Extensibility Design Patterns
From The Initial Stage of
Application Life-Cycle

An Empirical Study Using GoF Patterns
and Swift Programming language

Theepan Karthigesan

Thesis submitted for the degree of
Master in Programming and Networks
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

Extensibility Design
Patterns From The Initial

Stage of Application
Life-Cycle

An Empirical Study Using GoF
Patterns and Swift Programming
language

Theepan Karthigesan

© 2018 Theepan Karthigesan

Extensibility Design Patterns From The Initial Stage of Application
Life-Cycle

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

We consider extensibility in software development as an essential
characteristic due to the fast growing technologies that demand a quick
response from the developers. This study will therefore mainly focus on
achieving extensibility from the beginning of an application life-cycle,
the design phase.

During this study, we explored and discussed the GoF (Gang of Four)
patterns and pointed out those we considered as extensibility patterns.
Afterwards, we picked six patterns from the pointed out list and
implemented using a case-study application to demonstrate how they
provide support for extensibility in a real-world application. We used
iOS development platform and Swift programming language in the
case-study. To limit the scope of this study, we decided to only look
into GoF design patterns.

Evaluation of the case-study is done by putting the patterns up
against some extensibility characteristics based on our subjective
view, data from the self-designed extension scenarios tables and the
lessons from implementation of the six patterns using the case-study.
Decoupling and encapsulation are also taken into consideration as
evaluation criteria, but advanced measurement of these criteria are out
of the scope; thus, we rely on our subjective view on decoupling and
encapsulation.

We divided the found extensibility pattern into two groups, one with
the less complex patterns where extension generates less work than the
other group in which contains more challenging pattern when it comes
to extending. The results also show that in some cases the complexity
grows by increased decoupling, which in turn will lead to more amount
of work when extending, that is the case in the second group.

ii

Acknowledgements

I am using this opportunity to express my gratitude to Professor Eric
Bratley Jull who supported me through the learning process of this
master’s thesis. I am thankful for his guidance, amazing motivational
speech, and useful critiques.

1ii

iv

Contents

Abstract i
Acknowledgements iii
Introduction 1
Introduction 3
1.1 Designs Patterns 3
1.2 Motivation o v i i 4
1.3 Goals e 4
1.4 Approach 4
1.5 Scope e e 4
1.6 Research/WorkDone 5
1.7 Evaluation 5
1.8 Results e 5
1.9 Contributions s 6
1.10 Limitations e 6
1.11 Conclusion i i i e 6
1.11.1 Less complex patterns 6
1.11.2 Challenging patterns 7

1.12 Furtherwork 7
Background 9
Introduction 11
2.1 Outline e 11
Literature Review and Related Works 13
3.1 Introduction 13
3.2 Primary Studies 13
3.3 Summary 15
Extensibility in Software Development 17
4.1 Introduction e 17
4.2 Design Phase of Software 19
421 Decoupling, 21

5

4.2.2 Encapsulating
4.3 Summary e e e e

Design Patterns in Software Development

5.1 Introduction

5.2 Categorization,
521 Creational
522 Structural
523 Behavioral

53 Summary

II1 Research

6

7

Introduction
6.1 Outline e

Pointing out Extensibility Design Patterns

7.1 Introduction
7.2 Extensibility Design Patterns
7.3 Scenariostables
7.3.1 Creational
7.3.1.1 Factorymethod

7.3.1.2 Abstract Factory

7313 Builder

7.3.1.4 Prototype

7.3.1.5 Singleton.

7.3.2 Structural
7.3.2.1 Adapter

7.3.22 Bridge,

7.3.2.3 Composite

7.3.24 Decorator

7325 Facade

7.3.2.6 Flyweight

7327 Proxy,

7.3.3 Behavioral
7.3.3.1 Interpreter.

7.3.3.2 Template Method

7.3.3.3 Chain of Responsibility

7334 Command

7.3.3.5 Tterator.

7.3.3.6 Mediator

7337 Memento....................

7.3.3.8 Observer

7339 State

7.3.3.10 Strategy

vi

23
23
25
26
27
28
29

31

33
33

7.4

7.3.3.11 Visitor
Summary e e e e e e e

8 Implementation of Extensibility Design Patterns

8.1
8.2
8.3

8.4

Introduction,
eFuel application
BuildingeFuel
83.1 Creational
8.3.1.1 Factorymethod
83.1.2 Builder
83.2 Structural
8321 Bridge
8322 Facade
8.3.3 Behavioral
8.3.3.1 Template Method
8332 Iterator.
Summary e e e e e e

IV Evaluation

9 Introduction

9.1

Outline

10 Evaluation of the Extensibility Patterns
10.1 Introduction,
10.2 Creational

10.2.1 Result introduction
10.2.2 Evaluation
10.2.3 Review of the implementation
1024 Summary e e

10.3 Structural

10.3.1 Result introduction
10.3.2 Evaluation
10.3.3 Review of the implementation
10.3.4 Summary

10.4 Behavioral

10.4.1 Result introduction
10.4.2 Evaluation
10.4.3 Review of the implementation
10.4.4 SUmMmaryo e e e e e e e e e e e

11 Conclusion
1.1 Summary o o e e e e e e e e e e e e e

11.1.1 Less complex patterns
11.1.2 Challenging patterns

11.2 Furtherwork

vii

79
79
80
81
83
83
85
88
88
90
92
92
95
97

99

101
101

103
103
104
104
104
105
106
107
107
107
108
108
109
109
110
111
111

V Appendix 117

Appendix A Code 119

viii

List of Figures

4.1 Relational between calling and data model components . . 18
4.2 Tightly coupled software 20
4.3 Loosely coupled software 20
7.1 Sample UML class diagram used for explanation 36
7.2 Factory Method - Class diagram 39
7.3 Abstract Factory - Class diagram 41
7.4 Builder - Classdiagram 44
7.5 Prototype - Classdiagram 46
7.6 Singleton - Classdiagram 47
7.7 Adapterclassdiagram 48
7.8 Bridge -Classdiagram 49
7.9 Composite classdiagram 51
7.10 Decorator - Class diagram 52
7.11 Facade - Class diagram 53
7.12 Flyweight - Class diagram 55
7.13 Proxy classdiagram 56
7.14 Interpreter - Class diagram 57
7.15 Template Method - Class diagram 58
7.16 Chain of Responsibility - Class diagram 60
7.17 Command - Class diagram 61
7.18 Tterator - Class diagram 63
7.19 Mediator - Class diagram 65
7.20 Memento - Classdiagram 67
7.21 Observer - Classdiagram 68
7.22 State pattern class diagram 70
7.23 Strategy - Class diagram 71
7.24 Visitor - Class diagram 73
7.25 Extensibility design patterns - Average actions overview . 76
7.26 Extensibility design patterns - Average actions chart . .. 77
8.1 eFuel application - High level design 81
8.2 Case-study: Factory method - Class diagram 83
8.3 Case-study: Builder method - Class diagram 85
8.4 Case-study: Bridge - Class diagram 88
8.5 Case-study: Facade - Class diagram 90
8.6 Case-study: Template Method - Class diagram 92

ix

8.7 Case-study: Iterator - Class diagram 95

10.1 Creational patterns - Extensibility chart 104
10.2 Structural patterns - Extensibility chart 107
10.3 Behavioral patterns - Extensibility chart

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Case-study:
Case-study:
Case-study:
Case-study:
Case-study:
Case-study:
Case-study:

Listings

Factory method - Clientcode 84
Builder - Clientcode 86
Bridge - Clientcode 89
Facade - Clientcode 90
Template Method - Client component code . . 93
Template Method - Data component code . . . 93
Iterator - Client component code 96

xi

xii

List of Tables

5.1 GoF design patterns and categorization 25
5.2 Creational patterns and their intent.[8]. 26
5.3 Structural patterns and theirintent 27
5.4 Behavioral patterns and theirintent 28
7.1 Sample scenariotable. 38
7.2 Factory method - Scenarios 40
7.3 Abstract Factory - Scenariostable 42
7.4 Builder - Scenariostable 45
7.5 Bridge - Scenariostable 50
7.6 Facade - Scenariostable 54
7.7 Template method - Scenariostable 59
7.8 Command - Scenariostable 62
7.9 TIterator - Scenariostable 64
7.10 Mediator - Scenarios table 66
7.11 Observer - Scenarios table 69
7.12 Strategy - Scenariostable 72
7.13 Visitor - Scenariostable 74
8.1 Usage area of the patterns in the case-study 81
8.2 C(Case-study: Factory method - Scenarios table 84
8.3 Case-study: Builder - Scenarios table. 86
8.4 C(Case-study: Bridge - Scenariostable 89
8.5 C(Case-study: Facade - Scenariostable 91
8.6 Case-study: Template method - Scenarios table 94
8.7 Case-study: Iterator - Scenariostable 96

xiii

Part 1

Introduction

Part I: Introduction

Introduction

1.1 Designs Patterns

Designs patterns is a kind of pension fund for software development. A
pension fund is a saving account to ensure that you have enough money
to spend when you retire from work. The small amount of money you
invest in the fund every month is insurance for your future. In software
development, design patterns are insurance against future changes.
The payout can be dramatic benefits, such as avoiding painful and time-
consuming rework of existing code when change or extension is needed.

Let us illustrate the term “Design pattern” with another real-world
example. If you are building a new house from scratch, it is not
necessary to find a new solution for every problem; instead, you can
follow a given pattern. Rooms, doors, steps, and roof, etc. can be built
and connected by following patterns that have already been adopted
by other house builders. Even though this example describes the
patterns in houses or buildings; the same principle applies to software
development. Instead of talking about rooms and doors, we are dealing
with classes and objects, but the core idea for both sets of entities is
pinpointing old problems and reusing existing solutions.

In this empirical study, we explore and discuss design patterns from
the GoF [8] list to find those that can be used in design phase of an
application life-cycle to achieve extensibility.

3

1.2 Motivation

The motivation for this study is to find extensible patterns that
may be taken into consideration at the design phase of application
development. A robust designed application with extensibility in mind
may be less challenging to expand with new features. We are therefore
interested in knowing if the design patterns can solve such problem. To
limit the scope of this study, we decided to only look into GoF design
patterns. It is also important for us to point out those that require the
least rework and those that are more challenging when expanding.

1.3 Goals

The primary goal is to find design patterns from the GoF list that are
suitable for extensibility from the initial phase of an application life-
cycle. It is important that these patterns contribute to design a robust
application that makes the future extensions easy as possible.

1.4 Approach

To achieve the goal of finding the proper design patterns for extensi-
bility, we discussed the GoF design patterns and pointed out those we
considered as extensibility patterns based on their purpose. Further-
more, we picked six patterns from the pointed out list; two from each
design pattern category that we found to fit into our case-study applica-
tion. Purpose of the case-study is to examine the extensibility patterns
from a practical perspective.

1.5 Scope

This study focuses on achieving extensibility from the initial phase of
application development using design patterns. We look only into the 23
GoF design pattern. The patterns designed to increase the performance,
minimize the memory allocation, extend a tightly coupled software and
other purposes that do not relate to achieving extensibility are not in
this scope. Quantitative measurement of these design patterns is also
not in this scope. Instead, we use a self-designed scenarios table for
some measurements.

1.6 Research/Work Done

We looked into the GoF design patterns and pointed out those we
considered to support extensibility from the design phase of application
development based on their purpose and our subjective view. We
have also uniquely done measurements of extensibility, utilizing some
extension scenarios table designed for this study by ourselves, where we
look at the pattern’s design differently. We see the supporting classes in
which the data or client component uses to connect the building blocks
in a design pattern, as a pattern component.

Furthermore, we discussed the pointed out patterns more in detail
and implemented six of them using the case-study to evaluate their
extensibility characteristic.

We also described the patterns that were excluded and the reason for
not including them.

1.7 Evaluation

We looked into extensibility characteristics based on our subjective view,
measured data from extension scenarios tables and the lessons from
implementation of the six patterns using the case-study. Decoupling
and encapsulation are also taken into consideration as evaluation
criteria. However, quantitative measurements of these criteria are out
of the scope. Thus, we rely on our subjective view on decoupling and
encapsulation.

1.8 Results

The results show that some extensibility patterns are more challenging
than the majority of them, regarding extensibility characteristic. We
support this statement based on the data from the extension scenarios,
our subjective view, and experience from the implementation. Based on
the results, we divided these patterns into two groups, "Less complex
patterns" and “Challenging patterns”. We also picked one pattern
from each category that we believe has the advantage of implementing
or should at least taken into consideration at the design phase of
application life-cycle.

1.9 Contributions

Our contributions are the design patterns that we pointed out as
extensible patterns from the GoF list and the implementation of
six patterns using the case-study. We believe that the patterns we
recommend at the end of this study will contribute to design a robust
application from the beginning of applications development life-cycle.

1.10 Limitations

To limit the scope of this study, we do not perform quantitative
measurement of decoupling or encapsulation. However, we analyze
the patterns based on our subjective view and the analysis from self-
designed extension scenarios tables.

1.11 Conclusion

In some extensibility patterns, an extension generates work in only
one component, which makes it less complex to implement, understand
and extend. We found that in some cases complexity grows by
increased decoupling, which in turn will lead more amount of work
when extending, especially when the creation of new classes in the
data component need to have a one-to-one relationship with the pattern
component classes. Increased decoupling may be beneficial for code
maintainability and understandability, but it requires quite a lot of
work when extending. This finding is the opposite of the exportation
we had at the beginning of this study. We believed that decoupling had
only positive intentions on extensibility.

As the result, we have divided the extensibility patterns into two
groups, one with the less complex patterns where extension generates
less work than the other group in which contains more challenging
patterns when it comes to extending.

1.11.1 Less complex patterns

In this group, the average number of needed actions when extending is
less then 2,5.

¢ Creational: Builder

¢ Structural: Bridge and Facade

6

¢ Behavioral: Template method, Mediator, Observer, Strategy and
Visitor

1.11.2 Challenging patterns

In this challenging group average number of needed actions exceeds 2,5.
* Creational: Factory Method and Abstract Factory
¢ Behavioral: Command and Iterator

During this study, we made up one favorite from each category that
we believe has the advantage of implementing or should at least taken
into consideration at the design phase of application life-cycle. Builder,
Facade, and Visitor are patterns that not only require the least actions
when extending, but they also solve some conmen problems every
application may have, such as, encapsulating configuration of an object,
hide complexity behind wrapped interface and change behavior of an
object at runtime. These may not sound like extensible features, but
in fact, these flexibilities make it easier to expand the system, which is
described in the scenarios tables in chapter 7 and 8.

1.12 Further work

We excluded some patterns and considered these as not extensibility
patterns due to their purpose. This decision was done based on our
assumptions. However, it would be interesting to explore some of the
excluded patterns that had in our point view another purpose then
solving extensibility problems. The future research may then focus on
the excluded patterns to see if they also can be used as extensibility
patterns.

We are divided the excluded patterns into three groups:
¢ Patterns for extension after design phase:
- Adatper and Decorator
¢ Performance related patterns:
- Singleton, Prototype and Flyweight
* Other patterns:

— Composite, Interpreter, Chain of Responsibility, Memento
and State

The interesting patterns to look into when it comes to extensibility is the
group of other patterns that we struggled to decide its characteristics
during this study.

Based on the scope of this study, we looked only into the Go4 list and
implemented six of the twelve pointed out patterns. Further work may
also look into other design patterns or implement the remaining the six
patterns using the same case-study application.

Part 11

Background

Part II: Backgl:ound
Introduction

In this part, we do a review of related literature and works. Further-
more, we describe what extensibility means in software development
and concept of design patterns.

2.1 Outline

We have divided this part into three chapter as the following bullet
points explain.

¢ Chapter 3: Literature Review and Related Works
We describe some the books, articles and research papers related
to extensibility and design patterns.

¢ Chapter 4: Extensibility in Software Development
In this chapter, we look into what achieving extensibility in
software development means.

¢ Chapter 5: Design Patterns in Software Development
We describe the design patterns in more detail and look into the
Go4 list to prepare for our research part.

11

12

. . Part II: Background
Literature Review and Related

Works

3.1 Introduction

There are a lot of books, articles and research papers regarding design
patterns out there. One can even find works related to extensibility,
but as of writing none of these are focusing on achieving extensibility
from the design phase of an application life-cycle, especially using
GoF design patterns and the way we do our empirical study. We also
do measurements of extensibility uniquely, utilizing some extension
scenarios table designed for this study by ourselves, where we look the
pattern design differently. We see the supporting classes in which the
data or client component uses to connect the building blocks in a design
pattern, as a pattern component.

3.2 Primary Studies

The book Design Patterns: Elements of Reusable Object-Oriented
Software [8] from 1995 is a must-read for anyone who is interested in
object-oriented programming and design patterns. The authors Erich
Gamma, Ralph Johnson, John Vlissides and Richard Helm, also called
Gang of four (Go4) [10, p. 135]. This book raised the popularity of design
patterns in software development when it was out and still cited by a

13

lot of writings. The programming languages in which the patterns were
demonstrated in this book are Smalltalk and C++. After the release of
this book, lots of programming languages and developers have taken
advantage of these patterns. We are using these patterns to experiment
extensibility, but with a different approach because we are focusing on
achieving extensibility from the initial stage of application development
to make it successful in the future.

Pro Design Patterns in Swift [7] and Pro Objective-C Design Patterns for
i0S [4] are two books that show how to put design patterns into action
in 10S application development. Both of these are describing design
patterns in i0S, but differs from the language in which the patterns are
explained and implemented. We used these books to acquire knowledge
of programming in the iOS platform so that we could implement some
of the design patterns in our case-study using Swift language. We
were also interested in to see how other authors interpret GoF design
patterns. From this book, we can see that patters can be customized
based on the needs or even to fit into specific programming language’s
platform.

Analyzing Design Patterns for Extensibility [2]. In this paper, the
author is focusing on achieving extensibility from the initial phase of
an application life-cycle. It emphasizes the importance of thinking all
the possible changes that may need for the application in the future.
Developers need to choose the proper design patterns that are suitable
for the application at the beginning and analyze them extensibility
before moving forward. This paper is not analyzing the GoF list, but
describe some ideas of how to think forward and use design patterns
to achieving extensibility. It also describes the difference between
extensibility and scalability that is often confused with each other.

Testing extensible design patterns in object-oriented frameworks through
scenario templates [22]. This paper addresses testing extensible design
patterns in an object-oriented framework. Testing techniques that
are used in this paper is not same way we are doing our evaluation.
However this paper’s work relates the term extensibility to the software
development and design patterns.

Encapsulation, reusability and extensibility in object-oriented program-
ming languages [16]. This paper is a comparative study of object-
oriented programming and its support for encapsulation, reusability
and extensibility. It describe the importance of the encapsulation that
we find in the object oriented programming language, and the inheri-
tance mechanism that allows extensibility.

Decoupling metrics for services composition [18]. In this paper, the
authors describe a way for evaluating decoupling between service-
oriented components in the service composition. They are focusing on

14

web services and the importance of decoupling the components which
have impacts on the understandability, maintainability, reliability,
testability, and reusability of software components.

A Possible Composite Design Pattern for Immature REST APIs [13].
This study focus on implementing combined design patterns into
a multithread task based application and analysing the output to
measure its maintainability, reusability and testability.

Design Patterns In A Smartphone Environment [15] This study looks
into implementing design patterns in an Android environment and how
they fit that development platform. It is also addressing complexity of
patterns and the related maintenance needed, such as when extending
some part.

Assessing the Impact of Using Design Patterns of Enterprise Application
Architecture [3]. This study uses several well-established methods
to measure complexity and maintainability of enterprise application
architecture. The author i is focusing on four design patterns, Model
View Controller, Page Controller, Front Controller and Template View.
He emphasizes a lot of complexity and maintainability impacts when
using design patterns, which is an interesting topic and can relate to
our focus on extensibility characteristics.

3.3 Summary

Summary of literature and related works:
* Books

— Design Patterns - Elements of Reusable Object-Oriented
Software [8].

— Pro Design Patterns in Swift [7].
— Pro Objective-C Design Patterns for iOS [4].
— Swift 2 Design Patterns [14]
* Articles
- Analyzing Design Patterns for Extensibility [2].

- Testing extensible design patterns in object-oriented frame-
works through scenario templates [22].

— Encapsulation, reusability and extensibility in object-oriented
programming languages [16].

— Decoupling metrics for services composition [18].

15

¢ Thesis

— A Possible Composite Design Pattern for Immature REST
APIs [13].

— Design Patterns In A Smartphone Environment [15].

— Assessing the Impact of Using Design Patterns of Enterprise
Application Architecture [3].

16

v e . Part II: Background
Extensibility in Software

Development

4.1 Introduction

Technologies are continuously growing, and the demand for extensible
software is increasing, which means that developers are forced to
consider the extensibility when designing applications. Nowadays and
modern applications need to be extended by other development teams
as well as the original team. The new team, who are not familiar with
the existing code do not want to make changes to the core part of the
application to avoid error to the current functions.

Extensibility in software engineering is the capacity to extend function-
ality without or minimal rework of existing code or design. Making
changes in existing code of an application might not be easy in all sit-
uations. For a small and straightforward application, the changes in
existing code might not affect the development phase negatively since
the recompiling and redeploying can be done quickly and efficiently. A
complex application that is not loosely coupled is very hard to extend
because every part is interdependent. The words loosely coupling and
decoupling have almost the same meaning and are used for each other
in this study. To be specific, decoupling means there is no coupling at all
between two components, but in another hand loosely coupling is trying
to keep the coupling between many components as loose as possible [2].

17

Extensibility must not be confused with flexibility, which are also a part
of software development strategy. That being said, it does not mean
that flexibility is out of the focus in this study; in most cases, a system
must also be flexible in order to extend its functionality.

Extensibility depends on how the different modules depend on each
other, for example, up to what extent they are coupled to each other.
An extensible design should be loosely coupled which means low
interdependency. As the coupling increases, the dependence between
the modules also increases which means any change made to a module
will result in changes in the other modules also. The main aim of
extensibility is to minimize the impact when any change has been made
to the existing system.

A simple example of extensibility design is the traditional object
orientated programming and inheritance, as shown in fig. 4.1. We can
see that data model can be extended using inheritance without affecting
the calling component. This is due to the decoupling of the different
components and encapsulating objects, which are briefly explained in
the following sections.

Client Data model components
components
Electric
car
car (K Gasoline
car
Calling Vehicle
component
Electric
Boat <]— boat
Gasoline
boat
Figure 4.1

Relational between calling and data model components
UML Diagram - Left side arrow: association, Right side arrows:
Inheritance

Use of design patterns can help the designer to evaluate the design
for extensibility even before starting the implementation. When some
commonly used patterns such as factory pattern, strategy pattern or
visitor pattern are used and by analysing the structure itself the
designer will get an idea whether any change can be made in the code

18

without affecting the other parts. Similarly, each and every design
pattern in the system need to be checked if it allows changes without
affecting the other components of the application. It can be easily
checked by how loosely or tightly the components are coupled. As
the coupling increases, extensibility decreases. So the designer has
to choose a design pattern for that particular purpose and which has
the least coupling. If one wants to fulfill extensibility needs for their
application, it must be appropriately planned from the starting of the
application life-cycle [2]. Extensible design patterns must also be able
to allow developers to add new classes and methods to the system either
at compile time or runtime.

An example of extensible application could be a banking system that
provides services to the different type of customer. The services might
be accounts, loans, credit card and fund. It is said to be extensible
when it is possible to add more services, such as savings account and
insurance without making many changes in the existing system. After
the extension, the system should keep existing services.

4.2 Design Phase of Software

The critical phase for achieving extensibility for software is the design
phase. In this phase, the designers and developers must be proactive
and think about extensibility and the future needs that might come.

Developing an extensible software needs proper planning and under-
standing of the future changes in which the application has to face.
A best practice is to avoid tight coupling when designing application,
fig. 4.2 on the next page illustrates an example of a tightly coupled soft-
ware. This kind of designed software is extremely hard to extend be-
cause all the objects depend on each other. As shown in the same figure,
if one of the objects changes it impacts three others. For example, if B
changes, it will affect A, C, and D.

Loosely coupling is far more practical; the objects do not have many
dependencies as shown in fig. 4.3 on the following page. To achieve
extensibility in software development one should adopt more or less this
policy. If A changes, it does not impact any other objects. However, it
can be challenging to avoid all dependencies, but one should always try
to minimize the total amount of dependencies [12].

It takes amount of energy and time to build a large system. The future
development cost can be dramatically reduced by design it properly from
the beginning. Reuse of components is also a huge beneficial.

19

Object A

Figure 4.2
Tightly coupled software

O : Object, <->: Two-way relationship, ->: One-way relationship

Figure 4.3
Loosely coupled software
O : Object, <->: Two-way relationship, ->: One-way relationship

Object B

Object D

20

4.2.1 Decoupling

Coupling is all about the relationship between two classes in a software
system. Decoupling is ensuring that two different software parts are
not tightly dependent on each other [19]. When a class have reference
to another class, or communicates with it, it is said to depend on that
other class, which also means these classes are coupled. When a Class
X is heavily coupled to Class Y, any changes on Class Y will affect the
Class X. This is called tight coupling. However, if the coupling between
these classes is light, any changes on Class Y may not affect the Class
X, which is a loose coupling. Decoupling in other hand means there is
no dependency between class X and Y

Decoupling of components in very important in a large development
project where there are many developer involved. Avoiding decoupling
in a system in which contains many components that are changed or
extended over time will increase development cost. One developer might
not have information about the components that are build or modified
by other people, but how the system interact between his responsible
area and others.

4.2.2 Encapsulating

Encapsulation minimize the number of components that need to be
changed as it undergoes new extensions over a period of time to meet
demands from new specifications. Encapsulation is hiding the inner
workings of a software component behind a defined interface [19].
Decoupling is ensuring that two different software components are not
tightly dependent on one another. Encapsulated components can be
accessed by clients via an interface. All the details and tasks are hidden
behind this wrapped interface. The primary goal here is to let the
implementation part extend or change without having to update the
clients that are using it.

4.3 Summary

We summarize this chapter by saying that decoupling, also knows as
loosely coupling and encapsulating are the essential characteristics of
an extensible design. To build an application with such traits, we
need to follow some rules or patterns. It is in this context that design
patterns could be a problem solver. In the following chapter, we describe
what design patterns are and how it could be used in the software
development to solve problems.

21

22

. . Part II: Background
Design Patterns in Software

Development

5.1 Introduction

In software development, the term “Design pattern” describes a
reusable solution to a problem. It’s not a class or a library as it is known
from the programming languages, but much more than that. It is more
like a template that must be used in a correct situation. Patterns must
also be language-independent, which means that, in most cases, they
should be implemented in all programming languages. By adapting
design patterns, one can be more efficient and avoid unexpected issues
because the patterns have been tested and successfully implemented by
other developers in the past.

However, a design pattern may work against its will if implemented
in a wrong place or way. It can be disastrous and create unnecessary
problems. In this study, we search for patterns that can solve
extensibility challenges one may meet in the future. Let us imagine
that we design an application without having the future needs in mind
and also do the programming with lack of structure and best practice
design. Such behavior will most likely cause us problems; this is where
design patterns may help us.

Software design patterns have been existing for several decades. The
term "pattern" comes from architecture design as in building and

23

towns. Christopher Alexander’s first pattern related writing named The
Timeless Way of Building coined the term "pattern” in the late 1970s [1].
Software design pattens we are discussing about has basically adapted
Christopher Alexander’s ideas.

In the early 1990s, design patterns raised popularity in the software en-
gineering industry after the release of book Design Patterns: Elements of
Reusable Object-Oriented Software [8], by the Gang of Four (GoF). This
book documented the well thought through design patterns in software
development. It was used as pattern lexicon by many developers [5].
It contains 23 fundamental software design patterns that are named,
explained and reviewed.

Basically, a pattern includes following fundamental elements: The
pattern name usually describes the problem and its solution in few
words, the problem specifies when to apply the pattern, the solution
illustrates the elements that make up the design, the consequences
addresses flexibility, extensibility or portability [8, p. 12-13]. Our focus
in only on achieving extensibility.

In this study, our focus is on one consequence that the patterns ad-
dresses, and that is extensibility. The scope of this study will not cover
other consequences, such us flexibility, portability, maintainability, un-
derstandability, and testability. However, our understanding is that,
to be able to make an application expendable some of these other con-
sequences must be the foundation of the pattern building block. For
example, a system needs to have the flexibility to be expandable. An
example of extensibility characteristics in an application is that one can
easily extend the inventory in a web-shop without needing to inform
the other components in the system. An internet API (Application pro-
gramming interface) should be able to extend the parts that are behind
the exposed interface without changing the request mechanism that is
provided to calling components. To achieve such goals, design patterns
that decouple components and encapsulate the requests can be utilized.

During this chapter, we explain more about the GoF design patterns, its
history, categorization, and intent of using it. In the next part, we start
our research using these patterns.

24

5.2 Categorization

The patterns in software development are organized into three cate-
gories: creational, structural, and behavioral. This kind of categoriza-
tion is called purpose, for the reason that reflects what a pattern does.
The second classification is called scope, as it specifies whether the pat-
tern applies primarily to classes or objects, as shown in table 5.4 on
page 28 [8, p. 21-22]. The table also shows the 23 design patterns that
were described by the authors Gang of Four in the book: "Design Pat-
terns: Elements of Reusable Object-Oriented Software". To limit the
scope of this study, we only discuss these 23 patterns. In the research
part we explore, implement and evaluate patterns categorize by catego-

rize.
Purpose Design Pattern Scope
Abstract Factory Object
Builder Object
Creational Factory Method Class
Prototype Object
Singleton Object
Adapter Class, Object
Bridge Object
Composite Object
Decorator Object
Structural Facade Object
Flyweight Object
Proxy Object
Interpreter Class
Template Method Class
Chain of Responsibility Object
Command Object
Iterator Object
. Mediator Object
Behavioral Memento Object
Observer Object
State Object
Strategy Object
Visitor Object
Table 5.1

GoF design patterns and categorization

GoF book [8].

25

5.2.1 Creational

Creational category patterns provide ways to deal with object creation
mechanisms, which means that, trying to create objects while hiding
the creation logic and gives the program much more flexibility to choose
the right object to the current situation.

Such behavior decouples the client from the data component by putting
encapsulation in between, which means that, the responsibility of
creating these objects are removed from the client and system becomes
more independent [14].

For example, one can configure an object with default values without
specifying details from the client. It gives us also the flexibility to
change the values without modifying the client or object itself.

Design Pattern Intent

Abstract Factory Abstract Factory is similar to the Factory
method, but this pattern creates related
objects which do not share the same ab-
stract class, which also means that it is not
used to create a single object.

Builder Encapsulate default configuration values
of a complex object. It is typically used
when default values are many and must
not often be changed

Factory Method The factory method pattern makes it easy
to create objects from a set of potential con-
crete classes that share a common inter-
face, without specifying the exact class of
object that must be created

Prototype Prototype design pattern is used to create
a new object by copying an existing object.
It is also beneficial to avoid expensive
initialization.

Singleton Ensures that only one instance of a class
exist at any time and there is a global
pointer to that instance.

Table 5.2
Creational patterns and their intent.[8].
GoF book [8]

26

5.2.2 Structural

Structural design patterns lack difficulty by identifying a simple way to
realize relationships between entities; it is all about class and object
composition. Structural class patterns use inheritance to compose
interface, while structural object patterns provide a mechanism to
compose objects to obtain new functionality.

These patterns help also to encapsulate the composition of object and
put a interface in front that can be used by clients. Clients will not
interact with the objects directly but though use of the interface, which
give the flexibility to dynamically modify the composition [14].

Design Pattern Intent

Adapter Adapter pattern is used to integrate two
incompatible components when the compo-
nents itself cannot be modified

Bridge A bridge pattern is generally used to the
exploding class hierarchy problem. The
advantage is when adding a new feature,
it only requires a single class.

Facade The facade design pattern provides one
straightforward interface to a complex un-
derlying system. It may wrap a single or
multiple classes, and the wrapped classes
are isolated from the client

Composite Composite design pattern creates a tree
structure of a group of object and treats
them as a single object.

Decorator Decorator design pattern adds new addi-
tional functionality to an object without
rewrite or alters existing code, at the same
time keeps the new functionality separate

Flyweight Uses sharing to provide large numbers of
fine-grained objects efficiently.
Proxy Proxy design pattern acts as a placeholder

for another object to control access to it.
Proxy also means "on behalf of" It is
usually used to when we want to shield a
class from the client.

Table 5.3
Structural patterns and their intent
GoF book [8]

27

5.2.3 Behavioral

Behavioral patterns make it easy to define communication between
classes or objects. It is a mechanism that describes how different classes
and objects pass messages to each other to collaborate and to make
things happen. These patterns can for example, change part of ab
object’s operations at runtime without modifying the object or client

[14].

Design Pattern

Intent

Interpreter

The interpreter is a mechanism to convert
an input to a specific output using expres-
sions.

Template Method

The template method pattern is used when
we want the implementation classes to
either replace or extend functionality.

Chain of Responsibility

This pattern creates a chain of receiver
objects for a request.

Command

Command pattern is used to decouple a
request for an action from the object which
initially has the action method.

Iterator

Using Iterator design pattern, we can
assess different collection of Objects in an
uniformal way.

Mediator

Mediator design pattern provides loose
coupling by taking responsibility to handle
communications between different objects.

Memento

Memento design pattern takes a snapshot
of an object’s state that can be used to do a
roll-back to the previous state.

Observer

Observer pattern gives the responsibility
of monitoring changes to an independent
object..

State

The state design pattern allows an object to
change its behavior when its internal state
changes.

Strategy

Strategy pattern allows us to change a
method’s behavior at the runtime.

Visitor

The visitor pattern is used when we want
to change the executing algorithm of an
element object at runtime.

Table 5.4

Behavioral patterns and their intent

GoF book [8]

28

5.3 Summary

In this chapter, we explained design patterns in more detail. Vi looked
into the history, categorization, purpose, intent and consequences of
using these. In chapter 4, we described the extensibility in software
development. In the next part and the following chapters, we discuss
these patterns by looking into the motivation and point out those we
mean support extensibility from the initial stage of an application life-
cycle followed by implementation of some them using a case-study.

29

30

Part 111

Research

31

Part III: Resgarch
Introduction

In the background part, we explained overall about extensibility and
design patterns in software development. In this part, we explore and
discuss all of the GoF design patterns to point out those we mean
support extensibility from the design phase of application development.
Afterwards, we implement some selected patterns using a case-study
to demonstrate how they provide support for extensibility in a real-
world application. We used iOS platform (operating system) and swift
programming language to build the case-study application.

6.1 Outline

We have divided this part into two chapters as the following bullet
points explain.

¢ Chapter 7: Pointing out Extensibility Design Patterns
In this chapter, we walk-through all the GoF design patterns and
point out those we consider as extensibility patterns.

¢ Chapter 8: Implementation of Extensibility Design Pat-
terns
We implemented two designs pattern from each category that we
pointed out in chapter 6 to demonstrate how they provide support
for extensibility in a real-world application.

33

34

Part III: Research

Pointing out Extensibility Design
Patterns

7.1 Introduction

Our primary goal throughout this chapter is to point out design patterns
from the GoF book that support extensibility from the beginning of an
application life-cycle, the design phase. The term components here
refers mostly to the caller (client), pattern (supporting classes) and
data (business logic) components. The caller component is known as
ViewController in i0S development (case-study platform). Thus, we use
this term in the figures and explanations. We believe that decoupling
components, between different components, will contribute to support
extensibility. Therefore, we discuss and measure the needed amount of
work when extending an application with some parts. Due to that, we
investigate the pointed out patterns by putting them up against some
extensibility characteristics based on our subjective view and data from
the extension scenarios table.

We are not interested in patterns that fix a problem when one wants
to extend a tightly coupled application design, due to this, we exclude
some extensible patterns that are meant to be used for extension of an
application that is not decoupled from the beginning. We also exclude
patterns where the intent was to increase the performance, minimize
the memory allocation, extend a tightly coupled software and other
purposes that we meant did not relate to extensibility. However, we

35

discuss every pattern before we make a decision. Due to the simpler
understanding of the concept, we try to relate all of the patterns to a
graphical representation using class diagram and concrete real-world
examples. Patterns that we consider to be used for extensibility are
discussed more in detail and tested for possible extension scenarios.

7.2 Extensibility Design Patterns

In the previous part, we explained how Go4 design patterns are
categorized and the intent of using it. In the following sections, we
discuss and describe the motivation of using the patterns and point
out those we consider as extensibility patterns based on their purpose.
Patters that we believe can be used for extensibility are discussed,
and measured using extensible scenarios. We start with the creational
patterns followed by structural and end up the behavioural patterns.
We summarize the finding in last sections in this chapter.

Implementation of some of the extensibility design patterns are
demonstrated in the next chapter; we pick two patterns from each
category that fit into our case-study.

As mentioned in the introduction, we are use UML (Unified Modeling
Language) class diagrams to demonstrate the building blocks from each
design pattern. The fig. 7.1 shows a sample UML class diagram.

Caller component Pattern component Data component

ViewController Pattern Class

+ viewDidLoad

+ attributel:type
+ attribute2:type

- attribute3:type

+ operationl()
- operation2()

+ attributel:type
+ attribute2:type
- attribute3:type

+ operation1()
- operation2()

T

ConcreateClass

+ attributel:type
+ attribute2:type
- attribute3:type

+ operation1()
- operation2()

Figure 7.1
Sample UML class diagram used for explanation
Client: ViewController, Pattern: Pattern, Data: Class

36

ViewController, Pattern, Class and ConcreateClass are normal classes.
ViewController is the calling component or client that has a method
named viewDidLoad that is called first when application starts, this is
just a simplified representation of the calling component. Pattern is the
supporting class in which the data and client component uses to connect
the building blocks in a design pattern. Class and ConcreateClass are
in the data component.

The arrow between ViewController and Pattern shows that there is a
relationship, which means that, you can navigate from VivewController
to the Pattern. Class and Concreteclass are also connected together
using an arrow in which demonstrate that the Concreteclass inherits
from Class. Both classes have some attributes and operations, the plus
symbol indicates a public attribute and minus means private, same
principle applies for the operations.

When we discuss the Go4 patterns, we describe the motivation and
demonstrate some concrete examples. The motivation text is how we
interpret the patterns from the Go4 book [8].

The patterns that are considered to support extensibility is marked
with: Yes, as shown below.

Extensibility pattern: Yes
For Yes pattern, we also go through potential extension scenarios.
Extension scenarios: Described on the facing page.

For every Yes pattern, we give our subjective view on it to support the
decision, as shown below.

Justification: "Our subject view on this sample pattern shows that..."

37

7.3 Scenarios tables

The patterns that we mean support extensibility is also illustrated
using some possible extension scenarios. Each scenario is put in a
table row and counted for any addition of new classes or modification of
existing classes in all components (client, pattern, and data), as shown
in table 7.1. We have also included the extending part in the count.
The R indicates required action, O stands for optional action and N for
no work needed. The average number of required and optional of all
scenarios is shown in the last two rows, one for required and one for
optional action.

Required action, either addition or modification means that something
needs to be done in order to make an extension complete. Optional
action is when components have a choice to make an action when
another part is extending. A good example is a choice a client component
has to take advantage of extended functionality by adding or modifying
lines of code in the class file. Thus, this action is not necessary to fulfill
the extension itself.

Type .Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern | Data
New class | N R R 0] N N
type
New concrete | N N R 0] N N
class

Average

Required 0 0,5 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.1

Sample scenario table
Client: ViewController, Pattern: Pattern, Data: Class
R: Required, O: Optional

38

7.3.1 Creational
7.3.1.1 Factory method

Motivation:

The factory method pattern makes it easy to create objects from a set
of potential concrete classes that share a common interface, without
specifying the exact class of the object that must be created. Which
means, the pattern selects right subclass to satisfy a calling components
request at the runtime. The caller component does not need to know
the logic of choosing the proper concrete class, which mean that, the
logic can change without affecting the caller component, this is due to
encapsulation of object creation. We mean such characteristics form
the basis for extensibility. The fig. 7.2 shows how a view controller is
connected to the factory and the concrete classes that are hidden behind.

Extensibility pattern: Yes

ViewController Factory Product

- product : Product - name

+ viewDidLoad() - operation()

+ getProduct () : Product Zﬁ

ConcreteProductA ConcreteProductB

ConcreteFactoryA ConcreteFactoryB - hame - name

- operation() - operation()

- product:ConcreteProductl - product:ConcreteProduct2

+ getProduct () : Product + getProduct () : Product

Figure 7.2
Factory Method - Class diagram
Client: ViewController, Pattern: Factory, Data: Product

Concrete example:

Let us assume that we need to create a color object from a set of
potential color collection that share a same base class. Instead of
creating a color object directly on the client, we delegate the work to
a factory that will take responsibility for creating the proper subclass
based on the client’s requirement. What is happing behind the factory
is completely unknown for the client. We can add more color objects that
can be chosen by the factory without informing the client.

39

Extension scenarios:

The table 7.2 illustrates the consequences of introducing a new concrete
product to the collection. Adding a new product needs both addition and
modification of classes in the different components.

Type Addition of classes Modification of classes
Client | Pattern| Data | Client | Pattern | Data
New product | N R R 0] N N
Average
Required 0 1 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.2

Factory method - Scenarios
Client: ViewController, Pattern: Factory, Data: Product
R: Required, O: Optional

We must create a new class in data component, the new product class.
If we want to use the new product, we must also create a new concrete
factory for the new product. For that reason, we have put required in
the addition of data and pattern classes. The same principle applies to
the client; creating a new factory may cause changes on the client code
if that new product needs to be created from the client. We end up with
two required and one optional action.

Justification:

Our subjective view of this pattern is that it decouples data and
the client component by putting factory as a middle-ware; it is also
encapsulating the object creation logic. However, creating a new
factory every-time a new concrete product is introduced seems to be
excessive even we avoid one-to-many relationship between factory and
the concrete product. We see that this patten’s logic can be customized
to only use one concrete factory to chose between different concrete
products, which will minimize the creation of classes when extending.
If we do that, the decoupling will decrease due to the one-to-many
relationship between the concrete factory and concrete products.

40

7.3.1.2

Motivation:

Abstract Factory is similar to the Factory method, but this pattern
creates related objects which do not share the same abstract class,
which also means that it is not used to create a single object. Like the
Factory method, it hides the creation logic that is used to build them
and the underlying concrete products, as shown in fig. 7.3. One can
modify the classes used to create objects without changing the caller
components, which means that an extension of products is possible
without rewriting much code on the client.

Abstract Factory

Extensibility pattern: Yes

AbstractFactory

- productA : ProductA
- productB : ProductB

+ getProductA () : ProductA
+ getProductB () : ProductB

N

ConcreteAbstractFactoryA

- productA : ProductA
- productB : ProductB

+ getProductA () : ProductA
+ getProductB () : ProductB

ConcreteAbstractFactoryB

- productA : ProductA
- productB : ProductB

+ getProductA () : ProductA
+ getProductB () : ProductB

ViewController
+ viewDidLoad()
ConcreteProductAl ConcreteProductA2
- name - name
- operation() - operation()
ProductA
- name
- operation()
ProductB
- name
- operation()
ConcreteProductB1 ConcreteProducB2
- name - name
- operation() - operation()

Figure 7.3

Abstract Factory - Class diagram
Client: ViewController, Pattern: AbstractFactory, Data: Product

41

Concrete example:

Let us assume that we want to buy a car with insurance; we can choose
between the different type of cars and insurances based on our needs.
The car could be the product A and the insurance the product B, if we
relate to the fig. 7.3 on page 41. To create a set of packages containing
both a car and insurance, we can use the abstract factory pattern. The
concrete abstract factory is responsible for choosing the proper subclass
of product A and B to create the package, let us say BMW car with
super insurance. The concrete abstract factory may in this case named
BMWSuperInsuranceFactory.

Extension scenarios:

A new concrete product will force us to create a new subclass inside
the data component, either of product A or B; then we need to update
the factory to add support for it. This may also cause us to create a
new abstract factory for a unique combination that also includes the
new product in which will lead us to update the client code as well; this
is more alike based on the needs and the design choice and therefore
marked as optional in the table 7.2 on page 40.

Type Addition of classes Modification of classes

Client | Pattern | Data Client | Pattern | Data
New concrete | N N R N R N
product
New product | N 0] R 0] R N
type

Average

Required 0 0 1 0 1 0
Optional 0 0,5 0 0,5 0 0
Table 7.3

Abstract Factory - Scenarios table
Client: ViewController, Pattern: Factory, Data: Product
R: Required, O: Optional

Introducing new product type needs new classes in the data component
and most likely modification of the concrete abstract factory classes;
like the new concrete product, this extension may also lead us to create
a new factory as well as updating the client code to make use of it. A
new class in data component and modification in the pattern is required,;
new factory and client update are optional. Unlike with factory method,
the need for a new abstract factory is more or less present in this
pattern design. A unique combination of a package of products needs
new factory. In such case, we need to create a new class in the pattern
component and update the client to make use of it.

42

Justification:

As we see it, this pattern is just a continuation of the factory method,
but products creation is more encapsulated and abstracted inside the
factories. Potential extension scenarios are also higher than the factory
method, and the sum of average required and optional changes are
three, like the Factory method. However, this design introduces
more classes in the pattern component, the middleware classes that
contribute to decouple the client and the data component. There will be
a factory method logic inside the abstract factory to for example chose a
concrete class of product A.

What we clearly see here is that decoupling in this situation makes the
design more complicated, which in turn leads to increased work when
extending. The question is all about where we need less rework, in the
client or other components.

43

7.3.1.3 Builder

Motivation:

Builder pattern encapsulates default configuration values; it is typically
used when default values are many and must not often be changed.
Handling an object with a lot of initializer arguments is not very
productive, neither it decouples callers and data model. Instead, we
can use builder pattern that provides an interface for constructing an
object using simple steps. Due to this, it is not necessary to change the
code on the caller component when the default configuration changes on
the object. By changes, we mean adding or removing variables from the
object. Such behaviour decouples components in an application from the
design phase.

The fig. 7.4 shows how this pattern is constructed using director and
builder roles. Director’s role is to take the order from the view controller
and use the correct builder to build the requested product.

Extensibility pattern: Yes

ViewController Director Builder
builder : Builder - product : Product
+ viewDidLoad()
+ contruct() + buildPart()
Product ConcreteBuilder

- name : String - product : Product

+ operation() + buildPart()

Figure 7.4

Builder - Class diagram
Client: ViewController, Pattern: Director and Builder, Data: Product

Concrete example:

Let us assume that we have a class that represents a laptop, and the
variables inside the class are information about the parts inside, such
as CPU power, memory capacity and the rest of the building blocks.
We might need different specifications based on the demands; an office
laptop does not need to be a high-end product, on the other hand, a
gamer laptop needs higher specifications. We do not want the client to
give all the specifications for the different types. In such case, we can
take advantage of the builder design pattern.

44

From the fig. 7.4 on page 44, the product is the laptop, and the builder is
where the office or gamer laptop is built using the required specification.
Director will construct the builder and return a laptop object from it.

Extension scenarios:

Typical extension when using this pattern is new or extension in
existing constructor of a product. Both scenarios create required
modification in the data and pattern component, as shown in table 8.3
on page 86. Note that there is no needed action on the client component
because the configuration of an object is wholly encapsulated by the
builder.

Type .Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern| Data
New con- | N N N N R R
structor in
product
Extension in | N N N N R R
product’s con-
structor

Average

Required 0 0 0 0 1 1
Optional 0 0 0 0 0 0
Table 7.4

Builder - Scenarios table
Client: ViewController, Pattern: Director and Builder, Data: Product
R: Required, O: Optional

Justification:

We interpret this pattern in a way that there is no needed for separate
concrete builders for each concrete product. This is due to the fact
that default configuration is normally standardized when classes share
a common interface. We are aware of that doing this way makes
the one-to-many relationship between the concrete builder and the
concrete products, which may be seen as tightly coupling. However, an
extension is much more comfortable compared to the Factory method
and Abstract factory because there is no need for new classes in the
pattern component.

45

7.3.1.4 Prototype

Motivation:

Prototype design pattern is used to create a new object by copying an
existing object. It is also beneficial to avoid expensive initialization.
Prototypes are useful when object initialization is expensive, and you
anticipate few variations on the initialization parameters. In this
context, the prototype can avoid expensive creation from scratch, and
support cheap cloning of a pre-initialized prototype. The fig. 7.5
illustrates the relationship between the view controller and the pattern
and how clone method is used in the prototype classes. We do not find
this as an extensible design pattern due to its characteristics. This
pattern is normally used to save memory and increase the performance
of an application, which means that this is not an extensibility pattern.

Extensibility pattern: No

ViewController Prototype
- name : String
+ viewDidLoad()
+ clone()
ConcretePrototypeA ConcretePrototypeB
- name : String - name : String
+ clone() + clone()
Figure 7.5

Prototype - Class diagram

Concrete example:

Let us assume that we have a car object with several properties and we
want to create another car with almost same features, such as engine,
and other parts; only differences is the color. Without this pattern, we
would most likely create this from scratch by initializing a new object.
Instead of doing that we can clone it and only change the color, which
saves us for some computing power.

46

7.3.1.5 Singleton

Motivation:

Motivation for using singleton pattern is to ensure that only one
instance of a class exist at any time and there is a global pointer to that
instance. The class diagram on fig. 7.6 shows relation between the view
controller and the Singleton class. Singleton pattern will always return
the same reference of the shared instance to it’s callers, in this situation,
any view controllers in the application. The getSharedInstance method
will ensure this behaviour. We mean this pattern is best suitable when
one wants to manage a shared instance. Thus, we do not find this as an
extensible design pattern. The pattern neither decouples components
in the design phase nor helps to extend a tightly coupled system. Due
to that we do not look more deeper into this pattern in this study.

Extensibility pattern: No

ViewController Singleton

- sharedinstance : Sigleton

+ viewDidLoad() - Singleton()

+ getSharedinstance() : Singleton

Figure 7.6
Singleton - Class diagram

Concrete example:

A good example is the main application on a mobile device; you will
only have one instance of the main screen at any time. Having multiple
instances of an application on such devices is unnecessary and memory
consuming, in some cases also lead to user frustration.

47

7.3.2 Structural
7.3.2.1 Adapter

Motivation:

Adapter pattern is typically used to integrate two incompatible com-
ponents when the components itself cannot be modified. The adapter
extends or wraps incompatible components that must be connected. It
is an extensible pattern but not utilized in the design phase of an ap-
plication. Instead, it extends tightly coupled components. As shown in
fig. 7.7, the Adapter class is integrating two incompatible components.
For example, a parameter sent from a client to Adaptee must be con-
verted by the Adapter. Our focus is on the patterns that decouple from
the beginning, not the patterns that fix a problem that already exists.

Extensibility pattern: No

ViewController Target
- name : String
+ viewDidLoad()
+ request()
Adaptee Adapter
- hame : String - hame : String
+ specificRequest() + request()
Figure 7.7

Adapter class diagram

Concrete example:

We have a Class A and B that needs to communicate, but their
interfaces are entirely different, so they cant understand each other.
To make the communication possible, we can introduce an adapter that
does the translation work between these classes. Target could be the
class A, adaptee the class B and then we have the adapter to do the
translation.

48

7.3.2.2 Bridge

Motivation:

A bridge pattern is generally used to the exploding class hierarchy
problem. The advantage is when adding a new feature, it only
requires a single class. It also decouples an abstraction from its
implementation so that the two can vary independently. The client
component can only access the abstract class without being worrying
about the implementation part, as shown in fig. 7.8. This shows
us that we can add concrete classes to abstraction or implementor
without needing to inform each other or the view controller class. Such
kind of decoupling makes an extensible solution from the beginning of
application life-cycle.

Extensibility pattern: Yes

ViewController Abtraction Implementor

- name : Strring - name : Strring

+ viewDidLoad()
+ function()

i

+ operation()

T

RefinedAbtractionA

RefinedAbtractionB

ConcretelmplementorA

ConcretelmplementorB

- name : Strring

- name : Strring

- name : Strring

- name : Strring

+ refinedOperation()

+ refinedOperation()

+ function()

+ function()

Figure 7.8
Bridge - Class diagram
Client: ViewController, Pattern: N /A, Data: Element

Concrete example:

In case we have concrete classes of shape (circle, triangle, square, etc.)
that share a common interface, and we need to fill these shapes with
different color, which mean that we have an interface for color as well.
A typical exploding class hierarchy will be if we create classes such as
CircleRed, CircleBlue, TriangelRed, TriangelBlue, etc. To avoid such
hierarchy, we can use the bridge pattern that makes it possible to
have a relationship between the shape and the color. The shape is the
abstraction layer and color is the implementor, according to the fig. 7.8.

49

Extension scenarios:

Using this pattern, we have two potential extensible scenarios. We
can either add more classes to abstraction layer or implementor part.
Both scenarios need required action in the data component, as shown
in table 7.5. Notice that there is no pattern component in this
design, pattern component is merged into the data component. To take
advantage of the new classes, the client needs to know that these exist,
but it is optional to use it.

Type Addition of classes Modification of classes

Client | Pattern | Data | Client | Pattern | Data
New refined | N N R 0] N N
abstraction
New concrete | N N R 0] N N
implementor

Average

Required 0 0 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.5

Bridge - Scenarios table
Client: ViewController, Pattern: N /A, Data: Element
R: Required, O: Optional

Justification:

In our point of view, this pattern is a good extensible pattern, classes in
both abstraction or implementor part can be extended without needing
to do any work on the other components. As descried in the concrete
example we can extend either shape or color by adding concrete classes
to the different parts independently. Share can use any type of color,
and it is usually clients responsibility to connect these together.

50

7.3.2.3 Composite

Motivation:

Composite design pattern creates a tree structure of a group of object
and treats them as a single object. This tree structure is mostly not
modified once it has been created. This pattern is only useful when
you need to structure objects. That being said, this pattern lets clients
treat a group of objects uniformly, which means that we have a loose
coupling between client and data components. However, it is not
entirely supporting extensibility due to the static tree structure. View
controller has a relation to the component and does not need to know
anything about the Composites and Leafs. This means that there is a
loose coupling between the client and the data model, but not inward
the data model, as shown in fig. 7.9. We feel that the purpose is not
bright enough to say that it will contribute to support extensibility from
the initial stage of an application life-cycle.

Extensibility pattern: No

ViewController Component

name: String

+ operation1()

+ operation2()

+ addComponent

+ removeComponent

il

Leaf Composite

+ viewDidLoad()

name: String name: String

+ operation1()

+ operation2()

+ addComponent

+ removeComponent

+ operation1()
+ operation2()

Figure 7.9
Composite class diagram

Concrete example:

A good real-world example that reflects this pattern is the hierarchy
structure of a car’s parts. The car itself will be the root component and
engine as a subcomponent that again has several components or leafs,
such as electric parts and valves.

51

7.3.2.4 Decorator

Motivation:

Decorator design pattern adds new additional functionality to an object
without rewrite or alters existing code, at the same time keeps the new
functionality separate. It is also used to change the behavior of an object
dynamically at runtime. In short, it adds new features to the object by
wrapping it. Like Adapter pattern, this is used to wrap an existing
object and do not decouples components from the design phase. This
pattern is used for extension, but in most of the cases to extend an
existing object at the runtime, it is not meant to be used in the design
phase. Thus, we mark this as none extensibility pattern.

Extensibility pattern: No

ViewController Component
- name : String
+ viewDidLoad()
+ operation()
il
ConcreteComponent Decorator
- name : String - component: Component
+ operation() + operation()
ConcreteDecorator
- component: Component
+ operation()

Figure 7.10
Decorator - Class diagram

Concrete example:

This pattern is very straightforward in a manner in which it decorate an
existing class without modifying the class. Let say we have Date class
that prints date information in central European format. We want this
class to include support for American format but are don’t able to modify
the original class, in such case, we can decorate the class by adding new
function that prints date information in American format.

52

7.3.2.5 Facade

Motivation:

The facade design pattern provides one straightforward interface to a
complex underlying system. It may wrap a single or multiple classes,
and the wrapped classes are isolated from the client. Any extension
or changes to the wrapped part will not affect the Facade interface
that is exposed to the client components. This means one can add new
classes or functionality inside the wrapped interface without informing
the client components.

Extensibility pattern: Yes

ViewController Facade
- name: String
+ viewDidLoad()
+ facadeMethod()
SubsystemA SubsystemB SubsystemC

- name: String - name: String - name: String

+ operationA() + operationA() + operationA()

+ operationB() + operationB() + operationB()

Figure 7.11
Facade - Class diagram
Client: ViewController, Pattern: Facade, Data: Subsystem

Concrete example:

An internet API is an excellent example of Facade design pattern
utilized in that system. The API itself is exposed to potential clients,
and the back-end systems are wrapped around it. Any addition or
changes to the backend components may not generate any work on the
client side. The API provider has the flexibility to add subsystems inside
wrapped interface without breaking the communication from the clients
that already exists.

53

Extension scenarios:

When utilizing this pattern, we have two potential extensible scenarios.
We can either add new subsystem or extend functionality in the existing
system without needing to inform the clients. Note that the pattern
component in this design is the facade class itself that wraps the
underlying systems.

Adding new subsystem requires addition of classes in the data compo-
nent and sometimes modification in the pattern components in order to
include the new subsystem. Extension in subsystem only need modifi-
cation in the data component.

If the client needs to be updated in some situations, this patterns is
probably used in wrong way.

Type .Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern | Data
New subsys- | N N R N R N
tem
Extension in | N N N N N R
subsystem

Average

Required 0 0 0,5 0 0,5 0,5
Optional 0 0 0 0 0 0
Table 7.6

Facade - Scenarios table
Client: ViewController, Pattern: Facade, Data: Subsystem
R: Required, O: Optional

Justification:

Our view on this pattern is that it encapsulates the inner work by
putting a wrapped interface around a possible complex system. The
client needs only to have knowledge about the facade interface and its
functions. We mean this pattern is a good extensibility pattern when
to comes to separate the client from the data component and can be
implemented easily because the purpose is obvious.

54

7.3.2.6 Flyweight

Motivation:

Flyweight design pattern is used when there is need to create a large
number of objects of almost similar nature. A large number of objects
consume a large amount of memory, and the flyweight design pattern
provides a solution for reducing the load on memory by sharing object.
The Flyweight factory that is shown in the fig. 7.12 is responsible for
not creating a new object if the same type already exists.

This pattern is used to decrease memory footprint and increase
performance, and not decouples components as we expect, that means
this pattern is not designed to be used for extensibility.

Extensibility pattern: No

FlyweightFactory Flyweight
- hame: String - name: String
+ getFlyweight (key) + operation (extrinsicData)
il
ViewController ConcreteFlyweight UnsharedConcreteFlyweight

- intrinsicState - allState

+ viewDidLoad() + operation (extrinsicData)] e
+ operation (extrinsicData)

Figure 7.12
Flyweight - Class diagram

Concrete example:

If we have an application where we, for example, need to create 100
circles with different colors, the circle object must be initialized 100
times, which will consume a large amount of memory. Using Flyweight
pattern, we can share the circle object and only change the color,
because the circle is a static object.

55

7.3.2.7 Proxy

Motivation:

Proxy design pattern acts as a place-holder for another object to control
access to it. Proxy also means "on behalf of." It is usually used when
we want to shield a class from the client. In some sense, it sounds like
Facade pattern, but the intent of using it is completely different. In this
case we are shielding a class, but in Facade, we are wrapping a complex
subsystem. The table 7.1 on page 38 shows how an object is hide behind
the proxy. This pattern is used to protect or hide components and we do
not see it as an extensibility pattern.

Extensibility pattern: No

ViewController Subject

- name: String

+ viewDidLoad() + operation()

i

RealSubject Proxy
- name String - realsubject : RealSubject
+ operation() + operation()

Figure 7.13
Proxy class diagram

Concrete example:

A good example is if we have a back-end system that needs to be
shielded for clients due to security purposes, a proxy can be put between
the critical system and the client component; through the proxy, we only
expose the functions clients need.

56

7.3.3 Behavioral
7.3.3.1 Interpreter

Motivation:

Interpreter pattern is a design that contains a logic in which can convert
a context to an understandable format using an expression, as shown in
fig. 7.14. This pattern is typically used for translation purposes. This
pattern is famous for its existence in SQL (Structured Query Language)
parsing and programming compilers. We do not see this as an extensible
design pattern due to its intent rather as a pattern for translation
purposes.

Extensibility pattern: No

Context

- name: String

+ operation()

- AbtractExpression
ViewController

- name: String

+ viewDidLoad()

+ interpret (contect: Context)

P T

TerminalExpression

- name: String

+ interpret (contect: Context)

NonterminalExpression

- name: String

+ interpret (contect: Context)

Figure 7.14
Interpreter - Class diagram

Concrete example:

A date string functioning as context using expressions can be inter-
preted to more understandable format. Other examples of interpreters
are: A translator that is allowing people to understand a foreign lan-
guage and a programming compiler that interprets the source code into
bytecode that is understandable by the machine.

57

7.3.3.2 Template Method

Motivation:

The template method pattern is used when we want the implementation
classes to either replace or extend the functionality that is available
through an interface. This will permit changing the algorithm in a
method without changing the base class or the caller component code.
An example is if you are making a framework and you want to allow
other developers to change some of the algorithms. Using this patten we
encapsulate the methods in a abstract class that can be changed by the
concrete classes, as shown in the fig. 7.15. This mechanism decouples in
a way that data model can be extended without making changes to the
caller component.

Extensibility pattern: Yes

ViewController AbstactClass
- name: String + operationOne()
+ operationTwo()
+ viewDidLoad() + templateMethod() <«——
+ operationOne()

+ operationTwo()

i

ConcreteClassA ConcreteClassB
- name: String - name: String
+ operationOne() + operationOne()
+ operationTwo() + operationTwo()

Figure 7.15
Template Method - Class diagram
Client: ViewController, Pattern: N/A, Data: Class

Concrete example:

Let say that the abstract class from the fig. 7.15 is pizza, and concrete
class A and B are different types of pizzas that share the common
interface. The template method operation’s behaviour can be modified
by the concrete classes as they override the operations that are bundled
in the templateMethod operation, which mean that Pizza A can contain
different logic inside the other functions. The templateMethod function
will be the same for the clients.

58

Extension scenarios:

A new concrete class that overrides some of the operations needs
required addition in the data component in the form of creation of new
classes. Note that, we do not have any pattern (supporting classes)
component in this design. Only required action happens in the data

component.

Tvoe Addition of classes Modification of classes

yp Client | Pattern | Data Client | Pattern| Data
New concrete | N N R 0] N N
class

Average

Required 0 0 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.7

Template method - Scenarios table
Client: ViewController, Pattern: N /A, Data: Class

R: Required, O: Optional

Justification:

This pattern does not have any pattern component; the pattern logic is
merged into the data component. In our point of view, this is one of the
simplest patterns in the GoF list. If one wants to let the concrete classes
to change the behavior of several methods without generating lot work

in other components than data component, this is the pattern to go for.
Functionalities can be easily extended.

59

7.3.3.3 Chain of Responsibility

Motivation:

The chain of responsibility pattern creates a chain of receiver objects
for a request. Each receiver holds a pointer to another receiver. In this
pattern, each receiver keeps information about another receiver; the
request is passed between objects until it reaches the end of a chain.
We do not find this as an extensible design pattern in a manner that
decouples components for extensibility; it is normally used to make a
chain of requests.

fig. 7.16
Extensibility pattern: No

FSu ccessor

Handler

ViewController

- sucessor: Handler

+ viewDidLoad()

+ handleRequest()

ConcreteHandlerl ConcreteHandler2
- name: String - name: String
+ handleRequest() + handleRequest()

Figure 7.16
Chain of Responsibility - Class diagram

Concrete example:

When we make an ATM withdrawal of 955 dollars, the ATM must put
together several bills because single 955 dollar bill does not exist. For
such situation, we can use this pattern by having handlers for 100, 50,
10 and one dollars. When withdrawing 955 dollars, request will be fist
sent to 100 dollar handler that will collect nine 100 dollar, next request
will be sent to 50 dollar handler which will add one 50 dollars to the
money pile followed by the 10 dollar handler that will without doing
anything forward the request to one dollar handler that will finalize the
request by adding five one dollar to the pile.

60

7.3.3.4 Command

Motivation:

In short, Command pattern is used to decouple a request for an action
from the object which initially has the action method. By request, it
means the command that is to be executed. With such decoupling, the
sender does not know anything about the receiver’s interface. UML
diagram, as shown in fig. 7.17 demonstrate how classes interact in a
Command pattern design. The caller component creates instances of
the receiver and command class and sends it to the invoker to perform
an action. This sort of mechanism allows us to change or add functions
in the receiver without touching much code on the client side. However,
some changes to the concrete command classes might be needed.

Extensibility pattern: Yes

ViewController Invoker Command
| - name: String - name: String
+ viewDidLoad()
+ action() + execute()
Receiver ConcreateCommand

N name: String - state: State
+ action() + execute()

N

Figure 7.17
Command - Class diagram
Client: ViewController, Pattern: Command and Invoker, Data: Receiver

Concrete example:

Receiver here could be a fan or light, command is typically ON or
OFF command made specific for a receiver, and the invoker is the
actual switch. This pattern decouples the switch from the receiver
interface itself. The switch can operate both light and fan even they
have different interface. Swith can only flip up or down and have no
knowledge about what is happening inside the commands.

61

Extension scenarios:

New receiver requires addition of classes in the data and pattern
component. We need to create a new receiver and corresponding
concrete commands. An optional change is needed in the client
component if we want to use the new receiver and the corresponding
commands.

New command specific for an existing receiver requires a new class in
the pattern component and optional change in the client component. We
do not see the point of introducing new invoker is this pattern design.

Type Addition of classes Modification of classes

Client | Pattern| Data | Client | Pattern | Data
New receiver | N R R 0] N N
New com- | N R N 0] N N
mand

Average
Required 0 1 0,5 0 0 0
Optional 0 0 0 1 0 0
Table 7.8

Command - Scenarios table
Client: ViewController, Pattern: Command and Invoker, Data: Receiver
R: Required, O: Optional

Justification:

Our view on this pattern is that it is one of the most challenging
patterns to understand and implement because the addition of new
receiver creates some work on the command and afterward must be
connected to an invoker. Note that we have two classes in the pattern
component, command, and invoker. Builder pattern from the creational
category also has two classes, builder, and director, but the extension
does not create that much work ones it is implemented correctly.

62

7.3.3.5 Iterator

Motivation:

Using Iterator design pattern we can assess different collection of
objects in an uniformal way. You can for example treat arrays, lists
or hash-tables as the same way through the iterator interface, without
exposing these internal implementation. Iterator makes it possible for
clients components to iterate through any collection of the data. It is
also easy to add new data collection to the iterator without making any
changes outside of the collections. We encapsulate the traversing tasks
and expose an uniformal interface to client, which make it easy to add
new collections to the system, thus it supports extensibility.

Extensibility pattern: Yes

Aggregate ViewController Interator

- name: String - name: String

+ viewDidLoad() + next()
+ createlnterator() + hasNext()
ConcreateAggregate Concreatelnterator
- name: String - name: String

+ next()

+ createlnterator() + hasNext()

Figure 7.18
Iterator - Class diagram
Client: ViewController, Pattern: Iterator, Data: Aggregate

Concrete example:

Aggregate, in this case, is nothing other than a collection of objects.
An iterator contains looping mechanism for the aggregate. Let us
assume that we have a collection of strings that we want to loop
through. Without using the pattern, we need to implement the looping
mechanism at the client, and it needs a lot of code work. Using
this pattern, we can avoid the looping at the client and move the
responsibility to the Iterator pattern.

63

Extension scenarios:

A new concrete aggregate or a collection needs new classes in the data
and pattern component, and if the client wants to loop through that
collection, an optional modification is needed on the client component.
New iterator generates a new class in the pattern component, but we do
not see the point of introducing new concrete iterator without having a
new type of aggregate.

Type .Addition of classes Modiﬁcation of classes
Client | Pattern | Data Client | Pattern | Data
New concrete | N R R 0] N N
aggregate
Average
Required 0 1 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.9

Iterator - Scenarios table
Client: ViewController, Pattern: Iterator, Data: Aggregate
R: Required, O: Optional

Justification:

This pattern leaves the looping work to iterator pattern from the client.
This is a good practice, but in case we introduce new type aggregate, so
must the iterator extend as well, which seems to be quite excessive in a
small size of application design. We think that one iterator that can loop
through the different collection is more efficient and easily extensible.
However, our thinking will make a one-to-many relationship between
a single iterator and the concrete aggregates, which can be seen as
tightly coupling. Note that, in some patterns, we ague that increased
decoupling (one-to-one relationship) may make an extension complex.

64

7.3.3.6 Mediator

Motivation:

Mediator design pattern provides loose coupling by taking responsibility
to handle communications between different objects. It is a communi-
cation center for the objects that want to interact with each other. It
allows you to not having to manage links between objects. This pattern
is used to have control over the communications that need to established
between object, instead of having to keep track of all object individually.
Using this pattern simplify adding new objects to the communication
system without introducing them individually to all involved objects.
The extension can be done without a lot of changes to the components
of the system.

Extensibility pattern: No

ViewController Mediator Colleague
- name: String - mediator: Mediator
+ viewDidLoad() +send()
+ sendeMessage() + receive()
ConcreateMediator ConcreateColleagueA ConcreateColleagueB
. - mediator: Mediator - mediator: Mediator
- name: String
+ send() + send()
+ sendeMessage() + receive() + receive()

Figure 7.19
Mediator - Class diagram
Client: ViewController, Pattern: Mediator, Data: Colleague

Concrete example:

A good example of a mediator is an air traffic control tower that is
responsible for handling communications between flights related to the
tower. In such case, the Mediator class is the tower, and the flights are
the colleague classes.

65

Extension scenarios:

A new concrete colleague requires new class in the data component and
optional few line of codes in the client. New mediator needs new class in
the pattern component and optional modification in the client. It is not
that often a new concrete mediator needs to be introduced, for example,
a traffic control tower is not changed once it is established.

Type .Addition of classes Modiﬁcation of classes
Client | Pattern| Data Client | Pattern | Data
New concrete | N N R 0] N N
colleague
Average
Required 0 0 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.10

Mediator - Scenarios table
Client: ViewController, Pattern: Mediator, Data: Colleague
R: Required, O: Optional

Justification:

We mean this pattern is a good candidate that should be considered
during the design phase of an application. Extension does not seems to
be that challenging due to that we can have different concrete classes of
type colleague and a single type of concrete subject in the design.

66

7.3.3.7 Memento

Motivation:

Memento design pattern takes a snapshot of an object’s state that can
be used to do a roll-back to the previous state. It allows a complete
roll-back of an object’s state without the need to know the specific undo
tasks. This pattern is used when one needs to return an object to an
earlier state. This pattern provides a recovery mechanism and does not
be used for extensibility purpose.

Extensibility pattern: No

Caretaker ViewController

- memento: Memento

+ addMemento() + viewDidLoad()

+ getMemento()

Memento Orginator
- state : State - state: State
+ getState() + setMemento()
+ setState() + createMemento()

Figure 7.20
Memento - Class diagram
Concrete example:

A simple real-world example is the undo operation we are bale to in a
word processing application, such a Microsoft word. File restore and
database restore are also can also build using Memento pattern.

67

7.3.3.8 Observer

Motivation:

Observer pattern gives the responsibility of monitoring changes to
an independent object that should update all necessary objects. The
receiving object register self to the independent object to be notified.
This pattern is used whenever one object needs to be notified of any
changes in an another, but the sender does need to know anything about
the receiver. This pattern simplifies adding a receiver to the notification
center without altering much code due to the decoupling of sender and
receiver.

Extensibility pattern: Yes

ViewController Subject Observer
- name: String - name: String
+ viewDidLoad() + addOberver()
+ removeObserver() + update()
+ notifyObservers()

ConcreateSubject ConcreteObserverA

- name: String - name: String

+ addOberver()
+ removeObserver()
+ notifyObservers()

+ update()

Figure 7.21
Observer - Class diagram
Client: ViewController, Pattern: N /A, Data: Subject and Observer

Concrete example:

Let us assume that we have a background process in an application
that regularly checks for any updates that must need to be informed
to other components, for example, GUI or database. In such case, the
background process is the Subject, and the GUI or database are the
observers.

68

Extension scenarios:

Extending either subject or observer needs an only addition of classes
in the data component. It can be explained by that both subject
and observer are in the data component. This pattern is used to
establish contact between objects without coupling the sender to a
reviver. Observer or the reviver will indicate the subject for interest
if needed.

Type Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern | Data
New concrete | N N R 0] N N
subject
New concrete | N N R 0] N N
observer

Average

Required 0 0 1 0 0 0
Optional 0 0 0 1 0 0
Table 7.11

Observer - Scenarios table
Client: ViewController, Pattern: N /A, Data: Subject and Observer
R: Required, O: Optional

Justification:

In this pattern, a concrete subject of type A needs a corresponding
type of X observers. If we introduce a new concrete subject of type
B, we need to create corresponding observers of type Y. However, both
abstract classes are in the same component as mentioned above. We can
in this case see that even patten component or supporting classes are
absent, we still have to create concrete classes that belongs to different
interfaces. This make the extension more complex then for example the
template method that also does not have pattern component.

69

7.3.3.9 State

Motivation:

The state design pattern allows an object to change its behavior when
its internal state changes. In this pattern, the object’s internal state is
the controller for its behavior. This pattern is about remembering the
start of an object, and we do not see it as an extensible pattern that
needs to be taken into consideration at the initial stage of application
development.

Extensibility pattern: No

ViewController Context State
- name: String - name: String
+ viewDidLoad()
+ request() + handle()
ConcreateStateA ConcreateStateB
- name: String - name: String
+ handle() + handle()

Figure 7.22
State pattern class diagram

Concrete example:

A real-world example, in this case, would be an ATM machine with is
an internal state. It will typically have two states, No card inserted
and Card inserted. Based om this state, it will change the ATM objects
behavior..

70

7.3.3.10 Strategy

Motivation:

Strategy pattern allows us to change the behavior of a method at the
runtime. This pattern is used whenever one needs classes that must
be extended without being modified; this is, for example, useful when
there is a need for exposing frameworks for clients and give them the
possibility to extend functionalities without modifying or sub-classing
the original object.

Extensibility pattern: Yes

ViewController Context Strategy
- name: String - name: String
+ viewDidLoad() - startegy : Strategy

+ algorithminterface()

i

+ contextinterface()

ConcreateStrategyA ConcreateStrategyA
- name: String - name: String
+ algorithminterface() + algorithminterface()

Figure 7.23
Strategy - Class diagram
Client: ViewController, Pattern: Strategy, Data: Context

Concrete example:

Let us assume that a person needs to travel from location A to B and
can choose between different transport. Travelling itself is the context
and the different transport methods is the strategy.

71

Extension scenarios:

A new concrete strategy requires only addition of classes in the pattern
component. Even we have both the data and pattern component in
this design; an extension only creates the addition of classes in the one
component.

Type .Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern | Data
New concrete | N R N 0] N N
strategy

Average

Required 0 1 0 0 0 0
Optional 0 0 0 1 0 0
Table 7.12

Strategy - Scenarios table
Client: ViewController, Pattern: Strategy, Data: Context
R: Required, O: Optional

Justification:

This pattern is a good extensible pattern to use in the design phase due
to that it contributes to extend the data component’s behavior without
recompiling the associated classes.

72

7.3.3.11 Visitor

Motivation:

The visitor pattern is used when we want to change the executing
algorithm of an element object, which means that, we are decoupling the
operation from the element object itself. In other words, the behavior of
element algorithm can be manipulated using the visitor. The fig. 7.24
illustrate the relationship between the element and the visitor object..

Extensibility pattern: Yes

ViewController Visitor
- name: String
+ viewDidLoad()
+ visitElement(ConcreteElement)
Element ConcreteVisitor
- name: String - name: String
+ accept(Visitor) + visitElement(ConcreteElement)
ConcreteElement
- name: String
+ accept(Visitor)

Figure 7.24
Visitor - Class diagram
Client: ViewController, Pattern: Visitor, Data: Element

Concrete example:

A real-world example will be that if we compare a postman with the
visitor and the mailboxes as an element. It is actually up to the postman
to decide where to visit and put what kind mail in a mailbox. The
mailboxes (element) content will vary depending on postman’s (visitor’s)
behavior.

Extension scenarios:

The table 7.13 on the next page shows the amount of work that needs
to be done when extending entities while using this pattern. Extending
by new concrete element needs an only addition of class in the data
component. However, if the client needs to visit an element, it needs to
add the element to the visitor’s collection, but this is optional. Extend

73

functionality in visitor requires modification only in the pattern. A new
concrete visitor can be added without affecting any other components,
but client component needs to know about it if there is an interest in
using the new visitor.

Type .Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern | Data
New concrete | N N R 0] N N
element
New concrete | N R N 0] N N
visitor

Average

Required 0 0,5 0,5 0 0 0
Optional 0 0 0 0,5 0 0
Table 7.13

Visitor - Scenarios table
Client: ViewController, Pattern: Visitor, Data: Element
R: Required, O: Optional

Justification:

This pattern can change the data components behavior without needing
to recompile anything of the data class files. A new visitor can be added
any time to the system, and it can visit many elements objects in the
data component. Thus, we consider this as a good extensibility pattern.

74

7.4 Summary

In this chapter, we selected patterns that have extensibility characteris-
tics and can be used in the design phase of an application life-cycle. The
primary goal was to point out those patterns that support extensibil-
ity by loosely coupling components from the beginning of an application
life-cycle, the design phase. We selected pattern based on their purpose.
In some patterns, we could see that increased decoupling may impact
the extension and make it bit more complicated in a manner that de-
mands more work.

The selected patterns are:
* Creational:
— Factory Method, Abstract Factory and Builder
¢ Structural:
— Bridge and Facade
* Behavioral:

— Template Method,Command, Iterator, Mediator, Observer,
Strategy and Visitor

We excluded patterns where the intent was to increase the performance,
minimize the memory allocation, extend a tightly coupled software and
other purposes that we meant do not relate to extensibility.

The excluded pattern are:
* Creational:
- Prototype and Singleton
¢ Structural:
- Adapter, Composite, Decorator, Flyweight and Proxy
* Behavioral:
— Interpreter, Chain of Responsibility, Memento and State

On the facing pages, we have attached results from the extension
scenarios measurement, both a table overview and a corresponding
chart that we will discuss more in detail in the evaluation part. In the
next chapter, we implement two of the patterns form each category to
demonstrate how they provide support for extensibility in a real-world
application. We build a simple application from scratch using some
selected patterns that we mean suites for the particular application.

75

ST

S0

50

5’0

10351

Reapers|

JEINERTS|

101eIpa |

J01e18y|

puelo))|

pouaw s1ejdwa]]

apede |

potaw Aioioe|

Figure 7.25

10NS overview

Extensibility design patterns - Average act

76

10ISINE

wns.

Adaueism

eleq

|euondo

paiinbay

J9MBSqOM JOJeIpSN M JOlEM9)| M PUBWIWO) @ poupaw aejdwa) m
uonesyIpoN
waned w3l
Jeuondo pasinbay |euondQ pauinbay

apejeq m

|euondg

eleq

aspug

paiinbay

J1epngm Aiopeqielsqym poylsw Aiopeq m
uonippy
waned

[euondo

pausinbay Jeuondg

a1

painbay

0

wn,
o

T

L,
=

e

Extensibility design patterns - Average actions chart

Figure 7.26

77

78

. Part III.: Re.zse.arch
Implementation of Extensibility

Design Patterns

8.1 Introduction

In this chapter, we implement six of the pointed out design patterns
from the previous chapter. Implementation is done using a case-study
application named eFuel that is briefly described in the next section.
Purpose of this case-study is to examine the extensibility pattern from
a practical perspective.

Our primary goal throughout this case-study is to examine the
theoretical research from the previous chapter and demonstrate any
benefits or drawbacks by implementing some the claimed extensibility
patterns. This is also due to verify or reject our expectations after
examining the patterns theoretically. For each implemented pattern, we
will describe the motivation of choosing it as well as some code samples
and possible extensible scenarios. We also use class diagrams to show
the involved components, but unlike chapter 7, we use classes from the
application itself.

Based on the finding from the previous chapter and the needs for
our project, we picked two design patterns from each pattern category
that we found to fit into our case study application. We believe these
design patterns can solve some of the extensibility challenges we may
meet in the future. The application we create is only to discuss the

79

design patterns, which means that, the focus is not on the quality
of the application, but the patterns that are demonstrated using the
application.

The selected patterns for implementation are:
* Creational
Factory method and Builder
¢ Structural
Bridge and Facade
* Behavioral

Template Method and Iterator

8.2 eFuel application

In this section, we describe briefly the application we built using
the selected design patterns. We decided to call the application by
name eFuel. In this context, eFuel is the abbreviation for electric
fuel. It is a simple application that shows nearby charging stations
for electric vehicles within a radius of 10 km. We are using a
public internet API provided by Norsk elbilforening (Norwegian Electric
Vehicle Association) to fetch the data from the internet. The majority
of nowadays mobile applications receive and consume data via APIs, for
that reason, we chose to interact with an API in this case-study. This is
also due to that API tends to change or provide additional functionality
over time, in such case, designing application with extensibility in mind
is a huge benefit.

High-level design of application is shown in fig. 8.1 on the facing page.
The rectangle on the left side is the start view of the application and
shows a table that contains stations found nearby. The table is filled
with data from the internet API. Right side view will appear on the
screen when a table row is tapped, and contains more details about the
station that was tapped by the user.

From the detail pane, a user can share the station information to
different media, for example to social media such as Facebook or
Twitter. A station itself includes a variety of information, but it also
holds references to car types that are supported by the station.

80

API from internet

User

D) e
I

Station A
2KM

Station B
3KM

Station C
aKM

Station D
5KM

Station E
6 KM

Station F
7KM

Station G
8 KM

eFuel Station detail t

Name Station A
Adress Oslo, Norway
Latitude 59.92356
Longtitude 10.72349

Chargeing poits 10

Car types GC,EC

Figure 8.1

eFuel application - High level design

8.3 Building eFuel

In this section, we demonstrate how the selected patterns are imple-
mented in the application. We describe the intent and motivation of
using these patterns specific to this application. Addition to the tex-
tual explanation, we use class diagrams, and code examples to present
the work. Our primary goal throughout this section to show how these
design patterns are implemented using the case-study. The table 8.1
shows the areas where the patters are used.

Design Pattern Area of usage

Factory method This pattern is used to create the station
objects.

Builder Used to configure the station object.

Bridge Relation between car types and stations is
built using this pattern.

Facade Used to wrap the API data download tasks.

Template Method

Sharing station information to other media
is designed using this pattern.

Iterator

Used to loop through the data that is
provided by API.

Table 8.1

Usage area of the patterns in the case-study

81

We mostly illustrate how the patterns are loosely coupling the client,
pattern and the data model components; however, in the evaluation
part, we will also discuss the decoupling inward the data model itself.

Evaluation of the implemented patterns is described in the next part.

82

8.3.1 Creational
8.3.1.1 Factory method

Motivation:

To store information about the electric charging stations that we
retrieve from the internet API, we need to create one object for each
station; this is due to the object-oriented encapsulation mechanism
that is very common in software development. Thus, we need a class
for charging station with several variables, such as the name of the
station, address, position and amount of charging points at the station.
We decided to use factory method pattern to create the objects; this is
because we must be able to extend the scope with more type of station
in the future. We use a factory to create a concrete station objects that
could be either an electric station, gas station or some other type of
stations.

As shown in the fig. 8.2, we have two abstract classes, StationFac-
tory.swift and Station.swift. Both classes have its own concrete classes
which in turn hold a reference to each other. Note that each type of
station has a separate factory.

ViewController StationFactory Station
- name: String - name : String
- address : String
+ viewDidLoad() - dispenser: Int
+ createStation()
+ getStation .
g on0 - getDispenser()
ElectricStationFactory| GasStationFactory ElectricStation GasStation
- name: String - name: String - name : String - name : String
- address : String - address : String
- dispenser: Int - dispenser: Int
+ createStation() + createStation()))
- getDispenser() - getDispenser()
.
Figure 8.2

Case-study: Factory method - Class diagram
Client: ViewController, Pattern: StationFactory, Data: Station

83

030 Ok W

Code samples:

The code below shows that we need to create classes in the data and
pattern component when introducing a new type of station. This is loose
coupling because we have a separate fabric for each type of station.

/*ViewConroller classx*/

var efactory, gfactory, newFactory : StationFactory
var eStation,gStation, newStation : Station

//Requesting a concrete station object of type electric
//station

eFactory = ElectricStationFactory ()

eStation factory.getStation ()

//Requesting a concrete station object of type gas station
gFactory = GasStationFactory ()
gStation = factory.getStation()

//Requesting a concrete station object of type new station

newFactory = NewStationFactory ()
newStation = factory.getStation ()
Listing 8.1

Case-study: Factory method - Client code

Extension scenarios:

Extension scenario table below verify our theoretical explanation from
chapter 7.

Type Addition of classes Modification of classes

Client | Pattern | Data | Client | Pattern | Data
New concrete | N R R 0] N N
station

Average

Required 0 1 1 0 0 0
Optional 0 0 0 1 0 0
Table 8.2

Case-study: Factory method - Scenarios table
Client: ViewController, Pattern: StationFactory, Data: Station
R: Required, O: Optional

Lesson learned:

The implementation of Factory method shows that we can change the
logic inside the concrete factory without informing the view controller.
However, adding a new type of station leads to a new concrete factory in

84

the pattern component as well. After the implementation of this pattern
in this case-study, we have the feeling that using a single factory to
chose between different concrete stations is much more efficient. We see
that customizing the pattern based on the needs is beneficial compared
to implementing it as-is.

8.3.1.2 Builder

Motivation:

To create a station object, we need values such as name, street, house-
number, zip-code, city, charging points, position latitude and position
longitude. We cannot always be sure that we have all the values
available at the creation time, and in fact that we accept an object to
be created without having all the values, using Builder pattern might
be beneficial.

In the previous section we used factory pattern to create an empty
concrete station object in which had no values in the variables. Using
Builder pattern, we can fill the object with necessary data and let
the builder set default values to other variables that we do not care
about. To implement the builder pattern, we need to create more layers
between the view controller and the station object, as shown in fig. 8.3.

ViewController Director Builder

- builder : Builder - product : Station

+ viewDidLoad()

+ constructStation(Builder)
+ getStation() + buildPart()

i

Station StationBuilder
- name : String - product : Station
- address : String
- dispenser: Int
; + buildPart()
- getDispenser()
.
Figure 8.3

Case-study: Builder method - Class diagram
Client: ViewController, Pattern: Director and Builder, Data: Station

Instead of initializing the station object directly on the View-controller,

we go through a director that uses the builder object to build a station
object, as shown in listing 8.3. In this case, we are combining the factory

85

© 0030 Otk Wi H

DO DD b=t b b e e e e e
= O ©0o-1I0 Uk W - O

method and builder pattern in a manner that makes it sense for our case
study, but it can also be done in other ways. That being said, evaluation

of combining patterns is out of scope for this study.

Code samples:

/+*ViewConroller classx/

var gfactory : StationFactory
var gStation: Station
var sBuilder : StationBuilder

//Requesting a "null" concrete station object
//of type gas station

gfactory = GasStationFactory ()

gStation = gfactory.getStation ()

//Creating the builder
sBuilder = StationBuilder (gStation)

//Preparing the builder

var stationDirector = StationDirector (sBuilder)

stationDirector.constructStation ()

//Getting the station object from the director
var gstation = stationDirector.getStation ()

Listing 8.2
Case-study: Builder - Client code

Extension scenarios:

Type Addition of classes Modification of classes

Client | Pattern | Data Client | Pattern | Data
New con- | N N N N R R
structor in
station
Extension N N N N R R
in station
constructor

Average

Required 0 0 0 0 1 1
Optional 0 0 0 0 0 0
Table 8.3

Case-study: Builder - Scenarios table

Client: ViewController, Pattern: Director and Builder, Data: Station

R: Required, O: Optional

86

Lesson learned:

After implementing this pattern, we have learned that combining
patterns could be challenging, especially if the intent is almost the
same. We use the factory to pick a concrete station and then use the
builder to set default configurations. We could also have encapsulated
the builder pattern behind the factory, which would have decoupled the
client completely from the Builder pattern. Combining patterns is not
in the scope of this study. Thus, we do not look deeper into it. However,
we can see the benefit of hiding as much as possible from the client.

We could also have used separate concrete builders for particular
stations. In that case, it is all about the design choice or how a developer
interprets the pattern. Of course, it would have complicated this pattern
somewhat more.

87

8.3.2 Structural
8.3.2.1 Bridge

Motivation:

The charging stations we retrieve from the internet API may not
support fuelling of all type of cars; some may for example not support
Tesla which needs a proprietary charger. An only electric station will
never be able to fuel gasoline cars. Thus, we need a relationship
between stations and the supported cars. To solve this problem, we
decided to use bridge pattern that is used to avoid the exploding class
hierarchy problem. We would like to avoid creating a for example
classes such a TeslaElecticStation.swift or NissanElecticStation, instead
vi create a relation between station and the supported cars, as shown in
fig. 8.4.

ViewController Station Car
- name : String - name : Name
N address : String - fuel : FuleType
+ viewDidLoad() - cars : [Cars]
+ setFuelType
+ setcar(car: Car) + getFuelType
Electri ion i [of i i ineCar ElectricCar
- name : String - name : String - name : String - name : Name - name : Name
- address : String - address : String - address : String
- cars : [Cars] - cars : [Cars] - cars : [Cars]
+ setFuelType + setFuelType
+ setcar(car: Car) + setcar(car: Car) + setcar(car: Car) + getFuelType * getFuelType
.
Figure 8.4

Case-study: Bridge - Class diagram
Client: ViewController, Pattern: N /A, Data: Station and Car
R: Required, O: Optional

The listing 8.3 and line 24 and 27 show this pattern in action on the
client side. There are no supporting pattern classes in this design.

88

© 0030 Utk WK

NNONNONDNNDNNDNDRHR H B (R e
OO TN AR WNROWOW-10 TN WD RO

Code samples:

/+*ViewConroller classx/

var gfactory : StationFactory
var sBuilder : StationBuilder
var gStation : Station

var car : Car

//Requesting a "null" concrete station object
gfactory = GasStationFactory ()
gStation = gfactory.getStation ()

//Creating the builder
sBuilder = StationBuilder (gStation)

//Preparing the builder
var stationDirector = StationDirector (sBuilder)
stationDirector.constructStation ()

//Getting the station object from the director
var station = stationDirector.getStation ()

//Creating a ElectricCar (not using factory or builder for

//car objets)
car = ElectricCar ()

//Bridge patten method to add car types to station
station.setCar (car)

Listing 8.3
Case-study: Bridge - Client code

Extension scenarios:

Type Addition of classes Modification of classes

Client | Pattern | Data | Client | Pattern | Data
New concrete | N N R 0] N N
station
New concrete | N N R 0] N N
car

Average

Required 0 0 1 0 0 0
Optional 0 0 0 1 0 0
Table 8.4

Case-study: Bridge - Scenarios table
Client: ViewController, Pattern: N /A, Data: Station and Car
R: Required, O: Optional

89

Y O W N

Lesson learned:

The usage of this pattern in this case-study verify our theoretical
explanation from chapter 7, there is no supporting classes/pattern
component. The pattern logic is merged into the data component; both
Car and Station classes belong to the data component.

Station holds a reference to supported cars, and extension of any of them
need only required action in the data component, as shown in table 8.4
on page 89.

8.3.2.2 Facade

Motivation:

This application gets its core data from an internet API source. We need
to download the data and store it to a file or memory before using it in
the application. This work contains several complex tasks that could be
shied from the client. Facade pattern is a good candidate to solve this
problem, and in addition, it may contribute to easy extension inside the
wrapped interface without needing to alter the code on the client side.

ViewController CoreData

+url : URL
- downloader : Downloader

+ viewDidLoad() - location : Locartion
- converter : Converter

+ getCoredata ()

! l

Downloader Location Converter

- url: URL - location : CurrentLocation - convter: ResponseConvter

+ getResponse + getCurrentLocation + getConvertedData

Figure 8.5

Case-study: Facade - Class diagram

Client: ViewController, Pattern: Facade, Data: Downloader, Location
and Converter

Code samples:

/*ViewConroller classx*/

var coredata : Coredata
var stationList : List

//Preparing the facade interface

90

10
11
12
13

coredata = Coredata (url: URL)

//Usning the "facade method"
stationList = StaionListDictionary
(list: coredata.getCoredata())

Listing 8.4
Case-study: Facade - Client code

Extension scenarios:

Type Addition of classes Modification of classes

Client | Pattern | Data Client | Pattern| Data
Database N N R N R N
support (Save
downloaded
data)
Extension N N N N N R
in Location
(support 10
km+)

Average

Required 0 0 0,5 0 0,5 0,5
Optional 0 0 0 0 0 0
Table 8.5

Case-study: Facade - Scenarios table

Client: ViewController, Pattern: Facade, Data: Downloader, Location
and Converter

R: Required, O: Optional

Lesson learned:

In this case-study, we downloaded data from an internet API, and there
are a lot of tasks that need to be done in order to retrieve the data,
such as, establish the connection, send a request, receive the response
and translate the received data and put that into a collection of type
dictionary. We wrapped all these tasks using the facade pattern and at
the same time removed the complexity from the client. An extension
inside the wrapped interface as shown in the table 8.5 does not create
any required action in the client.

91

8.3.3 Behavioral

8.3.3.1 Template Method

Motivation:

We decided to implement a function that shares station information to
social media. For the initial phase, we only want to use Facebook and
Twitter. For such implementation, using the template method might be

beneficial regarding any future extension.

We use an abstract class named Share.swift and two concrete classes,
FacebookShare.swift and TwitterShare.swift. On the concrete classes,
we override the methods to customize the sharing mechanism to meet
the requirements of a specific social media. The share() method include
a collection of the methods that can be overridden by the concrete
classes, and the share() itself is untouched by the concrete classes, as

show in fig. 8.6.

ViewController

Share

- name: String + prepare()

+ viewDidLoad()

+ setSosialMediaType()
+ getSosialMediaAPI()
+ share() +——

+ prepare()
+ setSosialMediaType()
+ getSosialMediaAPI()

i

FacebookShare

TwiterShare

- name: String

- name: String

+ prepare()
+ setSosialMediaType()
+ getSosialMediaAPI()

+ prepare()
+ setSosialMediaType()
+ getSosialMediaAPI()

Figure 8.6

Case-study: Template Method - Class diagram
Client: ViewController, Pattern: N /A, Data: Share

92

Code samples:

The code samples below illustrate the implementation in different
components. We can clearly see that introducing new social media
require optional actions in the client component.

© 0030 Otk WK

[o S e S S TS S Gy SR
OO U WD RO

© 00 30 Ut W N

[l e S e R e g S = T
O W-I0 Uk W = O

/+*ViewConroller classx*/

//Defining the type
var facebook, twitter : Share

//Sharing to Facebook
facebook = FacebookShare(station: Station)
facebook.share () ;

//Shareing to Twitter
twitter = new TwitterShare (station: Station)

twitter.share();

//Shareing to new social media

newSocialMedia = new NewSocialMediaShare (station:

newSocialMedia.share () ;

Station)

Listing 8.5
Case-study: Template Method - Client component code

/+xFacebook share classx/
class NewSocialMediaShare: Share {
override func prepare () {

//New scoial media related code

override func setSocialMediaType ()

{

//New scoial media related code

override func getSocialMediaAPTI () {
//New scoial media related code

Listing 8.6
Case-study: Template Method - Data component code

93

Extension scenarios:

To verify our explanation of Template Method in chapter 7, we illustrate
the possible extension scenarios in this case study.

Type .Addition of classes Modiﬁcation of classes

Client | Pattern | Data Client | Pattern | Data
New social | N N R 0] N N
media sup-
port

Average

Required 0 0 1 0 0 0
Optional 0 0 0 1 0 0
Table 8.6

Case-study: Template method - Scenarios table
Client: ViewController, Pattern: N /A, Data: Share
R: Required, O: Optional

Lesson learned:

Our experience with this pattern after putting it into action in this
case-study is that this is one of the simplest design patterns in the
GoF list. We support this claim with the implementation as shown in
listing 8.5 and 8.6. Making a new concrete class of share and overriding
some of the methods will change the behavior of the social media share
functionality that is available through the Share interface.

94

8.3.3.2 Iterator

Motivation:

We use the facade pattern to download the data from Internet API,
which gives us a collection of type dictionary in return. We must
loop through the dictionary to store the information into an object
array of type Station. This is where the iterator pattern can be used.
We encapsulate the dictionary into a concrete aggregate class called
StationListDictionary.swift and put a reference to the corresponding
iterator named StationListDictionarylnterator.swift, as shown in fig. 8.7

StationListDictionarylnterator.swift contains the logic for the dictionary
looping. The drawback we see here is that StationListDictionaryIntera-
tor.swift can only handle the collection of type dictionary. For every type
of collection, we must create a new iterator, which seems to be in some
situation quit complex, even it highly decoupling the collection and the
iterator itself.

List ViewController Interator
- list : Any - name : String
+ viewDidLoad() N 0
nex
+ telnterat
createlnterator() + hasNext()
StationListDictionary StationListDictionarylinterator
- list : Any - name : String
+ next()
+ createlnterator() + hasNext()
.
Figure 8.7

Case-study: Iterator - Class diagram
Client: ViewController, Pattern: Iterator, Data: List

The code and extension scenarios on the facing page illustrate that if
we need to support a new type of collection, a new iterator must be built
to loop through the new logic. That means both data and the pattern
components demand required addition of classes. Client component
needs to be informed about the new list but not the iterator itself

95

0030 Ut W N H

Code samples:

/+*ViewConroller classx*/

//Creating the list
var stationList : List
stationList = StationListDictionary(list: station_list)

//Creating the interator
var stationListDictionarylterator =
stationlist.createlInterator ()

//Looping

for count in stationListDictionaryIterator {
//Add to station object array"

}

Listing 8.7
Case-study: Iterator - Client component code

Extension scenarios:

Type .Addition of classes Modiﬁcation of classes
Client | Pattern | Data Client | Pattern | Data
New type of | N R R 0] N N
station list
Average
Required 0 1 1 0 0 0
Optional 0 0 0 1 0 0

Table 8.7

Case-study: Iterator - Scenarios table

Client: ViewController, Pattern: Iterator, Data: List
R: Required, O: Optional

Lesson learned:

We can realize that letting the client do the looping work is definitely
against the encapsulation practice. After implementing this pattern,
we see that a collection of objects can be iterated without exposing
its underlying representation. We also noted that having a one-to-one
relationship between the concrete list and the concrete iterator decouple
the collection classes and looping algorithms.

The one-to-one relationship makes the extension of the collection of
classes bit more complicated than necessary. Thus, we could have
handled several types of collections in a single concrete iterator by
detecting the incoming type in that class.

96

8.4 Summary

In this chapter, we used the case-study application to demonstrate the
extensibility patterns in action. We believe that we managed to follow
the pattern design and rules as it was described in chapter 7. The
extension scenarios from the previous chapter were also able to relate
to this case study’s situations.

We realized that it could be challenging when two patterns are about to
collide because they are designed for almost the same purpose, such as
Factory Method and Builder. We combined these two in our way that
made it possible to function in our case-study.

We also could realize that patterns can be customized based on the
needs, for example, in the Factory pattern, we could have used a single
concrete factory to chose between the concrete stations. Builder pattern
design could have had separate builders for each type of stations instead
of having a common. In the Iterator pattern, we see that one-to-one
relationship between the station list and iterator is maybe excessive,
but we are aware that doing this decrease the decoupling.

97

98

Part IV

Evaluation

99

Part IV: Evalu.ation
Introduction

In the previous part, we pointed out extensibility patterns from
the GoF list. Furthermore, using our case-study, we demonstrated
implementation of two design patterns form each category of the pointed
out patterns. In this part, we discuss and review our work and findings.

9.1 Outline

We have divided this part into two chapter as the following bullet points
explain.

¢ Chapter 10: Evaluation of the extensibility patterns
In this chapter, we evaluate the pointed out extensibility patterns
as well as the lessons from the implemented six patterns.

¢ Chapter 11: Conclusion
In this chapter, a summary of the key findings from the research
will be described, such as expectation at the start compared to
results, the importance of this study and recommendations for
future research.

101

102

. Part IV: Eva.lue}tion
Evaluation of the extensibility

patterns

10.1 Introduction

In this chapter, we evaluate the patterns that we discussed and pointed
out as extensible from the GoF list. We review these pattern category by
category due to that they are grouped based to their purpose. We look
into extensibility characteristics based on our subjective view, data from
the extension scenarios tables and the lessons from implementation of
the six patterns using the case-study.

Decoupling and encapsulation, as mentioned in the background part are
also taken into consideration as evaluation criteria. However, we do not
have any measurement for these due to the limitations. Thus, we rely
on our subjective view of decoupling and encapsulation.

Before the evaluation section, we do a quick recap of the
criteria:

Decoupling is ensuring that two or more components are not depend
on each other, loosely coupling in other hand is trying to minimize the
tightly coupling between components. Encapsulation is hiding the inner
workings of a software component behind a defined interface.

103

10.2 Creational

10.2.1 Result introduction

In this category, we pointed out following design patterns as extensible:
¢ Factory Method
* Abstract Factory
¢ Builder

The fig. 10.1 shows the extensibility chart for the creational patterns
based on the extension scenarios.

1,2
1
0,8
0,6
04
0,2
0
T T P T E E B OE R OE R OE
= = = = = o = = = = = =
E 8 I 8§ & &8 & &8 £ & & &
Client Pattern Data Client Pattern Data
Addition Modification
W Factory method Abstarct Factory Builder
Figure 10.1

Creational patterns - Extensibility chart

10.2.2 Evaluation

Factory method:

Factory method pattern generates work in all three components when
business logic is extending. We can see from the chart in fig. 10.1 that
it requires addition of classes in both patterns and data component. An
optional work is also needed in the client component to take advantage
of the new extension. The extending part here is the concrete product
that belongs to the data component. The pattern component is where
the concrete factory classes are placed, as shown in fig. 7.2 on page 39.
Creating of an object is encapsulated using the factory. However, for
every new concrete class, we need to build a separate factory. This

104

is to avoid the tight coupling (one-to-many relationship) between the
factory and the product, which also increase the amount of work when
extending.

Abstract Factory:

Abstract Factory in other hand is less aggressive than the Factory
method because it encapsulates the creating much more by adding more
layers between the client and the final product. Encapsulation must
not be confused with decoupling, as described in the introduction of
this chapter. Extending with the new concrete product does not require
new abstract factory in the pattern component, as shown in fig. 10.1
on page 104, instead a modification is needed to add support for it
in the existing factories. A new product type or abstract product will
generate new classes in the data component, and required modification
in pattern classes to update the existing factories; it may also force us
to create new factory if there is a need to build a unique factory with a
new combination of abstract classes.

Builder:

Builder pattern seems to be a winner in the category. Extension related
to this pattern does not require any actions in the client component
and only modification in the pattern component. This is due to the
high encapsulation of the object creation. We interpreted this in a way
that does not make it necessary to create concrete builder when data
component is extending by new concrete product. It makes us believe
that there is no answer to how one should interpret a pattern because
patterns can be customized and interpreted in different ways.

10.2.3 Review of the implementation

Factory method:

Factory method pattern from the implementation shows that every time
we want to extend by a new concrete station in the data component,
we also need to create a class in the pattern component in which
has a reference in the view controller class. Creating a new type of
station generate two new classes, one concrete station class, and a
corresponding factory. The corresponding factory needs to be referenced
in the view controller, as shown in listing 8.1. We mean that customizing
this pattern to use a single factory (one-to-many relation between
factory and product) is much more efficient when extending.

Builder:

Builder pattern was used to configure the default values for the station.
We see that building a station in our case-study is highly encapsulated,

105

all of the station configurations and creation are completely hidden.
This is the benefit of the builder pattern. It is easier to extend the
station object with variables without needing to inform the client. We
could have had specific builders for each type of station, but in our point
of view, Builder pattern is normally used to encapsulate the default
configuration which should be common for all concrete class of type
Station. We could have had separate builders for each type of stations
instead of having a common builder, but we chose this approach because
default values in our case-study are et to be the same for all type of
stations.

10.2.4 Summary

In this category, Builder pattern seems to be a good design pattern
when it comes to extensibility; it encapsulates the creation and the
configuration part. It is important to emphasize that we interpreted
builder in a way that does not force us to create a one-to-one relation
between the concrete builder and concrete product. It reflects what we
see on the graph 10.1.

Factory method and Abstract Factory are also encapsulating the
creation, but put a bit more complex to the design due to the one-to-one
relationship between the concrete factory and concrete product classes,
which also means that, the decoupling is more in present here.

However, the builder pattern can also be used with more decoupling or
one-to-one relationship as Factory method and Abstract Factory which
may increase the complexity. This shows also that design patterns can
be implemented in different ways or customized based on the needs,
which makes it very challenging to evaluate.

In our point of view, Builder pattern deserves an assessment in an
initial phase of any application design. Factory method and Abstract
Factory is more suitable if one see the need for it in relation to
the problem one want to solve. With the experience we have from
the implementation, we can see that combining these patterns is
challenging because all three are used for creation purpose.

106

10.3 Structural

10.3.1 Result introduction

In this category, we pointed out following design patterns as extensible:
* Bridge
* Facade

The fig. 10.2 shows the extensibility chart for the structural patterns.

1,2
1
0,8
0,6
0,4
0,2
0

s 2|3 £|3 2|3 €£|/3 £ 3 %

[=% [=% o = o = o = o

& o & o & @] & @] & @] & @]

Client Pattern Data Client Pattern Data

Addition Modification

M Bridge Facade

Figure 10.2
Structural patterns - Extensibility chart

10.3.2 Evaluation

Bridge:

Bridge pattern needs the least actions in this category when extending,
for the reason that pattern and data component are merged. From the
fig. 7.8 on page 49, we can see that both abstraction and implementor
are part of the data component. We do not have any other supporting
classes to make this design complete. When extending, we only need
to add classes to the data component and let the client use it which is
optional action seen from the clients perspective.

Facade:

Facade pattern also seems to do a good job when it comes to
encapsulating the inner work by putting a wrapped interface around a
possible complex system. We can see from the chart that any extension

107

on the data component does not require any actions on the client
side that uses the wrapped interface. This behavior may not apply if
the wrapped interface needs to be changed, but our assumptions and
understanding are that it stays unchanged for a long period.

10.3.3 Review of the implementation

Bridge:

Bridge pattern was used to a have a relation between station and car.
A new type of station or car may appear in the future and to easily
support this kind of extension, we used the bridge pattern to avoid the
so-called exploding class hierarchy. Unlike many other patterns, this
has a special design where pattern and data components are merged.

Facade:

The facade was implemented in our case-study to put a wrapped
interface around the classes and tasks that were involved in the
download of data from the Internet API. Extending inside the wrapped
interface, for example including support for new API types will not
affect the functions the view controllers already are using. View
controller needs only to run a method that is defined in the Facade class,
in our case-study application, it is called Downloader.getStations() that
returns a dictionary of all stations in a given area. Inside the wrapped
class there are a lot of tasks that need to be completed before creating
the stations dictionary, but the client does not need to know anything
about these tasks.

10.3.4 Summary

Both patterns in this category are useful extensibility patterns. The
builder has data and pattern components bundled, and Facade does a
good job when it comes encapsulation of complex tasks.

The fig. 10.2 on page 107 shows that facade pattern really shield
the client from updating it’s data when extension happens behind the
facade interface, no action on the client side is needed. Bridge demands
only required action in the data component. In our point of view, both
design patterns are useful extensibility pattern with less complexity
that needs to be considered for use in a design phase of an application.

108

10.4 Behavioral

10.4.1 Result introduction

In this category, we pointed out following design patterns as extensible:

¢ Template Method

Command

Iterator

Mediator

Observer

Strategy

Visitor

The fig. 10.3 shows the extensibility chart for the behavioral patterns.

1,2

1 .

0,8

0,6

0,4

0,2

0 |
g ¢ ® g 8 g 8 g 88 g 8 ¢t
= =] = =] = =] = =] = =] = =]
S & § & % & § B % & § B
= o = o = o o« o = o = o
Client Pattern Data Client Pattern Data

Addition Modification

m Template method m Command m Iterator = Mediator m Observer mStartegy m Vistor

Figure 10.3
Behavioral patterns - Extensibility chart

The chart illustrates that all the behavioral patterns generate optional
actions in the client component when an extension happens in the data
or pattern component. Hence, it does not break any existing function
due to the non-existence of required actions in the client. This behaviour
is the same as what we saw in the creational and behavioral patterns.

109

10.4.2 Evaluation

Template method:

Template method does not demand any required or optional work in the
pattern component; this is due to that this pattern logic is merged into
the data component. This is visible in the fig. 10.3 on page 109. In our
point of view, this is one of the simplest patterns in the GoF list. If one
wants to allow the concrete classes to change the behavior of several
methods without generating lot work in other components than data
component, this pattern is very useful.

Command:

Command pattern’s average number of extension scenarios require
actions in the pattern component as well as the data component, as
shown in fig. 10.3 on page 109. The reason for this behavior is the
decoupling of command, receiver, and the invoker, as shown in fig. 7.17
on page 61. Creation of new class in data component force us to create
classes in the pattern component because of the need for one-to-one
relationship.

Iterator:

Iterator does not vary a lot compared to Command; it requires addition
of classes in both data and pattern component as well as optional action
in the client. The latter is only if the extension needs to be used by the
client. For every new collection in the system, we need to create a new
iterator to meet the best practice design of this pattern, which seems to
overkill in some situations.

Mediator:

Mediator design has a unique design because the extension in data
component might not require any actions in the pattern component
even these two are not merged as in Template method. We can have
several numbers of instances of a different type of classes that can have
a reference to the shared instance of Mediator.

Observer:

Observer seems to be more aggressive than the Mediator when it comes
to the needed actions in different components. A concrete class of type
A can have zero or more Observer of only type B registered with it;
this forces us to create a new type of observer when a data component
extends with a new type of class.

Strategy:

Strategy pattern is, in fact, fascinating, and likewise Mediator it has
both pattern and data component separately. However, it differs when

110

it comes to the extension. There is only needed required action in the
pattern component, as shown in fig. 7.23 on page 71.

Visitor:

Visitor data from the chart is measured based on two potential exten-
sion scenarios. However, it require least actions in this behavioural
category. A new visitor can be added any time to the system, and it can
visit many elements objects in the data component. Thus, we consider
this as a good extensibility pattern.

10.4.3 Review of the implementation

Template Method:

Template Method in the case-study was used to the social media share
functionality where we only needed to create a concrete class of the
Share interface and override some of the methods. For the client
component, it is still a Share interface, as shown in listing 8.5. In
Template method design, data and pattern component are merged.
Thus, we only need a new concrete class of the interface Share.

Interator:

Iterator pattern was used to iterate the collection of type dictionary.
We built an iterator for that called StationListDictionarylInterator. We
realized that extending by a new type of collection creates some amount
of work in the pattern component that can be avoided if we customize
the pattern to use only one concrete iterator to handle multiple type
collection.

1044 Summary

Evaluation of the behavioral extensibility patterns shows us that
Command and Iterator patterns are the most challenging patterns in
terms of the work that needs to be done when extending.

Template method, Mediator, Observer Strategy, and Visitor patterns
seem to be in a group that needs less work when the extension happens.
In our view, Strategy and Visitor are patterns that not only require
the least actions when extending, but can also contribute to change the
behavior of an object at runtime without changing anything in the data
component.

111

112

Part IV: Evalu.ation
Conclusion

11.1 Summary

Our primary goal from the beginning of this study was to find design
patterns that can be used in the design phase of an application life-
cycle to achieve extensibility. To limit the scope of this study, we decided
to only look into GoF design patterns. Throughout this empirical
study, we discussed all the GoF design patterns and pointed out
those we considered as extensibility patterns based on their purpose.
We excluded patterns where the intent was to increase performance,
minimize the memory allocation, extend a tightly coupled software
and other purposes that were not in the scope or did not relate to
extensibility.

We investigated the pointed out patterns by putting them up against
extensibility characteristics based on our subjective view, data from
the self-designed extension scenarios tables and the lessons from
implementation of the six patterns using the case-study. Decoupling
and encapsulation are also taken into consideration as evaluation
criteria. Quantitative measurement for these is not in the scope of
this study. Thus, we rely on our subjective view of decoupling and
encapsulation.

We measured the required and optional actions that were needed on
the different components when extending some of the parts, actions
in this situation refers to either addition or modification of classes.

113

Furthermore, we used the Swift programming language to experiment
six of the pointed out patterns, two from each design pattern category,
using a case-study application. This is due to do the practical work to
verify our theoretical research.

Evaluation of the extensibility patterns shows us that pattern design
and logic differs a lot and used for different purposes. Due to this, it is
difficult to point out patterns that are better than the others. We also
devolved an understanding that patterns can be customized, combined
and used in different ways even GoF book has some guidelines to follow.
There is no one way of implementing a pattern, and in this study, we
discuss and implement as we interpret it, without any customization.

In some extensibility patterns, an extension generates work in only
one component, which makes it less complex to implement, understand
and extend. We found that in some cases complexity grows by
increased decoupling, which in turn will lead more amount of work
when extending, especially when the creation of new classes in the
data component need to have a one-to-one relationship with the pattern
component classes. Increased decoupling may be beneficial for code
maintainability and understandability, but it requires quite a lot of
work when extending. This finding is the opposite of the exportation
we had at the beginning of this study. We believed that decoupling had
only positive intentions on extensibility.

As the result, we have divided the extensibility patterns into two
groups, one with the less complex patterns where extension generates
less work than the other group in which contains more challenging
patterns when it comes to extending.

11.1.1 Less complex patterns

In this group, the average number of needed actions when extending is
less then 2,5.
* Creational: Builder

¢ Structural: Bridge and Facade

¢ Behavioral: Template method, Mediator, Observer, Strategy and
Visitor

11.1.2 Challenging patterns

In this challenging group average number of needed actions exceeds 2,5.

¢ Creational: Factory Method and Abstract Factory

114

e Behavioral: Command and Iterator

During this study, we made up one favorite from each category that
we believe has the advantage of implementing or should at least taken
into consideration at the design phase of application life-cycle. Builder,
Facade, and Visitor are patterns that not only require the least actions
when extending, but they also solve some conmen problems every
application may have, such as, encapsulating configuration of an object,
hide complexity behind wrapped interface and change behavior of an
object at runtime. These may not sound like extensible features, but
in fact, these flexibilities make it easier to expand the system, which is
described in the scenarios tables in chapter 7 and 8.

11.2 Further work

We excluded some patterns and considered these as not extensibility
patterns due to their purpose. This decision was done based on our
assumptions. However, it would be interesting to explore some of the
excluded patterns that had in our point view another purpose then
solving extensibility problems. The future research may then focus on
the excluded patterns to see if they also can be used as extensibility
patterns.

We are divided the excluded patterns into three groups:
¢ Patterns for extension after design phase:
- Adatper and Decorator
* Performance related patterns:
- Singleton, Prototype and Flyweight
* Other patterns:

— Composite, Interpreter, Chain of Responsibility, Memento
and State

The interesting patterns to look into when it comes to extensibility is the
group of other patterns that we struggled to decide its characteristics
during this study.

Based on the scope of this study, we looked only into the Go4 list and
implemented six of the twelve pointed out patterns. Further work may
also look into other design patterns or implement the remaining the six
patterns using the same case-study application.

115

116

PartV

Appendix

117

Code

The case-study experimental code can be obtained from the following
URL:

https://github.com/tkarthig/eFuel

119

120

Bibliography

[1] Christopher Alexander. The timeless way of building. Vol. 1. New
York: Oxford University Press, 1979.

[2] B Annappa et al. “Analyzing Design Patterns for Extensibility”.
In: Computer Networks and Intelligent Computing. Springer,
2011, pp. 269-278.

[3] Artur Kamil Barczynski. “Assessing the Impact of Using Design
Patterns of Enterprise Application Architecture”. MA thesis. 2014
- Universitetet i oslo.

[4] Carlo Chung. Pro Objective-C Design Patterns for i0S. 1st.
Berkely, CA, USA: Apress, 2011. ISBN: 9781430233305.

[6] James O Coplien. “Software design patterns: Common questions
and answers”. In: The Patterns Handbook: Techniques, Strategies,
and Applications (1998), pp. 311-320.

[6] John Deacon. “Model-view-controller (mve) architecture”. In:
Online][Citado em: 10 de marco de 2006.] http:/ /www. jdl. co.
uk | briefings | MVC. pdf (2009).

[7] Adam Freeman. Pro Design Patterns in Swift. 1st. Berkely, CA,
USA: Apress, 2015. ISBN: 148420395X, 9781484203958.

[8] Erich Gamma et al. Design Patterns: Elements of Reusable
Object-oriented Softwareeee. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995. 1SBN: 0-201-63361-2.

[9] Andrew Hoog and Katie Strzempka. iPhone and iOS forensics:
Investigation, analysis and mobile security for Apple iPhone, iPad
and i0OS devices. Elsevier, 2011.

[10] John Hunt. “Gang of four design patterns”. In: Scala Design
Patterns. Springer, 2013, pp. 135-136.

[11] Apple INC. The Role of View Controllers. 2016. URL: https://
developer.apple.com/library/content/featuredarticles/
ViewControllerPGforiPhone0OS/ (visited on 12/28/2017).

[12] Chandramohan Lingam (Intel). Performance Testing and Tuning -
Part II - Coupling. 2012. URL: https://software.intel.com/

en—-us /articles /performance-testing—-and-tuning-
part-1ii (visited on 01/02/2017).

121

https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/
https://software.intel.com/en-us/articles/performance-testing-and-tuning-part-ii
https://software.intel.com/en-us/articles/performance-testing-and-tuning-part-ii
https://software.intel.com/en-us/articles/performance-testing-and-tuning-part-ii

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Martin Rged Jacobsen. “A Possible Composite Design Pattern for
Immature REST APIs.” MA thesis. 2016 - Universitetet i oslo.

Julien Lange. Swift 2 Design Patterns. Packt Publishing Ltd,
2015.

Gaute Bernhard Sveen Lyngstad. “Design Patterns In A Smart-
phone Environment: An Empirical Study using Android. Univer-
sitetet i oslo”. MA thesis. 2013 - Universitetet i oslo.

Josephine Micallef. “Encapsulation, reusability and extensibility
in object-oriented programming languages”. In: (1987).

Snesh Prajapati. Factory Patterns - Simple Factory Pattern. 2016.
URL: https://www.codeproject.com/Articles/1131770/
Factory-Patterns-Simple-Factory-Pattern (visited on
12/28/2017).

Kai Qian, Jigang Liu, and Frank Tsui. “Decoupling metrics for
services composition”. In: Computer and Information Science,
2006 and 2006 1st IEEE/ACIS International Workshop on
Component-Based Software Engineering, Software Architecture
and Reuse. ICIS-COMSAR 2006. 5th IEEE /ACIS International
Conference on. IEEE. 2006, pp. 44-47.

Steve. OO Principles: Encapsulation and Decoupling. 2009. URL:
http : / /www . bryantwebconsulting . com/blog/ index .
cfm/2009/7/9/00-Principles - Encapsulation - and-
Decoupling (visited on 01/02/2018).

Walter F Tichy. “A catalogue of general-purpose software design
patterns”. In: Technology of Object-Oriented Languages and
Systems, 1997. TOOLS 23. Proceedings. IEEE. 1997, pp. 330-339.

Kim W Tracy. “Mobile application development experiences on
Apple’s iOS and Android OS”. In: Ieee Potentials 31.4 (2012),
pp. 30-34.

Weik-Tek Tsai et al. “Testing extensible design patterns in object-
oriented frameworks through scenario templates”. In: Computer
Software and Applications Conference, 1999. COMPSAC’99. Pro-
ceedings. The Twenty-Third Annual International. IEEE. 1999,
pp. 166-171.

Wikipedia. About Swift. 2012. URL: https : / / swift .
org / about / #swiftorg — and - open - source) (visited on
12/27/2017).

Wikipedia. Swift (programming language). 2012. URL: https://

en.wikipedia.org/wiki/Swift_ (programming_language)

(visited on 01/12/2017).

122

https://www.codeproject.com/Articles/1131770/Factory-Patterns-Simple-Factory-Pattern
https://www.codeproject.com/Articles/1131770/Factory-Patterns-Simple-Factory-Pattern
http://www.bryantwebconsulting.com/blog/index.cfm/2009/7/9/OO-Principles-Encapsulation-and-Decoupling
http://www.bryantwebconsulting.com/blog/index.cfm/2009/7/9/OO-Principles-Encapsulation-and-Decoupling
http://www.bryantwebconsulting.com/blog/index.cfm/2009/7/9/OO-Principles-Encapsulation-and-Decoupling
https://swift.org/about/#swiftorg-and-open-source)
https://swift.org/about/#swiftorg-and-open-source)
https://en.wikipedia.org/wiki/Swift_(programming_language)
https://en.wikipedia.org/wiki/Swift_(programming_language)

	Abstract
	Acknowledgements
	I Introduction
	Introduction
	Designs Patterns
	Motivation
	Goals
	Approach
	Scope
	Research/Work Done
	Evaluation
	Results
	Contributions
	Limitations
	Conclusion
	Less complex patterns
	Challenging patterns

	Further work

	II Background
	Introduction
	Outline

	Literature Review and Related Works
	Introduction
	Primary Studies
	Summary

	Extensibility in Software Development
	Introduction
	Design Phase of Software
	Decoupling
	Encapsulating

	Summary

	Design Patterns in Software Development
	Introduction
	Categorization
	Creational
	Structural
	Behavioral

	Summary

	III Research
	Introduction
	Outline

	Pointing out Extensibility Design Patterns
	Introduction
	Extensibility Design Patterns
	Scenarios tables
	Creational
	Factory method
	Abstract Factory
	Builder
	Prototype
	Singleton

	Structural
	Adapter
	Bridge
	Composite
	Decorator
	Facade
	Flyweight
	Proxy

	Behavioral
	Interpreter
	Template Method
	Chain of Responsibility
	Command
	Iterator
	Mediator
	Memento
	Observer
	State
	Strategy
	Visitor

	Summary

	Implementation of Extensibility Design Patterns
	Introduction
	eFuel application
	Building eFuel
	Creational
	Factory method
	Builder

	Structural
	Bridge
	Facade

	Behavioral
	Template Method
	Iterator

	Summary

	IV Evaluation
	Introduction
	Outline

	Evaluation of the Extensibility Patterns
	Introduction
	Creational
	Result introduction
	Evaluation
	Review of the implementation
	Summary

	Structural
	Result introduction
	Evaluation
	Review of the implementation
	Summary

	Behavioral
	Result introduction
	Evaluation
	Review of the implementation
	Summary

	Conclusion
	Summary
	Less complex patterns
	Challenging patterns

	Further work

	V Appendix
	Appendix Code

