating the amount of con-
traction in our patient’s LV. However, we lack knowledge of
the true amount of muscle contraction in the patient, which
could be used to test the hypothesis. Further validation of the
model and data assimilation are needed.

4.1 Limitations

The results obtained in this article were limited by issues
pertaining to the choice of mathematical model, quality of
clinical data, numerical stability, and the design of the data
assimilation algorithm. Firstly, the boundary conditions of the
ventricle wall motion model did not account for the effects of
the right ventricular pressure on the septum and the mechan-
ical coupling to the neighboring structures: left atrium, right
ventricle, and pericardium.

The in vivo circumferential and radial motion at the base
was not incorporated into the model. Instead, some motion
was allowed by the basal spring, whose constant k needed to
be chosen. In the future, we would like to incorporate basal
motion data from the images into our personalized model.
This would allow us to avoid having to make a choice of k and
hopefully allow for the reproduction of in vivo basal motion
in the personalized model.

During the atrial systole phase, we assumed 𝛾 = 0. This
allowed for the estimation of passive properties separate from
contraction. This assumption is appropriate for a healthy
ventricle but might be false in a diseased ventricle if muscle
relaxation is sufficiently delayed.

Our mathematical model of wall motion neglected the
effects of viscoelasticity, tissue compressibility,43 inertia, and
myocardial sheet microstructure. Finally, the reference geom-
etry that we used for our calculations came from an echocar-
diographic image in which there was a nonzero level of blood
pressure. The blood pressures we used in our patient spe-
cific model were off by the 2.8 kPa that we subtracted to
have 0 pressure in the reference geometry. This pressure
adjustment meant that the elastic stiffness of the ventricle
was underestimated by our elastic parameter estimation, as
the mathematical model operated at a lower pressure than
measured in the patient’s heart.

The accuracy of the optimized motion model was limited by
uncertainties in the clinical strain and volume measurements,
which were related to echocardiographic image quality, image
sample rate, and speckle tracking algorithm accuracy. Pres-
sure and volume measurements had to be synchronized, which
might have lead to a potentially unphysiological loss of vol-
ume in the iso-volumic relaxation phase of the in vivo PV loop
(Figure 1).

Finally, there were several algorithmic limitations. Firstly,
the optimized 𝛾 fields we computed may or may not have been
unique. For potential clinical applications, this is a concern as
the uniqueness of parameters relate to the reproducibility and
consistency of data obtained from a personalized model. Fur-
thermore, our procedures for choosing the functional weights
𝛼 and 𝜆 were not optimal. In both the synthetic and clinical
data case, the weight values were chosen by parameter sweeps
that kept a single parameter fixed, which did not account for
possibly better 𝛼,𝜆 combinations lying outside of the areas
we tested. Finally, the SQP optimization algorithm that we
used was a local search only, that is, only one minimum of
the objective is calculated. Better parameter fits may be pos-
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sible with global optimization methods that explore multiple
minima.

5 CONCLUSION AND FUTURE OUTLOOK

By using high-resolution data assimilation, we were able to
capture the detailed motion of a dyssynchronous LV in a com-
putational model with an excellent fit of model observations
to data. This demonstrates the power of the data assimilation
method, which can also be applied to other models and or
model parameters.

In the future, the proposed method should be further
improved and tested on cohorts of patients. This would
allow for the study of simulated contraction patterns among
groups of patients that could lead to further understanding of
dyssynchrony.
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APPENDIX A

SENSITIVITY OF ELASTIC PARAMETER TO ERROR IN ATRIAL
SYSTOLIC VOLUME MEASUREMENTS

To test the sensitivity of our estimated a parameter to uncer-
tainty in volume measurements, we have conducted a series
of estimations with various levels of volume perturbation.

TABLE A1 Sensitivity of the optimized material parameter a to errors
in volume measurements. The first column gives the perturbation of the
volume increase between measurement points 1-2 and 2-3, in
percent. The next 2 columns give the size of these perturbations in
milliliters with ΔV2 and ΔV3 referring to perturbations in the volumes of
the second and third measurement points, respectively. In the fourth column,
optimal a values are given. In all cases, the volume fit Ivol was less
than 4 × 10 − 6

Perturbation ΔV2 ΔV3 a
(%) (ml) (ml) (kPa)

−25 −1.2 −1.06 0.494

−15 −0.717 −0.636 0.469

−5 −0.239 −0.212 0.446

0 0 0 0.435

5 0.239 0.212 0.424

15 0.717 0.636 0.404

25 1.2 1.06 0.384

FIGURE A1 Sensitivity of the optimal average contraction 𝛾 to changes in
the parameter a. The upper and lower a values are based on estimating a
with volume perturbations of ± 25% (Table A1). The middle value was
obtained by estimating a from in vivo volumes

We generated clean volume data using the computational
model using a = 0.435 kPa, the optimal value obtained from
the clinical data. Perturbations in volume increases of sizes
± 5,15,25% were added to this data, which were then used
as target for optimization. The resulting a values and per-
turbations are shown in Table A1. The largest perturbations
resulted in the a values 0.494 kPa and 0.384 kPa, representing
circa ± %13 change from the original a value.

The resulting average value of 𝛾 is shown in Figure A1
for the extreme cases with 𝛼 = 0.494 and 𝛼 = 0.384 . For
reference, we also include the average value of 𝛾 using
𝛼 = 0.435.

APPENDIX B

SENSITIVITY OF ESTIMATED PARAMETERS TO SPRING
CONSTANT

The spring boundary condition that we used at the ven-
tricular base has a significant effect on the simulated cav-
ity volumes calculated by the model. This is due to the

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.bitbucket.org/finsberg/cardiac_highres_dataassim
http://www.bitbucket.org/finsberg/cardiac_highres_dataassim
https://doi.org/10.1002/cnm.2863
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TABLE B1 Sensitivity of optimal a value to choice of spring constant k

k 10 − 8 10 − 7 10 − 6 10 − 5 10 − 4 10 − 3 0.01 0.1 1 10 100 ∞

a 0.875 0.875 0.875 0.875 0.873 0.873 0.849 0.684 0.435 0.375 0.366 0.365

FIGURE B1 Sensitivity of the spatially averaged contraction 𝛾 to the
choice of spring constant k

cross-sectional area of the cavity being large at the ventric-
ular base. Therefore, we can expect the choice of k to have
an effect on the optimal parameters calculated by our data
assimilation.

To quantify this effect, we have conducted a sensitivity
analysis, starting with the effect of k on the optimized elas-
tic parameter a. We repeated the elastic parameter fitting
decribed in Section 3.1 and varied the k-value from 0.001 to
100.0. We also considered the case k = ∞, denoting a com-
pletely rigid boundary held by Dirichlet boundary conditions.
The effect of the choice of k on the optimal value of a is shown
in Table B1. The table shows that the optimal a varies from
0.365 kPa to 0.875 kPa depending upon how the k parameter
is set.

We also tested the sensitivity of the contraction 𝛾 at P1 res-
olution to k by repeating the estimation of 𝛾 with the various
k and a pairs obtained in the previous experiment. For each k,
a pair, we have plotted the spatial average of contraction 𝛾 at
each measurement point in Figure B1. The results show up to
a 20% variation in 𝛾 and very little variation for the choices of
k greater than or equal to 1.0. For some of the values of k< 1.0,
our homotopy Newton solver was unable to secure conver-
gence during the optimization. Curves corresponding to these
cases are drawn only to the point before the nonconvergence
occurred.

APPENDIX C

EFFECT OF MESH RESOLUTION ON ESTIMATED
CONTRACTION AT P1 RESOLUTION

Ventricular meshes were generated by Gmsh27 with 3
different resolutions controlled by the parameter
“Mesh.CharacteristicLengthFactor.” This parameter was
given the values 1.0, 0.65, and 0.45, which resulted in
meshes with 549, 1262, and 2261 vertices, respectively.
Using the 3 meshes, we estimated contraction fields
from the in vivo data. The average value of 𝛾 is shown
for these 3 cases in Figure C1. Fit quality is compared
in Table C1.

FIGURE C1 Spatial average of contraction 𝛾 for 3 different mesh
resolutions

TABLE C1 Relative misfit for different mesh resolutions

Number of elements Ivol Istrain I
relmax
strain

549 0.0033 0.17 0.029

1262 0.0037 0.17 0.029

2661 0.0043 0.18 0.031

APPENDIX D

SENSITIVITY OF CONTRACTION SIZE TO CHOICES OF
AND 𝜆

On the basis of the trade-off curves in Figure 3, we chose the
optimization weights 𝛼 = 0.95 and 𝜆 = 0.01 for the person-
alization of our wall motion model to the in vivo data. To
show the effect of these choices on the optimized contraction
field 𝛾 , we have varied the 𝛼 and 𝜆 values and plotted the spa-
tial averages of the resulting contraction fields. The results
show that the amount of contraction tends to increase propor-
tionally to both 𝛼 and 𝜆 beyond the thresholds 𝛼 = 0.5 and
𝜆 = 0.001.

APPENDIX E

ESTIMATION OF NOISE IN ECHO SPECKLE TRACKING STRAIN
MEASUREMENTS

To increase the relevance of the synthetic tests, we consid-
ered a set of regional strains that contained noise. This noise
was modelled as an additive Gaussian process to imitate the

TABLE E1 Mean and covariance of a Gaussian noise summand estimated
from patient drift values in circumferential (C), radial (R), and longitudinal
(L) directions

Covariance × 10 − 4

C R L Mean

C 1.43 0.73 0.66 0.006

R - 6.8 6.31 −0.013

L - - 7.26 0.01
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FIGURE D1 Sensitivity of the spatially averaged contraction 𝛾 to variations in optimization weights 𝛼 and 𝜆. Left: 𝜆 = 0 and 𝛼 is varied. Right: 𝛼 = 0.95 and
𝜆 is varied

accumulation of tracking errors in EchoPac’s image-based
strain calculations. The mean and variance of a summand
in the Gaussian process were estimated from our in vivo
strain data of a single patient. From these data, the sam-
ple means and variances of the drift values were divided
by the number of measurement points to approximate the

noise in a single measurement. The mean and covariance of
this single measurement point noise are given in Table E1.
Theoretically, error-free strain curves would have no drift
given stable conditions in the heart. This motivates the use
of the drift values in order to approximate the tracking
error.
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