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Samandrag
I denne masteroppgåva presenterer vi ein rask og presis metode for utrekning av
nestleiande ordens supersymmetriske tverrsnitt. Metoden går ut på å trene ma-
skinlæringsalgoritmen forsterska avgjerdstre på eit generert datasett med data-
punkt frå parameterrommet til MSSM-24 og dei tilhøyrande NLO-tverrsnitta
for ein gitt prosess utrekna med Prospino 2.1. For å vise at metoden fungerer,
nyttar vi gluino parproduksjon frå ein proton–proton starttilstand som døme.
Vi vil sjå at den resulterande avgjerdstremodellen vil ha reknefeil mykje mindre
enn andre reknefeil frå andre feilkjelder som partontettleiksfunksjonane, αs og
bidrag frå høgare ordenar. Vi trur at denne metoden enkelt kan generaliserast
til andre supersymmetriske prosessar og dimed vere veldig nyttig for å gjere
kraftigare globale tilpassingar.

Abstract
In this thesis we present a fast and precise method for evaluating supersymmetric
cross sections at next-to-leading order (NLO). The method consists of training
the machine learning algorithm boosted desicion trees on a generated data set
with samples from the parameter space of the MSSM-24 and their corresponding
NLO cross sections for a given process, calculated with Prospino 2.1. We use
gluino pair production with proton-proton initial state as an example to show
the viability of the method. The resulting predictive model has errors well below
other error sources such as the parton density functions, αs, and contributions
from higher orders. We believe that this method can be easily generalized to
other supersymmetric processes and thus very useful for extending the power of
global fits.
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Introduction

Over the last century physicists have made a large effort to build a theoretical
model that describes the most fundamental interactions and particles in Nature,
the Standard Model (SM). It has proven to be a very successful model with
some of the best agreements between theory and experiment ever achieved.
However, the Standard Model has some shortcomings. One of them is the
hierarchy problem introduced by the Higgs mechanism, which requires extremely
fine tuning of the theory in order to make it work. Physicists tend to like theories
that are natural, i.e. theories without the need of fine tuning. This is one of the
reasons that the Standard Model is not believed to be the most fundamental
theory of Nature.

A possible extension of the SM is supersymmetry (SUSY) which is a sym-
metry between fermions and bosons. In supersymmetry all SM fermions have a
bosonic supersymmetric partner and vice versa. The new sparticles in supersym-
metry thus differ from their SM partners by half a unit of spin. Supersymmetry
solves several of the problems with the SM, such as the hierarchy problem and
it provides multiple dark matter candidates.

One of the goals of the Large Hadron Collider experiment at the research
facility CERN is to discover supersymmetry. It has been succesful in discover-
ing the Higgs boson, now everyone waits for the discovery of supersymmetry.
The experiment has been running since 2008 and have collected proton-proton
collision data at 7 TeV, 8 TeV and currently at 13 TeV center-of-mass energy.
When searching for supersymmetry one approach is to do global fits and find
what supersymmetry can and cannot be, i.e. see which parts of the parameter
space for supersymmetric models are excluded. To do global fits and exclusions
it is crucial to know the supersymmetric production cross sections at the highest
accuracy possible.

In this thesis we will develop a faster and more general predictive model
than currently available for supersymmetric production cross sections at next-
to-leading order by using machine learning. The method used in this thesis
should in principle be useful for all production cross sections for any physical
models given enough data to train with. We will use the cross section for
gluino pair production from proton-proton collisions, σ(pp→ g̃g̃), as an example
to show that this method is viable. State-of-the-art methods for calculating
supersymmetric cross sections at next-to-leading order relies on Prospino 2.1
[1, 2] which takes ∼ 15 minutes for each parameter point, and NLL-fast 2.1
[3, 4, 5, 6] which uses a few seconds for each parameter point and also gives us
the next-to-leading-logarithmic correction, but is restricted by the assumption
of degenerate squark masses. Both of the programs are therefore limited in use.

The data used for training the machine learning algorithm were generated
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in large amounts on the Abel computer cluster. The training data was sampled
in two different ways to ensure good coverage of the parameter space of the
MSSM-24. The data have also been quality checked to remove outliers and pre-
processed in order to make it easier for the machine learning algorithm to learn
the next-to-leading order cross section function. We have used the algorithm
gradient boosted decision trees in this thesis. This is an algorithm robust of
overfitting to the data and which is easy to interpret. The resulting predictive
models have been tested in several ways, both with built-in methods in the
program package and self-defined methods. We have also compared our method
against NLL-fast 2.1.

The thesis is structured as follows. We will introduce basic supersymmetry
concepts and phenomenology in Chapter 1, then we will study the analytical
leading-order cross sections for gluino pair production and how the next-to-
leading order cross section is calculated by today’s methods in Chapter 2. In
Chapter 3 we will delve into the world of machine learning and discuss some
of the techniques available, with main focus on the boosted decision tree al-
gorithm, and we will also discuss how to measure the performance of machine
learning models. In Chapter 4 we present and discuss the details of the model
building, while in Chapter 5 we present and discuss our results before making
our conclusions.



Chapter 1

The Standard Model and
Supersymmetry

In this chapter we will briefly describe the Standard Model and its limitations
before introducing supersymmetry. We will focus on the Minimal Supersym-
metric Standard Model.

1.1 The Standard Model

We will recap some important points from the Standard Model (SM), before
introducing the symmetry groups used in the SM. Then we will introduce the
Higgs mechanism before ending with a brief discussion of the Standard Model’s
limitations as a primer for the section on supersymmetry. We will assume
knowledge of quantum field theories and necessary group theory basics.

1.1.1 Field Theory Basics

The Standard Model is a highly successful theory describing the most funda-
mental physcial interactions known to us. It is a quantum field theory (QFT)
which means that particles and their interactions are described by fields. Quantum
field theory is a mixture of the successful quantum mechanics and special re-
lativity theories. The former describes the physics of the smallest scales, while
the latter describes things that move fast.1 By combining these we get a theory
for describing small things moving fast, which is very appropiate for physics at
the Large Hadron Collider.

A quantum field theory is based on the Lagrangian density L which is a
function of fields ψi(x) and their derivatives ∂µψi(x). The equations of motion
of the fields are obtained via the Euler-Lagrange equation,

∂L
∂ψi(x)

− ∂µ
(

∂L
∂(∂µψi(x))

)
= 0, (1.1)

where i = 1, . . . , N is the index for each field. So far this description is also valid

1For the record: Special relativity also describes slow things.

3



4 CHAPTER 1. THE STANDARD MODEL AND SUPERSYMMETRY

for classical field theories.2 The Lagrangian density is related to the action S
by

S =

∫
d4xL, (1.2)

where x is the four dimensional spacetime, and the Euler-Lagrange equation
can be found from the principle of least action.

1.1.2 Symmetries
One of the most important theorems in physics is Noethers theorem [7], it states
that every differentiable symmetry of the action of a physical problem has a
corresponding conservation law. Thus, if we can continuously transform L and
leave the equations of motion invariant, we say that we have a symmetry leading
to a corresponding conserved quantity. We distinguish between external and
internal symmetries. In the SM the former is invariance of the Lagrangian
under spacetime symmetries.3 The latter is invariance under transformations
of the fields themselves.

To describe the internal symmetries we rely on group theory. It is convenient
to find field transformations using properties of groups, for example using SU(n)
and U(n), that describe continuous symmetries.4 If we have a field ψ(x) it
transform as,

ψ(x)→ ψ′(x) = e−igα
a(x)Ta

ψ(x), (1.3)

where αa(x) are the transformation parameters,5 and T a the generators of the
group. The generators of a group are the group elements that can produce all
other group elements. We have as many transformation parameters as there are
generators of the group.

Since L also depends on the derivatives of the fields they must transform as
in Eq. (1.3). Naively one may try with the pure derivative ∂µψ(x), however,
due to the locality of αa(x) we have to introduce the covariant derivative,

Dµ = ∂µ + igAaµ(x)T a, (1.4)

where Aaµ(x) are gauge boson fields introduced in order to keep L invariant. The
Aaµ must transform according to,

Aaµ(x)→ A′aµ (x) = Aaµ(x) + ∂µα
a(x) + gfabcα

b(x)Acµ, (1.5)

where g is the coupling constant of the gauge fields, and fabc are the structure
constants of the gauge group. Thus Dµψ(x) will leave the Lagrangian invariant.
For the U(1) gauge group, an Abelian group, the structure constants are zero.
We see from Eq. (1.4) that we will get as many gauge boson fields as there are
generators of the group. The Standard Model is based on the SU(3)C×SU(2)L×
U(1)Y symmetries, where the former describes quantum chromodynamics and

2The quantum part comes into play when we introduce creation and annihilation operators,
which we expand the fields in terms of. A particle is actually an excited state of a field.

3Example: Conserved quantities due to spacetime symmetries such as translations in time
and space are energy and momentum, respectively.

4SU(n) is the set of all complex valued and unitary n × n matrices with determinant 1.
U(n) is defined in the same way as SU(n) without the requirement on the determinant.

5It can be anything, really. (Which means that it must be a real and differentiable function
which depends on spacetime.)
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the two latter the electroweak interaction. SU(3)C and SU(2)L × U(1)Y gives
us eight and four gauge boson fields respectively.

Thus, by requiring certain symmetry transformations and using properties
of suitable groups we find the complete covariant derivative for the Standard
Model,

Dµ = ∂µ + igs
λa

2
Caµ(x) + ig

σa

2
W a
µ (x) +

i

2
g′Y Bµ(x), (1.6)

where Caµ(x), and W a
µ (x) and Bµ(x) are the massless gauge fields for the strong

and electroweak interactions, and gs, g, and g′ are the corresponding coupling
constants. The generators of SU(3)C are 1/2 times the Gell-Mann matrices λa,
while the generators of SU(2)L are the Pauli matrices σa. Due to electroweak
symmetry breaking the W a

µ (x) and Bµ(x) are not the physical gauge boson
fields, they are instead mixed into four linear combinations that are the physical
fields W±, Z0, and γ that we observe, and where W± and Z0 become massive
from absorbing Higgs field components due to the Higgs mechanism, see next
section.

The physical quantities conserved for each group symmetry is the color
charge C under SU(3)C , weak isospin I3 under SU(2)L, and weak hyper charge6
Y under U(1)Y .

Thus, by using the relatively simple7 principle of symmetry, we can develop
the framework of the most fundamental physical interactions.

1.1.3 Higgs Mechanism

To give a more complete picture of the Standard Model we will also briefly
introduce the Higgs mechanism. One of the early issues with the Standard
Model was the introduction of the electroweak bosons W± and Z0. They did
not have mass terms in the SM Lagrangian, but we knew they had to be massive,
otherwise they would have been observed a long time ago. In order to give them
masses the mechanism found independently by Guralnik, Hagen, and Kipple [8],
Brout and Englert [9], and Higgs [10], later known as the Higgs mechanism, was
introduced.

The mechanism involves an SU(2) doublet we call the Higgs doublet Φ(x)
giving us new terms in the Lagrangian,

L ⊃ |DµΦ(x)|2 − µ2|Φ(x)|2 − λ|Φ(x)|4, (1.7)

where the covariant derivative is,

Dµ = ∂µ + ig
σa

2
W a
µ (x) +

ig′

2
Y Bµ(x). (1.8)

The last two terms in Eq. (1.7) are the constituents of the Higgs potential with
µ2, λ ∈ R. The hypercharge of the Higgs field is Y = 1.

It is the vacuum state, Φ0 = (φa0, φb0)T , of the Higgs field that turns out
to be the interesting part. It will give us the electroweak symmetry breaking
and give the W± and Z0 their masses. The vacuum state corresponds to the
minimum of the Higgs potential. In order to have a stable vacuum state we

6Weak hyper charge is related to electric charge Q via Y = 2(Q− I3).
7Maybe not simple mathematics, though.
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must require λ > 0 such that the potential is bounded from below.8 Further
on we want the minimum to give us a non-zero vacuum expectation value of the
Higgs field such that the symmetry of the potential (and thus the electroweak
symmetry) is broken. To achieve this we require µ2 < 0, which gives us the well
known wine bottle potential.9 We may then write,

|Φ0|2 = |φa0|2 + |φb0|2 =
−µ2

2λ
≡ v2

2
, (1.9)

where we have introduced the v as the vacuum expectation value. The physical
vacuum state will then correspond to a point on the circle, breaking the elec-
troweak symmetry spontaneously, we call this spontaneous symmetry breaking.

We can now write the vacuum state as,

Φ0(x) =
1√
2

(
0

v + h(x)

)
, (1.10)

without loss of generality.10 In order to find the particle states we perturb the
field around the vacuum state,

Φ(x) =
1√
2

(
η1(x) + iη2(x)

v + h(x) + iη3(x)

)
, (1.11)

where the perturbations ηi(x) and h(x) are four real scalar fields. However, the
ηi(x) gives us a lot of new terms in Eq. (1.7) which are called Goldstone bosons.
Luckily we are working with a gauge invariant theory, thus we are allowed to
do a gauge transformation such that these fields will be “eaten” by the W± and
Z0. The so-called unitary gauge gives us,

Φ(x)→ Φ′(x) =
1√
2

(
0

v + h(x)

)
. (1.12)

We may now write Eq. (1.7) in the unitary gauge,11

L ⊃ v2g2

8
(W 1

µW
1µ +W 2

µW
2µ) +

v2

8
(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ). (1.13)

We observe that the three Goldstone bosons were “eaten” by the electroweak
gauge bosons, thus giving them one more degree of freedom: their masses. The
gauge states are mixed, giving the physical states,

W±µ =
1√
2

(W 1µ∓ iW 2
µ), Z0

µ =
gW 3

µ − g′Bµ√
g2 + g′2

,

Aµ =
g′W 3

µ − gBµ√
g2 + g′2

,

where the Aµ(x) is the photon field. Their respective masses are,

mW =
1

2
gv, mZ =

1

2

√
g2 + g′2v, mA = 0. (1.14)

8If the potential is not bounded from below there is a probability to have tunneling out of
the minimum giving us infinite negative energy (which ruins everything).

9Cheers!
10Since the potential is only dependent on |Φ|2.
11Also the Wa

µ and Bµ must be transformed according to their transformation properties.
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One U(1) symmetry is left in the Lagrangian after expansion around v since the
photon is massless, the conserved quantity is the electric charge.

We also note that the same mechanism gives rise to the fermion masses,
without going into details here.

1.1.4 Limitations of the Standard Model
With some group magic and symmetries we develop the framework describ-
ing the most fundamental physical interactions. The last 60 years has seen
great discoveries in physics by using the Standard Model and its predecessors.
An example is the calculation of the fine-structure constant α which is cal-
culated in [11], by using measurements of the dimensionless magnetic mo-
ment of the electron g [12] and Feynman-diagrams up to eighth order, to be
α−1 = 137.035 999 070(98), which is a strikingly precise determination of phys-
ical quantity.

However, the Standard Model has some limitations. Maybe the most obvious
is the absence of gravity, which makes the Standard Model an incomplete theory
in the sense that it does not describe everything.

Another issue with the Standard Model is that it does not have any viable
candidate for dark matter. The past ∼ 100 years of observations have given
us strong evidence of the existence of dark matter as a new unknown particle,
and measurements have shown that as much as 26% of the Universe consists
of it [13]. The new unknown particle is believed to be a weakly interacting
massive particle (WIMP), i.e. the particle should only interact via the weak
and gravitational forces with Standard Model particles. The only Standard
Model particles fulfilling this requirement are the neutrinos, but they are too
light with their mass of at most a few electronvolts.12

The last problem in this incomplete summary is the hierarchy problem. In
short it is a problem due to quantum corretions in the Higgs mass from loop
diagrams leading to a huge theoretical overestimate of the Higgs boson mass
compated to experimental data. It will be discussed more thoroughly in Sec-
tion 1.2.1.

With these considerations in mind we may think of improvements of the
existing theory. Luckily people have been doing that, and in the following
section we will discuss one proposed extension of the Standard Model, namely
supersymmetry.

1.2 Supersymmetry
Now we will introduce the most important concepts of supersymmetry. We
start with the basic terminology and motivation, and then we will look at the
Minimal Supersymmetric Standard Model (MSSM) and discuss its content. We
will briefly mention the Constrained Minimal Supersymmetric Standard Model
as a realization of the MSSM, then discuss the soft supersymmetric Lagrangian
before closing the chapter with some MSSM phenomenology. A more thorough
introduction and discussion of the consequences of supersymmetry can be found
in [14] and [15].

12The neutrinos’ low mass is also something the Standard Model has problems to describe
as there are no mass terms for neutrinos in the original formulation.
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The basic idea behind Supersymmetry is quite simple. We extend the Stand-
ard Model by introducing a symmetry between fermions and bosons,

Q|fermion〉 = |boson〉, Q|boson〉 = |fermion〉, (1.15)

where Q is an operator that transforms the spin of a state by a factor 1/2. In
Table 1.1 we have listed the different types of SM particles and their supersym-
metric partners. We call the supersymmetric particles sparticles. Supersym-
metric partners of SM fermions are named with an additional “s-” as a prefix,
e.g. the supersymmetric partner of the electron becomes the selectron. While
for the supersymmetric partners of SM bosons we add the suffix “-ino”, e.g. the
SM particle gluon has the supersymmetric partner gluino. When writing the
sparticles symbolically we use a tilde above the particle’s symbol, the gluino is
thus written g̃.

SM particle (spin) SUSY particle (spin)

Fermion (1/2) Scalar (0)
Vector boson (1) Fermion (1/2)
Scalar boson (0) Fermion (1/2)

Table 1.1: Overview over the types of Standard Model particles and their su-
persymmetric partners.

If supersymmetry had been an exact symmetry, the masses of particles and
their corresponding sparticles should be equal. This is obviously not the case,
otherwise we would have discovered sparticles a long time ago. Thus we know
that supersymmetry must be a broken symmetry. The question then is how
heavy the sparticles may be. To give an estimate for this we may consider the
hierarchy problem.

1.2.1 Hierarchy Problem
The hierarchy problem is a problem that arises when one tries to calculate the
loop-corrections to the mass of the Higgs boson. We can write the physical mass
as,

m2
h = (m0

h)2 + ∆m2
h, (1.16)

where m0
h is the Lagrangian Higgs mass and ∆mh is the corrections due to loop

diagrams, such as those in Fig. 1.1.
When calculating loop diagrams one gets divergent integrals. To deal with

this one does regularization,13 which is to introduce a cut-off scale such that
we limit the momentum in the loop integrals to below a scale ΛUV. The most
natural choice of this scale is based on that the Standard Model is an incomplete
theory. When we go up to Planck scale energies we expect new physics, such as
quantum gravity. We can therefore set ΛUV ∼ 1018 GeV.

The fermion and scalar loop corrections to the Higgs mass will at leading
order then be,

∆m2
h = −|λf |

2

8π2
Λ2

UV +
λs
8π2

Λ2
UV + . . . , (1.17)

13There are several methods, e.g. dimensional regularization.
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5.10. THE NON-RENORMALIZATION THEOREM 49

Figure 5.1: One loop contributions to the Higgs mass from a fermion (left) and scalar (right)
loop.

previous section. This guarantees that we end up with contributions to the Higgs mass of at
most

�m2
h = � �s

16⇡2
m2

s ln
⇤2

UV

m2
s

+ . . . , (5.28)

at the leading order in ⇤UV , where ms is the mass scale of the soft term. This is the most
important argument in favour of supersymmetry existing at low energy scales where we can
detect it, because ms can not be too large if we want the above corrections to be small. This
is called the little hierarchy problem and means that we want ms ⇠ O(1 TeV) in order to
keep cancellations reasonable.

5.10 The non-renormalization theorem

With our generic supersymmetric Lagrangian in Eq. (5.12) we should really ask ourselves
whether we can regularize the theory, i.e. is there a finite number of renormalisation con-
stants/counter terms to make all measurable predictions finite? And if so, what are they?

You may not be so surprised that the answer is yes, and indeed we have already used
one of the restrictions this gives on the possible terms in our superpotential construction.
Furthermore, we can prove the following theorem with a funny name. . .

Theorem: Non-renormalisation theorem (Grisaru, Roach and Siegel, 1979 [9])
All higher order contributions to the e↵ective supersymmetric action Se↵ can be
written:

Se↵ =
X

n

Z
d4xi...d

4xnd4✓ F1(x1, ✓̄, ✓) ⇥ ... ⇥ Fn(x1, ✓̄, ✓) ⇥ G(x1, ..., xn), (5.29)

where Fi are products of the external superfields and their covariant derivatives,
and G is a supersymmetry invariant function.

Figure 1.1: One loop contributions to the mass of the Higgs H from fermions f
(left) and scalars s (right) loop. Figure taken from [15].

where λf is the fermion coupling to the Higgs, and λs the scalar coupling to
the Higgs. This will lead to huge contributions of the order ΛUV which is not
compatible with the observed Higgs mass at ∼ 125 GeV. Thus there must be a
enormous cancellation in the corrections requiring that the terms with different
signs are extremely fine tuned.

However, in supersymmetry it turns out that the divergences of the Higgs
mass cancel. In unbroken supersymmetry one has |λf |2 = λs and exactly twice
as many scalar degrees of freedom as fermion degrees of freedom running around
in loops, which gives us this magic cancellation between scalar and fermion loops.
This is one of the main motivations for supersymmetry.

Still, this must also be true for the broken supersymmetry if it should func-
tion as a solution to the hierarchy problem. To maintain the relationships
between the dimensionless couplings we are led to soft supersymmetry break-
ing which does not (re)introduce the quadratic divergences. We can write the
effective Lagrangian of the MSSM as,

L = LSUSY-SM + Lsoft, (1.18)

where the first term contains all gauge and Yukawa interactions and preserves
supersymmetry, while the latter violates supersymmetry but contains only mass
terms and coupling parameters of positive mass dimension.

The leading corrections to the Higgs mass are now,

∆m2
h = − λs

16π2
m2
s ln

(
Λ2

UV
m2
s

)
, (1.19)

where ms is the mass scale of the soft breaking terms. To keep the corrections
small enough not to reintroduce the hierarchy problem we must have ms ∼
O(1 TeV). Thus we expect new physics at the TeV scale. The absence of these
new particles is often called the little hierachy problem.

1.2.2 R-parity
In supersymmetry there is no automatic conservation of lepton and baryon
numbers since the only requirements are gauge and supersymmetry invariance.
Thus we arrive at predictions like rapid proton decay. However, experimental
constraints on proton decay sets a lower limit of the life time of protons at
τ > 5.9 · 1033 years [16].
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To avoid such predictions a possible solution is to introduce a new, discrete
symmetry called R-parity. It is defined as,

PR = (−1)3(B−L)+2s, (1.20)

where B is the baryon number, L lepton number and s particle spin. This leads
to PR = −1 for sparticles and PR = +1 for particles and Higgs bosons. The
symmetry is implemented in the Lagrangian by only allowing interaction terms
obeying R-parity.

The phenomenological consequences of this symmetry are important: When
producing sparticles from particles one always produce sparticle pairs. Sparticles
will also always decay into an odd number of lighter sparticles and the lightest
sparticle will be stable since it has nothing to decay to.

Since we will have a stable lightest supersymetric particle (LSP) we know
that it must be invisible to a detector, if not we should have found it already,
for example in cosmic rays. The LSP thus interacts at most weakly and must be
color and electrically neutral. This makes it a good candidate for dark matter.
A neutralino (see Table 1.2) is often considered to be the LSP since it is the
most suitable dark matter candidate.14

1.2.3 The Minimal Supersymmetric Standard Model

The most popular supersymmetric extensions of the Standard Model is the
Minimal Supersymmetric Standard Model (MSSM). This is the minimal super-
symmetric extension of the Standard Model, i.e. the least number of new fields
needed for the supersymmetric theory to work. In Table 1.2 we have listed the
field content of the MSSM, all mass eigenstates except h0 (which is the SM-like
Higgs) are new supersymmetric particles.

Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H

0
d H

+
u H−d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)
squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2
ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)
τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
d H̃

0
u χ̃0

1 χ̃
0
2 χ̃

0
3 χ̃

0
4

charginos 1/2 −1 W̃± H̃+
u H̃−d χ̃±1 χ̃±2

gluino 1/2 −1 g̃ (same)

Table 1.2: Particle content of the MSSM. Not all gauge eigenstates and mass
eigenstates are the same. For the mass eigenstates that differ from the gauge ei-
genstates we have mixing between the gauge eigenstates giving mass eigenstates.
Adapted from [14].

14A sneutrino also fulfills the same requirements but is excluded by direct detection searches
[17]. A gravitino is also possible as a dark matter particle but is very weakly-coupling, and if
R-parity is violated it is one of the few candidates.



1.2. SUPERSYMMETRY 11

We see in Table 1.2 that there are some particles with different gauge and
mass eigenstates. This is due to mixing between gauge states with the same
quantum numbers. However, even though the gauge and mass eigenstates are
the same, it does not mean that the Lagrangian soft mass parameter (see Sec-
tion 1.2.4) is the same as the physical mass. For the gluino, which is central to
this thesis, the Lagrangian soft mass parameter is M3, which is a running (scale
dependent) mass. The physical (or scale-independent) mass at one-loop order
is given by,

mg̃ = M3(Q)

(
1 +

αs
4π

[
15 + 6 ln

(
Q

M3

)
+
∑

Aq̃

])
, (1.21)

where Q is the scale and the sum runs over all twelve squark-quark multiplets,15
and the Aq̃ are given by

Aq̃ =

∫ 1

0

dxx ln

[
x
m2
q̃

M2
3

+ (1− x)
mq

M2
3

− x(1− x)− iε
]
, (1.22)

where mq̃ is the squark mass and mq the quark mass.
In general, due to supersymmetry breaking and electroweak symmetry break-

ing, the sfermion mass eigenstates are also a mixture of the gauge eigenstates.
However, it can be shown that the mixing of sleptons and squarks is propor-
tional to the masses, or Yukawa couplings, to be precise, of their SM partners.
These couplings are very small for the first two generations, thus we can neglect
the mixing for the first and second generation. For these two generations the
masses are given on the form

m2
F = m2

F , soft + ∆F , (1.23)

where mF , soft are contributions from Lsoft and ∆F contributions due to elec-
troweak symmetry breaking.

The third generation SM quarks and leptons have large masses and we there-
fore have significant mixing of the third generations sleptons, and squarks. Thus,
the expressions for these sparticle masses are more complicated. We will not
discuss the third generation squarks in this thesis since they are not present in
initial states, only in loops, and they have thus a small effect on the production
cross section.

1.2.4 The Soft Supersymmetric Lagrangian

As discussed in Section 1.2.1 we can divide the Lagrangian for a supersymmetric
theory in two parts. In Eq. (1.24) we write down the soft terms in the general

15Six squarks-quark multiplets times two since they come in two versions: left and right
handed.
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MSSM Lagrangian.

Lsoft =− 1

2

[
M1

¯̃B0B̃0 +M2
¯̃WAW̃A +M3

¯̃gB g̃B

]

− i

2

[
M ′1

¯̃B0γ5B̃
0 +M ′2

¯̃WAγ5W̃A +M ′3 ¯̃gBγ5g̃B

]

− εab
[
bHa

uH
b
d + h.c.

]
−m2

Hu
|Hu|2 −m2

Hd
|Hd|2

+
∑

i,j=1,3

(
−
[
Q̃†i (m

2
Q)ijQ̃j + d̃†Ri(m

2
d)ij d̃Rj

+ ũ†Ri(m
2
u)ij ũRj + L̃†i (m

2
L)ijL̃j + ẽ†Ri(m

2
e)ij ẽRj

]

− εab
[
(Tu)ijQ̃

a
iH

b
uũ
†
Rj − (Td)ijQ̃

a
iH

b
dd̃
†
Rj

−(Te)ijL̃
a
iH

b
dẽ
†
Rj + h.c.

])
. (1.24)

Here i, j are generation indices, A = 1, . . . , 3 and B = 1, . . . , 8 are the gauge
generator indices, and a, b = 1, 2 the SU(2)L indices.

Nearly all of the 105 parameters introduced from the general MSSM are
contained in this soft supersymmetry breaking part of the Lagrangian, Lsoft,
the only contained in the LSUSY-SM is the µ-parameter. Thus it is the su-
persymmetry breaking that introduces a vast number of new parameters, not
the supersymmetry itself. However, experimental constraints makes it possible
to remove some of the parameters in the theory. Restrictions on flavour vi-
olating processes imply that we can set the Hermitian mass-squared matrices
m2
Q,m

2
u,m

2
d,m

2
L and m2

e in Eq. (1.24) to be diagonal to good approximation.
In the first and second line of Eq. (1.24) we have the gaugino masses, asso-

ciated with the superpartners B̃0, W̃A, and g̃B of the SM gauge bosons. Due
to experimental constraints on CP-violation we may as an approximation set
M ′1 = M ′2 = M ′3 = 0. The Higgs sector is described by the third line with the
explicit mass terms m2

Hu
and m2

Hd
and the complex parameter b, as well as with

the µ parameter in the supersymmetric part of the Lagrangian.
In the fourth and fifth line we have the explicit sfermion mass terms men-

tioned above. In the four last lines we have the trilinear scalar couplings between
Higgs and squarks or sleptons. Flavour-changing and CP-violating processes are
in experiments found to be very suppressed, thus we have to incorporate this
into our theory. We assume (Tf )ij = (Af )ij(Yf )ij , with i, j being generation
indices and f = {u, d, e}, where (Af )ij is a constant scalar, and Yf are the
Yukawa coupling matrices. We require that only the (3, 3) components of each
of the Yukawa matrices are relevant, i.e. we can approximate them as,

Yu ≈




0 0 0
0 0 0
0 0 1


 , (1.25)

thus only (Tu)33 is important. In MSSM-24 we will then have At, Ab, and Aτ
for Tu, Td, and Te.

It is worth noting that there is no prescription here for how supersymmetry
breaking occurs. We only introduce what seems to be an arbitrary part in our
Lagrangian to explicitly break supersymmetry in order to have a phenomenolo-
gical description of how the effective supersymmetry behaves.
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We will work with a restricted MSSM-model named MSSM-24 which has 24
free parameters defined at a scale Q. We call this a weak-scale MSSM model
since the scale Q is often set to something near the weak scale. From the
discussion above we will arrive at the MSSM-24, let us count the parameters in
Eq. (1.24) to prove that: We have three gaugino mass parameters from the two
first lines, five parameters from the Higgs sector in the third line where two of
them are restricted by EWSB, the diagonal sfermion mass matrices in fourth
and fifth line gives 15 parameters, and finally we have three constant scalars
in the two last lines giving in total 24 parameters. The parameters are listed
in Table 1.3. The parameters in the Higgs sector are b, µ, tanβ, mHd

, and
mHu . Two parameters are restricted by EWSB due to the requirements of the
minimum in the Higgs potential, while b is traded for mpole

A . This gives us the
parameters listed in Table 1.3.

Parameter Property

M1 U(1)Y gaugino mass
M2 SU(2)L gaugino mass
M3 SU(3)C gaugino mass
At Top trilinear coupling
Ab Bottom trilinear coupling
Aτ Tau trilinear coupling
µ µ parameter
mpole
A Pseudoscalar Higgs pole mass

tanβ Ratio between electroweak VEVs
m2
L Left handed slepton masses

m2
e Right handed slepton masses

m2
Q Left handed squark masses

m2
u Up type right handed squark masses

m2
d Down type right handed squark masses

Table 1.3: Parameters in the MSSM-24. Af , where f = {t, b, τ}, given Tf =
AfYf . The five last parameters written in bold text are 3×3 diagonal matrices.

1.2.5 The Constrained Minimal Supersymmetric Standard Model
It is possible to constrain the many parameters of the MSSM in many ways.
One much studied model is the Constrained Minimal Supersymmetric Standard
Model.16 This model has only five parameters,

m0,m1/2, tanβ,A0, sign(µ), (1.26)

were m0 is a common scalar mass, m1/2 a common fermion17 mass, tanβ the
ratio between the two Higgs vacuum expectation values H0

d and H0
u, A0 the

common trilinear coupling constant, and µ the Higgsino mixing parameter.
It is believed that the spontaneous breaking of supersymmetry happens in a

so-called hidden sector involving a gravitational mechanism. This happens at a
16Also called minimal supergravity, mSUGRA.
17Or gaugino if you want.
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very high energy scale. The wish to unify all forces leads us to the constrained
MSSM with the five parameters above. The parameters are defined at this very
high energy scale, the corresponding sparticle masses at low energies are then
found by using renormalization group equations which describe the running of
the masses.

In any case the name Constrained Minimal Supersymmetric Standard Model
is well motivated.

1.2.6 Higgs and Radiative Electroweak Symmetry Breaking
It is also worth talking about the Higgs fields in the MSSM. In the SM we
had one physical Higgs field, while we in the MSSM have five physical fields.
To recap briefly, the SM has a Higgs doublet with two complex scalar fields.
These may also be desbribed as four real scalar fields. In electroweak symmetry
breaking three of these real scalar fields are “eaten” by theW± and Z0 such that
they acquire masses, and we are left with one real scalar field giving the physical
Higgs boson. In the MSSM it turns out that it is necessary to have two Higgs
doublets in order to give up- and down-type quarks masses correctly.18 Thus,
we can now, analogously to the SM electroweak symmetry breaking, describe
the two Higgs doublets as eight real scalar fields. In supersymmetry we still
have the W± and Z0 which acquire masses from three of the fields, and we are
thus left with five physical Higgs bosons.

As mentioned, we need the electroweak symmetry breaking to be successful
also in supersymmetry in order to give SM fermions and gauge bosons their
masses. We want to break the SU(2)L × U(1)Y symmetry down to U(1)em, to
do this the scalar potential for MSSM in Eq. (1.27) must have three properties:
i) It must be bounded from below, meaning that as we move far outward from
the minimum the potential always increases, ii) it must have a minimum for non-
zero field values, giving the potential the wine bottle shape,19 iii) the minimum
must have a remaining U(1)em symmetry.

V (Hu, Hd) =|µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−d |2)

1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2)2

1

2
g2|H+

u H
0∗
d +H0

dH
−∗
d |2

m2
Hu

(|H0
u|2 + |H+

u |2) +m2
Hd

(|H0
d |2 + |H−d |2)

(b(H+
u H

−
d −H0

uH
0
d) + c.c.), (1.27)

where H+
u , H

−
d , H

0
u, and H0

d are the complex scalar fields, g and g′ are gauge
couplings. µ, m2

Hu
, m2

Hd
, and b are the same as in Eq. (1.24).

The potential has eight degrees of freedom from the four complex scalar
fields. To fulfill the three requirements above we can start by setting H+

u = 0
by using the gauge freedom in SU(2)L. At the minimum we must thus have
∂V/∂H+

u = 0 which leads to H−d = 0. We then have no vacuum expectation val-
ues for the charged fields, thus requirement iii) is fulfilled. To fulfill requirements

18“Correctly” means here to keep the superpotential holomorphic, which is a requirement
necessary to keep the superpotential invariant under supersymmetry transformations, see
Chapter 3.2 in [14].

19Cheers again!
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i) and ii) the following inequalities must be obeyed,

2b < 2|µ|2 +m2
Hd

+m2
Hu
, (1.28)

b2 > (|µ|2 +m2
Hd

)(|µ|2 +m2
Hu

). (1.29)

Equation (1.28) ensures requirement i), while Eq. (1.29) fulfills ii).

1.2.7 Phenomenology
Up to now we have discussed some motivations for supersymmetry and what su-
persymmetry is. But how do we find it? Here we will discuss how the searches for
supersymmetry at hadron colliders, such as the Large Hadron Collider (LHC),
are performed and where today’s limits on the sparticle masses are.

At the LHC protons (or, if you want, quarks and gluons) are being col-
lided. Particles charged under QCD will thus have the largest cross sections,
i.e. squarks and gluinos are what we should look for in the first instance. If R-
parity is conserved squarks and gluinos will always be produced in pairs. Since
they are unstable they will each decay into the LSP. The decay chain may be
long and complicated but must provide colour charged particles, in other words
we will see multiple jets. Other sources of jets are Standard Model processes
involving quarks and gluons, the cross sections for these particles are much lar-
ger and will thus lead to large backgrounds. However, the LSP will escape the
detector which we will see as missing energy in the transverse plane from an
inbalance in momenta for the visible particles.20 The way to look for the pro-
duction of gluinos and squarks must therefore be to look for events with jets
and large missing transverse energy.

When discussing searches for supersymmetric particles we often talk about
exclusion limits. We also want to know what supersymmetry cannot be. In
Fig. 1.2 we show exclusion limits for the CMSSM from an ATLAS search [18]
at 8 TeV with 20.3 fb−1 of data. Here the expected limits have been calculated
by setting the nominal event yield in each signal region to the corresponding
mean expected background. In this search 15 signal regions were used. All
signal regions requires missing transverse momentum above 160 GeV and that
the effective mass is above 700 to 2200 GeV depending on the number of jets in
the event. The number of jets allowed varies from two to six. There are several
signal regions with the same number of jets, but they are distinguished with
increasing background rejection. See Table 2 in [18] for an full overview.

We will later need the smallest interesting cross sections for a given energy
and amount of data, i.e. the cross section values giving one event in a data set.
To find this value we simply solve the equation

N = σL, (1.30)

where N is the number of events, σ the cross section, and L the integrated
luminosity which is the amount of data available. Thus, for the existing 8 TeV
data set with 20.3 fb−1 data we get with N = 1,

σ =
1

20.3 fb−1 ≈ 0.05 fb. (1.31)

20When colliding hadrons we do not know the initial state momentum of the colliding
gluons and quarks in the longitudinal direction, thus we cannot use energy conservation in
the longitudinal direction.
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Figure 8. Exclusion limits for mSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and µ > 0
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where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal

cross-section by the renormalisation and factorisation scale and PDF uncertainties.
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√
S Amount of data Cross section for N = 1

7 TeV 4.57 fb−1 0.22 fb
8 TeV 20.3 fb−1 0.05 fb
13 TeV 80 fb−1 0.01 fb

Table 1.4: Cross section values corresponding to one event in different data sets
used by the ATLAS collaboration at CERN. The amount of 13 TeV data is the
most current value as the experiment is still running and continously collects
data.

Relevant cross section values when discussing searches with a data set of 20.3
fb−1 are thus greater than or around 0.05 fb. In Table 1.4 we have listed the cross
section values giving one event in different data sets. Note that even though
the total integrated luminosity for 13 TeV data is around 80 fb−1 this does not
mean that all of the data is used in each analysis done by the experiment, one
often does a selection of the data relevant to the analysis.



Chapter 2

Calculation of the Gluino Pair
Production Cross Section

We will in this chapter motivate the need for higher-order cross sections, review
the analytical leading order cross section for gluino pair production, go through
the numerical calculation of the next-to-leading order gluino production cross
section in Prospino 2.1 [1, 2], review the method NLL-fast 2.1 [3, 4, 5, 6] uses
and end the chapter discussing the achievable accuracy on the cross sections.

2.1 Why NLO Cross Sections and Why Fast?
First of all, why are next-to-leading cross sections necessary? From [2] we find
good motivations for calculating σNLO: The leading order cross section of gluino
pair production is heavily scale dependent, thus leading to uncertain predictions.
By including the next-to-leading order cross section we will reduce the scale
dependence and thus improve the precision of the theoretical predictions.

To quantify the correction of the leading order cross section we may use the
K-factor, K = σNLO/σLO. In Fig. 2.1 the K-factor is plotted as a function of
gluino mass. The squark mass is defined by the given ratio, and we have four
cases where the squark mass varies from being twice the gluino mass down to
80% of the gluino mass. It is assumed here that the squark mass is degenerate.
We see that NLO diagrams have large contributions at all masses, thus σNLO
should be used instead of σLO to get a realistic estimate of the total cross section.

One reason to do as precise calculations as possible is that we want to find
as strong exclusion limits as we can, i.e. what supersymmetry cannot be. An
example of such an exclusion limit is shown in Fig. 2.2, which can be compared
to Fig. 1.2, where the program ColliderBit [19] has been used to calculate LHC
observables for the CMSSM. It shows exclusion limits on m0 and m1/2 (briefly
discussed in Section 1.2.5) from ATLAS data where only LO cross sections
are included in the ColliderBit scan (white line) and where NLO+NLL cross
sections are included in ATLAS’ results (blue line). ATLAS used the NLL-fast
2.1 tool, which we discuss in Section 2.4. We see clearly the difference in
exclusion limits, data with NLO+NLL cross sections excludes a larger part of
the parameter space than LO cross section data.

17
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Figure 20: The K-factors [Eq. (68)] for the LHC (
√

S = 14 TeV). Parton densities:
GRV94, with scale Q = m; top-quark mass: mt = 175 GeV.
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Figure 2.1: K-factor plotted as function of the gluino mass for different ratios
between the gluino and squark mass with center-of-mass energy at 14 TeV. The
K-factor increases with the gluino mass. Here the gluino mass is maximally 1
TeV, while we will study gluino masses of up to 4 TeV. From [2] 11

Cut ATLAS GAMBIT Ratio

Emiss
T + jet pT cuts 89.6% 91.0% 1.02

∆„min > 0.4 81.0% 82.5% 1.02
Emiss

T /

HT >15 GeV≠1/2 56.0% 56.8% 1.01

mincl
e� > 1600 GeV 31.6% 33.4% 1.06

Table 3: The published ATLAS cutflow for the 2jt signal region
taken from Ref. [47], which searched for squarks and gluinos
in events with jets and missing transverse momentum. This is
compared with the GAMBIT cutflow obtained using Pythia 8
and BuckFast. Shown are the e�ciencies for passing each cut
(second and third columns), and the ratio of e�ciencies (final
column).

Cut ATLAS GAMBIT Ratio
e+ e≠
Two leptons 52.0 48.2 0.93
Jet veto 22.4 23.2 1.04
Z veto 21.2 21.6 1.02
SR MT2 90 12.7 12.6 0.99
SR MT2 120 9.4 9.5 1.01
SR MT2 150 6.2 6.3 1.02

µ+µ≠

Two leptons 47.8 51.2 1.07
Jet veto 20.7 25.5 1.23
Z veto 19.3 23.8 1.23
SR MT2 90 11.5 13.8 1.20
SR MT2 120 8.7 9.8 1.12
SR MT2 150 5.7 6.6 1.16

e±µû

Two leptons 77.7 102.7 1.32
Jet veto 32.4 50.8 1.6
Z veto 32.4 42.1 1.49
SR MT2 90 19.1 27.2 1.42
SR MT2 120 14.7 20.1 1.37
SR MT2 150 10.1 13.6 1.34

Table 4: The published ATLAS cutflow for Model 1 in Ref. [44],
a search for new physics in events with two leptons and missing
transverse momentum. This is compared with the GAMBIT
cutflow obtained using Pythia 8 and BuckFast. Shown are the
numbers of events expected in 20.1 fb≠1 of 8 TeV ATLAS data,
and the ratio of the GAMBIT and ATLAS numbers.

more appropriate treatment of initial state radiation is
important.

Two sample cutflows are presented in Tables 3 and
4, for a jets+MET search and a dilepton+MET search,
respectively. These show close agreement for most signal
regions, rising to no more than ≥ 50% discrepancy in the
worst case. These are a representative choice of sample
cutflows for all signal regions considered.

In Figure 3, we compare the observed ATLAS Run
I zero lepton CMSSM 95% CL exclusion limit in the
m0–m1/2 plane from [47] with a GAMBIT ColliderBit
scan performed with the same model. Here m0 and

GAMBIT 1.0.0
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Fig. 3: Output from a ColliderBit CMSSM scan over m0 and
m1/2 with tan — = 30, A0 = ≠2m0 and µ > 0, using nested
sampling with 4000 live points, and a tolerance of 0.05. The
likelihood only includes the ATLAS zero lepton SUSY search,
with 20,000 MC events generated per point. The colour map
shows the profile likelihood ratio L/Lmax and the solid white
lines indicate the GAMBIT 95% CL exclusion contours. The blue
solid line shows the ATLAS 95% CL observed exclusion limit,
taken from Ref. [47], with the blue dashed lines showing the
reported ±1‡ theoretical (cross section) uncertainty.

m1/2 are free parameters, tan — = 30, A0 = ≠2m0 and
µ > 0. The ColliderBit results here are generated with
nested sampling using MultiNest [91, 92], using 4000 live
points and a tolerance of 0.05. The ColliderBit likelihood
includes only the LHC likelihood contribution, which
in turn uses only the ATLAS zero lepton analysis, with
20,000 MC events generated per parameter point. The
white solid lines show the 95% CL exclusion contours
from the GAMBIT result. The lower extent of these
regions indicate the ColliderBit exclusion limit, which is
more conservative than the ATLAS result, as expected
from the di�erent cross-sections used (LO for GAMBIT,
NLO+NLL for the ATLAS result). The theoretical ±1‡
uncertainty band on the observed ATLAS limit is shown
by the blue dashed lines. It is interesting to note that
the di�erence between the LO limit and the NLO+NLL
limit is dependent on the parameter point (as one might
naively expect). Figure 4 shows the CMSSM 95% CL
exclusion limit in them0–m1/2 plane, following a scan of
m0, m1/2, tan —, and A0 using Diver [37] with GAMBIT
production settings (convthresh = 10≠5 and NP = 19200),
with the SM parameters held to their default values. All
of the LHC Run I analyses listed above are included in
the LHC combined likelihood, and no other likelihoods
are used. One obtains an exclusion contour of similar
shape to the ATLAS zero lepton limit for fixed A0 and
tan —, but it is shifted to lower values of m1/2.

Figure 2.2: Exclusion limits on m0 and m1/2 in the CMSSM, with tanβ = 30,
A0 = −2m0, and µ > 0, calculated with leading order terms in ColliderBit,
plotted as a white line together with exclusion lines from ATLAS-data in blue
using NLO+NLL. Including next-to-leading order corrections would have in-
creased the precision on the results from ColliderBit. Figure taken from [19].

Using Prospino 2.1 one can calculate next-to-leading order cross sections.
However, it takes some time. Each cross section evaluation for all strong pro-
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duction processes in the CMSSM takes ∼ 15 minutes. When doing a scan, for
example the one in Fig. 2.2, it is necessary to calculate at least 104 cross sections,
multiplying that with 15 minuts gives a very large number with units of time.
Therefore a fast evaluation of cross sections at the highest possible accuracy is
desirable.

2.2 Gluino Pair Production Cross Section
So how do we perform the calculation with today’s methods? The partonic
leading order cross section at Born-level is possible to calculate analytically and
it is,

σB(gg → g̃g̃) =
πα2

s

s

[
βg̃

(
−3−

51m2
g̃

4s

)
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(
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(2.2)

where mg̃ is the gluino mass, mq̃ the squark mass which is assumed to be
degenerate,

√
s the center of mass energy, and,

L2 = log

(
s− 2m2

− − sβg̃
s− 2m2

− + sβg̃

)
, (2.3)

βg̃ =

√

1−
4m2

g̃

s
, (2.4)

m2
− = m2

g̃ −m2
q̃, (2.5)

αs =
g2
s

4π
, α̂s =

ĝ2
s

4π
, (2.6)

where gs and ĝs is the qqg and qq̃g̃ couplings respectively. These couplings are
equal. As we will discuss in Chapter 4 we will use the partonic leading order
cross section to help the machine learning algorithm learn the next-to-leading
order gluino pair production cross section. From Eqs. (2.1) and (2.2) we see
that using βg̃, m−, and L2 as inout can help the machine learning algorithm
since they provide much of the structure of the LO partonic cross section.

The more cumbersome NLO cross section requires loop integrals with poles
and therefore numerical tools are used. Currently, cross section results are
calculated with the state-of-the-art Prospino 2.1 program [1, 2], which we use
as the basis for our data generation discussed in Section 4.1.

Since protons are collided at LHC we need the gluino pair production cross
section from an initial state of two protons. When colliding protons we have
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to take into account that the proton is a composite particle, it consists of three
quarks uud (two up and one down quark), which we call valence quarks, and a
sea of virtual quarks and gluons. These virtual quarks and gluons arise from
QCD interactions. Each constituent of a hadronic particle, like the proton, is
called a parton. Thus, when colliding protons each parton will have a fraction
of the proton’s total momentum. To describe the distribution of the fraction of
the total momentum for the partons in a proton we use the parton distribution
functions (PDF). These functions are not known analytically since QCD is non-
perturbative at the scale of the proton binding energy and must therefore be
determined experimentally. The main behaviour of a PDF is that for low energy
scales the valence quarks in a proton will be the most dominant, while for large
energy scales the sea quarks and gluons will play a larger role in the interaction
taking place.

In practice, when we calculate hadronic cross sections with protons as initial
state we must therefore first calculate the partonic cross section, σ(i, j → g̃g̃; s)
with i, j being the initial state partons, and

√
s the partonic center-of-mass

energy, and then integrate it over the possible fractions x1, x2 of total proton
momenta for each initial state parton,

σTOT =

∫∫
dx1dx2 fi(x1, Q

2)fj(x2, Q
2)σ(i, j → g̃g̃; s = x1x2S), (2.7)

where fi(x1), fj(x2) are the PDFs, Q the renormalization scale, and
√
S is the

total center-of-mass energy.
There are many possible choices of PDFs, one can do fits to different data

sets and different perturbative order, in this thesis we use the standard NLO
PDF CTEQ6.6M [20] when running Prospino 2.1 and NLL-fast 2.1.

2.3 Outline of Calculations in Prospino 2.1
The total hadronic cross section is found by calculating the integral of the double
differential cross section over rapidity y and transverse momentum pt,

σ(pp→ g̃g̃ +X) =

∫ pmax
t

pmin
t

dpt
∫ ymax

ymin
dy

d2σ(g̃g̃)

dptdy
. (2.8)

In case of other processes, such as a final state q̃g̃, it’s worth noting that y and
pt is defined as the rapidity and transverse momentum of the second particle.
The double differential cross section can be written as,

d2σ

dptdy
= 2ptS

∑

i,j=g,q,q̄

∫ 1

x−
1

dx1

∫ 1

x−
2

dx2 x1f
h1
i (x1, Q

2)x2f
h2
j (x2, Q

2)
d2σ̂ij(x1x2S,Q

2)

dtdu
.

(2.9)
where t and u are the Mandelstam variables. Prospino 2.1 calulates Eq. (2.9)
at both LO and NLO. The NLO result includes the sum of leading and next-
to-leading order contributions.

2.3.1 VEGAS Integration Routine
Prospino 2.1 uses the VEGAS integration routine by Lepage [21] for calculat-
ing the cross section integrals. This routine is a Monte Carlo integration routine
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where one combines importance sampling and stratified sampling. Importance
sampling is a sampling method that use a probability density function that re-
sembles the integrand such that one samples more often from areas where the
contribution to the integral is large. Stratified sampling is a method where we
divide up the integration interval into subintervals and sample with an equal
number of points in each subinterval, the trick here is to choose the subintervals
carefully such that the total variance is reduced.

Both of these sampling methods requires a knowledge of the integrand, which
we do not necessarily have in all cases. Lepage introduced the VEGAS routine
that combines these two sampling methods into a routine that do several sets
of evaulations of the integrand and adjusts the probability density function
after each set of evaluations. By doing it this way it samples points where the
contribution to the integral is large without knowing the function form a priori.
Other methods have been proposed as well, but these turns out to perform
poorly in dimensions ≥ 4 as demonstrated in [21].

We will follow [22] ad verbum. Consider an integral,

I =

∫

Ω

dnx f(~x). (2.10)

This integral is in standard Monte Carlo integration estimated by,

I ∼ S =
1

N

N∑

i=1

f(~xi)

p(~xi)
, (2.11)

where p(~x) is the probability density which the random points are drawn with.
The main idea behind VEGAS is to doM estimates Sm of I using N evaluations
of the integrand. The estimates are combined to give a cumulative estimate S̄,

I ∼ S̄ = σ̄2
M∑

m=1

Sm
σ2
m

, (2.12)

where σm is the approximate uncertainty of Sm and σ̄ is the approximate un-
certainty of S̄,

σ2
m =

1

N − 1

(
1

N

N∑

i=1

f(~xi)
2

p(~xi)
− S2

m

)
, (2.13)

1

σ̄2
=

M∑

m=1

1

σ2
m

. (2.14)

Theoretically σ2
m is minimized when

p(~x)optimal =
|f(~x)|∫

Ω
dnx|f(~x)| , (2.15)

which means that sample points are concentrated where the contribution to the
integral is largest.1 The approach in VEGAS for minimizing σ2

m is to divide the
integration volume into hypercubes forming a rectangular grid. Random points

1The denominator in Eq. (2.15) is really a normalization factor here.
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are then chosen from the different hypercubes with equal probability. From
iteration to iteration the delimiters between the hypercubes are adjusted such
that p(~x)→ p(~x)optimal.

In addition to the estimate of the integral, the algorithm also tells us whether
the estimates are consistent by computing the χ2 per degree of freedom (dof),

χ2

dof
=

1

M − 1

M∑

m=1

(Sm − S̄)2

σ2
m

. (2.16)

If the algorithm gives good results χ2

dof should not be much larger than one. If
not the estimates does not agree within errors.

The relative numerical error on the integrals performed in Prospino 2.1 is
found to be typically of the order 10−2 − 10−3 in our data set. The VEGAS
integration routine is thus a reliable and accurate integration routine also when
using it to calculate the next-to-leading order cross sections in supersymmetry.

2.4 NLL-fast 2.1
NLL-fast 2.1 [3, 4, 5, 6] is a computer program which computes cross sections
for squark and gluino production up to so-called NLO+NLL precision.

The next-to-leading-log (NLL) corrections come from the soft gluon resum-
mation described in [4]. The threshold region for producing (anti)squarks or
gluinos is reached when the center of mass energy

√
S → 4m2, where m is the

average mass of the produced particles. In this region, where the final state
particles move slowly we have large corrections to the leading order cross sec-
tion from Coulomb corrections, i.e. gluon exchanges between slowly moving
particles, and soft gluon corrections due to emission of low energy gluons from
the colored initial and final states. We can describe the soft gluon corrections
by powers of large logarithms of the final state particles’ velocity β, thus we get
the names leading- and next-to-leading-log.

To calculate a cross section NLL-fast reads in two-dimensional grid files with
squark and gluino masses, their corresponding NLO, NLO+NLL cross sections,
scale uncertainty, PDF, and αs error, then it performs a interpolation between
the grid points to find the desired cross section. The interpolation routine used
is a polynomial interpolation subroutine from Numerical Recipes [23].

A cross section is calculated in a few seconds, which is good compared to
Prospino 2.1 which may use several minutes, however, NLL-fast 2.1 is restric-
ted to degenerate squark masses. The usefulness of NLL-fast 2.1 is therefore
limited, in particular for less constrained models with many free parameters.

2.5 Accuracy of today’s methods
From the discussion in [19] we can see that the error due to higher order correc-
tions has been as low as 10% when including NLO+NLL corrections. Simplifying
the matter a bit, we may say that this error is an estimate which is calculated
by varying the renormalization and factorization scale, the so-called scale ucer-
tainty. The more the cross section varies when doing this the larger the error
is.
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But we must also take into account the errors from PDFs and αs. The PDFs
have larger errors at high energies and large momentum fractions x which is
problematic for heavy sparticles. The reason for poor PDFs at high momentum
fractions is that there is less data to construct the PDFs from for those energies.
However, as data is collected at the LHC the PDFs will improve in this region.
An example with NLL-fast 2.1 (8TeV) gives us errors of (24.3%,−22.2%) for
the PDF and (8.3%,−7.3%) for αs with gluino and squark mass at 1.5 TeV for
gluino pair production. To improve this result a better combined fit of PDFs
and αs to LHC data is needed.

From this we can conclude that the method developed in thesis must have
systematic errors below 10% in order to give a result which is better than the
current methods.
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Chapter 3

Machine Learning

In this chapter we will introduce the concept of machine learning (ML). We will
look at the basics of ML, then briefly discuss neural networks before introducing
the gradient boostied decision tree algorithm. We will then discuss overtraining
and other challenges with ML, and how we decide whether a ML model is
performing well or not.

3.1 Basic Concepts
We have two categories of ML: so-called supervised and unsupervised learning.
Supervised learning is when we have a dataset with features and targets, i.e. we
know the answer (target) for a parameter point (features) and the algorithm can
learn a map from features to targets. Unsupervised learning is a technique for
discovering hidden structures in a dataset. An example is to use unsupervised
learning on images, if you for example have many pictures of dogs, the algorithm
will try to find what is similar between the pictures and eventually manage to
predict when a picture contains a dog.

Two subcategories of both supervised and unsupervised learning are clas-
sification and regression. Classification ML is classification of samples into a
restricted set of categories, e.g. decide whether or not there is a dog in a picture
or a Higgs boson in an LHC collision. Regression ML is when the output values
can take continuous values, put in other words, we predict values of a function
from a set of known values of that function. In this thesis we will focus on
supervised learning with regression.

A possibly problematic issue with machine learning is overtraining. If we
do supervised learning and run the training algorithm too long the model will
eventually learn the training data rather than the underlying relationships in
the training data. It is important to check this while one builds a ML prediction
model. This is in contrast to the problem with underfitting which is when we
have a model which does not describe the underlying relationships in the data.
When doing training on a machine learning model we have to divide the data
set into two parts, one for training and one for validation of the final model.
This is often called training set and validation set1 If one perform k-fold cross
validation (CV) the machine learning model is trained several times by using

1Also called hold-out set.

25
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a fraction of the training set, the training set is divided into k folds where one
fold is reserved for testing and the other k − 1 folds are used for training. The
scores2 on the precision from the k models are then averaged and outputted.
With this procedure it is possible to lower the bias from how you choose your
training and data set. At the very end we can perform the final validation with
the above-mentioned validation set.

The hyper parameters are the parameters defining the ML model. The train-
ing procedure consists of adjusting the hyper parameters and how to use the
training data optimally. Adjusting the hyper parameters can be automatized
by using a scanning method to test out a set of hyper parameters. The training
data should also be cleaned before training the predictive model. Outliers in
the data set should be identified and the data set must be cover the parameter
space sufficiently, if there are gaps or sparsely populated regions the learning
may be incomplete. If we have a data set with many variables we should con-
sider which of them to use in the training, irrelevant variables will slow down
and give inefficient training.

3.2 Arti�cial Neural Network
A popular example of a ML algorithm is the artificial neural network (ANN, or
neural network for short) first described by McCulloc and Pitt [24]. It is inspired
by the biologial neural network formed by neurons in the human brain. An ANN
consists of artificial neurons which can take a value nominally between 1 and 0,
has a weight and an activation function, for example the sigmoid function,

σ(v) =
1

1 + e−v
. (3.1)

The neurons are organized in layers and are connected with each other from
layer to layer, an illustration is shown in Fig. 3.1. We have one or more input
neurons which are connected to the next layer which is a hidden layer, there
can be several of these, while the last layer is the output layer which gives the
output of the network.

For the case of regression there can be several neurons that can output
any value, in case of classification there is one output neuron for each class.
The number of input neurons depends on the number of variables fed into the
network. The neurons in a neural network can be connected in different ways,
e.g. fully or sparsely connected. We have a fully connected neural network
when a neuron is connected with all neurons in the previous and next layer. A
sparsely connected network have fewer connections between the neurons. The
weights of the neurons changes as the learning proceeds. Thus, after training
the network all the neurons have gained different weights and the neurons will
trigger depending on the input.

3.3 Gradient Boosted Decision Trees
The other example we will look at, and the algorithm we will use in this project,
is the boosted decision tree (BDT). A decision tree is a predictive model which

2There are many ways to calculate the precision of ML models, but they have in common
that they measure the precision in a single number we call the score.
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Figure 3.1: Illustration of a neural network. Taken from [25].

can be used on large datasets. It is based on the simple classification method
where we draw a tree with different criteria and walk through the graph to make
the correct decision. We will here focus on regression trees. When discussing
decision trees we can illustrate this behaviour by a square which represents the
feature space (X1, X2) of a function f(X1, X2) with output Y . See Fig. 3.2. We
can split this space into J regions, e.g. at X1 = t1 and X2 = t2 and so on such
that we get the situation at the top right of Fig. 3.2. We name the terminal
regions3 as R1, . . . , RJ . Note that we simplify matters by always choosing a
binary split which is easier to describe than the situation at the top left of
Fig. 3.2.

The response, or output, of the regression tree f(X1, X2) inside region Rj is
modelled as a constant γj , which we can write as

f(X1, X2) =

J∑

j=1

γjI{(X1, X2) ∈ Rj}, (3.2)

where we use the indicator notation I{x ∈ R} which evaluates to 1 if the
statement inside the brackets is true and 0 otherwise.

Fitting a tree to data consists of finding the terminal regions Rj by splitting
the training data into different parts. As mentioned above binary splits are
used. The training data is split with the use of a splitting variable j and a split
point s which give us the half planes,

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (3.3)

Now we have to choose a minimization criterion in order to find the best splits.
If we use the minimization of the sum of squares,

∑
(yi− γi)2 with yi being the

3Also often called terminal nodes or leaf nodes.
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306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

Figure 3.2: Illustrations of a decision tree. Top right shows a tree obtained by
binary splitting, while the top left figure is not obtained that way. The former
is easier to describe mathematically and thus also to implement in a program.
At the bottom left the binary split decision tree is drawn as a tree, and at the
bottom right we see a 3D illustration of the prediction surface of the tree. Figure
taken from [26].

target values, we want the splitting varible j and split point s to minimize,

min
j,s


min

γ1

∑

Xi∈R1(j,s)

(yi − γ1)2 + min
γ2

∑

Xi∈R2(j,s)

(yi − γ2)2


 . (3.4)

The minimization criterion is also called the loss function, which we will discuss
in Section 3.6, the criterion used here is the least squares loss. The minimization
of the sums in Eq. (3.4) is thus for any choice of j and s solved by,

γ1 = mean(yi|Xi ∈ R1(j, s)), γ2 = mean(yi|Xi ∈ R2(j, s)), (3.5)

i.e. each terminal region output the mean of the target values of the samples
inside the terminal region. This procedure with splitting the data set is then
repeated until we have reached the maximal number of terminal regions we have
set.

More generally, when considering trees with many input variables X =
(X1, . . . , XN ), we can write the tree as,

T (Xi; Θ) =

J∑

j=1

γjI(Xi ∈ Rj), (3.6)

where Θ = {Rj , γj}J1 describe the terminal regions and their assigned constants.
We want the Θ which gives us the smallest loss between predictions and target
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values,

Θ̂ = argmin
Θ

J∑

j=1

∑

Xi∈Rj

L(yi, γj), (3.7)

with L being the loss function, and argmin
Θ

means that we pick the Θ that

minimize the sum. Eq. (3.7) can be seen as a generalized version of Eq. (3.4)
describing all terminal regions Rj and constants γj . If Rj is fixed it is easy to
fit γj , but finding the optimal Rj is usually a very computationally expensive
task. As we will discuss below, one approach is to change the criterion such that
one approximates Rj by minimizing some other loss criterion instead of the one
used in Eq. (3.7).

The decision tree we have discussed up to now consists of only one tree. A
method to improve this decision tree model is to use a boosted decision tree.
Boosting is simply the procedure of adding trees that corrects the previously
added trees in the model. We can write a BDT as fM (Xi) =

∑M
m=1 T (Xi; Θm),

where each decision tree fm(Xi) = T (Xi; Θm) has its own set of j = 1, . . . , J
terminal regions Rjm and corresponding constants γjm. The criterion for finding
the best Θm at the m-th iteration is,

Θm = argmin
Θm

N∑

i=1

L(yi, fm−1(Xi) + T (Xi; Θm)), (3.8)

where we sum over all training points yi, fm−1(Xi) is the current model and
T (Xi; Θm) the new tree added. Equation (3.8) is the main equation to solve at
each training iteration m.

In the gradient boosting algorithm shown in Alg. 1 the approach is to ini-
tialize a tree model that predicts the mean4 of the targets and to improve it
by adding new trees. After the first tree is initialized the algorithm will fit M
trees. Each fit is done by using gradient descent5 which calculates the gradient
rim of the loss function for each training point with target yi. The gradient is
found by differentiating the loss function L with respect to the current model.
In the case of least squares loss we will get,

∇L = 2(yi − fm−1(Xi)) = rim. (3.9)

By fitting a tree to these gradients we step in the direction in loss function
space that minimize the loss function most. This step is the simplification of
Eq. (3.8), fitting a tree to the gradients of the loss function instead of the actual
loss function turns out to be a good approximation of the terminal nodes. A
more detailed discussion is found in [26].

When the terminal regions are found we can fit the corresponding γjm. This
is done by minimizing the loss between the targets and current model in each
terminal region Rjm. The last step is to update the model by adding the new
tree with terminal regions Rjm and constants γjm.

4If we use least squares loss. When using least absolute deviance and Huber loss it predicts
the α-quantile of the targets. See Sec. 3.6 for an introduction to least absolute deviance and
Huber loss functions.

5Also named steepest descent
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1. Initialize f0(x) = argminγ
∑N
i=1 L(yi, γ);

2. for m = 1 to M do
a) for i = 1, 2, . . . , N do

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]

f=fm−1

end
b) Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, . . . , Jm;
c) for j = 1, 2, . . . , Jm do

γjm = argmin
γ

∑

xi∈Rjm

L(yi, fm−1(xi) + γ)

end
d) Update fm(x) = fm−1(x) +

∑Jm
j=1 γjmI(x ∈ Rjm)

end
3. Output f̂(x) = fM (x);

Algorithm 1: Algorithm for the gradient boosting. We are using the imple-
mentation in Scikit-Learn[27].

3.4 Hyper Parameters
Now that we have discussed the gradient boosting decision tree algorithm, we
can take a look at the hyper parameters defining the model. The most important
ones are the number of boosting iterations (how many trees to add), the depth
(longest path from root to terminal region) of the trees, and the learning rate
(adjusting the contribution of each tree added). The learning rate 0 < ν ≤ 1 is
simply a scale factor multiplied to the new tree when adding it to the model,

fm(Xi) = fm−1(Xi) + ν ·
Jm∑

j=1

γjmI(Xi ∈ Rjm), (3.10)

where fm−1(Xi) is the existing model, and
∑Jm
j=1 γjmI(Xi ∈ Rjm) the new tree

added to the model.
The subsample parameter decides whether we use all of the training samples

in each iteration or a subsample of them. By using a subsample of the tranining
sample we reduce the bias and correlation between each tree. To further adjust
the model we can adjust the sensitivity for when we make a split in the tree,
how many branches and leaves we will have in total, and how many of the input
features the tree should take into account at the same time in each iteration. In
Table 4.3 we have listed the hyper parameters used in this thesis.

There are few guiding principles on how to choose the parameters. However,
we can look at some of the implications of the different parameters. Obviously,
the number of boosting iterations will impact the run time of the training. If
we have a high learning rate we can have fewer iterations, but the tree may not
be sensitive to small features in the data set. To compensate we can adjust the
max depth of the tree, if we have a deep tree we get more sensitivity to small
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variations in the data set, however, we may then become more vulnerable for
overtraining, see below. If we have complicated relations between input and
output it may be good with a large depth. With these considerations in mind
we can start the training, but there is no way to tell a priori which parameters
that will turn out to be optimal.

3.5 Quanti�cation of Performance

When we build a BDT we must quantify the performance in a reasonable way.
Scikit-Learn offers several ways to do this. In this section we will discuss the
different measures, how and where to use them, and define our own measure:
the mean relative deviance.

3.5.1 Precision Measures

When building several BDTs we would like to quantify the performance in a
single number in order to be able to easily compare the different versions. There
are several ways to do this, for example using the median absolute error, which
is robust to outliers,6 or the score method we will use in this thesis: the R2-
value, which gives a measure on how well future samples will be predicted by
the BDT. The R2-value is defined as,

R2 = 1− u

v
, (3.11)

where u =
∑N
i=1(yi − ŷi)2 and v =

∑N
i=1(yi − ȳ)2, in which ŷi is the predicted

value, yi is the target value and ȳi is the mean of the target values. u is called
the residual sum, i.e. the sum of the deviations between model and data. v
is called the total sum of squares and is the squared difference between true
data and the overall mean, it describes the variation in target values. The R2

score provides a measure of how well future samples are likely to be predicted
correctly. R2 ≤ 1 and saturates when all samples are predicted correctly.

After picking out the best model based on the R2-value, we must check for
overtraining. This is done by looking at the deviance between the training data
and target values, and the deviance between the test data and target values
as functions of the number of iterations. The deviance is defined as the value
of the loss function. The sweet spot for the model is the point where both
the training set and test set deviance are at their lowest. As we will see later,
overtraining has not been a large problem for us. We have instead seen that the
deviance graphs for the training data set and test data set have diverged at a
large number of training iterations, an example is shown in Fig. 3.3. We call this
inefficient training, it does not decrease the precision of the predictions. It is,
however, better when the deviance graphs track each other, then each training
sample is more efficently used.

Once we have checked whether the model is overtrained or not, we can
look more closely at how the model performs. In our case we want to generate a
model that predicts cross sections for an LHC-process as described in Chapter 2.
Typically, cross sections vary over many orders of magnitude, thus it is crucial

6Data points that are far from being predicted correctly.
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Figure 3.3: Example of a deviance plot. The dashed line is the deviance between
predictions on the test data and true values, while the solid line is the deviance
between predictions from the training data and true values. In this case we
do not have overtraining since the test set slope is still negative. However, the
deviance curves diverge. This is a sign of inefficient training.

to test how well our models predicts the cross section at each decade.7 The
problem with the built-in measures in Scikit-Learn is that they are measures
on the model as a whole. This problem is solved by introducing themean relative
deviance,

ε̄ =
1

N

N∑

i=1

ŷi − yi
yi

, (3.12)

where ŷi is the predicted value and yi is the target value. The mean relative
deviance is calculated for each decade. We also calculate the standard deviation
σε of the relative deviance,

σε =

√√√√ 1

N

N∑

i=1

|εi − ε̄|2, (3.13)

where εi is the relative deviance for a data point yi. Note that the mean relative
deviance (and its standard deviation) is calculated with the actual cross section
values, not log10(σ) that the model is trained on, for each decade of the cross
section values. We will discuss this more in Section 4.2.

7A decade is in this thesis defined as the half-open interval (10n, 10n+1]. We will often
work with the base-10 logarithm of the cross sections, thus we will use the notation (n, n+ 1]
for this decade.
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Figure 3.4: Example showing how the mean relative deviance for each decade
changes when the number of boosting iterations is varied. As expected we see
that the BDT model predicts better when it is trained longer, the standard
deviation of the relative deviance is lower when we have a large number of
iterations. Note also that the slope of the points is changing. With fewer
iterations the BDT predicts systematically above and below the true values,
depending on whether the cross sections are small or large. When the number
of iterations is increased the slope decreases.

If we have ε̄ 6= 0 it means that the BDT predicts systematically below or
above the true cross section. We could in principle correct for this by rescaling
the results in each decade, but that is not desirable. We will plot the mean
relative deviance per decade with standard deviation as error bars, an example
is shown in Fig. 3.4. The purple dashed line represents 0.02 events in a 20.1
fb−1 data set.8 We see how the mean relative deviance develops when changing
the number of boosting iterations. With few iterations we may get a model that
has an overall ε̄ = 0, but when we look at the values for each decade of cross
section values we see that high cross sections are underestimated, while small
cross sections are overestimated.

In addition to ε̄ = 0 our goal is to have σε < 0.1. If σε is below 0.1 it means
that the spread in relative deviance is mostly inside 10%. In [19] the errors in
the currently available calculations of the cross sections are discussed, they are
of the order 10% or larger, which means that if we have a BDT model where
the error is significantly below 10%, the errors from other sources such as the
the PDFs and αs will dominate the errors introduced by the BDT-model.

It is worth noting that even though we could test our model with more

8Apologies for the arbitrary number of events.
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samples we will not get any better value for σε. What will happen is that we
get a more precise measure of ε̄ and σε, the only way to improve the BDT’s
precision is by tuning the hyper parameter and/or adding more training data.

3.5.2 Variable Importance

Since we are working with physics we expect and want a BDT-model that be-
haves in accordance with the physics it describes. We are here interested in the
gluino pair production cross section. It is therefore natural to think that the
gluino mass will play an important role, thus we expect a BDT model where
the gluino mass parameter has a large impact. We will also expect that the
squarks contribute in a certain order depending on their flavour. Since the first
generation quarks are more important in the PDF than the second generation
squarks, we expect that the first generation squarks will be the most important.
In Fig. 3.5 we see an example of a variable importance plot. In this case the
variables are contributing as expected from a physics point of view.

The variable importance is calculated as a relative measure on which training
variables that affects the model most. At each split in the trees in the model
only one input variable is considered at the time, thus the more splits a training
variable causes, the more important it is. The measure is normalized.

0 10 20 30 40 50
Relative Importance

Figure 3.5: Variable importance for an example BDT model which is trained
with physical gluino and first and second generation squark masses. We see here
a reasonable result where the gluino mass is the most important variable, while
the squarks contribute less. The lightest squarks contribute the most, while the
second generations squarks are the lowest contributing variables.
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3.5.3 Learning Curves

In addition to the deviance plots we can also plot learning curves. These curves
tells us how well we have utilized the training data. An example is shown in
Fig. 3.6. The cross validation score shows how well our model performs on the
test data set, while training score is how well our model performs on the training
data set. The scores are the R2 value defined in Eq. (3.11).

Each point on the curve represents a model trained with the amount of
training data indicated on the x-axis. A cross validation method splits the total
data set in three folds, as discussed in Section 3.1. For each iteration a subset of
the total data is used, the first iteration uses 1/5 and the last iteration uses all
of the data. Thus each point in the plot represents three models9 trained with
a subset of the data increasing in size for each iteration, i.e. the first models is
trained with 1/5 of the data, the second with 2/5 of the data, and so on up to
the last models where the whole data set is used. Thus the leftmost red point
in Fig. 3.6 is the mean of the training scores of the three models trained with a
fifth of the total data set, the leftmost green point is then the mean of the cross
validation scores from the three models. The envelope around the graphs is the
standard deviation of the scores.
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Figure 3.6: Learning curve with R2 scores against data points plotted with built
in functionality in Scikit-Learn. An example BDT is shown where we have
utilized the training data well. In this case the hyper parameters of the model
are well tuned and we benefit from adding more data up to around 500 000
points.

9Remember that with k-fold cross validation we train k models such that each fold is used
as a test set once.
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This plot is used to investigate whether the model benefits from more data
or not. If the two graphs converge to a small score the precision of the model
can be increased by changing the hyper parameters of the model such that it
becomes more sensitive to features in the data. If the training score is high
and the cross validation does not fully climb to the training score and if it not
flattens out, the model would benefit from adding more data to the training.

3.6 Loss Functions
When building a BDT we have to choose a loss function to use when training
the model. The choice of loss function will impact the time needed for training
and the quality of the model. In gradient boosting we add new trees to the
model that minimize the loss function, in other words: trees that decrease the
difference between the predicted and true values.

There are four loss functions available in GradientBoostingRegressor, we
will take a look at three of them. The default loss function is least squares loss
(LS). The other choices are least absolute deviation (LAD), Huber [28] which
is a combination of the first two, and quantile regression. For situations with
few outliers, the least squares loss is likely to perform well and give us a good
BDT model with little training since it has a quadratic penalty for deviations
between prediction ŷ and target y,

L(y, ŷ) =
1

N

N∑

i=1

(yi − ŷi)2. (3.14)

If we have outliers, we can use the least absolute deviance function. It gives
us a linear loss, which is more robust for the outliers since the outliers will not
dominate the loss as much as with least squares,

L(y, ŷ) =
1

N

N∑

i=1

|yi − ŷi|. (3.15)

If we combine these two such that the outliers are covered by the linear loss
and the other samples by the squared loss, we arrive at the Huber loss function,

L(y, ŷ) =

{ ∑N
i=1(yi − ŷi)2, |yi − ŷi| ≤ γ∑N
i=1(γ(|yi − ŷi| − γ

2 )), otherwise
(3.16)

The γ in (3.16) sets the demarcation between squared and linear loss. We define
how large fraction α of the predictions should have least squares loss, then we
find γ = α-quantile{|yi− ŷi|}. Thus, if α = 0.9 it means that the 90% best of all
the predictions should have least squares, while the remaining 10% worst of all
the predictions should have linear loss. Scikit-Learn uses a method from Scipy
[29] to find γ in each case. This γ is only calculated the first time we call the
LossFunction-object, thus data points will move inside the region |yi− ŷi| ≤ γ,
where LS loss is used, as training progresses.

When using these loss functions we want to compare the performance of
each of them. However, it is not straight forward to do so, since we must take
into account the fact that the squared loss is squared and that the linear loss is
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linear. We will square the value of the linear loss in order to compare the two
loss functions. For the Huber loss, which is a mix of squared and linear loss,
we cannot do this easily. There is a factor of two that differs in the definition
the Huber loss in the Scikit-Learn implementation from the two other loss
functions, so we must multiply it by two before comparison. At the end of the
training we assume that the set of predictions with |yi − ŷi| > γ will be very
small, thus we can assume we have a pure LS loss at the end.
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Chapter 4

Evaluating Supersymmetric
Cross Sections With Boosted
Decision Trees

In this chapter we will present how we use BDTs to evaluate supersymmetric
cross sections at next-to-leading order. First we will look at the software used
to generate data samples and the quality controls of the data. We will then
delve into the mysterious world of tuning a BDT model by using grid searches.
The choice of input variables is then discussed before we conclude the chapter
with the final manual tuning of our BDTs.

4.1 Data Generation
In this section we will first discuss the details of the data generation for the
MSSM-24 training data, then briefly go through the generation of CMSSM
data used to test our BDT model. After that we will present the main steps to
build a BDT model. All scripts to build and plot results from the BDT models
are available on GitHub: https://github.com/jonvegards/master_thesis

Sampling of data To generate the data we used a MPI parallelized Python
script [30] modified to suit this thesis. The script generates a sample point
in the parameter space for a given supersymmetric model by drawing random
parameter values from given intervals, see Table 4.1 for parameters and inter-
vals used. Then the sample is passed over to softpoint.x, a script in the
Softsusy 3.6.2-package [31], which calculates the supersymmetric spectrum.
A parameter point where we get successful electroweak symmetry breaking (see
Section 1.2.6), a neutralino as the LSP, and the absence of tachyons is accepted.

The input and output from softsusy.x is written in the SLHA-format [32],
which Prospino 2.1 takes as input. Prospino 2.1 calculates the LO and NLO
cross sections for the specified supersymmetric process at a given center-of-mass
energy with the specified initial state.1 The LO and NLO cross sections, the K-
factor, and absolute and relative error on the NLO cross section from Prospino

1Initial state also decides type of collider. We may use pp̄ (Tevatron) or pp (LHC.)

39
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2.1 is written into the SLHA-file for each parameter point. When we have
generated “enough” data samples, we harvest the interesting values2 from the
SLHA files into a single data file which we will use to train the BDT model
with.

We note that Prospino 2.1 first calculates the LO and NLO cross sec-
tions assuming degenerate masses in order to find an estimate for the K-factor,
i.e. calculating K = σNLO, degenerate/σLO, degenerate. Then it proceeds with cal-
culating the LO cross section assuming non-degenerate squark masses, thus the
output NLO cross section is estimated with σNLO = σLOK.

Prior When sampling data by drawing random values from parameter intervals
we have to think carefully how to ensure that the parameter space is well covered.
We will train a BDT to predict NLO cross sections for gluino pair production,
thus we only have to care about the cross section function and its parameter
space, i.e. we want to cover the parameter space of the cross section function
well. We will use two methods of sampling in this thesis, the discussion of these
in [33] is more thorough.

In a Bayesian approach, when considering parameters for a model we must
encode what we know, or do not know, about the parameter in the prior prob-
ability distribution, which is where we express our belief in a parameter value.
From the principle of transformation group invariance, which means that the
prior should remain unchanged under any transformation irrelevant for the prob-
lem, we can extract two types of prior distributions. The first one is found by
considering a location parameter x. For such parameters under a constant co-
ordinate transformation x→ x′ = x+a the prior π(x) should remain unchanged,

π(x) dx = π(x′) dx′ = π(x+ a) d(x+ a)⇒ π(x) = π(x+ a), (4.1)

since dx = d(x + a). This is satisfied if π(x) is a uniform prior, i.e. the
probability of getting x or x+ a is the same.

The type of other prior is due to scale parameters. Such parameters introduce
a scale to our problem. These parameters should have a prior that is invariant
to scalings: x→ x′ = mx. The requirement for the prior distribution will then
be,

π(x)dx = π(x′) dx′ = π(mx)d(mx)⇒ π(x) dx = π(mx)m dx, (4.2)

which is satisfied if π(x) is a log prior, that is, a prior which is proportional to
1/x. The name comes from that π(log(x)) behaves as a flat prior.

A flat prior will cover the edges of the parameter space,3 while the log prior
cover the inner part of the parameter space. However, we cannot use the log
prior as is. We use cuts to avoid divergence of the log prior near zero. An
illustration is shown in Fig. 4.1. In the sampling script this is implemented with
start and stop values for the sampling interval with additional cuts where we
go from log prior to flat prior near zero. In Table 4.1 we have listed parameters
and their corresponding sampling intervals for flat and log priors. The log prior

2Interesting in this context means variables related to the LO and NLO cross sections for
gluino pair production.

3Consider the following: the probability for having a sample with n parameter values in the
lower half of a uniform sample interval scales as (1/2)n, where n is the number of parameters.
This will be a very small probability the more parameter values we are sampling.
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intervals are of the kind [start,flat_start,flat_stop,stop], where the two (or one,
depending on whether we sample negative values or not) middle values are the
point(s) where we go from log to flat prior.

As discussed in Section 1.2.4, we work with a weak scale MSSM model, more
precisely the MSSM-24, thus we must set a scale Q for the soft supersymmetric
breaking Lagrangian parameters. We use Q = 1 TeV. It is also worth noting
that we sample data points in order to calculate the gluino pair production
cross section at next-to-leading order, i.e. estimating the NLO cross section
function. Thus we need only values for parameters in the cross section function.
The leading order partonic cross section functions in Eqs. (2.1-2.2) contains five
independent variables, mg̃, g̃s, ĝs, s, mq̃. Thus we have twelve variables when
considering only first and second generation squarks.4 This means that we
sample in a 24-dimensional space in search for values for a twelve-dimensional
function. Thus we cover the function space better than it would appear from
sampling a 24-dimensional space.

Parameter Log prior range Flat prior range

M1 [0, 100, 4000] [0, 4000]
M2 [0, 100, 4000] [0, 4000]
M3 [0, 100, 4000] [0, 4000]
At [−4000,−100, 100, 4000] [−4000, 4000]
Ab [−4000,−100, 100, 4000] [−4000, 4000]
Aτ [−4000,−100, 100, 4000] [−4000, 4000]
µ [−4000,−100, 100, 4000] [−4000, 4000]

mpole
A [0, 100, 4000] [0, 4000]

tanβ [2, 60] [2, 60]
mL1

[0, 100, 4000] [0, 4000]
mL2

[0, 100, 4000] [0, 4000]
mL3 [0, 100, 4000] [0, 4000]
me1 [0, 100, 4000] [0, 4000]
me2 [0, 100, 4000] [0, 4000]
me3 [0, 100, 4000] [0, 4000]
mQ1

[0, 100, 4000] [0, 4000]
mQ2

[0, 100, 4000] [0, 4000]
mQ3 [0, 100, 4000] [0, 4000]
mu1 [0, 100, 4000] [0, 4000]
mu2

[0, 100, 4000] [0, 4000]
mu3

[0, 100, 4000] [0, 4000]
md1 [0, 100, 4000] [0, 4000]
md2 [0, 100, 4000] [0, 4000]
md3 [0, 100, 4000] [0, 4000]

Table 4.1: Table showing the sampling intervals used for the parameters when
sampling the MSSM-24 model, the scale is set to Q = 1 TeV. The log priors
have three (four) limit values, the first and last are always start and end points
for the sampling interval, while the one (two) in the middle is the limit where we
go from flat prior to log prior. All values in GeV except tanβ which is unitless.

4Four variables from the cross section expression and eight squark masses.
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xmin xcut xmax
x

π(x)

Figure 4.1: Illustration of a log prior distribution from xmin to xmax. Near zero
the log prior blows up and we change to a flat prior at xcut.

Challenges during data generation When we generated data we faced several
challenges. One of them was to cover the parameter space thoroughly, this we
solved by sampling with both flat and log priors as discussed above. Other
challenges was to sample enough data without using an unreasonable amount
of time, and to do quality checks of the data sets.

To save time we ran a parallelized sampling script. We wanted to generate
500 000 data samples each with log and flat prior, thus parallelization was
necessary given a runtime of ∼ 60 seconds per parameter point. However, when
using more than ∼ 160 CPUs we had so many file operations that the data
generation process slowed down . It turned out that the script softpoint.x
was the source of the excessive file operations, mostly due to repeated library
loading before calculating the spectrum for each proposed point. We reduced
some of the file operation overhead by instead using the ELF5 lt-softpoint.x.
softpoint.x is a script that loads libraries etc. to make sure the execution
of the main program runs without problems. The number of file operations
are somewhat lower with lt-softpoint.x, but there are still many operations.
Since we wanted to generate a total of 106 data samples we had to do it in
several runs in order not to overload the computer cluster with file operations.

A subtle error in the data sets arose from Prospino 2.1. In Fortran codes
one must hardcode the max length of a variable’s value in file output. For
floats in non-exponential notation this means that the maximal values is set the
maximal number of digits. If this limit is exceeded we will get garbage output.
This limitation lead to a limit on the K-factor in Prospino 2.1, it could not
print out K-factors ≥ 10. Because of this many samples were discarded which
created gaps in our data set. It is worth noting that a K > 10 implies a very
large correction to the leading order cross section. Due to processes not present

5An Executable and Linkable Format (ELF) file is a standard file format for executable
files. [34]
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at leading order, it is in some cases possible with such large corrections.

Quality checks of data We have plotted the data as scatter plots in terms of
input parameters and sparticle masses in order to see whether we had covered the
desired mass ranges and to detect outliers arising from computational problems.
In Fig. 4.2 we see some of the plots used, a scatter plot of the physical squark
masses mũL

vs. md̃R
, and mc̃L vs. mg̃. Eeach color in the plot to the right

represents a decade of the cross section values, the rightmost blue-grey band
represents samples with zero cross sections, then the cross sections increase as
we move leftwards. A full set of quality check plots is available at the GitHub-
page for this project.

Figure 4.2: Sample quality control plots of the MSSM-24 data. To the right
each color represents a decade of cross section values, with the blue-grey color
to the right representing the smallest cross section values.

Generating Test Data We also generated 104 samples with CMSSM data re-
served for testing the final model and comparing it to NLL-fast 2.1, see Sec-
tion 5.5. The procedure described above was applied also for this data set,
however, we only used a flat prior here. We also had the problem arising from
large K-factor here, it was visible as a sharp gap in the scatter plots of the
parameters. It disappeared when we implemented the solution discussed above.
In Table 4.2 we have listed the parameters in CMSSM and their corresponding
sampling intervals.

Parameter Flat prior range

m0 [10, 4000]
m1/2 [10, 4000]
A0 [−4000, 4000]
tanβ [2, 60]
sign(µ) —

Table 4.2: Parameters sampled for the CMSSM data. All values except sign(µ)
and tanβ in GeV. The sign of µ had equal probability for being positive or
negative.
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4.2 Building a BDT

When building a BDT there are four main steps: choosing software, pre-processing
data, choosing the input variables to use, and tuning the hyper parameters de-
fining the BDT. We will discuss tuning of the hyper parameters in the next
section and then the choice of input variables in Section 4.4. We will start here
with discussing the software used and pre-processing of the data.

To do the data reading and manipulating we used Pandas [29]. This package
has several features which makes the job easy for us. Once we have a comma
(or other separator) separated file we can use Pandas to read in and treat data
efficiently. In this project each of the two datafiles contains ∼ 5 · 105 samples.6
When reading the data we split it in two parts, one with features and one with
targets, as discussed in Chapter 3. We use 90% of the total data as training
data, and save the remaining 10% for validation, i.e. the data we use when
plotting the mean relative deviance. The features are the input values we give
to the model, e.g. squark and gluino masses, while the targets are the desired
output value(s), in our case it is the NLO gluino pair production cross section.

For building the BDT model we chose Scikit-Learn [27]. Scikit-Learn is
an open source package for machine learning in Python, with a large number of
machine learning algorithms built in. We use the GradientBoostingRegressor
in this project.

When building a BDT model the choice of hyper parameters and input
variables is essential. We have to do smart choices depending on our problem.
Since we want to predict cross sections from supersymmetric data samples we
may assume that the underlying relationships in the data are complex, thus
using hyper parameter values giving many boosting iterations and deep trees
are likely to give us a better model. In general a complex model will be able to
learn complex relationships.

But we should also consider how we can pre-process the data in such a way
that we simplify the training task for the algorithm. By considering the span of
cross section values and the disscusion in Section 3.5, we chose to use log10(σ)
as the target.7 This means that we must choose what to do with samples where
σ = 0 fb before taking the logarithm. It is not necessarily a good idea to set
samples with σ = 0 fb to for example σ = 10−50 fb (which is close to zero), since
we then will have a cluster of outliers in the data set. A better solution is to
set σ = 0 samples to a cross section value close to, but smaller than the lowest
cross section value in the data set. We chose to set σ = 0 samples equal to the
power of 10 nearest to and less than the smallest cross section in the data set.

When the data is pre-processed we can start building our BDT model. The
hard part is to find a suitable set of hyper parameter values. In Table 4.3 we
have listed the hyper parameters relevant to us. After choosing a set of hyper
parameter values we initialize the model and then fit it to our data.

The three main lines in a BDTmodel script using GradientBoostingRegressor
are:

params = {’learning_rate’: 0.01, ’loss’: ’lad’, ’max_depth’: 13,

6One file where the MSSM-24 parameters are sampled with flat prior, and one where they
are sampled with log prior.

7When taking the logarithm of a cross section we implicitly divide the cross section by a
reference value σ0 = 1 fb.
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’n_estimators’: 1500}
reg = sklearn.ensemble.GradientBoostingRegressor(**params)
reg.fit(features, target)

In the first line we define the set of hyper parameter values. The hyper paramet-
ers chosen here are the ones we believe have the largest impact on the training,
as we will discuss in the next section. After the training procedure is finished we
can do predictions and test the model. There are several ways to test the model,
either by built-in methods or self-made methods as discussed in Section 3.5.

Hyper parameter Description

n_estimators Number of boosting stages to perform.
loss Loss function to be optimized.
learning_rate The contribution of each tree.
max_depth Maximum depth of individual regression estimator,

limits the total number of nodes in the tree.
subsample Fraction of samples to be used at each boosting stage.
max_leaf_nodes Maximal number of terminal nodes in each tree.
verbose If equal 1 more information is printed out while the

training proceeds.
random_state Seed used by the random sampling. Ensures that we

can reproduce results exactly.

Table 4.3: Hyper parameters we used in the GradientBoostingRegressor. In
Section 3.4 we discussed which hyper parameters that had most influence on
the result.

4.3 Searching for the Optimal Hyper Parameters
In the search for an optimal BDT model manual tuning is a rather slow and
inefficient method since the hyper parameter space can be arbitrarily large.
Therefore we made use of the search method GridSearchCV in Scikit-Learn to
help us navigate in the hyper parameter space. We will now discuss the process
of tuning the hyper parameters, starting with the early trial and error before
moving on with the grid search method.

When choosing which hyper parameters to train with we have to do some
try and fail, there are few guiding principles on what to choose. However, as dis-
cussed in Chapter 3 the three hyper parameters n_estimators, learning_rate,
and max_depth have large impact and we started by exploring them. Our first
try on hyper parameter values was8

params = {’n_estimators’: 300, ’max_depth’: 5, ’random_state’: 42,
’learning_rate’: 0.05, ’loss’: ’ls’, ’verbose’: 1}.

Early trial and error with varying the hyper parameter values defined above
showed that a high n_estimators and low learning_rate was a good combina-
tion. Other parameter did not influence the model as much as those mentioned,

8The hyper parameters random_state and verbose are only there for practical purposes.
The former ensures that we can exactly reproduce the model each time and the latter gives
us more information about the training procedure.
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for example the hyper parameter subsample. However, as long as it was smaller
than 1 the BDT did slightly better, we therefore fixed it to be 0.5. We used
this information to form our grid of hyper parameter values to use in the grid
search.

GridSearchCV takes as input an estimator, a dataset, and a parameter grid.
The output is the best scoring estimator which is found by training BDTs with
all possible combination of hyper parameters and comparing them. The estim-
ator is the algorithm we want to use, here the GradientBoostingRegressor.
The dataset consists of a N ×M NumPy array where each row element corres-
ponds to a point in the N -dimensional parameter space of the supersymmetry
model we are looking at. The parameter grid is a Python dictionary with the hy-
per parameters and their corresponding values we want to try out in the search.
The inputs for GridSearchCV are listed in Table 4.3.

Input Description

estimator Which estimator to use (GradientBoosting-
Regressor)

param_grid Grid of parameters given as a dictionary with lists of
values

scoring Which scoring method to use. GradientBoosting-
Regressor uses the R2 value by default.

n_jobs Number of jobs for parallellization
cv Which cross validation generator to use, default: k-

fold CV
verbose How much information do we want while the grid

search is running

Table 4.4: Hyper parameters used in the GridSearchCV-function.

As we can see in Table 4.4 it is also possible to choose a score method to
compare all the models. As discussed in Section 3.5 we use the R2-value which is
the default score in GradientBoostingRegressor. It is important to note that
one may arrive at a model with poorer R2-value when using hyper parameter
values found by GridSearchCV than using manually tuned hyper parameters.
This is due to GridSearchCV using cross validation, see Section 3.1. The cross
validation procedure ensures that the BDT does not overfit to the training data
by shuffling the data set such that the model does not train and test with
the same portion of the data each time. Thus when we tune the parameters
manually we may get a slightly higher R2-value unless we also imitate the cross
validation procedure.

Our approach was to first perform coarse searches and then successive searches
with a finer hyper parameter grid. By doing it this way we could get a sense
of where in hyper parameter space the best BDT models could be built. The
loss functions were explored separately, see Section 4.5. We used the knowledge
from our early trial and error to form our first grid of hyper parameter values
to explore:

param_grid = {’n_estimators’: [100, 300, 500, 700],
’learning_rate’: [0.01, 0.1, 0.3, 0.5],
’max_depth’: [1, 3, 5, 7]}.



4.4. CHOOSING INPUT VARIABLES FOR BDT TRAINING 47

When a search returned a model with a hyper parameter value being at the
edge of our defined grid we expanded the grid, this was repeated until we got
hyper parameter values not at the edges. Then we could be sure that we had
found a minimum in the hyper parameter space. Finding a minimum (at least
locally) in hyper parameter space iteratively in this way may be a time and
computationally consuming task, depending on the requirements of the BDT it
may be just as well to search for a minimum until one has obtained a model
that is precise enough for your purposes. We will see that this is what we have
to do with the hyper parameter n_estimators.

In the grid above we have 43 = 64 possible combinations of hyper parameter
values, which means that GridSearchCV will train all 64 possible models and
compare them to each other. The search is performed in several stages. First the
data sent to GridSearchCV will be divided in a number of subsets called folds,
the default is a 3-fold cross validation (CV). For each point in hyper parameter
space the method will fit each of the three folds with data, this method ensures
that we do not get a result which is overfitted to the data. This means that for
the hyper parameter space above, consisting of 64 points, the method has to do
192 fits. Thus, when we have a lot of data and set the max_depth to a large
number, this search procedure take a lot of time.

The GridSearchCV procedure was not a desktop computer task. As it could
take several days to do one search we made use of the parallell feature and ran
the search on the Abel computing cluster. However, even though we had large
computational resources, an exhaustive search of n_estimators turned out to
consume very much time. Thus we decided to set n_estimators=500 and tune
it manually later. The BDT algorithm is quite robust of overfitting and will
therefore always improve for each tree added, thus an exhaustive grid search
may give an “unnessecary” high n_estimators, i.e. we arrive at a model which
is indeed good, but it may take up too much disk space. We will discuss how
to reduce the file size of a model in Section 4.6.9

4.4 Choosing Input Variables for BDT Training
When training a BDT we have to choose which variables to train with. In the
case of supersymmetry (or any quantum field theory) we can for example use
either the Lagrangian masses or the physical masses. In this project we have
tried both and in addition tried to use expressions from the analytical leading
order cross sections in Eqs. (2.1-2.2) to simplify the task of the BDT. In the
following subsections we will discuss our choices of input variables, the results
from the grid searches, and show some of the impact of our choices. The main
results are presented and discussed in Section 5.2.

4.4.1 Lagrangian Parameters

First of all, we have to decide which of the Lagrangian parameters to use in the
training. As indicated in the paragraph above, we will use the Lagrangian soft
masses for the gluino and the first two generations of squarks. The reason for

9It is in some Python machine learning packages possible to use early stopping, which is a
function that halts the training procedure when the model improves less than a given limit
for a given number of boosting iterations.
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Model Variables used

Lagrangian parameters M3, mQ1
, mQ2

, muR
, mdR , mcR , msR

Physical masses mg̃,md̃L
,md̃R

,mũL
,mũR

,ms̃L ,ms̃R ,mc̃L ,mc̃R

Imitating analytic cross
section expression

mg̃, md̃L
, md̃R

, mũL
, mũR

, ms̃L , ms̃R , mc̃L ,
mc̃R , βg̃, L2, m2

−

Table 4.5: Variables used in the training of the three BDTs. βg̃, L2, and m2
−

are calculated with the mean of the squark masses.

this is that in the analytical leading order cross section expression we only find
squark and gluino masses, thus it is reasonable to use the Lagrangian soft masses
necessary to construct these physical masses. In Table 4.5 we see an overview
of the Lagrangian parameters used. We will now perform a grid search, as
discussed in the previous section, with these parameters as input variables and
discuss the resulting model.

From a physics point of view we expected a model with large depth and
many number of estimators to be the best performing model. In the analytical
leading order cross section expression we have only physical parameters, thus it
will most likely be harder for the BDT with Lagrangian soft parameters as input
to learn the cross section function. The choice of which hyper parameters to
include in the grid search was discussed in the previous section, we did a search
over the learning rate, depth and number of estimators. However, when the
number of estimators grew large the grid search took a very long time, therefore
we fixed it to be 500. The grid search result was then:

params = {’learning_rate’: 0.01, ’loss’: ’ls’, ’max_depth’: 12,
’n_estimators’: 500,’random_state’: 42, ’subsample’:
0.5, ’verbose’: 1}

This result was obtained with a data set with the K-factor problem10 we dis-
cussed in Section 4.1.

We investigate this model by plotting the deviance of the model with the
hyper parameters above, see Fig. 4.3. We see that the test set deviance is
still decreasing at n_estimators=500, thus a longer training will extract more
information from the data set. A more thorough discussion of the deviance plots
is found in Section 4.5 when we consider the loss functions. The R2-score for this
model is R2 = 0.99974, which is indeed a good score indicating a precise model.
However, we must remember that this score is calculated with the logarithm of
the cross sections which make it seems better than it actually is.

In Fig. 4.4 we see indeed that the R2-score is not a good precision measure
for us. It is a large skewness in the predictions in our model, small cross sections
are underestimated while large cross sections are overestimated. This we could
not infer from the R2-score, and this is why it is important to check the relative
deviance of the predictions and the corresponding standard deviation at each
decade of the cross section values. To solve this we will train the model more by

10We should have repeated the grid search also with the new data. Since the grid searches
done in this section were very time consuming we decided against it. The difference between
the data sets is only the missing samples with a large K-factor, thus a new search would most
likely have yielded a similar result.
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0 100 200 300 400 500
Boosting Iterations

10 2

10 1

100

101
SOFT
SOFT

Figure 4.3: Deviance plotted as a function of boosting iterations for BDT trained
with Lagrangian soft masses with hyper parameters from grid search.
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Figure 4.4: Mean of relative deviance for a model trained with Lagrangian soft
masses and hyper parameters from the grid search, the error bars show the
standard deviation of the relative deviance for each decade. The purple dashed
line indicates the cross section for 0.02 events in 20.1 fb−1 data at 8 TeV.

increasing n_estimators to 1500. We see the result in Fig. 4.5. The skewness
is almost not present anymore, which means that the BDT has learned the
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cross section function better. However, the standard deviations of the relative
deviances are outside our error requirements. For some decades of the cross
section values we also have large relative deviances. This may be due to the low
number of training samples in these decades of the cross section values.

Considering the hyper parameters used so far and the resulting precision,
we may conclude that a model trained with Lagrangian soft parameters is not
viable. It also takes ∼ 38 hours training the model with n_estimators=1500
and gives a model using much disk space, a further manual tuning of the hyper
parameters will most likely not give a drastic improvement. Thus using an other
set of input variables will be the best option to improve the model.
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Figure 4.5: Mean of relative deviance per decade for BDTs trained with Lag-
rangian soft masses and adjusted hyper parameters from the grid search. Only
the loss function varies between the models.

4.4.2 Physical Gluino and Squark Masses
We performed similar grid searches over the hyper parameters for a model
trained with the physical gluino and first and second generation squark masses.
The input variables used are listed in Table 4.5. With these input variables the
grid search ended up with the hyper parameter values (also from data with the
K-factor problem):

params = {’learning_rate’: 0.01, ’loss’: ’ls’, ’max_depth’: 13,
’n_estimators’: 500,’random_state’: 42, ’subsample’:
0.5, ’verbose’: 1}

This is almost the same as for the model with Lagrangian soft parameters. The
only difference is the depth, which is deeper for this model than for the one
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trained with Lagrangian parameters. This is somewhat unexpected, but it may
be a sign that this model has learned more of the cross section function than the
model trained with Lagrangian soft parameters, i.e. the Lagrangian soft model
could not figure out the function form even though the depth was increased.
Also here we arrived at a model with a large skewness in its predictions, thus
we increased the n_estimators to 1500 to extract more information from the
data set.

As we saw in Fig. 4.5 the model with the Lagrangian parameters did not
give us a satisfactory result. Using the physical gluino and squark masses as
input variables greatly improved the predictions from the BDT, see Fig. 4.6.
Here the mean relative deviance is close to zero for all relevant decades and
we also see the standard deviations are below 0.1. Thus we have now a useful
predictive model, i.e. it is inside our error budget. However, it is possible to
push the precision up even more as we will see in the next section. We also note
that using the least absolute deviance loss function gives the worst performing
model, this will be discussed in more detail in Section 4.5.
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Figure 4.6: Mean of relative deviance plotted as function of decades for a
model trained with physical gluino mass, and first and second generation squark
masses.

Using all squark masses We expect that the third generation squarks will
not affect the cross section for gluino pair production due to the lack of heavy
flavours in the proton and flavour-conservation in the scattering process. This
can be verified by comparing a model trained with all squark masses and the
gluino mass with a model trained with the first and second generation squark
masses and the gluino mass. In Fig. 4.7 we see the mean relative deviance for
these two models. All hyper parameters are equal,
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params = {’learning_rate’: 0.01, ’loss’: ’ls’, ’max_depth’: 13,
’n_estimators’: 1500,’random_state’: 42, ’subsample’:
0.5, ’verbose’: 1}

As we can see in Fig. 4.7 our model seems to understand the physics. If there had
been a change in the precision of the model when adding the third generation
squarks we would have a model that have learned something else that is similar
to the next-to-leading order cross section. In Section 5.3 we will discuss another
test of whether the model has understood the physics.
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Figure 4.7: Comparison of mean relative deviance for a model trained with the
physical gluino mass and first and second generation squark masses, and for a
model trained with the gluino mass and all squark masses.

4.4.3 Imitating Analytical Cross Section Expression
We have seen that using the physical masses improves the performance of the
BDT compared to BDTs trained with Lagrangian soft parameters. However, we
want to investigate further improvements. We will now look at models trained
with three additional variables that are used in the analytical leading order
partonic cross section expressions for gluino production in Eqs. (2.1-2.2),

βg̃ =

√

1−
4m2

g̃

s
(4.3)

L2 = log

(
s− 2m2

− − sβg̃
s− 2m2

− + sβg̃

)
(4.4)

m2
− = m2

g̃ −m2
q̃, (4.5)
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where mg̃ is the gluino mass, mq̃ the squark masses, and
√
s the center-of-mass

energy. Since the MSSM is a model where the squark masses are in general
non-degenerate we can choose between having a m2

− for each squark or use the
mean of the squark masses to find an approximation to m2

− for each data point.
Since each variable added to the model means increased training time, we chose
to use the mean of the first and second generation squark masses.

Since we have only added more input variables, we did not do a new grid
search. We did however change the hyper parameter max_leaf_nodes.11 Until
now we have used the default value which is an unlimited number of leaves.
This resulted in models taking much time to train12 and taking up a lot of
disk space, we therefore reduced it to max_leaf_nodes=100. We will discuss
this more thoroughly in Section 4.6. For now we can state that a model with
fewer leaves will in general give poorer predictions than a model with unlimited
number of leaves.

Except from the max_leaf_nodes hyper parameter, we reused the hyper
parameters from the BDT in Section 4.4.2 to check whether it helped to add
variables from the leading order partonic cross section expression. The hyper
parameters were thus,

params = {’learning_rate’: 0.01, ’loss’: ’ls’, ’max_depth’: 13,
’n_estimators’: 1500,’random_state’: 42, ’subsample’:
0.5, ’verbose’: 1, ’max_leaf_nodes’: 100}.

The results are shown in Fig. 4.8. We see a slight improvement from Fig. 4.6
in mean relative deviance even though we have reduced the number of leaves.
However, many decades of the cross section values have larger errors. For the
largest cross sections the mean relative deviances are also worse. The increase in
standard deviation for the relative deviance is very small, and presumably the
information gain from including βg̃, m2

−, and L2 is the reason that the increase
was not larger.

It is also important to look at the deviance plot as a check of overtraining
and to see whether we would gain more precision by increasing n_estimators.
In Fig. 4.9 we have plotted the deviance for the three models in Table 4.5 with
least squares loss. We do not see signs of overtraining for any of the models.
However, the training is not efficient above ∼ 500 iterations for any choice of
input variables. It seems like all models hits a saturation point here. We also
see the benefit of adding more training variables, the test set deviance decrease
a factor 6 compared with the BDT model trained with only the physical masses.
To deal with the inefficient training we will see that it helps to use other the
loss functions.

The slope of the deviance curves tells us how much is learned in each it-
eration, thus a zero slope on the test set deviance indicates that the model
does not learn. The model with Lagrangian soft parameters have the highest
deviance scores and is also the only model that seems to not learn much after
∼ 500 iterations.13 The other two have inefficient learning from the same point,
however, the slope of the test set deviance is still visibly negative, meaning new
features in the data are learned. As long as new features in the data are learned

11In Chapter 3 we called it terminal regions.
12Of the order ∼ 100 hours with only physical masses.
13The y-axis is logarithmic, thus the slope may still be slightly negative without being

visible at the scale in the plot here.
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Figure 4.8: Mean relative deviance for models trained with physical the gluino
mass, first and second generation squark masses, and βg̃, m2

−, and L2 for dif-
ferent choice of loss functions.

we should increase n_estimators to extract more information from the training
data. We will see in the next chapter that setting n_estimators=5000 gives a
BDT model with very precise predictions.

4.5 Choice of Loss Function

As discussed in Chapter 3 we have to choose a loss function. Based on early tests
of each loss function, we found the most promising results for the least squares
loss, least absolute deviance loss and Huber loss, the quantile loss was thus
discarded in this thesis. In this section we will discuss how each loss function
affects training and the resulting BDT model.

When performing the grid searches over the hyper parameters we did not
include the loss functions since there are only three viable loss functions avail-
able.14 Thus, tuning this hyper parameter manually is an easy task, i.e. com-
paring three models with all hyper parameters equal except the loss function.
We would also check the behaviour of the different loss functions at the different
cross section values and how the samples with zero cross sections were handled.

The default loss function for the GradientBoostingRegressor is least squares
loss. As discussed in Chapter 3, when using a quadratic loss we will be sensitive
of outliers in the data set. We have two kinds of outliers in this project, one is
the samples with zero cross sections, the other is all other samples that are just

14It is, however, possible to implement a user defined loss function in Scikit-Learn.
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Figure 4.9: Deviance as function of the number of boosting iterations for the
models considered in the last three sections with least squares loss. Solid lines
are training set deviance and dashed lines are test set deviance.

being predicted poorly.15 In Section 4.2 we reduced the gap between the zero
cross section-outliers and the other samples by setting the cross section values to
the power of 10 nearest to and less than the smallest cross section. The reasons
for a data point to have zero cross section may be complex for the algorithm
to understand, but mostly this is because mg̃ ≥ 4 TeV (remember that the
center-of-mass energy is 8 TeV). Therefore these samples will not behave as the
samples with non-zero cross section do and thus they will be harder to learn by
the BDT.

The LAD loss is more robust of outliers since the loss is the linear deviance
between the target values and predicted values. When calculating the next step
in the training the algorithm uses the gradient of the loss function. The gradient
of the LAD loss is simply the sign of the residual between the predicted value
and target value, thus the algorithm walks in the direction that minimize the
loss function with a fixed steplength. (See detailed discussion in section 3.6.)
A model using LAD loss may therefore be slower to converge due to a possibly
shorter step length than a model with LS loss would have. On the other hand,
a BDT using LS loss may take too long steps and can therefore overstep a
minimum while the model with LAD loss steps down in to the minimum. If so
we will see this in the mean relative deviance plot.

The combination of LS and LAD losses into Huber loss is a compromise
between the two loss functions. As we can see from the definition in Eq. (3.16)
we have squared loss for samples where |yi − ŷi| ≤ γ (with yi being the true

15Strictly speaking we also have a third category: the samples with sparticle masses outside
the chosen intervals, but they were thrown away so we do not have to consider them here.
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value and ŷi the predicted value) and linear loss otherwise.

As an example, in Fig. 4.8 we see (partly) how the samples with zero cross
section are treated differently: The BDT using LS loss has ε̄ = 0.032, while
the BDT with LAD loss has ε̄ = 0.56, and Huber loss has ε̄ = 0.307. Thus,
the model with LS loss works harder to predict the outliers correctly due to its
higher sensitivity of outliers, the model with LAD loss gives poorer predictions
on all decades of the cross sections, and the model with Huber loss do a better
job than the LAD loss model but not as good as the model with LS loss. We
can here conclude that the outliers in this data set are easy enough to predict
precise without using too much effort on them, if not so the models with LAD
and Huber loss would have been more precise than models with LS loss.16

To decide on a loss function we use both the mean relative deviance and de-
viance plots. The model that is not overtrained, has the most efficient training,
and has the best precision is the one we want to use. In Fig. 4.9 we saw that the
training was inefficient after ∼ 500 iterations when using LS loss, independent of
the input variables. We will now see that changing the loss function will change
this behaviour. We will use the model defined in Section 4.4.3 as an illustration,
the behaviour is the same for all sets of input variables used in this thesis.

In Fig. 4.10 we have plotted test and training set deviance for BDTs with the
loss functions LS loss, LAD loss, and Huber loss for models trained on physical
gluino and squark masses and β g, L2, and m2

− . As noted in Section 3.6 we
cannot compare the deviance calulated with different loss functions directly.
Therefore we have made an approximation to least squares loss by squaring
the deviance calculated with least absolute deviance loss and multiplying the
deviance calculated with Huber loss with a factor of two. The deviances of all
models start almost at the same place which indicates that we have made a
good approximation. However, the test set deviance for the Huber loss model
is quite low in the beginning.17

For both Huber and LAD loss we have efficient training for all boosting
iterations, while for LS loss the training is inefficient after ∼ 500 boosting it-
erations. The test set deviance slope is near zero at 1500 iterations for the LS
loss model, while the other two are steeper and may benefit more from longer
training. However, not only the training efficiency of the model is affected. The
training time also varies with the loss functions. In Table 4.6 we have listed
training times and corresponding loss functions. LS loss is the fastest, while
LAD and Huber loss uses the same amount of time. Comparing this with the
results seen in the mean relative deviance plots so far show that using LS loss
may be a good choice even though the training is inefficient. Higher precision
on the models with LAD and Huber loss could be obtained with longer training,
but it will take longer time than when using LS loss. Thus the LS loss is the
best option here.

16Outliers like those discussed in Paragraph 4.1 could have disturbed the training of models
with LS loss in this way.

17We do not know why this happens.
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Figure 4.10: Deviance for models trained with physical gluino and squark
masses, and β g, L2, and m2

− where we have used three different loss functions.
Solid lines are training set deviances, while dashed lines are test set deviances.
The blue lines here are the same as the yellow lines in Fig. 4.9.

Loss function Time

LS 5.5h
LAD 7h
Huber 7h

Table 4.6: Training times for models trained with physical masses. Hyper
parameters equal for all models: n_estimators=1500, learning_rate=0.01,
subsample=0.5, max_leaf_nodes=100, and max_depth=13. The remaining hy-
per parameters were sat to default values.

4.6 Model pruning

In the previous sections we have discussed our models in the light of which
training variables we use and how we adjust hyper parameters such as depth,
number of estimators, and learning rate. This gives good results. However, the
file that contains the BDT model is very large, up to the order of ∼ 800 MB.
In this section we will discuss how we can reduce the file size by adjusting the
number of leaves and how this impacts the precision of the model.

The file size of a BDT model is important since we must have one BDT for
each supersymmetric process. Thus, since there are many possible supersym-
metric processes, we have to build many BDTs. Therefore we want each BDT to



58 CHAPTER 4. EVALUATING SUSY CROSS CECTIONS WITH BDTS

be as small as possible in order not to use too much disk space. Another reason
a small model is desirable is that the execution time for each cross section value
output is proportional to the model size. A smaller model is faster than larger
ones.

The size of the model depends obviously on the choice of hyper parameters,
however, some hyper parameters are more important than others. The depth
and learning rate controls how large the model is, and by adjusting these we
affect the resulting prediction heavily. The hyper parameter that control the
maximal number of leaves in the tree, max_leaf_nodes, may be used to adjust
the BDT’s tree size and thus file size. It turned out that this parameter can be
set to a low value reducing the file size by ∼ 90% and still give good results.

An example of this is shown in Fig. 4.11 where we have plotted three different
models. One where we have an unlimited number of leaves, one with 1000 leaves
and one with 100 leaves. All models perform well and are well inside our 10%
requirement on the standard deviation of the relative deviance. However, the
model with 1000 leaves is slightly better at all decades except the two largest
cross sections. This is a bit counter intuitive since the model with unlimited
number of leaves should have been superior since it can use as many leaves as
possible to learn as much as possible. The difference is small, thus this may just
be random fluctuations.18 Using 1000 leaves is not viable any way since the file
size of the model will be ∼ 200 MB.
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Figure 4.11: Mean relative deviance for models with all equal except the max-
imal number of leaves.

In Table 4.7 we have listed the time it takes to predict 101085 test samples
for different numbers of leaves in a model. It is clear that a small number of

18A check for this would be to train models with other random seeds and compare.
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leaves indeed improves the speed of the BDT. The difference is small, so it may
not be the most crucial parameter to tune.

Number of leaves Prediction time File size

100 leaves 5.91s 19 MB
1000 leaves 11.76s 179 MB
Unlimited leaves 16.97s 792 MB

Table 4.7: Prediction times for 101085 test points for different numbers of leaves.
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Chapter 5

Results

We will now present our results on building BDT models to evaluate the cross
section for gluino pair production at next-to-leading order precision. As dis-
cussed in the previous chapter we had two main objectives: to find which input
variables and which hyper parameters that gave the best performance. We will
first discuss the sufficiency of amount of data used in the training, then look at
the performance of the input variables and how they contributed in the learn-
ing, then we will also compare the effect of some of the hyper parameters. We
finalize with comparing our method to NLL-fast 2.1 using MSSM-24 data and
CMSSM data.

When discussing the different models it may be instructive to see the distri-
bution of data samples versus the decades of the cross section values. We have
listed the number of samples in each decade for an example model in Table 5.1.
We generated training and test sets by drawing a given fraction of data samples
randomly from the total data set, thus the exact number of samples in each
decade varies slightly from model to model. See the full discussion of data
generation in Section 4.1.

5.1 Learning Curves

Here we will investigate whether the amount of data used to train our models
is sufficient. In Fig. 5.1 we have plotted the learning curve for a model trained
with physical gluino masses, first and second generation squark masses and βg̃,
L2, andm2

− with hyper parameters as in Table 5.2. In Section 3.5.3 we discussed
the details of how the plot is made.

A first look at Fig. 5.1 suggests that we should have more data, the cross
validation score can be improved if so. However, the difference between training
and cross validation score is very small, of the order 10−4. Thus we really have
enough data. It is important to add that when we train the models considered
elsewhere in the thesis we use 90% of the total data set as training data and the
remaining 10% as test data, see bottom line of Table 5.1. When plotting the
learning curves around 2/3 of the training data is used, thus we will actually
have a even slightly better model than in the plot shown here.

61



62 CHAPTER 5. RESULTS

Decade No. of test samples No. of training samples

σ = 0 3750 33236
(−9,−8] 56 475
(−8,−7] 574 5557
(−7,−6] 1392 12403
(−6,−5] 1903 17165
(−5,−4] 2595 22985
(−4,−3] 3414 30583
(−3,−2] 4356 39453
(−2,−1] 5698 52016
(−1, 0] 9678 86174
(0, 1] 11196 101256
(1, 2] 11520 104135
(2, 3] 10931 98137
(3, 4] 9484 86607
(4, 5] 7922 70117
(5, 6] 6243 55832
(6, 7] 5029 45121
(7, 8] 3167 28041
(8, 9] 1408 13154
(9, 10] 551 5304
(10, 11] 216 1930
(11, 12] 2 83

Total 101085 909764

Table 5.1: Break down of test and training samples in each decade of cross
section values.

5.2 Comparison of Models by Input Variables

The choice of input variable is important, as discussed in Section 4.4. The
three choices were Lagrangian soft parameters, physical masses and physical
masses with variables from the analytical partonic cross section expression. In
this section we will present the three resulting models with their best hyper
parameters. It will be clear that choosing physical masses with variables from
analytical cross section expression as input variables gives the best performing
model.

In Fig. 5.2 we have plotted the mean relative deviance with the best hy-
per parameter values found for the three sets of input variables used by us-
ing GridSearchCV and some manual tuning. The hyper parameters are lis-
ted in Table 5.2. Note that we did not perform an exhaustive search for
the n_estimators hyper parameter. When we did the grid search we used
n_estimators=500 which turned out to be too low, in Fig. 4.9 we see that the
learning was not finished after 500 boosting iterations, thus we increased it to
1500 as an attempt to exhaust the training data. The hyper parameters will be
discussed more thoroughly in the next section.

For the models trained with physical squark masses the standard deviation
of ε is well inside our requirements down to σ = 10−6 fb, while the model trained
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Figure 5.1: Learning curve for a model trained with physical gluino and first
and second generation squark masses, and βg̃, L2, and m2

−. Hyper parameters
as in Table 5.2. The y-axis is the R2-score for cross and training validation.

Input variables → Lagrangian Physical masses Physical masses
Hyper parameter ↓ and expressions

’learning_rate’ 0.01 0.01 0.01
’n_estimators’ 1500 1500 1500
’random_state’ 42 42 42
’subsample’ 0.5 0.5 0.5
’loss’ ’ls’ ’ls’ ’ls’
’max_depth’ 12 13 13
’max_leaf_nodes’ unlimited 100 100

Table 5.2: Hyper parameters for the three models with different input values.
See Section 3.4 for a description of the hyper parameters.

with physical squark masses and expressions from the leading order cross section
function has standard deviation of ε below 0.1 down to σ = 10−7 fb. The mean
relative deviance is near zero in nearly all decades, except for the two with
largest cross sections where we have a slight systematic underestimation of the
true values. If we consider Table 5.1 we see that there are few test and training
samples in the decades for the largest and smallest cross section values. Thus the
BDT has a small amount of data to train with and is expected to perform poorly,
in particular when we have limited the maximal number of leaves as discussed
in Section 4.6. By comparison, in the decades with many data samples we have
good precision.

In Fig. 5.2 we also see the difference when including βg̃, m2
−, and L2 as

training variables. We see a clear improvement for all decades. The drawback by
using more input variables is that the training time increases, with the settings
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Figure 5.2: Mean relative deviance for each decade of the cross section values
for models with Lagrangian parameters, physical masses, and physical masses
and variables from the analytical cross section expression. Hyper parameters
are listed in Table 5.2. The purple dashed line represents the cross section for
0.02 event in a 20.3 fb−1 data set.

in Table 5.2, approximately from 5 hours to 7 hours.
The leftmost points in Fig. 5.2 show the mean relative deviance for the

zero-cross section samples. Here the predictions are poor even though we have
many data samples. This may come from the fact that these samples are of a
complicated nature. There are many ways to get a σ = 0 data sample, one of the
sparticle masses may be too high and there is not enough center-of-mass energy
to produce the final state. Thus it may be hard for the BDT to generalize in
order to cover all possible cases.

The standard deviation of the relative deviance for the Lagrangian based
BDT model is in nearly all decades outside our requirements for how good the
precision should be. There may be many reasons for this, the most obvious is
that the physical masses are the ones being used in the analytical cross section,
thus using Lagrangian parameters will be an approximation. However, for some
of the decades for the largest cross section values it is inside our goals of a
minimum precision of 10%. This may be due to the low complexity of the cross
section function in this area. The gluino mass is low for these cross section
values, thus the squark diagrams contributing are suppressed and the cross
section function will have a simpler form.

Using the first and second generation physical squark masses together with
βg̃, m2

−, and L2 from the analytical partonic cross section expression as input
variables has proven to give the most successfull BDT models. In the following
we will present results using only use these as input variables.
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5.3 Variable Importance

Now that we have found which input variables to use we may do a sanity check
of our BDT model, i.e. check whether the model has understood the physics.
In Section 3.5 we introduced variable importance. For the model trained with
physical gluino and squark masses, βg̃, m2

−, and L2 with hyper parameters
as in Table 5.3 we expect that the gluino mass will be the most important
training variable, while m2

− and βg̃ will contribute significantly since they are
quadratically and linearly dependent on the gluino mass.

In Fig. 5.3 we show the variable importance for the BDT. The gluino mass
is the most important variable. As expected m2

− and βg̃ are important. And of
slightly less importance we have the squark related varibles. They are listed in
the order as we expect from the PDF dependence of the cross section, the first
generation squarks come first, then the second generation. We also see that ũ
are more important than d̃ since the proton consists of uud. Thus the model
seems to have understood the physics involved.

0 5 10 15 20 25 30 35
Relative Importance

Figure 5.3: Variable importance of BDT with expressions imitating the analyt-
ical leading order cross section expression.

5.4 Comparison by Hyper Parameters

In this section we will present our results on the choice of hyper parameters.
As discussed in Section 4.3 we used GridSearchCV in Scikit-Learn to find the
best hyper parameters. However, it was necessary to do some additional manual
tuning. Due to restrictions on computational power we did not do an exhaustive
grid search over the number of boosting iterations. The loss functions were saved
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for manual tuning as we mentioned in Section 4.4.1. In Table 5.2 we have the
best hyper parameters so far. In the following we will discuss the choice of loss
functions and number of boosting iterations, i.e. the manual tuning of the hyper
parameters.

In Section 4.5 we saw that the models with LS loss had ineffecient learning
after ∼ 500 iterations. However, inefficient learning is still learning. The de-
viance plot in Fig. 4.10 shows that the test set deviance is still decreasing at
1500 iterations, therefore a investigation tuning of the n_estimators parameter
was performed. In Fig. 5.4 we compare ε̄ for three models trained with physical
squark masses and expressions from the analytical cross section expression. We
have set n_estimators={500,1500,5000}. Increasing the number of estimators
to 5000 does indeed increase the precision of the predictions. Now the systematic
underestimation of the large cross sections with n_estimators=1500 observed
in Section 5.2 has also disappeared. Thus a large number of estimators shows
further significant improvement. However, the training time has now increased
to ∼ 24 hours, the model’s size increased to 62 MB, compared to around 20 MB
when using n_estimators=1500. An even larger number of estimators may yield
higher precision but at a larger computational cost relative to gained precision.
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Figure 5.4: Mean relative deviance for three models where only n_estimators
differs, the other hyper parameters are as in Table 5.2. Input variables used are
physical gluino and squark masses together with βg̃, m2

−, and L2.

When we have decided on the number of estimators to be 5000 we may
proceed to compare loss functions. In Fig. 5.5 we have plotted the mean relative
deviance for three versions of a BDT trained with physical squark masses and βg̃,
m2
−, and L2 as input variables. Hyper parameters are listed in Table 5.3, only

the loss function differs. We see that the Huber loss function performs slightly
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better than LS loss, except in the two decades with the largest cross sections.
The LAD loss performs overall poorly compared to the other loss functions. The
linear loss do not penalize poor predictions as much as a squared loss does, thus
the model will converge slower than a model with squared loss. It is the decades
with the smallest and largest cross sections that are most affected by the choice
of loss function, this may be due to the low number of data samples for these
cross section values. With this in mind we conclude that the best model is the
one trained with LS loss.
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Figure 5.5: Mean relative deviance for BDT models trained with physical squark
masses and βg̃, m2

−, and L2 as input values, with loss function as only hyper
parameter differing between the models. The other hyper parameters are listed
in Table 5.3.

It is worth noting that higher precision is achievable by increasing the max-
imal number of leaves. However, the size of the model will be large and will
cause practical problems.

5.5 Comparing with NLL-fast 2.1

We will now look at the performance of our best BDT model compared to the
NLL-fast 2.1 tool. We have used the BDT trained with physical squark masses
and βg̃, m2

−, and L2, with hyper parameters as specified in Table 5.3. In Fig. 5.6
we have plotted the distribution of the relative deviance for four different cases.
The plots to the left show the results from BDT predictions on MSSM-24 and
CMSSM data, discussed in Section 4.1, while the results from NLL-fast 2.1 on
the same data sets are shown to the right. Note that the scale of the x-axis
varies.
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Hyper parameter Value

’learning_rate’ 0.01
’n_estimators’ 5000
’random_state’ 42
’subsample’ 0.5
’loss’ ’ls’
’max_depth’ 13
’max_leaf_nodes’ 100

Table 5.3: Final choice of hyper parameters for the model trained with the
physical gluino mass, first and second generation squark masses, and βg̃, m2

−,
and L2 as input variables.

These distributions show that the BDT does well on both MSSM-24 and
CMSSM data. We also see the difference in performance between the BDT and
NLL-fast 2.1 on the MSSM-24 data. The BDT is clearly superior, NLL-fast
2.1 has a much larger spread and is biased towards low cross sections. The
spread in predictions for the BDT is low and the distribution is centered around
zero. However, we see a shoulder in the distribution of relative deviance on the
CMSSM data. This is due to a bias to larger cross sections for some of the
decades of cross sections which is shown in Fig. 5.8. When considering CMSSM
data NLL-fast 2.1 is more precise. That should not come as a surprise since
the software is made for the special case of degenerate squark masses. However,
the predictions from NLL-fast 2.1 are slightly biased from the fact that the
squark masses in CMSSM are not exactly degenerate due to splitting between
q̃L and q̃R states.

A comparison from a different viewpoint, between our BDT and NLL-fast
2.1, can be done by looking at the mean relative deviance for each decade.
In Fig. 5.7 we have plotted the results on MSSM-24 data. We see that the
BDT clearly outperforms NLL-fast 2.1 in all decades of cross section values.
The reason that the span of cross section values is smaller for these plots are
the restrictions on masses given to NLL-fast 2.1: the gluino mass must be
between 200 GeV and 2500 GeV, and the squark mass between 200 GeV and
4500 GeV. In Fig. 5.8 we see how our BDT performs on CMSSM data compared
to NLL-fast 2.1. We see that NLL-fast 2.1 outperforms our BDT method
here. However, we again find the slight systematic overestimation, as we saw in
Fig. 5.6d discussed above. The BDT here is only trained with MSSM-24 data.
If we include CMSSM data in the training, or train a BDT only on CMSSM
data, the model will in all likelihood perform better.
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(b) NLL-fast 2.1 on MSSM-24 data.
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(c) BDT with LS loss function on CMSSM
data.
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(d) NLL-fast 2.1 on CMSSM data.

Figure 5.6: Different predictive models on two datasets.
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Figure 5.7: BDT model trained with physical masses and expressions from the
leading order cross section function compared to the predictions of NLL-fast
2.1 on MSSM-24 samples.
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Figure 5.8: BDT model trained with physical masses and expressions from the
leading order cross section function compared to the predictions of NLL-fast
2.1 on CMSSM samples.



Conclusions

The main goal of this thesis was to use machine learning methods to build
a fast and precise predictive model for gluino pair production cross sections
at next-to-leading-order. When the next-to-leading order cross sections are
known and can be evaluated quickly it is possible to do more precise global
fits and exclude larger parts of the parameter space of supersymmetric models.
In the case of discovery the model parameters can be determined with greater
precision. We have indeed successfully built a model with the boosted decision
tree algorithm that evaluates the NLO cross section fast for the specified process
with a negligible systematic uncertainty and a spread of 10% or smaller, below
current contributions from other sources such as higher order terms, the parton
density functions and αs.

The training of the BDT models was done with data generated on the Abel
computer cluster. We did quality checks of the data to detect outliers and to
see that the parameter space was well covered. Outliers in the data set due
to computational problems are important to remove since they will not follow
the normal behaviour of the cross section function and thus disturb the machine
learning algorithm. We also discovered a bug in Prospino 2.1 which prohibited
K-factors ≥ 10, this lead to many discarded data samples and a gap in our data
set. When the bug was corrected we got a data set without gaps in the parameter
values.

We used several sets of input variables in order to find the one with best
performance. We also performed a hyper parameter scan to find the model
with the best precision possible. It turned out that models with a large depth,
small learning rate, least squares loss, and many boosting iterations gave the
best results. This confirmed our prior views, a complicated function such as the
next-to-leading order cross section should lead to a complex predictive model
in order to give precise predictions.

To be sure that our predictive model learned the next-to-leading order cross
section function and not just remembered the data set we made use of several
measures. First we compared the models with the R2-value defined in Eq. (3.11)
when performing the hyper parameter scan. Then we plotted the deviance
calculated with the loss function used in the model Eqs. (3.14)-(3.16) to check
for overtraining. Finally, the most precise model was found by plotting the
mean relative deviance Eq. (3.12) for each decade of the cross section. Our goal
was to build a predictive model with standard deviation of the relative deviance
smaller than 10%. The results of the best model obtained are shown in Fig. 5.2,
where we see that the model with least squares loss the best performance.

Finally, we compared our best BDT model to the state-of-the-arth tool
NLL-fast 2.1. We found that our method had superior performance on MSSM-
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24 parameter points, while NLLFast 2.1 was most precise on CMSSM parameter
points. However, our method is also useful (i.e. ε̄ is close to, but not precisely,
zero and σε < 0.1) on CMSSM data, but performs less well than NLL-fast 2.1
for well understood reasons. We also found that our model evaluates NLO cross
sections fast. It uses ∼ 6 seconds evaluating cross sections from ∼ 105 parameter
points.

Further development of this method is to include other supersymmetric pro-
cesses, for example squark-gluino production. In order to make the resulting
predictive model accessible to other physicists a Python package (or in a other
language, for example C++) should be made. We should also implement methods
to estimate the error from the PDFs, αs and re-normalization scale. The result
of this thesis may been seen as a “proof of concept” for this.
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