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Abstract. We consider various ways to represent irrational numbers by subrecursive functions. An irrational number can be
represented by its base-b expansion; by its base-b sum approximation from below; and by its base-b sum approximation from
above. Let S be a class of subrecursive functions, e.g., the class the primitive recursive functions. The set of irrational numbers
that can be obtained by functions from S depends on the representation and the base b. We compare the sets obtained by
different representations and bases. We also discuss how representations by base-b expansions and sum approximations relate to
representations by Cauchy sequences and Dedekind cuts.
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1. Introduction
The first n digits of a decimal expansion suffice to determine the first n digits of a binary expansion of the same

number (we are talking about the digits after the period). On the other hand, any fixed number of digits of a binary
expansion are not sufficient to determine the first digit of the decimal expansion of the same number. For example,
consider the following two binary expansions

α = 0.0(0011)n0010 · · ·

β = 0.0(0011)n0100 · · · .

The decimal expansion of α and β start with 0.0 · · · and 0.1 · · · , respectively. In other words, to determine the first
digit after the period, we possibly need to read 4n+1 digits of a binary expansion where n can be arbitrary large.

Unbounded search cannot occur in subrecursive algorithms. The example above shows that unbounded search
is required to convert a binary representation into a decimal representation. In contrast, unbounded search is not
required to convert a binary representation into a hexadecimal representation. We can compute the first fractional
digit of the hexadecimal representation from the first four fractional digits of the binary representation. Then, we
can can compute the next fractional digit of the hexadecimal representation from the next four fractional digits of
the binary representation, and so on.

We can represent the base-b expansion1 of an irrational number α between 0 and 1 by a function Eα
b where

Eα
b (n) yields the nth digit of the base-b expansion of α . Let S be a sufficiently large natural class of subrecursive

functions, e.g., the class of elementary functions, the class of primitive recursive functions or the class of functions
that we can prove is total in Peano Arithmetic, and let SbE denote the set of irrational numbers between 0 and 1 that
have a base-b expansion in S, that is, α ∈ SbE if and only if Eα

b ∈ S. The informal considerations above indicate that
SbE will depend on b: we should expect that S2E ⊆ S16E , and we should expect that S10E 6⊆ S2E . For which bases
a and b do we, or do we not, have SbE ⊆ SaE? It turns out that the inclusion SbE ⊆ SaE holds if and only if every
prime factor of a is a prime factor of b. We will prove this equivalence for any subrecursive class S closed under
elementary operations (a subrecursive class will be formally defined as an efficiently enumerable set of computable
total functions).

Sum approximations form below and above were introduced in Kristiansen [6]. Let α be an irrational number
between 0 and 1. We can uniquely write α as an infinite sum of the form

α = 0 +
D1

bk1
+

D2

2k2
+

D3

2k3
+ . . .

1Base-b expansions are often called b-adic expansions or b-adic representations in the literature.
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where

• b ∈ N\{0,1} and Di ∈ {1, . . . ,b−1} (note that Di 6= 0 for all i)
• ki ∈ N\{0} and ki < ki+1.

Let Âα
b (i) = Dib−ki when i > 0, and let Âα

b (0) = 0. The rational number ∑
n
i=0 Âα

b (i) is an approximation of α that
lies below α , and we will say that the function Âα

b is the base-b sum approximation from below of α . The base-b
sum approximation from above of α is a symmetric function Ǎα

b such that 1−∑
n
i=0 Ǎα

b (i) is an approximation of
α that lies above α (and we have ∑

∞
i=0 Âα

b (i)+∑
∞
i=0 Ǎα

b (i) = 1). Let Sb↑ denote the set of irrational numbers that
have a base-b sum approximation from below in a sufficiently large subrecursive class S, and let Sb↓ denote the
set of irrational numbers that have a base-b sum approximation of from above in S. An interesting fact about sum
approximations is that Sb↑ and Sb↓ are incomparable classes, that is, Sb↑ 6⊆ Sb↓ and Sb↓ 6⊆ Sb↑ (and thus it follows
rather straightforwardly that SbE ⊂ Sb↓ and SbE ⊂ Sb↑). This is really what to expect from results already proven in
Kristiansen [6], but we give detailed and neat proofs in this paper.

This paper’s main result on sum approximations is that Sb↓ ⊆ Sa↓ if and only if Sb↑ ⊆ Sa↑ if and only if every
prime factor of a is a prime factor of b. We prove these equivalences for any S closed under primitive recursion
(it is an open problem if it suffices to assume that S is closed under elementary operations). We will also discuss
the relationship between sum approximations and Dedekind cuts, and we will prove, or at least sketch proofs of, a
number of results conjectured in Kristiansen [6].

The research presented in this paper continues the research presented in Kristiansen [6]. Although this paper is
meant to be self-contained, the reader may in several respects benefit from being familiar with [6] before reading this
paper. In [6] we treat a number of notions, e.g., continued fractions, trace functions, general sum approximations
and S-irrational numbers, that are closely related to base-b sum approximations. We also provide some intuition
that might helpful when reading technical parts of this paper. The research presented in this paper is also related to
research of Specker [19], Mostkowski [12], Lehman [14], Ko [4, 5], Labhalla and Lombardi [13] and a line of of
research by Georgiev, Skordev and Weiermann, see [3, 17, 18]. For more on computable real numbers, see Aberth
[1] or Weihrauch [21].

The author wants to thank one of the referees for valuable advice regarding the presentation.

2. Notation and Terminology
Definition 2.1. A base is a natural number strictly greater than 1, and a base-b digit is a natural number in the set
{0,1, . . . ,b−1}.

Let M be an integer, let b be a base, and let D1, . . . ,Dn be base-b digits. We will use (M.D1D2 . . .Dn)b to denote
the rational number M+∑

n
i=1Dib−i.

Let M be an integer, and let D1,D2, . . . be an infinite sequence of base-b digits. We say that (M.D1D2 . . .)b is the
base-b expansion of the real number α if we have

(M.D1D2 . . .Dn)b 6 α < (M.D1D2 . . .Dn)b +b−n

for all n> 1. Moreover, we say that the base-b expansion of α is finite if there exists k such that α =(M.D1D2 . . .Dk)b,
and we say that the base-b expansion of α is infinite if no such k exists.

We will use prim(b) denote the set of prime factors of the base b, that is, prim(b) = {p | p is a prime and p|b}.
We will use D1 . . .D j(D j+1 . . .Dk)

ω to denote the infinite sequence

D1 . . .D jD j+1 . . .DkD j+1 . . .DkD j+1 . . .Dk . . . .

If D is a base-b digit, then D denotes the complement digit of D, that is, D= (b−1)−D.

It is easy to verify the following claims:
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• Any real number has a unique base-b expansion: E.g., (0.0(9)ω)10 is not a base-10 expansion of 10−1 accord-
ing to the definition above. The one and only base-10 expansion of 10−1 is (0.1(0)ω)10.

• When (M.D1D2 . . .)b is the base-b expansion of the real number α , we have α = limn→∞(M.D1D2 . . .Dn)b,
moreover, if the base-b expansion of α is infinite, we have

(M.D1D2 . . .Dn)b < α < (M.D1D2 . . .Dn)b + b−n

for all n > 1.
• The base-b expansion of the real number α is finite iff the kth digit of the expansion is 0 for all sufficiently

large k.
• For any M ∈ Z and any base-b digits D1, . . .Dn, there exists m ∈ Z such that (M.D1 . . .Dn)b = mb−n.
• For any m ∈ Z, there exist M ∈ Z and base-b digits D1, . . .Dn such that mb−n = (M.D1 . . .Dn)b.
• Assume that the base-b expansion of the rational number q is infinite. Then, the base-b expansion of q will be

of the form

(M.D1D2 . . .D j(D j+1 . . .Ds)
ω)b

where j < s and at least one of the digits D j+1 . . .Ds is different from 0, moreover, at least one of the digits
D j+1 . . .Ds is different from 0, and if q = mn−1 where m,n ∈ N, then s < n.

• If

(M.D1D2 . . .Dn)b 6 α < (M.D1D2 . . .Dn)b +b−n

then

(M.D1D2 . . .D j)b 6 α < (M.D1D2 . . .D j)b +b− j

for all j ∈ {1, . . . ,n−1}.
• For any base b and any base-b expansion (0.D1D2 . . .)b, we have

(0.D1D2D3 . . .)b + (0.D1D2D3 . . .)b = 1 .

3. The Base Transition Factor
If we consider the first four fractional digits of the base-10 expansion of a real number, we have enough infor-

mation to determine the first fractional digit of the base-16 expansion of the number. If the base-10 expansion starts
with 0.0624 · · · , the base-16 expansion will start with 0.0 · · · , and if the base-10 expansions starts with 0.0625 · · · ,
the base-16 expansion will start with by 0.1 · · · . Thus, we have to consider at least four fractional digits, but four will
be enough. We never have to consider the fifth fractional digit to determine the first fractional digit of the base-16
expansion. If we want to determine the first two fractional digits of the base-16 expansion, we have to consider the
first 8 fractional digits of the base-10 expansion, in general, if we want to determine the first k fractional digits of
the base-16 expansion, we have to consider the first 4k fractional digits of the base-10 expansion.

The base transition factor from base a to base b will be formally defined below. The factor tells us how many
digits we have to consider when we want to convert a real from base b to base a. The base transition factor from
base 16 to base 10 is 4. (It might sound a bit backwards that we are talking about the base transition factor from base
16 to base 10 and about converting reals from base 10 to base 16, but the terminology makes sense when you read
on.) The base transition factor from base 2 to base 10 is 1. It is possible to determine k fractional digits of a base-2
expansion by considering k fractional digits of the base-10 expansion.

The base transition factor from base 10 to base 2 is not defined. This coincides with the fact that we cannot
convert an irrational number from base 2 to base 10 without carrying out an unbounded search, see the example at
the start of Section 1.
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Definition 3.1. Let a and b be bases such that prim(a)⊆ prim(b). We will now define the base transition factor from
a to b.

Let b = pk1
1 pk2

2 . . . pkn
n , where pi is a prime and ki ∈ N \ {0} (for i = 1, . . . ,n), be the prime factorization of b.

Then, a can be written of the form a = p j1
1 p j2

2 . . . p jn
n where ji ∈ N (for i = 1, . . . ,n). The base transition factor from

a to b is the natural number k such that

k = max{
⌈

ji
ki

⌉
| 1 6 i 6 n} .

The base transition factor from a to b is not defined if prim(a) 6⊆ prim(b). When we assume that the base
transition factor from a to b exists, it is understood that we have prim(a)⊆ prim(b).

Clause (3) of the next lemma justifies our terminology. If k is the base transition factor from a to b, then a number
of the form M.D1 . . .Dn in base a can be written of the form M.D1 . . .Dkn in base b.

Lemma 3.2. Let k be the base transition factor from a to b. Then

(1) there exists m̂ ∈ N such that a−1 = m̂b−k

(2) for any m ∈ Z and any n ∈ N, there exists m̂ ∈ Z such that ma−n = m̂b−kn

(3) for any n∈N and any base-a digits D1, . . . ,Dn, there exists m̂∈N such that (0.D1 . . .Dn)a = m̂b−kn (and thus
there exists base-b digits Ḋ1, . . . , Ḋkn such that (0.D1 . . .Dn)a = (0.Ḋ1 . . . Ḋkn)b).

Proof. Let

b = pk1
1 . . . pkn

n and a = p j1
1 . . . p jn

n

where pi is a prime and ki ∈ N \ {0} and ji ∈ N (for i = 1, . . . ,n). It is easily seen from the definition of k that
k >

⌈
ji
ki

⌉
, and thus we have kik− ji > 0 (for i = 1, . . . ,n). Furthermore, we have

a−1 = (p j1
1 . . . p jn

n )−1

= (p(k1k− j1)
1 . . . p(knk− jn)

n )(p j1+(k1k− j1)
1 . . . p jn+(knk− jn)

n )−1

= (p(k1k− j1)
1 . . . p(knk− jn)

n )(pk1k
1 . . . pknk

n )−1

= (p(k1k− j1)
1 . . . p(knk− jn)

n )(pk1
1 . . . pkn

n )−k

= (p(k1k− j1)
1 . . . p(knk− jn)

n )b−k .

Hence, let m̂ = p(k1k− j1)
1 . . . p(knk− jn)

n and (1) holds.
We turn to the proof of (2). By (1), we have t ∈ N such that ma−n = m(a−1)n = m(tb−k)n = mtnb−kn. Thus, let

m̂ = mtn, and (2) holds.
Now it is easy to see that (3) holds. By our definitions, we have (0.D1 . . .Dn)a = ∑

n
i=1Dia−i. Thus, we have

(0.D1 . . .Dn)a = ma−n for some m ∈ N. By (2), we have m̂ ∈ N such that (0.D1 . . .Dn)a = m̂b−kn. 2

Theorem 3.3 (The Base Transition Theorem). Let k be the base transition factor from a to b, and let (M.D1D2 . . .)a
and (M.Ḋ1Ḋ2 . . .)b be, respectively, the base-a and base-b expansion of an arbitrary real number α . Then, for all
n ∈ N, we have

(M.D1 . . .Dn)a 6 (M.Ḋ1 . . . Ḋkn)b 6 α < (M.Ḋ1 . . . Ḋkn)b + b−kn 6 (M.D1 . . .Dn)a + a−n .
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Proof. We can w.l.o.g. assume 0 < α < 1. By Definition 2.1, we have

(0.D1 . . .Di)a 6 α < (0.D1 . . .Di)a + a−i (†)

and

(0.Ḋ1 . . . Ḋi)b 6 α < (0.Ḋ1 . . . Ḋi)b + b−i (‡)

for all i ∈ N.

(Claim I) For all n ∈ N, we have (0.D1 . . .Dn)a 6 (0.Ḋ1 . . . Ḋkn)b.

Assume that the claim does not hold. Then, for some n we have (0.Ḋ1 . . . Ḋkn)b < (0.D1 . . .Dn)a. By Lemma
3.2, we have m1,m2 ∈ N such that m1b−kn = (0.Ḋ1 . . . Ḋkn)b < (0.D1 . . .Dn)a = m2b−kn. Thus, (0.D1 . . .Dn)a −
(0.Ḋ1 . . . Ḋkn)b > b−kn, and then, by (†), we have (M.D1 . . .Dkn)b +b−kn < (M.D1 . . .Dn)a 6 α . This contradicts (‡).
This proves (Claim I).

(Claim II) For all n ∈ N, we have (0.Ḋ1 . . . Ḋkn)b +b−kn 6 (0.D1 . . .Dn)a +a−n.

It follows straightforwardly from (†) and (‡) that (0.Ḋ1 . . . Ḋkn)b < (0.D1 . . .Dn)a +a−n. Thus,

0 < (0.D1 . . .Dn)a + a−n − (0.Ḋ1 . . . Ḋkn)b .

By Lemma 3.2, we have m1,m2 ∈ N such that

0 < (0.D1 . . .Dn)a + a−n − (0.Ḋ1 . . . Ḋkn)b = m1b−kn − m2b−kn

(thus m1 has to be strictly greater than m2). It follows that (0.D1 . . .Dn)a + a−n − (0.Ḋ1 . . . Ḋkn)b > b−kn. Hence,
(0.D1 . . .Dn)a +a−n > (0.Ḋ1 . . . Ḋkn)b +b−kn. This completes the proof of (Claim II).

Now it is easy to see that our theorem holds. By (Claim I) and (‡) , we have

(0.D1 . . .Dn)a 6 (0.Ḋ1 . . . Ḋkn)b 6 α < (0.Ḋ1 . . . Ḋkn)b +b−kn

and then the theorem follows by (Claim II). 2

The next corollary will be needed in the proof of one of our main results.

Corollary 3.4. Let k be the the base transition factor from a to b, and let (M.D1D2 . . .)a and (M.Ḋ1Ḋ2 . . .)b be,
respectively, the base-a and base-b expansion of an arbitrary real number α . Then, for all n, ` ∈ N, we have

(M.Ḋ1 . . . Ḋkn)b < (M.Ḋ1 . . . Ḋ`)b ⇒ (M.D1 . . .Dn)a < (M.D1 . . .Dm`)a

where m = dloga be.

Proof. Assume (M.Ḋ1 . . . Ḋkn)b < (M.Ḋ1 . . . Ḋ`)b. By the Base Transition Theorem, we have

(M.D1 . . .Dn)a 6 (M.Ḋ1 . . . Ḋkn)b < (M.Ḋ1 . . . Ḋ`)b < α .

Hence

α− (M.D1 . . .Dn)a > b−` . (*)
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Assume for the sake of contradiction that (M.D1 . . .Dn)a > (M.D1 . . .Dm`)a. Then we have

α − (M.D1 . . .Dn)a 6 α − (M.D1 . . .Dm`)a < a−m` = (am)−` = (adloga be)−` 6 b−` .

This contradicts (*), and thus we conclude that (M.D1 . . .Dn)a < (M.D1 . . .Dm`)a. (Note that we by our definitions
have α− (M.D1 . . .Dn)a < a−n for all n. See Definition 2.1.) 2

We round off the section with another theorem on the base transition factor. The theorem is a kind of converse
version of Theorem 3.3. We will not need this theorem later, but we will need the lemma leading up to the theorem.

Lemma 3.5. Let a and b be bases, let p ∈ prim(a)\prim(b), and let m ∈Z and n ∈N be such that mp−n 6∈Z. Then,
the rational number mp−n has a finite base-a and an infinite base-b expansion.

Proof. There is a base-a digit D1 such that a = p×D1. Thus, we have p−1 = (0.D1)a. The product of two numbers
with a finite base-a expansion has a finite base-a expansion. Thus, mp−n has a finite base-a expansion as mp−n can
be written of the form m× (0.D1)a× . . .× (0.D1)a.

Assume that mp−n has a finite base-b expansion (and recall that mp−n is not an integer). Then there exist
m̂ ∈ Z and n̂ ∈ N such that mp−n = m̂b−n̂. But p does not occur in the prime factorization of b. Thus, the equality
mp−n = m̂b−n̂ contradicts that every base has a unique prime factorization. 2

Theorem 3.6. Assume that k is a natural number such that for every α ∈ R and every n ∈ N\{0}, we have

(M.D1 . . .Dn)a 6 (M.Ḋ1 . . . Ḋkn)b 6 α < (M.Ḋ1 . . . Ḋkn)b + b−kn 6 (M.D1 . . .Dn)a + a−n

where (M.D1D2 . . .)a and (M.Ḋ1Ḋ2 . . .)b are, respectively, the base-a and base-b expansion of α . Then we have
prim(a)⊆ prim(b). Moreover, the base transition factor from a to b is the least k with this property.

Proof. It follows from Lemma 3.5 that prim(a) ⊆ prim(b). We leave to the reader to check that there cannot be a
natural number less than the base transition factor from a to b that possesses the property. 2

4. Subrecursion Theory
4.1. General Preliminaries
We assume acquaintance with subrecursion theory and, in particular, with the elementary functions. An introduction
to this subject can be found in [15] or [16]. Here we just state some important basic facts and definitions, see [15]
and [16] for proofs. We will also assume that the reader is familiar with basic concepts of computability theory, e.g.,
Kleene’s T -predicate and computable indexes. An introduction to elementary computability theory can be found in,
e.g., [2] or [11].

The initial elementary functions are the projection functions (In
i ), the constants 0 and 1, addition (+) and mod-

ified subtraction ( . ). The elementary definition schemes are composition, that is, f (~x) = h(g1(~x), . . . ,gm(~x)) and
bounded sum and bounded product, that is, respectively f (~x,y) = ∑i<y g(~x, i) and f (~x,y) = ∏i<y g(~x, i). A function
is elementary if it can be generated from the initial elementary functions by the elementary definition schemes. A
relation R(~x) is elementary when there exists an elementary function f with range {0,1} such that f (~x) = 0 iff R(~x)
holds. Relations may also be called predicates, and we will use the two words interchangeably. A function f has
elementary graph if the relation f (~x) = y is elementary.

The definition scheme (µz 6 x)[. . .] is called the bounded µ-operator, and (µz 6 y)[R(~x,z)] denotes the least
z 6 y such that the relation R(~x,z) holds. Let (µz 6 y)[R(~x,z)] = y+ 1 if no such z exists. The class of elementary
functions is closed under the bounded µ-operator. The definition scheme

f (~x,0) = g(~x) and f (~x,y+1) = h(~x,y,g(~x,y))
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is called primitive recursion. If f is defined by a primitive recursion over g and h and f (~x,y) 6 j(~x,y), then f is
defined by bounded primitive recursion over g,h and j. The class of elementary functions is closed under bounded
primitive recursion, but not under primitive recursion. Moreover, the the class of elementary relations is closed under
the operations of the propositional calculus and under bounded quantification.

Let 2x
0 = x and 2x

n+1 = 22x
n , and let s denote the successor function. The class of elementary functions equals the

closure of {0,s,In
i ,2

x,max} under composition and bounded primitive recursion. Given this characterization of the
elementary functions, it is easy to see that for any elementary function f , we have f (~x)6 2max(~x)

k for some fixed k.
We will say that a class of functions is closed under the elementary operations when the class contains all the

elementary functions and is closed under composition and bounded primitive recursion. We will say that a class of
functions is closed under the primitive recursive operations when the class contains all the elementary functions and
is closed under composition and (unbounded) primitive recursion.

Uniform systems for coding finite sequences of natural numbers are available inside the class of elementary
functions. Let f (x) be the code number for the sequence 〈 f (0), f (1), . . . , f (x)〉. Then f belongs to the elemen-
tary functions if f does. We will indicate the use of coding functions with the notations 〈. . .〉 and (x)i where
(〈x0, . . . ,xi, . . . ,xn〉)i = xi. (So (x, i) 7→ (x)i is an elementary function.) Our coding system is monotone, that is,
〈x0, . . . ,xn〉< 〈x0, . . . ,xn,y〉 holds for any y, and 〈x0, . . . ,xi, . . . ,xn〉< 〈x0, . . . ,xi +1, . . . ,xn〉. All the closure proper-
ties of the elementary functions can be proved by using Gödel numbering and standard coding techniques.

We use f k to denote the kth iterate of the function f , that is, f 0(x) = x and f k+1(x) = f ( f k(x)).

4.2. Coding of Rationals
Subrecursive functions in general, and elementary functions in particular, are formally functions over natural num-
bers (N). We assume some coding of integers (Z) and rational numbers (Q) into the natural numbers. We consider
such a coding to be trivial. Therefore we allow for subrecursive functions from rational numbers into natural num-
bers, from pairs of rational numbers into rational numbers, etc., with no further comment.

As seen above, uniform systems for coding finite sequences of natural numbers are available inside the class
of elementary functions. Hence, for any reasonable coding, basic operations on rational numbers—like addition,
subtraction and multiplication—will obviously be elementary. We also consider the next lemma to be obvious, and
we skip its proof.

Lemma 4.1. Let (M.Dq
1D

q
2 . . .)b denote base-b expansion of the rational number q. There exists an elementary

function digit : N×Q×N→ N such that for any rational number q, we have digitn (q,b) = Dq
n .

4.3. Honest Functions and Subrecursive Classes
The proof of our main results are based on the theory of honest functions. In this subsection, we state and prove
lemmas and theorems on honest functions that will be needed later. For more on honest functions, see [9] or [10].

Definition 4.2. A function f : N→ N is honest if it is monotone ( f (x) 6 f (x+ 1)), dominates 2x ( f (x) > 2x) and
has elementary graph.

From now on, we reserve the letters f ,g,h, . . . to denote honest functions. Small Greek letter like φ ,ψ,ξ , . . . will
denote number-theoretic functions not necessarily being honest.

Definition 4.3. A function φ is elementary in a function ψ , written φ 6E ψ , if φ can be generated from the initial
functions ψ , 2x, max, 0, s (successor), In

i (projections) by composition and bounded primitive recursion.

Lemma 4.4. Let ψ 6E f where f is an honest function. Then there exists k ∈ N such that

ψ(x1, . . . ,xn) 6 f k(max(x1, . . . ,xn)) .
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Proof. The function ψ can be generated from the initial functions f , 2x, max, 0, s, In
i by composition and bounded

primitive recursion. Use induction on such a generation of ψ to prove that the lemma holds. Use that f is monotone
and dominates 2x. 2

Let Tn denote the Kleene T -predicate, and let U denote the decoding function known from Kleene’s Normal
Form Theorem. We have

φ(x1, . . . ,xn) = {e}(x1, . . . ,xn) = U(µt[Tn(e,x1, . . . ,xn, t)])

when e is a computable index for φ . We will need the next theorem which is superficially proved in Kristiansen [7].
A more detailed proof can be found in Kristiansen [8].

Theorem 4.5 (Normal Form Theorem). Let f be an honest function. Let φ be any (Turing) computable function.
Then, φ 6E f iff there exists a computable index e for φ and a fixed k ∈ N such that

φ(x1, . . . ,xn) = {e}(x1, . . . ,xn) = U(µt 6 f k(max(x1, . . . ,xn))[Tn(e,x1, . . . ,xn, t)]) .

Moreover, U is an elementary function, and Tn is an elementary predicate.

Definition 4.6. For any honest function f , we define the jump of f , written f ′, by f ′(x) = f x+1(x).

Lemma 4.7. Let f be an honest function. Then, f ′ is an honest function.

Proof. It is obvious that f ′ is monotone and dominates 2x. Let ψ(x,y) be an elementary function that places a bound
on the code number for the sequence 〈y,y, . . . ,y〉 of length x+1. Then, f ′(x) = y is equivalent to

(∃s 6 ψ(x,y))[(s)0 = f (x) ∧ (∀i < x)[(s)i+1 = f ((s)i)] ∧ (s)x = y] . (*)

Thus, the relation f ′(x) = y is elementary since all the functions, relations and operations involved in (*) are ele-
mentary. This proves that f ′ has elementary graph. 2

Lemma 4.8. Let f be an honest function, and let ψ be a unary function such that ψ 6E f . Then we have ψ(x) <
f ′(x) for all sufficiently large x.

Proof. By Lemma 4.4, we have k ∈ N such that ψ(x)6 f k(x). Let x > k. Then we have ψ(x)6 f k(x)< f x+1(x) =
f ′(x). 2

Definition 4.9. Let σ : N→ N be a total function, and let

[e]σ (x) = U(µt[T1(σ(e),x, t)] )

where T1 and U are the elementary functions from Kleene’s Normal Form Theorem (see Theorem 4.5).
A set S of functions over the natural numbers is a subrecursive class when there exists a total computable

function σ : N→ N such that

• the function [e]σ is total
• for every φ ∈ S there exists e ∈ N such that φ(x1, . . . ,xn) = [e]σ (〈x1, . . . ,xn〉).

We say that the function σ generates the class S. (So, a subrecursive class is a subset of an efficiently enumerable
class of total functions.)
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Theorem 4.10. For any subrecursive class S, there exists an honest function f such that

ψ ∈ S ⇒ ψ 6E f .

Proof. Assume that S is generated by the the total computable function σ . Let eσ be a computable index for σ , and
let

f (x) = µt[ t > 2x ∧ (∀i 6 x)(∃t1 6 t)[T1(eσ , i, t1) ∧ (∀ j 6 x)(∃t2 6 t)[T1(U(t1), j, t2)] ] ] .

Now, f is a total computable function as σ and [e]σ are total computable functions. The graph of f is elementary,
moreover, f is monotone and dominates 2x. Thus, f is honest. A proof of the claim below can be found in Section 8
of Kristiansen [6].

(Claim) If x > e, then f (x)> µt[T1(σ(e),x, t)].

Now, let ψ be any function in S. Then, we have e such that ψ(~x) = [e]σ (〈~x〉). Let d = σ(e). By the claim, we
have

ψ(~x) = [e]σ (〈~x〉) = U(µt[T1(d,〈~x〉, t)]) = U(µt 6 f (〈~x〉)[T1(d,〈~x〉, t)])

whenever 〈~x〉> e. Thus, we have

ψ(~x) = U ((µt 6 f (〈~x〉+ e))[T1(d,〈~x〉, t)] )

for all~x. This proves that ψ is elementary in f . 2

Lemma 4.11. Let ψ be any function over the natural numbers. For any honest function g, there exists an honest
function f such that

ψ 6PR g ⇒ ψ 6E f .

Proof. Let S = {ψ | ψ 6PR g}. It is easy to see that S is a subrecursive class in the sense of Definition 4.9. Assume
ψ 6PR g. Then, ψ ∈ S . By Theorem 4.10, we have f such that ψ 6E f . 2

5. Base-b Expansions
From now on we will restrict our attention to irrational numbers between 0 and 1. This entails no loss of gener-

ality.

Definition 5.1. Let (0.D1D2 . . .)b be the base-b expansion of the real number α . We define the function Eα
b : N→

{0, ..,b−1} by Eα
b (0) = 0 and Eα

b (i) = Di (for i > 1). For any class of functions S, let SbE = {α | Eα
b ∈ S }.

We will occasionally identify the function Eα
b with the the base-b expansion of α , and we may, e.g., say that SbE

is the set of irrational numbers with a base-b expansion in S.

Theorem 5.2. Let a and b be bases such that prim(a)⊆ prim(b). For any real number α ∈ [0,1), we have Eα
a 6E Eα

b .

Proof. Let (0.D1D2 . . .)b be the base-b expansion of α , and let k be the base transition factor from a to b. By the
Base Transition Theorem, we have

Eα
a (n) = digitn((0.D1 . . .Dkn)b,a)
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where digit is the elementary function given by Lemma 4.1. Moreover

(0.D1 . . .Dkn)b =
kn

∑
i=1

Eα
b (i)b

−i .

Thus, Eα
a is elementary in Eα

b . 2

The preceding theorem says that we can compute Eα
a elementarily in Eα

b if prim(a) is a subset of prim(b). We
cannot in general compute Eα

a elementarily in Eα
b if prim(a) is not a subset of prim(b). This is a consequence of

the next theorem. In the proof of the theorem we construct a sequence of rationals q0,q1,q2, . . . that converges to
an irrational number α . The sequence is constructed such that α becomes different from every real whose base-a
expansion is elementary in a given honest function f . Still, it turns out that α has an elementary base-b expansion. It
is possible to construct the sequence q0,q1,q2, . . . for any honest function f and any bases a and b where prim(a) 6⊆
prim(b). We will explain some of the ideas behind the construction such that it becomes easier for the reader to
follow the technical proof.

We start the construction by picking a sequence d0,d1,d2, . . . of natural numbers. We set d0 to some suitable
number, and then we define di+1 by di+1 = f ′(di) where f ′ is the jump of f . There are two reasons why we use f ′ to
determine the elements of the sequence. One reason is that di and di+1 must be very far apart from each other. For
any fixed k, it must be the case f k(di)< di+1 when i is large. If this is not the case, we will not be able to force the
sequence q0,q1,q2, . . . to converge to a desired limit, that is, a limit whose base-a expansion is not elementary in f .
When di+1 = f ′(di), the distance between di and di+1 will be big enough. Another reason is that f ′ has elementary
graph ( f ′ is honest since f is honest, and thus the graph of f ′ is elementary, see Lemma 4.7). This entails that we
given x elementarily can decide if there is i such that di = x. This will help us to pick q0,q1,q2, . . . such that the
base-b expansion of the limit becomes elementary.

Now we are ready to explain the definition of q0,q1,q2, . . .. The first element in the sequence q0 is some suitable
rational that has finite base-a expansion and infinite base-b expansion. In order to avoid confusing and annoying
indexes, every second element of the sequence is just a copy of the preceding one, more precisely, q2i+1 equals q2i
for all i ∈ N. Thus, q2,q4,q6, . . . are the essential elements of the sequence. For any i ∈ N, we determine the value
of q2i+2 by the following scheme:

Step 1. Pick a real number γ whose base-a expansion is elementary in f .

Comments to step 1. The number i tells us how to pick γ , more precisely, the number i yields a computable index
that tells us how to compute the function Eγ

a . If the base-a expansion of a real is elementary in f , we will eventually
come across an i that tells us to pick that real (we will indeed encounter infinitely many such i’s).

Step 2. Compute the rational number qγ such that

qγ =
d2i+1

∑
j=0

Eγ
a ( j) .

Comments to step 2. The rational number qγ lies close to γ (it lies slightly below). In the next step, we use qγ to
force the sequence q0,q1,q2, . . . to converge to something else than γ .

Step 3. Let

q2i+2 =

{
q2i+1− ε0 if qγ > q2i+1

q2i+1 + ε1 if qγ < q2i+1
(†)

where ε0 and ε1 are suitable rational numbers.
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Comments to step 3. The rationals ε0 and ε1 are suitable when

• ε0 and ε1 are so small that the first d2i+2 digits of the base-b expansion of q2i+2 coincide with the first d2i+2
digits of the base-b expansion of q2i+1 (and thus with the first d2i+2 digits of the base-b expansion of q2i).
This will ensure that the sequence converges. Moreover, the first d2i+2 digits of the base-b expansion of q2i
will coincide with the first d2i+2 digits of the base-b expansion of the sequence’s limit.

• ε0 guarantees that lim
i→∞

qi < γ .

• ε1 guarantees that lim
i→∞

qi > γ .

• ε0 and ε1 ensure that q2i+2 has a finite base-a expansion and infinite base-b expansion. It is essential that
all the rationals q0,q1,q2 . . . have finite base-a expansions and infinite base-b expansions. When we set q2i+2
to something smaller than q2i+1, we need a huge initial segment of the base-b expansion of that something
smaller to coincide with a huge initial segment of the base-b expansion of q2i+1. That would not be possible
if the base-b expansion of q2i+1 were finite (e.g., the first digit of the base-10 expansion of 10−1 is different
from the first digit of the base-10 expansion of 10−1−ε for any small ε > 0). Moreover, we have to determine
if γ is above or below q2i+1 by examine a bounded segment of the base-a expansion of γ . That would not be
possible if the base-a expansion of q2i+1 were infinite.

So far we have explained why the base-a expansion of the limit of q0,q1,q2, . . . is not elementary in f . We have
not yet explained why the base-b expansion of this limit is elementary. Well, this is the reason: Recall that we used
a function with elementary graph to define the sequence d0,d1,d2, . . .. This entails that we given n easily can find
i such that di 6 n < di+1. It is easy in the sense that i can be computed elementarily in n. Now, i is very small
compared to n. Thus, we can compute qi elementarily in n. We cannot compute qi elementarily in i, but we can do it
elementarily in n since n is very much bigger than i. Finally, when qi is available, we can elementarily compute the
nth digit of the base-b expansion qi. But then we have elementarily computed the nth digit of the base-b expansion
of α as the nth digit of the base-b expansion of α is the same as nth digit of the base-b expansion of qi.

This concludes our intuitive explanation of the proof of Theorem 5.3.

Theorem 5.3. Let a and b be bases such that prim(a) 6⊆ prim(b), and let f be any honest function. There exists an
irrational number α such that (i) Eα

b is elementary, and (ii) Eα
a 66E f .

Proof. Let p ∈ prim(a)\prim(b). We define the sequence of natural numbers d0,d1,d2, . . . by d0 = max(p,b) and
di+1 = f ′(di) where f ′ is the jump of f .

Recall that U and T1 are the elementary function and the elementary predicate from Theorem 4.5, furthermore,
digit is the elementary function given by Lemma 4.1. We define the sequence of rational numbers q0,q1,q2, . . . by
q0 = p−1 and q2i+1 = q2i and

q2i+2 =

{
q2i+1− p−bk if U(µt 6 d2i+2[T1((i)1,d2i+1, t)]) > q2i+1

q2i+1 + p−b` otherwise
(†)

where

• k is the least natural number greater than or equal to d2i+2 such that digitk(q2i+1,b) 6= 0
• ` is the least natural number greater than or equal to d2i+2 such that digit`(q2i+1,b) 6= 0.

Let α = lim
n→∞

qn.

(Claim I) For any i ∈ N, there exists m ∈ N such that q2i = mp−d2i+1 .

We prove (Claim I) by induction on i. It is easy to see that the claim holds when i = 0. Assume by induction
hypothesis that we have m̂ such that q2i = m̂p−d2i+1 (we will prove that there is m such that q2i+2 = mp−d2i+3 ).

We can w.l.o.g. assume that q2i+2 = q2i+1− p−bk (the case when q2i+2 = q2i+1 + p−b` is similar). Now, k is the
least natural number greater than or equal to d2i+2 such that digitk(q2i+1,b) 6= 0. We need to find an upper bound
for k.
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By our induction hypothesis and the definition of q2i+1 we have q2i+1 = q2i = m̂p−d2i+1 where p ∈ prim(a) \
prim(b). Thus, the base-b expansion of q2i is infinite by Lemma 3.5. Since q2i is rational, its base-b expansion will
be of the form

(0.D1D2 . . .D j(D j+1 . . .Ds)
ω)b

where j < s and at least one of the digits in the sequence D j+1 . . .Ds will be different from 0 (if they all were zeros,
the base b expansion q2i would be finite). Now, q2i = m̂p−d2i+1 where m̂ and pd2i+1 are natural numbers. Thus, we
have s < pd2i+1 . Hence, we have k < d2i+2 + pd2i+1 .

Now, since f is an honest function and d j > max(p,b)> 2 (for any j ∈ N), we have

bk < b(d2i+2 + pd2i+1) 6 b(d2i+2 +2dlog2 ped2i+1) 6 b(d2i+2 + f (dlog2 ped2i+1))

6 b(d2i+2 + f f (d2i+1)) < b(d2i+2 + f ′(d2i+1)) = b(d2i+2 +d2i+2) < f ′(d2i+2) = d2i+3 .

This proves that d2i+3 is greater than bk. Now it is easy to see that there exists m ∈ N such that

q2i+2 = q2i− p−bk = m̂p−d2i+1 − p−bk = mp−d2i+3 .

This completes the proof of (Claim I).

(Claim II) For any j ∈ N, we have

q j+1 > q j ⇒ lim
n→∞

qn > q j

and

qi+ j < q j ⇒ lim
n→∞

qn < q j .

For each i we have m1, . . . ,mi ∈ {−1,1} and a very fast increasing sequence of natural numbers k1,k2, . . . ,ki
such that

q2i = q2i+1 = p−1 + m1 p−bk1 + m2 p−bk2 + . . . + mi p−bki .

Thus, it is easy to see that (Claim II) holds.
We are now prepared to prove clause (ii) of the theorem. Let αn denote the sum ∑

n
i=0 Eα

a (n)a
−n. Then, we have

lim
n→∞

qn = α = lim
n→∞

αn . (*)

Assume for the sake of a contradiction that Eα
a 6E f . Thus, αn 6E f (view αn as a function of n). By Theorem

4.5, we have e,k ∈ N such that

αn = U(µt 6 f k(n)[T1(e,n, t)]) .

Pick i, j such that i = 〈e, j〉 and d2i+1 > k (there are infinitely many such i and j) and recall that f ′(x) = f x+1(x).
Then, we have

αd2i+1 = U(µt 6 f k(d2i+1)[T1(e,d2i+1, t)]) = U(µt 6 f k(d2i+1)[T1((i)1,d2i+1, t)])

= U(µt 6 f ′(d2i+1)[T1((i)1,d2i+1, t)]) = U(µt 6 d2i+2[T1((i)1,d2i+1, t)]) (**)

Now our proof splits into the the cases αd2i+1 > q2i+1 and αd2i+1 < q2i+1. In both cases we will deduce a contra-
diction. Thus, we can conclude that Eα

a is not elementary in f .
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The case αd2i+1 > q2i+1. By (**) and (†), we have αd2i+1 > q2i+1 > q2i+2. By (Claim II), we have q2i+1 > lim
n→∞

qn.
Since α0,α1,α2, . . . is an increasing sequence, we have

lim
n→∞

αn > αd2i+1 > q2i+1 > lim
n→∞

qn .

This contradicts (*).

The case αd2i+1 < q2i+1. By the definition of q2i+1 and (Claim I), we have q2i+1 = q2i = mp−d2i+1 for some m ∈N.
Since p ∈ prim(a), we also have q2i+1 = m0a−d2i+1 for some m0 ∈ N. Furthermore, it is easy to see that we have
αd2i+1 = m1a−d2i+1 for some m1 ∈ N. Thus, as αd2i+1 < q2i+1, we have q2i+1−αd2i+1 > a−d2i+1 . Since α0,α1,α2, . . .
converges to an irrational number, we conclude that lim

n→∞
αn < q2i+1. By (**) and (†), we have q2i+1 < q2i+2. By

(Claim II), we have q2i+1 < lim
n→∞

qn. Hence, lim
n→∞

αn < lim
n→∞

qn, and this contradicts (*).
This concludes the proof of clause (ii) of the theorem. It remains to prove that clause (i) also holds. To this end

we need the next claim.

(Claim III) Let (0.D1D2 . . .)b be the base-b expansion of q2i. Then, for any natural number j, we have

1 6 j < d2i+2 ⇒ (0.D1D2D3 . . .D j)b < q2i+2 < (0.D1D2D3 . . .D j)b + b− j .

By (Claim I) and Lemma 3.5, q2i has an infinite base b expansion. Thus, we have

(0.D1D2D3 . . .Ds)b < q2i < (0.D1D2D3 . . .Ds)b + b−s

for any s > 1. We may w.l.o.g. assume that q2i+2 = q2i − p−bk where k is the least natural number k such that
k > d2i+2 and Dk 6= 0 (the proof when q2i+2 = q2i + p−b` is symmetric). Now, pbk = (pb)k > bk. Hence

q2i+2 = q2i+1 − p−bk = q2i − p−bk > q2i − b−k .

Now, since Dk 6= 0, we have

(0.D1D2D3 . . .Dk−1)b < q2i+2 < q2i < (0.D1D2D3 . . .Dk−1)b + b−(k−1) .

As k > d2i+2, we have

(0.D1D2D3 . . .D j)b < q2i+2 < (0.D1D2D3 . . .D j)b + b− j

when 1 6 j < d2i+2. This completes the proof of the (Claim III).
The next claim follows easily from (Claim III). We have α = lim

i→∞
qi, and then, by (Claim III), the first d2i+2

digits of the base-b expansion of α will coincide with the first d2i+2 digits of the base-b expansion of q2i. Hence,
(Claim IV) holds.

(Claim IV) Let di 6 n < di+1. Then, the nth digit of the base-b expansion of α is the same as the nth digit of the
base-b expansion of qi, that is Eα

b (n) = digitn(qi,b).

We are now ready to prove clause (i) of our theorem. We have di+1 = f ′(di). The function f ′ is the jump of f ,
and f ′ is honest when f is, see Lemma 4.7. It follows that dz = y is an elementary relation. Let

ψ(i,n) =

{
di if di 6 n
n otherwise.
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It is not hard to see that ψ is an elementary function when we know that the relation dz = y is elementary. We will
now define the function φ(i,n) by course-of-values recursion on i. Let φ(0,n) = p−1, let φ(2i+1,n) = φ(2i,n), and
let

φ(2i+2,n) =

{
φ(2i+1,n) − p−bk if U(µt 6 ψ(2i+2,n)[T1((i)1,ψ(2i+1,n), t)]) > φ(2i+1,n)
φ(2i+1,n) + p−b` otherwise

where

• k is the least natural number greater than or equal to d2i+2 such that digitk(q2i+1,b) 6= 0
• ` is the least natural number greater than or equal to d2i+2 such that digit`(q2i+1,b) 6= 0.

We observe that φ is defined by by course-of-values recursion over elementary functions. More careful, but very
tedious, considerations will show that this course-of-values recursion over elementary functions can be reduced to
bounded primitive recursion over elementary functions. Thus, as the elementary functions are closed under bounded
primitive recursion, φ is an elementary function.

It follows straightforwardly from the definition of the sequence q0,q1,q2, . . . that we have φ(i,n) = qi when
di 6 n. We can compute the i such that di 6 n < di+1 elementarily in n. Thereafter, we can compute qi elementarily
by computing φ(i,n). By (Claim IV) we have Eα

b (n) = digitn(qi,b), and the function digit is elementary. This proves
that the function Eα

b is elementary. 2

An anonymous referee has remarked that Theorem 5.3 can be strengthen. Minor modifications of the proof given
above will yield a small polynomial p(n) such that we have: For any time constructible function t(n) there exists
α such that (i) Eα

b is computable by a Turing machine working in time O(p(n)) and (ii) Eα
a is not computable by

a Turing machine working in time O(t(n)) (where n denotes the length of the input). The referee claims that the
polynomial p(n) may be as small as n2. It should also be possible to strengthen several other results proved in this
paper along the same lines. However, a fine-grained complexity analysis of algorithms and constructions is beyond
the the scope of this paper.

Corollary 5.4. Let S be any subrecursive class which is closed under elementary operations. For any bases a and
b, we have

prim(a) ⊆ prim(b) ⇔ SbE ⊆ SaE .

Proof. Assume prim(a) ⊆ prim(b). Let α ∈ SbE . Thus, Eα
b is in S. By Theorem 5.2, Eα

a will also be in S. Thus,
α ∈ SaE . Thus, SbE ⊆ SaE .

Assume prim(a) 6⊆ prim(b). Let f be an honest function such that ψ 66E f implies ψ 6∈ S. Such an f exists by
Theorem 4.10. By Theorem 5.3, we have α such that Eα

b is elementary and Eα
a 66E f . Thus, Eα

b is in S whereas Eα
a

is not. This shows that SbE 6⊆ SaE . 2

Mostowski [12] proves (a theorem obviously equivalent to) the left-right implication of Corollary 5.4 and poses
the right-left implication as an open problem (Mostowski’s S is the class of primitive recursive functions).

Some of the results in Weihrauch [20] seem to be connected to the results proved above. Weihrauch proves
that prim(a) ⊆ prim(b) if and only if a base-b representation of a real can be continuously translated to a base-a
representation of the same real, see Corollary 9 in [20].

6. Base-b Expansions, Cauchy sequences and Dedekind Cuts
Definition 6.1. A function C : N→Q is a Cauchy sequence for the real number α when

|α − C(n)| <
1
2n .
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A function D : Q→{0,1} is the Dedekind cut of the real number α when D(q) = 0 iff q < α .
For any class of functions S, let SC denote the set of irrational numbers (between 0 and 1) that have Cauchy

sequences in S; let SD denote the set of irrational numbers (between 0 and 1) that have Dedekind cuts in S.

Let S be a sufficiently large and natural subrecursive class. If (0.D1D2 . . .)b is the base-b expansion of the
irrational number α , then C where

C(n) =
n+1

∑
i=0

Eα
b (i)

is a Cauchy sequence for α . Thus, we have a Cauchy sequence for α in S if the base-b expansion of α is in S , and
the inclusion SbE ⊆ SC holds for any base b. It is also easy to see that the inclusion SD ⊆ SbE holds for any base b.
Assume that the Dedekind cut of α is in S. Then, the base-b expansion (0.D1D2 . . .)b of α will also be in S because
we can compute Dn+1 by the following procedure: First we compute (0.D1 . . .Dn)b. Then, we use (0.D1 . . .Dn)b and
the Dedekind cut of α to determine Dn+1 by searching for a base-b digit X such that

(0.D1 . . .DnX)b < α < (0.D1 . . .DnX)b + b−(n+1) .

No unbounded search is required. Thus, the base-b expansion of α is in S if the Dedekind cut of α is in S, and we
have SD ⊆ SbE .

Let b be an arbitrary base. Pick a base a such that prim(a) 6⊆ prim(b) and prim(b) 6⊆ prim(a). By Corollary 5.4,
we have SbE 6⊆ SaE and SaE 6⊆ SbE . So, SbE and SaE are incomparable sets, and by the considerations above both of
them are subsets of SC and supersets of SD, that is, SD ⊆ SbE ⊆ SC and SD ⊆ SaE ⊆ SC. This implies that we have

SD ⊂ SbE ⊂ SC (*)

for any base b. More careful considerations will show that (*) holds for any S which is closed under elementary
operations.

Kristiansen [6] proves the inclusion SD ⊂ SC by a direct diagonalization argument, that is, without considering
base-b expansions and the class SbE . Specker [19] was the first to prove that we have SD ⊂ SC for a subrecursive
class S (Specker’s S is the class of primitive recursive functions). He proves (*) with b = 10 by constructing α such
that α ∈ S10E and 3×α 6∈ S10E . Thus, S10E is not closed under multiplication by natural numbers, but it is rather
obvious that both SD and SC are. Hence, S10E is different from both SD and SC. Since S10E is a subset of SC and
superset of SD, it follows that S10E is a strict subset of SC and strict superset of SD.

7. Sum Approximations
Sum approximations from below and above are explained in Section 1. We will now give our formal definitions.

Definition 7.1. Let (0.D1D2 . . .)b be the base-b expansion of an irrational number α . The base-b sum approximation
from below of α is the function Âα

b : N→Q defined by Âα
b (0) = 0 and Âα

b (n+1) = Eα
b (m)b−m where m is the least

m such that

n

∑
i=0

Âα
b (i) < (0.D1 . . .Dm)b .

The base-b sum approximation from above of α is the function Ǎα
b : N→Q defined by Ǎα

b (0) = 0 and Ǎα
b (n+1) =

Eα
b (m)b−m where m is the least m such that

1 −
n

∑
i=0

Ǎα
b (n) > 1 − (0.D1 . . .Dm)b
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(recall that D is the complement digit of D).
For any class of functions S, let Sb↑ = {α | Âα

b ∈ S } and Sb↓ = {α | Ǎα
b ∈ S }.

The functions Âα
b and Ǎα

b are not defined if α is rational. When we use the notation it is understood that α is
irrational.

Lemma 7.2. Let (0.D1D2 . . .)b be the base-b expansion of the irrational number α . For any n∈N, there exist k, `6 n
such that

k

∑
i=0

Âα
b (i) = (0.D1 . . .Dn)b and

`

∑
i=0

Ǎα
b (i) = (0.D1 . . .Dn)b . (*)

Proof. We prove (*) by induction on n. We have (0.)b = 0 and Âα
b (0) = Ǎα

b (0) = 0. Thus, (*) holds with k = `= 0
when n = 0.

Assume that (*) holds for n (we prove that (*) holds with n+1 for n). Consider (0.D1 . . .DnDn+1)b. Now, Dn+1
might be the digit 0, and Dn+1 might be the digit 0, and Dn+1 might be neither 0 nor 0. We split the proof into three
cases.

The case when Dn+1 = 0. We have

1 −
`

∑
i=0

Ǎα
b (i) = 1 − (0.D1 . . .Dn)b > 1 − (0.D1 . . .DnDn+1)b . (†)

Thus, by the definition of Ǎα
b (`+1), we have

`+1

∑
i=0

Ǎα
b (i) =

`

∑
i=0

Ǎα
b (i) + Ǎα

b (`+1) = (0.D1 . . .Dn)b + Dn+1b−(n+1) = (0.D1 . . .Dn+1)b .

Furthermore, we have

k

∑
i=0

Âα
b (i) = (0.D1 . . .Dn)b = (0.D1 . . .DnDn+1)b .

Thus, (*) holds with n+1 for n.

The case when Dn+1 = 0. Now we have

k

∑
i=0

Âα
b (i) < (0.D1 . . .DnDn+1)b . (‡)

By the definition of Âα
b (k+1), we have

k+1

∑
i=0

Âα
b (i) =

k

∑
i=0

Âα
b (i) + Âα

b (k+1) = (0.D1 . . .Dn)b + Dn+1b−(n+1) = (0.D1 . . .Dn+1)b .

Furthermore, since the complement digit of 0 is the digit 0, we have

`

∑
i=0

Ǎα
b (i) = (0.D1 . . .Dn)b = (0.D1 . . .DnDn+1)b .

Thus, (*) holds with n+1 for n.
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The case when Dn+1 6= 0 and Dn+1 6= 0 . In this case both (†) and (‡) hold, and we get

k+1

∑
i=0

Âα
b (i) = (0.D1 . . .Dn+1)b and

`+1

∑
i=0

Ǎα
b (i) = (0.D1 . . .Dn+1)b .

2

Theorem 7.3. For any irrational number α and any base b, we have

∞

∑
i=0

Eα
b (i)b

−i =
∞

∑
i=0

Âα
b (i) = 1 −

∞

∑
i=0

Ǎα
b (i) .

Proof. The first equality follows straightforwardly from Lemma 7.2. It also follows from Lemma 7.2 that

∞

∑
i=0

Âα
b (i) +

∞

∑
i=0

Ǎα
b (i) = 1

and thus the second equality holds. 2

Lemma 7.4. (i) Let α be an irrational number, and let p(x) be a polynomial such that

∃i [x 6 i 6 p(x) ∧ Eα
b (i) 6= 0 ]

for all x ∈ N. Then, Âα
b 6E Eα

b . (ii) Let α be an irrational number and let p(x) be a polynomial such that

∃i [x 6 i 6 p(x) ∧ Eα
b (i) 6= 0 ]

for all x ∈ N. Then, Ǎα
b 6E Eα

b .

Proof. We prove (i). Assume Âα
b (n) = Db−m where D is some nonzero base-b digit. We know that Êα

b (i) 6= 0 for

some i between m+1 and p(m+1). Hence, we can compute Âα
b (n+1) from the rational number ∑

p(m+1)
i=1 Eα

b (i)b
−i.

Such a computation of Âα
b (n+ 1) requires one application of primitive recursion, but more careful considerations

will show that this application of primitive recursion can be reduced to bounded primitive recursion. The set of
functions elementary in Êα

b is closed under bounded primitive recursion. Hence, Âα
b 6E Êα

b . The proof of (ii) is
similar. 2

Lemma 7.5. Let f be an honest function, and let f ′ be the jump of f . (i) Let α be an irrational number such that
we have

∀i [x 6 i < f ′(x) → Eα
b (i) = 0 ]

for infinitely many x ∈ N. Then, Âα
b 66E f . (ii) Let α be an irrational number such that we have

∀i [x 6 i < f ′(x) → Eα
b (i) = 0 ]

for infinitely many x ∈ N. Then, Ǎα
b 66E f .
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Proof. We prove (i). Let x be such that we have Eα
b (i) = 0 when x 6 i < f ′(x) (there are infinitely many such x).

Then there exists m < x such that Âα
b (m+1)6 (b−1)b− f ′(x). Let ψ(z) = y if Âα

b (z+1) = m0b−y for some m0. Now,
ψ is a total function. Moreover, ψ 6E Âα

b . We have ψ(m)> f ′(x) for some m < x. Since ψ is strictly increasing, we
have ψ(x)> f ′(x). Thus, there are infinitely many x such that ψ(x)> f ′(x).

Assume for the sake of a contradiction that Âα
b 6E f . Then, ψ 6E f . This contradicts Lemma 4.8. Thus we

conclude that Âα
b 66E f . This completes the proof of (i). The proof of (ii) is symmetric. 2

Theorem 7.6. For any honest function f there exist irrational numbers α and β such that such that (i) Ǎα
b is

elementary and Âα
b 66E f , and (ii) Âβ

b is elementary and Ǎβ

b 66E f . Moreover, (iii) α and β have elementary Dedekind
cuts.

Proof. We prove (i). Let d0 = 0 and di+1 = f ′(di) where f ′ is the jump of f . Let α be the irrational number given
by the base-b expansion

Eα
b (x) =

{
0 if there exists i such that di = x
0 otherwise.

Since f ′ is honest, it is possible to check elementarily in x if there is i such that di = x. Hence, Eα
b is elementary.

By Lemma 7.4 (ii), Ǎα
b is elementary. By Lemma 7.5 (i), we have Âα

b (n) 66E f . This proves (i). The proof of (ii) is
symmetric: Use Lemma 7.4 (i) in place of Lemma 7.4 (ii), use Lemma 7.5 (ii) in place of Lemma 7.5 (i), and let
Eβ

b (x) = 0 if there exists i such that di = x, otherwise, let Eβ

b (x) = 0.
The proof of (iii) is rather straightforward, and we omit the details. The reader that wants more details may

consult the proof of Theorem 5.2 in Kristiansen [6]. 2

Corollary 7.7. Let S be a subrecursive class closed under elementary operations. For any base b, we have

Sb↑ 6⊆ Sb↓ and Sb↓ 6⊆ Sb↑ .

Proof. Pick an honest f such that Ǎα
b ∈ S implies Ǎα

b 6E f . Such an f exists by Theorem 4.10. By Theorem 7.6
(ii), we have α such that Âα

b ∈ S and Ǎα
b 66 f . Thus, Sb↑ 6⊆ Sb↓. A symmetric argument yields Sb↓ 6⊆ Sb↑. Use clause

(i) of Theorem 7.6 in place of clause (ii). 2

Theorem 7.8. We have Eα
b 6E Âα

b and Eα
b 6E Ǎα

b (for any irrational α between 0 and 1).

Proof. Let (0.D1D2 . . .)b be the base-b expansion of α . It is trivial that we have ∑
n
i=0 Âα

b (i) = (0.D1 . . .Dm)b for some
m > n. Let digit be the elementary function given by Lemma 4.1. Then we have

Eα
b (n) = digitn

(
n

∑
i=0

Âα
b (i),b

)
.

Thus, Eα
b 6E Âα

b . Furthermore, by Lemma 7.2, we have m > n such that

1 −
n+1

∑
i=0

Ǎα
b (i) = 1 − (0.D1 . . .DmDm+1)b = (0.D1 . . .Dm(Dm+1 +1))b .

Thus, we have the equality

Eα
b (n) = digitn

(
1−

n+1

∑
i=0

Ǎα
b (i),b

)
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and we conclude that Eα
b 6E Ǎα

b . 2

Theorem 7.9. Let prim(a) ⊆ prim(b). Then we have Âα
a 6PR Âα

b and Ǎα
a 6PR Ǎα

b (for any irrational α between 0
and 1).

Proof. We prove that Âα
a 6PR Âα

b . Let (0.D1D2 . . .)a and (0.Ḋ1Ḋ2 . . .)b be, respectively, the base-a and base-b expan-
sion of α .

Assume that we have computed Âα
a (0), . . . Â

α
a (n) (the computation of Âα

a (0) is trivial). Then we can compute
Âα

a (n+1) by the following procedure:

1. Compute the least s such that

n

∑
i=0

Âα
a (i) = (0.D1, . . .Ds)a .

2. Use s and search for the least t such that (0.D1, . . .Ds)a < (0.D1, . . .Dt)a , and then let Âα
a (n+1) = Dta−t .

First we will argue that we can compute a certain bound for the search in the second step of the procedure. Let
k be the base transition factor from a to b, and let ` be such that

ks+1

∑
i=0

Âα
b (i) = (M.Ḋ1 . . . Ḋ`)b .

Obviously, there is a function ψ such that ψ 6PR Âα
b and ψ(s) = `. It is also obvious that we have

(M.Ḋ1 . . . Ḋks)b < (M.Ḋ1 . . . Ḋ`)b .

Then, by Corollary 3.4, we have

(M.D1, . . .Ds)a < (M.D1, . . .Dml)a

where m = dloga be. Thus, we have a bound for the number t computed in the second step of the procedure: t 6
dloga be`= dloga beψ(s). This bound is primitive recursive in Âα

b , and the unbounded search in the second step can
be turned into a bounded search when we compute primitive recursively in Âα

b
By Theorem 5.2, we have Eα

a 6E Eα
b . By Theorem 7.8, we have Eα

b 6E Âα
b . By the transitivity of 6E , we have

Eα
a 6E Âα

b , and thus, we also have Eα
a 6PR Âα

b .
This proves that we for any n can compute (M.D1, . . .Dn)a primitive recursively in Âα

b . Thus, it follows by the
straightforward algorithm above that Âα

a 6PR Âα
b . The proof that Ǎα

a 6PR Ǎα
b is symmetric. 2

It is an open problem if the previous theorem holds with 6E for 6PR.

Theorem 7.10. Let a and b be bases such that prim(a) 6⊆ prim(b), and let f be any honest function. There exists an
irrational number α such that (i) Âα

b and Ǎα
b are elementary, and (ii) Âα

a 66PR f and Ǎα
a 66PR f .

Proof. Let f be any honest function. By Lemma 4.11, we have an honest function g such that

ψ 66E g ⇒ ψ 66PR f (*)

for all functions ψ . Let α be such that Eα
b is elementary and Eα

a 66E g. Such an α exists by Theorem 5.3. By (*), we
have Eα

a 66PR f . By Theorem 7.8, we have Âα
a 66PR f and Ǎα

a 66PR f (if Âα
a or Ǎα

a were primitive recursive in f , then
so would Eα

a be). This proves (ii).
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Figure 1. The relationship between Dedekind cuts, sum approximations from below and and sum approximations from above.

To prove that (i) holds, we have to study the construction of α in the proof of Theorem 5.3. We know that Eα
b

is elementary, and it is easy to see that the distance from one nonzero digit to the next nonzero digit in the base-b
expansion of α is small. There will definitely be a polynomial p(x) such that we have

∃i [x 6 i 6 p(x) ∧ Eα
b (i) 6= 0 ]

for all x ∈ N. Hence, by Lemma 7.4 (i), we have Âα
b 6E Eα

b , and then Âα
b is elementary since Eα

b is elementary. The
proof that Ǎα

a is elementary is similar. Use clause (ii) of Lemma 7.4 in place of clause (i). 2

Corollary 7.11. Let S be a subrecursive class closed under primitive recursive operations. For any bases a and b,
we have

prim(a)⊆ prim(b) ⇔ Sb↑ ⊆ Sa↑ ⇔ Sb↓ ⊆ Sa↓ .

Proof. Assume prim(a)⊆ prim(b). Let α ∈ Sb↑. Thus, the function Âα
b is in S . By Theorem 7.9, the function Âα

a is
in S. Thus, α ∈ Sa↑. Thus, Sb↑ ⊆ Sa↑.

Assume prim(a) 6⊆ prim(b). Let f be an honest function such that ψ 66PR f implies ψ 6∈ S. Such an f exists by
Theorem 4.10. By Theorem 7.10, we have α such that Âα

b is primitive recursive and Âα
a 66PR f . Thus, S contains the

function Âα
b but not the function Âα

a , and we can conclude that Sb↑ 6⊆ Sa↑.
This proves that we have prim(a) ⊆ prim(b) if and only if Sb↑ ⊆ Sa↑. A very similar argument will show that

we have prim(a)⊆ prim(b) if and only if Sb↓ ⊆ Sa↓. 2

8. Sum Approximations and Dedekind Cuts
The Venn diagram in Figure 1 gives a complete description of the relationship between subrecursive Dedekind

cuts and subrecursive sum approximations. The diagram was partly conjectured in Kristiansen [6]. Now we are
able to prove that the diagram indeed is correct, that is, for any base b and any subrecursive class S closed under
elementary operations, we can prove that the following sets are nonempty:

• Sb↑ ∩ Sb↓ ∩ SD
• (Sb↑ ∩ SD) \ Sb↓
• (Sb↓ ∩ SD) \ Sb↑
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• (Sb↓ ∩ Sb↑) \ SD

• Sb↑ \ (Sb↓ ∪ SD)

• Sb↓ \ (Sb↑ ∪ SD)

• SD \ (Sb↑ ∪ Sb↓).

The set Sb↑∩Sb↓∩SD is nonempty. This is obvious. See Kristiansen [6] for more on what we find inside this set,
e.g., every irrational whose continued fraction is in S, will be in the set.

The sets (Sb↑ ∩SD) \ Sb↓ and (Sb↓ ∩SD) \ Sb↑ are nonempty. It follows from Theorem 7.6 that these sets are
nonempty.

The set (Sb↓ ∩Sb↑) \SD is nonempty. Consider the irrational number α constructed by diagonalization in proof
of Theorem 5.3. The function f that appears in the construction may be any honest function, and the base a that
appears in the construction may be any a such that prim(a) 6⊆ prim(b). Pick an f that grows sufficiently fast, and
pick a such that prim(a) 6⊆ prim(b). Then the construction guarantees that Eα

a not in S. It follows that the Dedekind
cut of α is not in S (if the Dedekind cut of α were in S, then so would the base-a expansion be; see the discussion
in Section 6).

The construction also guarantees that Eα
b is elementary. Hence, Eα

b is in S. If we take a closer look at the
construction, it is not hard to see that there will be a polynomial p(x) such that we have

∃i [x 6 i 6 p(x) ∧ Eα
b (i) 6= 0 ] and ∃i [x 6 i 6 p(x) ∧ Eα

b (i) 6= 0 ]

for all x ∈ N. Thus, by Lemma 7.4, we have Âα
b 6E Eα

b and Ǎα
b 6E Eα

b , and we can conclude that Âα
b and Ǎα

b are in
S . Thus, both Âα

b and Ǎα
b are in S, but the Dedekind cut of α is not, and thus, α is in the set (Sb↓∩Sb↑)\SD.

The sets Sb↑ \ (Sb↓ ∪SD) and Sb↓ \ (Sb↑ ∪SD) are nonempty. Again we will consider the construction of the
irrational number α in the proof of Theorem 5.3. In the previous paragraph we saw that α will be in both Sb↑ and
Sb↓, but not in SD, if we base the construction on a suitable base a and a suitable honest function f . Now, α is in
Sb↑ since there is a polynomial p(x) such that we have

∃i [x 6 i 6 p(x) ∧ Eα
b (i) 6= 0 ] (†)

for all x ∈ N, and α is in Sb↓ since we also have

∃i [x 6 i 6 p(x) ∧ Eα
b (i) 6= 0 ] (‡)

for all x ∈ N.
It is possible to modify the construction of α such that the base-b expansion of α will contain infinitely many

very long sequences the digit 0, more precisely, we construct α such that we have

∀i[x 6 i < f ′(x) → Eα
b (i) = 0 ] (*)

for infinitely many x ∈ N. The diagonalization will still takes place and assure that α is not in SD, and (‡) will
still hold and assure that α is in Sb↓, but (†) will not hold anymore. Instead (*) holds, and when (*) holds we have
α 6∈ Sb↑ by clause (i) of Lemma 7.5. Thus α is in the set Sb↓ \ (Sb↑∪SD).

A symmetric argument shows that set Sb↑ \ (Sb↓∪SD) is nonempty: Construct α such that the base-b expansion
of α contains infinitely many very long sequences of the digit 0 and apply clause (ii) of Lemma 7.5.
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The set SD \(Sb↑∪Sb↓) is nonempty. Let f be an honest function such that ψ ∈S implies ψ 6E f (for any function
ψ). Such an f exists by Theorem 4.10. Furthermore, let d0 = 0 and di+1 = f ′(di) where f ′ is the jump of f , and let
α be the real number given by the base-b expansion

Eα
b (x) =

{
0 if there exists i such that d2i 6 x < d2i+1

0 otherwise (there exists i such that d2i+1 6 x < d2i+2).

Then, we have α 6∈ (Sb↑∪Sb↓) by Lemma 7.5.
We will now argue that the Dedekind cut of α is elementary (and thus in S). Since f ′ is honest, we can elemen-

tarily in x compute i such that di 6 x < di+1. This makes it easy to see that Eα
b is elementary.

Now, how can we elementarily decide if a rational number q lies below or above the irrational number
α? Let (0.Ḋ1Ḋ2 . . .)b be the base-b expansion of q. Since q is rational, this expansion will be of the form
0.Ḋ1 . . . Ḋ j(Ḋ j+1 . . . Ḋn)

ω (the expansion is finite if j = n). Let (0.D1D2 . . .)b be the base-b expansion of α . We invite
the reader to check that

q < α ⇔ (0.Ḋ1 . . . Ḋ jḊ j+1 . . . ḊnḊ j+1 . . . Ḋn)b 6 (0.D1 . . .Dn+(n− j))b . (*)

Thus, we can decide if q < α by the following procedure:

1. compute j,n and the rational number q0 such that

q0 = (0.Ḋ1 . . . Ḋ jḊ j+1 . . . ḊnḊ j+1 . . . Ḋn)b

2. compute

qα = (0.D1 . . .Dn+(n− j))b =
n+(n− j)

∑
i=0

Eα
b (i)

3. check if q0 6 qα .

The first step and the third step of this procedure involve only elementary computations. So does the second step as
Eα

b is an elementary function. Hence, we can decide elementarily in q if q lies below or above α , and we conclude
that the Dedekind cut of α is elementary.

The readers that want to check that (*) indeed holds should note the following: (i) If the base-b expansion of q
is finite, then (*) holds since α is irrational. (ii) If the base-b expansion of q is infinite, then the period Ḋ j+1 . . . Ḋn of
the expansion cannot contain only 0’s or only 0’s. It follows that the first n+(n− j) digits of the base-b expansion
of q do not coincide with first n+(n− j) digits of the base-b expansion of α .

References
[1] O. Aberth, Computable Analysis, MacGraw-Hill, New York, 1980.
[2] S. B. Cooper, Computability Theory, Chapman Hall, 2003.
[3] I. Georgiev, Continued fractions of primitive recursive real numbers, Mathematical Logic Quarterly 61(4-5)

(2015), 288-306.
[4] K. Ko, On the definitions of some complexity classes of real numbers, Mathematical Systems Theory 16 (1983),

95-109.
[5] K. Ko, On the continued fraction representation of computable real numbers, Theoretical Computer Science 47

(1986), 299-313.
[6] L. Kristiansen, On subrecursive representability of irrational numbers, Computability 6 (2017), 249-276.
[7] L. Kristiansen, Information content and computational complexity of recursive sets, in: Gödel ’96, P. Hajek, ed.,

Springer Lecture Notes in Logic, Vol. 6, Springer-Verlag, Heidelberg, 1996, pp. 235-246.



L. Kristiansen / On Subrecursive Representability of Irrational Numbers, Part II 23

[8] L. Kristiansen, Papers on Subrecursion Theory, Dr Scient Thesis, Research Report 217, Department of Infor-
matics, University of Oslo, 1996. ISSN 0806-3036, ISBN 82-7368-130-0.

[9] L. Kristiansen, R. Lubarsky, J.-C. Schlage-Puchta and A. Weiermann, On the structure of honest elementary
degrees, in: The Infinity Project, S. Friedman, M. Koerwinen and M. Müller, eds, CRM Documents 11, CRM
(Centre de Recerca Matematica), 2012, pp. 255–279.

[10] L. Kristiansen, J.-C. Schlage-Puchta and A. Weiermann, Streamlined subrecursive degree theory, Annals of
Pure and Applied Logic 163 (2012), 698–716.

[11] C. Leary and L. Kristiansen, A Friendly Introduction to Mathematical Logic, 2nd Edition, Milne Library,
SUNY Geneseo, Geneseo, NY, 2015

[12] A. Mostowski, Computable sequences, Fundamenta Mathematica 44 (1957), 37–51.
[13] S. Labhalla and H. Lombardi, Real numbers, continued fractions and complexity classes, Annals of Pure and

Applied Logic 50 (1990), 1-28.
[14] R. S. Lehman, On primitive recursive real numbers, Fundamenta Mathematica 49 (1961), 105-118.
[15] R. Péter, Rekursive Funktionen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1957. (En-

glish translation: Academic Press, New York, 1967.)
[16] H. E. Rose, Subrecursion. Functions and Hierarchies, Clarendon Press, Oxford, 1984.
[17] D. Skordev, Computability of Real Numbers by Using a Given Class of Functions in the Set of the Natural

Numbers, Mathematical Logic Quarterly 48 (2002), 91–106.
[18] D. Skordev, A. Weiermann and I. Georgiev,M2-computable real numbers, Journal of Logic and Computation

22 (2008), 899–925.
[19] E. Specker, Nicht Konstruktiv Beweisbare Satze Der Analysis, The Journal of Symbolic Logic 14 (1949), 145–

158.
[20] K. Weihrauch, The Degrees of Discontinuity of Some Translators Between Representations of Real Numbers.

Informatik Berichte 129, Fern Universität Hagen, 1992.
[21] K. Weihrauch, Computable Analysis, Springer-Verlag, Berlin/Heidelberg, 2000.


	Introduction
	Notation and Terminology
	The Base Transition Factor
	Subrecursion Theory
	General Preliminaries
	Coding of Rationals
	Honest Functions and Subrecursive Classes

	Base-b Expansions
	Base-b Expansions, Cauchy sequences and Dedekind Cuts
	Sum Approximations
	Sum Approximations and Dedekind Cuts
	References

