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Introduction

Aim of thesis

Cardiovascular diseases are the leading cause of death in the world, responsible
for more than 17.3 million deaths annually, a number that is expected to reach
23.6 million by 2030 [82]. Advancements in detection and treatment have re-
duced morbidity and mortality, but knowledge of the underlying mechanisms for
the development of the disease, is still very poor. Consequently, while some pa-
tients respond very well to a therapy, others suffering from the same symptoms
might not respond at all. Our understanding of these mechanisms has improved
through development of advance imaging techniques and through computational
modeling. While imaging plays a central role in assessment of cardiac structure
and kinematics, biophysical models can help us to understand causality in this
multiscale environment.

One of the earliest examples of modelling applied to cardiac physiology dates
back to 1892 when Robert Wood approximated the ventricle as a thinned-wall
spherical shell [81], and formulated the well known Law of Laplace. Since 1892
more realistic and sophisticated models have been developed in order to better de-
scribe the anatomical as well as the biophysical nature of the ventricle. The first
extension came in 1927 to thick-walled spheres [53]. In the 1960s the spheres
were substituted by ellipsoids, with thin-walled models in 1963 [70], and with
thick-walled models in 1968 [80]. A thorough comparison of the different early
models is presented in [37]. The first reported usage of image-based geometries
dates back to 1972 [28], were X-ray was used to image the left ventricle and
the finite element method was used to estimate wall stress. The relatively poor
computational power, together with the low image quality really challenged the
biomedical bioengineers at that time. The following phrase, taken form [33] il-
lustrates this fact: “Programming for the solution of the large number of simulta-
neous linear equations generated by the finite element method on computers with
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2 1.1. AIM OF THESIS

capacity not exceeding 32K words of memory required special attention to very
compact storage of the stiffness matrix and the retrieval of its coefficients”.

A paradigm shift in the field of cardiac mechanics modeling came in the late
1980s at the University of Auckland. Here the first models based on a continuum
description of the heart were developed [39], which are still used today.

Today, advanced imaging techniques allow us to acquire detailed mechanical
information about the heart of an individual. In addition, advanced numerical
algorithms combined with high performance computing power enable us to get
more and more detailed simulation of a patients heart.

The need for building adequate patient-specific models that captures the geo-
metrical information observed in the images, as well as the underlying biophysical
processes, is recognized as one of the key challenges in modern bioengineering
[38]. This is also reflected in the exponential increase in the yearly number of
publications on the topic [68]. In the future, models could be used to as a diag-
nostic tool to extract features of a patient’s heart that are otherwise impossible to
extract from images. Eventually, models could potentially predict the outcome of
different treatment strategies and guide clinicians in the decision making.

In other parts of physical sciences and engineering, such as the space indus-
try or meteorology, the role of the computational science has been crucial for its
development. Without the increasing computational power predicted by Moore’s
law [10] and better numerical methods, such as the finite element method, scien-
tist would not have been able to predict complex physical phenomena such as a
Tsunami, or being able to send humans out in space.

Despite our ability to simulate complex physical systems such as the weather,
we still have a way to go before we are able to simulate a human organ, such as the
heart, with the same precision. The multiscale nature of biophysical processes has
challenged engineers for decades. Even though we understand processes at each
level, such as the flow of ions in and out of the cell, or the electrical transduction
through the heart, the question of how to couple these levels together is still open
[59].

Another question is how to fuse data observed in medical images with compu-
tational models, in order to make models specific to the individual. These ques-
tions have to be addressed before we can take the next step into personalized sim-
ulations for in silico medicine, and use computer simulations to guide treatment,
and predict outcome.

Some of these unanswered questions serve as motivation for the work con-
ducted in this thesis. We focus purely on the mechanical modeling of the heart
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Introduction 3

and the aim has been to develop a framework for building mechanical models that
are personalized at the level of the individual.

The mechanics of the heart can be described via equations of nonlinear elas-
ticity which are traditionally formulated using a continuum mechanics approach.
This approach has been extensively used in other parts of engineering, and in
this work the numerical solutions to these partial differential equations (PDE)
are solved using the finite element method (FEM) with the open source software
package FEniCS [50].

These mechanical models contain model parameters which may vary from
individual to individual, and patient specificity can be obtained by fitting these
model parameters to additional clinical data. This process is often referred to
as data assimilation, a field that has its root in meteorology where one wants to
make a weather forecast based on observations from strategically placed weather
stations. The idea is to construct a functional which represent the mismatch be-
tween the model and the observations, and by changing the model parameters we
also change the value of this mismatch functional. Now, what we want to do
is to minimize this functional using these model parameters as controls. At the
same time, the governing PDE, which depend upon these model parameters, has
to remain true. We therefore often refer to such problems as PDE-constrained op-
timization problems. Solving such problems is challenging because evaluation of
the mismatch functional requires the solution of a nonlinear PDE, which is com-
putationally expensive, and we therefore want to keep the number of functional
evaluations at a minimum. A good way of doing this is traverse the parameter
space along the gradient descent, which is guaranteed to bring us towards a local
minimum. However, this requires calculation of the functional gradient, or the
derivative of the mismatch functional with respect to the model parameters. As
we will see, the functional gradient can be computed efficiently by considering the
adjoint equation, and recent development in numerical software tools [22] allow
us to exploit this also numerically.

The developed framework in this thesis could be applied directly to estimate
high dimensional model parameters without any manual tuning of parameters.
The aim has been to develop a framework for automatic generation of patient-
specific simulations of the heart, by fitting model-parameters to potentially “any”
type of clinical data. In particular, incorporating regional motion data to estimate
spatially resolved parameters has been an essential contribution in this thesis. This
type of automated simulation pipeline could potentially be integrated as a part
of a clinical diagnostic toolbox and be used to guide clinicians in the decision-

3



4 1.1. AIM OF THESIS

making and treatment planning. In particular, such models can be used to assess
information that is difficult or even impossible to measure in the human heart,
such as indices of contractility, myocardial work and myofiber stress. While the
first part of the thesis (Paper 1) is concerned with developing a framework for
constraining a mechanics model to clinical data, the second part (Paper 2, 3 and 4)
evaluates potentially useful biomarkers extracted from the personalized mechanics
model. Future work should be geared towards validation of such models, in order
to unleash its potential in the clinic.

The remaining introduction in this thesis is organized as follows. In Section
1.2 we briefly explain some concepts in cardiac anatomy and physiology which
are used throughout the thesis. This section ends with a description of the different
cardiac diseases encountered in this thesis. In Section 1.3 we give an introduction
to continuum mechanics and mechanical modeling of the heart. The basic equa-
tions of elasticity as well as the constitutive relations for the cardiac tissue, and
some numerical considerations are covered. In Section 1.4 we explain how to
personalize a mechanical model using clinical data. We start by explaining the
different imaging modalities used in this thesis, and how finite element meshes
are created from images. We also explain how to find a more realistic reference
geometry than the one obtained from medical images. At the end we introduce
data assimilation, and how to compute the functional gradient using the adjoint
method. Finally in Section 1.5 we summarize the research papers that make up
this thesis, and make some closing remarks and suggestions for future directions.

4



Introduction 5

Cardiac Anatomy and Physiology
In this section we will give a very short introduction to cardiac physiology, and
explain some of the basic terms used in this thesis. The reader is referred to the
book of Arnold M. Katz for more details [42].

Myocardial structure and morphology

The heart is the muscular organ responsible for circulating blood throughout the
body. Figure 1.1 shows a schematic representation of the heart.

Figure 1.1: Schematic representation of the heart’s anatomy. (Adapted and modi-
fied from Wapcaplet in Sodipodi).

Deoxgenated blood is transported from the body through the veins and to the
right atrium (RA). From the RA, blood flows to the right ventricle (RV), before it
is sent through the the pulmonary arteries(PA) and to the lungs, where the bloods
gets oxygenated. From the lungs, the blood travels through the pulmonary veins
to the left atrium (LA), and finally to the left ventricle (LV), before is is sent out
to the body again through the aorta.

The heart itself is located approximately in the center of the chest with the
apex of heart angled down towards the left of the body, and the base located just

5



6 1.2. CARDIAC ANATOMY AND PHYSIOLOGY

behind the breastbone.
Starting from the outside of the heart we have the pericardium, the epicardium,

the myocardium and the endocardium. The pericardium is a fibroserous sac that
surrounds that heart, and the endo- and epicardium are respectively the inner and
outer layers of the myocardium. The myocardium is made up by individual muscle
cells, or myocytes, which branch and join neighboring cells, and form a compli-
cated fibrous network which is often referred to as a functional syncytium (mean-
ing that the number of active muscle fibers cannot be varied from beat to beat).

The ventricular muscle fibers orientations varies smoothly through the wall,
and rotates from the endocardium to the epicardium forming a helical structure
[72]. These muscle fiber are further organized in laminar sheets, which is sepa-
rated by gaps called cleavage planes [47].

Each myocyte is composed of bundles of myofibriles, which again contains
myofilaments. The myofilaments consist of a repeated pattern of lines and bands
which can be seen as a collection of individual contractile units called sarcomeres.
A simple sketch of a sarcomere is shown in Figure 1.2.

Actin (thin filament) Myosin (thick filament)Titin Z-disk

Figure 1.2: Illustration of the sarcomere structure.

The sarcomeres are composed of thick and thin filaments that slides back and
forth when the muscle contracts or relaxes. The thin filaments are made up by
a protein called actin while the thick filaments are made up by a protein called
myosin.

The cardiac cycle

The heart beats in a cyclic manner, about one beat every second. The contraction
of the heart is triggered by an action potential originating from specialized cells

6



Introduction 7

in the right atrium. When an action potential is triggered, calcium is released into
the cells. These calcium ions binds to a complex called troponin C located at the
thin filaments, which then exposes the actin to the myosin head. When myosin
binds to actin we say that a cross-bridge is formed between the thin and thick
filaments. A power stroke is triggered after ATP hydrolysis, and the sarcomere
shortens. The signal propagates through the myocardium and along specialized
electrical highways with high conducting cells.

One way to describe the cardiac cycle is by means of the pressure and volume
inside the individual chambers. For example, plotting the left ventricular (LV)
volume on the x−axis and the LV pressure on the y−axis provides an intuitive
representation of the cardiac cycle known as the PV-loop. In Figure 1.3 we show
an illustration of a typical PV-loop. At end-diastole (ED), the mitral valve closes,
and the ventricle contracts against a rising pressure. During this phase, no blood
goes in or out of the ventricle and we call it the isovolumic contraction phase.
When the ventricular pressure exceeds the aortic pressure, the aortic valve opens
and the heart ejects blood into the body. When the ventricular pressure drops be-
low the aortic pressure, the aortic valve closes and pressure drops as the ventricle
relaxes, and we enter the isovolumic relaxation phase. The phase when the ven-
tricle contracts, from end diastole until the end of ejection is called systole, hence
this point in the cycle is also know as end-systole (ES). Similarly, the phase for
which the ventricle relaxes from the beginning isovolumic relaxation to end di-
astole, is called diastole. When the pressure drops below the atrial pressure the
mitral valve opens and blood is sucked into the ventricle. In the final stage of the
filling of the ventricle, the atria contracts and fills the ventricle before we arrive at
end-diastole, and the cycle repeats.

Ventricular pumping function

The pressure and volume inside the ventricle can provide us with information
about the passive and active properties of the myocardium. Imagine it was possi-
ble to shut down all contractile units in the myocardium, and remove all loads (e.g
set the pressure to zero). This would be analogous to have a deflated balloon. In
order to get some information about the stiffness of the myocardium one could try
to inflate the ventricle. The stiffer the myocardium is, the higher pressure would
be needed in order to increase the volume. This relationship between the pressure
and volume during the inactive state is called the end diastolic pressure volume
relationship (EDPVR).
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Figure 1.3: Showing the relation between pressure and volume in the left ventricle
during the cardiac cycle. To the left we show a reduced version of the classical
Wiggers diagram with pressure and volume plotted against time. To the right we
show the pressure volume loop with volume plotted on the x−axis and pressure
on the y−axis.

Similarly, imagine now that the ventricle is at the end-systolic state, when the
muscle cells are contracting at their most forcefully. Changing the pressure at this
state would also result in a change in volume and this relationship between pres-
sure and volume is called the end systolic pressure volume relationship (ESPVR).
The two pressure volume relationships are depicted in Figure 1.4.

Although single-beat estimation of these relationships do exist [71, 43], the
EDPVR and ESPVR can be estimated by changing the loading condition. Chang-
ing the preload, i.e the load on the ventricle before it starts contracting would
brings us along the EDPVR curve, while changing the afterload, i.e the load after
the ventricle has contracted, would shift the end-systolic point along the ESPVR
curve.

The ventricular pumping function depends on the loads that the ventricle ex-
perience. If the amount of blood returning from the veins into the heart increases,
i.e increased preload, the end diastolic volume increases and the ventricle con-
tracts more forcefully in order to synchronize the amount of ejected blood with
the venous return. This fundamental law, is called the Frank-Starling law. The
Frank-Starling law relates the EDPVR to the ESPVR, and states that the stroke

8
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Figure 1.4: Illustration of the end diastolic pressure volume relationship (ED-
PVR) and the end systolic pressure volume relationship (ESPVR). The volume
axis intercept V0 from the time varying elastance model is also shown.

volume, i.e the difference in end systolic and end diastolic volume, increases in
response to and increase in preload. This allows the cardiac output to be synchro-
nized with the venous return and blood supply, without depending upon external
regulation.

The slope of any pressure volume relationship is called the elastance, and
a famous model known as the time varying elastance model, relates the cavity
pressure in the ventricle to the volume and a time varying elastance E(t) [69],

P(t) = E(t)(V (t)−V0). (1.1)

Here P is the endocardial pressure, V the cavity volume, E the time-varying elas-
tance, and V0 the volume axis intercept.

In fact, the end systolic elastance, E(t) with t being time of end systole, is
considered to be the gold standard in terms of quantifying myocardial contractil-
ity. However, it is rarely used because it is difficult to determine clinically. What
should be noted is that end systolic elastance is independent of load, and there-
fore serves as measure of the ability of the ventricle to do work, i.e myocardial
contractility.

9



10 1.2. CARDIAC ANATOMY AND PHYSIOLOGY

Cardiac Pathophysiology

Pathophysiology is the study of the physiology of the diseased heart, and we will
briefly mention some of the different cardiac diseases encountered in this thesis.

Heart failure

Heart failure (HF) is a common term for all heart diseases in which the heart is
unable to supply the body with enough blood to meet its demand. It is common
to separate between diastolic and systolic HF. Diastolic HF refers to the heart’s
inability to be passively filled, and thereby reduce the cardiac output according to
the Frank-Starling law of the heart. In systolic HF on the other had, the heart’s
ability to contract efficiently is reduced.

Left bundle branch block

One type of heart failure can result from conduction block in the heart. An elec-
trical wave travels through electrical highways of high conducting cells. One of
these highways known as the Bundle of His splits into two parts, the right and
left bundle. The right bundle activates the right ventricle, while the left bundle
activates the left ventricle. For patients suffering from left bundle branch block,
there is “road block” on the highway along the left bundle, meaning that the left
ventricle is activated later than preferable, and the right ventricle is activated prior
to the left ventricle. This can result in a dyssynchronous contraction, yielding a re-
duced pumping effect. A promising treatment for these patients is called Cardiac
Resynchronization Therapy (CRT) [16].

Imagine a boat with rowers on both sides trying to get the boat moving for-
ward. If the rowers don’t synchronize their strokes, the boat will veer from side
to side and have a much longer route – if it gets anywhere at all. To synchronize
the rowers, we could add a coxswain who tells the rowers when to row. We can
use the rower analogy to think of the contractions of the left and right side of the
heart. With the heart, implanting a CRT device is like adding a coxswain to direct
the rowers. The CRT’s goal is to try to resynchronize the heart so that the left and
right ventricles contract simultaneously. It involves pacing the heart on both the
left and right ventricle so that the heart can contract in a synchronous way. There-
fore CRT is often referred to as biventricular pacing, or just BiV pacing. However,
experiments show that between 30-40% of the selected patients do not respond to
CRT [18], which is why much research is put into increasing the responder rate.

10
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Summary of Cardiac Physiology

The multiscale and multiphysics phenomena governing the mechanics of the heart
is complex. How the molecular dynamics should be coupled to the electrophys-
iology at the cellular level, how the electrophysiology should be coupled to the
mechanics at the organ level and what type of feedback mechanisms that should
be included is far from fully understood. In this thesis we limit ourselves to the
study of what is happening on the organ level, and concentrate purely on the me-
chanical aspect.

11



12 1.3. MECHANICAL MODELING

Mechanical modeling

In this section we will cover the necessary theory of continuum mechanics in
order to model the mechanics of the heart. The theory of continuum mechanics
is extensive, and we will not be able to cover everything. For a complete review
of continuum mechanics the reader is therefore referred the textbook of Gerhard
Holzapfel [35] from which most of the theory in this section is taken. For the even
more mathematically oriented reader we refer to [54].

Kinematics

We represent the heart as a continuum body B embedded in R3. A configuration
of B is a mapping χ : B→ R3. We denote the reference configuration of the
heart by Ω ≡ χ0(B), and the current configuration by ω ≡ χ(B). The mapping
ϕ : Ω→ ω , given by the composition ϕ = χ ◦ χ

−1
0 , is a smooth, orientation pre-

serving (positive determinant) and invertible map. We denote the coordinates in
the reference configuration by X∈Ω, and the coordinates in the current configura-
tion by x ∈ ω . The coordinates X and x are commonly referred to as material and
spatial points respectively, and are related through the mapping ϕ , by x = ϕ(X).
For time-dependent problems it is common to make the time-dependence explic-
itly by writing x = ϕ(X, t). In the following we will only focus on the mapping
between two configurations and therefore no time-dependence is needed. The de-
formation gradient is a rank-2 tensor, defined as the partial derivative of ϕ with
respect to the material coordinates:

F = ∇Xϕ = Gradx. (1.2)

Here we also introduce the notation Grad, which means derivative with respect
to reference coordinates. The deformation gradient maps vectors in the reference
configuration to vectors in the current configuration, and belongs to the space of
linear transformations from R3 to R3 with strictly positive determinant, which we
denote by Lin+. Another important quantity is the displacement field

u = x−X, (1.3)

12
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which relates positions in the reference configuration to positions in the current
configuration. From (1.2) we see that

F = Gradx = Gradu+GradX = Gradu+ I. (1.4)

Some other useful quantities are the right Cauchy-Green deformation ten-
sor C = FT F, the left Cauchy-Green deformation tensor B = FFT , the Green-
Lagrange strain tensor E = 1

2(C− I), and the determinant of the deformation gra-
dient J = detF.

An important concept in mechanics is the concept of stress, which is defined
as force per area

[
N

m2

]
. When working with different configurations one needs

to be careful with which forces and which areas we are talking about. Table 1.1
shows how forces and areas are related for the most important stress tensors used
in this thesis. Note that the explicit form of the stress tensor requires a constitutive
law for the material at hand. This will be discussed in more detail in Section 1.3.7.

Stress tensor Forces Area

Second Piola-Kirchhoff (S) Reference configuration Reference configuration
First Piola-Kirchhoff (P) Current configuration Reference configuration
Cauchy (σ ) Current configuration Current configuration

Table 1.1: Showing different stress tensors used in this thesis, and how they relate
forces to areas trough different configurations.

Balance laws and transformations

In this section we will cover some basic transformations used to derive the fore-
balance equations for the mechanics of the heart.

Transformations between reference and current configuration

By definition, the reference configuration Ω, and current configuration ω , are
related via the deformation map ϕ in the sense that a point p ∈B with reference
coordinates X and current coordinates x satisfies x = ϕ(X). Likewise a vector in
the reference configuration is related to a vector in the current configuration via
the deformation gradient F; if dX is a vector in the reference configuration it will
transform to the vector dx in the current configuration, and dx = FdX. From this

13



14 1.3. MECHANICAL MODELING

relation we also derive that the transformation of an infinitesimal volume element
in the reference configuration, dV is related to an infinitesimal volume element in
the current configuration, dv via the determinant of the deformation gradient,

dv = det(F)dV. (1.5)

Another important transformation is the transformation of normal vectors. By
noting that we can write (1.5) using surface elements

dsndx = dv = det(F)dV = det(F)dSNdX
=⇒ (dsnF−dSdet(F)N)dX = 0

=⇒
(
dsFT n−dSdet(F)N

)
dX = 0,

we get Nanson’s formula

dsn = det(F)F−T dSN, (1.6)

which relates the normal vector in the current configuration to the normal vector
in the reference configuration.

Conservation of linear momentum

Newton’s seconds law states that the change in linear momentum equals the net
impulse acting on it. For a continuum material with constant mass density ρ this
implies that ∫

ω

ρ v̇dv = f, f =
∫

∂ω

tds+
∫

ω

bdv, (1.7)

where v is the spatial velocity field, t is the traction acting on the boundary, and
b is the body force. From Cauchy’s stress theorem we know that there exists a
second order tensor σ , known as the Cauchy stress tensor that is related to the
traction vector by t = σn, where n is the unit normal in the current configuration.
Using the divergence theorem we get∫

∂ω

tds =
∫

∂ω

σnds =
∫

ω

∇ ·σdv,

14
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and by collecting the terms from (1.7) we arrive at Cauchy’s momentum equation

∇ ·σ +b = ρ v̇. (1.8)

The contribution from the body force (b) and inertial term (ρ v̇) can be considered
negligible compared to the stresses [41, 74, 55], which is why the force balance
equations is typically only stated as

∇ ·σ = 0. (1.9)

Note that we have formulated the balance law in the current configuration. An
equivalent statement can be formulated in terms of the reference configuration

∇ ·P = 0, (1.10)

where P is the first Piola-Kirchhoff stress tensor. Note that the operator ∇· acting
on the Cauchy stress tensor represents differentiation with respect to coordinates
in the current configuration, while when acting on the first Piola-Kirchhoff stress
tensor represent differentiation with respect to coordinates in the referece config-
uration.

Conservation of angular momentum

Just like linear momentum, the angular momentum is also a conserved quantity.
We will not go through the derivation, but state that as a consequence, the Cauchy
stress tensor is symmetric

σ = σ
T . (1.11)

Hyperelasticity

Even though experimental studies have indicated visco-elastic behavior of the
myocardium [20, 31], a common assumption is to consider quasi-static behav-
ior, meaning that the inertial term in (1.8) is negligible and static equilibrium is
achieved at all points in the cardiac cycle. Therefore it is also possible to model
the myocardium as a hyperelastic material,which is a type of elastic material.
This means that we postulate the existence of a strain-energy density function

15



16 1.3. MECHANICAL MODELING

Ψ : Lin+→ R+, and that stress is given by the relation

P =
∂Ψ(F)

∂F
. (1.12)

Since stress has unit Pa, we see that the strain-energy density function is defined
as energy per unit reference volume, and has units Joule

m3 . The strain-energy density
function relates the amount of energy that is stored within the material in response
to a given strain. Hence, the stresses in a hyperelastic material with a given strain-
energy density function, depend only on the strain, and not the path for which the
material deforms. On the contrary, if the model had been visco-elastic we would
expect to see hysteresis in the stress/strain curve, but this is not possible for a
hyperelastic material.

Remark 1. The second law of thermodynamics states that the total entropy pro-
duction in a thermodynamic process can never be negative. Elastic materials
define a special class of materials in which the entropy production is zero. Within
this thermodynamic framework the strain-energy density function coincides (up to
a constant) with the Helmholtz free energy density.

General requirements for the strain-energy density function

Some general requirements must hold for the strain-energy function. First of all,
we require that the reference state is stress free and that the stored energy increases
monotonically with the deformation. Formally this can be stated simply as

Ψ(I) = 0 and Ψ(F)≥ 0.

Moreover, expanding or compressing a body to zero volume would require an
infinite amount of energy, i.e

Ψ(F)→ ∞ as detF→0

Ψ(F)→ ∞ as detF→∞

We say that the strain energy should be objective, meaning that the stored energy
in the material should be invariant with respect to change of observer. Formally
we must have: given any positive symmetric rank-2 tensor C ∈ Sym:

Ψ(C) = Ψ(QCQT ), ∀Q ∈ G ⊆ Orth. (1.13)

16
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Here Orth is the group of all positive orthogonal matrices. If G = Orth we say that
the material is isotropic, and otherwise we say that the material is anisotropic. This
brings us to another important issue, which is related to the choice of coordinate-
system. Having to deal with different coordinate-systems, and mapping quantities
from one coordinate-system to another can results in complicated computations.
Therefore it would be beneficial if we could work with quantities which do not
depend on the choice of coordinate-system. Such quantities are called invari-
ants. If the material is isotropic, the representation theorem for invariants [78]
states that Ψ can be expressed in terms of the principle invariants of C, that is
Ψ = Ψ(I1, I2, I3). The principle invariants Ii, i = 1,2,3 are the coefficients in the
characteristic polynomial of C, and is given by

I1 = trC, I2 =
1
2
[
I2
1 − tr (C2)

]
and I3 = detC. (1.14)

In the case when the material constitutes a transversely isotropic behavior, that
is, the material has a preferred direction a0, which in the case of the myocardium
could be the direction of fiber muscle fibers, we have

G = {Q ∈ Orth : Q(a0⊗a0)QT = a0⊗a0},

with ⊗ being the outer product. In this case the strain-energy density function
can still be expressed through invariants. However, we need to include the so
called quasi-invariants, which are defined as stretches in the local microstructural
coordinate-system. The transversely isotropic invariants are given by

I4a0 = a0 · (Ca0) and I5 = a0 · (C2a0).

Some of the invariants do have a physical interpretation. For instance, I3 is related
to the volume ratio of material during deformation, while I4a0 is related to the
stretch along the direction a0. Indeed the stretch ratio in the direction a0 is given
by λa0 = |Fa0| and we see that I4a0 = a0 · (Ca0) = Fa0 · (Fa0) = λ 2

a0
. For more

details about invariants see e.g [36, 49].

The theory of global existence of unique solutions for elastic problems was
originally based convexity of the free energy function. An energy function Ψ :
Lin+→ R+ is strictly convex if for each F ∈ Lin+ and H 6= 0 with det(F+(1−

17



18 1.3. MECHANICAL MODELING

λ )H)> 0, we have

Ψ(λF+(1−λ )H)< λΨ(F)+(1−λ )Ψ(F+H), λ ∈ (0,1). (1.15)

If the response P is differentiable, then condition (1.15) is equivalent of saying
that the response is positive definite,

H :
∂P
∂F

: H > 0, F ∈ Lin+,H 6= 0. (1.16)

However, from a physical point of view this requirement is too strict [5]. A
slightly weaker requirement is the strong ellipticity condition which states that
(1.16) should hold for any H of rank-one, and is analogous to say that the strain
energy function is rank-one convex.

Incompressibility

The myocardium contains small blood vessels that supply the myocardial cells
with oxygen. When the myocardium contracts, this perfused blood is squeezed
out, resulting in an overall loss of 2-4% volume[83]. A material that change its
volume in response to applied loads is referred to as compressible. When the
volume is preserved we say that the material is incompressible. Since 2-4% is
very little, a common assumption in cardiac mechanical modeling, which has also
been made in the work conducted in this thesis, is to assume the myocardium to
be incompressible. The reason for this choice is purely numerical.

For an incompressible material, only isochoric motions are possible. This
means that the volume of the material does not change during any deformation,
and hence we have the constraint

J = det(F) = 1. (1.17)

The constraint (1.17) can be imposed by considering the modified strain energy
function

Ψ = Ψ(F)+ p(J−1), (1.18)

where p is a scalar which serves as a Lagrange multiplier, but which can be iden-
tified as the hydrostatic pressure. If we differentiate (1.18) with respect to F we
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get the First Piola-Kirchhoff stress tensor for an incompressible material

P =
∂Ψ(F)

∂F
+ JpF−T . (1.19)

Likewise the Cauchy stress tensor is given by

σ = J−1 ∂Ψ(F)
∂F

FT + pI. (1.20)

Remark 2. The sign of p is determined by whether you add or subtract the term
p(J−1) to the total strain energy in (1.18). For all practical purposes, it does not
matter if you add or subtract the term as long as you are consistent.

Uncoupling of volumetric and isochoric response

The total strain energy function in (1.18) can be written as a sum of isochoric and
volumetric components. Let

F = FvolFiso, (1.21)

then Fvol = J1/3I and Fiso = J−1/3F. For compressible materials (i.e with J 6=
1) it is important to consider only deviatoric strains in the strain-energy density
function, so that Ψ = Ψiso(Fiso)+Ψvol(J). For incompressible material (J = 1),
we have Fvol = I so that such a decomposition seems unnecessary. However, a
similar decomposition has shown to be numerically beneficial [79]. Note that, in
this case, a similar decoupling of the stress tensors has to be done.

Boundary Conditions

Choosing the correct boundary conditions for the model is essential, and the
choice should mimic what is observed in reality. To physiologically constrain the
ventricle in a correct way is difficult, and different approaches has been proposed.
The boundary condition at the endocardium is typically modeled as a Neumann
boundary condition, representing the endocardial blood pressure. For the left ven-
tricle we have

σn =−plvn, x ∈ ∂ωendo LV, (1.22)
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20 1.3. MECHANICAL MODELING

and for the right ventricle, “lv” is substituted with “rv”. This condition has a
negative sign because the unit normal N is pointing out of the domain, while the
pressure is acting into the domain. Note that this condition is imposed on the
current configuration, and to utilize the Lagrangian formulation we can pull back
this condition to the reference configuration to obtain

PN =−plvJF−T ·N, X ∈ ∂Ωendo LV (1.23)

Likewise, it is common to enforce a Neumann boundary condition on the epi-
cardium,

PN =−pepiJF−T ·N, X ∈ ∂Ωepi. (1.24)

However, the pressure pepi is often set to zero as a simplification.

There exist a variety of boundary conditions at the base. It is common to
constrain the longitudinal motion of base, even though it is observed in cardiac
images that the apex tend to be more fixed than the base. A recent study shows
that taking into account the base movement is important to capture the correct
geometrical shape [60]. However, this has not been done in the studies in this
thesis. Fixing the longitudinal motion at the base is enforced through a Dirichlet
boundary condition,

u1 = 0, X ∈ ∂Ωbase, (1.25)

where u1 is the longitudinal component of the displacement u = (u1,u2,u3). To
apply this type of condition, it is easiest if the base is flat and located at a pre-
scribed location, for example in the x = 0 plane. Constraining the longitudinal
motion of the base alone is not enough since the ventricle is free to move in the
basal plane. In order to anchor the geometry it is possible to fix the movement of
the base in all directions

u = 0, X ∈ ∂Ωbase, (1.26)

or fixing the endocardial or epicardial ring

u = 0, X ∈ Γendo (1.27)

u = 0, X ∈ Γepi. (1.28)
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Another approach which is used in this thesis is to impose a Robin type bound-
ary condition at the base

PN+ ku = 0, X ∈ ∂Ωbase, (1.29)

or at the epicardium to mimic the pericardium

PN+ ku = 0, X ∈ ∂Ωepi. (1.30)

Here k can be seen as the stiffness of a spring that limits the movement. The
limiting cases, k = 0 and k→ ∞ represent free and fixed boundary respectively.
More complex boundary conditions to mimic the pericardium are also possible
[23], but not considered in this thesis. An overview of the location of the different
boundaries for the bi-ventricular geometry is illustrated in Figure 1.5.

Figure 1.5: Illustration of the different boundaries in a bi-ventricular domain.

Force-balance equation

We will now collect all the terms that are involved in the force balance for the
cardiac mechanics problem. Considering the myocardium as an incompressible,
hyperelastic material we obtain the following strong form in the Lagrangian for-
mulation

∇ ·P = 0

J−1 = 0,
(1.31)
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22 1.3. MECHANICAL MODELING

completed with appropriate boundary conditions. To solve this numerically using
the finite element method, we need to derive the weak variational form of this
equation.

Variational formulation

There are many ways to arrive at the variational formulation of the force-balance
equations for the cardiac mechanics problem. One way is to consider the strong
form in (1.31) and use the standard approach in the finite element method to mul-
tiply by test function in a suitable space, and perform integration by parts. Within
the fields of continuum mechanics it is common to refer to this approach as the
principle of virtual work, which states that the virtual work of all forces applied
to a mechanical system vanishes in equilibrium. Within this framework, test func-
tions are referred to as virtual variations. Another approach, which we will use
here, derives the variational form by utilizing a fundamental principle in physics
called the principle of stationary potential energy, or minimum total potential en-
ergy principle. This principle states that a physical system is at equilibrium when
the total potential energy is minimized, and any infinitesimal changes from this
state should not add any energy to the system. In order to make use of this princi-
ple we first need to sum up all the potential energy in the system. Here we sepa-
rate between internal and external energy. Internal energy is energy that is stored
within the material, for instance when you stretch a rubber band you increase its
internal energy. External energy represent the contribution from all external forces
such as gravity and traction forces. For an incompressible, hyperelastic material
the total potential energy in the system is given by

Π(u, p) = Πint(u, p)+Πext(u). (1.32)

Πint(u, p) =
∫

Ω

[p(J−1)+Ψ(F)]dV (1.33)

Πext(u) =−
∫

Ω

B ·udV −
∫

∂ΩN

T ·udS (1.34)

Here B represents body forces acting on a volume element in the reference do-
main, e.g gravity, and T = PN represents first Piola-Kirchhoff traction force act-
ing on the Neumann boundary ∂ΩN . According to the Principle of stationary
potential energy we have

DδuΠ(u, p) = 0, and Dδ pΠ(u, p) = 0. (1.35)
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Here δu and δ p are virtual variations in the space for the displacement and hy-
drostatic pressure respectively, and

DvΦ(x) =
d

dε
Φ(x+ εv)

∣∣
ε=0 (1.36)

is the directional derivative of Φ at x is the direction v. This operator is also known
as the Gâteaux operator. The virtual variations δu and δ p represents an arbitrary
direction with infinitesimal magnitude. We have

0 = Dδ pΠ(u, p) =
∫

Ω

δ p(J(u)−1)dV, (1.37)

and

0 = DδuΠ(u, p) =
∫

Ω

[
pJF−T +P

]
: GradδudV −

∫
Ω

B ·δudV

Note that the traction forces are now incorporated into the stress tensors after ap-
plication of the divergence theorem. These equations are also commonly referred
to as the Euler-Lagrange equations. Here u ∈V =

[
H1

D(Ω)
]3, with H1

D(Ω) = {v :∫
Ω

[
|v|2 + |Gradv|2

]
dV < ∞∧ v

∣∣
∂ΩD

= 0} and p ∈ Q = L2(Ω), with ∂ΩD repre-
senting the Dirichlet boundary. In summary, the Euler-Lagrange equations written
in a mixed form reads : Find (u, p) ∈V ×Q such that(

Dδ pΠ(u, p)
DδuΠ(u, p)

)
= 0. ∀ (δu, p) ∈V ×Q. (1.38)

Discretization of the force balance equations

Equation (1.31) is only possible to solve analytically for very simplified prob-
lems. Therefore we need to employ numerical methods to solve the problem. One
such method is the finite element method (FEM). When using the finite element
method, we often refer to such approximation as a Galerkin approximation. This
is based on approximating the solution by linear combinations of basis functions
in a finite dimensional subspace of the true solution. If V and Q are two suitable
Hilbert spaces for the displacement u and the hydrostatic pressure p respectively,
we now select some finite dimensional subspaces Vh ⊂V and Qh ⊂ Q, which are
spanned by a finite number of basis functions.

For incompressible problems such as (1.31), we cannot choose the approxi-
mation spaces Vh,Qh at random. A known numerical issue that arises for such

23
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saddle-point problems is locking, which can be seen if the material do not deform
even if forces are applied. The problem is solved by requiring the finite element
approximation to satisfy the discrete inf-sup condition [46]. There exist several
mixed elements that satisfies this condition [14]. The elements used in this thesis
are the Taylor-Hood finite elements [75]. Let the domain of interest be denoted by
Ω, and let Th be a triangulation of that domain in the sense that

⋃
T∈Th

T = Ω. Let
Pk(T ) be the linear space of all polynomials of degree ≤ k defined on T . Then
for k ≥ 2, the Taylor-Hood finite element spaces are the spaces

Vh = {φ ∈C(Ω) | φ
∣∣T ∈Pk(T ),T ∈Th}, (1.39)

Qh = {φ ∈C(Ω) | φ
∣∣T ∈Pk−1(T ),T ∈Th}, (1.40)

where C(Ω) denotes the space of continuous function on Ω. In this thesis we have
exclusively used these elements with k = 2.

Remark 3. The basis functions that span the Taylor-Hood finite element spaces
are also known as the Lagrangian basis functions. These basis functions, of de-
gree n, are polynomials of degree n on each element, but only continuous at the
nodes (i.e not continuously differentiable). Consequently, differentiating a func-
tion that is expressed as a linear combination of the Lagrangian basis functions,
will not be continuous at the nodes, and therefore caution has to be made when
evaluating features that depends on the derivative of such functions. Examples
of such features are stress and strain with depends on the deformation gradient
which again depends on the derivative of the displacement. One way to deal with
this issue is to 1) use other types of elements that are continuously differentiable
everywhere, such a the cubic Hermite elements or 2) evaluate the features at the
Gaussian quadrature points where there is no problem with continuity.

Constitutive relations

We have now covered a mechanical framework which holds any for material
in general. What differentiate the mechanics of soft living tissue, like the my-
ocardium, from other materials is the constitutive relations which describes the
response of a material to applied load. Such constitutive relations often comes
from experimental observations, both observations of anatomical structure but
also from experiments done on tissue slabs.

We have already covered the theory of hyperelasticity and incompressibility
in Section 1.3.3 and 1.3.4 respectively which are types of constitutive relations.
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In this section we will cover constitutive relations which only apply to soft living
tissue such as the myocardium. In particular, we will consider a complete consti-
tutive model of the mechanical behavior of the myocardium that accounts for both
the passive and the active response of the myocardium.

Modeling of the passive myocardium

The passive response of the myocardium has been investigated through uni-axial,
bi-axial and shear deformation experiments [20]. In 2009 Holzapfel and Ogden
proposed an orthotropic constitutive model of the passive myocardium [36] which
is based on the experiments done in [20], and is the model used in this thesis.
Other constitutive models for the passive myocardium exists [17, 30, 56] but is
not considered here. The model assumes a local orthonormal coordinate system
with the fiber axis f0, sheet axis s0 and sheet-normal axis n0. From this coordinate
system we define the invariants

I1 = tr (C),

I4f0 = f0 · (Cf0),

I4s0 = s0 · (Cs0),

I8f0s0 = s0 · (Cf0),

(1.41)

Here I4f0 and I4s0 are the stretches along the fiber, sheet axis respectively and I8f0s0

is related to the angle between the fiber and sheets in the current configuration
given that they are orthogonal in the reference configuration. Note that since
(f0,s0,n0) is an orthonormal system, we have the relation I1 = I4f0 + I4s0 + I4n0 ,
and so I4n0 is redundant. The orthotropic Holzapfel and Ogden model reads

Ψ(I1, I4f0, I4s0, I8f0s0) =
a

2b

(
eb(I1−3)−1

)
+

a f

2b f

(
eb f (I4f0−1)2

+−1
)

+
as

2bs

(
ebs(I4s0−1)2

+−1
)

+
a f s

2b f s

(
eb f sI2

8f0s0 −1
)
.

(1.42)

Here (x)+ = 1
2 (x+ |x|), so that the the terms involving I4f0 and I4s0 only con-

tribute to the stored energy during elongation. From (1.42) we see that it is easy to
identify the physical meaning of each term. For example the first term represents
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26 1.3. MECHANICAL MODELING

the isotropic contribution which is the overall stiffness in the extracellular matrix
while the second term accounts for the extra stiffness along the fibers when they
are elongated. It is also straight forward to prove that the strain-energy function
is convex, and that the requirements for existence and uniqueness discussed in
Section 1.3.3 are fulfilled.

In this thesis we have used a transversely isotropic version of (1.42) which is
obtained by setting a f s = b f s = as = bs = 0, i.e

Ψ(I1, I4f0) =
a
2b

(
eb(I1−3)−1

)
+

a f

2b f

(
eb f (I4f0−1)2

+−1
)
. (1.43)

If we further set a f = b f = b = 0 so that in a is the only nonzero parameter, then
the Holzapfel-Ogden model reduces (after a series expansion of the exponential
and a limiting argument) to

Ψ(I1) =
a
2
(I1−3) , (1.44)

which is the model of a Neo Hookean material. The Cauchy stress can be derived
analytically from (1.42), by using the chain rule and (1.20),

Jσ =
∂Ψ(F)

∂F
FT + pI = ∑

i∈{1,4f0,4s0,8f0s0}
ψi

∂ Ii

∂F
FT + pI

=pI+a
(

eb(I1−3)−1
)

B+2a f (I4f0−1)+eb f (I4f0−1)2
f⊗ f

+2a f (I4s0−1)+eb f (I4s0−1)2
s⊗ s+a f sI8f0s0eb f sI2

8f0s0 (f⊗ s+ s⊗ f) ,

(1.45)

where B = FFT is the left Cauchy-Green tensor, f = Ff0 and s = Fs0.

Modeling of the active contraction

One feature that separates the myocardium from other hyperelastic materials such
as rubber, is its ability to actively generate force without external loads. This active
component of the model can be incorporated using two fundamentally different
approaches known as the active stress and active strain formulation.

The active stress approach is based on the classical three element Hill model
illustrated in Figure 1.6, where the active contribution naturally decomposes the
total stress into a sum of passive and active stresses [57]. Hence, in the active
stress formulation [40] one assumes that the total Cauchy stress σ can be written
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Figure 1.6: The classical three-element Hill muscle model with one contractile
element and two non-linear springs, one arranged in series and one parallel.

as an additive sum of one passive contribution σp and one active contribution σa,

σ = σp +σa (1.46)

The passive contribution is determined by the material model used

σp =
1
J

∂Ψ(F)
∂F

FT , (1.47)

while the active contribution is given by

σa = σ f f f⊗ f+σsss⊗ s+σnnn⊗n, (1.48)

and the different constants σ f f ,σss, and σnn, which are the active stress in the
fiber, sheet and sheet-normal direction respectively, are typically coupled to the
electrophysiology and calcium dynamics. There are experimental evidence that
the active stresses in the transverse direction of the fibers (σss, and σnn), are non-
negligible [48], and one approach is to assume a uniform transverse activation in
which the total active tension can be written as

σa = Ta [f⊗ f+η (s⊗ s+ n⊗n)] , (1.49)

where η represent the amount of transverse activation and Ta ∈R is the magnitude
of the active tension. In the limiting case (η = 0.0), the active tension acts purely
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28 1.3. MECHANICAL MODELING

along the fibers and (1.49) reduces to

σa = Taf⊗ f. (1.50)

Note that, by observing that

∂ I4a0

∂F
=

∂ (a0 ·Ca0)

∂F
= 2a⊗a0 =⇒ a⊗a =

1
2

∂ I4a0

∂F
FT

and that I1 = I4f0 +I4s0 +I4n0 , we can instead decompose the strain-energy function
into a passive and active parts [61], Ψ = Ψp +Ψa, with

Ψa =
Ta

2J

(
(I4f0−1)+η

[
(I1−3)− (I4f0−1)

])
, (1.51)

so that Jσa =
∂Ψa
∂F FT .

The active strain formulation is a relatively new way of modeling the active
contraction in the heart and was first introduced in [73]. This formulation is based
on a multiplicative decomposition of the deformation gradient,

F = FeFa. (1.52)

The active part Fa, is an inelastic process driven by the biochemistry and can
be seen as the actual distortion of the microstructure. The elastic part Fe is re-
sponsible for preserving compatibility of the tissue and stores all the energy in the
deformations. As a consequence, the strain energy function is a function of the
elastic deformation gradient only. The decoupling can be illustrated by consider-
ing two sarcomeres connected in series as shown in Figure 1.7.

Figure 1.7: Illustration of the active strain formulation. During the active deforma-
tion, the sarcomeres shortens as if they were all detached. The elastic deformation
ensures compatibility of the tissue.

The general form of the active deformation gradient for a material with an
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orthotropic active response is given by

Fa = I− γ f f0⊗ f0− γss0⊗ s0− γnn0⊗n0 (1.53)

We add the constraint det(Fa) = 1, meaning that the active deformation is
volume preserving. Further we assume that the activation is transversely isotropic,
so that the sheet and sheet-normal axis is treated in the same way. It is then straight
forward to verify that γn = γs = 1− (1− γ f )

−1/2, and we have

Fa = (1− γ)f0⊗ f0 +
1√

1− γ
(I− f0⊗ f0), (1.54)

where we set γ = γ f for convenience.
While the motivation behind the active stress formulation is purely physiolog-

ical and based on the classical Hill model shown in Figure 1.6, the motivation
behind the active strain formulation is more driven by ensuring mathematical ro-
bustness. In particular it has been shown [4] that with the active strain formulation,
properties such as frame invariance and rank-one ellipticity is inherited from the
strain energy function. In contrast, rank-one ellipticity is not guaranteed for the
active stress formulation.

For a more extensive comparison of the active stress and active strain approach
we refer to [4, 26], and for an overview of other methods to model the active
contraction we refer to [27].

Implementation details

The cardiac mechanics solver developed during the work of this thesis is im-
plemented using the finite element framework FEniCS. Here we briefly explain
the main components of FEniCS as well as some numerical considerations made
when implementing the solver.

The FEniCS Project

The FEniCS project is an open-source computing platform for solving partial dif-
ferential equations (PDEs) using the finite element method (FEM). Solving PDEs
using FEM involves many implementation details that can be tedious to imple-
ment yourselves. The idea behind FEniCS is to automate code generation so that
the user can spend more time on doing research and less time on implementa-
tion of assembly matrices. At the core of FEniCS is DOLFIN [52], which is a
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30 1.3. MECHANICAL MODELING

C++/Python library, and works as the main interface in FEniCS. In this thesis only
the Python interface has been used, in which C++ code is automatically generated
using SWIG. This allows for simplicity through the Python scripting language and
the speed of the C++ language. The domain specific language used to represent
weak formulations is called the Unified Form Language (UFL) [2], and allows
for e.g automatic differentiation of forms and expressions. The FEniCS form
compiler (FFC) [51] compiles code written in UFL to Unified Form-assembly
Code (UFC) [3] which are optimized C++ code. The Python interface also makes
use of the Instant module which allows for just-in-time (JIT) compilation of C++
code. The compiled code is also stored in a cache so that compilation of a form
only happens once. Also, the relatively new UFL Analyser and Compiler Sys-
tem (UFLACS) allows for fast compilation of complex forms such as variational
formulations that include the Holzapfel Ogden material model (1.42).

For more information about FEniCS, the reader is referred to the official web
page (https://fenicsproject.org) or any of the cited literature.

Numerical considerations

The solution of non-linear problems such as the one described here are typically
solved using methods like Newton’s method. The convergence of such methods
depends on the initial guess, and if the initial guess is too far from the true solution,
the solver might diverge. Moreover, if the initial guess is close to the true solution
the convergence rate is in general quadratic.

Let us consider a typical numerical problem of inflating the ventricular ge-
ometry from a stress-free configuration to end-diastole. This involves increas-
ing the pressure, or the boundary traction on the endocardium, from zero to the
end-diastolic pressure. A strategy know as the incremental load technique is usu-
ally a good approach. In this strategy you select some incremental step-size (for
instance 0.4 kPa), and increase the pressure linearly until the target pressure is
reached. If the solver diverges you decrease the step-size (for instance by a factor
of 0.5) until convergence is reached, and continue to step up the pressure with the
new step-size. This is very robust, but definitely a slow approach. Since many
of the constitutive models for myocardium consist of an exponential relationship
between the stress and strain (so called Fung-type relation), the amount of stress
needed to displace a material will be higher if the material is a state with high
strain compared to a state of low strain. Therefore, in the low strain state, the
Newtons solver might perform fewer iterations to reach convergence when the
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load is increased. As a result, one could improve the incremental load technique
by adapting the step size if the number of newton iterations are below a certain
threshold (for instance 8 iterations).

An even more clever strategy uses a technique from bifurcation and chaos
theory and is known as numerical continuation [1]. Suppose we want to solve
the non-linear problem F(u,λ ) = 0 with state variable u and parameter λ . For
instance u could be the displacement and λ could be the endocardial pressure.
The idea behind numerical continuation is that given a solution pair (u0,λ0) there
exist (under conditions stated by the implicit function theorem) a solution curve
u(λ ) such that F(u(λ ),λ ) = 0 and u(λ0) = u0. To explicitly find such a curve is
not always easy but a simple approximation can be found by linear extrapolation:
Given two pairs (u0,λ0) and (u1,λ1), and a new target parameter λ2, a possible
solution is

u2 = (1−δ )u0 +δu1 δ =
λ2−λ0

λ1−λ0
. (1.55)

Choosing u2 as initial guess for the non-linear solver has been successfully per-
formed by others in non-linear cardiac mechanics problems [63], and this ap-
proach is also used in this thesis.
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32 1.4. PERSONALIZATION OF CARDIAC BIOMECHANICS

Personalization of Cardiac Biomechanics

In this section we will go through the steps needed to personalize the mechanical
model developed in the previous section. We will start by giving a brief overview
of the interaction between medical imaging and cardiac computational modeling.
Then we will explain how the geometries are extracted from the medical images
and turned into computational geometries that we can use for finite element com-
putations. Finally we will explain how to incorporate additional data into model
by means of adjoint based data assimilation techniques.

Medical Imaging

Since the discovery of X-ray in 1895, medical imaging has played a central role
in diagnosis, treatment planning and follow-up. Without the huge advancements
in medical imaging the last decades, computational models would not have been
as important and promising as they have become.

Cardiac computational modeling often relies on data obtained using medical
imaging techniques, and the quality of such data is therefore of fundamental im-
portance [44]. It is clear that without advancements in medical imaging technol-
ogy, the role of computational models would be limited to simple, idealized cases.
With access to high quality images, detailed information about cardiac structure
can be used to e.g build anatomically correct models. The computational mod-
els can then later be validated using the same images, or additional data can be
extracted from the images in order to compute potential biomarkers. Figure 1.8
summarizes this interaction between medical images and computational models.

Today there are three main non-invasive imaging modalities used in cardiol-
ogy. These are echocardiography (Echo), magnetic resonance imaging (MRI) and
computed tomography (CT). Each modality offers advantages and disadvantages
over the other. For example, MRI provides high quality images, uses zero radi-
ation, but is expensive and lacks temporal resolution. CT can more accurately
reconstruct the 3D image in contrast to MRI, in which 2D slices needs to be
glued together to form a 3D surface. However, CT exposes the patient to radi-
ation, which increases the chance of developing cancer. Finally echocardiography
is easy to use, cheap, harmless, and has good temporal resolution, but is clearly
inferior when it comes to image quality.

The main modality used in this thesis is 4D echocardiography, and we will
therefore focus on data acquired using this modality. With 4D we mean three
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Figure 1.8: Interaction between medical imaging and computational models.
Medical images are used to extract geometric structure. These geometries to-
gether with the computational models can later be validated against the medical
images. Computational models can also be used together with the medical images
to assimilate additional data in order to extract clinically useful biomarkers.

spatial and one temporal dimension. The speed of sound in human tissue (which
is approximately 1540 m/s) put some limitations on the image quality versus the
frame-rate [65] for these 3D volume images. In order to enhance these 3D vol-
ume images, disjoint subvolumes acquired during N cardiac cycles (N typically
between 2 and 8)[9] are stitched together.

The images are further processed using some image segmentation tool. One
such tool is EchoPac, which is used for analyzing images acquired with the echo
scanner from GE Vingmed (Horten, Norway). The 4D Auto LVQ tool in EchoPac,
is a tool for processing 3D echo images, and can be used to extract traces of vol-
ume, triangulated surfaces and 3D strain traces [34], together with a structured
mesh of the American Heart Association (AHA) segments [12] for each time
point, see Figure 1.9.

Geometry and microstructure

Mesh generation

In this section we will explain how to generate a left ventricular mesh based on
segmented surfaces coming from 4D echocardiography. Figure 1.9 shows an ex-
ample of how the exported data from the image segmentation tool look like. For
each time point we can extract triangulated surfaces of the endocardium and epi-
cardium which can be seen in Figure 1.9a. Together with these surfaces we are
also given a so called strain mesh (Figure 1.9b) located approximately in the mid-
wall, which defines the approximate location of the AHA-segments [12], and can
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Figure 1.9: Figure 1.9a shows triangulated surfaces of the endo- and epicardium,
and Figure 1.9b shows a structured mesh of the American Heart Association
(AHA) segments. These surfaces are exported from the image segmentation tool
EchoPac. Figure 1.9c shows the American Heart Association (AHA) segments
illustrated on a so called bullseye plot with name and numbers on the different
segments.

be used to orient the surfaces.

As discussed in Section 1.3.5, we constrain the basal movement in the lon-
gitudinal direction, which is easiest to accomplish using a flat base located at a
prescribed location. In order to make the base flat, we first orient the surfaces
so that the longitudinal axis is aligned with the x-axis, and the apex pointing in
the positive x direction. To construct the basal plane we first take out the basal
points from the strain mesh, and use these points to construct a least square fitting
plane (Figure 1.10a). Let (xi,yi,zi), i = 1, · · · ,N be the basal points, and suppose
the basal plane solves the equation z = ax+by+ c, for some unknown constants
a,b,c. Following a least square approach, we select the parameters (a,b,c) that
minimizes to sum

N

∑
i=1

(axi +byi + c− zi)
2 . (1.56)

Once the parameters for the basal plane are found we adjust the size of the cut,
by moving the plane along the longitudinal axis (here x−axis), until the cavity
volume agrees with the measured volume given by the image segmentation tool
within some specified tolerance. When the correct cut size is found, the points
above the plane is removed, and the remaining surfaces are smoothed using the
mesh generation tool GAMer [84].
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(a) (b) (c)

Figure 1.10: A least square fitting plane is fitted to the points belonging to the
basal boundary in the strain mesh (Figure 1.10a). This plane is used to cut the
endo- and epicardial surfaces (Figure 1.10b) and Gmsh is used to mesh these
surfaces together (Figure 1.10c).

The actual mesh generation is performed using Gmsh [25], which mesh the
endocardial and epicardial surface together using frontal-Delaunay meshing algo-
rithm. Gmsh also marks the endocardial, the epicardial and the basal facets, along
with the endocardial and epicardial basal rings.

Remark 4. The cavity volume is computed by generating the whole mesh, and
then computing the volume using Equation (1.63). The cut size is found by using
a one-dimensional optimization algorithm with the objective functional represent-
ing the squared error between computed and measured volume.

Rule-based fiber architecture

Both the passive and active properties of the myocardium depends on the under-
lying muscle fiber architecture, and it is therefore of high relevance to capture this
architecture as accurately as possible.

Unfortunately, imaging technology does not currently provide a way of ex-
tracting patients-specific fiber orientation in vivo. Diffusion Tensor MRI (DT-
MRI) [6] can be utilized to reconstruct the fiber and laminar structure ex vivo[67],
and recent studies have shown promising results in measuring fiber orientations in
vivo using DT-MRI [76]. By using DT-MRI measurements of multiple hearts it is
possible to build statistical atlases [62] which could be used to generate fiber fields
based on transformation between a patient-specific geometry and the geometries
from the atlas [77].
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An alternative method for assigning myocardial fiber orientation is by rule-
based methods [64, 7]. In this thesis we have used an algorithm called the Laplace
– Dirichlet Rule-Based (LDRB) algorithm, proposed by Bayer et al [7].

Figure 1.11: The LDRB algorithm [7] applied to an LV (left) and BiV (right) ge-
ometry with an helix fiber angle of 60◦ and −60◦ on the endo- and epicardium
respectively. Color represents the helical angle, with blue being 0◦ (circumferen-
tial) which can be seen in the midwall.

The LDRB algorithm takes as input the geometry Ω, the helical fiber angle
on the endo- and epicardium (αendo and αepi) and the transverse fiber angle on the
endo- and epicardium (βendo and βepi), and outputs a set of three orthogonal vector
fields, one representing the fiber angle (f0), one representing the sheet angle (s0)

and the final direction is called the sheet normal direction (n0). Figure 1.11 shows
the output of this algorithm applied to both an LV and a BiV ellipsoidal geometry.

The ventricular coordinate system

When dealing with geometric shapes such as a left ventricle, finding a coordi-
nate system that is easy to work with is important. For example, when studying
spherical shapes, the spherical coordinate system is usually easier to work with.
Likewise, a coordinate system that is easy to use when studying ellipsoidal shapes
like the left ventricle is the prolate spheroidal coordinate system [41]. The Carte-
sian coordinates (x,y,z) are related to the prolate spheroidal coordinates by
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x = asinh µ sinν cosθ ,

y = asinh µ sinν sinθ ,

z = acosh µ cosν ,

(1.57)

where a is the focal point, ν ∈ [0,π] is the longitudinal coordinate, θ ∈ [0,2π] is
the circumferential azimuth angle and µ is the radial coordinate. For an ellipse
given by the equation x2

b2 +
y2

c2 = 1 with b being the semi-major axis, and c the
semi-minor axis, the focal point is given by

a =
√

b2− c2. (1.58)

The prolate spheroidal coordinate axes are illustrated in Figure 1.12a. The inverse
relation, going from the Cartesian coordinate (x,y,z) to the prolate spheroidal
coordinate (µ,ν ,θ) given the focal point a, is a bit more intricate, but can be
computed as follows

ν = arccos(τ),

µ = arccosh (ρ),

θ = arctan
z
y
,

τ =
1

2a

(√
(x+a)2 + y2 + z2

+
√
(x−a)2 + y2 + z2

)
,

ρ =
1

2a

(√
(x+a)2 + y2 + z2

−
√
(x−a)2 + y2 + z2

)
.

(1.59)

It is possible to estimate the focal point by taking b in (1.58) to be the maximum
distance from the base to the apex, and c the maximum radius at the base. Using
this estimate, the base is assumed to be located approximately at the center of the
ellipsoid, i.e ν = π/2 [45].

This coordinate system can be used when e.g marking the mesh according to
the AHA segments and to create vector fields in the longitudinal, circumferential
and radial direction. These vector fields are useful when comparing the simulated
results to the image-based measurements.
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(a) (b)

Figure 1.12: Illustration of the prolate spheroidal coordinate system.

Choosing the reference geometry

A general problem in biomechanics is that the geometry extracted from imaging
data is not the stress-free geometry, meaning that the geometry that we observe is
subjected to a physical load, e.g blood pressure. In order for the stress and strain
to be correct, we need to find a geometry, so that when loaded with the measured
loads, gives back the geometry observed in the medical images. This is analogous
to the problem of finding the geometry of a deflated balloon, given that we have
an image of an inflated version of the balloon. Having this picture in mind, it is
intuitive that such a geometry not necessarily is unique. Several techniques have
been applied in order to estimate the unloaded geometry, such as the inverse de-
sign analysis (ID) [29] or the modified updated Lagrangian formulation (MULF)
[24]. Other approaches includes using the mid-diastolic or end-systolic geometry.
Another popular technique is a fixed point iteration scheme, known as the back-
ward displacement method [8]. Figure 1.13 illustrate the backward displacement
method applied to an LV geometry. We briefly explain the steps in this methods.

Suppose you are given geometry ΩI taken from some medical image, which
is loaded with a pressure pLV

I (assume LV only of simplicity). We want to find
the unloaded geometry ΩU , so that when we load ΩU with pLV

I , you get back the
starting geometry ΩI . Let XI denote the coordinates in ΩI , and let d denote
the displacement field which is the solution of (1.38) after applying the pressure
pLV

I . What we want, is to find XU so that XI = XU +d(XU ). To find XU we
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Figure 1.13: Showing 1, 5, and 10 iterations of the backward displacement method
applied to a left ventricular geometry. To row top shows the original geometry in
solid and the inflated unloaded geometry in yellow wire-frame for 1,5 and 10
iterations. Bottom row shows the unloaded geometry in solid and the original
image based geometry in wire-frame.

let

Xn+1 = g(Xn) = XI −d(Xn), X0 = XI . (1.60)

According to Banach Fixed Point Theorem, the mapping g has a fixed-point if
‖∇g‖∞ = ‖∇d‖∞ < 1. This means that as long as the deformation resulting from
the applied pressure does not result in a stretch that is more than 100%, this
method will converge. Of course the question about convergence of the fixed point
method is one thing. Another thing is the convergence of the nonlinear solver. For
bi-ventricular geometries, the backward displacement method might fail to con-
verge, especially if the tissue is soft and the pressure in the right ventricle is high.
In this case the right ventricular free wall might collided with the septal wall when
subtracting the displacement. An example of this is illustrated in Figure 1.14.

An alternative to the backward displacement method that does not necessary
converge towards a fixed point but provides a more stable way of obtaining an
unloaded configuration was proposed in Ragahavan et. al [66]. In this algorithm,
only one iteration of the backward displacement method is applied but the sub-
tracted displacement is multiplied by a scalar k, which could be estimated to min-
imizing some residual.
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Figure 1.14: Backward displacement method might fail for bi-ventricular geome-
tries. This can be seen be noticing that the RV free wall is buckling and colliding
with the septum. Here the image-based geometry is shown in black wire-frame,
while the estimated unloaded geometry is shown in red.

Since the backward displacement method really does converge towards a fixed
point, it is favorable to the Rahavan method. Therefore, a hybrid approach is to ap-
ply the backward displacement method as long as the non-linear solver converges,
and switch to the Rahavan method upon divergence.

Coupled material parameter estimation and unloading algorithm

One thing to note is that the unloaded configuration depends upon the chosen ma-
terial parameters, which are generally also unknown. For example, applying the
backward displacement method to a geometry will result in a smaller unloaded
cavity volume if the material is softer. Therefore, the material parameters estima-
tion is coupled to the problem of finding the unloaded, zero pressure geometry. In
[58], Nikou et al proposed a method for estimating material parameters and the
unloaded geometry by iterating between the two methods, and terminating if the
difference in unloaded cavity volume was less than 5%. This method is general
and could be applied using any unloading algorithm and any method to estimate
the material parameters. In the last paper in this thesis, we analyze this method
and show that it actually converges to the correct solution and is stable to noise in
the measurements.
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Data Assimilation

The constitutive laws in cardiac mechanics comes from experiments done on tis-
sue slabs, and relates stress in the material to strain. If we had the same data
available for a given patient we could easily have performed a regression analy-
sis to identify the parameters in the constitutive model. However, this type of data
typically requires that tissue samples are taken from the myocardium, which is not
an option when dealing with living humans. In general, when dealing with physi-
cal systems such as the heart or the weather, it is not always possible to design an
experiment which allow us to determine all properties of a physical system [15].
In such cases we have to take the measurements that we have, and do our best to
incorporate them into the model.

For example, the type of data that we usually have available, are data that
can be extracted using imaging techniques such as motion data, volume traces,
regional strain traces etc. One technique to estimate model parameters based on
such observations is called data assimilation.

The field of data assimilation has its roots in meteorology, where a typical
problem is to make predictions on the weather, based on observations (of temper-
ature, humidity etc.) at different locations.

There are basically two main approaches to assimilate data; sequential data
assimilation and variational data assimilation. Sequential data assimilation, which
is often referred to as filtering, is based on a predictor-corrector approach where
you start from your initial data and use a filter to predict the next state. Once you
have your measurement available you correct the estimate based on the new ob-
servations. Some examples of sequential procedures include Kalman filtering and
Luenberger observers [15].

The other approach which is taken in this thesis is called variational data as-
similation, and also referred as 4D-var. This approach is based on minimizing
a cost functional that represents the mismatch between observations and simula-
tions, with possibly additional regularization terms added to the objective func-
tional. For a more thorough review of other data assimilation techniques we refer
to the paper by Chapelle et. al [15].

Pipeline

We will now explain the general setup and the main steps in variational data as-
similation, and will denote the state variable by w, which is our case represents
jointly the displacement and hydrostatic pressure w = (u, p).
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The state variables are described by some physical forward model M , which
is our case is governed by the force balance equation in (1.31). Moreover this
model typically depends on some parameters µ that we want to adjust based on
the observations at hand. We will refer to these parameters as the control param-
eters. For example, the control parameters could be related to the stiffness of the
myocardium which we want to adjust to each individual patient based on some
clinical observations. We can therefore assume that the underlying model can be
written in the form M (w,µ) = 0. Note that the state variable w typically depends
on the control parameters µ , but to ease notation, we do not write this dependency
explicitly

We are also given a set of measurements (or observations) that we want to
assimilate, and we denote a single observation by y. For example, y might by a
volume measurements at some given time point in the cardiac cycle, measured
using e.g ultrasound and image processing techniques. The observation operator
H , is approximation of the observation, and act as an operator from the state
space to the observation space. For a single observation, we therefore have the
relation

y = H (w)+ξ , (1.61)

where ξ = ξH +ξy represents both the error in the measurements (ξy) (e.g noise
in the data) and error in the representation of the observation (ξH ) (that H do
not represent the data good enough).

Finally all observations are combined into a single cost function J =J (w,µ)

which represents the overall mismatch between observations and simulations. The
aim is to minimize this functional while ensuring that the governing force balance
equation is satisfied. This can be done in the following steps

1. For some initial guess µ0, solve the forward model M = 0 to obtain w0.

2. Compute J (w0,µ0).

3. Compute the gradient DJ (w0,µ0) to find the direction of the steepest de-
scent.

4. Move along the steepest direction and update the initial guess.

The above steps are continued until we have reached a minimum for the cost func-
tional, e.g when the norm of the gradient becomes zero. In practice we continue
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these steps until either the norm of the gradient is below a prescribed tolerance, or
the number of iterations exceed a maximum number. Using this gradient descent
approach will always bring you towards a minimum. However, the minimum you
find might not be a global minimum. In this case, the choice of initial guess de-
termines which local minima you will end up in. If you can prove that your cost
functional is convex with respect to the control parameters, you known that the
minimum you find is a global one.

The data assimilation pipeline is summarized in Figure 1.15.

Remark 5. There exists gradient-free optimization methods that can be used to
avoid gradient computations. Examples include genetic algorithms or particle
swarm algorithms. The drawback with such methods is that they typically requires
a lot of functional evaluations. In our case functional evaluations are very com-
putationally expensive, because every functional evaluation requires a solution of
the non-linear forward model.

Unknown 

model parameters

Model input

Mathematical model

Clinical observations Modeled observations

A patient's heart

Minimize distance

Figure 1.15: The different components involved in the data assimilation proce-
dure. The mathematical description of each component is displayed below each
box. From a patients heart we typically extract information that are used as input
to the model. This can for instance be information about geometry or information
about boundary conditions. This model input is used to create a mathematical
model of the heart, which also depends on some parameters µ . These unknown
parameters are determined by minimizing the distance between the clinical obser-
vations y and the modeled observation H (w).

We will now describe some of the main observation operators used in this
thesis before we explain how to solve the data assimilation problem efficiently
using the adjoint method.
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44 1.4. PERSONALIZATION OF CARDIAC BIOMECHANICS

The volume observation operator Hvolume In some cases, the ventricular cav-
ity volume can easily be computed analytically from the displacement field u.
Denote the inner cavity of the left ventricle in the current configuration by ωendo.
Further let dv and x denote an infinitesimal volume element and the coordinate in
the current configuration respectively. Then by the divergence theorem we have

Hvolume(u) =
∫

ωendo

dv =
1
3

∫
ωendo

∇ ·xdv =
1
3

∫
∂ωendo

x ·nds, (1.62)

where n and ds are the unit normal and a surface element on the current configu-
ration respectively. Note that the boundary ∂ωendo includes the endocardial basal
boundary. However in the case when the base is flat and fixed in longitudinal di-
rection and located at the x = 0 plane, the contribution from this boundary integral
will be zero. In this case the boundary integral will be the same as the integral over
the endocardial boundary, with the only change being the change of sign on the
normal vector. By Nansons formula we obtain

Hvolume(u) =−
1
3

∫
∂Ωendo

(X+u)JF−T NdS, (1.63)

where now ∂Ωendo, X, N and dS are respectively the endocardial surface, the refer-
ence coordinate, the unit normal and a surface element in the reference configura-
tion.

The strain observation operator Hstrain Another observation that is encoun-
tered in this thesis is strain, or more precisely average regional strain in the cir-
cumferential, radial or longitudinal direction. Let Ω j denote the volume for which
the strain should be averaged over, and let ek denote the unit vector field in the pre-
ferred strain direction. Then for a given strain tensor A we define

Hstrain(u) =
1
|Ω j|

∫
Ω j

eT
k A(u)ekdV. (1.64)

The strain tensor A is typically chosen to be the Green-Lagrange strain tensor E,
or the material displacement gradient tensor F− I.

Remark 6. Measured strains are computed relative to some reference geometry,
which do not always coincide with the reference geometry chosen for your sim-
ulation (for example if you use the unloaded geometry). In these cases you have
to either recompute the measured strain according to the chosen reference for
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the simulation, or recompute the simulated strains according to the correct ref-
erence geometry for your measurements. In the latter case, the strain tensor can
be computed using the modified deformation gradient F̃ = FF−1

ref where Fref is the
deformation gradient from your current reference to the correct reference state.

PDE-constrained optimization

The variational data assimilation problem in cardiac mechanics belongs to a class
of problems called PDE-constrained optimization problems, which can be formu-
lated as follows:

minimize
µ∈P

J (w,µ)

subject to M (w,µ) = 0.
(1.65)

Here J (w,µ) : W ×P 7→ R is the objective functional that we want to mini-
mize, W =V ×Q is the state space, P is the parameter space and M (w,µ) = 0 is
the force balance equation given by (1.31).

The typical way of solving the problem (1.65) is to turn the constrained prob-
lem into an unconstrained problem. One way to do this is to consider the reduced
functional

Ĵ (µ) = J (w(µ),µ). (1.66)

Since Ĵ is a pure function of µ , we have eliminated the constraint and turned the
problem into an unconstrained problem:

minimize
µ∈P

Ĵ (µ). (1.67)

Note that a solution to (1.67) satisfies the optimality condition DĴ = 0. In
the following, D refers to the total derivative with respect to the control µ , while
Dx refers to the partial derivative with respect to x.

Computing the functional gradient

To move along the gradient descent it is required to actually compute this func-
tional gradient. The “naive” approach would be to estimate the gradient using
finite difference approximation. However, this requires one functional evaluation
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for each degree of freedom in the parameter space, so when the number of param-
eters are large this becomes impractical.

By the chain rule we have

DĴ = DJ (w(µ),µ) = DµJ (w(µ),µ)+DwJ (w(µ),µ)Dµw(µ).

The terms DwJ (w(µ),µ) and DµJ (w(µ),µ) are typically straight forward to
compute. The term Dµw(µ), on the other hand, is more involved. If we take the
total derivative of the force balance equation, we obtain

DM (w(µ),µ) = DwM (w(µ),µ)Dµw(µ)+DµM (w(µ),µ) = 0,

and we see that

DwM (w(µ),µ)Dµw(µ) =−DµM (w(µ),µ). (1.68)

The system (1.68) is known as the tangent linear system, and can be computed
numerically using ordinary algorithmic differentiation techniques. However it re-
quires that you first specify the parameter µ , meaning that it becomes expensive
to compute the functional gradient at several control points.

We could instead plug in the solution to (1.68) to get

DĴ = DµJ (w(µ),µ)− z∗DµM (w(µ),µ), (1.69)

where

z∗ = DwJ (w(µ),µ)(DwM (w(µ),µ))−1

=⇒ z∗DwM (w(µ),µ) = DwJ (w(µ),µ)

Note that in (1.69), the variable z∗ represents a Lagrange multiplier enforcing the
PDE constraint. In order to solve this system, we need to have it on the form
Ax = b, and we take the adjoint (Hermitian transpose) to get

DwM (w(µ),µ)∗z = DwJ (w(µ),µ)∗ (1.70)

Equation (1.70) is called the adjoint equation. To compute the gradient we can
now solve for z and then insert z∗ into (1.69) to compute the gradient.
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Dolfin-Adjoint

Dolfin-Adjoint [22] is a software package that is based on the FEniCS project,
which aims to derive the discrete adjoint equation and the tangent linear models
of finite element models implemented within the FEniCS framework. While the
traditional approach is to derive the adjoint code from the forward code using au-
tomatic differentiation tools, Dolfin-Adjoint utilizes the high level symbolic rep-
resentation [2] in FEniCS to derive the discrete adjoint equations from the discrete
forward equations, and then the FEniCS system derives the adjoint code from the
discrete adjoint equations. For more information about Dolfin-Adjoint the reader
is referred to the official web page (http://www.dolfin-adjoint.org/en/latest/).

Multiobjetive optimization

Parameters in the model are estimated based on minimizing a cost functional rep-
resenting the mismatch between observations and simulations. Assume we are
given N different observations, then in principle we have N different cost func-
tionals to minimize:

minimize
µ∈P

{J1(w,µ),J2(w,µ), · · · ,JN(w,µ)}

subject to M (w,µ) = 0
(1.71)

with

Ji(µ) = (y−H (w(µ)))2 , i = 1, · · · ,N (1.72)

The above observations comes from the same source, and hence it should be intu-
itive that minimizing one of them, would also bring the other closer to a minimum.
However, with the presence of noise in the data, this might not always be the case,
and hence we have conflicting objectives. Problem (1.71) is called a multiob-
jetive optimization problem [19]. Such problems typically do not have a single
optimal solution, but a family of solutions called Pareto optimal solutions. The
basic methods for solving such problems includes the weighted method and the ε-
constraint method. In this thesis we have only used the weighted method, which
is based on minimizing a weighted sum of the individual cost functionals, i.e:
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minimize
µ∈P

N

∑
i=1

λiJi(w,µ)

subject to M (w,µ) = 0.

(1.73)

Here λi represents a weighting of the different objectives, and the choice of λi

should be based on 1) the importance of objective i and 2) the relative size of the
cost functional Ji. It is also common to require ∑i λi = 1 so that the weighted
sum is a convex combination of the objective functionals.

Regularization

Regularization is an important concept in many scientific disciplines concerned
with data fitting. When using data that essentially are realizations of a stochas-
tic process, we need to take into account that the data are corrupted with noise.
Moreover, the model we are using is a simplification of a physical process, and
fitting the data exactly to the model is unrealistic. This is especially important if
the number of parameters we are trying to estimate are more than the number of
data points used as input. In such cases it is often beneficial to make some as-
sumptions about the solution we are looking for in order to avoid overfitting. For
example, we may assume that the parameter we are searching for is smooth. Sup-
pose that µ ∈ H1(Ω) is the parameter we want to find, and that we want to favor
smooth solutions. Then the norm of the gradient ‖∇µ‖ should be small. One way
to achieve this is to add a penalty term to the objective functional so that instead
of minimizing J (w,µ) we minimize J (w,µ)+λ‖∇µ‖, where the constant λ ,
known as the regularization parameter, controls the smoothness of µ . Note that in
the limit λ → ∞ we would end up with a constant value of µ . This approach is
referred to as Tikhonov regularization.

Another reason for using regularization is to stabilize the solver for the under-
lying PDE that we solve. Parameters with sharp spikes can make Newtons iter-
ations in-feasible, and restricting the parameter space to exclude such solutions
might help to stabilize the Newton solver.

Identifiability of parameters

When dealing with parameter estimation, you should always consider questions
about identifiability and uniqueness. This depends on the model, the data and
the objective functional [32]. A first test should be to generate synthetic data
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with some prescribed parameters, feed this error-free data to the data assimilation
method, and ensure that you are able to retrieve the parameters that generated
that data. If you end up with a different parameter set than the one generated the
data, your problem is not structurally identifiable [13]. Your problem is said to be
practical identifiable if the parameters can be determined uniquely based on the
data at hand. If the test passes you should try to add noise to the data, and see if
your data assimilation is stable with respect to noise in the measurements.

Demonstrating identifiability is often difficult, especially when your data is
corrupted with noise, and when the complexity of the model increases. Balancing
the complexity of the model in terms of model fidelity, i.e whether your model
is rich enough to represent the data, and the identifiability is often key in order
to have robust model. A too simple model will often fail to represent your data,
while a too complex model might give completely different answers with just a
slight perturbation of the data, i.e with noise added to the measurement. The same
problem is encountered in other scientific disciplines. For example, in statisti-
cal learning theory, overfitting is related to overparameterization of the model, in
which you can perfectly represent your data, but a small perturbation will cause a
significant error.

Another problem, which is also related to identifiability is the question about
uniqueness of the solution. A practical test is to start the optimization algorithm
from different initial points and see if you end up at the same optimum. If this
does not happen, it is likely that the objective functional is not convex, which is
a requirement for uniqueness. Unfortunately, this is the case for many problems
in PDE-constrained optimization. In these cases, the objective functional might
have several distinct local minima, in which case different techniques for finding
the best local minima exist [21].

Extraction of biomarkers

As can be seen from Figure 1.8, data assimilation of computational models and
medical imaging can be used to extract biomarkers. By biomarker, we mean an in-
dicator of some biological of physiological process that gives insight into the state
or condition of that process. Examples of biomarkers that can be extracted from a
computational model are parameters related to tissue stiffness, like the parameters
in the Holzapfel-Ogden material law (1.43), parameters related to contractility like
the active stress (Ta in (1.49)) or the active strain (γ in (1.54)), or estimates or my-
ofiber stress. Computational models open a new door when it comes to extraction
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of biomarkers, and mechanical features such as stress, contractility and elastance
can easily be computed using a computational model. Of course, validation of
these models is what matter most in order to make these biomarkers clinically
useful [11].
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Summary of papers

In this final introductory section we summarize the papers that make up this thesis,
and we also give some final concluding remarks and future directions.

Paper 1: High-resolution data assimilation of cardiac mechanics
applied to a dyssynchronous ventricle

Figure 1.16: Summary figure for paper 1

In this paper we develop and test a pipeline for constructing a patient-specific
mechanical simulation of a patient’s heart, based on clinical measurements and
adjoint-based data assimilation techniques.

As a model case we consider one patient, diagnosed with left bundle branch
block and selected for cardiac resynchronization therapy (CRT). Prior to the CRT
implantation the patient had 4D echocardiography taken for which the LV geom-
etry, LV volumes and LV regional strains throughout the cardiac cycle are mea-
sured. During implantation of the CRT device the LV pressure were also measured
invasively. The LV pressure measurements were used as boundary condition at the
endocardium, while the LV volume and LV regional strain were incorporated into
a cost functional that we wanted to minimize.
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52 1.5. SUMMARY OF PAPERS

The pipeline is divided into two phases, a passive phase where we estimate
the linear isotropic parameters a in (1.43) as a global material parameter using the
measurement points belonging atrial systole, and an active phase where we esti-
mate a spatially varying contraction parameter (γ in (1.54)) at each measurement
point with active contraction. During the passive phase we only fit the volumes,
while during the active phase a total of 51 strain measurements in the radial, lon-
gitudinal and circumferential direction in each AHA segment (Figure 1.9) were
used additionally in the optimization.

The results show an excellent fit with measured strain an volume, with a aver-
age relative error in the volume and strain of less than 0.4 % and 3 % respectively
using a contraction parameter with one degree of freedom for each vertex in the
geometry (2661 parameters in total). Parameters at lower spatial resolution are
also tested to show the necessity of high spatial resolution to fit the measured
strain data. A synthetic test is also performed in order to show that the method is
able to recapitulate the generated data, also with noise added to the data. More-
over, a sensitivity analysis to different parameters are presented in the appendix.

Paper 2: Estimating cardiac contraction through high resolu-
tion data assimilation of a personalized mechanical model

Unloaded

geometry

Healthy

LBBB

Data assimliation Estimating cardiac

contraction

Figure 1.17: Summary figure for paper 2

In this paper we apply the method developed in the previous paper to a cohort
of patients and estimate indices of cardiac contractility. More specifically, a group
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of seven patients diagnosed with left bundle branch block and selected for cardiac
resynchronization therapy (CRT), and a group of seven healthy control subjects
were included in the study.

The pipeline is similar to the one outlined in paper 1, with the exception that
we also estimate the unloaded, stress-free configuration using the method outlined
in Section 1.4.3.

The optimized active strain parameter in (1.54) as well as the optimized active
stress parameter in (1.49) are averaged over the ventricle and compared between
the two groups. The healthy group showed a significant increase in both of these
parameters. Furthermore, an estimation of the end-systolic elastance by perturba-
tion of the model at the end-systolic state, while fixing the remaining quantities,
was also conducted. This estimate of end-systolic elastance were also significantly
higher in the healthy control group.

Paper 3: Efficient estimation of personalized biventricular me-
chanical function employing gradient-based optimizatio
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Figure 1.18: Summary figure for paper 3
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In this paper we extend the work in the two previous paper to bi-ventricular
geometries, and use it to estimate patient-specific myofiber stress and indices of
contractility. Furthermore, we investigate the sensitivity of these computed fea-
tures the helical fiber angle and the choice of active modeling framework.

In this work we estimate the linear isotopic material parameter in (1.43), spa-
tially resolved on the LV and RV, by minimizing the error in end-diastolic LV and
RV cavity volumes. We use a simplified algorithm to estimate the unloaded geom-
etry, since the problem of estimating an unloaded BiV-geometry is not well-posed
because buckling of the RV free wall might occur. The amount of active con-
traction is estimated during the active phase, by minimizing simulated and mea-
sured volumes and circumferential strain. The active control parameter, which
are γ in (1.54) and Ta in (1.49) for the active strain and active stress formula-
tion respectively, are spatially resolved on the LV free wall (LVFW), the RV free
wall (RVFW) and the septum. With so few control parameters, issues related to
conflicting objectives, i.e that is is not possible to minimize both the strain and
volume, is evident. However, with a low dimensional parameter space, questions
regarding identifiability and uniqueness of the estimated parameters are easier to
answer. In this study we also perform a validation of the model, by comparing
simulated and measured longitudinal strain which is not used in the optimization.

The results show low variability with respect to choice of fiber angle and active
modeling framework. Also, the fit of data depends upon the choice of fiber angle,
and a steeper fiber angle than previously suggested, provides the best fit. The
work here could potentially be used to extract patient-specific maps of ventricular
fiber stress and contractility which could be useful in diagnostic of several heart
diseases related to heart failure.

Paper 4: Assessment of regional myocardial work from a patient-
specific cardiac mechanics model

In this paper we investigate if it is possible to assess regional myocardial work us-
ing data assimilation and finite element modeling. The amount of work performed
by the left ventricle equals to the amount to work needed to eject blood against
the intraventricular pressure. Effectively, a global measure of work is therefore
the same as the area of the pressure volume (PV) loop which is most commonly
refered to as stroke work. However, stroke work is a global measure which does
not reflect whether some regions in the ventricle work harder than others to com-
pensate for regional dysfunction, in order to maintain the stroke work needed to
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Figure 1.19: Summary figure for paper 4

meet the body’s demand. Therefore a regional measure of work would be helpful
in assessment of patients with regional dysfunction, and preferable we would have
a regional meausure that summed up to the actual stroke work. The area of the
pressure-strain loops, where strain here refers to as regional longitudinal strain,
has been proposed as a meausure regional myocardial work, and indices based on
these work calculations have shown to be a good predictor of response to cardiac
resynchronization therapy, a treatment given to patients with regional dysfunction.

To check the validity of these work calculations we estimate work using well
known laws from continuum mechanics in a personalized cardiac mechanics model,
similar to the models in the previous papers. These work calculations are com-
pared to estimates using the pressure-strain loops approach, and to the “gold-
standard” PV area. Our estimates of global mechanical work are in good agree-
ments with estimated PV area, while the pressure-strain loops quantitatively un-
derestimates the total mechanical work. However, relative measures of regional
efficiency seems to be independent of how work is computed, and yields the same
results in terms of assesment of regional dysfunction. Our finding therefore sug-
gest that regional myocardial work can be assessed using patient-specific finite
element modeling, while regional dysfunction in terms of indices of efficiency are
independent of how work is computed.
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In this study we also perform a convergence analysis of the algorithm for de-
termining the unloaded, zero-pressure geometry as well as the algorithm for joint
estimation of material parameters and unloaded geometry.
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Other contributions

Along with the research articles presented in this thesis, other types of contribu-
tions in terms of talks, posters and software has been made during the writing of
this thesis. These contributions are listed below.

Talks

• Henrik Finsberg, Gabriel Balaban, Joakim Sundnes, Hans Henrik Odland,
Marie Rognes, and Samuel T. Wall. “Patient Constrained Ventricular Stress
Mapping”, Conference Presentation at MALT 2015, Lugano, Switzerland
(2015).

• Henrik Finsberg, Gabriel Balaban, Joakim Sundnes, Marie Rognes, and
Samuel T. Wall. “Personalization of a Cardiac Computational Model using
Clinical Measurements”, Conference Presentation at 28th Nordic Seminar
on Computational Mechanics. Vol. 28. Tallin, Estonia, (2015).

• Henrik Finsberg, Gabriel Balaban, Joakim Sundnes, Marie Rognes, and
Samuel T. Wall. “Optimization of a Spatially Varying Cardiac Contraction
parameter using the Adjoint Method”, Conference Presentation at FEniCS
16, Oslo, Norway,(2016).

• Henrik Finsberg, Gabriel Balaban, Joakim Sundnes, Hans Henrik Odland,
Marie Rognes, and Samuel T. Wall. “Personalized Cardiac Mechanical
Model using a High Resolution Contraction Field ”, Conference Presen-
tation at VPH16 Translating VPH to the Clinic, Amsterdam, Netherlands
(2016).

• Henrik Finsberg, John Aalen,Camilla K. Larsen, Espen Remme, Joakim
Sundnes, Otto A. Smiseth, and Samuel T. Wall. “Assessment of regional
myocardial work via through adjoint-based data assimilation. ”, Conference
Presentation at the International Conference on Computational Science and
Enfineering, Oslo, Norway (2016).

Posters

• Henrik Finsberg, Gabriel Balaban, Joakim Sundnes, Marie Rognes, and
Samuel T. Wall. “Patient Specific Modeling of Cardiac Mechanics using the
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Active Strain Formulation ”, Geilo Winter School, Geilo, Norway, (2016).

• Henrik Finsberg, Ce Xi, J. Tan, L. Zhong, LC Lee, Joakim Sundnes, and
Samuel T. Wall. “Mechanical Analysis of Pulmonary Hypertension via Ad-
joint based Data Assimilation of a Finite Element Model ”, Summer Biome-
chanics, Bioengineering, and Biotransport Conference, Tucson, AZ, (2017).

Software

• Pulse-Adjoint, FEniCS-based cardiac mechanics solver and data assimila-
tor, source: https://bitbucket.org/finsberg/pulse_adjoint

• Mesh-Toolbox, Toolbox for generating FEniCS meshes from 4D Echo, source:
https://bitbucket.org/finsberg/mesh_generation
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Closing remarks and future directions
Although we have shown that the techniques developed in this thesis are powerful,
and opens up new possibilities in terms of patient-specific mechanical simulations,
many questions still have to be answered before we can fully embrace the output
of such simulations.

First of all, is should be clear that the quality of biomarkers you can extract
from a data-driven model cannot be any better than the data used as input to the
model. A typical saying is that garbage in = garbage out, meaning that if the data
you use to constrain the model is noisy, then you will also fit this noise if you
allow for enough degree of freedom. Regularization techniques (Section 1.4.5)
provides a way to attack this problem, but it is not clear what is the best approach.

A rule of thump is that the spatial resolution of the parameters should be
reflected in the spatial resolution of the observations. This means that if one is
trying to fit data that are spatially resolved at some level, then choosing parameters
that are resolved at a finer level should be done with caution. Regarding both paper
1, 2 and 4 we see that the spatial resolution chosen was at a much finer level than
the input data. In this case, regularization techniques were used to restrict the
parameter space, by assuming that the solution we seek had specific properties,
e.g smoothness.

Regarding the mechanical modeling of the heart, choosing appropriate bound-
ary conditions that reflect the reality has been an issue during the work of this
thesis, and several different choices have been made. Moreover, accounting for
the orthotropic as well as the visco-elastic behavior of the myocardium is some-
thing that should be investigated in future studies. Accounting for an orthotropic
behavior would acquire more parameters to be estimated, which would thus re-
quire more input data. In this thesis we have also not fully explored the spatial
resolution of the material parameters, and it should be investigated whether it is
possible to relate locally estimated tissue stiffness to e.g myocardial infarction.

Finally, when estimating high dimensional parameters, a natural question con-
cerning uniqueness of these estimates arises. It is obvious that if one allows for
enough degree of freedom in the parameter space, then it is possible to fit almost
any type of data. Therefore more work on ensuring identifiability of these es-
timates should be done. If the output of such models should have any clinical
utility, then uniqueness of the estimated parameters is absolutely pivotal. More-
over, validation of these model is what matter most in terms of translating such
computational models into the clinic.
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Abstract

Computational models of cardiac mechanics, personalized to a patient, offer ac-
cess to mechanical information above and beyond direct medical imaging. Addi-
tionally, such models can be used to optimize and plan therapies in-silico, thereby
reducing risks and improving patient outcome. Model personalization has tradi-
tionally been achieved by data assimilation, which is the tuning or optimization of
model parameters to match patient observations. Current data assimilation proce-
dures for cardiac mechanics are limited in their ability to efficiently handle high
dimensional parameters. This restricts parameter spatial resolution, and thereby
the ability of a personalized model to account for heterogeneities that are often
present in a diseased or injured heart. In this paper we address this limitation
by proposing an adjoint-gradient based data assimilation method that can effi-
ciently handle high-dimensional parameters. We test this procedure on a synthetic
data set, and provide a clinical example with a dyssynchronous left ventricle with
highly irregular motion. Our results show that the method efficiently handles a
high dimensional optimization parameter, and produces an excellent agreement
for personalized models to both synthetic and clinical data.

*Both of these authors contributed equally to this work.
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Introduction

Computational models of cardiac mechanics, personalized to the level of the in-
dividual through the use of clinical imaging, have potential to be a powerful aid
in the diagnosis and treatment of cardiac disease. By relating image-based data to
fundamental physical processes, models can give additional insight into the func-
tion or dysfunction of the individual’s heart, beyond what can be directly measured
or observed in the images. This is becoming more important as the resolution and
accuracy of clinical imaging continues to improve. This increasingly detailed data
combined with biophysical models has promise in analysis of regionally and tem-
porally resolved differences in the mechanics of the heart, important in diseases
such as heart failure and the application of cardiac resynchronization therapy.

A key step in making these clinically useful cardiac mechanics models is
proper data assimilation from patient observations into a fit model. This involves
the optimization, or tuning, of individual model parameters in order to make the
model match the observations of the patient’s heart. Over the last decade several
data assimilation methods have been developed and proposed for this problem.
The earliest studies employed gradient based optimization in order to minimize
the discrepancy between model-derived data and clinical observations. The gradi-
ents necessary for these optimizations were calculated using direct differentiation
[35] or finite difference [2, 14, 40]. More recent efforts include the use of global
optimization methods: in particular genetic algorithms [29, 36], a Monte Carlo
method [31], subplex algorithm [41], and parameter sweeps [1, 19]. Finally, re-
duced order unscented Kalman filtering has also been successfully applied as a
data assimilation tool for patient-specific model creation [9, 42, 28].

The increasingly large amount of easily obtainable geometric and motion data,
however, is a challenge for data assimilation into personalized computational
models using the techniques mentioned above. This is as the computational ex-
pense scales badly with the number of model parameters to be fit. In the case of the
Kalman filtering strategies, at least one extra evaluation of the model is required
per additional model parameter to be optimized. The calculation of model-data
mismatch gradients by finite difference or direct differentiation suffers from the
same limitation. Global methods on the other hand are affected by the curse of
dimensionality; that is, a rapid expansion of the space of parameters that must
be searched as the number of dimensions increases. For high dimensional prob-
lems the run-time needed to carry out a global search can be computationally
prohibitive.
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In contrast, the calculation of a functional gradient by the adjoint formula
is nearly independent of the number of optimization parameters, requiring one
forward and one backward adjoint solve of the mathematical model. The for-
ward solve is typically needed to evaluate the functional, and the evaluation of
the gradient at the same point requires only an additional backward solve of the
adjoint system. Furthermore, this backward solve is always linear, and there-
fore computationally less expensive than the forward solve if the mathematical
model is nonlinear. These methods have been widely explored in model optimiza-
tion, with adjoint-based data assimilation techniques having previously been em-
ployed for cardiac mechanics, specifically using linear elastic models and clinical
data [10, 37], and also nonlinears model combined with experimental data [4].

In this work we provide an improved data assimilation pipeline for high resolu-
tion optimization, demonstrating the parameterization of mechanical contraction
in high spatial resolution driven by 4D echocardiography patient data. This high
dimensional optimization problem is efficiently solved using an adjoint gradient
based technique, described in detail in our previous work [4]. We demonstrate
our method on the pathological case of a dyssynchronous left ventricle, which has
complex and irregular motion, as well as on a synthetic case consisting of data
generated by our mechanical model. This study is to the best of our knowledge
the first to use adjoint-based data assimilation for nonlinear cardiac mechanics
with clinical data, and the first to consider the resolution of a parameter at the
same scale as the discretization of the cardiac geometry. These are important
considerations as better understanding of myocardial properties emerges and the
collection of high resolution clinical data continues to expand.

The rest of this paper is organized as follows: In Section 2.2 we present a math-
ematical model that accounts for the three main drivers of ventricular mechanics;
blood pressure, tissue elasticity and muscle contraction. We also describe clinical
measurements of a patient suffering from dyssynchrony, and our data assimila-
tion procedure for fitting the model to these measurements. Numerical results are
presented in Section 2.3, and discussed in Section 2.4. Finally, we provide some
concluding remarks in Section 2.5.
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Materials and Methods

Wall motion modelling

In order to estimate the position of the myocardial walls through the cardiac cy-
cle we adopt a continuum mechanics description of cardiac wall motion. In this
description we consider a fixed left ventricular reference geometry Ω, with endo-
cardial boundary ∂Ωendo, and basal boundary ∂Ωbase.

Our fundamental quantity of interest is the vector valued displacement map
u(X), where X ∈Ω. At any given point in time in the cardiac cycle, u(X) relates
the current geometry ω to the reference geometry by

X+u(X) = x, x ∈ ω, X ∈Ω. (2.1)

Assuming that the cardiac walls are in equilibrium, it is possible to determine
the value of u from the principle of virtual work

δW (u) = 0, (2.2)

which states that the virtual work, δW (u), of all forces applied to a mechanical
system vanishes in equilibrium. For our ventricular wall motion model, the virtual
work δW (u), is given by

δW (u, p) =
∫

Ω

P : Grad δu dV +
∫

Ω

(J−1)δ p+ pJF−T : Grad δu dV

+ plv

∫
∂Ωendo

JF−T N·δu dS+
∫

∂Ωbase

ku·δu dS.
(2.3)

Here we have introduced the hydrostatic pressure p in order to enforce the in-
compressibility constraint J = 1, with J = detF = det(Grad u+ I), and I being
the second order identity tensor. Furthermore, N denotes the unit outward nor-
mal vector, k the constant of a spring that we introduce at the basal boundary,
and plv the intra-ventricular blood pressure. The virtual variables δu and δ p are
test functions whose values are arbitrary when the system (2.2) is in mechanical
equilibrium.

In order to anchor the computational geometry, we fix u in the longitudinal
direction at the base by using a Dirichlet boundary condition. At the epicardial
boundary normal forces are set to 0, and so there is no term for this boundary in
(2.3).
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The internal stresses of our model are given by P, the first Piola-Kirchhoff
tensor, which can be calculated as a derivative of a strain energy functional in the
case of a hyperelastic material. In our model we employ a reduced version [24,
17, 1, 19] of the Holzapfel-Ogden strain energy law [20],

ψ(C) =
a

2b

(
eb(I1(C)−3)−1

)
+

a f

2b f

(
eb f (I4 f (C)−1)2

+−1
)
, (2.4)

which gives the amount of strain energy, ψ , stored per unit volume myocardium
undergoing the strain C = FT F. The notation (·)+ refers here to max{· ,0}. Fur-
thermore the mechanical invariants I1 and I4 f are defined as

I1(C) = trC, I4 f = f0·Cf0, (2.5)

with f0 indicating the local myocardial fiber direction. The material parameters
a,a f ,b,b f are scalar quantities which influence the shape of the stress-strain rela-
tionship, and can be adapted to personalize the elastic properties of a myocardial
tissue model to a specific patient.

The Lagrange multiplier formulation of incompressibility that we employ en-
forces its constraint only weakly. This can cause convergence issues in the numeri-
cal solution of the work balance equation (2.2). We therefore eliminate volumetric
strains from the energy function (2.4) by a simple modification

ψ̃(C) = ψ(J−
2
3 C). (2.6)

This modification has been shown to improve the robustness of Newton-Raphson
methods applied to incompressible hyperelastic problems [Figure 3C of [25]].

In order to account for muscle contraction we apply the active strain frame-
work [30]. In this framework the amount of muscle fiber shortening is specified
by a field γ via a split of the deformation gradient

F = FeFa(γ), (2.7)

where Fe is the elastic part and Fa(γ) the active part of the deformation gradient.
For the value of Fa(γ) we adopt a simple relation [17, 11] which satisfies the
incompressibility constraint by design and directly relates the amount of active
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fiber shortening to the value of γ

Fa = (1− γ)f0⊗ f0 +
1√

1− γ
(I− f0⊗ f0). (2.8)

In the case γ = 0 there is no muscle shortening at all, and the amount of shortening
increases with increased γ up to the theoretical limit of γ = 1. Physiologically, γ

models the length change along muscle fibers neglecting elastic effects. This,
together with the elastic resistance gives the strength of the muscle contraction.

Muscle contraction is accounted for in terms of virtual work by modifying the
first Piola-Kirchhoff stress tensor, so that the strain energy only depends on the
elastic part of the deformation

P =
∂ψ̃

∂F
=

∂ψ̃(Ce)

∂F
(2.9)

with Ce = FT
e Fe.

Given an amount of fiber shortening γ , the value of the elastic parameters
a,b,a f ,b f , the intraventricular blood pressure plv and the spring constant k, the
myocardial wall displacement u and hydrostatic pressure p can be obtained by
solving the principle of virtual work (2.2).

Clinical measurements

Clinical data were obtained at the Oslo University Hospital in the context of the
Impact study [22]. Specifically, we consider the case of an 82 year old man in
NYHA functional class III systolic heart failure with coronary artery disease, and
left bundle branch block. A left bundle branch block normally causes both elec-
trical and mechanical dyssynchrony. In this case the ECG revealed a QRS width
of 140 ms and the echocardiographically derived ejection fraction of 30 %.

Prior to cardiac resynchronization therapy implant, the patient had echocar-
diographic and left ventricular (LV) pressure measurements taken, which are the
basis for the clinical data used in this study. Pressure recordings were carried
out with an intravascular pressure sensor catheter (Millar micro catheter) that was
positioned in the LV via the right femoral artery. Pressure data were obtained au-
tomatically and digitized (Powerlab system, AD Instruments) before offline anal-
yses were performed with a low pass filter of 10Hz.

Images of the patient’s left ventricle (LV) were captured with 4D echocar-
diography using a GE Vingmed E9 machine (GE healthcare Vingmed, Honrten,
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Norway). Speckle tracking motion analysis was carried out with GE’s software
package EchoPac. Data from 6 beats were combined in EchoPac in order to obtain
a single sequence of images for a single heartbeat. Analysis of these images re-
sulted in LV cavity volume measurements as well as regional strain curves defined
for a 17 segment delineation of the LV according to the AHA representation [8].
The strain curves were measured in the local left ventricular longitudinal, radial
and circumferential directions. Both strains and volumes were measured 34 times
throughout the cardiac cycle.

Valvular events were used to synchronize the pressure to the strain and volume
data. The timing of the observed valvular events in the images were matched with
the observed valvular events in the pressure trace. In the pressure trace, aortic
valve opening (AVO) was selected after the steepest increase of the pressure (d p

dt
max ), and mitral valve closure just before d p

dt max . Aortic valve closure (AVC)
was chosen just before the pressure had its largest decrease after AVO, and the
mitral valve opening before the pressure dropped down to baseline after AVC. A
pressure-volume loop based on the synchronization is displayed in Figure 2.2.

Finally a linear correction of the strain curves was performed in order to elim-
inate drift; with drift being defined as the value of the strain obtained at the end of
the cardiac cycle. Theoretically drift should be zero for a stable cyclical heartbeat.
The linear correction enforces the cyclical property.

Ventricular geometry generation

The computational mechanics framework used for our wall motion model, de-
scribed in Section 2.2.1, requires a reference stress-free geometry from which to
define displacements. Such a geometry typically does not exist in-vivo due to the
presence of blood pressure on the endocardial walls. Algorithms exist for calcu-
lating stress free geometries given a loaded state [7, 15]. However for the sake of
simplicity we derive our reference geometry from an echocardiographic image of
the LV at the beginning of atrial systole, as the pressure is near minimal at this
point, and the ventricular myocardium can be assumed to be relaxed.

From the image at the beginning of atrial systole, triangulated data points for
left ventricular endocardial and epicardial surfaces, along with a 17 segment de-
lineation, were extracted using the EchoPac software package. The segment de-
lineation was given on a so called strain mesh, which is a 2-D surface constructed
by EchoPac and located approximately in the mid wall of the LV.

We constructed a flat ventricular base by cutting the raw geometry with a plane
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that was fit via least-squares to the points at the base. After the fitting, the longi-
tudinal position of the cutting plane was adjusted so that the cavity volume of the
resulting mesh agreed with the measured volume to a tolerance of 1 ml. Points
on the epicardial and endocardial surfaces that lay above the cutting plane were
removed.

We employed Gmsh [16] to create a linear tetrahedral volumetric mesh be-
tween the endocardial and epicardial surfaces. This mesh had 1262 elements, and
is shown in Figure 2.1b. Myocardial fiber orientations were assigned using a rule
based method, with a fiber helix angle of 40 degrees on the endocardium rotated
clockwise throughout the ventricular wall to −50 degrees on the epicardium [6].
A streamline representation of the local myocardial fibers is displayed in Figure
2.1c.

Finally, the AHA-segments from the strain mesh were transferred onto the
volumetric mesh. This was accomplished by computing prolate spherical coor-
dinates for the barycenter of each tetrahedron, and then assigning an AHA-zone
to the tetrahedron based on the corresponding prolate spherical coordinate in the
strain mesh. AHA-segments on the volumetric mesh are shown in Figure 2.1d.

Parameter Estimation

Now that we have a mathematical description of cardiac motion, along with a per-
sonalized computational geometry and target data, we next turn to the problem of
personalizing the motion model via the estimation of the elastic parameters and the
fiber contraction. As dyssynchrony is a disease which primarily effects the con-
traction properties of the ventricle, we focus our efforts on contraction modelling
and employ a very simple personalization of stiffness properties. That is only the
parameter a is optimized to fit the ventricular volumes, and the other elastic pa-
rameters are kept fixed at the values (a f = 1.685,b = 9.726,b f = 15.779), which
were obtained from a bi-axial loading experiment [Table 1 row 3 of [20]].

Fiber contraction varies throughout the cardiac cycle, and so we estimate the
parameter γ separately at each time measurements were taken. Furthermore, as
the contraction of the left ventricle may occur dyssynchronously, we allow for γ

to vary in space as well as in time.
Muscle shortening is typically present in the ventricles throughout systole and

in early diastole until the muscles fully release their contraction. During the phase
of atrial systole we do not expect muscle contraction in the ventricle, and so we set
γ = 0 for this phase. This allows us to estimate elastic properties independently
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Figure 2.1: Ventricular geometry generation. Endo and epi-cardial surfaces are
marked on 3-D ultrasound images. Figure (2.1a) shows the endocardial mark-
ing for a 2-D slice of one such image. Next a computational geometry is gener-
ated from epi and endo-cardial surfaces (2.1b), and rule based fibers are assigned
(2.1c). Finally AHA segments are assigned to the geometry (2.1d), according to
the standardized scheme (2.1e).
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of contraction during atrial systole, and then estimate contraction at each point in
the rest of the cardiac cycle with the material parameters fixed. In Figure 2.2 we
show the pressure-volume loop of the patient under consideration, and highlight
the phases where we estimate the contraction and elastic parameters.
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Figure 2.2: Patient pressure-volume relationship for the left ventricle. Measure-
ments in the blue solid line are used to estimate contraction, whereas measure-
ments in the red dashed line are used to estimate elasticity.

Definition of functionals

As described in Section 2.2.2, the data available for our personalization of the wall
motion model are pressure, volume and strain measurements throughout the car-
diac cycle. The pressure measurements are included in the model as a boundary
condition via the virtual work (2.2), and thus our data assimilation only needs to
fit the model to the volume and strain measurements. This requires that we de-
fine a suitable set of functionals that quantify the model-strain and model-volume
mismatches. The personalization of the wall motion model can then be achieved
by optimizing the contraction and elastic parameters in order to minimize the total
model-data mismatch.

Let i denote the index of an observed cavity volume V i, or strain ε i, in the
cardiac cycle. Furthermore let j ∈ {1, ..,17} be the index of an AHA segment
Ω j, and k ∈ {c,r, l} indicate a direction: circumferential, radial or longitudinal,
respectively. Given a measurement point i, we define the model-strain mismatch

Ii
strain =

17

∑
j=1

∑
k∈{c,r,l}

(
ε

i
k j− ε̃

i
k j

)2
, (2.10)
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for model strain ε̃ i
k j and measured strain ε i

k j. The speckle tracking software we
use provides the measured strain ε i

k j. This strain is regionally averaged and of
Lagrangian type. In order to mimic this in our model we define the model strain
as

εk j =
1
|Ω j|

∫
Ω j

eT
k ∇uek dx, (2.11)

where ek denotes a unit direction field and |Ω j| the volume of segment j.

Furthermore we also define the model-volume mismatch

Ii
vol =

(
V i−Ṽ i

V i

)2

, (2.12)

where the model volume is calculated by the formula

Ṽ i =−1
3

∫
∂Ωendo

(X+u)·JF−T N dS. (2.13)

We note that this method of calculating the model volume depends upon (X+

u)·N = 0 at the basal plane. These conditions hold in our model as the basal
plane is defined with 0 longitudinal coordinate and longitudinal displacements are
also set to 0 in this plane.

In order to have a single optimization target to describe the fit to data we
combine the strain (2.10) and volume (2.13) mismatches into one single functional

Ii
data(α) = αIi

vol +(1−α)Ii
strain. (2.14)

Here the parameter α controls the relative emphasis of the parameter estimation
on volume or strain matching.

In our study we consider a high dimensional representation of γ in order to
more accurately capture the details of a dyssynchronous contraction. However
this can easily lead to an over-parametrized problem in which many parameter
combinations produce the same functional values. In order to further constrain
the optimization we introduce a 1st order Tikohonov regularization functional

Ii
smooth(λ ) = λ‖∇γ

i‖2, (2.15)

where ‖·‖ represents the standard L2 norm. This functional discriminates between
γ parameter sets based on their smoothness. The parameter λ can be adjusted to
control the size of the functional and hence the relative emphasis on smoothing.
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Parameter estimation as an optimization problem

The elastic parameters of the reduced Holzapfel-Ogden law (2.4) represent the
passive elastic properties of the myocardium. We personalize these properties by
adjusting the parameter a to match measured left ventricular volumes. Mathemat-
ically this problem is formulated as

minimize
a

NAS

∑
i=1

Ii
vol

subject to δW (pi
lv,a) = 0 ∀ i ∈ {1, ...NAS},

(2.16)

where δW is given by (2.3), and NAS = 3 indicates the total number of measure-
ments available in atrial systole.

The contraction field that we seek should fit the data as closely as possible
while also being as smooth as possible. In order to achieve this we minimize both
the data and smoothness functionals as follows:

minimize
γ

Ii
data(α)+ Ii

smooth(λ )

subject to δW (pi
lv,a,γ

i) = 0

γ
i(X) ∈ [0,1), X ∈Ω.

(2.17)

This problem is solved for every measurement point i not in atrial systole.

The optimization problems (2.16) and (2.17) have two free parameters whose
values must be chosen, namely the strain-volume weighing α and the regular-
ization λ . The value of λ can be expected to influence the trade-off between
the optimized values of the data functional Ii

data and the regularization functional
Ii
smooth. Similarly α can be expected to influence the trade-off between Ii

strain and
Ii
vol. In our study we choose the values of α and λ by examining their effects on

the functionals that they weigh. The choices we made are further described in
Section 2.3.3

The spatial resolution of the parameter γ affects the amount of detail that can
be captured by the model and simultaneously the number of variables that need to
be optimized. We therefore test 3 different resolutions of γ . The lowest resolution,
“scalar”, is simply a single global value. The next resolution is “regional”, and
consists of a separate value for each of the 17 AHA zones. Finally, the highest res-
olution we consider is “P1” and consists of a separate value at each of the vertices
of the mesh, with a linear interpolation between vertices. Using our ventricular

81



82 2.2. MATERIALS AND METHODS

mesh, a P1 resolution of γ has 1262 separate variables.

Implementation of mechanics and optimization solvers

For the numerical solution of the work balance equation (2.2) we employ a Galerkin
finite element method with Taylor-Hood tetrahedral elements [21]; that is, a con-
tinuous piecewise quadratic representation of the displacement field and a contin-
uous piecewise linear representation of the pressure field.

The software implementation of our finite element method is based on the
package FEniCS [27], which automatically generates matrix and vector assembly
code from a symbolic representation of the work balance equation (2.2). The
resulting nonlinear systems were solved using the PETSc implementation of a
Newton trust region algorithm [5], while the inner linear solves were handled by
a distributed memory parallel LU solver [26].

To solve the optimization problems (2.16) and (2.17), we apply a sequential
quadratic programming algorithm (SQP) [23]. This algorithm requires the deriva-
tives of the function to be optimized, which in our case are the gradients of the
mismatch functionals in problems (2.16) and (2.17) with respect to a and γ respec-
tively. These gradients are automatically computed by solving a machine derived
adjoint equation via the software framework dolfin-adjoint [12].

In addition to gradients, the SQP algorithm requires evaluations of the mis-
match functionals for given values of the control variables, which again relies on
the solution of the work balance equation (2.2). In the case of problem (2.17),
the control variable is γ , which has a large influence on the solution of (2.2). Nu-
merical solution of (2.2) by Newton’s method depends upon having a good initial
guess, which in our case are the values of the mechanical state variables, u, p,
resulting from the previous solve of (2.2). If the value of γ differs too greatly
from one solve to the next the Newton algorithm might fail due to the root of the
system being too far away from the initial guess. To avoid this problem we make
use of a homotopy procedure that moves from one value of γ to the next in small
increments, and solves (2.2) each time the value of γ is changed. This procedure
is presented as Algorithm 1 and is similar to the one found in [34].

All algorithms, solvers and relevant data are publicly available online [13].
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Algorithm 1 Max Increment Homotopy Newton Solver
Initial Variables

uprev Previous displacement field
pprev Previous tissue hydrostatic pressure field
γnext Desired tissue contraction field
δγmax Maximum change in a component per Newton solve

Set
γ0 = γprev
u0 = uprev
p0 = pprev

M =
⌈‖γnext−γprev‖∞

δγmax

⌉
δγ = 1

M (γnext− γprev)

Use Newton’s method M times with fixed increment δγ

for i ∈ {1...M} do
γi = γi−1 +δγ

Initialize Newton solver with ui−1, pi−1
Solve δW (ui, pi,γi) = 0 for ui, pi

Output ui, pi
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Error Estimation

The optimization functionals introduced in Section 2.2.5 are defined separately
for each measurement point. For the purposes of evaluating goodness of fit over
the entire cardiac cycle we consider metrics that are averaged over measurement
points. Furthermore we relate errors to the sizes of the data for ease of interpreta-
tion. In the case of the model-volume error we introduce the volume metric

Ivol =
‖V i−Ṽ i‖`1

‖V i‖`1
(2.18)

where the `1 norm is taken with respect to the measurement point index i. Fur-
thermore we consider two average strain metrics

Istrain =
1

51

17

∑
j=1

∑
k∈{c,r,l}

‖ε i
k, j− ε̃ i

k, j‖`1

‖ε i
k, j‖`1

, (2.19)

Irelmax
strain =

1
51 ∑

k∈{c,r,l}

∑
17
j=1 ‖ε i

k, j− ε̃ i
k, j‖`1

max j ‖ε i
k, j‖`1

. (2.20)

Here N specifies the number of measurement points used in the optimization,
and the factor 51 is 17× 3, the number of AHA segments times the number of
strain measurements per segment. The first metric considers relative differences
between norms, whereas the second relates errors norms to the maximum strain
norm over all segments. This second metric emphasizes larger features in the
strain curves more heavily, and deemphasizes small scale features such as noise.

Similarly to the average data errors introduced above we also introduce a
smoothness metric that is averaged across measurement points

Ismooth =
1
N

N

∑
i=1

Ii
smooth, (2.21)

and a combined data metric based on the strain and volume metrics

Idata = Ivol + Istrain. (2.22)

Finally we also define an error metric for a synthetic data test of the contraction
optimization (2.17). In this test a contraction field γground is chosen and synthetic
data is generated from the mechanics model. This data is then used to calculate
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a reproduction of the contraction γrepr. In order to compare the ground truth and
reproduced contraction fields we employ a relative L2 norm

‖εγ‖avg =
1
N

N

∑
i=1

‖γ i
repr− γ i

ground‖L2

‖γ i
ground‖L2

. (2.23)

Numerical Experiments
In this section we present the results of our numerical experiments. We first esti-
mate the parameter a using volume measurements in atrial systole. We then test
the estimation of contraction γ using synthetic data generated by the wall motion
model. This gives an idea of how well the algorithm can perform under idealized
circumstances. Next, we carry out the contraction estimation using the clinical
strain and volume data. Finally, we consider lower resolution representations of
γ , and compare the resolutions based on computational expense and data matching
capability.

In all of the experiments below, optimizations were terminated if the differ-
ence between the value of the mismatch in the current and previous iteration was
less than 10−9 for the passive material parameter optimization and 10−6 for the
contraction parameter optimization or if the SQP algorithm was not able to further
reduce the mismatch value. In the active parameter optimization the SQP algo-
rithm was initialized with the value of γ from the previous measurement point in
the cardiac cycle.

In order to obtain convergence of Newton’s method for the solution of the vir-
tual work equation (2.2), we set δγmax = 0.02 in the homotopy Newton solver (Al-
gorithm 1), and limit γ to the interval [0,0.9]. In the cases that Newton’s method
did not converge, δγmax was halved until convergence was obtained.

Strains were calculated with respect to the measurement point defined as start
of atrial systole, as the reference geometry taken from the image corresponding
to this point was assumed to be stress and strain free. Similarly, pressures for
the clinical data were adjusted downward by the pressure measured at the start of
atrial systole, 2.8 kPa, so that the adjusted start of atrial systole pressure was 0,
and therefore compatible with the stress free assumption.

The value of the basal spring-constant was set to k = 1.0 kPa. This allowed
for some motion in the basal plane, and was shown in a sensitivity analysis (see
Appendix 2.7.2) to give optimal γ values whose spatial average is close to that
obtained with a completely fixed boundary.
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Estimation of elastic parameter a

An estimate of the parameter a was obtained by minimizing the mismatch between
model derived and clinically measured volumes in atrial systole, as described in
(2.16). The optimal a value obtained was 0.435, with goodness of fit Ivol = 0.0035.
The same optimal a value was obtained from 8 randomly chosen starting points
between 0 and 45.

Synthetic dataset creation

In order to evaluate the performance of our contraction estimation method (2.17)
under idealized conditions we have performed synthetic data tests. The data for
these tests was constructed by solving the virtual work equation (2.2) for a given
set of elastic parameters (a,a f ,b,b f ), contraction γ , and cavity pressures. The
a parameter was set to 0.435, as obtained previously by fitting the model to the
patient atrial systolic volume data. The other three elastic parameters were fixed
to the values mentioned in Section 2.2.4. The contraction γ was chosen to be a
wave with Gaussian shape and P1 resolution traveling along the longitudinal axis.

Eight points of measurement were used in the synthetic tests. This was fewer
than the number of in-vivo measurement points, which allowed for faster com-
putations. The pressure values that were chosen for the synthetic measurement
points can be seen in Figure 2.5. These pressures start at 0, increase to the maxi-
mum atrial systole pressure that was measured in-vivo and then decrease linearly
back to 0.

For the synthetic strain data we considered three different cases. The first case
consisted of the displacement gradient tensor defined over the entire ventricular
geometry. Next we considered regionally averaged values of the diagonal com-
ponents of the displacement gradient. The regional averaging mimics the strain
curves generated by the speckle tracking software. Finally we consider 30 noisy
realizations of the regional strain curves. The noise that was added to these curves
was estimated from the drift values of the in-vivo strain and is described in Ap-
pendix 2.7.5.

Choice of functional weights α and λ

The optimization functional weights α and λ were chosen based on trial opti-
mizations using the synthetic and in-vivo datasets. The strains in the synthetic
data were regionally averaged and noisy. In these trials we first set λ = 0 and
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tested α values ranging from 0 to 1.0 in increments of 0.1, in addition to the val-
ues 0.95, 0.99, 0.999, and 0.9999. For each level of α we recorded the values of
the fit metrics, Ivol and Istrain, and plotted them against each other (Figure 2.3).
Based on the plot we chose α = 0.95 as this value gave a good balance between
volume and strain matching. With the value of α fixed to 0.95 we tested λ from
10−6 to 100.0 in increasing powers of 10. The effect of the choice of λ on the
smoothness and data functionals is shown in Figure 2.3. Based on this plot we
selected points that gave near optimal fit values with a high level of smoothness.
These points were λ = 1.0 for the synthetic case and λ = 0.01 for the patient case.

Contraction estimation with synthetic data

Using the synthetic datasets described in Section 2.3.2 as a target we calculated
optimized contraction fields. All elastic parameters were kept fixed throughout the
optimization so that the test was restricted to the contraction field. We quantified
the error in the reproduction of γ using P1 resolution for the three cases of strain.
Errors in the relative norm, ‖εγ‖avg, were 0.033 for the full displacement gradient
tensor and 0.227 for the regionally averaged diagonal of the displacement gradient
without noise. The average error for the 30 noisy regionally averaged cases was
0.224 with a standard deviation of 0.009. We note that the reproduction error was
lowest for the full clean strains, and an order of magnitude higher for the regional
clean and regional noisy strains. We also note that the reproduction error using
regional clean strains was very close to the average reproduction error from the
30 regional noisy strains. The maximum error for all three cases of strain occured
in the apex, and was 0.06, 0.0701, 0.0724 for the full, regional clean and regional
noisy cases respectively.

For the case of the full clean strains we have plotted the reconstructed contrac-
tion field alongside the ground truth in Figure 2.5. We note that the ground truth
and reproduction appear very similar. In order to visualize the effect of the noise
in strain on the optimized contraction field we plotted the mean and standard de-
viation of the 30 synthetic strain curves, and mean and standard deviation of the
average of the contraction field resulting from the 30 strain curves. Both of these
plots are restricted to the anterior basal segment and are shown in Figure 2.4. We
note that the effect of the noise on the average contraction field is minimal.
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Figure 2.3: Trade-off curves for various α and λ values used in model personal-
ization with synthetic strain data and in-vivo patient data. The synthetic strains
are noisy and regionally averaged. The contraction parameter is represented at P1
resolution. Top: optimal strain mismatch (2.20) versus average volume mismatch
(2.18) for a range of α values and λ = 0.0. Bottom: Total data mismatch versus
contraction gradient size for a range of λ values and α = 0.95.
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Figure 2.4: On the left are the mean (solid line) and standard deviation (high-
lighted area) of 30 synthetic longitudinal strain curves in the anterior basal seg-
ment corrupted by Gaussian noise. On the right are the mean and standard devia-
tions of γ averaged over the same segment.

Contraction estimation with in-vivo data

Using the in-vivo data described in Section 2.2.2 as a target, we calculated opti-
mized contraction fields at P1 resolution. These contraction fields are shown in
Figure 2.8. We note that the value of the contraction varies significantly in space
and time. A comparison of the estimated to the measured PV loop is shown in
Figure 2.7. Optimized and measured strains are compared in Figure 2.6.

Effect of contraction parameter resolution

In order to quantify the effects of the resolution of the contraction field γ we have
repeated the contraction estimation from in-vivo data using regional and scalar
resolutions. The fit values obtained for these resolutions are compared to the fit
value of the P1 resolution in Table 2.2. The results show that the P1 resolution
of γ gives an order of magnitude better strain and volume matches than the scalar
and regional resolutions, and that Irelmax

strain is about an order of magnitude lower than
Istrain in all three cases.

The computational cost of the data assimilation using the three resolutions of
γ is compared in Table 2.1. We note that the number of forward and adjoint solves
increases with the resolution and that the average runtime of an adjoint solve in
the scalar and P1 resolutions are almost the same.
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Figure 2.5: Lateral view of the ground truth and reconstructed contraction fields
at 7 measurement points during the synthetic data test. The target for the opti-
mization is the full strain field with no noise. At each pressure the reconstruction
is displayed on the left and the ground truth on the right.
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Figure 2.6: Comparison of regional strain curves starting in end diastole. In red:
optimized wall motion model data. In blue: clinical data from speckle tracking
echocardiography. In each plot the y-axis represents strain while the x-axis shows
the progression in time of the cardiac cycle as a percentage.
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Figure 2.7: Clinically measured (red) versus optimized wall motion model (blue)
left ventricular cavity volumes.

Table 2.1: Performance of the contraction optimization with the clinical data for
different resolutions of contraction parameter γ . The second and third column
display the average number of forward and adjoint solves required to optimize γ

at a single measurement point. The fourth column shows the total run time over
all measurement points and the final column the average run time of an adjoint
solve.

resolution of γ forward solves adjoint solves total run time (s) adjoint evaluation
average average average run time (s)

scalar 4.6 2.8 280 7.4
regional 12 6.5 210 19.3
P1 46 46 1100 7.9

Table 2.2: Relative misfit for different representation of γ

resolution of γ Ivol Istrain Irelmax
strain

scalar 0.044 1.5 0.27
regional 0.024 1.1 0.16
P1 0.0037 0.17 0.029

92



Paper 1 93

Figure 2.8: Posterior view of the contraction field γ optimized to in-vivo data at
P1 resolution. A snapshot is shown for every third in-vivo measurement point.
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Discussion

In our study we have created a personalized model of whole cycle ventricular me-
chanics based on strain, volume and pressure measurements of a dyssynchronous
left ventricle. The contraction parameter in our study was resolved at a high P1
level of resolution. Previous studies [41, 9] have considered contraction parame-
ters that were resolved up to the regional level of AHA zones. By comparing our
P1 results to those generated with a regional resolution we have shown that it is
possible to greatly increase the fitting ability of a data assimilation method by in-
creasing the parameter resolution. Indeed Table 2.2 shows that the fits Ivol, Istrain,
and Irelmax

strain are an order of magnitude better for the P1 resolution as compared to
the regional or scalar resolutions.

Errors in strain fitting were significant at the P1 resolution when compared
to the sizes of the strain curves (Istrain = 0.17). These errors can stem from a
fundamental model-data mismatch, and or an inability of the data assimilation to
fit the model to the data. In the case of a model-data mismatch the limitations
of the model may play a role (see Section 2.4.1). Another cause of model-data
mismatch is inaccuracy or noise in measurements, in which case the model can
be used to improve the measurements. This is the case when models are used to
regularize image based motion [33, 39].

The SQP optimization algorithm that we employed is a local search only, so
that is possible that our fitting was suboptimal, possibly contributing to the mis-
match in strain. Adding regularization has been shown to prevent such suboptimal
results in fluid control problems [[18] page 123]. This partially motivated our use
of regularization in the contraction optimization (2.17).

The discrepancies between our model based and measured strains are very
small however when compared to the sizes of the largest strain curves of a given
strain type, longitudinal, circumferential or radial. This can clearly be seen in
Figure 2.6 and in the low value of the metric Irelmax

strain . This shows that our method
was able to accurately capture the larger amplitude features of the heterogeneity
in contraction. Such features are less prone to distortion by noise then those with
smaller strain values, and are therefore more relevant for potential medical use.
However, the question of how much model resolution is actually needed to provide
medically useful information remains an open one.

As a consequence of increased dimensionality in the optimization, estimating
the contraction γ took just under 4 times longer with the P1 resolution than the
scalar resolution. This was due to an increase in the number of forward and ad-
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joint evaluations needed at the higher resolution. However the average run time
of an adjoint gradient evaluation did not differ significantly in the P1 case. This
near invariance of the gradient calculation cost to the number of optimization pa-
rameters is an advantage of the adjoint-gradient method. In the case of the re-
gional resolution the average adjoint-gradient run-time was nearly double that of
the other two cases. This was due to increased symbolic computation required
by the software dolfin-adjoint to differentiate characteristic functions defined over
each AHA segment. The total run-time for the scalar case was higher than for the
regional case, despite the scalar case requiring fewer forward and adjoint evalua-
tions. This was due to a greater number of Newton iterations required per forward
solve in the scalar case.

In order to test the effects of mesh resolution on the contraction estimation
we have considered alternative mesh resolutions in Appendix 2.7.3. The analysis
shows that the tested increase and decrease in the resolution of the mesh did not
significantly change the fit quality of the contraction estimation (Table 2.5). There
were however slight differences in the spatial average of the contraction field be-
tween the three cases tested (Figure 2.11). This was most likely due to differences
in the quality of the discrete approximation of the work balance equation (2.2).

In the current study the resolution of the computational mesh effected both the
resolution of the contraction field and the resolution of the displacement-pressure
variables in the FE model. The results of the mesh resolution tests suggest our
contraction field may have been too highly resolved, and that it might be beneficial
to select the resolution of the contraction variable independently of the mesh in
future studies. This would require specifying a set of basis functions for γ , which
could be designed to allow for a good fit of model to data while at the same
time minimizing the number of degrees of freedom. Such a procedure has been
previously implemented for parameter estimation in groundwater modelling [38].

In order to test the accuracy of the contraction estimation we have conducted
synthetic data tests for which the true contraction field was known. The results
of these tests show that our data assimilation is greatly effected by the sparsity
of data. Indeed the approximation of γ was an order of magnitude better with
strains that had all 6 components and were defined everywhere on the geometry,
as compared to the regionally averaged strains limited to the tensor diagonal. This
result did not hold at the apex where the maximum errors were the same for all
three cases.

The regionally averaged strain representation is easier for a human to interpret
and is widely used in medical research. However for the purposes of building
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accurate personalized models, more resolution of strain is highly advantageous.
The synthetic tests also showed that our data assimilation is not greatly effected
by noise in the echocardiographic measurements. This is most likely due to our
use of regularization, which favoured smoother solutions that averaged out the
effects of the noise.

In addition to noise in strain we can also expect inaccuracies in volume mea-
surements from echocardiography. This is an issue for the estimation of the elastic
parameter a, which we conducted purely from volume measurements. Exper-
iments with gel phantoms have quantified this inaccuracy for assessments of a
single image [3]. However for the estimation of the elastic parameter a relative
differences in errors between images are more relevant. These have to the best of
our knowledge not been studied, and so we have conducted estimations of a with
volume curves perturbed by a range of errors (see Appendix 2.3.1). These exper-
iments show that the estimated stiffness parameter is indeed sensitive to volume
errors. The effect on the average of the contraction field is however quite minimal.
An alternative to the current stiffness estimation procedure would be to allow for
greater spatial resolution from strain measurements as per the contraction param-
eter. This might allow for a regularized stiffness field to average out the effects of
noisy measurements.

The volume fit between model and data was close for the three points in atrial
systole, but significant in early isovolumic contraction. Indeed the model under-
estimated the measured volumes, indicating an overestimation of ventricular stiff-
ness at these points. This is a consequence of fitting the stiffness parameters to
the atrial systolic points, and not to the points afterwards. If the effects of contrac-
tion could be isolated from the effects of elasticity it would be possible to include
these points in the elastic parameter fitting and possibly obtain a better match of
volumes.

In our study we personalized only a single elastic parameter a, which was done
for the sake of simplicity. Previous studies have successfully estimated greater
numbers of elastic parameters for the reduced Holzapfel law [1] and the fully or-
thortropic Holzapfel law [14]. Such procedures could be potentially combined
with our contraction estimation in order to increase the level of model personal-
ization. Another potential improvement of the elastic parameter estimation we
employed is the inclusion of aggregated geometry measures; such as short axis
and long axis diameters. Such measures have been shown to improve identifiabil-
ity of elastic parameters in experiments with mouse ventricles [32].

Several data assimilation studies [29, 36] have included objective functionals
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consisting of strain and volume components with equal weighing given to both.
We have shown that it may be possible to improve such data assimilation proce-
dures by tuning the relative weight of strain and volume components. Indeed in
the top right plot of Figure 2.3 there is a definite corner in the strain-volume fitting
space consisting of 4 points beneath α = 0.95. Choosing α among these points
gives a fair trade-off between strain and volume matching whereas any choice out-
side this corner simply worsens the fit of strain or volume without much improving
the other.

In Figure 2.3 we have shown how the parameters α and λ effect the fitting
and smoothness metrics related to the contraction field γ . Additionally, we have
tested the effects of variations in α and λ on the spatial average of the contraction
field. These experiments are presented in Appendix 2.7.4. Figure 2.12 shows that
varying α in the region [0,0.5] had little to no effect on the spatial average of γ ,
whereas increases in α outside of this region tended to increase the amount of
contraction. This behaviour correlates with the value of Istrain in (Figure 2.3 top
right). Similarly, increasing λ beyond 0.001 tended to increase the misfit in the
data functional (Figure 2.3 bottom right), and also increase the average amount
of contraction (Figure 2.12 right). We hypothesize that additional levels of misfit
in strain introduced by increasing α beyond 0.5 and or λ beyond 0.001 lead to
overestimating the amount of contraction in our patient’s LV. However we lack
knowledge of the true amount of muscle contraction in the patient which could be
used to test the hypothesis. Further validation of the model and data assimilation
are needed.

Limitations

The results obtained in this article were limited by issues pertaining to the choice
of mathematical model, quality of clinical data, numerical stability, and the design
of the data assimilation algorithm. Firstly, the boundary conditions of the ventricle
wall motion model did not account for the effects of the right ventricular pressure
on the septum, and the mechanical coupling to the neighboring structures: left
atrium, right ventricle and pericardium.

The in-vivo circumferential and radial motion at the base was not incorporated
into the model. Instead some motion was allowed by the basal spring, whose
constant k needed to be chosen. In the future we would like to incorporate basal
motion data from the images into our personalized model. This would allow us
to avoid having to make a choice of k and hopefully allow for the reproduction of
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in-vivo basal motion in the personalized model.
During the atrial systole phase we assumed γ = 0. This allowed for the esti-

mation of passive properties separate from contraction. This assumption is appro-
priate for a healthy ventricle but might be false in a diseased ventricle if muscle
relaxation is sufficiently delayed.

Our mathematical model of wall motion neglected the effects of visco-elasticity,
tissue compressibility [43], inertia, and myocardial sheet microstructure. Finally
the reference geometry that we used for our calculations came from an echocar-
diographic image in which there was a non-zero level of blood pressure. The
blood pressures we used in our patient specific model were off by the 2.8 kPa
which we subtracted in order to have 0 pressure in the reference geometry. This
pressure adjustment meant that the elastic stiffness of the ventricle was underesti-
mated by our elastic parameter estimation, as the mathematical model operated at
a lower pressure than measured in the patient’s heart.

The accuracy of the optimized motion model is limited by uncertainties in the
clinical strain and volume measurements, which are related to echocardiographic
image quality, image sample rate, and speckle tracking algorithm accuracy. Pres-
sure and volume measurements had to be synchronized, which might have lead to
a potentially unphysiological loss of volume in the iso-volumic relaxation phase
of the in-vivo PV loop (Figure 2.2).

Finally there were several algorithmic limitations. Firstly, the optimized γ

fields we computed may or may not have been unique. For potential clinical
applications this is a concern as the uniqueness of parameters relate to the re-
producibility and consistency of data obtained from a personalized model. Fur-
thermore, our procedures for choosing the functional weights α and λ were not
optimal. In both the synthetic and clinical data case the weight values were cho-
sen by parameter sweeps that kept a single parameter fixed, which did not account
for possibly better α,λ combinations lying outside of the areas we tested. Finally
the SQP optimization algorithm that we employed was a local search only, that
is only one minimum of the objective is calculated. Better parameter fits may be
possible with global optimization methods that explore multiple minima.

Conclusion and Future Outlook
By employing high resolution data assimilation we were able to capture the de-
tailed motion of a dyssynchronous left ventricle in a computational model with
an excellent fit of model observations to data. This demonstrates the power of the
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data assimilation method, which can also be applied to other models and or model
parameters.

In the future the proposed method should be further improved and tested on
cohorts of patients. This would allow for the study of simulated contraction pat-
terns among groups of patients that could lead to further understanding of dyssyn-
chrony.

Author Declaration
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wegian national ethics committee, REC, and in accordance to the Helsinki Decla-
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versity of Oslo via Notur projects nn9316k and nn9249k.

Appendix

Sensitivity of elastic a parameter to error in atrial systolic vol-
ume measurements

In order to test the sensitivity of our estimated a parameter to uncertainty in vol-
ume measurements we have carried out a series of estimations with various levels
of volume perturbation. We generated clean volume data using the computational
model using a= 0.435 kPa, the optimal value obtained from the clinical data. Per-
turbations in volume increases of sizes±5,15,25% were added to this data, which
were then used as target for optimization. The resulting a values and perturbations
are shown in Table 2.3. The largest perturbations resulted in the a values 0.494
kPa and 0.384 kPa, representing circa ±%13 change from the original a value.

The resulting average value of γ is shown in Figure 2.9 for the extreme cases
with α = 0.494 and α = 0.384 . For reference we also include the average value
of γ using α = 0.435.

Sensitivity of estimated parameters to spring constant k.

The spring boundary condition that we used at the ventricular base has a signifi-
cant effect on the simulated cavity volumes calculated by the model. This is due
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Table 2.3: Sensitivity of the optimized material parameter a to errors in volume
measurements. The first column gives the perturbation of the volume increase
between measurement points 1-2 and 2-3, in percent. The next two columns give
the size of these perturbations in mL with ∆V2 and ∆V3 referring to perturbations
in the volumes of the second and third measurement points respectively. In the
fourth column optimal a values are given. In all cases the volume fit Ivol was less
than 4×10−6.

perturbation ∆V2 ∆V3 a
(%) (ml) (ml) (kPa)
-25 -1.2 -1.06 0.494
-15 -0.717 -0.636 0.469
-5 -0.239 -0.212 0.446
0 0 0 0.435
5 0.239 0.212 0.424

15 0.717 0.636 0.404
25 1.2 1.06 0.384

to the cross-sectional area of the cavity being large at the ventricular base. There-
fore we can expect the choice of k to have an effect on the optimal parameters
calculated by our data assimilation.

In order to quantify this effect we have carried out a sensitivity analysis, start-
ing with the effect of k on the optimized elastic parameter a. We repeated the
elastic parameter fitting decribed in Section 2.3.1 and varied the k-value from
0.001 to 100.0. We also considered the case k = ∞, denoting a completely rigid
boundary held by Dirichlet boundary conditions. The effect of the choice of k on
the optimal value of a is shown in Table 2.4. The table shows that the optimal a
varies from 0.365 kPa to 0.875 kPa depending upon how the k parameter is set.

We also tested the sensitivity of the contraction γ at P1 resolution to k by
repeating the estimation of γ with the various k and a pairs obtained in the previous
experiment. For each k,a pair we have plotted the spatial average of contraction γ

at each measurement point in Figure 2.10. The results show up to a 20% variation
in γ and very little variation for the choices of k greater than or equal to 1.0. For
some of the values of k < 1.0 our homotopy Newton solver was unable to secure
convergence during the optimization. Curves corresponding to these cases are
drawn only to the point before the non-convergence occurred.
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Figure 2.9: Sensitivity of the optimal average contraction γ to changes in the
parameter a. The upper and lower a values are based on estimating a with volume
perturbations of ±25% (Tabel 2.3). The middle value was obtained by estimating
a from in-vivo volumes.

Table 2.4: Sensitivity of optimal a value to choice of spring constant k.

k 10−8 10−7 10−6 10−5 10−4 10−3 0.01 0.1 1 10 100 ∞

a 0.875 0.875 0.875 0.875 0.873 0.873 0.849 0.684 0.435 0.375 0.366 0.365

Effect of mesh resolution on estimated contraction γ at P1 reso-
lution

Ventricular meshes were generated by Gmsh [16] with three different resolutions
controlled by the parameter ’Mesh.CharacteristicLengthFactor’. This parameter
was given the values 1.0, 0.65 and 0.45 which resulted in meshes with 549, 1262
and 2261 vertices respectively. Using the three meshes we estimated contraction
fields from the in-vivo data. The average value of γ is shown for these three cases
in Figure 2.11. Fit quality is compared in Table 2.5.

Sensitivity of Contraction Size to choices of α and λ

Based on the trade-off curves in Figure 2.3 we chose the optimization weights
α = 0.95 and λ = 0.01 for the personalization of our wall motion model to the in-
vivo data. In order to show the effect of these choices on the optimized contraction
field γ we have varied the α and λ values and plotted the spatial averages of the

101



102 2.7. APPENDIX

0 5 10 15 20 25 30 35
Point

0.00

0.02

0.04

0.06

0.08

0.10

0.12
γ

k = 0.0001

k = 0.001

k = 0.01

k = 0.1

k = 1.0

k = 10.0

k = 100.0

k = ∞

Figure 2.10: Sensitivity of the spatially averaged contraction γ to the choice of
spring constant k.

Table 2.5: Relative misfit for different mesh resolutions

Number of elements Ivol Istrain Irelmax
strain

549 0.0033 0.17 0.029
1262 0.0037 0.17 0.029
2661 0.0043 0.18 0.031

resulting contraction fields. The results show that the amount of contraction tends
to increase proportionally to both α and λ beyond the thresholds α = 0.5 and
λ = 0.001.

Estimation of noise in echo speckle tracking strain measure-
ments

In order to increase the relevance of the synthetic tests we considered a set of re-
gional strains that contained noise. This noise was modelled as an additive Gaus-
sian process in order to imitate the accumulation of tracking errors in EchoPac’s
image based strain calculations. The mean and variance of a summand in the
Gaussian process were estimated from our in-vivo strain data of a single patient.
From this data the sample means and variances of the drift values were divided by
the number of measurement points in order to approximate the noise in a single
measurement. The mean and covariance of this single measurement point noise
are given in Table 2.6.Theoretically, error free strain curves would have no drift
given stable conditions in the heart. This motivates the use of the drift values in
order to approximate the tracking error.
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Figure 2.11: Spatial average of contraction γ for 3 different mesh resolutions.
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Figure 2.12: Sensitivity of the spatially averaged contraction γ to variations in
optimization weights α and λ . Left: λ = 0 and α is varied. Right: α = 0.95 and
λ is varied.

Table 2.6: Mean and covariance of a Gaussian noise summand estimated from pa-
tient drift values in circumferential (C), radial (R) and longitudinal (L) directions.

Covariance ×10−4 Mean
C R L

C 1.43 0.73 0.66 0.006
R - 6.8 6.31 -0.013
L - - 7.26 0.01
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Abstract

Cardiac computational models, individually personalized, can provide clinicians
with useful diagnostic information and aid in treatment planning. A major bot-
tleneck in this process can be determining model parameters to fit created models
to individual patient data. However, adjoint-based data assimilation techniques
can now rapidly estimate high dimensional parameter sets. This method is used
on a cohort of heart failure patients, capturing cardiac mechanical information
and comparing it with a healthy control group. Excellent fit (R2 ≥ 0.95) to sys-
tolic strains is obtained, and analysis shows a significant difference in estimated
contractility between the two groups.
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Introduction

Patient-specific cardiac modeling has emerged as a potential tool for clinical di-
agnosis as well as treatment optimization[20]. By linking patient measurements
to physical processes through a mathematical framework, models can provide us
with additional insight into cardiac function or dysfunction at the level of the in-
dividual. However, the complexity of the heart makes this difficult, and this is
recognized as a key challenge in modern bioengineering [12].

One difficulty is the effort to personalize models and simulations to individual
patients. While a wealth of clinical data exists to parameterize such ’patient-
specific’ models, methods to assimilate this data into simulations can involve ex-
tensive computation time, often putting them outside the scope of clinical utility.
However, new methods are emerging to improve the flow of clinical measure-
ments into powerful data driven simulations. Automated geometry segmentation
[17] and improved optimization techniques [6], can improve the speed at which
patient-specific models can be built and parameterized. In particular, recent ad-
vancements in adjoint-based data assimilation techniques [2] offer an efficient way
to assimilate ventricular mechanical information using highly spatially resolved
parameters.

Here we use an adjoint based assimilation method with a mechanical model in
order to construct simulations that accurately reflect clinical motion data, both for
healthy controls and patients suffering from left bundle branch block (LBBB). The
use of a highly spatially resolved contraction parameter, enabled through adjoint-
methods, provides excellent data fit to measured strains and volumes, and fit mod-
els provide estimates of cardiac contraction. Such biomarkers may prove useful
to clinicians for diagnoses of problems with cardiac function, and to better plan
therapies.

Materials and methods

Data acquisition

Clinical measurements of cardiac function for seven LBBB patients were obtained
from the Impact study [11]. Data was also acquired for seven healthy volunteers.
4D echocardiographic images of the left ventricle (LV), for both the LBBB pa-
tients and healthy subjects, were captured using a GE Vingmed E9 device, and
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analysis carried out with the software package EchoPac. For each subject, depend-
ing on frame rate and cardiac cycle time, the analysis provided between 15 and
50 LV volumes, geometric segmentations of the LV endocardium and epicardium,
and cardiac strain calculated via speckle tracking. The strain were defined accord-
ing to the 17 segment AHA-zone representation [5], in the longitudinal, radial and
circumferential direction, giving a total of 51 strain measurements per time point,
with the reference time point for strain analysis being the first frame after onset of
QRS.

The LBBB patients had LV pressure measurements taken during implantation
of a cardiac resynchronization therapy (CRT) device, and valvular events were
used to synchronize the pressure to the echo data. In the healthy control group,
where invasive pressure measurements were absent, the pressure waveform from
one of the LBBB patients was used and scaled to reported values of the end-
diastolic and end-systolic left ventricular pressure [Table 30-1 in [13]].

Automated geometry and microstructure creation

For each patient, a 3D tetrahedral mesh of the LV was constructed from triangu-
lated segmented surfaces of the endo- and epicardium corresponding to the frame
at the beginning of atrial systole, Figure 3.1. A cut was made at the ventricular
base of the segmentation, so that the mesh cavity volume and the ultrasound mea-
sured volume differed by less than 1 ml. Mesh cells were marked into the 17 AHA
regions through the regionally delineated strain data, and the myocardial fiber ori-
entation, denoted by f0, were assigned using the algorithm from Bayer et al [4],
with the endo- and epicardial helix fiber angles set to αendo = 60 and αepi =−60,
respectively.

Mechanical Model

We represent the heart as a hyperelastic continuum body, where the coordinates in
the reference (X) and the current (x) configuration are related via the displacement
field u= x−X. Furthermore, we utilize the deformation gradient, the determinant
of the deformation gradient and, the right Cauchy-Green deformation tensor given
by F = I+∇u, J = detF and C = FT F, respectively. To model the passive behav-
ior of the myocardium, the transversely isotropic strain energy function proposed
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in [10] is adopted:

W (I1, I4f0) =
a

2b
(exp{b(I1−3)}−1)+

a f

2b f

(
exp
{

b f (I4f0−1)2
+

}
−1
)
. (3.1)

Here I1 = trC and I4f0 = f0 · (Cf0) are invariants of C, (·)+ = max{·,0}, and
a,a f ,b,b f are material stiffness parameters defining the elastic properties of the
myocardium. We follow a common approach and assume that the myocardium
is incompressible. Incompressibility is incorporated in the model by using a two-
field variational approach, where we introduce a Lagrange multiplier p which
represents the hydrostatic pressure, and the term p(J− 1) is added to the strain-
energy.

To model the active response we apply the approach of active strain [1], which
is based on decomposing the deformation gradient into active and passive contri-
butions, F = FeFa. We choose Fa = (1− γ)f0⊗ f0 +

1√
1−γ

(I− f0⊗ f0), where γ

is a parameter that represents the relative active shortening along the fibers. For
reference, we have also performed tests with the commonly used active stress for-
mulation, where the stress tensor is additively decomposed into active and passive
stress σ = σp+σa. Here σp is the elastic material response, and σa = Taf⊗ f with
f = Ff0 and Ta a scalar variable representing active fiber tension.

For both approaches, the resulting displacement field u and hydrostatic pres-
sure p are determined by using the principle of stationary potential energy [9],
which is based on minimizing the total energy Π(u, p), which includes internal
energy derived from (3.1) and external energy. The external energy includes con-
tributions from the measured cavity pressure pLV, and a linear spring term at the
basal boundary, with spring constant k = 10.0 kPa. The equilibrium solution is
found by solving for the minimum potential energy, δΠ(u, p) = 0.

Data Assimilation

In order to constrain the model to each patient’s clinical measurements, we con-
sider a PDE-constrained optimization problem where the objective functional is
given by the misfit between simulated and measured strain and volume along with
a first order Tikhonov regularization of the model parameters.

minimize
m

α

(
V i−Ṽ i

V i

)2

+(1−α)
17

∑
j=1

∑
k∈{c,r,l}

(
ε

i
k j− ε̃

i
k j

)2
+λ‖∇mi‖2

subject to δΠ(u, p) = 0.

(3.2)
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Here V and εk j are the measured volume and regional Lagrangian strain in
segment j in direction k respectively, and Ṽ i =−1

3
∫

∂Ωendo
(X+u)·JF−T NdS, and

εk j =
1
|Ω j|

∫
Ω j

eT
k ∇uekdx. The parameters α and λ control the weights on the dif-

ferent terms, and the sum in the second term is taken over the seventeen AHA
segments, and the three different strain components (Section 3.2.1).

The data assimilation procedure is divided into two phases; a passive and an
active phase. For the passive phase we iteratively estimate the unloaded configu-
ration and the linear isotropic parameter, a in (3.1), using an algorithm similar to
the one described in [16], and we set α = 1.0, with λ = 0 and γ = 0, minimizing
only the misfit with the measured volumes. The remaining material parameters
are fixed according to [Table 1 row 3 of [10]]. For the active phase we fix the
material parameter optimized in the passive phase, choose the control variable m
to be γ or Ta for the active strain and active stress model respectively, and set
α = 0.95 and λ = 0.01. This choice of α and λ was based on the analysis done in
[2]. A summary of our optimization pipeline is provided to the right in Figure 3.1.

Volume

P
re

ss
u

re

Start Atrial Systole
End diastole

1a: Unloading

1b: Passive optimization

2: Active optimization

3D US image

Segmentation Rule-based fibers

AHA-zonesStrain mesh

Figure 3.1: Left: Automated anatomical modeling pipeline to produce AHA
marked simulation meshes with applied fiber orientations from 3D echocardio-
graphic segmentations. Right: Optimization pipeline. 1. Unloaded geometry and
the linear isotropic material parameter a in (3.1) are estimated iteratively. The
unloaded geometry is estimated based on the backward displacement method (1a)
[16] and a is estimated by minimizing the difference between simulated and mea-
sured volumes (1b). 2. The unloaded geometry and the material properties are
fixed, and the amount of contraction (γ for active strain and Ta for active stress)
is estimated by minimizing the mismatch between simulated and measured strain
and volume. The active optimization continues to the next measurement point
until all measurement points in the cycle are covered.
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Implementation details

We employ a Galerkin finite element method with Taylor-Hood tetrahedral ele-
ments, that is (u, p) ∈ P2×P1, with Pn being the space of piecewise polynomials
of degree n. The solver is implemented in the finite element framework FEniCS
[15], and uses a Newton trust region algorithm [3] to solve nonlinear systems.
The minimization of the model-data misfit functional (3.2) is accomplished by
a sequential quadratic programming algorithm (SQP) [14], where the functional
gradient is computed by solving an automatically derived adjoint equation [7]. In
these minimizations an upper bound of 0.5 and 500 kPa is set for the active strain
(γ) and active stress (Ta) control variable respectively, which both are modeled as
functions in P1, yielding one parameter per nodal point in the mesh.

Contraction analysis

Although direct physical interpretation of the active strain parameter γ is diffi-
cult, it may be seen as the relative shortening of an isolated and unloaded muscle
cell. A high value of γ is therefore an indication of higher contractile force in
the myocardium, independent of load. We propose that the spatially averaged γ

over the entire LV, denoted by γ , can be used as an index of global contractility.
Similarly, the active stress parameter Ta is related to force development at level
of the sarcomeres[8], and the spatially averaged Ta, denoted Ta can be used as
an index of contractility. In addition to the contractility information contained in
γ and Ta, the overall elastic state of the optimized patient models can be used to
give estimates of LV elastance. The left ventricular end-systolic elastance EES, the
response of end systolic volume to increased load, is considered to be one of the
major determinants for cardiac systolic function, and was in [18] proposed as a
global index of ventricular contractility. It is possible to estimate the end systolic
elastance directly if the end systolic pressure is known or estimated, by perturb-
ing the loading conditions on the optimized model at end systole while fixing the
remaining quatities, and calculating the slope in the resulting ES pressure-volume
curve. More precisely, if pES

lv is the end-systolic ventricular pressure, with cavity
volume V ES, we change the pressure to pES+∆

lv = pES
lv +∆plv, resulting in a change

in volume, V ES+∆ = V ES +∆V . The estimate of end-systolic elastance can then
be calculated by

ẼES =
∆plv

∆V
. (3.3)
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Results and discussion

Matching of strain and volume

We show the results from two representative simulations in Figure 3.2, one from
the LBBB group and one from the healthy control group. Snapshots from the cal-
culated unloaded and end-systolic configurations are depicted. For the unloaded
geometry, we also show the image-based geometry at beginning of atrial systole,
and for the end-systolic configuration we show the longitudinal strain using both
the active stress and active strain approach. We also show the agreement with the
corresponding PV-loops.

Unloaded

Healthy

LBBB

Active stressActive strain

End systolic

longitudinal strain

Figure 3.2: Left: Snap shots of the unloaded geometry in red, and the correspond-
ing image based geometry taken at beginning of atrial systole in black wire-frame.
Middle: Snap shot of end systolic configurations using the active strain and ac-
tive stress approach. Color-map shows the end-systolic longitudinal strain. Right:
Simulated and measured pressure-volume loops for these hearts using the active
strain and active stress approach.

The total analysis of the 14 patients involved optimizing 432 volume mea-
surements and 20 853 strain measurements. The average time for one forward
and gradient evaluation was 8.3 and 8.9 seconds respectively when running on a
cluster using four cores, with an average number of control parameters being 985.

In order to visualize the overall match of simulated to measured data, we show
linear regression plots in Figure 3.3. These results are all based on the active
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strain formulation. For the strain, we separately consider the diastolic and systolic
points, as different types of data were used to constrain the model in these two
phases, namely volume in the diastolic phase and strain in the systolic phase.
An excellent overall fit was obtained for the optimized volume (R2 = 1.00) and
systolic strains (R2 = 0.95). Diastolic strains, not used in the optimization, were
less well matched (R2 = 0.31).

Figure 3.3: Scatter plot of simulated (y-axis) and measured (x-axis) strain and
volume using the active strain approach. Left: Scatter plot of simulated versus
measured volumes and the best linear least-squares fit of these points, (slope =
1.00). Right: Scatter plot of simulated versus measured strain for all segments
and all directions, separated into the diastole, were only the volume was optimized
and systole, where both the strain and volume were optimized. For diastole, the
slope of the best linear fit was 0.31, while the best linear fit for the systolic points
had a slope of 0.95.

Estimation of global contractility and elastance

Global contraction time courses, γ and T a, for each patient were synchronized
to the valvular events to normalize for differing cycle lengths. The average and
standard deviation of these normalized traces for the LBBB vs the healthy controls
are shown in left of Figure 3.4. The healthy patients had a much higher level of
contraction through the cardiac cycle, and the peak values were compared using
one-way ANOVA, yielding a P−value less than 0.001 for both the active strain
and the active stress approach.
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The values of calculated ẼES for the healthy and LBBB patients are shown
to the right in Figure 3.4. The calculated elastances of the LBBB group were
significantly lower than for the healthy group, with the comparison between the
groups using one-way ANOVA giving a P−value of 0.009 and 0.003 for the active
strain and active stress respectively.

Figure 3.4: Extracted biomarkers related to cardiac contractility. Left: Mean value
of Ta for the two groups synchronized with respect to valvular events (mvc: mitral
valve closure, avo: aortic valve opening, avc: aortic valve closure, mvo: mitral
valve opening). Shaded region shows ± one standard deviation. Middle: Mean
value of γ for the two groups synchronized with respect to the same valvular
events. Right: Estimated values of ẼES, given by (3.3) using the active stress and
the active strain approach. The mean value is depicted for each group as a bar,
and individual points are also displayed.

Discussion

In this study we applied an adjoint-based data assimilation technique to constrain
patient data to a cardiac mechanics model. LV pressure was used as a boundary
condition, and an unloading algorithm was used to find a reference geometry and
a material parameter based on diastolic P-V measurements. Active contraction
was then captured by assimilation of measured systolic LV regional strains by the
means of a spatially varying contraction parameter. We tested this methodology
on a group of seven healthy control patients and seven patients diagnosed with
LBBB. The results gave an excellent fit between the measured and simulated vol-
ume and systolic strain (R2 ≥ 1.00 and R2 ≥ 0.95, respectively) for more than
21,000 observation points. Meanwhile diastolic strains, due to the quality of the
strain measurements during late diastole, were not included in the optimization
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and had a resulting poor fit. However, allowing for spatial heterogeneity in the
material parameters and/or optimizing more parameters from the material model,
could allow for better fit values also in this part of the cycle and will be further in-
vestigated. Of course, questions regarding uniqueness of such solutions in general
will need to be carefully addressed in future studies.

Our simulations show that estimating the unloaded configuration may be im-
portant to capture the correct material parameters, as we optimized to a consis-
tently softer material when the unloading algorithm was used. Meanwhile, this
seemed to have less of an impact in systole, as the the overall estimated ventricu-
lar elastance was unchanged.

These calibrated models allow for estimating aspects of cardiac contractility,
such as the traditional measure of end-systolic elastance, by perturbations of the
model at the end systolic configuration. The healthy control group had signif-
icantly higher estimated end-systolic elastance than the LBBB group, although
limitations exist with these calculations due to using a synthetic pressure curve
with the healthy group. However, the values calculated by using direct pressure
readings for the LBBB group (3 - 10 mmHg) are slightly higher but correspond
very well with the range provided for a heart failure cohort of (0.5 - 4.9 mm Hg)
[19]. Clinically, end systolic elastance is measured based on data obtained using
multiple beats subjected to different loading conditions. This change in loading
conditions also gives rise to changes in the active tension as a function of my-
ocardial strain, an effect that is not modelled directly here. Therefore, although
we can calculate a discriminating marker of stiffness between the two cohorts,
future work evaluating this method over a number of beats with different loading
conditions is needed to assess its relation to clinical end-systolic elastance.

In addition to the end-systolic elastance estimates, our simulations also were
used to compare the average value of γ and Ta, which may also be interpreted as
indices of contractility, between the two groups through the cardiac cycle. Again,
the healthy controls showed a significantly higher peak values of active strain and
stress, compared to the LBBB group and both analysis methods showed compa-
rable trends.

Conclusions
Adjoint-based data assimilation is a powerful technique for estimating high di-
mensional parameters in order to incorporate large amounts of information into a
model. Although limitations in our patient data and assumptions remain, we have
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demonstrated how such techniques can be applied to problems in mechanics for
use in extracting potential biomarkers related to cardiac contractility. Future work
will be used to adjust and improve such models and work towards their validation
and clinical utility.
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