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PACS 47.55.-t — Multiphase and stratified flows
PACS 47.15.gp — Hele-Shaw flows
PACS 64.60.Ht — Dynamic critical phenomena

Abstract — The intermittent burst dynamics during the slow drainage of a porous medium is
studied experimentally. We have shown that this system satisfies a set of conditions known to be
true for critical systems, such as intermittent activity with bursts extending over several time and
length scales, self-similar macroscopic fractal structure and 1/ f® power spectrum. Additionally, we
have verified a theoretically predicted scaling for the burst size distribution, previously assessed via
numerical simulations. The observation of 1/f% power spectra is new for porous media flows and,
for specific boundary conditions, we notice the occurrence of a transition from 1/f to 1/f? scaling.
An analytically integrable mathematical framework was employed to explain this behavior.

Copyright © EPLA, 2017

Introduction. — The topic of fluid motion inside a
porous network has deservedly been subjected to a con-
siderable number of studies over the past decades. Sci-
entists have studied the morphology and dynamics of the
flow [1-12] and proposed a set of numerical schemes able
to reproduce the observed macroscopic patterns [13-17]
and relevant pore-scale mechanisms [18-26]. The topic
is also of central importance for the study of groundwa-
ter flows and soil contaminants treatment [27,28] and has
direct applications in the energy sector, for example, in
hydrocarbon recovery methods [29]. One particularly in-
teresting aspect of multiphase flow in porous media is its
intermittent dynamics [3,4,18], with long intervals of stag-
nation followed by short intervals of strong activity. This
kind of general behavior [30-32] appears in many physical,
biological and economical systems, such as the stick-slip
motion of a block on an inclined plane [33], the propaga-
tion of a fracture front in a disordered material [34-36],
the number of mutations in models of biological evolu-
tion [37], acoustic emissions from fracturing [38,39], varia-
tions in stock markets [40], and the rate of energy transfer
between scales in fully developed turbulence [41,42]. In-
termittent phenomena arise irrespectively of the (certainly
different) specific details of each system. In the particular
case of porous media flows, this is caused by the interplay
between an external load (for example, an imposed pres-
sure difference across the system) and the internal random
resistance due to the broader or narrower pore-throats.

In the present work we show experimental results on
the burst dynamics during drainage in artificial porous
media and investigate the question of how the pressure
fluctuations (due to the burst activity) can encode useful
information about the system. The flows studied are slow
enough to be in the capillary regime, in which capillary
forces are typically much stronger than viscous ones [3,43].
We have employed synthetic quasi-2D systems driven by
a controlled imposed pressure (CIP) boundary condition.
This boundary condition differs from the controlled with-
drawal rate (CWR), more commonly used [3,9]. The dy-
namics is characterized both via direct imaging of the
flow and by local pressure measurements. We present
results related to the statistics of bursts, their morphol-
ogy and orientation within the medium, and the power
spectral density (PSD) associated with the fluctuations
in the measured pressure signal. In particular, we show
that for systems driven by the CIP boundary condition,
the PSD presents a 1/f scaling regime. The presence
of 1/f* power spectra is a widespread feature occur-
ring in a myriad of contexts [44-46], commonly signaling
the collective dynamics of critical systems. Some exam-
ples are the early measurements of flicker noise in vac-
uum tubes [47], fluctuations in neuronal activity in the
brain [48], quantum dots fluorescence [49], loudness in mu-
sic and speech [50,51] and fluctuations in the interplane-
tary magnetic field [52]. Although 1/f¢ power spectra
have also been observed in some fluid systems, such as
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Fig. 1: (Color online) Diagram of the experimental setup and
boundary conditions (CIP or CWR). The numbers (1), (2)
and (3) denote the porous medium, filter and external tubing.

simulations and experiments on hydrodynamic and mag-
netohydrodynamic turbulence [53,54] and quasi-2D turbu-
lence in electromagnetically forced flows [55], to the best
of our knowledge the results reported here provide the
first experimental observations of 1/f% power spectra in
porous media flows.

Methodology. — Figure 1 shows a schematic repre-
sentation of the setup employed (additional details in
ref. [56]). The quasi-2D porous network is formed by a
modified Hele-Shaw cell filled with a monolayer of glass
beads having diameters a in the range 1.0mm < a <
1.2mm. The beads are kept in place by a pressurized
cushion placed on the bottom plate of the cell. A spon-
geous filter with pores much smaller than those in the
medium is placed between the porous network and the
outlet of the model. This filter allows the dynamics to
continue inside the medium even after breakthrough [56].
Pressure measurements are taken at the outlet with an
electronic pressure sensor (Honeywell 26PCAFG6G) that
records the difference between the air pressure (non-
wetting phase) and the liquid pressure (wetting phase)

at the outlet, i.e., py = ppw — pS*. Since the inlet is
open to the atmosphere, p,,, = po in all experiments,

where py is the atmospheric pressure. The porous ma-
trix was initially filled with a mixture of glycerol (80%
in weight) and water (20% in weight) having kinematic
viscosity v = 4.25 10~5m?/s, density p = 1.205g/cm?
and surface tension v = 0.064N-m~!. We have per-
formed experiments on 4 different porous media with
dimensions: 1) 27.3cm x 11.0cm, 2) 14.0cm X 11.5 c¢m,
3) 32.8cm x 14.6cm and 4) 32.0cm x 4.5cm, where the
first number corresponds to the length (inlet—outlet di-
rection) and the second to the width. The outlet of the
model is connected to an external reservoir. The height
difference h between the surface of the liquid in this reser-
voir and the model is used to control the imposed pressure
via an adaptive feedback mechanism (CIP boundary con-
dition). This mechanism guarantees that the pressure is
only increased when the system is in a quasi-equilibrium
situation (see details in [56]). By slowly increasing the
imposed pressure (via small steps in the height of the

&
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Fig. 2: (Color online) Individual bursts for experiment CIP-1.
The flow is from left to right, during ~ 82h. Bursts color
coded by their size normalized by a typical pore area (top)
and randomly (bottom). The vast blue areas in the top image
contain many smaller bursts (detail).

reservoir dh = 10 um = dp = pgdh = 0.12 Pa, where g
is the acceleration of gravity), new pore-throats may be-
come available to invasion. The value of dh was chosen to
satisfy the accuracy condition that the height would typ-
ically have to be increased several times before new pores
are invaded. As long as this condition is satisfied, the
results obtained should be independent of the particular
value of dh.

Burst size distribution. — We begin by analyzing
the size distribution of invasion bursts in a CIP exper-
iment. A burst is understood as any connected set of
pores invaded in the interval ® = to — t; between two
consecutive time instants, t; and to, at which the imposed
pressure was increased (i.e., the imposed pressure is con-
stant during the interval ©, being changed only at its ex-
tremes t; and t2). Figure 2 shows the individual bursts
for experiment CIP-1 (the number identifies the model),
colored according to their area (top) and randomly (bot-
tom), the latter being done to aid the visualization of sep-
arate bursts. Only bursts having their centroids in the
central 90% of the length are considered, to avoid possi-
ble boundary effects [56]. A great deal of information can
be obtained from this image. Initially, one can observe
the homogeneity and isotropicality of the dynamics: the
bursts do not seem to follow a well-defined size gradient
(the top image does not seem to transition from blue to
red following a specific direction), nor have they a clear
preferred orientation (they are not particularly elongated
in any direction). It is hard, if not impossible, to say from
this image in which direction the invasion takes place (it is
from left to right). A reflection (vertical or horizontal) or
a 180° rotation would also not be clearly identified. The
box counting fractal dimension [57,58] of the invading clus-
ter was measured to be D = 1.76 £ 0.05. Figure 3 shows
the burst size distribution N (n) for 3 separate experiments

14004-p2
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Fig. 3: (Color online) Burst size distribution N(n). The line
shows the scaling N(n) o« n~7, with 7 = 1.37 & 0.08, which is
consistent with the theoretical value 7 = 1.30 = 0.05 predicted
by numerical simulations and percolation theory [21,58]. The
data has been shifted vertically to aid visualization.

(the number of pores n being measured by normalizing the
burst area by a typical pore area ~ 0.3 mm?). The system
exhibits the scaling N(n) o n~7, with 7 = 1.37 £ 0.08,
over at least two decades. The burst dynamics is there-
fore spatially self-similar, a feature commonly associated
with systems close to a critical transition [46,57]. The
exponent 7 has been calculated via maximum likelihood
estimation (MLE) [59] using the data from fig. 2 for burst
sizes in the interval 1 pore < n < 150 pores. MLE was
used in order to avoid possible biases from data binning
(MLE is a binning-free method), see also [60]. The scal-
ing is shown in fig. 3 on top of the logarithmically binned
histogram of the data for the sake of visualization. Exper-
iment CIP-4 was left out of the analysis because boundary
effects rendered the results unreliable (model 4 is too nar-
row). The measured exponent is consistent with the value
7 = 1.30 + 0.05 predicted by numerical simulations and
percolation theory [21,58]. Martys et al. [21] derived the
analytical form

D, —1/V

=1
T + D s

(1)
where D and D, are, respectively, the fractal dimensions
of the growing cluster and its external perimeter and
v’ =4/3 is the exponent characterizing the divergence of
the correlation length [57,58]. Using the values D = 1.76
and D, = 4/3 [14], we obtain 7 = 1.33, very close to
the measured value 7 = 1.37 &+ 0.08 shown in fig. 3. Our
measurements provide a direct experimental verification
of eq. (1), proposed in ref. [21].

Crandall et al. [61] performed measurements in a CWR
system finding the exponent 7 = 1.53, which is compared
to the theoretical prediction of 7 = 1.527 from Roux
and Guyon [62]. Nevertheless, Maslov [63] pointed out
an inconsistency in this theoretical prediction, the cor-
rect expression being given in eq. (1). Modified invasion
percolation simulations and pressure measurements [3,4]
have shown that, in a CWR, system very large bursts are
split into smaller ones. A burst size distribution was ob-
served, with exponent 7 = 1.3 4+ 0.05 for the simulations

XX
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Fig. 4: (Color online) Burst time distribution G(©). The scal-
ing (red line) corresponds to G(0) ox ©~ 7 with v = 2.04+0.15.
In the inset we show the nearly uniform distribution g(1/0).

and 7 = 1.45 £ 0.10 for the experiments (consistent with
eq. (1)), followed by an exponential cutoff [3,4]. In the
CIP case large bursts can occur because the displaced lig-
uid can freely flow out of the model but in the CWR case
this is not possible since the available volume for the dis-
placed liquid is bounded by the outlet syringe volume.

Burst time distribution. — Let us now focus on the
distribution G(©) of time intervals © between two suc-
cessive increments in the imposed pressure during which
invasion bursts have occurred. Figure 4 shows this dis-
tribution, produced for all bursts with © > 120s, a cut-
off related to the minimum time difference for proceeding
the image analysis used in the feedback mechanism [56].
It scales as G(O) x O~ with v = 2.04 + 0.15 (the ex-
ponent was also computed via MLE [59]). In the in-
set we show the distribution of inverse intervals g(1/0),
which is nearly uniform, since it is related to G(©) by
g(1/0) = G(©)8% x ©%77. The uniformity of g(1/0)
will play an important role further on in the modeling of
the pressure fluctuations PSD.

Connection between the burst size and time dis-
tributions. — We consider now the link between the burst
size distribution N(n) shown in fig. 3 and the burst time
distribution G(©) in fig. 4. Let A = s/O denote the av-
erage growth rate of a burst of area s during the time
interval ©. This corresponds to an external perimeter
growth [57,58], therefore A o ul, where u is a character-
istic front speed (set by the Darcy law and the character-
istic capillary pressure) and I, is the external perimeter,
related to the linear size across a cluster | as I, o [Pe.
Since s o< [P, we have

5/0 = A xul, x sP/P = 0« s, (2)

with 8 = 1 — D./D. The distributions of s and © are
linked by |G(©)dO| = |p(s)ds| and since the area s of a
burst is proportional to its number of pores n (see fig. 3),
it follows that p(s) o< s~7. Therefore,

G(O) x s 7ds/dO® = G(O) x ©77, (3)

14004-p3
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Fig. 5: (Color online) Typical exponential relaxation signature
of pressure pulses. A pulse can trigger others and even give
rise to a large avalanche (shown in the inset).

with v = (r — 1+ #)/8 = (r — D./D)/(1 - D./D).
Using the literature values 7 = 1.3 [21,58], D, = 1.33
and D = 1.82 [58], we find v = 2.11, quite close to the
measured value v = 2.04 seen in fig. 4. As an imme-
diate consequence of eq. (3), the distribution of inverse
intervals scales as ¢g(1/©) o 7", with n = v -2 =
(r—2+ D./D)/(1 — D./D). Using the literature val-
ues above we find 7 = 0.11, which is in agreement with
the experimentally observed value n = v—2 = 0.04+£0.15.
These theoretical considerations explain the nearly uni-
form distribution observed in the inset of fig. 4.

Fluctuations in the measured pressure signal. —
Next, we analyze the fluctuations in the pressure signal,
following the pore invasion events. In fig. 5, we show the
typical pressure signature in a CIP experiment. The ob-
served pressure pulses present a characteristic exponen-
tial relaxation. We also observe that a pulse can trigger
others and even give rise to large avalanches with the in-
vasion of several pores. A pulse can be divided into two
phases: an initial fast drop in the capillary pressure p. and
a slower exponential relaxation back to the pressure level
pgh set externally (see fig. 1). The fast drop in p. occurs
as the liquid is displaced (following the invasion of one
or more pores) and subsequently redistributed to the sur-
rounding menisci, causing a back-contraction of the inter-
face [3,4,18]. The relaxation phase occurs as the liquid-air
interface readjusts itself inside the available pore-throats
and the liquid volume displaced from the pores flows out
of the model. The fluid motion sets in viscous pressure
drops which are reflected in the measured pressure, as seen
in fig. 5. These drops occur (see fig. 1): 1) in the porous
medium itself, 2) in the filter at the model’s outlet and
3) in the external tubing (the numbers are in correspon-
dence with fig. 1). The height difference h between the
surface of the liquid in the reservoir and the model level
accounts for a hydrostatic component pgh. Adding these
contributions and assuming that the flow is governed by
Darcy’s equation, we have

uSLuLg
S3k3

puly Lo
DPw — U—F— — U— —

k1 ko

(4)

+ pgh = po,

where p,, is the pressure in the wetting phase (liquid) just
after the liquid-air interface, u is the average Darcy ve-
locity of the flow in the porous network, p = pv is the
liquid’s dynamic viscosity, L; and k; with i = {1,2,3} are
the length and permeability, respectively, of the porous
network, filter and the tubing and S; and S3 are the re-
spective cross-sections of the model and the tubing. Since
the capillary pressure across the liquid-air interface is
Pe = Pnw — Pw = Po — Pw, €d. (4) becomes

pe +uR — pgh =0, (5)

where

R=Ri+ Ry + R3; — R=%+%+ngé3 (6)
is equivalent to an effective resistance to the flow. The
volumetric flux in a pore is dV/dt = ua®/¢, where a is
a characteristic pore length scale (for example the bead
diameter) and ¢ is the porosity of the model. By intro-
ducing the concept of a capacitive volume k = dV/dp.
(used first in ref. [3]), where dV is the liquid volume dis-
placed from a pore-throat in response to a change dp. in
capillary pressure, we have

v _ we’ _ 10 dpe
dt ¢ a2 dt’
Plugging this equation into eq. (5),

(7)

k¢R dp,
a? dt
thus producing the exponential behavior seen in fig. 5.
C = p:(0) — pgh < 0 is a constant associated to how much
the capillary pressure decreases during the invasion of a set
of pores before it starts to rise again. The characteristic
time scale of the exponential decay is

I‘i(bR. )

a2

The invasion of one pore quite frequently triggers the
invasion of others, in such a manner that before an expo-
nential pulse decays completely, another one is seen in the
pressure signal, see fig. 5. This mechanism delays the com-
plete relaxation of the pressure, effectively increasing the
decay time from t. to t* > t.. Indeed, if this relaxation-
delaying mechanism was absent, the burst time distribu-
tion G(©) shown in fig. 4 should be peaked around the
value © = ¢.. Since we have shown that G(©) x 077
we expect the effective exponential decay time t* to fol-
low the same distribution and, in particular, the effective
decay rate A = 1/t* should be uniformly distributed in
an interval [Ain, Amaz| following the same distribution
as 1/© (see inset of fig. 4). Apqs is related to the mini-
mum decay time t*, i.e., Appaz = 1/t and we will consider
Amin = 0 for convenience. Later on we will show that
the distribution of decay rates has a crucial impact on the
power spectrum of the pressure signal.

pe—pgh =0 = pc(t) = pgh+Ce™ /', (8)

te =

14004-p4
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Fig. 6: (Color online) Power spectral density comparison for
CIP experiments (model’s numbers in the legend). Guide-to-
eye lines are shown for the scaling S(f) «x f7%, with a =1
for lower frequencies and o = 2 for intermediate frequencies.

Pressure signal PSD. — In fig. 6 we show the power
spectral density (PSD) associated to the pressure signal
for the CIP experiments. The PSD S = S(f) was com-
puted for all experiments using the Welch method [64].
We have noticed the existence of a 1/f scaling regime
(flicker /pink noise) for lower frequencies, followed by a
crossover and a 1/f2 scaling regime (brown noise) for in-
termediate frequencies. For higher frequencies, another
crossover follows and a region independent of f is seen
(white noise associated with fluctuations in the pressure
sensor and unimportant to our analysis). We see from
fig. 6 that the scaling properties of the power spectrum,
in particular the occurrence of 1/f noise, seem to remain
unchanged despite the changes in both sample dimensions
and pore-size distribution (the samples were rebuilt be-
fore each experiment, thus changing the pore-size distri-
bution [56]). The 1/f regime is associated with events
having frequency f < 1072 Hz, or alternatively, periods
T > 100s. From fig. 5, we see that this corresponds to the
characteristic time intervals between the pressure pulses,
thus indicating that they are associated with the presence
of the 1/f scaling in the PSD.

Analytical modeling of the pressure signal and
PSD scaling explanation. — The non-trivial scaling of
the CIP power spectral density can be explained by the
following mathematical framework, which is an adaptation
of an argument proposed in [65] to explain a similar 1/f
to 1/f? transition in the very first reported observation of
1/f noise [47] (see also [66] and [67]). Apart from a nearly
constant offset, the pressure signal can be modeled as a
train of exponentially decaying pulses located at randomly
distributed discrete times ¢;,

palt) =D AH(t — tj)e 4D, (10)

where A > 0 and A < 0 are initially taken to be constants
(the characteristic decay rate and amplitude of the pulses)

and H(t — t;) is the Heaviside step function, i.e., H(t —
t;)=0ift <t; and H(t —t;) =1if ¢t > ¢;. Let Py(f) be
the Fourier transform of py(¢). The PSD Sy(f) is

1 A?
S\(f) = Jim 7 (IPDF) = 3o e

where r is the average rate of occurrence of pulses and the
brackets are the expected value operator (since in practice
one does not have access to an ensemble of measurements,
we have employed Welch’s method [64] to estimate the
PSD, which is based on the concept of a periodogram [68]).
The PSD shown in eq. (11) is a Lorentzian curve which is
approximately constant for lower frequencies (f < A/2m)
and decays as 1/f2 for higher frequencies (f > \/27).

A model with a single constant decay rate A cannot
incorporate the 1/f region but, as previously argued, we
expect A to follow the uniform distribution £(A) = 1/Amax
in the interval [0, Ajnaz]. Taking this distribution into ac-
count and writing A\,,q. = 27 f;, we have

(11)

Amaz 9
S(f) = /O SA(HENdN = 4;42% arctan (f> ,

f
(12)
Equation (12) has the asymptotic behavior
2
8A7Tf7; %7 if f < fta
st =4 T SNGEY
yroRTh it f> fi,

thus presenting the 1/f to 1/f? transition observed in the
experiments. The transition frequency f; in experiment
CIP-1 is roughly f; = 1.5-1072 Hz (see fig. 6). By using the
constant A%r as a fitting parameter we can compare the
measured PSD with the theoretical prediction in eq. (12).
Figure 7 shows the resulting comparison produced using
A%r = 1.5Pa%/s. The dashed red vertical line marks the
transition frequency f;. The analytical result reproduces
the experimental findings very well, scaling as 1/f for
f < fr and as 1/f2 for f > f;. Indeed, this theory not
only captures the 1/f and 1/f? domains but also fits the
data well for the crossover region between these domains.

The transition frequency f; can be estimated using
eq. (9) and the resistance R from eq. (6). As a first-
order approximation, let us consider only the contribution
to R from the term R; relative to the resistance in the
porous medium itself. Using p = pr = 5.1-1072Pa s,
Ly =027m, a = 1073m, x = 1.1 - 1072 m?/Pa (from
ref. [3]), k1 = 1.6 - 1079 m? and ¢ = 0.63 (both measured
in a similar model in ref. [5]), we find

1 . k1a2
27t - 2mkpuly
not far from the transition frequency f; = 1.5- 1072 Hz

shown in fig. 7. The overestimation comes from the terms
Rs and R3 in eq. (6), ignored in the calculation above.

ft= = f, ~2.6-10 %Hz,

(14)
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Fig. 7: (Color online) Comparison between theoretical predic-
tion and experiments. The analytical result (thin blue line) is
given by eq. (12), where f; = 1.5- 1072 Hz (vertical dashed
red line) and A%*r = 1.5Pa®/s. The analytical prediction
matches the experimental measurements (green crosses, experi-
ment CIP-1) well. In the inset we show the PSD for experiment
CWR-1.

Finally, notice also the existence of a single isolated
point in the very low-frequency part of the PSD, falling
far from the scaling region (extreme left for all exper-
iments in fig. 6). This point is not an outlier in the
data: its existence signals the very slow positive drift
of the pressure signal, which occurs since the capillary
pressure has to increase to allow the invasion of narrower

pores [3,56].

Comparison with a system driven under a CWR
boundary condition. — In order to test the effect of the
boundary conditions in the PSD, we have run a controlled
withdrawal rate (CWR) experiment using model (1). The
resulting PSD is shown in the inset of fig. 7. The PSD still
presents an interesting scaling, but with different scaling
regimes: 1/f1-3, for lower frequencies, and 1/f3-°, for in-
termediate frequencies. The 1/f region is only observed
for systems driven under the CIP boundary condition.
The fact that the exponents for CWR differ from CIP
is not surprising, since the pressure relaxation in that case
is no longer exponential, but linear, see ref. [3].

Connection between the measured pressure and
the capillary pressure. — The pressure sensor measures
the difference between the pressure in the air and the lig-
uid at the outlet, i.e., Py = ppw — p2*t. The measured
signal is not exactly the capillary pressure p. = pnw — Dw
across the liquid-air interface, since p,, # po** given that
viscous losses occur between the liquid-air interface and
the outlet, thus generally making p,, > p%“*. Those losses
occur in the porous medium itself and in the filter at the
outlet of the model (numbers (1) and (2) in fig. 1). The
connection between p,, and p. is p,, = pe + u(R1 + Ra),

where R, and Ry are the resistance terms from the porous

network and the filter. Using eqs. (7) and (8), we have

R+ Ry

e G 15
m+&+m)e (15)

pm=pgh+C(1

Therefore, by comparing egs. (8) and (15), we see that p,,
differs from p. only in the amplitude of the pulses, but
not in their characteristic exponential decay. Since our
analysis depended only on the distribution of the decay
rates, the differences between p,, and p. are not crucial.

Further generalizations of the PSD analytical
framework. — One possible generalization of the model
would be to consider a system with a distribution of am-
plitudes A instead of a single value (as we might expect
from fig. 5). In this case the scaling properties of the
PSD would still be left unchanged but the constant A2 in
egs. (12) and (13) would be replaced by the expected value
of A2. Another possibility would be to consider a distri-
bution for A of the form &(\) oc A™°. Here the 1/f? region
is still left unchanged but the 1/f scaling is changed to
1/f049) [69]. As previously noted, the distribution of de-
caying rates X is the crucial figure behind the 1/ f scaling.

Conclusions. — We have analyzed the burst dynam-
ics from slow drainage experiments in porous media. We
showed that this dynamics presents many features com-
monly associated to critical systems. Intermittent bursts
of activity were observed over many time and length scales
and a theoretical expression for their size distribution scal-
ing, eq. (1), was verified experimentally. The pressure sig-
nal of the invasion presented an interesting PSD scaling,
with a 1/ f scaling region which further transitions to 1/
in the case of the CIP boundary condition. We have em-
ployed an analytical framework [65] which satisfactorily
reproduces the scaling properties of the PSD. The deriva-
tion of closed expressions relating the pressure signal PSD
to properties of the porous medium and the fluids can lead
to new techniques for indirectly probing such systems. For
example, if one has access to the PSD only and not to the
full pressure signal, the transition frequency f; can still be
measured and information on the ratio k; /¢ between the
permeability and the porosity of the medium can be found
via eq. (14). If the PSD and f; are known, eq. (12) can be
fitted to measure the product A%r between the amplitudes
and rate of occurrence of bursts.
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