
Intelligence in Action – Effective Strategic Behaviors while Solving Complex Problems

Christin Lotza, Ronny Schererb, Samuel Greiffc, & Jörn R. Sparfeldta

a Saarland University, Department of Educational Science, Campus A5 4, D-66123 

Saarbrücken, Germany

b Centre for Educational Measurement at the University of Oslo (CEMO), Faculty of 

Educational Sciences, Postbox 1161 Blindern, N-0318 Oslo, Norway

c University of Luxembourg, Education, Culture, Cognition, & Society unit, 4366 Esch-sur-

Alzette, Luxembourg

Author Note

Correspondence concerning this article should be addressed to Christin Lotz, 

Department of Educational Science, Saarland University, Campus A5 4, D-66123 

Saarbrücken, Germany.  Email: c.lotz@mx.uni-saarland.de

We are particularly grateful to the contribution of Anna Auth, Elena Groh, and Kerstin 

Mayer, who participated in an excellent manner on the data collection. Furthermore, we 

express our gratitude to Sascha Ludwig who supported the analyses by extracting the relevant 

data from the log files. We are also grateful to the TBA group at DIPF (http://tba.dipf.de) for 

providing the authoring tool CBA Item Builder and technical support. Samuel Greiff is one of 

two authors of the commercially available COMPRO-test that is based on the multiple 

complex systems approach and that employs the same assessment principle as MicroDYN. 

For any research and educational purpose, a free version of MicroDYN is available.



INTELLIGENCE IN ACTION 1

Intelligence in Action – Effective Strategic Behaviors while Solving Complex Problems

Problem solving as well as reasoning are central aspects of human intelligence and 

intelligence tests are an excellent way of capturing these aspects (cf. Deary, 2012; Hunt, 

2011). However, conventional intelligence tests often provide data only about the students’ 

overall performance, but no process data about the students’ behavior while solving the 

problems. The recently emerged construct of complex problem solving (CPS) may have the 

potential to complement conventional intelligence tests by supplying data about every single 

action made by a test taker over the course of the problem-solving process.

From a conceptual perspective, CPS reveals a high theoretical and empirical overlap 

with intelligence: The term ‘problem solving’ is an essential part of many intelligence 

definitions (e.g., Gottfredson, 1997). In addition, intelligence and CPS correlate substantially 

with each other (Stadler, Becker, Gödker, Leutner, & Greiff, 2015) and comparably high with 

external criteria such as educational success (Lotz, Sparfeldt, & Greiff, 2016). Furthermore, 

the computer-based assessment of CPS has the advantage of supplying process data, which 

could give direct and detailed information about how a problem solver interacts with the task 

(Csapó, Ainley, Bennett, Latour, & Law, 2012) and, moreover, how intelligence might 

facilitate successful exploration behavior. In past research, this potential was repeatedly 

praised but, nevertheless, only seldom implemented. Prior studies mainly utilized the potential 

of the CPS process measures by examining time-on-task (e.g., Scherer, Greiff, & Hautamäki, 

2015) or by investigating rather specific strategies that were strongly dependent on the 

particular CPS test (e.g., Güss, Tuason, & Orduña, 2015; Strohschneider & Güss, 1999). 

Other studies that examined the usage of more generalized strategic behaviors primarily 

analyzed its relation to CPS performance either only for one single task (Greiff, Wüstenberg, 

& Avvisati, 2015) or averaged across all tasks (Greiff, Niepel, Scherer, & Martin, 2016; 

Wüstenberg, Stadler, Hautamäki, & Greiff, 2014). Thus, how problem solvers apply and 

adapt universal and domain-general strategic behaviors across a set of several CPS tasks and 
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how they might change their strategic behaviors across changing tasks is still requiring further 

examination.

Specifically, while exploring several independent CPS tasks as usually employed in 

the multiple complex system approach (Greiff, Wüstenberg, & Funke, 2012), students have to 

identify different effect types that pose different demands upon them as problem solvers 

(Hundertmark, Holt, Fischer, Said, & Fischer, 2015). Thus, different exploration strategies are 

optimal. On the one hand, the vary-one-thing-at-a-time strategy (VOTAT; Tschirgi, 1980) as 

the domain-general core strategy in scientific reasoning is suitable for discovering non-

dynamic effects because it singles out effects of each problem element. On the other hand, the 

vary no-thing-at-a-time strategy (NOTAT, also known as non-interfering observation; Greiff 

et al., 2016) is optimal for exploring dynamic effects because the problem solver can observe 

how the dynamic system develops by itself. Successful problem solvers are characterized by 

applying VOTAT and NOTAT (Greiff et al., 2016; Kröner, Plass, & Leutner, 2005) and by 

increasing their proficient strategic behavior while working on a CPS test (Güss et al., 2015). 

Applying and flexibly adapting VOTAT and NOTAT when faced with different task types are 

reasonable strategic behaviors and, thus, should be related to the underlying levels of 

intelligence.

Therefore, this study examined in a first step how students applied and adapted the 

two domain-general strategic behaviors VOTAT and NOTAT across a set of CPS tasks with 

different demands by means of discontinuous latent growth curve modeling. Secondly, we 

investigated how intelligence is manifested in the effective application and adaption of these 

two optimal strategic behaviors.

1. Introduction

1.1. Complex Problem Solving 
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Out of the attempts to conceptualize CPS as a psychological construct, Buchner (in Frensch & 

Funke, 1995) provides one of the most specific definitions to describe complex problem 

solving. He defines CPS as:

“The successful interaction with task environments that are dynamic (i.e., change as a 

function of user’s intervention and/or as a function of time) and in which some, if not 

all, of the environment’s regularities can only be revealed by successful exploration 

and integration of the information gained in that process” (p. 14).

Buchner’s definition stresses the process-character of CPS as well as the role that 

strategies and interactions with the problem-solving environment play when engaging in 

complex problem solving. In fact, one of the defining characteristics of CPS is that action 

sequences are combined in a way that they work towards the resolution of a cognitively 

challenging and novel situation (Greiff, Wüstenberg, & Avvisati, 2015). To some extent, a 

perspective that focuses on the problem solving process is also found in definitions of 

intelligence (cf. Gottfredson, 1997), but the perspective that focuses on the problem solving 

process is more pronounced and has been considered a key to success in research on CPS.

CPS is often broken down into the two broad processes of knowledge acquisition and 

knowledge application (Wüstenberg, Greiff, & Funke, 2012). Consequently, in many CPS 

tests, final performance scores as well as process data on both processes are derived 

separately. Knowledge acquisition refers to the process of gathering knowledge about a non-

transparent and potentially dynamically changing system and includes the exploration of the 

problem space through targeted interactions between problem solver and problem situation 

(Funke, 2001). Knowledge application refers to the process of applying the previously 

gathered knowledge to reach a given target state or, put simply, to solve the problem (Novick 

& Bassok, 2005). It is readily acknowledged that in real life both processes take place 

intermittently; for instance, when working towards the solution of a problem (i.e., knowledge 
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application), the problem solver might realize that there are some components of the problem 

structure that need further discovery and go back to re-explore the problem space (i.e., 

knowledge acquisition). However, when employing CPS tests, it might make sense to separate 

the two processes by first instructing participants to gather information and knowledge about 

a problem (i.e., knowledge acquisition) and to subsequently work towards a goal state (i.e., 

knowledge application; Wüstenberg et al., 2012).

Most current CPS assessments are based on multiple complex systems, so that 

participants work on several CPS tasks that contain the key features of CPS definitions. For 

instance, CPS tasks are all non-transparent at the outset and require a sequence of active 

interventions to successfully solve them. Due to their interactivity, the mode of administration 

for CPS tests is always computer-based. In the linear structural equation framework (Funke, 

2001), the CPS tasks contain a set of input variables and a set of output variables that are 

related to each other; these relations are defined by linear structural equations. In addition, 

variables might change by themselves independent of other variables. These effects are often 

not transparent to the problem solver. Along the theoretical conceptualization of CPS, 

participants are asked to first gather information about the underlying problem structure for 

each task through exploration (i.e., knowledge acquisition) and then work toward a predefined 

solution of the problem (i.e., knowledge application).

When working on modern CPS tests, the underlying problem structure is varied across 

the tasks (e.g., MicroDYN, Greiff et al., 2012). Specifically, the number of input and output 

variables as well as the number and type of relations between them can be varied. In terms of 

the relations’ type, direct and indirect effects can be distinguished (see Fig. 1). Direct effects, 

also referred to as non-dynamic effects, represent the relations between input and output 

variables. Indirect effects, also referred to as dynamic effects, represent the relations of output 

variables among themselves, which lead to dynamic changes of the problem situation 

irrespective of external interventions (Greiff, Fischer, Stadler, & Wüstenberg, 2015). Due to 
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their non-transparent nature, sequences of strategic behaviors are a prerequisite for effectively 

gathering information about the problem space and, subsequently, mastering CPS tasks. Thus, 

a theory-driven definition and analysis of the strategic behaviors during the exploration phase 

might help understand how problem solvers interact with the problem.

---Please insert Figure 1 about here---

Regarding the relation between CPS performance measures and intelligence, early 

studies on CPS showed only small connections between both constructs and viewed them as 

largely separate from one another. However, according to current research, CPS is mainly 

understood as a cognitive construct that is closely related to intelligence (Stadler et al., 2015); 

especially, if intelligence is broadly operationalized (Kretzschmar, Neubert, Wüstenberg, & 

Greiff, 2016; Kröner et al., 2005; Lotz et al., 2016). Beyond the major proportion of variance 

that CPS has in common with intelligence, CPS might exhibit some unique aspects. Next to 

the aspects of dynamics and interactivity on a conceptual level, there are also empirical 

findings that support the assumption of uniqueness. However, most studies claiming that CPS 

incrementally explained variance in educational contexts (e.g., Wüstenberg et al., 2012) or 

work settings (e.g., Danner, Hagemann, Schankin, Hager, & Funke, 2011) beyond intelligence 

relied on a rather narrow operationalization of intelligence (mostly only figural reasoning). 

Studies assessing broader measures of g and, thus, providing more reliable evidence for this 

claim, are still scarce. Nonetheless, their results indicated that a broader operationalization of 

intelligence led to higher correlations between intelligence and CPS as well as to lower 

increments of CPS beyond intelligence (Kretzschmar et al., 2016; Lotz et al., 2016). Besides 

the substantial relations between intelligence and CPS performance measures, the relations 

between broadly operationalized intelligence and CPS process measures such as strategic 

exploration behaviors have not yet been examined sufficiently. Thus, their inspection is a 

main research goal of the present study.
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1.2. Strategic behaviors while solving complex problems

VOTAT. The optimal way to identify non-dynamic, direct effects during the knowledge 

acquisition phase of a CPS task is logical disconfirmation: Variables are systematically 

manipulated to produce conclusive tests (Inhelder & Piaget, 1958). This hypothesis testing 

strategy requires varying systematically one variable at a time while all other variables remain 

constant (VOTAT; Tschirgi, 1980; also known as “control of variables strategy” [CVS], Chen 

& Klahr, 1999). Thus, the problem solver can single out or isolate the one effective variable 

that is responsible for a particular direct effect.

 Varying one thing at a time is regarded as a core strategy in scientific reasoning, 

which strongly resembles the knowledge acquisition phase in CPS tasks. The significance of 

VOTAT is founded in its domain-general applicability that was shown across many 

experimental studies. Different scientific domains were covered, such as determining the 

effects of different variables on how far a spring stretches (Chen & Klahr, 1999), finding out 

which factors influence the tilt of a balance apparatus (Zimmerman, Raghavan, & Sartoris, 

2003), ascertaining the features that make TV-programs more popular (Kuhn, Garcia-Mila, 

Zohar, & Andersen, 1995), or even identifying baking ingredients that made a cake runny 

(Tschirgi, 1980). Furthermore, when switching from one experimentation problem to another 

between different domains, children and adults alike, maintained their original frequency of 

strategy use or even improved it (Kuhn et al., 1995).

In educational contexts, VOTAT’s importance was empirically supported by its 

prediction of learning progress in science education over a three year period even after 

controlling for intelligence (Bryant, Nunes, Hillier, Gilroy, & Barros, 2015). Nevertheless, 

although VOTAT is fundamental for (school) science, most students have no generalized 

understanding of it because it does not routinely develop without practice (Schwichow, 

Croker, Zimmerman, Höffler, & Härtig, 2016; Zimmerman & Croker, 2013). This was shown, 

for example, by Schauble (1996) who examined fifth- or sixth-graders and adults (each N = 
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20) who worked on multi-trial scientific problems. An inspection of the graph (Schauble, 

1996, p. 108) revealed that only about 25 % of the children’s inferences and about 60 % of the 

adults’ inferences were valid and based on applying VOTAT during the first of six sessions, 

whereas by the last session nearly 60 % of the children’s and 85 % of the adults’ inferences 

were valid. Moreover, Schauble concluded that neither adults nor children simply abandoned 

invalid strategies once they discovered valid ones, but used a mixture of former invalid and 

newer valid strategies in which the usage of the new optimal strategy was progressively 

increased. Another experiment conducted with a sample of N = 36 university students 

revealed comparable results (Vollmeyer, Burns, & Holyoak, 1996). Over the course of a four-

task learning phase of a CPS test, increasingly more students recognized VOTAT as an 

optimal strategic behavior to obtain knowledge about the relations among variables within the 

problem space. This was indicated by an increase in the percentage of students using VOTAT 

(i.e., from 19 % of the students in the first task to up to 56 % in the fourth task) and a decrease 

of the percentage of students applying unsystematic strategic behavior such as changing all 

variables at the same time (i.e., from 67 % of the students in the first task to 22 % in the 

fourth task). Chen and Klahr (1999) identified a similar development for a sample of seven- to 

ten-year-old children (N = 87) who worked on scientific problems. Thus, among children, 

university students, and adults, a development or learning of VOTAT may occur within a 

sequence of problems, whereas adults seem to start with a higher percentage of VOTAT-use 

than children.

In the context of CPS, the application of VOTAT leads to better CPS performance as it 

is regarded as an effective strategic behavior for exploring the problem space (Greiff et al., 

2015; Greiff et al., 2016; Kröner et al., 2005). For example, the study by Kröner et al. (2005), 

which examined a sample of N = 101 high school students from grades 9 to 12, revealed that 

students who explored the problem space of the CPS test MultiFlux (Kröner, 2001) more 

effectively (i.e., used VOTAT) were more successful in knowledge acquisition (r = .47) and 
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in knowledge application (r = .40). Accordingly, Greiff et al. (2016) investigated a sample of 

N = 1,476 high school 9th graders and showed that the VOTAT application mean score, 

averaged across nine MicroDYN tasks during the exploration phase, predicted knowledge 

acquisition (β = .55) as well as knowledge application (β = .56).

To conclude, VOTAT is a domain-general core strategy for scientific reasoning, and 

students’ use of this strategy seems to progressively increase with practice across a set of 

problem tasks. Moreover, applying the principle of isolated variation to complex problems is 

an effective way to explore non-dynamic, direct effects within the problem space.

NOTAT. Besides VOTAT’s efficiency for exploring direct effects, there are scenarios where 

other kinds of effects have to be identified. For example, “eigendynamics” such as growth or 

decay effects cause changes in the variables independent of the problem solvers 

manipulations and lead to autonomous changes of the situation without any intervention on 

the part of the problem solver (i.e., indirect effects). To detect such effects, VOTAT is not an 

optimal strategic behavior and, thus, the application of another strategic behavior such as 

systematically constraining all variables to simultaneously remain at a zero level is more 

appropriate (Funke, 2001). By doing so, the problem solver could actively observe how the 

system is changing itself without any interference (also referred to as non-interfering 

observations, Greiff et al., 2016). In accordance with the VOTAT abbreviation (vary-one-

thing-at-a-time) non-interfering observations could also be understood in the sense of varying 

no-thing-at-a-time and, thus, be abbreviated as NOTAT.

In CPS contexts, most problem solvers struggle with resisting the temptation to 

manipulate the variables immediately and typically act too quickly. In contrast, proficient 

problem solvers who monitor the autonomously developing system tend to be more successful 

in solving dynamic CPS tasks (Dörner, 1980; Dörner & Schaub, 1994). Accordingly, a recent 

empirical study showed NOTAT’s relevance for solving complex problems (Greiff et al., 

2016): Although VOTAT and NOTAT correlated substantially (r = .35), NOTAT (mean score 



INTELLIGENCE IN ACTION 9

averaged across nine MicroDYN tasks) showed unique effects on CPS performance even after 

controlling for VOTAT (knowledge acquisition: β = .11; knowledge application: β = .08). It 

should be noted that the authors did not differentiate between non-dynamic tasks (that 

contained only direct effects, for which NOTAT was not an effective strategic behavior) and 

dynamic tasks. Thus, considering the different task types might reveal a higher importance of 

NOTAT for dynamic tasks and, thereby, a deeper and more conclusive understanding of 

effective strategic behaviors while solving CPS tasks that involve dynamic effects.

1.3.The role of intelligence in applying and adapting strategic CPS behaviors

As mentioned above, a positive and substantial relation between students’ intelligence and 

overall CPS performance has been established (Lotz et al., 2016; Stadler et al., 2015). 

Whereas this relation provides a rather general perspective of the role played by intelligence 

in CPS that primarily focuses on the overall CPS performance, the question arises to what 

extent intelligence and specific CPS behaviors are linked, as manifested in the application and 

adaptation of effective strategies. A study focusing on different facets of CPS, using the 

MultiFlux CPS test, provided an initial answer: Rule identification, understood as the ability 

to employ VOTAT as an effective strategic behavior to explore the relations among variables 

within a complex system, was positively related to reasoning (r = .41; Kröner et al., 2005). 

More specifically, those who scored higher on the reasoning test applied VOTAT more 

frequently. Furthermore, a large-scale study with N = 3,191 Finnish students in grades 6 and 9 

showed a strong association between the use of VOTAT and reasoning (r = .64; Wüstenberg 

et al., 2014). Considering their finding, the authors concluded that “high fluid intelligence 

would then help students figure out the correct behavior in CPS tasks even if they did not 

have any prior knowledge about VOTAT” (p. 132). These findings suggest that there is a link 

between intelligence and the application of VOTAT.
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Moreover, the positive relation between intelligence and VOTAT has been replicated 

in a number of studies in the domain of scientific reasoning (van der Graaf, Segers, & 

Verhoeven, 2015: .42 ≤ r ≤ .47; Künsting, Kempf, & Wirth, 2013: r = .30; Veenman, 

Bavelaar, De Wolf, & Van Haaren, 2014: r = .17; see Table 1 for an overview of studies 

concerning the VOTAT-intelligence-relations). Veenman, Wilhelm, and Beishuizen (2004) 

interpreted this link from a theoretical perspective on intelligence and argued that the ability 

to select and apply an effective problem solving behavior such as VOTAT is “an integral part 

of the intellectual toolbox” and should, therefore, be considered “a manifestation of 

intellectual ability” (p. 91).

---Please insert Table 1 about here---

As an extension of this argument, not only the selection and application of effective 

strategic behaviors such as VOTAT, but also the adaptation of strategic behaviors when 

confronted with changing task demands and, therefore, the ability to learn strategic behaviors 

may be considered an aspect of intelligence. In fact, in one of his early works on the 

conceptualization of intelligence, Thorndike (1922) proposed that “estimates of it 

[intelligence] are, or at least should be, estimates of the ability to learn. To be able to learn 

harder things, or to be able to learn the same things more quickly, would then be the single 

basis of evaluation” (pp. 17-18). Guthke and Stein (1996) adopted this proposal and 

conducted a study in which N = 40 participants worked on a CPS test, a figural reasoning test 

and a learning test; the latter comprised adaptive analogy items. The authors showed that the 

performances on learning and intelligence tests were highly related with correlations up to r = 

.83. The ability to learn was, in turn, positively related to the performance on CPS tests, as 

indicated by knowledge acquisition (r = .36) and application (r = .50). LePine, Colquitt, and 

Erez (2000) confirmed that intelligence and the ability to learn were significantly correlated; 

moreover, those with higher levels of intelligence were able to adapt their problem-solving 

strategy to changing situations more effectively. Deák (2003) concluded from existing 
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research findings that responding to changing task demands or instructions and, therefore, 

adapting effective problem solving strategies defines “flexible cognition” as a part of 

intelligence. Further empirical evidence for this claim showed that adapting and incorporating 

new strategies were positively related to fluid intelligence (Benedek, Jauk, Sommer, 

Arendasy, & Neubauer, 2014). Taken together, these findings suggest that the ability to adapt 

an effective problem solving behavior such as VOTAT may be positively related to 

intelligence. In other words, recognizing that a strategic behavior is effective to solve a given 

problem and, therefore, applying and adapting it indicates intelligence. Thus, an examination 

of this relation in the context of CPS by analyzing computer-generated log files might be very 

fruitful.

1.4. Log file analyses in CPS research

Administering computer-based CPS tests has the advantage of not only obtaining final 

outcome scores, but one can also discover the problem solvers steps towards the specific 

outcome. Revealing insights in applied strategies and tactics or committed errors might help 

understanding the problem-solving process. Concerning previous research on problem-solving 

process data, measures such as time-on-task were analyzed and seem to have a positive (e.g., 

Goldhammer et al., 2014; Scherer et al., 2015) or a reverse-U-shaped relation with 

performance (Greiff et al., 2016). However, in the area of examining strategic CPS behavior 

besides time-on-task, only a few studies have been conducted that reveal insights in students’ 

actions while working on different CPS tests (Greiff et al., 2015; Greiff et al., 2016; Güss et 

al., 2015; Strohschneider & Güss, 1999; Wüstenberg et al., 2014).

For example, Strohschneider and Güss (1999) analyzed the strategic behavior of 

German and Indian (n = 34 each) university students while working on the CPS test Moro 

(providing developmental aid to a small African semi-nomadic tribe; Dörner, Stäudel, & 

Strohschneider, 1986). In this case, the authors focused mainly on comparing rather program-
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specific features (e.g., number of alarm messages, number of questions posed to the system, 

or collision of two decisions) between the two cultures. More recently, Güss et al. (2015) 

administrated to N = 130 university students the CPS test WINFIRE (protecting a city from 

approaching fires; Gerdes, Dörner, & Pfeiffer, 1993) and, once again, examined program-

specific indicators of strategies, tactics, and errors (e.g., number of helicopters sent to a fire 

that just started, use of patrol command, or number of trucks sent to a burned field). 

Nevertheless, the authors concluded that the participants’ proficiency increased while working 

on the task (increase of good planning strategies and tactics: .06 < η² < .14; decrease of errors: 

.04 < η² < .14) and that the flexible adaption and shifting of strategies are important factors 

for successful performance. In sum, both studies analyzed rather program-specific behaviors; 

yet, an analysis of more universal strategic behavior (e.g., VOTAT) within larger samples 

might yield more general conclusions.

Accordingly, the mentioned afore study by Wüstenberg et al. (2014) analyzed the 

relations between the VOTAT behavior and CPS performance (assessed by MicroDYN) of N 

= 3,191 high school students. In this study, VOTAT was scored dichotomously and credit was 

given if students applied VOTAT for each input variable at least once. The results showed 

that the VOTAT application (averaged across all tasks) was mainly predicted by reasoning 

ability (β = .56). Moreover, VOTAT predicted the overall CPS performance (β = .88) and 

partially mediated the relation between the predictor reasoning ability on the criteria CPS 

performance (correlation between fluid intelligence and CPS performance: r = .69; mediation 

via CPS strategy: β = .49) with an additional direct effect of reasoning on CPS performance (β 

= .11). The authors concluded that reasoning mostly influenced CPS performance via its 

effect on applying VOTAT. In another study, using the MicroDYN approach, Greiff et al. 

(2015) analyzed the process data of one CPS task of N = 16,219 high school students who 

participated in the 2012 cycle of the Programme for International Student Assessment (PISA; 

OECD, 2014). The relations between the (again) dichotomous VOTAT application in one 
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single task and (a) CPS performance in this specific task (r = .67) as well as (b) the overall 

CPS performance in all tasks (r = .61) were strong. Taken together, there is only a small 

number of studies that analyzed strategic CPS behavior by investigating domain-general 

strategies such as VOTAT. These few studies, however, provided first indications that using 

VOTAT is an important exploration behavior.

1.5. The present investigation

The above-mentioned studies analyzed the strategic VOTAT or NOTAT behaviors by either 

focusing on only a single CPS task or averaging the strategy indicators across a set of tasks, 

not distinguishing between tasks with direct or dynamic effects. Moreover, the VOTAT or 

NOTAT indicators were mostly scored dichotomously per task by giving credit whenever the 

particular strategy was applied at least once for all input variables (cf. Greiff et al., 2015; 

Greiff et al., 2016; Wüstenberg et al., 2014). In contrast, this study (a) used a continuous 

scoring of the VOTAT and NOTAT indicators in the manner of relative frequencies per task 

(cf. Kröner et al., 2005), (b) analyzed every task within a set of CPS tasks, and (c) 

distinguished between tasks with direct and indirect effects. This might establish good 

prerequisites to display the temporal course of the strategic behaviors across the task set and 

facilitates the understanding of students’ flexibility in adapting effective strategies when 

confronted with changes in the task type.

This study used the MicroDYN approach to examine students’ strategic behaviors. 

The first five from a total of nine tasks comprised only direct effects, which could be explored 

most effectively by applying VOTAT. At the start of the remaining tasks (after task 5), 

students received another instruction, introducing dynamic effects. For the remaining tasks, 

students were confronted with the possible occurrences of dynamic effects in addition to 

direct effects. These tasks could be explored most effectively by applying NOTAT in addition 

to VOTAT. We expected the change in the task type to affect the application frequencies of 
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both strategic behaviors and, therefore, analyzed each strategy course separately across the 

CPS task set. Latent growth curve models were specified with discontinuous growth curves 

(see e.g., Diallo & Morin, 2015), representing the phases before the change in task type (task 

1 – 5) and after (task 6 – 9). It is a main goal of this study to further understand the role of 

intelligence in the application and adaption of VOTAT and NOTAT while exploring 

unknown systems with different task demands. Thus, we examined the relations of 

intelligence with the relative application frequency and the adaption gradients of both 

strategic behaviors.

Hypothesis (1) examined the course of the relative VOTAT frequencies across the 

nine CPS tasks and its relations with intelligence. Regarding the VOTAT course, we expected 

a progressive increase of its relative frequency across the first five tasks with only direct 

effects (Hypothesis 1a). From the sixth task on, dynamic effects were introduced and could 

occur in addition to the direct effects. Thus, the application of NOTAT along with VOTAT 

seems to be optimal. Because relative frequencies were being used, a higher proportion of 

NOTAT might go along with a lower proportion of VOTAT. Thus, we expected a significant 

drop in the relative VOTAT frequency from the fifth to the sixth task (Hypothesis 1b). Across 

the last four tasks (tasks 6 – 9), we expected an increase in the relative VOTAT frequency 

(Hypothesis 1c) because the application of VOTAT was still important for exploring the 

direct effects across these tasks.

Regarding the VOTAT-intelligence-relations (Hypothesis 1d) as one of the key 

aspects of this study, we expected substantial and positive correlations between intelligence 

and the application levels (relative frequency) as well as the adaption gradients (changes in 

the relative frequency) of VOTAT for both task types because higher levels and steeper 

increases in the relative VOTAT frequencies indicate optimal and effective strategic 

behaviors for solving both task types.  
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Hypothesis (2) examined the course of the relative NOTAT frequencies and its 

relations with intelligence. Regarding the NOTAT course, its application across the first five 

non-dynamic tasks was not constructive because no dynamic effects occurred. Therefore, the 

relative NOTAT frequency should not have increased (i.e., remained constant on a low level 

or even decreased; Hypothesis 2a). After the change in the task type, the application of 

NOTAT was appropriate because dynamic effects might be apparent and could effectively be 

detected by using this strategic behavior. Thus, we expected a significant rise in the relative 

NOTAT frequency from the fifth to the sixth task (Hypothesis 2b). From the sixth to the ninth 

task, we expected an increase of the relative NOTAT frequencies because students should 

have experienced the benefits of NOTAT to detect the dynamic effects and apply it more 

often across these tasks (Hypothesis 2c).

Regarding the NOTAT-intelligence-relations (Hypothesis 2d) as another key aspect of 

this study, we assumed a substantial negative correlation between the level of the relative 

NOTAT frequency and intelligence across the non-dynamic tasks (tasks 1 – 5) because for 

these tasks, the application of NOTAT was not effective. Regarding the NOTAT adaption 

gradient across the non-dynamic tasks, we had no clear expectations. Across the dynamic 

tasks (tasks 6 – 9), we expected positive correlations between intelligence and the level as 

well as the gradient of the relative NOTAT frequencies because a higher level and an 

increasing gradient were effective strategic behaviors to detect the dynamic effects.

2. Method

2.1. Sample and procedure

The sample consisted of N = 4951 German high school students (n = 264 females, n = 228 

males, n = 3 without gender specification; age M = 16.40, SD = 0.94 years). The students 

1 Please note that the intelligence and CPS performance data of this sample have been used in a previous study 

(Lotz et al., 2016). However, analyzing the CPS process data and distinguishing between VOTAT and NOTAT 
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attended two academic-tracked school types from either 10th grade (Gymnasium, graduation 

after 12th grade; 12 classes out of 5 schools) or 11th grade (Gesamtschule, graduation after 13th 

grade; 14 classes out of 6 schools). The participation rate was 87%; the parents of 11% of the 

high school students did not allow their children to participate; 2% of the students were absent 

due to reasons unrelated to the study (e.g., illness). Students’ and their parents’ informed 

consent was obtained prior to testing. Students were not graded or rewarded in any way. 

Trained experimenters administered the assessments within three consecutive regular school 

lessons of 45 minutes each. During one lesson, students worked on intelligence subtests. 

Given the limited availability of computers for the computer-based CPS assessment, classes 

were randomly split into two halves at the beginning of the remaining two lessons: In one 

lesson, the first half worked on the CPS assessment, while the second half executed tasks 

irrelevant to the study. In the remaining lesson, the second half of the students completed the 

CPS assessment while the first half worked on other tasks.

2.2. Variables

Intelligence. Intelligence was assessed by the in Germany well-known and widely used Berlin 

Intelligence Structure test – Form 4 (BIS-4; Jäger, Süß, & Beauducel, 1997) that is based on 

the Berlin Model of Intelligence Structure (BIS; cf. Süβ, Oberauer, Wittmann, Wilhelm, & 

Schulze, 2002). The BIS-model postulates besides a general factor at the apex several ability 

components that belong to the two facets contents (verbal, numerical, and figural) and 

operations (processing capacity/reasoning, memory, speed, and creativity). On the basis of 

prior studies (Brunner & Süß, 2005; Valerius & Sparfeldt, 2014), we selected 10 subtests that 

covered a wide range of the BIS’ content-operation-combinations (see Table 3). For example, 

the subtest ‘verbal analogies’ required the identification of analogous word pairs (content: 

verbal; operation: reasoning capacity), the subtest ‘number sequences’ the completion of 

is entirely unique to this study. The different sample size (N = 495 instead of N = 496) resulted from one student 

who did not work on the CPS tasks (MicroDYN), but on all other variables analyzed in Lotz et al. (2016).
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numbers in a series (content: numerical; operation: reasoning capacity), and the subtest ‘city 

map’ the memorization and recall of buildings in a city map (content: figural; operation: 

memory).

Complex Problem Solving. CPS was assessed by the entirely computer-based micro-world 

program MicroDYN2 (Greiff et al., 2012) that consisted of nine fully independent CPS tasks. 

The time that participants worked on each task was limited to about 5 minutes (knowledge 

acquisition: 180 seconds; knowledge application: 90 seconds). Different cover stories such as 

feeding a cat, training a handball team, or providing medical aid were implemented for each 

task. Variables were labeled without deep semantic meaning or entirely fictitious to minimize 

the influence of prior knowledge (e.g., in the task “medical aid” different pharmaceuticals 

were labeled fictitiously as “Sarol”, “Rexol”, and “Menol”; see Fig. 1). Participants were 

required to explore the unknown system with a set of related input and output variables in 

order to first develop a mental model about the problem space (i.e. knowledge acquisition). 

Subsequently, students had to control the system by reaching given target values (i.e. 

knowledge application; see Greiff et al., 2012 for a more detailed description of MicroDYN). 

In this study, we focused on the knowledge acquisition phase because our interest was on how 

students were using different exploration strategies to develop a mental model about the 

problem space (e.g., Klahr & Dunbar, 1988; Lee, Jonassen, & Teo, 2011). In fact, the 

development of a mental model that represents students’ knowledge about the relations 

among variables in the problem space is critical to problem solving success, because it forms 

the basis for subsequent steps of applying this knowledge to generate a solution of the 

problem (Goode & Beckmann, 2010; Sonnleitner, Keller, Martin, & Brunner, 2013). 

During the instructional part of MicroDYN, students watched a video to familiarize 

themselves with the user interface and they were instructed to “find out about the relations” 

between input and output variables. During the main part of MicroDYN, students were 

2 A task example of MicroDYN can be found at: https://www.youtube.com/watch?v=sSKVFF6XE6g
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confronted with non-dynamic and dynamic effects. In this study, the first five tasks contained 

only non-dynamic effects. After the fifth task, dynamic effects were introduced by an 

additional instruction. Therefore, students were aware of the potential occurrence of dynamic 

effects. In this study, three of the four remaining tasks after this change in task type had 

dynamic effects next to the non-dynamic effects (task 7: only non-dynamic effects). However, 

the students did not know in which of the remaining tasks dynamic effects would occur. 

During the main part of MicroDYN, students could revisit the general instruction again at any 

time by clicking the “help” button. It should be noted that neither hints about optimal 

strategies nor correct solutions were given thereby.

During the knowledge acquisition phase of each task, students freely explored the 

unknown task systems, which were based on linear equations that related a maximum of three 

input variables to a maximum of three output variables (non-dynamic effects). For example, 

in the task “medical aid” (see Fig. 1) students had to explore how different pharmaceuticals 

(input variables: “Sarol”, “Rexol”, and “Menol”; left part of Fig. 1) influenced some 

characteristics of human health (output variables: “Headache”, “Diastolic blood pressure”, 

and “Antibodies”; right part of Fig. 1). Regarding the dynamic effects, students had to 

consider that the output variables might change without manipulating the input variables. For 

example, “Headache” could increase over time by itself. To explore the underlying system, 

students manipulated the input variables by moving sliders from “0” to the right (“+” or “++”) 

or to the left (“–” or “– –”), and clicked the “apply” button. 

Whenever students clicked the “apply” button during the knowledge acquisition phase, 

their actions were documented in computer-generated log files. To score VOTAT, each 

exploration step was evaluated (i.e., the manipulation or action taken by the student before 

clicking “apply”). Credit was given (coded as 1), if only one input variable was varied and the 

other input variables were held at zero (cf. Kröner et al., 2005); otherwise, no credit was given 

(coded as 0). For each MicroDYN task, the relative VOTAT frequency was computed by 
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summing-up the number of explorations in which students used VOTAT and dividing it by 

the students’ total number of exploration steps in this task. Thus, the relative VOTAT 

frequency ranged between 0 (i.e., the student never used VOTAT during the exploration of a 

particular task) and 1 (i.e., the student always used VOTAT during the exploration of a 

particular task). To score NOTAT, each exploration step was evaluated and credit was given 

(coded as 1), if all input variables were held zero when the student clicked “apply”; otherwise, 

no credit was given (coded as 0). In accordance to the relative VOTAT-frequency, the 

computed relative NOTAT-frequency could range between 0 (i.e., the student never used 

NOTAT) and 1 (i.e., the student always used NOTAT) in each task.

2.3. Analyses

All analyses were conducted with the statistical package Mplus 7.11 (Muthén & Muthén, 

1998-2013). We controlled for potential effects of students’ clustering in classrooms on 

standard errors and χ2 statistics by using the “type = complex” option (Maximum Likelihood 

Robust [MLR] estimator). Only few missing values occurred (maximum per variable: 4.6 %) 

and were handled by the full information maximum likelihood (FIML) algorithm (Enders & 

Bandalos, 2001). To describe the model fit, χ2 with df were complemented by CFI, TLI, and 

RMSEA (Little, 2013; Schermelleh-Engel, Moosbrugger, & Müller, 2003). CFI and TLI 

values greater than .95 (.90) indicated a good (acceptable) fit. RMSEA values below .05 (.08) 

signified a close (acceptable) fit to the data.

The hypotheses referring to the relative VOTAT frequencies (Hypotheses 1a-d) and 

the relative NOTAT frequencies (Hypotheses 2a-d) were examined by latent growth curve 

models (LGCM; Bollen & Curran, 2006). LGCMs are well-suited to examine the change of a 

variable over time in a structural equation framework with an intercept factor (initial or 

reference level) and a slope factor (growth trajectory). Typically, these models estimate 

smoothed trajectories and, thus, tend to fail when sharp changes are present in the data. In the 
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current study, the change of the task type from non-dynamic to dynamic and the additional 

instruction after the fifth task could be regarded as an event that could have caused such a 

sharp change or a discontinuity in the growth curve, thus affecting the intercept as well as the 

slope factor. Therefore, a discontinuous LGCM-design (Hancock, Harring, & Lawrence, 

2013; also often referred to as ‘piecewise LGCM’, Diallo & Morin, 2015), including two 

correlated intercept and slope factors that represent the levels and the growth trajectories 

before and after the change in the task type seemed especially well-suited to analyze the 

courses of VOTAT and NOTAT.

Concerning the course of the relative VOTAT frequencies (Hypotheses 1a-c), our 

model consisted of two LGCM parts that corresponded to the two types of MicroDYN tasks 

before the change in task type (tasks 1 – 5; only non-dynamic effects) and after (tasks 6 – 9; 

possibility of dynamic effects, occurring in addition to non-dynamic effects). Regarding the 

LGCM part before the change in task type, unstandardized factor loadings of the manifest 

VOTAT indicators of tasks 1 – 5 on the intercept factor before the change in task type (Int1-5) 

were fixed to 1. To model the latent slope factor before the change in task type (Slope1-5), we 

assumed a linear growth from the first to the fifth task. Factor loadings had numerical values 

of λ1 = -4 for the first task, λ2 = -3 for the second task up to λ5 = 0 for the fifth task. Thus, the 

mean score of Int1-5 represented the relative VOTAT frequency of the fifth task (directly 

before the change in task type). Concerning the LGCM part after the change in task type, the 

intercept factor (Int6-9) was modeled by fixing the unstandardized loadings of the manifest 

VOTAT-indicators of the tasks 6 – 9 to 1. To model the latent slope factor after the change in 

task type (Slope6-9), we also assumed a linear growth from the sixth task onwards to the 

ninth. Factor loadings had numerical values of λ6 = 0 for the sixth task up to λ9 = 3 for the 

ninth task. Therefore, the mean score of Int6-9 represented the relative VOTAT frequency of 

the sixth task (directly after the change in task type). In addition, correlations among the slope 

and intercept factors were allowed.
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However, before investigating the strategic behavior and its relation to intelligence, it 

is crucial to explore whether the hypothesized discontinuous (vs. continuous) growth curve 

and the assumed linear (vs. quadratic and vs. no-change) slopes of the above proposed LGCM 

adequately represented the data structure. The assumption of discontinuous LGCMs with a 

transition point between the fifth and the sixth CPS task was theoretically driven by the 

change in task type and the additional instruction after the fifth task. To statistically 

investigate whether the influence of this event on the growth curve was adequately 

represented in the model, we computed a continuous LGCM with only one intercept factor 

and one linear slope factor, both loading on all nine VOTAT indicators. We compared this 

continuous LGCM to the discontinuous LGCM described above by conducting a Satorra-

Bentler corrected χ2-difference test. If the discontinuous LGCM fitted significantly better than 

the continuous LGCM, it was the preferable model. Furthermore, we performed additional 

tests to assure the assumed linear growths of the discontinuous LGCM. For both slopes 

(before and after the change in task type), intercept-only models (assuming no change over 

time; i.e., slope = 0) and quadratic slope specifications were modeled. If they revealed 

significantly worse fit indices compared to the linear slope models (Satorra-Bentler corrected 

χ2-difference tests), they could be rejected and, thus, removed from further analyses. 

If the assumed discontinuous and linear growth curves fitted the data best, the LGCM 

could be augmented by an intelligence factor, and all further analyses could be based on this 

augmented model. Specifically, for modeling the intelligence factor, manifest scores of the 10 

intelligence subtests loaded on the corresponding content-facet specific factors of verbal 

(VBIS), numerical (NBIS), and figural (FBIS) intelligence; and these three first-order content 

factors indicated the second-order g-factor (gBIS) to specify the common higher order structure 

of intelligence. The unstandardized loadings of the first indicator of a corresponding latent 

factor were fixed to 1. In accordance with the theoretical BIS-framework (see Jäger et al., 

1997), we also considered the operation facets within the BIS-model. Specifically, we 



INTELLIGENCE IN ACTION 22

specified residual correlations among those manifest subtest indicators that belong to the same 

operation facet of the BIS-model [i.e., correlations among the residuals of (a) the six subtests 

that tapped the reasoning capacity operation facet, (b) the two subtests that tapped the speed 

operation facet, and (c) the two subtests that tapped the memory operation facet; see Table 3]. 

The gBIS-factor was correlated with the two LGCM slope factors and the two LGCM intercept 

factors (before and after the change in task type).

Responding to Hypotheses (1a) and (1c), we inspected the (unstandardized) means and 

variances of the slope factors. Regarding Hypothesis (1b), the drop in the relative VOTAT 

frequency after the change in task type was tested by conducting a Satorra-Bentler corrected 

χ2-difference test. This test compared the above-specified model to a model with equality 

constrained means of the intercept factors before and after the change in task type. Moreover, 

we computed the effect size h as a measure of the difference between two proportions (Cohen, 

1988). To investigate Hypothesis (1d), we inspected the correlations between the intelligence 

factor (gBIS), the two slope factors, and the two intercept factors.

Regarding NOTAT (Hypotheses 2a-d), we established an analogous LGCM for 

NOTAT by replacing the VOTAT indicators of the LGCM of Hypotheses (1a-d) with the 

NOTAT indicators (relative NOTAT frequencies). Similar to the VOTAT-LGCM, we 

performed analyses of the structure of the NOTAT growth curves to assure that the proposed 

discontinuous (vs. continuous) and linear (vs. quadratic and vs. no-change) growth curves 

fitted the data best. Accordingly, we augmented the hypothesized NOTAT model by the 

above described intelligence factor and conducted all further analyses with this augmented 

model. Responding to Hypotheses (2a) and (2c), we inspected the means and variances of the 

slope factors, as in Hypotheses (1a) and (1c). We then tested the hypothesized rise in the 

relative NOTAT frequency after the change in task type (Hypothesis 2b) by conducting a 

Satorra-Bentler corrected χ2-difference test, comparing the intercept means, and computed the 
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effect size h. To test Hypothesis (2d), we inspected the correlations of the intelligence factor 

(gBIS) with the two slope and the two intercept factors, as in Hypothesis (1d).

3. Results

Descriptive statistics. Means and standard deviations of the relative VOTAT and NOTAT 

frequencies across the nine tasks are shown in Table 2; their course is displayed in Fig. 2.3 

Means and standard deviations of the intelligence subtests were always well within the 

possible range, indicating an absence of bottom or ceiling effects (see Table 3). The manifest 

correlations of the intelligence subtests and the relative VOTAT and NOTAT frequencies are 

presented in Table 4 (reported task wise as well as averaged across the two task types: task 1-

5 and task 6-9). Regarding VOTAT, correlations with the intelligence subtests were for the 

most part substantially positive. Regarding NOTAT, correlations with the intelligence 

subtests were mostly negative across the non-dynamic tasks, but mostly positive across the 

dynamic tasks as NOTAT became an effective behavior. As expected, VOTAT correlated 

negatively with NOTAT.  It should be noted that these correlations were based on relative 

frequencies (i.e., a higher proportion of the one might coincide with a lower proportion of the 

other).

---Please insert Tables 2, 3, and 4 about here---

---Please insert Figure 2 about here---

Results for VOTAT (Hypothesis 1). The assumption of a discontinuous LGCM with a 

transition point between the fifth and the sixth CPS task was empirically supported by a 

significantly worse fit of the continuous LGCM (Table 5, Model 1; cont. LGCM without 

3 One anonymous reviewer suggested that high SDs might indicate not only high variability, but also different 

performance patterns. Therefore, we ran supplemental hierarchical cluster analyses that revealed a three-cluster 

solution for VOTAT (two clusters with increasing VOTAT rates either starting on a low level or on a medium 

level and a third cluster with a low level VOTAT rate throughout the task set) and a two cluster solution for 

NOTAT (one cluster was characterized by low NOTAT rates throughout all tasks, the other cluster represented 

the overall NOTAT course as reported in this manuscript). However, these cluster analytical results should be 

interpreted with caution (too small sample sizes of the subgroups); consistent with our expectations as well as the 

results presented below, intelligence correlated substantially with the grouping variable (VOTAT: r = .35; 

NOTAT: r = .15).
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intelligence) compared to the discontinuous LGCM (Table 5, Model 2; disc. LGCM without 

intelligence; p < .05). Comparing this discontinuous LGCM with entirely linear slopes (Table 

5, Model 2) to the intercept-only models with either no slope before the change in task type 

(Table 5, Model 3a, disc. LGCM without intelligence, no slope before) or no slope after the 

change in task type (Table 5, Model 3b, disc. LGCM without intelligence, no slope after) 

revealed significantly worse fit indices (p < .05). Furthermore, comparing the discontinuous 

LGCM with entirely linear slopes (Table 5, Model 2) to models with quadratic slope 

specifications either before the change in task type (Table 5, Model 3c, disc. LGCM without 

intelligence, quad. slope before) or after (Table 5, Model 3d, disc. LGCM without 

intelligence, quad. slope after) revealed both Heywood cases (i.e., correlations > |1|) and were, 

therefore, rejected from further analyses. Thus, for VOTAT the theoretically proposed 

discontinuous LGCM with entirely linear slopes was selected for further analyses and 

augmented by intelligence. This augmented VOTAT-LGCM fitted at least acceptably to the 

data (Table 5, Model 4, disc. LGCM with intelligence; Fig. 3; standardized loadings of the 

intelligence subtests are shown in Table 3).

---Please insert Table 5 about here---

---Please insert Figure 3 about here---

Hypothesis (1a) presumed an increase of the relative VOTAT frequency from the first 

to the fifth task (see Table 2 for descriptive statistics). The (unstandardized) mean and 

variance of the slope factor before the change in task type were significant (Slope1-5; M = 

.05, p < .05; Var = .01, p < .05). This slope factor mean corresponded to a standardized 

coefficient (interpreted as the regression trajectory) of β = .66 and indicated a substantial 

increase of the relative VOTT frequency across the first five tasks. Hypothesis (1b) assumed a 

drop of the relative VOTAT frequency from task 5 to task 6 when the task type changed from 

non-dynamic to dynamic tasks. The means of the two intercept factors Int1-5 (M = .71, p < 

.05; Var = .15, p < .05) and Int6-9 (M = .63, p < .05; Var = .11, p < .05) differed significantly 
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(p < .05; Table 5, Model 5, disc. LGCM with intelligence difftest intercept means; h = -.15, 

below the cutoff for small effects suggested by Cohen, 1988) and, thereby, supported the 

hypothesized drop. Hypothesis (1c) presumed an increase of the relative VOTAT frequency 

from the sixth to the ninth task. The slope factor coefficients after the change in task type 

revealed only a significant mean but a non-significant variance (Slope6-9; M = .03, p < .05; 

Var < .01, p = .23); this slope factor mean corresponded to a standardized coefficient of β = 

.78, indicating the assumed rise. Overall, the students showed increasing VOTAT frequencies 

across both task types with a drop right after the change in task type.

As a main goal of this study, Hypothesis (1d) examined the relations of intelligence 

and the course of the relative VOTAT frequencies (as described by the two intercept and 

slope factors)4. Intelligence significantly correlated with both intercept factors (rInt1-5 = .48, p 

< .05; rInt6-9 = .40, p < .05) and with the slope factor before the change in task type (rSlope1-5 = 

.21, p < .05). Thus, more intelligent students showed higher relative frequency levels of 

VOTAT across both task types and a steeper frequency increase across the non-dynamic 

tasks. However, intelligence did not correlate substantially (rSlope6-9 = .01, p = .95) with the 

slope factor after the change in task type.

Results for NOTAT (Hypothesis 2).  A comparison of the continuous LGCM (Table 5, Model 

6, cont. LGCM without intelligence) with the discontinuous LGCM (Table 5, Model 7, disc. 

LGCM without intelligence) empirically supported the assumption of a discontinuous growth 

curve with a breaking point between the fifth and sixth CPS task for NOTAT, as well (p < 

.05). Moreover, the discontinuous model with entirely linear slope specifications (Table 5, 

Model 7) revealed also for NOTAT significantly better fit indices compared to the intercept-

only models with either no slope before the change in task type (Table 5, Model 8a, disc. 

LGCM without intelligence, no slope before; p < .05) or after (Table 5, Model 8b, disc. 

4 Regarding the relations between intelligence and the CPS performance measures, a latent higher-order gBIS 

factor correlated substantially with the latent CPS performance factors knowledge acquisition (r = .65) and 

knowledge application (r = .70; see Lotz et al., 2016 for details).
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LGCM without intelligence, no slope after; p < .05). Comparably to the VOTAT models, the 

NOTAT models with quadratic slope specifications either before the change in task type 

(Table 5, Model 8c, disc. LGCM without intelligence, quad. slope before) or after (Table 5, 

Model 8d, disc. LGCM without intelligence, quad. slope after) revealed Heywood cases (i.e., 

correlations > |1|) and were excluded from further analyses. Thus, the theoretically proposed 

discontinuous NOTAT-LGCM with entirely linear slopes was selected for further analyses 

and augmented by intelligence. This augmented NOTAT model fitted the data well (Table 5, 

Model 9, disc. LGCM with intelligence; Fig. 4; see Table 3 for standardized loadings of the 

intelligence subtests).

---Please insert Figure 4 about here---

Hypothesis (2a) presumed no increase of the relative NOTAT frequency from the first 

to the fifth task (see Table 2 for descriptive statistics). The (unstandardized) mean of the slope 

factor before the change in task type revealed to be significant but not the variance (Slope1-5; 

M = -.01, p < .05; Var < .01, p = .15). This negative slope factor mean corresponded to a 

standardized coefficient of β = -.26 and indicated a substantial decrease of the relative 

NOTAT frequency across the first five tasks. Hypothesis (2b) assumed a rise of the relative 

NOTAT frequency from task 5 to task 6 as the task type changed from non-dynamic to 

(potentially) dynamic tasks. The means of the two intercept factors Int1-5 (M = .04, p < .05; 

Var = .01, p < .05) and Int6-9 (M = .10, p < .05; Var = .02, p < .05) differed significantly (p < 

.05; Table 5, Model 10, disc. LGCM with intelligence difftest intercept means; h = .24, small 

effect size) and, thereby, supporting the hypothesized rise. In contrast to Hypothesis (2a), 

Hypothesis (2c) presumed an increase of the relative NOTAT frequency from the sixth to the 

ninth task. The slope factor coefficients after the change in task type revealed a significant 

mean but a non-significant variance (Slope6-9; M = .01, p < .05; Var < .01, p = .34). The 

positive slope factor mean corresponded to a standardized coefficient of β = .30, indicating 

the assumed increase. Overall, students showed a slight decrease in their NOTAT frequencies 
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across the first five non-dynamic tasks, a substantial rise that corresponded to the change in 

task type, and a small NOTAT increase across the remaining tasks with potentially dynamic 

effects.

Addressing another central aim of this study, Hypothesis (2d) examined the relations 

of intelligence and the course of the relative NOTAT frequencies (as described by the two 

intercept and slope factors). Intelligence correlated substantially with both intercept factors: 

negatively with Int1-5 (rInt1-5 = -.16, p < .05) and positively with Int6-9 (rInt6-9 = .27, p < .05). 

Thus, students who scored higher in the BIS applied a lower proportion of NOTAT during the 

first five tasks, but after the change in task type, they applied higher NOTAT proportions. 

Furthermore, intelligence correlated non-substantially with the slope factor before the change 

in task type (rSlope1-5 = -.14, p = .15) as well as after the change in task type (rSlope6-9 = -.05, p = 

.77). Thus, there was no significant relation between intelligence and the NOTAT gradients 

across both task types.

4. Discussion

The present study focused on the courses of two domain-general and effective strategic 

behaviors VOTAT and NOTAT across a set of nine CPS tasks with different demands 

(detecting direct and dynamic effects). Furthermore, our study investigated the extent to 

which intelligence was related to the application and adaption of the strategic behaviors. Log 

file-based analyses revealed that students showed higher application rates when a strategic 

behavior was effective but lower application rates when a behavior was not effective. In 

addition, students progressively adapted their strategic behaviors across the task set when they 

were confronted with a change of the task type. Specifically, they showed increasing 

application gradients when a behavior was effective but a decreasing application gradient 

when a behavior was not effective. Regarding the relations of the strategic process measures 

and intelligence, more intelligent students applied higher levels of VOTAT and NOTAT when 
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the behaviors were effective. Moreover, they also showed steeper gradients when flexibly 

adapting their strategic behaviors across tasks 1–5. This clearly indicated that intelligence 

manifested itself in the use of effective strategic behaviors.

4.1. VOTAT’s course and relation to intelligence

Our hypotheses concerning the course of VOTAT (Hypotheses 1a-c) were confirmed: First, 

students gradually increased their relative VOTAT frequency across the first five non-

dynamic tasks; subsequently, the VOTAT frequency dropped slightly after the change in task 

type (from task 5 to task 6), and finally, the relative VOTAT use progressively increased 

again across the last four tasks with potential dynamic effects. Reviewing the VOTAT rate of 

the first CPS task in more detail (see Table 2), students applied VOTAT in about 50% of their 

exploration steps. In previous studies, the VOTAT rate exhibited by students of comparable 

age who worked on a scientific discovery learning computer program either resembled the 

students of our sample (group without metacognitive support and nonspecific learning goals: 

54%; Künsting et al., 2013) or was lower (group with nonspecific problem solving goals: 

29%; group with nonspecific learning goals: 24%; Künsting, Wirth, & Paas, 2011). Thus, a 

VOTAT rate from about half of all exploration steps could probably be regarded as a rather 

usual to high application frequency for the very first task when confronted with an unknown 

problem space. Probably, tenth or eleventh graders might have already been taught VOTAT 

(implicitly or explicitly) in science education, and their knowledge about how to apply 

VOTAT and its domain-general utility enabled them to show these moderate to high VOTAT 

rates. However, one should keep in mind that MicroDYN, as used in our study and other 

computer programs that were used, for example, in the studies of Künsting and colleagues are 

not directly comparable. Because this study was the first to operationalize the VOTAT 

application by relative frequencies during the exploration phase of MircoDYN, no direct 

comparisons to former studies are possible. To examine how much VOTAT use can be 
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expected from students of different age groups while solving complex problems remains, 

therefore, an open question and might be examined in future research.

Second, regarding the VOTAT course across the non-dynamic tasks, the relative 

frequency gradually increased from 47% in the first task to 71% in the fifth task. Students 

probably recognized VOTAT as an effective strategy to detect the direct effects between input 

and output variables, and students’ emerging generalized understanding of this strategic 

behavior revealed its manifestation in the increased application frequency. Furthermore, the 

gradual increase of VOTAT was in line with previous research, which found that ineffective 

strategies were not simply abandoned but that students changed their behavior rather slowly 

but progressively (Schauble, 1996; Vollmeyer et al., 1996). When the task type changed (after 

task 5) and students were faced with potential dynamic effects in addition to direct effects, the 

application of NOTAT in addition to VOTAT became an optimal strategic behavior. Because 

of analyzing relative frequencies, an increase in the application of one strategy, as for 

example NOTAT, might cause a decrease in the application of another strategy such as 

VOTAT. Thus, the relative VOTAT frequency dropped after the change in task type, as 

expected. This connection was also corroborated by the small negative correlation between 

VOTAT and NOTAT (see Table 4). Although the drop of the VOTAT application after the 

change in task type was statistically significant, its effect size was very small. This might 

indicate that students quickly understood that applying VOTAT was still an effective 

behavior.

Third, the increase of the relative VOTAT frequency across the last four tasks gives 

further evidence for students’ deeper understanding about the utility of this effective strategic 

behavior. One may argue that the increasing trend might reach a plateau (around 70%) which 

might represent a reasonable upper bound for one single strategic behavior, leaving some 

space for trying out some other strategic behaviors which might be effective if an unexpected 

change in task type occurs. One could imagine tasks in which other relations between input 
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and output variables appear that might not have been introduced to the students. For example, 

in the case of interaction effects between the input variables, systematically holding one 

variable constant and setting its value different from zero and, at the same time, manipulating 

the other variables (so-called “HOTAT”: hold-one-thing-at-a-time; Tschirgi, 1980) would be 

an effective strategic behavior. Given that many real-life contexts provide students with novel 

and uncertain situations that might be subjected to unexpected and randomly occurring 

changes, testing a set of different strategic behaviors such as VOTAT, NOTAT, and HOTAT 

instead of rigidly adhering to only one single strategy represents an effective strategic 

behavior as well. 

The relations between the VOTAT process measures and intelligence (Hypothesis 1d) 

were in three out of four cases substantially positive and, thus, indicated the expected 

direction. Medium correlation coefficients between intelligence and the levels of the relative 

VOTAT frequencies (intercept before the change in task type: r = .48; intercept after the 

change in task type r = .40) were higher than in prior studies (Veenman et al., 2014: r = .17) 

or comparably high (e.g., Kröner et al, 2005: r = .41; van der Graaf et al., 2015: .42 ≤ r ≤ .47). 

Thus, more intelligent students typically applied VOTAT more often than less intelligent 

students. This consistent result provides further evidence for the link between intelligence and 

the application of effective strategic problem-solving behavior, although the correlations in 

this study as well as in the literature do not seem to be large in absolute terms. Thus, it is 

important to search for additional predictors that account for further variance in strategic 

behavior. For example, strategy knowledge (metacognitive knowledge about strategies, their 

applicability, and usefulness) was shown to significantly predict the application of VOTAT 

after controlling for shared variance with intelligence (Wüstenberg et al., 2014). Because 

strategic knowledge does not routinely develop without practice, individual differences in 

strategic knowledge might originate from differences in students’ science education or other 

(formal or informal) learning experiences. Probably, more intelligent students can refer better 
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to their prior knowledge about VOTAT and, thus, produce conclusive variable manipulations. 

Furthermore, one might expect for personality variables like conscientiousness that more 

conscientious students conduct variable manipulations more systematically and, therefore, 

apply VOTAT more consistently. However, to examine this hypothesis was beyond the scope 

of the current study.

Concerning the correlation between intelligence and the VOTAT gradient (slope) 

across the non-dynamic tasks, the coefficient was small, but statistically substantial (r = .21). 

Thus, it can be concluded that more intelligent students, once they discovered VOTAT as an 

effective strategic behavior, were able to progress towards using VOTAT more and more 

frequently over the course of the structurally similar non-dynamic tasks. In line with our 

expectations and previous literature, higher intelligence was associated with a steeper gradient 

(Guthke & Stein, 1996; Wüstenberg, et al., 2014). In contrast, the slope-intelligence-

correlation across the tasks with potential dynamic effects was near zero. Methodologically, 

this result could be explained by the very small and non-significant variance of the 

corresponding VOTAT slope factor that indicates negligible interindividual differences in the 

VOTAT increase. One might further argue that on the one hand more intelligent students may 

have reached a plateau of their VOTAT performance, because they started with a generally 

higher VOTAT level in the non-dynamic tasks. On the other hand, more intelligent students 

might have used a higher variety of different strategic behaviors (as for example HOTAT) 

instead of using nonsystematic strategic behavior; they might have been expecting yet another 

change in task type that has not been introduced to them. However, to clarify whether more 

intelligent students used other strategic behaviors next to VOTAT and NOTAT remains a 

topic for future research. Nevertheless, when faced with non-transparent situations in 

environments that become more and more complex, an application of a variety of systematic 

strategic behaviors would lead to more success in real-life situations, as more intelligent 

people have been known to do (cf. Sternberg, 1997).
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4.2. NOTAT’s course and relation to intelligence

The hypotheses concerning the NOTAT course (Hypotheses 2a-c) were confirmed as well: 

Across the non-dynamic tasks, students showed a slightly decreasing frequency; 

subsequently, the NOTAT rate rose after the change in task type and increased across the last 

four tasks. More specifically, students started applying NOTAT in only 7% of their 

exploration steps of the first task (Table 2). This comparatively low frequency is not 

surprising because students were mainly instructed to identify the relations between the input 

and output variables. Thus, keeping all input variables at zero could be regarded as a rather 

unsystematic behavior. Across the following non-dynamic tasks, the NOTAT rate decreased 

slightly, but statistically significant, probably because students realized that this behavior was 

ineffective for identifying direct effects. However, directly after the change in task type, the 

relative NOTAT frequency rose to 10% and increased up to 13% across the remaining tasks 

with potential dynamic effects. Nevertheless, the rise after the change in task type had a small 

effect size and its following increase was rather minor. Probably students understood that 

applying rather moderately increasing rates of NOTAT in addition to VOTAT was an optimal 

and especially efficient strategic behavior to detect the dynamic effects in addition to the 

direct effects. Nevertheless, because this was the first study to examine the relative NOTAT 

frequency in addition to VOTAT, it will be the task of future studies to replicate our results.

Regarding the correlations between the NOTAT process measures and intelligence 

(Hypothesis 2d), our expectations, especially with respect to the slopes, were only partly 

confirmed. Nevertheless, the correlations between intelligence and the levels of NOTAT 

(intercepts) were in accordance with our hypothesis. The negative correlation before the 

change in task type (r = -.16) indicated that the more intelligent students showed lower levels 

of this ineffective strategic behavior. The positive correlation after the change in task type (r = 

.27) indicated the more effective strategy use of more intelligent students. This differential 

correlational pattern before and after the change in task type illustrated that intelligence was 
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systematically related to the adaption of strategies when task demands were changing. 

Furthermore, these results provided evidence that higher intelligence enabled students to 

better identify the effectiveness of a particular strategic behavior.

The slightly negative correlation between intelligence and the NOTAT gradient 

(slope) before the change in task type indicated that more intelligent students showed a less 

steep decrease in their NOTAT frequency. Since NOTAT could be regarded as a rather 

ineffective behavior across these tasks, because no dynamic effects occurred, one could have 

expected a positive correlation with intelligence that indicated that more intelligent students 

showed a steeper decrease of this suboptimal behavior. To further clarify this result, we 

conducted an additional analysis by changing the reference point of the NOTAT intercept 

factor from task 5 to task 1 (model is covariance equivalent to Model 9, Table 5). This change 

in the model specifications revealed that more intelligent students showed lower NOTAT 

frequencies already in the first task. One should keep in mind that the relative NOTAT 

frequency in the first task reached only 7%. Therefore, the more intelligent students had 

numerically almost no potential to show a steeper decrease of their NOTAT frequencies 

compared to the less intelligent students that showed a higher NOTAT level in the first task.

4.3. Limitations, Outlook, and Conclusion

One limitation of this study is that both VOTAT and NOTAT were measured by only one 

indicator per CPS task. Consequently, no adjustment for measurement error, for instance with 

second-order latent growth curve models, could be implemented. Therefore, it was unclear 

whether these indicators were reliable or whether the observed VOTAT or NOTAT behaviors 

might have appeared randomly. However, acceptable to good model fit indices for both the 

VOTAT and the NOTAT models indicated that our data was properly represented by the 

hypothesized discontinuous models. To provide further evidence that no deficiencies in the 

reliabilities of the VOTAT or NOTAT indicators led to our results, we computed the manifest 
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inter-task-correlations between two adjacent tasks separately for VOTAT and NOTAT, and 

separately for the two task types. Regarding the relative VOTAT frequency, the correlation 

coefficients were .51 ≤ r ≤ .82 with a median of Mdn(r) = .73 across the tasks 1–5 and .75 ≤ r 

≤ .88 with a median of Mdn(r) = .86 across the tasks 6–9. Regarding the relative NOTAT 

frequency, the coefficients were smaller, but still substantial: .33 ≤ r ≤ .51 with a median of 

Mdn(r) = .42 across the tasks 1–5 and .51 ≤ r ≤ .60 with a median of Mdn(r) = .58 across the 

tasks 6–9. Numerical values of this magnitude indicated that students did not just randomly 

show the strategic behaviors, but that students who had higher frequencies in one task also 

had higher frequencies in the subsequent task. Furthermore, the VOTAT and NOTAT 

indicators mainly revealed the expected courses and the expected substantial convergent 

correlations with intelligence. Thus, these results were reasonable markers for the reliability 

and the validity of the indicators of students’ strategic behavior, as used in this study. 

Second, the choice of intelligence indicators, that is 10 subtests of the BIS, might be 

criticized. However, Jensen and Weng (1994) argued that such a selection of subtests fulfilled 

the criteria of a “good g” (also cf. Lotz et al., 2016). Most prior studies only assessed 

measures of (figural) reasoning as indicators of intelligence to examine the relation between 

intelligence and CPS performance measures. In contrast, our study overcame this frequent 

limitation and prevented possible impairments of the interpretation that may have resulted 

from too narrow intelligence operationalizations.

Next to the relatively broad operationalization of intelligence, this study incorporated 

some other strengths such as its theory-driven definition of domain-general strategic 

behaviors and their extraction from the log files (instead of strategies that strongly depended 

on the particular CPS test; cf. Güss et al., 2015). This allowed for more general conclusions 

about VOTAT’s and NOTAT’s importance for exploring the problem space of CPS tests, 

especially since we distinguished between the two task types. Furthermore, this study 

extended prior research by analyzing the VOTAT and NOTAT application of each 
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administered CPS task instead of either examining the strategic behaviors of only one single 

task (Greiff et al., 2015) or averaging across all tasks (Greiff et al., 2016; Wüstenberg et al., 

2014). Obtaining strategy indicators for each task from the log files allowed drawing fine-

grained conclusions about the course of the examined strategic behaviors and how students 

adapt those behaviors when confronted with a change in task type. Another important 

extension to most prior CPS research was analyzing VOTAT and NOTAT by relative 

frequencies (cf. Kröner et al., 2005). Earlier CPS studies mostly relied on a dichotomous 

scoring and gave credit if the problem solver applied the strategic behavior at least once 

during a task. A continuous scoring, as used in this study, gave a much more detailed picture 

about how (relatively) often students applied a particular strategic behavior and, thus, made 

the interpretation of the results even more trustworthy.

A next crucial step in research on strategic CPS behavior might be to examine its 

incremental validity for real-life criteria above and beyond intelligence. Next to the CPS-

features, such as the tasks being dynamic and non-transparent, there is another major 

difference to conventional intelligence tests: the interaction with the task during the 

exploration phase. As an assumption, the specific type of interaction behavior assessed during 

the exploration phase which is unique to CPS tasks might substantially contribute to the 

prediction of real-world criteria by CPS beyond intelligence. At least, the study of Bryant et 

al. (2015) gave first evidence that the application of VOTAT could explain unique 

proportions of variance in science achievement beyond intelligence. Desirably, a future study 

that examines the increment of CPS process measures would assess CPS as well as 

intelligence computer-based to obviate possible effects of the mode of the test administration 

(computer-based vs. paper-and-pencil-based; cf. Sonnleitner et al., 2013). As another 

direction for future research, it might be fruitful to combine measures of CPS strategy use 

with measures of CPS response times. Because of the computer-based assessment of CPS, the 

exact time stamps of every single action of a student can be documented. For example, it 
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would be interesting to investigate whether the students with the better understandings of 

specific strategies are also more efficient in the sense of shorter times-on-task during the 

exploration phase.

To conclude, this study examined the course of the two strategic behaviors, VOTAT 

and NOTAT, across a set of CPS tasks with different task demands through log file analyses. 

The assessments of VOTAT and NOTAT were sufficiently reliable and valid, as well as 

useful process measures that gave new insights in how students used effective strategic 

behaviors. Additionally, it was possible to show how a certain development of VOTAT and 

NOTAT across a task set can be described by intercepts and slopes of discontinuous latent 

growth curve models. Over the course of a CPS task set, students showed higher levels and 

progressively increasing rates of a strategic behavior when it was effective, lower levels and 

decreasing rates when it was ineffective, besides a flexible adaption of the behaviors when 

task requirements changed. Furthermore, this study’s main focus was on the relation between 

intelligence and the application and adaption of the effective strategic behaviors during the 

CPS exploration phase. Intelligence, as the (theoretically assumed) underlying construct, 

manifested itself in the observed specific behaviors. The corresponding substantial 

correlations with the process measures reflected that more intelligent students applied more 

effective strategic behaviors and were able to adapt them more rapidly. Although some 

conventional intelligence tests could be administered computer-based as well and, thus, 

provide log-files about the specific actions during the problem-solving process, a free 

exploration phase in which students can interact with the task is, nevertheless, unique to 

modern CPS tests. Understanding the mechanisms of how intelligence manifests itself in 

specific strategic actions during the exploration phase provided information above and beyond 

what conventional intelligence tests could offer and might be a key to understand the 

increment of CPS for real-life criteria. The results of this study gave first insights in how 
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intelligence acts during the exploration process by facilitating students’ use of effective 

strategic behaviors.
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Table 1

Studies on the relation between intelligence and the use of VOTAT in the domains of CPS and scientific reasoning.

Domain Test 

instrument

VOTAT operationalization Intelligence measure  VOTAT-

Intelligence

- relation

Sample 

size

Participants grade 

levels and mean age

Kröner et al. (2005) CPS MultiFlux Relative frequency Verbal, numerical, and 

figural reasoning (BIS-K)

r = .41 101 Grades: 9-12;

Age: M = 15.0, SD = 

1.0

Wüstenberg et al. 

(2014)

CPS MicroDYN Dichotomous per task (participant 

applied VOTAT at least once for every 

input variable)

Verbal and numerical 

reasoning (two subtests)

r = .64 3,191 Grades: 6 or 9;

Age: M = 13.59, SD = 

1.56

van der Graf et al. 

(2015)

Scientific 

reasoning

Ramp task (a) absolute frequency of correctly 

designed experiments after two trials 

each; (b) absolute frequency of 

variables set correctly

Nonverbal reasoning (one 

subtest)

ra = .42, 

rb = .47

46 Age Range: 4;6 – 6;3, 

M = 5;3

Künsting et al. (2013) Scientific 

reasoning

Computer-

based learning 

environment

Relative frequency Figural reasoning (one 

subtest)

r = .30 129 Grade: 9;

Age: M = 14.33, SD = 

0.69

Veenman et al. (2014) Scientific 

reasoning

Otter task Absolute frequency Verbal, numerical, and 

figural reasoning (three 

subtests)

r = .17 52 Grade: 7;

Age: M = 13;2 
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Table 2

Means and standard deviations of the relative VOTAT and NOTAT frequencies across the 

nine MicroDYN tasks, complemented by the corresponding Intraclass Correlation 

Coefficients (ICC-1) and design effects

VOTAT NOTAT

Task name

M SD ICC-1 Design 

effect

M SD ICC-1 Design 

effect

1. Lemonade .47 .32 .030 1.54 .07 .13 .026 1.47

2. Drawing .58 .37 .060 2.08 .06 .16 .038 1.69

3. Cat .63 .37 .071 2.28 .04 .14 .025 1.45

4. Moped .67 .39 .067 2.21 .04 .12 .013 1.23

5. Game .71 .39 .083 2.50 .05 .17 .031 1.56

6. Gardening .60 .36 .050 1.90 .10 .19 .037 1.67

7. Handball .69 .38 .073 2.32 .10 .19 .029 1.52

8. Spaceship .71 .38 .055 1.99 .10 .20 .048 1.87

9. Medical Aid .70 .37 .049 1.88 .13 .24 .028 1.51
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Table 3

Name of tests, description, content facet, standardized loadings of the subtests on their corresponding latent content factor, operation facet, number 

of items, means, and standard deviations for the 10 BIS-4 subtests complemented by the corresponding Intraclass Correlation Coefficients (ICC-1), 

and design effects

Test (abbr.) Description Content 

facet

λ on content factor 

in Model 4/9

Operation 

facet

No. of 

Items

M SD ICC-1 Design 

effect

Figural analogies (AN) Identification of figural analogies F .68*/.68* R 8 3.32 1.59 .077 2.39

Crossing out letters (BD) Crossing out letters in a series F .25*/.26* S 130 54.22 13.41 .090 2.62

Charkow (CH) Completion and generalization of figures in a series F .70*/.70* R 6 2.26 1.54 .087 2.57

City map (OG) Recall of buildings in a city map F .30*/.30* M 27 14.71 4.48 .069 2.24

Number sequences (ZN) Completion of numbers in a series N .68*/.68* R 9 4.18 2.56 .138 3.49

X greater (XG) Crossing out numbers x greater than the prior one N .61*/.62* S 44 19.41 8.56 .150 3.75

Estimation (SC) Estimation of complex arithmetic N .65*/.64* R 7 3.54 1.77 .088 2.59

Story (ST) Recall of text information V .26*/.27* M 22 8.74 3.43 .064 2.15

Fact-opinion (TM) Conclusion of fact or opinion of verbal statements V .54*/.53* R 16 9.91 2.54 .078 2.41

Verbal analogies (WA) Identification of analogous word pairs V .52*/.52* R 8 2.35 1.52 .092 2.66

Note. Standardized loading of the latent first-order content factors on the second-order g-factor were identical for the VOTAT model (Table 5, Model 4; Fig 3) and the NOTAT 

model (Table 5, Model 9; Fig. 4): λverbal = .62*, λnumerical = .80*, and λfigural = .90*. F = figural; N = numerical; V = verbal; R = reasoning capacity; S = speed; M = memory.

* p < .05.
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Table 4

Manifest correlations of the 10 Intelligence subtests with the relative VOTAT and NOTAT 

frequency (reported task wise as well as averaged across the two task types).

Note. Please refer to Table 3 for the names of the abbreviated intelligence subtests. Not displayed in the table: 

rVOTAT1-5–NOTAT1-5 = -.35*;  rVOTAT6-9–NOTAT6-9 = -.20*;  

* p < .05.

Tests Intelligence

1 2 3 4 5 6 7 8 9 10

Intelligence

1. ST --

2. TM .15* --

3. WA .07 .30* --

4. ZN .14* .15* .16* --

5. XG .21* .21* .23* .43* --

6. SC .14* .19* .20* .41* .41* --

7. AN .09* .15* .20* .39* .23* .34* --

8. BD .13* -.01 .07 .09* .20* .14* .14* --

9. CH .08 .20* .21* .35* .22* .34* .49* .16* --

10. OG .28* .00 -.01 .18* .16* .12* .18* .31* .20* --

CPS, relative VOTAT frequency

11. Task 1 .04 .11* .04 .10* .12* .13* .17* .03 .20* .06

12. Task 2 .03 .18* .09 .17* .20* .19* .25* .09* .30* .09*

13. Task 3 .07 .13* .15* .17* .17* .19* .27* .02 .29* .10*

14. Task 4 .06 .15* .15* .19* .16* .18* .28* .06 .28* .12*

15. Task 5 .01 .15* .11* .20* .16* .20* .26* .05 .31* .08

16. Task 6 .01 .12* .08 .16* .07 .19* .20* .00 .26* .08

17. Task 7 .04 .14* .08 15* .12* .17* .19* .02 .25* .08

18. Task 8 .02 .17* .08 .17* .14* .16* .22* .05 .27* .07

19. Task 9 .01 .11* .07 .11* .11* .16* .19* .04 .27* .06

20.  Tasks 1-5 .05 .18* .13* .20* .20* .21* .29* .06 .34* .12*

21.  Tasks 6-9 .04 .15* .09 .17* .12* .18* .22* .03 .29* .10*

CPS, relative NOTAT frequency

22. Task 1 .01 -.02 -.07 -.02 .00 -.02 -.08 -.03 -.10* .07

23. Task 2 .09 .01 .02 -.05 -.05 -.03 -.05 -.06 -.08 -.07

24. Task 3 .04 -.02 -.06 -.08 -.06 -.13* -.10* -.08 -.13* -.05

25. Task 4 -.01 -.04 -.09 -.04 -.03 .00 -.12* -.12* -.10* -.03

26. Task 5 .01 .01 -.04 -.10* -.04 -.07 -.16* -.11* -.14* -.03

27. Task 6 .04 .16* .10* .13* .13* .08 .05 -.05 .10* .01

28. Task 7 .07 .16* .07 .15* .17* .11* .07 -.03 .11* .02

29. Task 8 .00 .16* .10* .10* .06 .07 .02 -.05 .10* -.03

30. Task 9 .08 .14* .13* .09* .13* .01 .02 -.05 .08 .02

31. Tasks 1-5 .04 -.02 -.07 -.09* -.05 -.08 -.15* -.12* -.16* -.03

32. Tasks 6-9 .05 .12* .03 .10* .12* .07 .01 -.05 .03 .06
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Table 5

Fit indices of the latent growth curve models of VOTAT and NOTAT.

Models χ² df CFI TLI RMSEA Comp. 

model

T Δdf p

VOTAT Models

1. Cont. LGCM without intelligence 419.702* 40 .881 .892 .138

2.  Disc. LGCM without intelligence 164.868* 31 .958 .951 .093 1 241.032 9 < .01

3. a. Disc. LGCM without intelligence, no slope before 603.117* 36 .822 .822 .178 2 428.060 5 < .01

3. b. Disc. LGCM without intelligence, no slope after 225.211* 36 .940 .940 .103 2 59.508 5 < .01

3. c. Disc. LGCM without intelligence, quad.  slope beforea (105.883*) (25) (.975) (.963) (.081)

3. d. Disc. LGCM without intelligence, quad.  slope aftera (99.934*) (25) (.976) .(966) (.078)

4. Disc. LGCM with intelligence 348.423* 132 .955 .942 .058

5. Disc. LGCM with intelligence difftest intercept means 391.457* 133 .946 .931 .063 4 38.350 1 < .01

NOTAT Models

6. Cont. LGCM without intelligence 102,415* 40 .822 .840 .056

7. Disc. LGCM without intelligence 39.077* 31 .977 .973 .023 6 53.212 9 < .01

8. a. Disc. LGCM without intelligence, no slope before 59.912* 36 .932 .932 .037 7 16.427 5 < .01

8. b. Disc. LGCM without intelligence, no slope after 49.598* 36 .964 .964 .027 7 12.117 5 < .05

8. c. Disc. LGCM without intelligence, quad. slope beforea (32.643*) (25) (.978) (.969) (.025)

8. d. Disc. LGCM without intelligence, quad. slope aftera (29.158*) (25) (.988) (.983) (.018)

9. Disc. LGCM with intelligence 180.688* 132 .964 .953 .027

10. Disc. LGCM with intelligence difftest intercept means 218.101* 133 .937 .919 .036 9 24.504 1 < .01

Note. Cont. = continuous; Disc. = discontinuous; LGCM = latent growth curve model; χ² = chi-square goodness-of-fit statistic; df = degrees of freedom; CFI = Comparative Fit 

Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of Approximation; Comp. model = comparison model; T = value of the chi-square difference test; T and 

Δdf were estimated by the Satorra-Bentler corrected chi-square difference test (see Satorra, 2000).

The models 4 and 9 correspond to the Figures 3 and 4, respectively.
a Model estimation revealed a Heywood case as indicated by a correlation > |1| between the linear and quadratic slope factors, pointing towards an over-specification of the 

models with quadratic slopes; models were rejected from further analyses (cf. Geiser, 2013, p. 182).

* p < .05.
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Figure 1. Screenshot of the MicroDYN task “Medical Aid” during the knowledge acquisition 

phase.
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Figure 2. Courses of the relative VOTAT and NOTAT frequency; means and standard 

deviations across the nine CPS tasks. Change in task type after task 5.
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VOTAT_1 VOTAT_2 VOTAT_3 VOTAT_4 VOTAT_5 VOTAT_6 VOTAT_9VOTAT_8VOTAT_7

Intercept

task 1-5
Slope

task 1-5
Slope

task 6-9

Intercept

task 6-9

1 1 1 1 1 1 1 1 1
-1-4 0 1-2 0-3 2 3

.31

.09

.17

.96*

.75* .74*

Intelligence

.40*.21*

.48* .01

M =.71*

   (1.82*)
M =.03*

     (.78*)

M =.63*

   (1.93*)
M =.05*

     (.66*)

Figure 3. Discontinuous latent growth curve model for the relative VOTAT frequencies 

across the nine CPS tasks augmented by intelligence (see Table 5, Model 4). 

Note. Non-standardized (standardized) means are depicted for the intercept and slope factors. 

Relations among latent variables are shown as correlation coefficients. The measurement 

model of intelligence is not illustrated.

Please note that small discrepancies compared to the descriptive statistics presented in Table 2 

and Fig. 2 are due to the model-based estimates.

* p < .05.
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NOTAT_1 NOTAT_2 NOTAT_3 NOTAT_4 NOTAT_5 NOTAT_6 NOTAT_9NOTAT_8NOTAT_7

Intercept

task 1-5
Slope

task 1-5
Slope

task 6-9

Intercept

task 6-9

1 1 1 1 1 1 1 1 1
-1-4 0 1-2 0-3 2 3

-.28

-.05

-.04

.69*

.69* .63*

Intelligence

.27*-.14

-.16* -.05

M =.04*

   (0.33*)
M =.01*

     (.30*)

M =.10*

   (0.65*)
M =-.01*

     (-.26*)

Figure 4. Discontinuous latent growth curve model for the relative NOTAT frequencies 

across the nine CPS tasks augmented by intelligence (see Table 5, Model 9). 

Note. Non-standardized (standardized) means are depicted for the intercept and slope factors. 

Relations among latent variables are shown as correlation coefficients. The measurement 

model of intelligence is not illustrated.

Please note that small discrepancies compared to the descriptive statistics presented in Table 2 

and Fig. 2 are due to the model-based estimates.

* p < .05.


