
Start Me Up:
Determining and Sharing TCP’s Initial Congestion Window

Safiqul Islam and Michael Welzl
Department of Informatics, University of Oslo, Norway

{safiquli | michawe}@ifi.uio.no

ABSTRACT
When multiple TCP connections are used between the same
host pair, they often share a common bottleneck – especially
when they are encapsulated together, e.g. in VPN scenarios.
Then, all connections after the first should not have to guess
the right initial value for the congestion window, but rather
get the appropriate value from other connections. This al-
lows short flows to complete much faster – but it can also
lead to large bursts that cause problems on their own. Prior
work used timer-based pacing methods to alleviate this prob-
lem; we introduce a new algorithm that “paces” packets by
instead correctly maintaining the ACK clock, and show its
positive impact in combination with a previously presented
congestion coupling algorithm.

CCS Concepts
•Networks → Transport protocols;

Keywords
TCP pacing; coupled congestion control

1. INTRODUCTION
Finding a suitable initial congestion window (cwnd) has

been debated for many years in the IETF. A large Initial
Window (IW) can be very beneficial [5], yet problematic for
low bandwidth links, e.g. in developing countries (although
RFC 6928 [4] discusses a study involving South America and
Africa, this has been criticized for focusing on the flows that
used the proposed larger initial window instead of measur-
ing the impact on competing traffic). This is a difficult en-
gineering trade-off because TCP normally assumes no prior
knowledge about the path when it applies the IW.

Often, concurrent TCP connections are used between the
same source-destination pair. They can share a network
bottleneck, in particular when they are in a tunnel, e.g. in
case of a VPN. In such cases, it would be possible for newly
joining flows to either use a cached connection state or a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

share of an aggregate from the ongoing transfers instead of
“blindly”applying a constant value. RFC 2140 [11] describes
these two cases as temporal and ensemble sharing; this paper
is concerned with the latter case.

2. BACKGROUND
Each TCP connection maintains states (e.g., local pro-

cess states, RTT, cwnd, ssthresh) in a data structure called
Transport Control Block (TCB). Sharing TCB data across
parallel TCP connections can improve transient performance
during the initialization phase [11]. Ensemble-TCP (E-TCP)
[6] expanded the idea of (ensemble) sharing of TCB data
across parallel TCP connections in order to allow active
connections to continuously benefit from each other. In E-
TCP, the aggregate of an ensemble is no more aggressive
than one TCP Reno connection. Ensemble Flow Conges-
tion Management (EFCM) [9] extended E-TCP by allowing
the aggregate of an ensemble to be as aggressive as n TCP
connections. These two mechanisms both realize a service
of joint congestion control, somewhat similar to the Con-
gestion Manager (CM) [2] or when using application stream
multiplexing as in e.g. SCTP [10] or QUIC [8] – but such
sharing is easier to implement than the former and does not
require application involvement as in the latter.

We have recently complemented E-TCP and EFCM with
an algorithm that addresses some problems that both of
these mechanisms have,1 as well as a possible encapsulation
scheme to ensure that connections traverse a common bot-
tlenecks, in an Internet-draft [13]. The coupling algorithm
in [13] is inspired by our prior work on coupling for media
flows in the context of WebRTC / RMCAT [7, 12].

Sharing TCB data can be particularly beneficial for short
flows (e.g., web on/off traffic); short flows joining an aggre-
gate can significantly reduce their completion time due to
acquiring a share of potentially large cwnd from active con-
nections. The crux of such sharing/initialization is that it
can create sudden bursts in the network, potentially lead-
ing to queue growth and packet loss. E-TCP and EFCM
acknowledged this problem, and addressed it using pacing.
Most pacing methods (including the ones proposed for E-
TCP and EFCM) use timers to clock out packets at regular

1TCP congestion control is stateful, but these states are not
addressed in the E-TCP and EFCM algorithms. For exam-
ple, slow start after a retransmission timeout (RTO) should
not happen on one flow while ACKs still arrive on another
flow. Also, to emulate the backoff of a single flow, TCP’s
concept of loss events should be retained for the aggregate,
meaning that there should be only one backoff irrespective
of the number of losses within the same loss “round”.

Algorithm 1 Ack clocking for new connection c, running as
a replacement of any other connection’s cwnd increase. Initially,
number of acks c = 0 and clocked cwnd c is c’s target cwnd cal-
culated by the algorithm in [13]. N = number of flows.

1: if clocked cwnd c <= 0 then
2: return . alg. ends; other connections
3: . can increase cwnd again
4: end if
5: if number of acks c % N = 0 then ’
6: send a new segment for connection c
7: clocked cwnd c ← clocked cwnd c - 1
8: end if
9: number of acks c ← number of acks c + 1

intervals over an RTT. This is not without problems, both
in terms of implementation in the end host as well as (some-
what counter-intuitively) the impact inside the network [1].

The algorithm in [13] does not include any form of pacing,
and therefore produces bursts that can lead to the problems
described above (potentially diminished by burst limitation
mechanisms underneath, e.g. in Linux [3]). We supply a
mechanism to avoid sudden bursts in this paper. Different
from prior work, this mechanism does not rely on a timer but
simply maintains the ACK clock of TCP, thereby minimizing
the impact on the dynamics in the network.

3. DESIGN
We begin by showing what happens when a new flow gets

a share of a large aggregate with our mechanism in [13]; we
simulate the behavior of three TCP connections in the ns-2
simulator2 with a dumbbell topology (bottleneck capacity
10 Mbps, RTT 100 ms, packet size 1500 bytes, and queue
length of 1 BDP (83 packets)). Connections 2 and 3 join
after 5 and 6 seconds, respectively, and they receive large
cwnd values from the aggregate. Figure 1(a) shows a time-
sequence plot of connections 2 and 3. The congestion spike
due to sudden bursts from connection 2 causes significant
packet losses. Appropriate mixing of the two coupled flows
did not play out well until the 3rd RTT for connection 2. A
small burst is also visible when connection 3 joins.

We propose a simple mechanism to avoid these bursts.
Rather than using timers, we make use of the ACKs con-
nection 1 receives to clock packet transmissions of connec-
tion 2 over the course of the first RTT when connection 2
joins. Similarly, we make use of the ACKs of connections 1
and 2 to clock packet transmissions of connection 3. In this
way, we avoid causing a burst in the network. Figure 1(b)
illustrates that using the ack clock from the preexisting con-
nection eliminates the congestion that is shown in Fig. 1(a).

When a connection c joins, it turns on the ack-clock fea-
ture and calculates the share of the aggregate, clocked cwnd c.
Algorithm 1 illustrates the ack-clock mechanism that is used
to distribute the share of the cwnd based on the acknowl-
edgements received from other flows.

Figure 2 demonstrates the reduction of a short flow’s com-
pletion times by immediately taking a share of the aggre-
gate. This simulation was repeated 10 times with randomly
picked flow start times over the first second for the long flow
(25 Mb) and the sixth second for the short flow (200 Kb). We

2We used the TCP-Linux module that allowed us to use
TCP code from Linux kernel (3.17.4) in simulations.

 0

 100

 200

 300

 400

 500

 600

 700

 5 5.5 6 6.5 7

P
a
c
k
e
t
s
e
q
u
e
n
c
e
 n

u
m

b
e
r

Time (s)

Connection 2
Connection 3

(a) Time-seq. diagram of
connections 2 and 3, no

ack-clock

 0

 100

 200

 300

 400

 500

 600

 700

 5 5.5 6 6.5 7

P
a
c
k
e
t
s
e
q
u
e
n
c
e
 n

u
m

b
e
r

Time (s)

Connection 2
Connection 3

(b) Time-seq. diagram of
connections 2 and 3, ack-clocked

Figure 1: Coupling of 3 connections when connections 2 and 3
join after 5 and 6 seconds

0 2 4 6 8 10
Capacity (Mbps)

0

10

20

30

40

50

60

70

80

90

FC
T

of
sh

or
tfl

ow
s

(R
TT

s)

1. Short flow
2. Short flow - coupled (no-ack-clock)
3. Short flow - coupled (ack-clocked)
Reduction 2 vs. 1 (%)
Reduction 3 vs. 1 (%)

0

20

40

60

80

100

R
ed

uc
tio

n
(%

)

Figure 2: Flow completion time (FCT) of short flows.

used a dumbbell topology (RTT 100 ms, MTU 1500 bytes,
queue length 1 BDP) while varying the capacity from 1 Mbps
to 10 Mbps. It can be seen from Fig. 2 that there is a signif-
icant improvement in the short flow’s completion time using
our ack-clock mechanism, and the FCT is reduced by more
than 40% for all other bottleneck capacities except 1 and
2 Mbps. The reduced competition also makes the behavior
more predictable: the dip at 2 Mbps only exists when flows
compete (here, the queue had just enough space for one, but
not two flows each sending their Initial Window (IW)).

Because the long flow gets to rapidly increase its cwnd
when a short flow terminates, the ack-clock mechanism re-
duced the FCT of the long flow too, but only by a negligible
amount: only 0.66% or less in all cases.

4. CONCLUSION
We have presented an extension of our TCP congestion

control coupling algorithm in [13] to maintain ACK clocking
for multiple flows as if they were only a single flow. This
allows to let newly starting flows of an aggregate quickly reap
the benefit of an already large congestion window, reducing
the flow completion times of short flows without incurring
disadvantages of timer-based pacing methods.

We have not discussed what happens when another flow
joins while this ACK clocking algorithm is active. This re-
quires a slight extension of the algorithm that we will tackle
in future work, together with other extensions of the algo-
rithm in [13], e.g. to correctly handle quiescent senders.
After a few such updates, we are confident that this algo-
rithm will work significantly better than multiple competing
TCPs in all possible cases, such that it would simply be a
mistake to leave TCP connections uncoupled in situations
where they are already encapsulated together (e.g. VPNs).

5. ACKNOWLEDGMENTS
This work has received funding from Huawei Technolo-

gies Co., Ltd., and the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement
No. 644334 (NEAT). The views expressed are solely those
of the authors.

6. REFERENCES
[1] A. Aggarwal, S. Savage, and T. Anderson.

Understanding the performance of TCP pacing. In
INFOCOM 2000. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1157–1165 vol.3,
Mar 2000.

[2] H. Balakrishnan, H. Rahul, and S. Seshan. An
integrated congestion manager architecture for internet
hosts. In Proc. ACM SIGCOMM, 1999.

[3] Y. Cheng. Recent advancements in Linux TCP
congestion control. IETF 88, Vancouver, 2013.

[4] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis.
Increasing TCP’s Initial Window. RFC 6928
(Experimental), Apr. 2013.

[5] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin. An argument for
increasing TCP’s initial congestion window. ACM
SIGCOMM Computer Communications Review,
40:27–33, 2010.

[6] L. Eggert, J. Heidemann, and J. Touch. Effects of
ensemble TCP. USC/Information Sciences Institute,
7(1), December 1999.

[7] S. Islam, M. Welzl, S. Gjessing, and N. Khademi.
Coupled congestion control for RTP media. SIGCOMM
Comput. Commun. Rev., 44(4):–, Aug. 2014.

[8] J. Iyengar, I. Swett, R. Hamilton, and A. Wilk. QUIC:
A UDP-Based Secure and Reliable Transport for
HTTP/2. I-D draft-tsvwg-quic-protocol-02, IETF, Jan.
2016. Work in Progress.

[9] M. Savorić, H. Karl, M. Schläger, T. Poschwatta, and
A. Wolisz. Analysis and performance evaluation of the
EFCM common congestion controller for TCP
connections. Computer Networks, 49(2):269–294, 2005.

[10] R. Stewart. Stream Control Transmission Protocol.
RFC 4960 (Proposed Standard), Sept. 2007. Updated
by RFCs 6096, 6335, 7053.

[11] J. Touch. TCP Control Block Interdependence. RFC
2140 (Informational), Apr. 1997.

[12] M. Welzl, S. Islam, and S. Gjessing. Coupled
congestion control for RTP media. Internet Draft
draft-ietf-rmcat-coupled-cc, work in progress, Apr.
2016.

[13] M. Welzl, S. Islam, K. Hiorth, and J. You. TCP in
UDP. Internet-Draft
draft-welzl-irtf-iccrg-tcp-in-udp-00, Internet
Engineering Task Force, Mar. 2016. Work in Progress.

