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Preface

This thesis was written to be submitted to the Faculty of Mathematics and Natural Sciences at the
Universitetet i Oslo (UiO), in partial fulfillment of the requirements for the degree of Philosophiae
Doctor (PhD). The PhD project was carried out as a collaboration between the Marine Geophysics
Department of Petroleum Geo-Services (PGS) and the Department of Geosciences of UiQO. This col-
laboration was under the form of the Industrial PhD Program organized and supported by the Research
Council of Norway. The research described herein was conducted under the supervision of Dr. En-
drias Asgedom (PGS), Dr. Walter Sollner (PGS), Prof. Leiv-Jacob Gelius (UiO), and Prof. Valérie
Maupin (UiO), between March 2015 and December 2017.

The research in my PhD studies started with an investigation of the sparsity promoting methods
for seismic processing applications. During this task, I was rapidly attracted by dictionary learning
methods. These methods employ complex optimization schemes to learn information embedded in
the data and to derive a mathematical domain that is optimal to concisely express the signal in the
data. Dictionary learning methods have recently gained high interest in signal processing as they
have been shown to achieve impressive tasks in compression, denoising, data reconstruction, and data
analysis. However, I found that these methods, often developed to process natural images, were not
necessarily optimal for seismic data applications, and therefore, I endeavored to adapt them for such
uses. This thesis summarizes this research.
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Summary

Seismic signals are generally spread across many data samples of the recorded data. Applying a
mathematical transformation to the data can however concentrate them on few samples only of the
transform domain. Such representations are called sparse and have gained high interest in seismic
processing because they build the necessary requirement to better compress or analyze the signal in
the data. This thesis first assesses the effectiveness of building sparse representations for three critical
seismic processing tasks, i.e., random noise attenuation, signal separation, and data reconstruction.
The presented theory and the numerical experiments reveal that sparse representations can be used
to achieve the aforementioned processing tasks under the condition that the signal has a high level
of sparsity in the transform domain. It then follows an investigation of the transforms that can lead
to sparse representations of the seismic data. A particular focus is placed on dictionary learning
(DL) methods. These methods are applied to a data set to find a dictionary that can be used for
sparse representation of the data set. The dictionary is a set of signals, called atoms, that represent
elementary patterns of the data, and the sparse representation is found by reconstruction of the data
with linear combinations of few dictionary atoms. The conventional DL methods are examined, and
various modifications are implemented to develop three DL-based methods that are better adapted
to each of the seismic processing tasks of interest. (1) A DL method is developed to attenuate the
random noise in the seismic data. This method learns a dictionary and finds a sparse approximation
of the data based on a statistical measure of the coherence in the residuals. Due to this particularity,
the method is released from the need of the a priori knowledge of the noise energy. This is attractive
for seismic data applications because the noise in seismic data has an intensity that is often unknown
and that is varying across the data set. (2) A DL-based method is developed to separate the coherent
noise from the seismic data. Some types of noise that contaminate seismic data cannot be removed
with random noise attenuation methods because they appear with spatial or temporal coherency in the
data. To tackle such noise, DL is combined with a statistical classification. First, DL is applied to
the noise-contaminated data, which results in a dictionary of atoms representing either signal patterns
or noise patterns. Using a statistical classification, the noise atoms are separated from the signal
atoms, which divides the dictionary into a subdictionary of noise atoms and a subdictionary of signal
atoms. Then, by finding a sparse representation of the data in the two subdictionary domains, the
signal and the noise contributions in the data are identified and separated. This DL-based method
has compelling advantages compared to the traditional coherent noise removal methods based on
sparse representation; it does not require someone to search for adequate transforms that may sparsify
the signal and the noise, and it adapts to the signal and noise in the data for an optimal separation.
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(3) a DL method is developed to interpolate and regularize the seismic data. In this method, each
learned atom is constrained to represent an elementary waveform that has a constant amplitude along
a parabolic traveltime moveout characterized by kinematic wavefield parameters. Such a parabolic
structure is consistent with the physics of the seismic wavefield propagation and it can be used to
easily interpolate and extrapolate the atoms. Using this advantage, the method can interpolate and
regularize the seismic data. The process consists in learning a parabolic dictionary, interpolating
the atoms, and computing a sparse representation of the data in the interpolated dictionary domain.
Benefiting from the parabolic structure, the sparsity promotion, and the data adaptation, this method is
able to interpolate severely aliased data. The three proposed DL methods are validated with synthetic
and field seismic data examples. The effectiveness of the denoising methods are also assessed in
comparison to industry-standard and state-of-the-art methods. Each method is demonstrated to be
valuable for seismic processing.
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Notation and Acronyms

Unless indicated otherwise, the nomenclature and acronyms in chapters 1, 2, 3 and 7 correspond to
the ones given below.

Notation

In general, scalars are denoted by lowercase letters or symbols, vectors are denoted by lowercase bold
letters or symbols, and matrices are denoted by uppercase bold letters or symbols. Particularly, the
notations that are recurrently used are given below.

111
‘*

T

N q®UE =T8T >0

absolute value

{,-norm of a vector

adjoint of a matrix

transpose of a vector or a matrix

error threshold tolerated in an error-constrained sparse approximation
indexes of the support of a sparse representation

mutual coherence

ith atom of the dictionary

dictionary

number of atoms in the dictionary

number of recording in the training set used to learn a dictionary

length of a recording, signal, or atom

noise

sampling matrix

{yp-norm threshold imposed to a cardinality-constrained sparse approximation
sparse coefficient vector (most of the cases) or spatial coordinates (section 2.3.1)
signal

recording



Acronyms
1D one-dimensional
2D two-dimensional
3D three-dimensional
BP basis pursuit
CDL coherence-constrained dictionary learning
DCT discrete cosine transform
DDTF data-driven tight frame
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DWT discrete wavelet transform
FOCUSS focal underdetermined system solver
IRLS iterative-reweighed-least-square
K-SVD  k times singular value decomposition
MCA morphological component analysis
MOD method of optimal direction
MP matching pursuit
NP non-deterministic polynomial-time
OMP orthogonal matching pursuit
PDL parabolic dictionary learning
PGS Petroleum Geo-Services
PhD Philosophiae Doctor
S/N signal-to-noise ratio
SGK sequential generalization of K-means
SVD singular value decomposition
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Chapter 1

Introduction

1.1 A towed-streamer marine seismic survey

This section starts with a brief description of the objective and the course of action of a typical towed-
streamer marine seismic survey, then it points out some issues encountered during the acquisition of
the data, and it relates these issues to the need for denoising, interpolation, and regularization of the
data during seismic processing.

1.1.1 The objective and course of action of the survey

Marine seismic surveys aim to acquire knowledge about the geology below the sea floor to find and
extract valuable mineral resources. For a typical three-dimensional (3D) towed-streamer survey, a
seismic vessel tows below the sea one or several seismic sources and several cables called streamers
containing sensors. During the survey, the vessel sails above the area of interest and the sources are
triggered at desired time intervals. Each source emits a seismic wavefield that travels down through
the water and into the subsurface. At each interface between different types of rocks, a portion of
the wavefield is reflected toward the sea surface and may be recorded by the sensors. The recorded
wavefield is different from the emitted wavefield because it has been modified and altered during its
propagation in the different layers. The modifications and alterations are described by known wave
equations and they depend on the composition of the rocks, the structure of the layers and formations,
and on the presence and type of fluid in the rock. Hence, the recorded wavefield contains information
about the geology of the subsurface. In practice, one does not deduce this information by observing
the recorded data; the reasons include that the quantity of recorded data is extremely large (e.g., tens of
terabytes of data are acquired to survey an area of a few thousand squared kilometers). To enlighten
this information, the geophysicists apply a processing sequence to the data, which transforms the
data into an interpretable image of the subsurface. This process is called processing, imaging, and
inversion. Afterward, geologists can quantitatively interpret the image to deduce the geology of the
subsurface and locate or monitor a reservoir of oil or gas.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Scheme of the acquisition of a conventional towed-streamer marine survey. s: an array of
airguns used to generate a source wavefield; r: a streamer containing sensors that record the wavefield;
in: inline direction; cross: crossline direction; dx;,: spacing of the sensors in a streamer; dXross:
streamer spacing.

1.1.2 Acquisition setup

Nowadays, most of the towed-streamer marine surveys are 3D. In this case, several streamers are
towed by the vessel. A scheme of a conventional 3D marine acquisition setup is shown in Fig-
ure 1.1. Several parameters, for instance the number of sources, the number of streamers, the length
of the streamers, the streamer spacing, and the shot interval, vary from one survey to another. These
parameters vary because they are adjusted for each survey to optimize the extraction of a targeted
information that is specific to the survey. I will describe one survey with standard parameters to give
an idea of the scale of a marine seismic survey. The vessel sails over the area of interest along parallel
straight lines. Two sources (arrays of air guns) called flip and flop are alternatively triggered. The
distance between two activations of flip is 37.5 meters; the same applies for flop. The pressure and
the vertical particle velocity wavefields emitted by each source is recorded over 9 s by sensors placed
into 14 streamers separated by 75 m. Each streamer is 8 km long and contains a group of sensors
every 12.5 m that records both the vertical particle velocity and the pressure wavefields. The depth of
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Figure 1.2: Examples of sources of mechanical noise. a) A steering device often called a "bird" and
b) barnacles growing on a seismic cable.

the sources is 7 m and the depth of the receivers is 20 meters.

1.1.3 Acquisition-related issues

Unfortunately, the acquisition of the seismic data is not ideal with respect to the later processing and
imaging. Two main issues are the noise contamination and the poor spatial sampling.

Noise contamination

Undesired ambient signals are recorded together with the seismic wavefield. These undesired signals,
referred to as noise, additively contaminate the seismic data. A part of the noise is due to the swell.
Swell momentarily changes the height of the water column above the sensors and creates hydrostatic
pressure variations. Swell also leads to flow motions around the streamers and creates dynamic-
pressure fluctuations on the surface of the streamer (Elboth et al., 2009b). These pressure variations
are recorded by the sensors. Swell-related noise is low frequency; this characteristics facilitates its
separation from the seismic signal (Elboth et al., 2008). Another type of noise, the mechanical noise,
largely contaminates the seismic data. This noise is due to vibrations that propagate along the stream-
ers. These vibrations are induced by perturbations of the movement of the streamers in the water.
The two well-known causes of these perturbations are steering devices and barnacles. The steering
devices are placed at regular distances along the streamers to control their position. The barnacles are
crustaceans that can attach and grow on the streamers; they are particularly abundant in warm waters.
Pictures of a steering device and some barnacles are shown in Figure 1.2.

Figure 1.3 presents a shot gather taken from a 3D field seismic data set to illustrate the mechanical
noise in the seismic data. A common shot gather refers to the set of traces that were recorded for the
same shot point. For a 3D acquisition, this set of traces forms a data cube having the dimensions
time, inline offset, crossline offset, where the inline and crossline offsets are the inline and crossline
components of the source-receiver offset vector, respectively. Note that a t> amplitude correction
was applied to the data shown in Figure 1.3 to compensate for the absorption and the geometrical
spreading. Also, the frequencies of the data were progressively attenuated from 15 to 5 Hz and muted
below 5 Hz due to very poor signal-to-noise ratio (S/N) in this frequency range. In Figure 1.3a, an
inline and a crossline slice through the shot gather are shown. An inline slice corresponds to the data
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Figure 1.3: Illustration of the mechanical noise and the aliasing in the seismic data. a) an inline and a
crossline slice through a shot gather. The dashed frame boxes enclose b) a window of the inline slice
and c) a window of the crossline slice. d, e) the f — k£ amplitude spectra of the inline slice window and
the crossline slice window, respectively. The white arrows point out locations where the mechanical
noise is observed, whereas the black arrows point out the position of aliased energy.
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recorded by one streamer, whereas a crossline slice corresponds to the data recorded by the receivers
of the streamers having an identical position in the streamer. A window from each slice is shown
in Figure 1.3b-c. The f — k (i.e., frequency-wavenumber) amplitude spectra of the data within the
two selected windows are presented in Figure 1.3d-e. We can observe mechanical noise in the data,
as pointed out by the white arrows. In time, the mechanical noise is localized on few neighboring
traces. This behavior is to be expected considering the fact that the streamer vibrations are generated
locally and their amplitudes rapidly decay with distance. In the f — k& domain, the mechanical noise is
significant from 0 to 70 Hz and is spread across all wavenumbers. It is spread across all wavenumbers
because the velocity of the vibrations is very low (lower than 100 m/s). The mechanical noise is
challenging to remove because it can be coherent in space and time and it largely overlaps the seismic
signal in the f — k domain. There are other types of coherent noise that can contaminate marine
seismic data but they will not be investigated in this thesis. A description of these types of noise is
presented by Elboth (2010).

In addition to coherent noise, there is some energy that appears to have no spatiotemporal co-
herency. This energy is called random noise. It can be caused by association of many sources, e.g.,
the ambient sea signal, human activities, sensor inaccuracy, etc.,... or it can correspond to seismic
energy that is not interpretable. Uninterpretable seismic energy can be weak scattering energy that is
too poorly sampled to appear with spatiotemporal coherency in the data.

If the noise is not removed in an early stage of processing, it alters the data-dependent processing
methods, e.g., surface-related multiple elimination, and it reduces the resolution of the final image.

Poor spatial sampling

To have a complete discrete description of a continuous signal, the sampling should satisfy the Nyquist
criterion (Shannon et al., 1993). For a one-dimensional (1D) temporal signal containing energy up to
a maximum frequency fn.x, the Nyquist criterion dictates to sample the data regularly with a rate dt

of at least )

2.fl’IlZlX .
In this case, the description of the signal is complete because the continuous signal can be recon-

dt

(1.1)

structed exactly from the discrete signal using a Fourier reconstruction. If the Nyquist criterion is not
respected, the signal part lying on frequencies above the Nyquist frequency 1/(2dt) will be expressed
with lower frequencies in the Fourier domain, and a Fourier reconstruction would be incorrect. In
that case, the signal is said to be aliased, and a reconstruction is not possible unless other a priori
information is available. In the seismic data, there is no aliasing issue in time. The analog signal
recorded by the sensors is band limited due to the instrument response, and when it is later digitized,
it is sampled at a rate that satisfies the Nyquist criterion.

To avoid aliasing in a spatial dimension x, the Nyquist criterion imposes to sample the data with

the spatial sampling rate dz of at least
1

2
2kx,max

dr — (1.2)
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where kg max 1 the maximum magnitude of the wavenumbers (spatial frequency) containing signal
energy. Since the seismic signal is a wavefield that follows the dispersion relationship, the magnitudes
of the wavenumbers of the monochromatic plane waves that compose the wavefield are given by

| = |f sin(a)] (1.3)

U'f’

where the wavenumber k, is expressed in m~!, f is the temporal frequency of the wave, v, is the
velocity of the wave at the receiver location, and « is the incidence angle of the wave. Considering
the worst-case scenario, 1.e., the incidence angle of the wave is 90°, the relationship in equation 1.3
shows that the upper bound of kpax iS fmax/vr. Therefore, to avoid spatial aliasing and ensure a
complete description of a wavefield, the Nyquist criterion imposes to record the data with a spatial

sampling rate of at least
v,

a Qfmax ’
The frequency range of interest may go up to 200 Hz and the seismic wavefield propagates in the water
with a velocity of approximately 1500 m/s, so the criterion given in equation 1.4 dictates to record

dx

(1.4)

the seismic wavefield with a spatial sampling rate of 3.75 m. In the seismic acquisition described in
section 1.1.2, the spatial sampling rate was 12.5 m in the inline direction and 75 m in the crossline
direction, and therefore, the spatial sampling is too coarse to obtain a complete description of the
seismic wavefield up to a frequency of 200 Hz. The data can be aliased from 60 Hz in the inline
direction, and from 10 Hz in the crossline direction. The f—k amplitude spectra shown in Figure 1.3d-
e illustrate how the spatial aliasing appears in the seismic data. The black arrows point out some
energy that should lie on non-sampled positive wavenumbers, but that lie on negative wavenumbers
instead.

The wavefield is recorded with a spatial sampling that is coarser than the one imposed by the
Nyquist criterion. The spatial sampling is set coarse due to cost reasons and practical limitations. For
instance, because the vessel has a limited towing capacity, towing the streamers closer to each other
would reduce the crossline aperture and the covered surface per line. Hence, more lines would be
required to survey the same area, which would convert into more time and more cost.

In addition, the wavefield may be sampled at locations that deviate from the intended ones because
marine currents often drift the sensors from the planned positions. The lateral deviation of a streamer
away from the towing direction is known as streamer feathering. In most of the cases the deviation is
within few meters, but it can be larger in bad weather. Hence, the recorded traces do not lie exactly on
a regular sampling grid. Besides, sensors or other elements of the recording system sometimes break
unexpectedly during the survey, leading to missing data or bad traces. This missing traces leave gaps
in the data set.

The aliasing and sampling irregularities cause errors if they are not corrected in an early stage of
the processing. The aliasing leads to an erroneous f — k representation of the seismic wavefield and
therefore alters the f — k& domain-based processing steps such as wavefield separation, designature,
demultiple, or migration. In addition, if the irregular sampling grid is approximated by a regular
grid for convenience, the processing and imaging methods that depend on the location of the traces
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are partly mislead and are inaccurately applied. The errors induced by the aliasing and the sampling
irregularities impacts the resolution and reliability of the final seismic image.

I presented two acquisition-related issues, namely, the noise contamination, and the poor spatial
sampling. They were presented because data applications in this thesis aim to correct for those issues.
However, note that the seismic surveys have other imperfections, e.g., the small crossline aperture or
the poor spatial sampling of the sources.

1.2 Objectives and outline of the thesis

This section briefly introduces the methods that will be investigated, then it states the objectives of
the thesis, and it finally presents the organization of the thesis.

1.2.1 Objectives of the thesis

The imperfections of the acquisition degrade the resolution of the final seismic image if they are not
corrected in an early stage of the processing sequence. I aim to achieve (1) random noise attenuation,
(2) separation of coherent noise from seismic signal, and (3) interpolation of the seismic data over a
dense and regular grid, by means of sparse representations.

Signal and noise separation or interpolation beyond aliasing can be seen as an underdetermined
problem. There is not enough information in the problem for the solution to be unique. For instance,
in the interpolation problem, several Fourier representations fit the data at the recorded locations and
are candidates to interpolate the signal. To resolve the underdetermined nature of the problem, a priori
information needs to be integrated. Adding a priori information about the morphology of the data can
be sufficient. Such information can be integrated to the problem using sparsity promotion. A sparsity
promoting process picks the solution that has the sparsest representation in a selected transform do-
main. A sparse representation in the transform domain has few high amplitude coefficients, whereas
the other coefficients have an amplitude close to zero. In other words, the signal is represented using
only few basis vectors of the transform domain. This is possible only if these basis vectors describe
the different morphological elements of the signal. Consequently, the sparse representation follows
the morphology described by the selected transform domain. Hence, promoting sparsity in a trans-
form domain whose basis vectors describe the a priori morphology of the seismic signal offers the
necessary requirements to achieve the aforementioned seismic processing tasks 1-3.

There are several sparse representation-based methods that have the potential to achieve the seis-
mic processing tasks 1-3. To attenuate the random noise, a method consists in transforming the data
in a domain that describes the morphology of the seismic signal, and approximating the data with the
high amplitude coefficients only. In the transform domain, the noise coefficients have low amplitudes
because the noise does not significantly correlate with the basis vectors due to its random character.
The signal coefficients have high amplitudes because all the signal energy is concentrated on few
coefficients only. Therefore, approximating the data with the high amplitude coefficients attenuates
random noise, whereas it preserves the signal to a high degree. To separate the coherent noise from
the seismic signal, a method consists in representing the data in a domain where the signal and the
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noise are sparse and lie on two different subdomains. This is sufficient to separate the noise from the
signal because the signal can be retrieved by muting the coefficients of the noise subdomain. Finally,
to interpolate or regularize the data, a method consists in finding its sparse representation in a domain
in which only the densely sampled wavefield is sparse, whereas other solutions are not.

For the three methods described in the preceding paragraph, there are several transform domains
that may describe the a priori morphology of the seismic data, and many processes that are candidates
for solving the sparse inversion problem. However, the different transform domains and sparse solvers
are more or less appropriate depending on the data and the problem. The objectives of the thesis are
to

(1) examine the different sparsity promoting processes,

(i1) investigate the different transform domains that can lead to sparse representation of the seismic
data,

(iii) select an appropriate transform domain and sparsity promoting process for each of the process-
ing tasks 1-3 based on the results from (i) and (ii), and implement a method that can achieve the
processing task with high-quality results and a minimal human interaction.

1.2.2 Thesis outline

Chapter 2 starts by examining the different sparsity promoting problems and the algorithms that can
solve them. Then, it assesses the effectiveness of sparse representations for random noise attenuation,
coherent noise separation, and signal reconstruction. Finally, it investigates the transforms and dic-
tionaries that can enable sparse representation of the seismic data. Chapter 3 explains the scientific
contribution of the articles I-III. Chapters 4 contains article I, which proposes a method to attenuate
the random noise in seismic data. Chapter 5 contains article II, which proposes a method to separate
the mechanical noise from the seismic data. Chapter 6 contains article III, which proposes a method
to reconstruct the seismic wavefield that is coarsely recorded during 3D marine acquisitions. Finally,
chapter 7 gives some conclusions and presents an outlook.



Chapter 2

Scientific Background

2.1 Sparse optimization problems

This section first explains the notion of representation in a transform domain, and then it presents the
sparsity promoting problems and the sparse solvers.

2.1.1 Notion of representation in a transform domain

The transform domain is defined by a dictionary. The term dictionary refers to a set of vectors called
atoms. The atoms are denoted with a;, ..., ax and their size is denoted with /N. The atoms are stored
in the dictionary matrix D such that D = [a; ... ak]|. In the synthesis approach, a signal y of size N is
reconstructed using a linear combination of the atoms. Hence,

y = Dx, 2.1)

where the vector x of size K is a solution that represents the signal in the domain defined by the
dictionary. If K > N, the dictionary is said to be redundant; in this case a solution x that represents
a signal y is not unique.

In some cases, the dictionary has additional properties; for instance, the dictionary can be a frame,
a tight-frame, or an orthonormal basis (Kovacevic and Chebira, 2007). The dictionary is a frame of
the Hilbert space H if there exists two constants A and B with B > A > 0 such that

K
Allyll3 <D lajyl* < Bllyll3 .VyeH. (2.2)

j=1

A frame is said to be complete, i.e., for any signal y, there is a solution x in the frame domain.
If A = B, the frame is called a tight frame. In that case DD* = I, where * is used to denote
the adjoint of a matrix and I is the identity matrix. This property conditions and stabilizes sparse
inversions and is exploited to build quick sparse solvers. If in addition the atoms are normalized, the
tight-frame is necessarily an orthonormal basis, which ensures that for any signal y, there is a unique

11
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solution x in the basis domain, and D'D = DD' = I. Hence, orthonormal bases benefit from easy
forward transformation operators because a representation x of a signal y can be simply obtained by
multiplying the transpose of the frame to the signal (x = D"y).

2.1.2 The exact sparse representation problem

Strictly speaking, the sparse representation problem consists of finding the exact representation of the
signal in the dictionary domain that has the least /y-norm. The /y-norm is not a proper mathematical
norm, it has been redefined as the number of nonzero coefficients in a vector or an array (Donoho and
Elad, 2003; Donoho, 2006). Hence, a representation that is sparse in the ¢, sense is a representation
that has a small number of non-zero coefficients in the transform domain. The sparse representation
problem can be formally written as follows

min |[x||o subjectto y = Dx. (2.3)

The problem in equation 2.3 is not necessarily solvable. There might be no solution, or an infinity of
solutions, that exactly represent the recording. It depends on the dictionary. If the dictionary is a basis,
there is a unique solution in the dictionary domain that exactly represents the signal. This solution
is hence the sparsest one for that dicitonary and is the solution to the problem in equation 2.3. If
the dictionary is a redundant frame, there are an infinity of solutions that can exactly represent the
recording. Yet, the solution of the sparse representation problem can still be unique if the sparsest
solution is unique. One can verify if a solution is guarantied to be unique using the spark, or the
mutual coherence (Elad, 2010, p.17-33). The spark of a dictionary is the smallest number of atoms of
the dictionary that are linearly dependent. The calculation of the spark is quite complex, and hence,
using the mutual coherence is often preferred. The mutual coherence of a dictionary quantitatively
characterizes the dependence between its atoms; it is defined as the largest absolute normalized inner
product between its atoms. mathematically, it reads

pD)= _max WL 4

1igsmiiz[a;]]2|[a]]2

Note that the atoms of a dictionary are often already normalized, which makes the normalization in
equation 2.4 unnecessary. A solution x of the sparse representation problem given in equation 2.3 is
unique if (Bruckstein et al., 2009)

1 1
[1x[[o < 3 (1 + m) : 2.5)

In this case, the solution is unique because the atoms are not dependent enough for a second solution
to be as sparse as x. A second solution would necessarily be denser.
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2.1.3 Sparse approximation problems

When dealing with recorded data, the signal can rarely be exactly reconstructed using a representa-
tion vector that has many zero coefficients. Hence, looking for a sparse representation that exactly
represents the signal leads to a solution that is not very sparse, i.e, that has no or few zero coefficients.
However, it is often possible to reconstruct the signal to a high degree of accuracy using a represen-
tation vector that has many zero coefficients. Hence, when looking for a sparse representation, it is
often preferred to tolerate a small representation error, in the aim of finding a solution that is sparser.
In this case, we can speak of a sparse approximation problem. There are several possibilities for set-
ting the problem. One of them consists in tolerating an error below a fixed threshold € and looking
for the sparsest solution (Bruckstein et al., 2009). This problem reads

min |[x||o subjectto |y — Dx||s <e€. (2.6)

Alternatively, one can impose a constraint on the ¢y-norm of the solution and search for the solution
that provides the least error (Tropp, 2004). Such a problem can be mathematically expressed as

min ||y — Dx||y subjectto ||x||p < T, (2.7)

where T is the threshold that fixes the maximal /y-norm of the solution. As the {y-norm of x is
also the cardinality of the solution, this problem can be referred as the cardinality-constrained sparse
approximation problem.

Similarly as for the exact sparse representation problem, there exist conditions that guaranty the
stability of the solution (Elad, 2010, p.79-109). When looking for a sparse approximation, solving the
problem in equation 2.6 is not equivalent to solving the problem in equation 2.7. The two problems
will often lead to different solutions. Depending on the situation, one problem may be more adequate
than the other. For instance, if one is concerned about signal preservation, he may want to ensure a
small data misfit, which would imply a formulation as in equation 2.6. In another situation, one may
have a priori information about the cardinality of the solution, which would lead to the formulation in
equation 2.7.

The problems in equations 2.6 and 2.7 take the synthesis approach to find a sparse representation.
This is called the synthesis approach because it seeks a reconstruction of the signal as a combination
of atoms. There exists also the analysis approach where the signal is represented via its inner prod-
uct with the dictionary atoms. Elad et al. (2007) and Rubinstein (2011) explain the conceptual and
technical differences between the two approaches, and show how they differ for problems involving
redundant dictionaries. As the synthesis approach is simpler and more intuitive, this is the approach
that will be taken in this thesis.

2.1.4 Sparse solvers

If the dictionary is an orthonormal basis, the sparse approximation problem can be simply solved
using hard thresholding. For instance, to solve the problem in equation 2.6, one can first apply the
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forward transform operator to find the exact representation of the signal (x = D"y), and mute the
smallest amplitude coefficients that jointly have a norm just below ¢. Similarly, to solve the problem
in equation 2.7, one can apply the forward transform operator to find the exact representation of the
signal, and mute all the coefficients apart from the 7' coefficients that have the largest amplitudes.

For redundant dictionaries, solving exactly the sparse representation or approximation problems
is very complex and is in general intractable. Such problems belong to the class of non-deterministic
polynomial-time (NP)-hard problems (Davis et al., 1997). In practice, these problems are solved using
sub-optimal processes, which include matching pursuit (MP) algorithms (Pati et al., 1993; Davis et al.,
1997; Needell and Tropp, 2009; Donoho et al., 2012), Convex relaxation methods (Gorodnitsky and
Rao, 1997; Chen et al., 1998; Donoho and Elad, 2003), and iterative shrinkage methods (Daubechies
et al., 2004; Elad, 20006).

The MP algorithms, e.g., orthogonal matching pursuit (OMP) (Pati et al., 1993), take a greedy
approach to select the few atoms that best match the elements of the signal, and then compute the
representation of the signal as a linear combination of these atoms. The set of selected atoms is called
the support of the sparse representation and is denoted with {a;};cx, where A is the set of indexes
of the atoms in the support. The approach to select the support is called greedy as the atoms of the
support are selected one by one with an iterative process. At each iteration, all the atoms that are in
the support are tested, and the one that can lead to the greater reduction of the representation error
is selected and added to the support. Here, the representation error corresponds to the difference be-
tween the true signal and its sparse approximation given the support obtained in the previous iteration.
Afterward, the representation is updated considering the new support. Hence, MP algorithms solve
several local optimization problems to find the solution of the global sparse representation problem.
Such an approach is fast, robust, and accurate, for relatively low-dimensional problems. This ap-
proach is however not well adapted to a high-dimensional problem, in which case it requires many
iterations and a large computational effort to converge to the solution.

In convex relaxation methods, the sparse representation problem is relaxed by switching the dis-
continuous {y-norm with a continuous ¢,-norm, where p is strictly higher than 0 and lower than 1.
The case p = 1 leads to the basis pursuit (BP) optimization problem (Chen et al., 1998). After re-
laxation, the problem is better conditioned and can be solved with different solvers, for instance with
the focal underdetermined system solver (FOCUSS) (Gorodnitsky and Rao, 1997), which uses an
iterative-reweighed-least-square (IRLS) scheme.

Iterative shrinkage methods (Daubechies et al., 2004; Elad, 2006) loop over the three steps: apply
the transpose of the dictionary to the representation error, shrink the obtained coefficients, and use the
result to update the representation of the signal. The rules used to shrink the coefficients and to use the
result for updating the representation vary from one algorithm to another. In contrast to the greedy
approach, such algorithms use global optimization schemes and are suitable for high-dimensional
problems.

As sparse solvers are suboptimal to solve the sparse representation problem, they do not always
find the exact solution to the problem. Only under specific conditions, they are guaranteed to find the
exact solution. For instance, if the condition given in equation 2.5 is satisfied, many solvers, including
OMP, are guarantied to find the exact solution to the problem in equation 2.3 (Elad, 2010, p.55-77).



2.2. SPARSE REPRESENTATIONS AND SIGNAL PROCESSING 15

In this thesis, the dictionaries used will often be of relatively low dimensions but highly redundant.
In such cases, the sparse approximations will be computed using the OMP algorithm, which is fast,
robust, and accurate, under those conditions.

2.2 Sparse representations and signal processing

This section investigates the effectiveness of sparse representation-based processes for random noise
attenuation, coherent noise separation, and data interpolation.

2.2.1 Random noise attenuation

To formally define the random noise contamination problem, let us denote a recording z € R" con-
taining a signal of interest y € R" and white Gaussian noise n € R” of zero mean and ¢ variance.
Such noise is denoted with A’y (0, o%). In addition, let us consider a dictionary D € RY*X defining a
domain where the signal has a sparse representation. Then, the noise contamination model reads

Z=Yy-+n,
y =Dx, (2.8)
n~ NN(O, 02),

where the vector x is assumed to contain a small number of nonzero coefficients.

Attenuating the noise using sparsity promotion can be quite simple. It can be achieved by com-
puting a sparse approximation of the recording in the dictionary domain. Since the noise is random,
it cannot be adequately represented by the sparse approximation, and it is attenuated. There are many
possibilities to compute the sparse approximation, but they are more or less suitable depending on
the a priori information. If the variance of the noise is known a priori, it is reasonable to solve the
error-constrained problem in equation 2.6 and aim for a solution with a representation error close
to the a priori norm of the noise ov/N. In the case in which the variance of the noise is unknown,
but the /y-norm of the signal representation is known a priori, it is preferable to compute the sparse
approximation using the cardinality-constrained problem in equation 2.7.

There are two critical questions that need to be risen before performing random noise attenuation:
What are the conditions to preserve the signal? How much noise will be removed? In the general
case, it is not possible to answer these questions. However, it is possible to answer them for certain
cases. For instance, let us consider the case in which the atoms are normalized and uncorrelated, and
the /o-norm of the true solution is known a priori. The noise is attenuated by solving the problem in
equation 2.7, where 1" = ||x||o. In this case, the signal is preserved if the correct support is selected to
compute the approximation. Roughly speaking, the correct support is selected if the signal coefficients
stand out from the noise coefficients in the dictionary domain. Hence, to preserve the signal, the
minimum absolute value of the projection of the recording on the true support min;c, |z'a;l should
be larger than the maximum absolute value of the projection of the noise on the rest of the dictionary
atoms max;¢a [n'a;|. A close upper bound of max;¢s [n'a;| can be found using the result derived by
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Berman (1964). The authors show that the maximum absolute value of n random variables x4, ..., Xn,
n — oo, following an identical Gaussian distribution of mean 0 and variance o, has the close upper

bound
max|x;| < o+/2log(n) . (2.9)

This result was later used by Donoho and Johnstone (1994) and Donoho (1995) to set to an optimal
threshold for noise attenuation by shrinkage in a transform domain. Similarly, this result can be used
to show that there is a high probability that max;¢, [n"a;| < o1/2log(K — |[|x||o). Therefore, if the
coefficients of the signal are above o1/2log(K — ||x|o), then there is a high probability to select the

correct support of the representation, and to preserve the signal. Yet, even if the correct support is
selected, the noise is not entirely attenuated. The noise that is correlated to the support still remains.
Considering the random nature of the noise, the norm of the remaining noise can be estimated to
be o/|[x||o. Hence, the quantity of remaining noise is a square root function of the y-norm of the
representation of the signal. This highlights the importance of selecting a dictionary that enables a
highly sparse representation of the signal.

To illustrate the effectiveness of sparse representations for random noise attenuation, I will present
simple numerical experiments, in which the recording and the signal are synthesized following the
model described in equation 2.8. The dictionary matrix D used is the discrete cosine transform (DCT)
basis of size 64 x 64. The basis vectors of the DCT basis are defined using cosine functions. Among
other applications, the DCT basis is used for compression of audio signals (e.g., MP3) and images
(e.g., JPEG). Eight basis vectors from the DCT basis are shown in Figure 2.1. The signal was syn-
thesized with a linear combination of L atoms of the dictionary. As the number L is also the {y-norm
of the representation of the signal in the DCT domain, such a construction of the signal enables to
control its sparsity level. The L nonzero entries of x are selected such that they are independently
distributed, they follow the same zero-mean Gaussian distribution, and the signal is normalized. The
variance of the noise is selected such that the noise is normalized. Hence, in the recording, the norm
of the signal is equal to the norm of the noise. The sparse representation of the recording are obtained
by solving the problem in equation 2.7, where T' = L, using hard thresholding in the DCT domain.

Three experiments, in which the signals were synthesized with L set to 2, 5, and 10, are presented
in Figure 2.2. The recordings are displayed with green solid lines and are presented in the recording
domain in the left plots and in the DCT domain in the middle plots. For each recording, the L
nonzero coefficients that were selected to compute the sparse approximation of the signal are depicted
with blue dots in the middle plot. The true representations of the signals in the DCT domain are
superimposed on the results using black dotted lines. One can observe that when the coefficients are
too small, they are not selected to compute the approximation of the recording, and instead, a noise
coefficient is selected. The approximations of the recordings are presented with blue lines in the plots
on the right side. There, the true signals are displayed with black dotted lines. The highest quality
denoising is obtained for L = 2.

To better assess the impact of the level of sparsity on the quality of the denoising, I repeated
the experiment for L ranging from 1 to 64. For each L value, the experiment was repeated 1,000
times, and for each repetition, the signal and noise were recomputed with a reselection of the random



2.2. SPARSE REPRESENTATIONS AND SIGNAL PROCESSING 17

Figure 2.1: Eight basis functions of the DCT dictionary.

parameters. The error (i.e., the {5-norm of the difference between the denoised signal and the true
signal) was computed as an average of the errors of the 1,000 experiments. The resulting error values
are presented in Figure 2.3. The error increases as the ¢y-norm of the signal representation increases.
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Figure 2.2: Denoising by sparse approximation in the DCT domain in the cases in which the /y-norm
of the true solution is equal to 2, 5, and 10, as indicated on the left side of the plots. The noise-
contaminated signals in the original domain and in the DCT domain are displayed with green lines
in the left and middle plots, respectively. Each recordings was approximated with the L coefficients
having the largest absolute values in the DCT domain, were L is the /,-norm of the true solution. The
blue dots depict the selected coefficients. The denoised signals in the original domain are displayed
with blue lines in the plots on the right side. The true signals in the DCT domain and in the original
domain are superimposed on the results using black dotted lines in the middle plots and right plots,
respectively.
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Figure 2.3: The error in noise attenuation by sparse approximation as a function of the /y-norm of the
true solution. As the /y-norm of the solution increases, the error increases.

2.2.2 Coherent noise separation

In this noise contamination model, the recording z contains a signal y additively contaminated by
a coherent noise n, and a priori information about the morphology of the signal and the noise are
both known. The a priori information enables the selection of the dictionaries Dy and D,, in which
the signal and the noise have a sparse representation, respectively. Such a model can be written as
follows

Z=y+n,
y =D.,x,, (2.10)
n=D,x,,

where the vectors x, and x,, are assumed to contain a small number of nonzero coefficients. In
this case, the signal and the noise can be separated using morphological component analysis (MCA)
(Starck et al., 2004, 2005). This method uses sparse representation as driving force to separate the
different morphological components in the recording. When no representation error is tolerated, MCA
seeks the sparse vector

X5, X, = argmin||X,||o + ||X.|[o subject to z = D,x, + D, x,, , (2.11)
Xs,Xn

and reconstructs the signal and the noise using D,X, and D, X,,, respectively. Note that the MCA
problem in equation 2.11 is equivalent to the sparse representation problem in equation 2.3 in which
the dictionary D is the concatenations of the dictionaries D, and D,,. Consequently, if the sum of the
¢p-norms of X, and x,, is small enough to satisfy the condition given in equation 2.5, the solution of the
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Figure 2.4: Eight basis functions of the Dirac dictionary.

problem is unique and can be retrieved using OMP; this solution leads to a perfect noise suppression.

To illustrate the capability of MCA for coherent noise suppression, I will present simple numerical
experiments, in which the recording is synthesized following the model described in equation 2.10.
The length of the recording is 64 samples. The signal is constructed as a linear combination of a few
cosine functions, such that it is sparse in the DCT domain. The noise is impulsive and hence is sparse
in the Dirac dictionary domain. The Dirac dictionary matrix is in fact an identity matrix. Ten basis
functions of the DCT and Dirac dictionaries are presented in Figures 2.1 and 2.4, respectively. The
total number of basis functions used to construct the signal and the noise is denoted by L, which is
also the /y-norm of the solution to the signal and noise separation problem. The nonzero coefficients
of the signal and noise representations in their respective dictionaries follow an identical zero-mean
Gaussian distribution and both the signal and the noise are normalized. To find the solution of the
MCA problem, the OMP sparse solver is used.

The results of three experiments, in which the recordings were synthesized with L set to 20, 40,
and 60, are presented in Figure 2.5. The recordings are presented in the left plots. The separated
noises are displayed with red lines in the middle plots and the separated signals are displayed with
blue lines in the right plots. For both the signals and the noises, the truth is superimposed on the
results using dotted black lines. In the case L = 20, the separation is exact. In the cases L = 40 and
L = 60, some errors occurs in the separation.

To better assess the impact of the level of sparsity on the quality of the signal and noise separation,
I repeated the experiment for L ranging from 1 to 128. For each L value, the experiment was repeated
1,000 times, and for each repetition, the signal and noise were recomputed with a reselection of the
random parameters. Then, the error (i.e., the /,-norm of the difference between the denoised signal
and the true signal) was computed as an average of the errors of the 1,000 experiments. The resulting
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Figure 2.5: Signal and noise separation by sparse representation in the cases in which the ¢y-norm of
the true solution is equal to 20, 40, and 60, as indicated on the left side of the plots. The recordings
are displayed with green lines in the left plots, the separated noises are displayed with red lines in the
middle plots, and the separated signals are displayed with blue lines in the right plots. The true noises
and the true signals are displayed with black dotted lines in the middle and right plots, respectively.
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Figure 2.6: The error in signal and noise separation by sparse representation as a function of the
{o-norm of the true solution. As the /y-norm of the solution increases, the error increases.

error values are presented in Figure 2.6. There, we observe that the signal and noise separation is
exact, or nearly exact, when the /y-norm of the solution is smaller than 20. Also, for an ¢y-norm of
the solution higher than 20, the error increases as the {y-norm of the solution increases.

In the experiments, the mutual coherence of the combined DCT and Dirac dictionary was 0.17.
Therefore, according to the condition in equation 2.5, the solution was guaranteed to be found for
L < 3. And yet, OMP was able to perfectly separate the signal from the noise for L < 20. This gives
me the opportunity to point out that in many numerical applications the sparse representation problem
is correctly solved beyond the theoretical bound that guaranties to find the correct solution. Note also
that MCA can perfectly separate the signal from the noise, in contrast to random noise attenuation
by sparse approximation. Hence, when a priori information about the noise morphology is available,
using MCA is more powerful than attenuating the noise by sparse approximation of the recording.
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2.2.3 Signal reconstruction

In the data reconstruction problem, the signal y is recorded partially. The recording z contains a
subselection of signal samples. The position of the available samples in the vector y is known. Using
this information, a sampling matrix S can be easily formed such that the recording z equals to the
matrix multiplication of the sampling matrix S with the signal y. Priors about the morphology of
the signal enable the selection of a dictionary D that defines a domain in which the signal is sparse.
Hence, the data model can be written as follows

z=2Sy,
y = Dx, (2.12)

where the vector x is assumed to contain a small number of nonzero coefficients.
Given the model in equation 2.12, x can be recovered by finding the solution of the problem

X = min||x||p subject toz = SDx, (2.13)

and reconstructing the signal with Dx (e.g., Bruckstein et al. (2009)). The problem in equation 2.13
consists in finding a sparse representation of the recording using the dictionary SD. Therefore x is
retrieved under the condition that ||x||o < (1 + 1/u(SD))/2 (see equation 2.5).

To illustrate the data reconstruction capability of the sparsity promoting problem presented in
equation 2.13, I will present simple numerical experiments, in which the recording and the signal are
synthesized following the model described in equation 2.12. The signal was synthesized with a linear
combination of L atoms of the dictionary. As the number L is also the /y-norm of the representation
of the signal in the DCT domain, such a construction of the signal enables to control its sparsity level.
The L nonzero entries of x are selected such that they are independently distributed, they follow an
identical zero-mean Gaussian distribution, and the signal is normalized. The recording is obtained by
random selection of half of the samples of the signal. The problem in equation 2.13 is solved using
OMP to reconstruct the signal.

Three experiments, in which the signals were synthesized with L set to 10, 20, and 30, are pre-
sented in Figure 2.7. The location of the available samples of the signals are indicated with green dots
in the left plots. The reconstructed signals are presented on the right plots with blue lines. The true
signals are superimposed on the results using black dotted lines in the left and right plots. We observe
that the reconstruction of the signal is correct for L set to 10, some errors occur for L set to 20, and
even more errors occur for L set to 30.

To better assess the impact of the level of sparsity on the quality of the reconstruction, I repeated
the experiment for L ranging from 1 to 64. For each L value, the experiment was repeated 1,000 times,
and for each repetition, the signal was recomputed with a reselection of the random parameters. The
error was computed as an average of the errors of the 1,000 experiments. The resulting error values
are presented in Figure 2.8. We observe that the reconstruction is exact, or nearly exact, when L, or
equivalently the ¢y-norm of the solution, is smaller than 10. Also, for an ¢y-norm of the solution larger
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than 10, the error increases as the ¢y-norm of the solution increases.

When using a sparse representation for data reconstruction, the sampling scheme can be crucial.
To point that out, I repeated the experiment presented in Figure 2.7 in which L was set to 10, but using
uniform sampling instead of nonuniform sampling. The sampled signal and the reconstructed signal
are presented in Figure 2.9. We can observe that the reconstructed signal diverges from the original
signal. In contrast, there was no error when the sampling was nonuniform. The mutual coherence of
SD is now equal to 1, whereas it was equal to 0.56 when the sampling was nonuniform. A mutual
coherence that is equal to 1 means that there are at least two columns in SD that are identical. In that
case, the problem is ill-posed. Two atoms of the dictionary can equally explain the same recorded
signal. Whenever one of the two atoms is needed to reconstruct a signal, the other can be used instead.
When considering only the dictionary D, the two atoms are however different, and using one instead of
the other leads to errors when reconstructing the signal using Dx. This phenomenon is in fact related
to the aliasing problem presented in section 1.1.3. A high frequency atom that is regularly sampled
at a rate below the Nyquist criterion is similar to a lower frequency atom. Consequently, uniform
sampling is not adapted for sparse representation-based reconstructions when using a frequency-based
dictionary.

The theory and numerical results presented in this subsection demonstrate that certain signals
recorded with a sampling rate that does not satisfy the Nyquist criterion can still be reconstructed
using sparsity promotion in a dictionary domain. The conditions for the reconstruction to be exact
concern the sampling scheme, the dictionary, and the degree of sparsity of the signal in a dictionary
domain. The field of research that investigates sampling schemes and reconstruction methods to
sense signals using a least number of samples is called compressed sensing or compressive sensing
(Donoho, 2006; Candes and Wakin, 2008). The compressed sensing theory was used to design new
seismic acquisition protocols that can sense the seismic wavefield more efficiently (Herrmann, 2010;
Charles et al., 2014; Mosher et al., 2017; Kumar et al., 2017).
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Figure 2.7: Examples of signal reconstructions using sparse representations in the cases in which
the /y-norm of the true solution is equal to 10, 20, and 30, as indicated on the left side of the plots.
The nonuniform sampling locations of the signals are indicated with green dots in the left plots. The
reconstructed signals are displayed with blue lines in the right plots. The true signals are superimposed
using black dotted lines.
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Figure 2.8: The error in signal reconstruction by sparse representation as a function of the /y-norm of
the true solution. As the {y-norm of the solution increases, the error increases.
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Figure 2.9: Example of signal reconstruction using a sparse representation in the case in which the
ly-norm of the true solution is equal to 10 and the data is regularly sampled. The uniform sampling
locations of the signal are indicated with green dots in the left plot. The reconstructed signal is
displayed with a blue line in the right plot. The true signal is superimposed using a black dotted line.
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2.3 Dictionaries for sparse representations of seismic data

Considering the theory and results presented in section 2.2, it is clear that the effectiveness of spar-
sity promoting methods relies on a high level of sparsity in the transformed domain. Therefore, this
section investigates the dictionaries that can lead to sparse representations of the seismic data. Such a
dictionary needs to contain atoms that describe the morphological elements of the signal. Therefore,
to define a dictionary that can lead to a sparse representation of the seismic data, it is recommended
to take into account the morphology of the seismic data, which is governed by the physics of the
wavefield propagation. This section first refreshes the basics of the wave equation and presents pos-
sible descriptions of a wavefield from a kinematic point of view. Based on these descriptions and
previous studies, it then examines predefined dictionaries that could be used to concisely represent
seismic data. Finally, it presents a different approach to find a dictionary that can lead to a sparse
representation of the seismic data; this second approach consists in training the dictionary on the
data.

2.3.1 Descriptions of the seismic signal

In marine seismic processing, the signal of interest is an acoustic pressure or particle velocity wave-
field. Such a wavefield satisfies the wave equation. The wave equation for the pressure wavefield p
and the particle velocity wavefield v reads

V2p 1 0% (p
(V(V : v)) 2o (v> ’ @14

where V is the gradient operator, V? is the Laplace operator, and c is the speed of sound at the ambient
conditions.

In a homogeneous medium, the simplest solution of the wave equation is a monochromatic wave.
For instance, in the global Cartesian coordinate system X = [z, X2, 3 = 2|, such a solution for the
pressure wavefield can be written as

p(x,t) = po 2 X1 (2.15)

where p, is the amplitude of the wave, f is the frequency, and k is the wavenumber vector expressed
in units of m~.

In an inhomogeneous medium, describing the wavefield emitted from one source is more complex.
There are several general descriptions of the wavefield that are solutions of the wave equation. Each
description has its advantages and disadvantages. In the ray theory (Cerveny, 2001; Aki and Richards,
2002), the wavefield is seen as many high-frequency elementary waves propagating along rays of
certain geometric trajectories. Considering the zero-order ray theory, the wave equation admits for

each elementary pressure wave the solution

p(x,t) = p(x)Sp[t = T(x)] . (2.16)
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The amplitude factor p(x) determines the amplitude of the pressure, and S,[t] is the source signal.
The function 7 is a real-valued function interpreted as the traveltime of the wave. Similarly, the wave
equation admits for each elementary particle velocity wave the solution

v(x,t) = V(x)S,[t — T (x)] . (2.17)

The vectorial factor V(x) determines the amplitude and polarization direction of the particle velocity
vector, and S, [t] is the source signal. The vectorial amplitude factors p(x) and v(x), and the function
T are assumed to vary smoothly in space.

Moreover, using the paraxial ray theory (Hubral, 1983; Bortfeld, 1989; Cerveny, 2001), it is possi-
ble to locally describe an elementary wave by extrapolating the time it takes to travel along a reference

ray called the central ray. Consider a central ray SG starting from the source at S(x) = [z7, x5, 23]

and emerging at the horizontal measurement surface at G(x) = [z, 2§, 2§], and a paraxial ray SG
starting from the same source and emerging at the measurement surface at G(x) = |11, @9, x3). The
traveltime of the wave propagating along the central ray and arriving at G is denoted by 7, and the
horizontal position of G relative to G by X' = [z, — 2§, x5 — 2§]. Then, in a second-order traveltime
approximation, the traveltime of the wave propagating along the paraxial ray and arriving at G can be

expressed as a function of 7; and the position of G relative to G as
/ / 1 / S o
T(X):%+s-x+§x-NGx. (2.18)

The vector s is the gradient of the traveltime and is also called the slowness vector, and N2, is the
second-derivative matrix of the traveltime. They can be written as

g — [ﬂ ﬂ]
x'=0

dr1  Oxo
_o*T 9T 2.19
NS o Oxr10x1  Ox10x9 ( ) )
¢ | T _oT '
Ox20x1 0x20z2d x/ =0

Equation 2.18 shows that an elementary wave recorded at the horizontal surface can be locally inter-
polated using a parabolic traveltime moveout (e.g., Hoecht et al. (2009); Andrade et al. (2005)). Ursin
(1982) shows that it is possible to further approximate the traveltime as

T2(x) = (To+s-X)* + Tox' - Ngx'. (2.20)

Equation 2.20 shows that an elementary wave recorded at the horizontal surface can be locally interpo-
lated using a hyperbolic traveltime moveout (e.g., Zhang et al. (2001)). The hyperbolic approximation
is closely related to the parabolic approximation, though it is generally more accurate for extrapolation
at larger distance from the central ray (Ursin, 1982). Considering the expressions in equations 2.16,
2.17, 2.18, and 2.20, the pressure and particle velocity wavefields recorded at the surface can be lo-
cally described by a superposition of elementary waves whose traveltime moveouts are analytically
given by the first and second derivatives of the traveltime. Furthermore, along the traveltime moveout
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of each elementary wave, the amplitude is constant and can be described by a geometrical spreading
factor that depends on the traveltime curvature at the central ray (Schleicher et al., 1993). However,
considering the high frequency approximation made in the ray theory, such a description is valid for
smooth earth models only, i.e, models that are not changing rapidly with respect to the wavelength of
the signal.

2.3.2 Predefined dictionaries

The basis vectors of the dictionary used to compute a sparse representation of the seismic data can be
predefined using analytical functions. The functions that have been used for seismic data applications
include monochromatic waves, wavelets (Mallat, 2008), curvelets (Candes and Donoho, 2000, 2002),
and seislets (Fomel and Liu, 2010; Liu and Fomel, 2010). Figure 2.10 presents two-dimensional (2D)
basis vectors defined using monochromatic waves, Haar wavelets, and curvelets.

I will now examine different analytical functions that have been used for seismic processing, and
I will evaluate their effectiveness for sparse representations of the seismic data. For convenience,
I will describe 2D basis functions, and assess their capability to represent seismic data in a time-
space domain, where the temporal dimension is the traveltime, and the spatial dimension is the inline
component of the source-receiver offset vector. From there, the conclusions will be extendable for 3D
extensions of the basis functions and their capability to represent 3D seismic data where the additional
dimension is the crossline component of the offset vector.

The Fourier basis, whose basis vectors represent monochromatic waves, is largely used to re-
construct the seismic data via a sparse inversion, e.g., Zwartjes (2005); Abma and Kabir (2005);
Zwartjes and Sacchi (2007); Schonewille et al. (2009); Naghizadeh and Sacchi (2010); Gao et al.
(2013). These studies show that if the original sampling is not too poor, the Fourier-based method can
provide an accurate reconstruction of the seismic data. In addition, a monochromatic plane wave is
the simplest solution to the wave equation in a homogeneous medium (see equation 2.15). In an inho-
mogeneous medium whose properties are changing smoothly in space, it is reasonable to assume that
the wavefield is locally representable with few monochromatic plane waves. In addition, the forward
and backward Fourier transformations are fast, which leads to an efficient computation of a sparse
representation. Hence monochromatic waves may be suitable to compute a sparse representation of
seismic data. Though, the stationary nature of monochromatic waves can be inconvenient to concisely
represent seismic data. As stationary signals are not localized in the time-space domain, they have a
limited effectiveness to concisely represent the seismic events that are localized in time.

The basis vectors of a 1D discrete wavelet transform (DWT) are analytically defined with dilates
and translates of a function ¢. Each basis vector is defined using a function ¢, 4(t) = 1/+/ap((t —
b)/a), where a sets the scale of the wavelet, and b sets its local position. In the basic DWT, i.e., the
Haar DWT (Haar, 1910), ¢ is a "square-shaped" function. Considering how they are constructed,
one can see that DWT basis vectors are well localized in time. Hence, DWT bases can concisely
represent sharp signals, which provides advantages over Fourier bases for some analysis tasks in
seismic processing (Foster et al., 1994). The DWT is a separable transform; the 2D functions that
define the 2D DWT basis vectors is the direct product of two functions that define the 1D DWT basis
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Figure 2.10: Real part of three (a) Fourier basis vectors, (b) Haar wavelet basis vectors, and (c)
Curvelet basis vectors.
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vectors (Papea(t, r) = 1/\/acop((t — b)/a))p((x — d)/c)). As the dimensions are identically treated,
the wavelets are said to be isotropic, and they represent 2D patterns that are either horizontal, vertical,
or diagonal. Consequently, the wavelets fail to concisely represent patterns that are curved (Candes
and Demanet, 2005). As seismic events in a common shot gather can be significantly curved, wavelets
may have limitations to concisely represent the seismic data.

The curvelets, an extension of the wavelets, are scaled, localized, and also directional at fine scales
(see Figure 2.10). In the f — k domain, a fine-scale curvelet is localized on a small oriented dyadic
rectangle of length 27 and width 27/2, where 7 1s the scale of the curvelet. In time, this curvelet is a
narrow ridge of length 277/2 and width 277 pointing in a determined direction. The curvelets have
been shown to be effective predefined functions to represent and denoise the seismic data (Hennenfent
and Herrmann, 2006; Neelamani et al., 2008). In addition, a representation in a curvelet tight-frame
of a solution satisfying the wave equation was proven to be sparse (Candes and Demanet, 2005).

An experiment was carried out to evaluate the effectiveness of the Fourier bases, the Haar wavelet
bases, and the curvelet frames for sparse representation of the seismic data. The seismic data se-
lected for this experiment is presented in Figure 2.11. It is a window of size 128 x 128 samples
taken from an inline slice of a shot gather. A sparse approximation was computed using a Fourier
base, a Haar wavelet base, and a curvelet tight-frame. Each sparse approximation was constrained
to have an {y-norm equal to 15% of the number of samples in the original data. The sparse approx-
imations in the Fourier and Haar wavelet bases were computed as follows: The forward transform
operator was applied to the data, the 15% of the coefficients having the highest magnitudes were kept,
the other coefficients were muted, and the backward transform operator was applied. The curvelet
frame had 125,395 basis vectors and hence was quite redundant. The redundancy obliged a more
complex process to compute the sparse approximation. First, the BP problem was solved to find a
representation that had a small /;-norm, i.e, a representation that is sparse in the ¢; sense. Then, the
curvelets corresponding to the highest magnitude coefficients of this representation were selected as
support to compute a representation that was sparse in the ¢, sense. The nonzero coefficients of this
sparse representation were computed using a least square inversion. The Fourier-, Haar wavelet- ,
and curvelet-based sparse representations are shown in Figure 2.12a-c and the residuals of the sparse
representations are shown in Figure 2.13a-c. We observe a significant coherency in the residuals of
the Haar wavelet-based sparse approximation. It indicates that the seismic data could not be approxi-
mated with only 15% of the Haar wavelet coefficients. In other words, the seismic data did not have a
high degree of sparsity in the Haar wavelet domain. The Fourier- and curvelet-based sparse approxi-
mations appear to be more accurate, as less residuals are observed. The S/N was used to quantitatively
assess the accuracy of the sparse approximations. The S/N was computed such that

Hdreng

S/N =10 lOglom ,
ref — 2

(2.21)

where d is the approximation of the data and d.y is the true data. The S/N values found for the
Fourier-, Haar wavelet- , and curvelet-based sparse representations were 11.55 dB, 7.10 dB, and
14.40 dB, respectively. This concludes that the curvelet frame was more effective to compute a sparse
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Figure 2.11: The pressure wavefield within a window of an inline shot gather.

representation of the data shown in Figure 2.11. Of course, one should keep in mind that the curvelet
frame is redundant, which makes the comparison unfair. The number of curvelets and Fourier basis
vectors used to compute the sparse approximations are the same, but the curvelets used are selected
from a larger set of basis vectors. Finally, I note that for the three predefined dictionaries used, we
can see some coherency in the residuals of the sparse approximation, which indicates that some signal
could not be represented in a sparse manner with these dictionaries.

It is also possible to reconstruct the seismic wavefield using a sparse inversion in the parabolic
(Herrmann et al., 2005), or hyperbolic (Ibrahim et al., 2015) Radon domain. The coefficients of the
2D parabolic and hyperbolic Radon domains are integrals of the data along lines defined by parabolic
and hyperbolic functions, respectively. This suggests that the seismic wavefield can be represented in
a sparse manner using parabolic or hyperbolic events. In addition, a wavefield recorded at the surface
can be locally described by a sum of elementary waves whose traveltimes are analytically given by
hyperbolic or parabolic moveouts, and whose amplitude is constant along these traveltime moveouts
(see equations 2.16, 2.17, 2.18, and 2.20). Hence, basis vectors that represent hyperbolic or parabolic
events are valid candidates to compute a sparse representation of the seismic data.

Using a predefined dictionary for sparse representation of a seismic data set leads to a global
approach - the same dictionary is used regardless of the time or the offset of the data. Thus, the
dictionary should be selected such that all events of the data are sparse in the transform domain.
However, it is difficult to find a dictionary that can concisely describe all types of events present in the
seismic data set, e.g., diffractions and reflections, shallow and deep events. In practice, the selection
of the dictionary requires compromises and the dictionary is not optimal to represent complex events.
Hence, the lack of adaptability that is inherent to predefined dictionaries limits their efficiency.
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Figure 2.12: Sparse approximations of the data presented in Figure 2.11 using the a) Fourier base,
b) Haar wavelet base, c) curvelet frame, and d) learned dictionary. For computing the four sparse
approximations, the number of basis vectors used was set to 15% of the number of samples in the
original data. The S/N of the results is as follows: Fourier base: 11.55 dB, Haar wavelet base:
7.10 dB, curvelet frame: 14.40 dB, and learned dictionary: 16.53 dB.
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Figure 2.13: Residuals of the sparse approximations that were computed using the a) Fourier base, b)
Haar wavelet base, c) curvelet frame, and d) learned dicitonary.
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2.3.3 Learned dictionaries

Dictionary learning (DL) methods, e.g., the method of optimal direction (MOD) (Engan et al., 1999)
or the k-times singular value decomposition (K-SVD) (Aharon et al., 2006), are alternatives to pre-
defining the dictionary. In 2D applications, small-sized patches are extracted from a local area of the
data and a dictionary is trained to optimally represent those patches. The resulting dictionary is opti-
mal to find a sparse representation of the patches used for the training, or any data patches of similar
morphology. For higher-dimensional applications, a similar procedure is used; in 3D, the training
is carried out using extracted cubes, and in even higher dimensions, higher-dimensional vertices are
used. The training consists of solving a sparse optimization problem. When DL is applied in 2D, M
small-sized patches are extracted from the data and are vectorized to obtain a set of vectors y, ..., ¥,
called the training set. The number of extracted patches, M, is selected to be several times larger
that the desired number of dictionary atoms. Then, the DL problem generally consists of finding the
dictionary D € RV*X and the set of sparse coefficient vectors X, ..., X5, that minimize the represen-
tation error given a sparsity constraint 7’ placed on the sparse coefficient vectors (Aharon et al., 2006).
This problem is mathematically expressed as

M

min Dx;||5 subject to |[x;||o < T,i=1,...,M . 2.22
in , Dl = Dl subject ol (2.22)

Although it is not necessarily said, the atoms of the dictionary are constrained to be normalized. There
is no other constraints imposed to the dictionary in conventional DL.

The problem in equation 2.22 is very complex to solve because both the dictionary and the sparse
representation vectors are variables of the problem. In practice, the optimization is carried out with
a sub-optimal process that iteratively solve two simpler subproblems. The first subproblem focuses
on the optimization of the sparse representations and is solved during a step called the sparse coding
stage, whereas the second subproblem focuses on the optimization of the dictionary and is solved
during the dictionary update stage. The kth iteration of this two-stage process can be summarized as
follows:

 Sparse coding stage: The representation of each vector y, of the training set is updated with

X; = argmin |ly; — D*"'x||5 subjectto ||x|[o < T . (2.23)

* Dictionary update stage: The dictionary is updated with
M
k .  rell2
D" = arg min ZHyZ Dx;||5 . (2.24)

The trained dictionary is not necessarily complete and is generally highly redundant. Due to the
high degree of redundancy in the dictionary, the sparse approximations in the sparse coding stage
need to be computed with a robust sparse solver such as OMP. This is computationally demanding.
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The dictionary update stage is solved using the Moore-Penrose pseudoinverse in MOD, whereas it is
solved using singular value decompositions (SVDs) in K-SVD. Solving iteratively the two stages is
in general computationally demanding.

The last years have seen many developments of the DL methods to reduce their cost. Rubinstein
et al. (2010) proposed a so-called double sparsity dictionary learning method. The learned atoms are
constructed as sparse linear combinations of predefined atoms from a basis (i.e., D = X®, where X is
a sparse matrix and ® is a base). Such a construction provides efficient forward and adjoint operators,
and results in a cheaper dictionary training. Cai et al. (2014) proposed a method called data-driven
tight frame (DDTF), in which the learned dictionary is constrained to be a tight frame. The tight frame
properties enable to carry out the sparse coding stage using hard thresholding instead of a matching
pursuit type of algorithms, which speeds up DL.

DL methods have attracted a lot of interest in seismic processing. Using a learned dictionary was
shown to be a better alternative than using a predefined dictionary for random noise attenuation or
reconstruction of randomly missing traces (Beckouche and Ma, 2014; Liang et al., 2014; Yu et al.,
2015; Zhu et al., 2015; Chen et al., 2016).

I will illustrate the effectiveness of DL using the data of size 128 x 128 samples presented in
Figure 2.11. 10,000 possibly overlapping patches of size 8 x 8 were extracted from the data. They
were arranged as vectors of size 64 samples. The 10,000 vectors were used to solve the DL problem
in equation 2.22, where K and 7" were set to 1,000 and 9, respectively. The DL method used was
K-SVD. 64 atoms of the learned dictionary are presented in Figure 2.14. The learned dictionary was
used to compute a sparse approximation of the data. The data was decomposed into 256 patches of
size 8 x 8. For each patch, OMP was used to solve the problem in equation 2.7 where 7" was set to 9.
The sparse approximation of the patches were reassembled to form the sparse approximation of the
data window. Since the threshold 7" was set to 9, and the number of samples in a patch was 64, the
¢y-norm of the sparse representation of the data is close to 15% of the number of data samples. The
sparse approximation is presented in Figure 2.12d and the residuals are presented in Figure 2.13d.
The absence of coherency in the residuals attests to the accuracy of the sparse approximation. The
S/N of the result is 16.53 dB.

The drawback of DL is the lack of analytical expression for the dictionary. The learned atoms are
defined at discrete positions and need to be physically stored. The direct consequence is that it requires
amemory storage. This is a small problem because learned dictionaries are usually of low dimensions.
An indirect consequence, which can be inconvenient, is the lack of analytical expression for the data
representation. Since the atoms are only defined at discrete positions, a representation of the data
as a linear combination of the atoms is also defined at discrete positions. This causes limitations
for interpolation of a signal. The sparse representation cannot be used to interpolate the data over
an arbitrary grid. In contrast, when the atoms are predefined with analytical functions, a sparse
representation can be interpolated over a desired grid by representing the data as a linear combination
of the atoms and taking the atoms at the desired positions using their analytical expression.
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Figure 2.14: 64 atoms of the dictionary learned from the data presented in Figure 2.11.
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Chapter 3

Main Scientific Contribution

3.1 Articlel

Random noise is a long-standing problem in signal and image processing. It has been addressed by
many studies and there is now a large range of random noise attenuation methods. However, a large
part of them are designed to remove a noise of predictable energy. It is also the case for conventional
DL-based denoising methods. They learn a dictionary from the data and approximate the data with an
error-constrained sparse optimization process. Applications of such methods to seismic data are not
optimal since the noise in the seismic data has an intensity that is often unknown and locally varying
across the data.

Turquais et al. (2017¢c) modify the conventional DL problem to better suit the seismic data de-
noising problem. The authors propose to learn the dictionary and find the sparse approximation of the
data using a coherence-constrained sparse optimization process instead of an error-constrained sparse
optimization process. The coherence-based constraint imposes that the statistical measure of the co-
herence present in the removed noise is below a fix threshold. This threshold is derived to be optimal
to filter out Gaussian noise and is independent of the variance of the noise. The proposed method is
tested on seismic data and its effectiveness is assessed in comparison to a conventional DL method
and a seismic industry-standard method. In contrast to the conventional DL method, the proposed
method does not require any empirical testing and it adapts well to spatial or temporal variations in
the noise variance. It also preserves better the fine structures of the signal and it removes more noise
compared with both the conventional DL and the industry-standard methods.

3.2 Article II

In a towed-streamer seismic survey, the steering devices that are placed along the streamers, as well as
barnacles that grow on the surface of the streamers, perturb the forward movement of the streamers in
the water and lead to mechanical noise in the seismic data. The mechanical noise significantly hinders
seismic processing and imaging if not or incorrectly removed. Yet, removing this noise is particularly

39
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challenging. The mechanical noise is too coherent to be properly handled with conventional random
noise attenuation methods but not sufficiently predictable to be modeled and subtracted.

Turquais et al. (2017a) propose to separate the mechanical noise from the data by exploiting the
morphological differences between the signal and the noise. The proposed method is a fully automatic
process. First, DL is applied to the data to get a dictionary that contains some atoms describing the
signal morphology and some atoms describing the noise morphology. Then, the atoms describing the
noise morphology are separated from the atoms describing the signal morphology with a statistical
classification. This divides the dictionary into noise and signal subdictionaries. Finally, the data
is approximated with a sparse constraint in the combined noise and signal subdictionaries domain.
This separates the noise from the signal as the noise cannot be sparsely represented in the signal
subdictionary domain, and is therefore represented in the noise subdictionary domain, and vice versa
for the signal. This noise suppression method was tested on two seismic data examples and was
assessed in comparison to four industry-standard or state-of-the-art denoising methods. All examples
considered, the method provided the highest quality results.

3.3 Article III

In 3D towed-streamer marine seismic surveys, the seismic wavefield is poorly sampled in the crossline
direction. The crossline sampling is not sufficiently dense to meet the requirements of several seismic
processing and imaging methods. Hence, the recorded data needs to be interpolated over a denser
grid in an early stage of the processing. This task is very challenging and no satisfactory solution is
yet found. DL methods were shown to be highly effective to reconstruct randomly missing traces in
seismic data. These methods learn morphological features from the available data and fill the gaps
left by missing traces using learned morphological features that match the neighboring traces. Yet,
conventional DL methods cannot interpolate uniformly sampled data over a denser grid because there
is no example in the data that can be used to learn densely sampled morphological features.

Turquais et al. (2017f) overpass the limitation of conventional DL methods by imposing a struc-
ture to the dictionary atoms. Each atom is constrained to represent an elementary waveform that has
a constant amplitude along a parabolic traveltime moveout characterized by kinematic wavefield pa-
rameters. Among other advantages, this parabolic structure offers the possibility to easily interpolate
the atoms over an arbitrary sampling grid. Once the dictionary is learned, a sparse representation of
the data in the dictionary domain is computed, the atoms of the dictionary are interpolated over the
desired grid, and the sparse representation of the data is taken in the interpolated dictionary domain,
which interpolates the data. Three characteristics of this method, i.e., the parabolic structure, the spar-
sity promotion, and the adaptation to the data, strengthen robustness to noise and to aliasing and they
increase the accuracy of the interpolation. Synthetic and field data examples show that the method
reconstructs well the seismic wavefield across the streamers of typical 3D acquisitions. This indicates
that the proposed method is reliable and could be applied in an early stage of the seismic processing
sequence. This would improve the later 3D processing and imaging steps, e.g., wavefield separation,
multiple removal, and migration, and it would enhance the final image.



Chapter 4

Article 1

The first article is entitled "A method of combining coherence-constrained sparse coding and dictio-
nary learning for denoising". It was published in the journal Geophysics. A manuscript was sent to
the editor the 30" of March 2016, a revised manuscript was sent the 31t of October 2016, and it was
published online the 27" of February 2017. The layout has been changed from the official publication
to better fit the format of the thesis. The page number located in the header of each page of the arti-
cle except the first one is relative to the article and is starting from A102, whereas the page number
relative to the thesis is located in the footer of the page.

41






A method of combining coherence-constrained sparse coding and
dictionary learning for denoising

Pierre Turquais*?, Endrias G. Asgedom', Walter Sollner

ABSTRACT

We have addressed the seismic data denoising problem, in which the noise is random and has an
unknown spatiotemporally varying variance. In seismic data processing, random noise is often
attenuated using transform-based methods. The success of these methods in denoising depends
on the ability of the transform to efficiently describe the signal features in the data. Fixed trans-
forms (e.g., wavelets, curvelets) do not adapt to the data and might fail to efficiently describe
complex morphologies in the seismic data. Alternatively, dictionary learning methods adapt to
the local morphology of the data and provide state-of-the-art denoising results. However, con-
ventional denoising by dictionary learning requires a priori information on the noise variance,
and it encounters difficulties when applied for denoising seismic data in which the noise variance
is varying in space or time. Here, we propose a coherence-constrained dictionary learning (CDL)
method for denoising that does not require any a priori information related to the signal or noise.
To denoise a given window of a seismic section using CDL, overlapping small 2D patches are
extracted and a dictionary of patch-size signals is trained to learn the elementary features em-
bedded in the seismic signal. For each patch, using the learned dictionary, a sparse optimization
problem is solved, and a sparse approximation of the patch is computed to attenuate the random
noise. Unlike conventional dictionary learning, the sparsity of the approximation is constrained
based on coherence such that it does not need a priori noise variance or signal sparsity informa-
tion and is still optimal to filter out Gaussian random noise. The denoising performance of the
CDL method is validated using synthetic and field data examples, and is compared with the K-
SVD and FX-Decon denoising. We found that CDL gives better denoising results than K-SVD
and FX-Decon for removing noise when the variance varies in space or time.

INTRODUCTION

Raw seismic data are often contaminated with random noise over the entire time and frequency
band. This noise obscures details and hinders seismic imaging from revealing the real subsurface
structures. Attenuating such noise is well-known to be a long-standing problem (Yilmaz, 2001). Over
the past decade, however, sparse and redundant representations have received a lot of attention in
signal and image processing for analyzing the information in data sets and providing state-of-the-art
results for compression, interpolation, and denoising (Elad, 2010). Based on the observation that the
relevant information about the physical process that causes our recording is of low dimensionality
(Tosic and Frossard, 2011), sparse and redundant representations may be used to express the relevant
information as a linear combination of few elementary signals called atoms stored in a redundant set
known as the dictionary.

1 Petroleum Geo-Services ASA, Oslo, Norway
2 University of Oslo, Department of Geosciences, Oslo, Norway
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The atoms of a given dictionary can be predefined assuming that the signal in the data follows a
given analytical model. For example, the atoms can be analytically defined as Fourier, wavelet (Mal-
lat, 2008), curvelet (Candes and Donoho, 2000, 2002) or seislet (Fomel and Liu, 2010; Liu and Fomel,
2010) basis vectors. Alternatively, it is possible to avoid any assumption about the morphology of the
signal and learn a redundant dictionary from the data with a dictionary learning (DL) method. These
methods train a dictionary to be optimally adapted for representing the signal in a sparse manner.
The DL methods include method of optimal direction (MOD) (Engan et al., 1999), k-means singular
value decomposition (K-SVD) (Aharon et al., 2006), and data-driven tight frame (DDTF) method
(Cai et al., 2014). Otherwise, a double sparsity dictionary learning method (Rubinstein et al., 2010)
reconciles the fix and adaptive approaches by learning a dictionary as a sparse linear combination of
a predefined dictionary.

When sparse representations are used for denoising, the recording is sparsely approximated with
the part of the recording that correlates best with atoms of the dictionary. Therefore, the quality
of denoising depends on the ability of the dictionary to efficiently describe the signal. Practically,
Fourier-transform-based seismic denoising often performs poorly because Fourier basis functions fail
to represent localized seismic events in a sparse manner. On the contrary, wavelet basis functions are
well localized and therefore they can describe seismic data in a sparser manner and provide better
denoising than the non-space methods (Foster et al., 1994). Curvelets can efficiently model the geom-
etry of waveforms (Candes and Demanet, 2005), and they have proven to be some of the most suitable
predefined functions to represent and denoise the seismic data (Hennenfent and Herrmann, 2006; Nee-
lamani et al., 2008). However, using a dictionary that is constructed from a predefined transform leads
to a global approach for seismic data representation - a single dictionary is used to represent all the
seismic features. This lack of adaptability to the local morphology can make predefined dictionaries
inefficient to represent some of the complex features in seismic data. Thus, attempting to perform
denoising using predefined dictionaries might result in distorted signal output. This is why, using a
learned dictionary for denoising seismic data has proven to be a better alternative than using a fixed
dictionary (Beckouche and Ma, 2014). Training a redundant dictionary has a high computational cost,
which results in expensive denoising methods. To reduce this cost, DDTF trains a tight frame instead
of a general redundant dictionary because tight frames benefit from simpler decomposition and re-
composition schemes (Liang et al., 2014; Yu et al., 2015, 2016). Also, double sparsity dictionary
learning methods benefit from taking a data-driven approach and integrating prior information about
the signal morphology into the problem (Zhu et al., 2015; Chen et al., 2016).

When denoising seismic data by sparse approximation subject to a fixed or learned dictionary, the
key parameter is the constraint on the sparsity of the approximation because it controls the amount of
energy that is removed from the data. For now, this constraint is either fixed or dictated by the variance
of the noise. A constraint dictated by the variance of the noise can be optimal only for filtering
noise whose variance is known a priori and constant over the data (Donoho and Johnstone, 1994).
If the variance of the noise is uncertain or varying over the data, one needs to compute the sparse
approximation with a variance parameter that compromises between signal losses and remaining noise
because signal loss may occur when the true variance is locally lower and noise may remain in the
data when the true variance is locally higher.

In this work, we implement a sparse approximation method in which the sparsity is constrained by
a statistical measure of the coherence present in the removed noise. We derive a coherence threshold
that is independent of the variance of the noise and is ideal for filtering out Gaussian noise. We further
integrate such a sparse approximation to the K-SVD DL scheme and build a coherence-constrained
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dictionary learning (CDL) method, which is adapted for attenuating random noise of unknown spa-
tiotemporally varying variance.

The rest of this paper is organized as follows: First, we formulate and evaluate the CDL denoising
algorithm. Then, we assess the denoising performance of CDL in comparison with conventional K-
SVD, and FX-Decon (Canales, 1984; Gulunay, 1986) methods using synthetic data contaminated with
random noise having a constant variance and having a spatiotemporally varying variance. Finally, we
apply CDL on a field data section to validate its noise attenuation and signal preservation capability.

METHOD

DL algorithms contain a step that performs sparse approximation. It is in this step that CDL
method differs from classic DL methods, by using a coherence-constrained sparse approximation.
Therefore, this section first presents the coherence-constrained sparse approximation problem and
then it describes the CDL algorithm.

The ideal coherence-constrained sparse approximation

Consider a recording z € R containing signal of interest y € R" and white Gaussian noise
n € RY of zero-mean and o2 variance. Formally, this data model is given by

Z=y-+n. (1)

The recording z can be expressed in another domain via matrix multiplication with a dictionary. This
dictionary is a matrix containing an atom, i.e., a unit vector of length /N, in each of its columns
(D = [a; a, ... ag| € RY*E) and it is chosen such that the signal of interest is sparse in the dictionary
domain. Therefore, there exists a sparse vector X € RE, containing a small number L, of nonzero
coefficients such that

y = Dx. 2)

In sparse optimization problems, the number L of nonzero coefficients in the solution x is referred to
as the cardinality. For attenuating the noise, the recording is sparsely approximated in the dictionary
domain. To do so, it is popular to place a constraint on the representation error and aim for the solution
that minimizes the /y-norm (Donoho et al., 2006). This problem can be formally expressed as

X = argmin ||x||o subjectto ||z —Dx||s <€, 3)
X

where the representation error threshold e is dictated by the noise variance o>

problem, the sparse approximation of the recording is computed by

. After solving this

y = Dx. “)

However, if the standard deviation of the noise is unknown but the cardinality L of the solution is
known, one can interchange the constraint and the objective function (Tropp, 2004). That is, switching
the problem in equation 3 to the problem

X = argmin ||z — Dx||, subjectto |[x||o < T, 5)
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where the threshold 7' is dictated by the cardinality L of the solution.

In this work, we want to tackle the problem in which the cardinality of the solution and the noise
variance are unknown. In this case, it is possible to use a method known as coherent denoising
(Mallat, 2008, p. 656-659). In coherent denoising, the sparsity is constrained by the coherence of
the residual vector r relative to the dictionary D. This coherence measure is denoted by yu(r, D) and

mathematically given by
T

p(r,D) = max : (6)

J

r a
Irfl

where a; is one of the unit vectors of the dictionary as mentioned earlier. The residual vector is the
difference between the recording and the sparse approximation (i.e., r = z — DX). Hence, coherent
denoising aims to solve the problem

X = argmin ||x||p subjectto u(z —Dx,D) <, (7)

where i is a fixed coherence threshold. Finding an approximation of a recording, which uses a mini-
mal number of atoms from a redundant dictionary and satisfies ;1(z — Dx, D) < [ is a problem called
”Non-deterministic Polynomial-time (NP)-hard”. The NP-hardness is a class of problems whose
complexity cannot be expressed as a polynomial function of its input size, but rather as an exponen-
tial function. Therefore, as problems in equations 3 and 5, the problem in equation 7 is not tractable
for realistic seismic data sizes. However, an approximate solution can be obtained using coherent
matching pursuit (Mallat, 2008, p. 656-659).

The coherent matching pursuit algorithm uses the iterative greedy scheme of orthogonal matching
pursuit (OMP)(Pati et al., 1993), but has a different stopping criterion. The coherent matching pursuit
algorithm selects the atom having the highest correlation with the current residual vector, then it
updates the coefficient vector by error minimization, and finally updates the residual vector, at each
iteration. The iterative process continues until the coherence 1(r, D) reduces to become less than the
threshold jz and results in an approximate solution to the problem in equation 7.

Donoho and Johnstone (1994) show that the threshold o+/2 log(/V) is ideal for denoising a signal
of length N contaminated by Gaussian noise of variance o2 when used with thresholding over a
wavelet base. Following the same track, we show in Appendix B that the threshold

log(K)
N

Hideal = 2 (8)
is ideal for filtering out white Gaussian noise by coherent denoising subject to a redundant dictionary
D € RY*E, This threshold has the additional advantage of being independent of the noise vari-
ance. Consequently, using this threshold for coherent denoising provides a safe and optimal noise
attenuation process and does not require testing of any parameters.

We designed an experiment to evaluate the denoising performances of a sparse approximation that
is constrained with the proposed coherence threshold in comparison with the error-constrained and
the cardinality-constrained sparse approximations. We first synthesized a signal vector following the
model established in equation 2. Here, the dictionary D was a matrix of size 100 x 100 and its atoms
were zero-mean unit vectors with identically and independently distributed Gaussian entries. The
sparse coefficient vector x contained L nonzero coefficients. The position of the nonzero coefficients
was randomly chosen and their values were fixed to the same value, . Then, a recording z was
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synthesized by adding random noise n with variance o2 as in equation 1. We will use y,,,. and y,.
to refer to the sparse approximations obtained with OMP for the error- and cardinality-constrained
problems in equations 3 and 5, in which the thresholds are fixed such that € = VNoand T = L,
respectively. Furthermore, y_, will refer to the coherent matching pursuit approximate solution to the
problem in equation 5, for the threshold jij4eq. The sparse approximations y ;. ¥.,.. and y,, of the
recording z were computed to recover the signal of interest. Because n is known in this experiment,
the denoising capability of a sparse approximation was measured with the mean-squared error relative
to the initial noise given by

_ |y =9l

E = 9
I ©)

The quantity F assesses the error reduction; the closer it is to 0, the greater is the error reduction.
Note that £’ is independent of the amplitude of the recording, unlike the mean-squared error.
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Figure 1: Denoising capability of the coherence-constrained sparse approximation y,, (solid curve),
the error-constrained sparse approximation y,,.. (dashed curve), and the cardinality-constrained sparse
approximation y,_,. (dotted curve) when the cardinality L of the solution is fixed at 1, 3, and 5, as
indicated above each plot. The error F is presented as a function of the ratio a/o .

The results of this experiment are presented in Figure 1 for a/o ranging from zero to 10 and
the cardinality value L, which was fixed at 1, 3, and 5, as indicated above each plot. Each E value
is computed as the average of 10,000 trials of a Monte Carlo experiment. Trials of a Monte Carlo
experiment are repetitions of the experiment in which the random parameters are reselected. For
small values of ratio «/o, ¥, provides the lowest £, and for larger values, y,,,. performs better.
However, £ does not differ significantly for the three sparse approximations. Hence, this experiment
demonstrates that y,_, can perform denoising similar to that of y_,,. or ¥y, without the knowledge
of the cardinality of the solution or the noise variance. For the range of parameters studied, £ of
¥.» varies between 0.02 and 0.33. This means that the mean squared error of y,, is at least 3 times
smaller and up to 50 times smaller than the mean squared error of the recording. Hence, these £
values prove the noise attenuation capabilities of y ...

Denoising by coherence-constrained DL

The sparse approximation problem presented in the subsection “The ideal coherence-constrained
sparse approximation” can be applied to each recording of data independently. For seismic data,
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the recording could be a trace, a window of a gather, or the entire gather, as long as the dictionary
is chosen accordingly. However, DL algorithms are designed to be applied on a set containing a
large number M of recording vectors, z;, Zo, ..., Z)s, having the same length N. For seismic data
applications, the recording vectors correspond generally to small 2D patches from a gather that have
been vectorized. Here, for studying the problem, we consider a set in which the signal and noise
content of each recording are given by the models in equations 1 and 2, where the dictionary D is
the same for all the recordings. Then, for i=1, 2, ..., M, the recording z; contains noise and signal
components. The noise component, n;, is white Gaussian noise of mean zero and variance af and the
signal component y, can be expressed as a linear combination of a small number L; of atoms of the
dictionary.

Denoising by DL consists in finding a dictionary D and a set of sparse coefficient vectors X;, Xo,
..., Xp7 such that the sparse approximations

y, = Dx; , (10)

for: =1, ..., M, recover the signal of interest present in the data set z,, zo, ..., Zy;.

For a data set contaminated by noise of constant variance, i.e., 07 = o2 fori = 1,2, ..., M, Elad
and Aharon (2006) propose to solve the problem

M
({%:}11,,D) = argmin Y _[jx[|o subject to [|z; — Dx;[|s < e.i=1,2,.., M. (11)

{x}2, D ;.5

This problem consists of finding the dictionary and sparse coefficients that minimize the sparsity of
the representation with the constraint that the representation error of each recording should be below
the threshold e. The threshold € is dictated by the variance o of the noise. For instance, a threshold
¢ = v/No would ensure to not remove more energy from the recordings than the energy coming from
the noise.

Alternatively, if the cardinality of the solution is constant, i.e., L; = L forz = 1,2, ..., M, Aharon
et al. (2006) propose to learn the dictionary and sparse coefficients by solving the problem

M
({%:;}M,.D) = argmin ZHZZ — Dx;||5 subjectto ||x|[o <T,i=1,2,.., M. (12)

{xi}ML, D iy

In this problem, the representation error is minimized with the constraint that each representation of
recordings should have a sparsity below the threshold 7" that is dictated by the cardinality L of the
true solution.

Here, we address the problem in which the cardinality of the solution and the noise variance are
varying over the data set. In this case, none of the solutions in equations 11 and 12 are optimal
for denoising. Indeed, one could solve the problem in equation 11 with a fixed error threshold,
but the solution would represent noise of recordings in which the norm of the noise is above the
error threshold and might not preserve the signal of the recordings in which the norm of the noise
is below the error threshold. Similarly, one could solve the problem in equation 12, but the solution
would distort the signal of the recordings in which the cardinality of the true solution is above the
threshold and represent noise of the recordings in which the cardinality of the true solution is below
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the threshold. To overcome these problems, we propose to solve

. M
o o | min 2, [ — Dx,[2
({Xi};21, D) = arg min E :||Xz’||0 subject to log(K) -
HL D S plzi —Dx;, D) < A/2757 i =12, M
(13)

Here, the sparsity of the representation is minimized and subject to two constraints, (1) the dictionary
should be computed to minimize the representation error, and (2) the residuals of the representation
should have coherence below the threshold A4/ 2%. The gain factor A controls the strength of
the denoising. However, one should set the gain factor A to one for proper signal preservation (cf.
Appendix B).

The problem in equation 13 is highly underdetermined and cannot be solved exactly. Similarly
to conventional DL problems (Engan et al., 1999; Aharon et al., 2006), it is approximated with the

iterative two step process summarized as follows

I Sparse coding step: For each recording z;, ¢ = 1,..., M, use the coherent matching pursuit
algorithm to solve the problem in equation 7 and find the sparse coefficient vector x;. In this
problem, the coherence threshold is set to Ay/2log(K)/N and the dictionary used is the one
found at the dictionary update step of the previous iteration.

IT Dictionary update step: Use the K-SVD dictionary update step (Aharon et al., 2006) to find a
new dictionary as the solution to the problem

M
N P 1 pp— A. 2
D = min Zluzz Dx; |2, (14)

where X1, Xo, ..., X)s are the sparse coefficient vectors found in step 1.

For the first iteration, the dictionary is initialized with K normalized recordings randomly chosen
from the data set.

For step 2, CDL borrows the dictionary update process from the K-SVD algorithm. The K-SVD
dictionary update process has been chosen over the MOD dictionary update process because the K-
SVD algorithm converges quicker to a solution (Aharon et al., 2006). The CDL algorithm is detailed
in Appendix A.

As proposed by Elad (2010), p. 227-238, we designed an experiment to assess the dictionary
recovery capability of CDL in comparison with the conventional K-SVD algorithm. The comparison
is done for both cases in which K-SVD is used to solve the error-constrained DL problem stated in
equation 11 (denoted K-SVD,,..) and the cardinality-constrained DL problem stated in equation 12
(denoted K-SVD,,,.). This experiment is described in Figure 2. A dictionary of size 100x 100 (N=100,
K=100) was synthesized and used to construct a set of 8000 recording vectors (M=8000) following
the models described in equations 1 and 2. The cardinality L of the solution and the standard deviation
o of the noise were constant over the data set in order that K-SVD,,,. and K-SVD,,, could be used
correctly. The L nonzero coefficients were chosen uniformly at random between five and 10 times
the standard deviation of the noise. The constructed data set was given as input to CDL, K-SVD.,,.,
and K-SVD,,,.. The thresholds used by K-SVD,,,, and K-SVD,,, were ¢ = VNo and T = L,
respectively. The CDL method was used with the gain factor A set to one. The dictionaries output
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Figure 2: An experiment that assesses the dictionary recovery capability of a DL algorithm. (1) A
dictionary is generated such that its atoms are zero-mean unit vectors with identically and indepen-
dently distributed Gaussian entries. (2) Each signal vector is constructed as a linear combination of L
randomly chosen atoms from the dictionary. (3) White Gaussian noise of mean zero and variance o>
is added to the signal vectors to synthesize the recording vectors. (4) The DL algorithm is applied to
learn a dictionary. (5) The original and learned dictionaries are compared to compute the dictionary
recovery rate (i.e., the percentage of recovered atoms).
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by the DL algorithms were compared with the dictionary that was first synthesized. The dictionary
recovery capability is assessed with the percentage of recovered atoms where an atom is considered as
recovered if the correlation between the atom from the true dictionary and an atom from the learned
dictionary is higher than the value of 0.99.
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Figure 3: Dictionary recovery capability of CDL (solid curve), K-SVD,,, (dotted curve), and K-
SVD.,, (dashed curve) when the cardinality of the solution L is fixed at 1, 3, and 5, as indicated
above each plot. The dictionary recovery rate is presented versus the number of iterations of the DL
process.

In Figure 3, the recovery rate for CDL, K-SVD,,,, and K-SVD,,.. are displayed at each iteration
for L = 1, 3, and 5, as indicated above each plot. The recovery rate values are computed with 100
trials of Monte Carlo experiments. For L. = 1, neither of the three algorithms is able to recover
the dictionary, but, for L = 3 and 5, the algorithms recover the dictionary. An explanation for this
behavior can be, as L increases, the signal-to-noise ratio (S/N) of the recordings increases, and the
performance of the dictionary update step increases. For a cardinality that is equal to or higher than
three, K-SVD,,,- and CDL have similar dictionary recovery rates. For all tested cardinality values, K-
SVD.,, needed more iterations to converge than K-SVD,,,, and CDL did. However, for a cardinality
equal to 3, K-SVD.,.,. reached a slightly higher recovery rate after convergence. Given the parameters
used, after 25 iterations, the three algorithms have nearly converged. For the same parameters, if we
increase the number of recordings or the S/N, the dictionary is more easily recovered by any of the
three algorithms. Finally, we note that CDL performs DL similar to K-SVD without knowledge of
the noise variance or the cardinality of the solution.

SYNTHETIC DATA APPLICATION

In this section, we first compare the performances of the CDL method with that of the FX-Decon
and conventional K-SVD methods for a classic problem - removing Gaussian noise of constant vari-
ance from a 2D seismic data set. Then, we test the capability of CDL, FX-Decon, and K-SVD
methods to adapt to the challenging and under-explored problem in which the variance of the additive
noise is spatiotemporally varying.
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Noise with constant variance

A noise-free synthetic 2D data set was generated using finite difference for an earth model con-
sisting of plane and syncline reflectors. The data were acquired for sources and receivers placed at
every 10 m and with a time sampling increment of 4 ms. Then, we added zero-mean white Gaussian
noise to the signal to obtain the noisy data. The method is applied on the zero offset gather. The
common-offset domain (in this case, zero offset) has been selected to apply CDL because DL ex-
ploits redundancy of the features over the data set, and we expect higher redundancy to be present in
common-offset domain because most of the events are flat. This section is divided into windows of
size 100 x 100, which are individually denoised. We selected three windows of the noisy data for the
study (see Figure 4, first column). In window 1, the seismic signal is a linear flat event with strong
amplitude compared with the noise. In window 2, the signal is composed of nonlinear seismic events,
and in window 3, the data have a poor S/N.

Noisy data e = ] Denoised data
1) Patch Dictionary of 6) Patch
- size N x K .
extraction averaging
p— A—
NS » M
M noisy 2D Dictionary M denoised 2D
patches update patches
2) Arrangement 5) Arrangement
as vectors as patches
21 Zz Z3 24 ¢ E— Xy Xy Xy Xy e —_— Y. ¥2 ¥z ¥4 -
M recording Sparse coding M sparse coefficient 4) Sparse M sparse
vectors of length N vectors of length K approximation approximation
vectors of length NV

3) Dictionary learning (I iterations)

Figure 5: Flow-diagram of the CDL denoising process that is applied on a 2D seismic data win-
dow. (1) Fully overlapping 2D patches are extracted from the data window. (2) The patches are
rearranged as column vectors. (3) The CDL algorithm detailed in Appendix A is applied to the ex-
tracted data set to learn a dictionary and find a sparse coefficient vector for each recording. (4) The
sparse approximation vectors are computed by matrix multiplication of the learned dictionary with
the sparse coefficient vectors. (5) The sparse approximation vectors are rearranged as 2D patches. (6)
The patches are assembled considering their original positions and are averaged to obtain the seismic
signal of the data window.

The workflow for denoising a given 2D data window with CDL is presented in Figure 5. All
overlapping patches of size 10 x 10 (N = 100) are extracted from the window. In other words, the
shift between the extracted patches is one sample in both dimensions. Hence, M = 91 x 91 = 8281.
The patches are rearranged into vectors of length 100 to generate the recordings, z1, ..., Zgog1. The
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CDL algorithm is applied to the data set with 25 iterations (/ = 25), a gain factor A set to one,
and a number of dictionary atoms fixed at 100 (X = 100). Each sparse coefficient vector, X;, and
the dictionary output from the algorithm are multiplied to generate the sparse approximation y, of the
recording (see equation 10). Each sparse approximation vector y, is later rearranged as a 10 x 10 patch.
Because the patches extracted from the noisy image were overlapping, there are several versions of
the same samples in the set of denoised patches. Therefore, when assembling the denoised patches
to retrieve a signal window, the multiple versions of the same samples are averaged. This averaging
further attenuates the noise. The number M of patches in the data set and the number [ of iterations
of the algorithm have been chosen to guaranty optimal filtering according to the studies presented in
Figure 3. Indeed, the results presented in Figure 3 show that the studied DL algorithms are able to
recover the dictionary after 25 iterations when the extracted data set contains 8000 recordings. The
size of the patches and the number K of atoms in the dictionary have been chosen empirically as a
good compromise between quality of denoising and tractability of the algorithm, but how to chose
these parameters is still an open question in the DL field.

We compared the CDL method with the conventional K-SVD and FX-Decon denoising methods.
For this problem, we chose to apply K-SVD,,,. and not K-SVD,,,.. Indeed, because we introduced
noise of constant variance, all of the recordings present in the extracted data set contain noise having
the same variance. Thus, considering as known this variance value, K-SVD,,.. can be applied in opti-
mal condition. On the other hand, because the seismic signal within a patch is more or less complex
depending on where it has been extracted, it requires more or fewer features to be reconstructed; i.e, L
is not constant over the data set, and K-SVD,,, would encounter difficulties. The K-SVD,,,, method
was applied with an error threshold € set to v/ No, where o is the standard deviation of the additive
Gaussian noise. The rest of the parameters were the same as those used for applying CDL. FX-Decon
was applied on windows of size 50 x 50 with 50% of overlapping in both dimensions and a filter of
length 6 samples. These parameters have been selected because they have been shown to give the best
denoising results on another example (Chen et al., 2016).

The dictionaries learned with CDL and K-SVD are presented in the second and third columns of
Figure 4. For each learned dictionary, its 100 atoms are pictured as 10 x 10 patches in 10 lines of
10 atoms. We can observe the atoms represent redundant features (i.e., features present in many data
patches) from the windows in which they have been learned. Because redundant features are the most
efficient to sparsely represent the entire window, this attests to a successful DL for both algorithms.
The results after CDL, K-SVD,,.,, and FX-Decon denoising are presented in Figure 6a, in the second,
third, and fourth column, respectively. The denoising performance is quantitatively assessed via the
S/N computed before and after the noise attenuation. For a given data d and its noise-free reference
d..r, the S/N expressed in decibels is defined as

Hdreng
N
ol
2

The S/N values displayed under each noisy and denoised window show that CDL is performing simi-
lar to K-SVD,,.. and outperforms FX-Decon. We computed the difference between the recovered and
the true signal to visually verify if some signal has been removed. These error windows are displayed
in Figure 6b. For both CDL and K-SVD.,, methods, we see no significant coherence in the error
windows. However, we can observe signal in the FX-Decon error window 2. This shows that FX-

S/N =10 log,, (15)
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Figure 6: CDL, K-SVD,,.., and FX-Decon denoising that were applied on three windows of synthetic
data for attenuating random Gaussian noise of constant variance. (a) Denoised data and (b) error.
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Decon denoising does not entirely preserve the signal when the input section is very complex. This
signal distortion can be reduced by decreasing the window size, but this would increase the amount
of remaining noise.

To summarize the results of this study, CDL performs better than FX-Decon and similarly to K-
SVD in denoising seismic data contaminated by Gaussian noise of constant variance. However, in
contrary to K-SVD, CDL does not require knowledge of the noise variance.

Noise with varying variance

We reproduced the experiment presented in the previous section but with random noise having a
spatiotemporally varying variance. To create a noise window N,,, having a spatio-temporally varying
variance, we generated a matrix of size 100 x 100 containing zero-mean white Gaussian noise N,
and modulated its amplitude such that

Nvar = (W + T) o Ng s (16)

where o denotes the element-wise multiplication. The matrices W and T are of size 100 x 100 and
are defined such that W contains a 2D cosine signal varying in amplitude between 0.5 and 1.5 with a
wavelength of 63 samples in both dimensions and T has 15% of its columns filled with the value one
and the rest with the value zero. The three data windows obtained from the addition of the noise N,
to the signal are shown in Figure 7a, in the first column.

CDL denoising was applied to the three windows and compared with the K-SVD,,,., K-SVD.,.,.,
and FX-Decon denoising methods. The parameters for applying the different methods were the same
as the ones used during the previous experiment (see the section “Noise with constant variance”).
The K-SVD,,, methods was applied with a cardinality threshold 7" fixed at four, whereas K-SVD.,.,.
was applied with an error threshold ¢ fixed at v/ No, where o is the standard deviation computed on
the noise N,,,. The learned dictionaries are not shown here. They are, however, similar to the ones
learned during the previous experiment in which the data were contaminated with noise of constant
variance. The windows after CDL, K-SVD_,,., K-SVD,,.., and FX-Decon denoising are presented in
Figure 7a, as indicated above the columns. The S/N of each denoised window is displayed under it.
In addition, the error windows are presented in Figure 7b.

No remaining noise is visible on the CDL-denoised windows. Moreover, the absence of signal
and noise in the error windows attests that noise is highly attenuated and signal is preserved. Exam-
ining the CDL-denoised results presented in Figure 6a and comparing them to the ones presented in
Figure 7a shows that CDL performs similar denoising for noise having constant variance and noise
having spatiotemporally varying variance. Therefore, CDL is not affected by the variations of the
noise variance.

In the top of the K-SVD,,,- denoised window 1, some remaining noise is observed. In this area,
there is initially very low signal, and therefore, some of the four atoms are used to reconstruct noise.
Similarly, we can observe remaining noise in the K-SVD,,.. denoised windows. Where the remaining
noise is observed, the norm of the initial noise is locally higher than the error threshold, and the
method consequently represents some noise. Therefore, the K-SVD,,,. and K-SVD,,.. results show
that variations in the signal complexity or noise variance reduce the denoising performances of the
K-SVD denoising method.

As we can observe from the denoising results, FX-Decon denoising is not affected by the vari-
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Figure 7: CDL, K-SVD,,,, K-SVD,,.., and FX-Decon denoising that were applied to three windows
of synthetic data for attenuating spatiotemporally varying noise. (a) Denoised data and (b) error.

57



All6 TURQUAIS ET. AL

ations in the noise variance. However, it performs poorly in terms of noise attenuation and fails to
preserve the complex signal present in window 2. Finally, the S/N values show that CDL attains
higher S/N enhancement compared with K-SVD,,.., K-SVD,,,., and FX-Decon.

FIELD DATA APPLICATION
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Figure 8: CDL that was applied on a common offset gather of a field data set for attenuating random
noise. (a) Input data, (b) denoised data, and (c) removed noise.

A common-offset section of marine data (see Figure 8a) was selected to validate the capability
of CDL to attenuate random noise present in field data sets while preserving the underlying seismic
signal. The CDL method was applied on windows of size 100 x 100, which were overlapping on
15 samples in both dimensions. We used the same parameters as the ones selected for the study
on seismic synthetics. The resulting denoised and removed-noise sections are shown in Figure 8b,
and 8c, respectively.

In the removed noise, we observe a high variation in the variance. This shows that the random
noise in field data has spatiotemporally varying characteristics. The absence of significant coherence
in the removed noise shows that CDL can attenuate such noise while preserving the signal. We
selected three windows of the section for a detailed analysis which is presented in Figure 9. Windows
1, 2, and 3 contain high-frequency flat events with poor S/N, linear high amplitude dipping events,
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Figure 9: CDL that was applied on three windows of field data. These windows are chosen from the
common offset gather presented in Figure 8a. In the removed noise window 1, two frame boxes point
out two patches in which variance has been computed. The variance of the higher patch, o2, is 3.6
times larger than the variance of the lower patch, 3.
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and diffractions, respectively. The 100 atoms of the learned dictionaries are presented as patches in
the second column. We note that the learned atoms are free of noise. On window 1, essentially atoms
representing flat linear features have been learned. However, many dips are present in the dictionary
learned on the diffractions in window 3. This shows that in a dictionary trained on a data window,
only the features necessary to efficiently represent the signal are captured, and it attests to an accurate
DL. From the denoised windows presented in the third column, we can observe that random noise
has been highly attenuated. The removed noise windows, presented in the last column, show that
no significant coherent signal has been removed from the data. It is also true for the diffractions
in window 3, which are especially challenging to preserve while denoising. On the removed noise
window 1, we computed the variance of two 10 x 10 size patches pointed out with frame boxes. The
variance o of the higher patch is 3.6 times larger than the variance o3 of the lower patch. This shows
that the variance of the noise in field data is highly variable, even within a 100 x 100 size window,
and it justifies the need for a method such as CDL that does not depend on a fixed variance parameter.

DISCUSSION

In this work, we proposed to modify the sparsity constraint of the sparse approximation used in
DL-based denoising methods. This does not affect the computational complexity of DL algorithms.
Here, as in the conventional K-SVD denoising method, CDL denoising requires O(/N K L 1) operations
per pixel, where NV is the number of samples in a patch, K is the number of atoms in the dictionary, L
1s the number of nonzero elements in each coefficient vector, and [ is the number of iterations of the
algorithm (Elad and Aharon, 2006). CDL is, however, faster than K-SVD for the examples presented
in this paper. For instance, filtering window 1, which is presented in Figure 6a took 101.7s for CDL
and 201.2s for K-SVD on a laptop having a CORE i7vpro CPU. The CDL denoising was faster
because it provided a solution with smaller L. when no signal was present in a patch. Moreover, the
tractability of K-SVD can be very affected by the variation of the noise variance when the problem
in equation 11 is solved. For instance, denoising window 1 with K-SVD,,.,. was about three times
longer when additive noise had varying variance (see Figure 7a) compared to when noise had constant
variance (see Figure 6a). The run time of K-SVD,,.,. is large when removing noise with varying
variance because it provides a solution in which L is large when the norm of the noise is locally
higher than the error threshold. For the same example, the tractability of CDL denoising was not
affected by the variation of the noise variance.

In this work, we chose the parameters of the filtering to achieve an optimal DL and denoising
according to the studies performed on 1D synthetics (see Figures 3). In practice, the parameters can
be modified to decrease the run time significantly but without significantly affecting the quality of
the denoising results. For instance, for the same window 1, if the dictionary is learned on 20% of
the data set with 5 iterations of the CDL process, and we use this dictionary to compute the sparse
approximation of the complete data set, then we obtain a denoised data window having an S/N value of
35.03 dB in 9.7s. In addition, the algorithm used is a straightforward implementation of the algorithm
presented in Appendix A, and therefore, is not optimized. Using the optimizations proposed by
Rubinstein et al. (2008) speeds up the DL algorithms by a factor of 27 for the presented examples.

In the results presented in Figure 6a, we observe that FX-Decon is less effective in noise removal
compared to the DL methods. But, it is much faster. For instance, filtering window 1 took 0.07s. The
algorithm used is from SeisLab and it corresponds to the implementation proposed by Ulrych and
Sacchi (2005), p. 229-232.
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CDL denoising could be easily extended to higher dimensions. For instance, for 3D seismic
data, it would consist in constructing the data set of recordings by extracting small 3D cubes instead
of 2D patches. Then, as for 2D data, denoising of the data set would be performed with the CDL
algorithm, which is presented in Appendix A. The 3D CDL denoising method would most probably
perform better than the 2D CDL denoising method because it would benefit from the 3D coherency
of the seismic wavefield. The complexity of the 3D CDL denoising process would be the same as the
complexity of 2D CDL denoising process.

For denoising field data, Beckouche and Ma (2014) propose to estimate the variance of the noise
with Median Absolute Deviation (MAD) and apply an error-constrained-DL-based denoising method.
First, such a method does not adapt to variation of the noise variance within the window. Second, the
MAD of the noise that is mixed with the signal is very often higher than the MAD of the noise alone
because the signal is not sparse in time. Therefore, a method that is using MAD of the noise mixed
with the signal very often overestimates the variance of the noise. For the field data section that
is presented in Figure 8a, using MAD tends to overestimate the noise variance and would lead to
substantial signal loss.

For the presented results, CDL has always been used with a gain factor set to 1 to optimize the
signal preservation while attenuating the random noise. However, one could increase the gain factor
to filter out noise that is slightly coherent in space and time.

In this work, we proposed to change the constraint of the DL problem, which only concerns the
sparse coding step of the DL process. We used the K-SVD dictionary update step because the K-SVD
algorithm has established itself as the standard DL algorithm. However, the proposed sparse coding
step could be implemented using more up-to-date and more efficient algorithms, for instance, the
sparse K-SVD algorithm (Rubinstein et al., 2010). The resulting denoising method could integrate a
priori information about the seismic wavefield morphology and be locally adaptive to the data and to
the noise variance.

CONCLUSION

Conventional DL methods are not adapted for denoising seismic data contaminated by noise with
spatiotemporally varying variance because they are constrained with fixed error or cardinality thresh-
olds. We proposed a DL method for denoising, which is constrained with a coherence measure. This
method, referred to as CDL, can adapt to data in which the signal complexity and the noise variance
vary in space and time. Furthermore, we derived a coherence threshold for CDL that is optimal for
filtering out noise, which is locally white and Gaussian while preserving signal. Using synthetic data,
we compared CDL denoising to K-SVD and FX-Decon denoising for two noise contamination cases,
noise with constant variance and noise with spatiotemporally varying variance. We observed that
CDL method performs similar to K-SVD for removing Gaussian noise with constant variance and
has the advantage that it does not require the knowledge of the variance. Moreover, the CDL method
provides better denoising results than K-SVD when the variance of the noise is spatio-temporally
varying. For both cases in which the noise variance is constant and spatiotemporally varying, the
CDL method outperforms FX-Decon denoising. Finally, on a field data example, we observed that
noise recorded during seismic acquisition has a spatiotemporally varying variance, and that the pro-
posed CDL method can attenuate such noise while preserving the signal.
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APPENDIX A
THE CDL ALGORITHM

The CDL algorithm described in Algorithm 1 takes a matrix Z containing a recording vector in
each of its columns as input, and returns a dictionary D and a sparse coefficient matrix X = [X; ... X/,
which are approximate solutions of the problem presented in equation 13. In Algorithm 1, brackets
have been used to refer to an index of a vector or a matrix; for instance, x| is the ith sample of the
vector x and D7, j] is the sample at the ith line and jth column of the matrix D. In addition, columns
inside the brackets are used to refer to all the indexes in a dimension; for instance, D[, :] is the ith
line of the matrix D. The notation D™ has been used to denote the More-Penrose generalized inverse
(Penrose, 1955) of a matrix D. The function svd(D) applies the SVD decomposition of the matrix D
and returns the matrices of eigenvectors U and V, and of eigenvalues A, such that D = UAV?. The
symbol <— stands for assignment of the object at the right of the arrow into the location at the left of
the arrow. We used {a,b} to refer to a set containing the objects a and b.
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Algorithm 1 CDL
1: Input: Matrix of recordings Z = [z, z, ... z);] € RV*M
2: Parameter: Number of dictionary atoms: K, number of iterations: /, gain factor: A
3: Inmitialization: Initialize the dictionary D = [a; a, ... ag| with K normalized recordings ran-
domly chosen from Z and allocate space for the sparse coefficient matrix X = [X; Xs ... X)/]
4: Repeat [ times,

e Sparse coding step: For each recording z; of the data set,

— Initialize the support A (indexes of the selected atoms), the coefficient vector x;, and
the residual vector r such that A «+ {&}, x; + 0, and r < z;.

— Repeat iteratively until the stopping criterion is satisfied
* verify the stopping criterion:

(r, D) < Ay/Zlog(K)/N

* update support:
A < A Uarg max ‘a;‘-F r!
J

* update solution using More-Penrose pseudoinverse:
x;[A] < (D[;, A" 2

* update residual vector:
r < z; — D[, A] x;[A]

o Dictionary update step: For each atom a;,

— Find recording indexes that use the atom:
0 {k| X[j, k] # 0}
— Create temporary coefficient matrix and zero out atom coefficients:
X + X[, 9]
X[j,:] 0
— Apply SVD decomposition of residuals:
U, AV < svd(Z][;, Q] — DX)
— Update atom and nonzero coefficients:
a; < U, 1]
x;[Q] + A[L,1] V[:, 1]

5: Output: Dictionary D, sparse coefficient matrix X
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APPENDIX B

DERIVATION OF THE IDEAL THRESHOLD FOR COHERENT
DENOISING

Here, we derive an ideal upper bound of the statistical coherence of white Gaussian noise n € RY
of mean 0 and variance o2 relative to a redundant dictionary D = [a; ay ... ag] € RY*E_ Such a
value for coherence is mathematically given by

nT
n,D) = Sy
H D) = 2 | T,

. (B-1)

Each entry of the normalized noise vector follows a Gaussian distribution of mean zero and variance

1/N. This can be written as
T
1

NN (O, =) (B-2)

Il

where N (p1, 02) is a notation that refers to a Gaussian distribution of mean y and variance 0. Hence,
the projection of the normalized noise vector on a dictionary ato, ajn/||n||; can be seen as a linear
combination of mutually independent random variables following an identical Gaussian distribution
of mean zero and variance 1/N. Moreover, if xi, X2, ..., X» are mutually independent variables
following Gaussian distributions of means jiy, fls, ..., fi,, and variances o2, 03, ..., o2, then the linear

combination of these variables Z;L:1 c;X; follows a Gaussian distribution (Eisenberg and Rosemary,

2008) such that
>~ N <Z ity Zc?a?) : (B-3)
j=1 j=1 j=1

Hence, using the results in equations B-2 and B-3, it can be established that

B~ N0, ) (B-4)
—a; ~ —). -
], N
Using the definition in equation B-1 and the result in equation B-4, one may notice that estimating
the coherence of the noise vector relative to the dictionary can be reformulated as estimating the
maximum of the absolute value of K dependent but nondeterministic variables following an identical
Gaussian distribution of mean zero and variance 1/N. In addition, the maximum absolute value of n
random variables x1, X2, ---» X» following an identical Gaussian distribution of mean zero and variance
o2 has an asymptotically optimal upper bound of

max|x;| < o+/21log(n), (B-5)

if the variables are independent (Berman, 1964; Donoho and Johnstone, 1994) or dependent but non-
deterministic (Hartigan, 2014). Therefore, the coherence between the noise and the dictionary can be
bounded such that

2log(K)
N

(n, D) < (B-6)
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and the threshold fi74eqr = +/2l0g(K)/N can be considered to be ideal for filtering Gaussian noise
using coherent denoising.
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Article 11

The second article is entitled "Coherent noise suppression by learning and analyzing the morphology
of the data". It was published in the journal Geophysics. A manuscript was sent to the editor the
6™ of February 2017, a revised manuscript was sent the 21% of June 2017, it was published ahead
of production the 15" of August 2017, and published the 9" of October 2017. The layout has been
changed from the official publication to better fit the format of the thesis. The page number located in
the header of each page of the article except the first one is relative to the article and is starting from
A202, whereas the page number relative to the thesis is located in the footer of the page.
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Coherent noise suppression by learning and analyzing the
morphology of the data

Pierre Turquaisl’Q, Endrias G. Asgedoml, Walter Sollnert

ABSTRACT

We have developed a method for suppressing coherent noise from seismic data by using the
morphological differences between the noise and the signal. This method consists of three steps.
First, we applied a dictionary learning method on the data to extract a redundant dictionary in
which the morphological diversity of the data is stored. Such a dictionary is a set of unit vectors
called atoms that represent elementary patterns that are redundant in the data. Because the
dictionary is learned on data contaminated by coherent noise, it is a mix of atoms representing
signal patterns and atoms representing noise patterns. In the second step, we separate the noise
atoms from the signal atoms using a statistical classification. Hence, the learned dictionary
is divided into two subdictionaries; one describing the morphology of the noise, the other one
describing the morphology of the signal. Finally, we separate the seismic signal and the coherent
noise via morphological component analysis (MCA); it uses sparsity with respect to the two
subdictionaries to identify the signal and the noise contributions in the mixture. Hence, the
proposed method does not use prior information about the signal and the noise morphologies,
but it entirely adapts to the signal and the noise of the data. It does not require a manual search
for adequate transforms that may sparsify the signal and the noise, in contrast to existing MCA-
based methods. We develop an application of the proposed method for removing the mechanical
noise from a marine seismic dataset. For mechanical noise that is coherent in space and time,
the results show that our method provides better denoising in comparison with the standard FX-
Decon, FX-Cadzow, and the curvelet-based denoising method.

INTRODUCTION

In marine seismic surveys, the seismic wavefield is generally recorded by sensors located in the
streamers that are towed by a vessel. The steering devices that are placed along the streamers, as well
as barnacles that grow on the surface of the streamers, can perturb the flow of the water and cause
local vibrations of the streamers. These vibrations are recorded by the motion sensors and appear in
the seismic data. The recording of these vibrations is often referred to as the mechanical noise. This
noise significantly hinders seismic processing and imaging if incorrectly removed.

Various analytical transforms, e.g., Fourier, wavelet (Mallat, 2008), curvelet (Candes and Donoho,
2000; Candes and Demanet, 2005), or seislet (Fomel and Liu, 2010), can be used to attenuate random
noise in seismic data by sparse approximation. The key is to find the transform that represents the
data into a domain in which the signal of interest is sparse, i.e., the signal can be represented with
a minor part of the coefficients in the transform domain. When the data are represented with such

1 Petroleum Geo-Services ASA, Oslo, Norway
2 University of Oslo, Department of Geosciences, Oslo, Norway
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a transform, the random noise in the data is spread along all the coefficients. The noise is then
attenuated by approximating the data to its large amplitude coefficients only. The sparser the signal
in the transformed domain, the higher is the noise attenuation. This strategy has been extensively
studied for seismic data denoising (Foster et al., 1994; Hennenfent and Herrmann, 2006; Neelamani
et al., 2008; Liu and Fomel, 2010).

Sparse representations can also be obtained via data-driven methods. For example, dictionary
learning (DL) methods train redundant dictionaries to sparsify specific data. The dictionary is a set
of elements called atoms and is learned such that the atoms represent the morphological structures or
waveforms that compose the data. As such, it can be said that a dictionary learned on data contains
the morphological diversity of the data. The data can later be approximated with a sparse linear com-
bination of the dictionary atoms, which attenuates the random noise. Many methods for DL have been
proposed, e.g., the method of optimal direction (MOD) (Engan et al., 1999), k-means singular value
decomposition (K-SVD) (Aharon et al., 2006), data-driven tight frame (DDTF) (Cai et al., 2014),
sparse K-SVD (Rubinstein et al., 2010), and SuKro (Dantas et al., 2017). MOD and K-SVD learn un-
structured dictionaries; there is no constrain on the structure of the atoms. For more efficient training,
DDTF, Sparse-KSVD, and SuKro learn structured dictionaries; in DDTF the dictionary is constrained
to be a tight frame; in sparse K-SVD the atoms are constructed as sparse linear combinations of prede-
fined basis functions; and in SuKro, the learned dictionary is a sum of Kronecker products of smaller
dictionaries. The DL methods have proven to perform well for denoising seismic data (Beckouche
and Ma, 2014; Liang et al., 2014; Yu et al., 2015; Zhu et al., 2015; Yu et al., 2016; Turquais et al.,
2017). Another data-driven method, the Cadzow filtering method (Trickett, 2002, 2008), also called
singular spectrum analysis (SSA) (Sacchi, 2009; Chen and Sacchi, 2015), uses rank reduction for
denoising. This method embeds each frequency slice of the data into a Hankel matrix, mutes the low
singular values, and averages the antidiagonal elements. The noise attenuation is mainly achieved by
muting the low singular values as random noise is spread along all the singular values.

Although mechanical noise is generally unpredictable, it is recorded continuously in time and by
several neighboring receivers. Therefore, it can appear coherent in space and time in the data. In
that case, 1.e., if the noise is not entirely random, the effectiveness of sparse approximation based
denoising methods can be degraded, for either case in which the sparse approximation is in a fixed
or a data-driven dictionary domain. In the case of a fixed dictionary, the part of the coherent noise
that is described by the dictionary is also represented in the sparse approximation. In the case of a
conventional DL method, the elementary patterns of the coherent noise are captured in the dictionary
during the training step, and the noise is represented by the sparse approximation instead of being
attenuated.

In seismic processing, coherent noise is often removed by exploiting its coherence property. For
instance, the linearity of seismic interference noise helps to separate it from the signal in the 7 — p
domain (Yu, 2011). For swell noise, one can utilize its time-frequency characteristics, which are
often different from those of the seismic signal. Vaezi and Kazemi (2016) propose to separate this
noise based on non-negative matrix factorization of the power spectrum of its time-frequency repre-
sentation. The coherence properties of the noise can also be exploited via morphological component
analysis (MCA). MCA has been developed to decompose images into different morphological com-
ponents (Starck et al., 2004, 2005). To separate a noise component from a signal component, the data
are represented with a sparse combination of the elements from two dictionaries; each of the dictio-
naries describing the morphology of one of the components. If the two dictionaries have a low mutual
coherence, and the noise and signal have highly sparse representations in their respective dictionar-
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ies, MCA separates the signal and the noise correctly (Starck et al., 2004; Bruckstein et al., 2009).
For instance, ground-roll noise can be removed from land data by solving the MCA problem using a
wavelet transform to represent the signal and a discrete cosine transform to represent the noise (Wang
et al., 2010). However, predefining dictionaries to represent the signal and the noise components in
a sparse manner is risky because the signal or the noise might not have a sparse representation in its
attributed dictionary. In this case, the signal and noise separation is incomplete, and the quality of the
denoising is poor.

In this paper, we propose a method that combines DL and MCA to separate coherent noise from
seismic data. This method has been briefly introduced by Turquais et al. (2016). A dictionary is
learned on the noise-contaminated data using the K-SVD method (Aharon et al., 2006; Rubinstein
et al., 2008). The learned dictionary contains both elements representing seismic signal patterns and
elements representing noise patterns; they are segregated using a statistical classification (Anderson
and Bahadur, 1962). The learned dictionary is hence divided into two sub-dictionaries; one describing
the morphology of the noise, and the other one describing the morphology of the signal. Both are in-
cluded into an MCA problem in which the data is represented with a sparsity constraint. This sparsity
constraint enables signal and noise separation because the signal cannot be sparsely represented in
the noise dictionary, and is therefore represented in the signal dictionary, and vice versa for the noise.

The rest of the paper is organized as follows: the first section presents the theory and methodology,
the second section illustrates the proposed method using a simple synthetic example, and the third
section shows a successful application for removing the high frequency mechanical noise from marine
seismic data.

METHODOLOGY

The proposed method is composed of three steps, namely, DL, atom classification, and MCA. The
three steps will be presented separately, and then a workflow will describe how they are assembled to
remove coherent noise.

Dictionary learning

The first step of the proposed method is using a DL algorithm to extract the morphological di-
versity of the data as a redundant dictionary. Practically, a dictionary D is a matrix containing unit
vectors aj, ..., ay in its columns (i.e., D = [a; ... ax]). These unit vectors are referred to as the atoms
of the dictionary. Dictionaries are used to compute a sparse representation of a data. Computing a
sparse representation of the recording z € R" in a dictionary D € RY*¥ requires finding a sparse
coefficient vector x € R¥ such that Dx equals or closely approximates z. The dictionary is the key
element of the sparse representation problem. Its atoms need to describe the morphology of the data
to be able to compute a representation that is sparse and accurate. A dictionary representing the mor-
phology of a data set can be obtained by applying a DL algorithm on the data set or a representative
sub-part of the data set. The sub-part of the data set used to learn the dictionary is referred to as the
training set.

For seismic data application, DL is often applied in 2D on a gather. In this case, the training set
Z1, ..., Z) 1s a set of 2D patches that have been extracted from the gather and vectorized. One possibil-
ity to learn the dictionary on the training set is to find the dictionary D € RY*X with K << M, and
the set of sparse coefficient vectors X, ..., X)y which minimize the representation error given a sparsity
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constraint 7' placed on the sparse coefficient vectors. This minimization problem is mathematically

expressed as
M

min ZHZz — Dx;||5 subjectto ||xi|[o <T,i=1,..,M. (1)
BahizoD 5
In the proposed method, the DL problem is solved using the K-SVD method (Aharon et al., 2006).
The resulting dictionary atoms describe 2D morphological structures in the t-x domain that are redun-
dant in the training set and complementary for representing the recordings of the data set.

Atom classification

In a dictionary learned on an image, the atoms a;,...,ax of length N describe patterns when
rearranged as 2D patches of size v/ N x v/N. In the case in which the image is a gather that is con-
taminated by coherent noise, the learned dictionary describes the morphology of the noise and the
signal. If the signal and the noise are independently distributed in the window, and if their morpholo-
gies have low correlation, the two morphologies are described by different atoms of the dictionary.
Hence, the atoms can be classified to create two subdictionaries; one signal dictionary D, contain-
ing the atoms describing the signal morphology and one noise dictionary D,, containing the atoms
describing the noise morphology. Below, we describe three different methods that can carry out this
classification.

Attributes

To classify the atoms as signal or noise, it is necessary to use attributes. Here, an attribute is
a value that is computed on the 2D pattern described by an atom. The quality of the classification
depends on their capability to discriminate noise from signal. Therefore, it is necessary to select
attributes that have different values for noise and signal atoms. In this work, we use textural attributes
that are based on the gray-level co-occurrence matrix (GLCM) (Haralick et al., 1973). The GLCM
is a discrete description of the probability of co-occurrence of two gray levels for two pixels with a
given relative position in the pattern. For seismic applications, the gray-level is the dynamic range
that has been rescaled and the pixels are the recorded samples. For the given relative position (At,
Az), the element at the ith line and jth column of the GLCM is the probability of changing from
the amplitude ¢ to ; when moving by At samples in time and Ax samples in space. The seismic
data are generally stored with 32 bits per samples and hence can have 23? possible amplitude values.
Because computing a GLCM for such a high number of amplitude values would be expensive, the
data are rescaled prior computing the GLCM. The data are often converted to 4 or 5 bits data where
each sample is rescaled to an integer value between 1 and 16 or 1 and 32 (Gao, 2003). The GLCM of
a 2D array A can be computed as described in Algorithm 1.

Textural attributes (e.g., known as energy, homogeneity, inertia) are the weighted sum of the
GLCM elements. They have proven to be successful for seismic data classification (Vinther et al.,
1995; Vinther, 1997; West et al., 2002; Gao, 2003). In this study, the attributes used are the inertia for
several relative positions. The inertia for the relative position (At, Az) is mathematically given by

G-1G-1

Inertia = Y ~ > (i — j)*P[i, j] . (2)

i=0 j=0
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Algorithm 1 Computation of the GLCM of A for the relative position (At, Ax)

1: Input: matrix A of size M x N; relative position (At, Az); number G of integer values.

2: Rescale the samples in A to a few integer values 1,2, ..., G.

3: Initialize the GLCM, P, of size G x GG with zeros.

4: fori =1to M, and j = 1to N, increment by 1 the sample at the A[¢, j|th line and A[i + At, j +
Az]th column of P, where A[i, j| stands for the value at the ith line and jth column of A.
Divide P by the sum of all its elements.

6: Output: P.

W

where P[i, j] is the element at the ith line and jth column of the GLCM computed for the relative
position (At, Ax). The larger the probability that two samples separated by At samples in time and
Ax samples in space have close amplitude values, the lower is the inertia. The inertia is therefore
sensitive to the frequency content and the orientation of a pattern. For instance, if a pattern describes
a high frequency signal, it has sharp amplitude variations in time, so the probability that its samples
would conserve the same amplitude while moving in time is small, and its inertia is high for non-null
At and null Az. Similarly, if a pattern describes a flat linear event, it contains samples that conserve
the same amplitude while moving only in space, and it has low inertia for null At and non-null Az.

Supervised classification

A supervised classification analyzes the available examples in a training set to derive a law or
condition that can classify new examples. For instance, if a training set contains some atoms labeled
as ’signal” and some atoms labeled as ’noise”, a supervised process can be used to classify the atoms
of the learned dictionary into the signal and the noise classes. The supervised processes include
multivariate Gaussian classifiers (Anderson and Bahadur, 1962). To classify atoms that are either
noise or signal, a multivariate Gaussian classifier assumes that the attributes of the signal and noise
atoms follow two different multivariate Gaussian distributions. A multivariate Gaussian distribution
is entirely defined by a mean vector p, which gives the centroid of the distribution, and a covariance
matrix 3, which gives the shape and orientation of the distribution. Such a distribution is denoted with
N(u,X). The distribution of the signal is defined with the mean vector and the covariance matrix
of the attributes computed on the atoms that are labeled as signal. Likewise, the distribution of the
noise is defined using the atoms that are labeled as noise. The probability that a vector f containing n
attributes belongs to a distribution A/ (p, X) is given by

1 1
f M= — A YRR ( . 3
Pl e N 3) = oogg e | —5 (- )57 () 3)

In this classification, the formula in equation 3 is used to compute both probabilities that each atom
from the dictionary belongs to the signal and noise distributions. Then, the atom is classified as signal
or noise according to the highest probability.

One-class classification

If the training set contains only atoms labeled as signal or only atoms labeled as noise, the fully
supervised model described above cannot be used to classify the atoms of the learned dictionary.
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In this case, a one-class classification (Moya and Hush, 1996; Tax, 2001) is suitable. A one-class
classification aims to identify patterns of a specific class among other patterns by learning from a
training set containing only the patterns of that class. There are two possible scenarios: Either the
training set contains only signal atoms, or it contains only noise atoms. From now on, we will consider
that it contains only noise atoms. This does not aim to restrict the application of the method; it is
to simplify the explanation and understanding. In that case, a one-class classifier uses the atoms
labeled as noise to identify the noise atoms of the learned dictionary and classifies the rest of the
atoms as signal. It is assumed that the distribution of the attributes computed on the noise atoms is a
multivariate Gaussian distribution. This distribution is defined by the mean vector and the covariance
matrix of the attributes computed on the atoms labeled as noise. An atom from the learned dictionary
is identified as noise if it has a small Mahalanobis distance to the noise distribution. The Mahalanobis
distance for an atom of feature vector f to a distribution of mean vector @ and covariance matrix 3 is
given by

dy(f) = \/ (= ) TS (F— p) . 4)

The Mahalanobis distance is used because it is unitless, scale invariant, and takes into account the
correlation of the attributes. If f follows the multivariate Gaussian distribution of mean g and covari-
ance matrix X, there is a 68.3% of probability that dy;(f) < 1, a 95.5% of probability that d,(f) < 2,
and a 99.7% of probability that d,,(f) < 3. Keeping this last probability in mind, one can classify an
atom as noise if the Mahalanobis distance is smaller than 3 and one can classify an atom as signal if
the Mahalanobis distance is higher than 3. The signal atoms would not be misclassified if the density
probability function of their attributes does not significantly overlap the one of the noise attributes.

Unsupervised classification

If there is no training set, one has to use an unsupervised classification. An unsupervised classifi-
cation groups together the patterns of a data set that have the closest attributes. In the case in which
the number of classes in the set is a priori known and in which multivariate Gaussian distributions are
assumed for the classes, the unsupervised classification can be carried out with the k-mean clustering
algorithm (MacQueen, 1967). For a given number C of classes, it finds the clusters G, ..., G¢ of
atoms which minimize the sum of the squared Mahalanobis distances between each attribute vector
and its closest cluster centroid. This minimization problem is written such as

c
1 PR— T _1 o —
cmin > > (f = ) I - ) (5)
k=11ieGy

where f; is the attribute vector of the atom ¢, and p;, and X, are the mean vector and the covariance
matrix of the attribute vectors in the cluster k. For the signal and noise separation problem, C'is set
to 2, and each of the resulting clusters, (G; and (G5, should contain either the noise atoms or the signal
atoms.

Morphological component analysis

MCA (Starck et al., 2004, 2005) is a method that uses sparse representation as the driving force to
separate the different morphological components in a mixture. Consider a recording z that contains
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a signal component that can be sparsely represented in a dictionary D, and a noise component that
can be sparsely represented in a dictionary D,,. The MCA problem consists in finding the sparse
representation of the recording in both dictionaries. This can be done by finding the sparse vectors X;
and x,, that are the solution of the following minimization problem

)r(ng}Hz —D,x, — D, X,||2 subject to ||Xs||o + |[Xn|lo < T, (6)
where 7' is the sparsity of the representation. Such a problem can be solved using orthogonal match-
ing pursuit (OMP) (Pati et al., 1993). The resulting D,x; and D, x,, are sparse approximations of the
signal and noise components, respectively. The separation of the components is exact if the sparsity
of the recording in the two dictionaries is below a threshold dictated by the mutual coherence of the
dictionaries (Starck et al., 2004; Bruckstein et al., 2009). This requires the signal and noise compo-
nents to both have a very sparse representation in their corresponding dictionary and the correlation
between the signal and noise morphologies to be low. The sparse approximations D;x; and D, x,, are
random noise free because random noise cannot be represented sparsely. For denoising, the compo-
nent DX, is of interest because it contains neither coherent noise nor random noise. If the signal is
not strictly sparse in its attributed dictionary, D,x; might not represent the entire signal. In this latter
case, the signal can be retrieved by subtracting the reconstructed noise component from the recording,
i.e., z — D,x,,. This solution contains random noise but preserves better the signal.

In the proposed method, the atoms in Dy and D,, are vectors of length N describing small 2D
patterns of size v/N x v/N. To separate the signal from the noise in a 2D gather, MCA needs to be
applied to all the juxtaposed patches of size v'N x /N in the gather. The resulting signal and noise
patches need to be respectively assembled to generate gather sized signal and noise components. To
obtain a more accurate separation result, MCA can also be applied to overlapping patches. In the
latter case, the multiple versions of the same sample are averaged when the signal or noise patches
are assembled.

The proposed work flow

When the proposed method is used to separate the signal and noise components of a 2D data Y,
the workflow can be summarized as follows:

I Dictionary learning: The K-SVD algorithm is used to learn a dictionary D from the data Y.

IT Atom classification: The signal and the noise atoms from the dictionary D are segregated to
obtain a dictionary Dy containing the signal atoms and a dictionary D,, containing the noise
atoms. The segregation of the dictionary atoms is carried out with either a supervised, one-class,
or unsupervised classification, depending on the availability of labeled atoms.

IIT MCA: OMP is used to solve the problem in equation 6 for overlapping patches extracted from Y.
The resulting patch-sized signal and noise components are respectively assembled and averaged
to reconstruct the data-sized signal and noise components.

SYNTHETIC EXAMPLE

In this section, we illustrate the proposed morphological decomposition method with a synthetic
example. We synthesized a noisy data by adding a recording of mechanical noise to a window of
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a synthetic shot gather. The mechanical noise was recorded during a marine survey for the same
configuration as the signal was synthesized. The resulting noisy data are of size 100 x 100 samples
with a sampling of 2 ms in time and 12.5 m in space and with a signal-to-noise ratio (S/N) of 2.23
dB. The S/N in dB of a data d is given by the formula

Hdreng

S/N =10 loglom >
ref — 2

(7

where d,. 1s the noise free data reference. Here, the data do not contain the frequencies below 10 Hz
because they were removed due to very poor S/N in this range. The windows of signal, noise, and
noisy data are presented in Figure 1. Note that these data are atypically small-sized. We selected a
small-scale example because it provides results that are easier to display, explain, and understand, but
in practice the method would be more efficient on larger-sized data.

True signal True noise
T -
=

Time [s]

Time [s]
Time [s]

02 04 06 08 1 12 ) 02 04 06 08 1 1.2
Offset [Km] Offset [Km] Offset [Km]

Figure 1: A window of synthetic signal (left) and a window of recorded noise (center) were summed
to generate a window of noisy data (right). The S/N is indicated above the noisy data.

The K-SVD algorithm was used to learn a dictionary on the noisy data in Figure 1. The parameters
were the following: for the training, 8000 patches of size 10 x 10 were extracted from the noisy data;
the algorithm ran with 15 iterations; the number of atoms in the learned dictionary was set to 200;
the sparsity threshold, 7" in equation 1, was set to 8. The choice of these parameters has been made
considering the following guidelines. The patch size needs to be chosen considering that within a
patch of chosen size, the shape of the noise needs to be different from the shape of the signal, to
enable later the separation of the noise atoms from the signal atoms. The number of atoms in the
dictionary should be higher than the number of samples in an atom to enforce redundancy in the
dictionary. Redundant dictionaries lead to sparser representations, and from our experience, to more
accurate signal and noise separation. Also, for an accurate DL, the number of patches in the training
set should be several times higher than the number of dictionary atoms. Despite these constraints, we
were left with many possibilities for setting the parameters. The rest of the decision was empirically-
based as we aimed for a solution that compromises between tractability of the algorithm and accuracy
of the representation. However, how to set optimally these parameters is open to discussion. The 200
atoms of the output dictionary have been rearranged as 10 x 10 patches and represented in Figure 2.
In this figure, it can be observed that some of the atoms represent signal patterns whereas others
represent noise patterns.

The inertia of the GLCM for the relative distances (At = 1, Az = 1) and (At = 1, Az = 0) were
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Figure 2: The dictionary that is learned on the noisy data. Each atom of the dictionary is displayed as
a small 2D patch.
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selected as attributes for the classification of the atoms. A look at the efficiency of these two attributes
for discriminating signal and noise atoms is given in Figure 3. The two highest plots show a noise
and a signal atom selected from the learned dictionary. Below each atom, is successively presented its
GLCMs computed for the relative positions (At = 1, Az = 1) and (At = 1, Az = 0). The GLCMs
have been computed with a number G of integer values set to 16. For the signal atom and the relative
position (At = 1, Az = 1), the high value elements of the GLCM are around the diagonal. This
indicates that the values of two samples that are separated by one sample in time and one sample in
space have a high probability to be close. This is explained by the atom describing an event that dips
roughly in the direction of the selected relative position. In contrast, the high value elements of the
GLCM for (At = 1, Az = 0) are more spread. This is because the amplitude values of the signal
pattern are sharply varying in time. For the noise atom, the high value elements of the GLCM are
more concentrated around the diagonal for the relative position (At = 1, Az = 0) compared with
the relative position (At = 1, Az = 1). This is explained by the noise pattern being smoother in
time than in space. For the four GLCMs presented in Figure 3, the inertia in written below the plots.
The inertia is small when the high value elements of the GLCM are close to the diagonal because
the inertia is a weighted sum of the GLCM elements where a higher weight is given to the elements
further away from the diagonal (cf. equation 2). Thus, a small inertia for (At = 1, Az = 1) may be a
distinguishing characteristics of a signal atom whereas a small inertia for (At = 1, Az = 0) may be
a distinguishing characteristics of a noise atom.

Later, we will display the location of the atoms in the attribute space, i.e., the space with the
attributes as axes. As the dimensionality of this space is equal to the number of attributes, selecting
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Figure 3: Inertia of the GLCM for classification of the signal and noise patterns. A signal atom (top-
left) and a noise atom (top-right) were selected from the learned dictionary. Bellow each atom are
presented its GLCMs for the relative positions (At = 1, Ax = 1) and (At = 0, Ax = 1). The
inertia values of the GLCMs are written below them. The signal atom has a low inertia for the relative
position (At = 1, Az = 1), and the noise atom has a low inertia for the relative position (At = 1,
Ax = 0).
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three or four attributes would give a 3D or 4D space, which would be hard to visualize. This is why
we limited the number of attributes to two in this example.

To divide the dictionary into a signal dictionary and a noise dictionary, the three types of clas-
sification presented in the section ”Atom classification” were tested. For the three possibilities, the
processes applied are successively presented below:

e For the supervised classification, a noise and a signal model were used. Both models were
of size 100 x 100 samples and taken from the same gathers where the signal and noise data
presented in Figure 1 have been extracted. These models are presented in the two highest plots
of Figure 4. For each model, K-SVD was used to learn a dictionary. The parameters used
to learn the dictionary on the models are the same as the ones used to learn the dictionary
on the noisy data except for the number /K of atoms and the sparsity threshold 7' that are
respectively set to 100 and 4. The parameters K and 7" are twice smaller when learning on the
models compared with when learning on the noisy data because there are less data to represent
in a signal or a noise model compared to in a mixture of both. The signal and noise output
dictionaries are presented in the middle plots of Figure 4. For each atom of the dictionaries, the
inertia for (At = 1, Ax = 1) and (At = 1, Az = 0) were computed. The location of the atoms
in the attribute space for both dictionaries is presented in the two lowest plots of Figure 4. We
then computed the mean vector p, and the covariance matrix X, of the attributes of the 100
signal atoms, and the mean vector u,, and the covariance matrix 3, of the attributes of the 100
noise atoms. Both multivariate Gaussian density functions defined by (u,,X) and (p,,,32,,) are
shown in the two lowest plots of Figure 4 with lines of equal probability. For each atom of the
learned dictionary, we computed its probability to belong to the signal class and its probability
to belong to the noise class. To compute the probability that an atom belongs to the signal
class, the formula in equation 3 was used with p, and 3;. Similarly, p,, and 32,, were used to
compute the probability that an atom belongs to the noise class. Finally, an atom was classified
according to the highest probability.

e For the one-class classification, only the noise model was used. Similar to the supervised clas-
sification, p,, and 33, were computed. For each atom of the learned dictionary, the Mahalanobis
distance was computed using the formula in equation 4. The atoms with a Mahalanobis distance
smaller than 3 were classified as noise and the rest as signal.

e For the unsupervised classification, no model was used. The selected attributes were computed
on all the atoms of the learned dictionary. Then, the k-mean clustering algorithm was used
to solve the problem in equation 5 with the number of clusters set to 2. The cluster of signal
atoms was manually identified and its atoms were classified as signal. The atoms from the other
cluster were classified as noise.

For the three types of classification, the decision map and the classification results in the attribute
space are presented in Figure 5. The decision map is the class that would be given to an unlabeled
atom in function of its location in the attribute space. The subspace where an unlabeled atom would
be classified as signal is colored in blue whereas the subspace where an unlabeled atom would be
classified as noise is colored in red. The location of the atoms from the dictionary presented in
Figure 2 is superposed to the decision map. The atoms classified as signal are indicated with blue
dots, whereas the atoms classified as noise are indicated with red dots. The three decision maps are
very similar and the classifications of the learned atoms are the same except for five atoms.
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Figure 4: The signal and noise models that are used by the supervised and one-class classifiers. The
highest plots are the signal and noise data models. The central plots are the dictionaries learned on
the data models. The lowest plots show the location of the atoms in the attribute space. The location
of the signal atoms is indicated in the left plot with blue dots and the location of the noise atoms is
indicated in the right plot with red dots. The multivariate Gaussian density functions that characterize
the signal and noise distributions are shown with lines of equal probability.
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Figure 5: Decision map for the supervised, one-class, and unsupervised classifications. The blue and
red areas are the sub-domains in which an atom is classified as signal and noise, respectively. The
location of the dictionary atoms is indicated with blue dots for the atoms classified as signal and with
the red dots for the atoms classified as noise.

The classified signal and noise dictionaries for the three types of classification are presented in
Figure 6. To display the signal dictionary, the noise patches are masked with gray patches. Similarly,
the signal patches are masked to display the noise dictionary. Five atoms have been classified differ-
ently by the three types of classification; their positions in the dictionaries have been indicated with
black frame boxes.

Finally, MCA was applied to separate the signal and noise components. The OMP algorithm
was used to solve the problem presented in equation 6 for patches of size 10 x 10 overlapping on
9 samples in both dimensions. The sparsity threshold 7" was set to 8, as when the dictionary was
learned. For the three pairs of signal and noise dictionaries resulting from the classifications, the
separated components are presented in Figure 7a. The S/N of the signal components is given under
the higher plots. The differences between the true and recovered components are shown in Figure 7b.
The three results provide high noise attenuation as well as signal preservation.

For this example, the three classifications seem to have equivalent effectiveness. The unsupervised
classification has managed to place the signal atoms in one cluster and the noise atoms in the other
cluster because there was a large quantity of both of them in the dictionary. If there would have been
much fewer noise atoms than signal atoms, the unsupervised classification could have divided the
signal atoms into two clusters to minimize the cost function in equation 5. The signal would have
been separated in two parts instead of being separated from the noise. Therefore, a supervised or
one-class classifier would be preferred in cases in which the method is blindly applied.
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Figure 6: Classified signal and noise dictionaries for the supervised, one-class and unsupervised
classifications. The black boxes point out the positions of the atoms for which the results of the
classifications differ.
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Figure 7: Results of the signal and noise separation by MCA. The results are presented for each
pair of signal and noise dictionaries resulting from the three types of classification. The separated
components are presented in panel a, and their differences with the true components are presented in
panel b.
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FIELD DATA APPLICATION
Steering device-related noise removal

We selected a raw shot gather acquired during a marine survey. The data are the vertical particle
velocity sampled at 2 ms in the temporal dimension and 12.5 m in the offset dimension, and they
are contaminated by steering device-related noise. The frequency range 0-10 Hz was muted due to
very poor S/N. Denoising this frequency range is not in the scope of this work. The muted signal
is generally retrieved using pressure measurements (Day et al., 2013). This shot gather is shown in
Figure 8.

Time [s]

5 i P e " t]odnd .’ (’s'k‘
0 2 4 6
Offset [km]

Figure 8: Shot gather contaminated by steering device-related noise. The close-up on the data framed
by the yellow dashed box is shown in the top-right corner of the plot.

We applied the proposed method to the presented shot gather. We learned a dictionary of 4,000
atoms using the K-SVD algorithm. The parameters were the following: seven iterations of the algo-
rithm were run, 40,000 patches of size 12 x 12 samples were used for the training, and the sparsity
threshold 7" was set to 8. For the classification of the learned dictionary, three attributes were se-
lected; they were the inertia for the relative positions (At = 1, Az = 0), (At = 0,Az = 1), and
(At = 1, Az = 1). For such a field data application, a noise only model is available in the upper
right part of the shot gather; the area where the first arrival of the seismic waves is not yet recorded.
Due to the possibility to have a noise model, we used a one-class classifier to segregate the atoms of
the learned dictionary. The noise model used was the data between 1 s and 2 s in time and 4.0 km
and 6.5 km in space. The one-class classification was applied in the same way as it was applied in
the synthetic example presented earlier. Because three attributes were selected, the classification was
carried out given the location of the atoms in a 3D attribute space. Because it is hard to visualize
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the location of the atoms in this space from a 3D plot, we present the results via projections of the
space onto planes; in Figure 9, each atom is located given its inertia for the relative distances (panel
a) (At = 1,Az = 1) and (At = 1, Az = 0), (panel b) (At = 0,Az = 1) and (At = 1, Az = 0),
and (panel ¢) (At = 1,Ax = 1) and (At = 0,Az = 1). If an atom was classified as signal, the
location is indicated with a blue dot, and if it was classified as noise, the location is indicated with a
red dot. In Figure 9d-f, we give a view on the shape of the atoms depending on their location in the
attribute space. The attribute spaces presented in Figure 9a-c were divided into small squares, and for
each square, an atom that was located in the square was displayed. When several atoms were located
in the square, the closest to the center of the square was displayed. If no atom was in the square, no
atom was displayed. In addition, the atoms that were classified as noise were framed with red boxes.
The two dictionaries resulting from the classification were used to separate the signal and the noise
with MCA. The separation was carried out for patches of size 12 x 12 overlapping on 10 samples
in both dimensions and with the sparsity threshold 7" set to 8. To well preserve the signal, the noise
component was subtracted from the data to obtain the denoised data. This is equivalent to adding the
residual of the sparse approximation to the signal component.

The proposed method was compared with academic implementations of FX-Decon (Gulunay,
1986), FX-Cadzow (Trickett, 2002), and curvelet (Hennenfent and Herrmann, 2006) denoising. For
the FX-Decon method, the algorithm used was from SeisLab and corresponds to the implementation
proposed by Ulrych and Sacchi (2005), p. 229-232, where both forward and backward error prediction
filters are used. The filtering was applied to windows of size 50 x 50 samples overlapping on 25
samples in both dimensions and with filters of size six samples. These parameters have been selected
because they perform well on this example and they have been shown to give the best denoising
results on other examples (Chen et al., 2016). FX-Cadzow was applied with a rank parameter of 1
and with windows of size 130 x 8 samples overlapping on 65 samples in time and six samples in
space (Oropeza, 2010). In the curvelet method, the curvelet coefficients of the data were calculated
using wrapping curvelets, 16 angles, and a spgll solver for the 11 norm constraint. Then, the smallest
curvelet coefficients that correspond to 4% of the data energy were muted for denoising.

The denoised data obtained with the proposed method, FX-Decon, FX-Cadzow, and the curvelet
method are presented in Figure 10. There, we observe that the proposed method provides a cleaner
result compared with the other methods. The removed noise gathers, i.e., the difference between
the input and the denoised gathers, are presented in Figure 11. There, we observe that the proposed
method preserves better the signal compared with the other methods.

We shall examine the denoising results obtained with the proposed method in the f — k£ domain.
In the f — k spectrum of the noisy data presented in Figure 12a, we see that the noise is overlapping
the signal between 10 and 50Hz. In the spectra of the denoised data and removed noise presented
in Figure 12b and 12c, we observe that the noise has been effectively removed when the seismic
reflections remain untouched. However, we see that a minor part of the direct wave has also been
removed.
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Figure 9: Classification of the dictionary learned from the data contaminated by steering device-
related noise. (a-c) Location of the atoms in projections of the 3D attribute space. The location of
the atoms classified as signal are indicated with blue dots and the location of the atoms classified as
noise are indicated with red dots. (d-f) The shape of atoms are presented given their location in the
projections of the attribute space. The atoms that were classified as noise are framed with red boxes.

88



LEARNING AND ANALYSIS OF THE DATA MORPHOLOGY A219

Time [s]
Time [s]

Offset [km]

0

d
|
|
I
|
|
!
§
]
|
i
Y

Time [s]
Time [s]

Offset [km] Offset [km]

Figure 10: Denoised data that is obtained with (a) the proposed method, (b) FX-Decon, (c) FX-
Cadzow, and (d) the curvelet method.
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Figure 11: Noise that is removed by (a) the proposed method, (b) FX-Decon, (c) FX-Cadzow, and (d)
the curvelet method.
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Figure 12: The f—Fk spectra of the (a) data contaminated by steering device-related noise, (b) denoised
data obtained with the proposed method, and (c) corresponding removed noise.

Barnacle-related noise removal

We selected a second raw shot gather acquired during another marine survey. The data are the
vertical particle velocity sampled at 2 ms in the temporal dimension and 12.5 m in the offset dimen-
sion. We removed the frequencies below 10 Hz for the reason explained in the previous example.
This time, the shot gather is contaminated by barnacle-related noise. This shot gather is presented in
Figure 13.

We applied the proposed method, FX-Decon, and FX-Cadzow with the same parameters as the
ones used in the previous example. In the curvelet method, the removed energy was increased to 10%
because there is more noise in this shot gather compared with the previous example.

The denoised data obtained with the proposed method, FX-Decon, FX-Cadzow, and the curvelet
methods are presented in Figure 14. The proposed method removes more noise than FX-Cadzow and
the curvelet method but slightly less noise than FX-Decon. For the four methods, the removed noise
sections are presented in Figure 15. In these gathers, we observe that the proposed method preserves
better the signal compared with the other methods.

In the previous example, we observed that the proposed method was better than FX-Decon for
removing steering device-related noise. For removing the barnacle related-noise of this example, it is
not better. This could be explained by the different characteristics of the noises; the barnacle-related
noise was less sparse and less coherent in space than the steering device-related noise. The fact that
the barnacle-related noise was less sparse reduced the efficiency of the proposed method because the
sparse representation is less accurate when the sparsity decreases (Bruckstein et al., 2009). The fact
that the barnacle-related noise was less coherent from one trace to another benefited FX-Decon, which
is hindered when the noise is linear.

The f — k spectra of the data and the results obtained with the proposed method are presented
in Figure 16. This time, we observe that the noise is overlapping the signal in the frequency range
10-70 Hz. In the spectra of the denoised data and removed noise, we observe that the noise has
been effectively removed when the seismic signal is preserved. These results attest that the proposed
method removes noise that cannot be removed with simple frequency and/or wavenumber-based mut-
ing. They also show that the noise is highly aliased and suggest that it does not affect the proposed
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Figure 13: Shot gather contaminated by barnacle-related noise. The close up on the data framed by
the yellow dashed box is shown in the top-right corner of the plot.

method. Aliasing often affects denoising methods which remove noise based on predefined dip infor-
mation because aliasing leads to dip miscalculations. The proposed method, on the other hand, is not
denoising based on predefined dip information.

DISCUSSION

In the proposed method, the strength of the denoising is mainly controlled by the sparsity threshold
T'. If the threshold is low, only the main noise features are reconstructed and separated; the amount
of removed noise is hence small. On the contrary, if the threshold is high, the data is almost entirely
reconstructed and separated; almost all the noise is removed. The accuracy of the signal and noise
separation can be increased by simultaneously increasing the patch size, the number of patches in the
training set, and the number of atoms in the dictionary. As the patch size increases, the signal and
noise contents of the patches are less correlated, which improves the classification and MCA steps of
the denoising process. As will be shown later in the analysis of the method complexity, increasing
these parameters also increases the run time.

We shall justify the choice of the methods that were compared with the proposed method in the
field data examples. The noise in these examples is not impulsive in time, so it cannot be removed
with a median filter. Neither is it a white Gaussian noise, so it cannot be attenuated with conventional
DL methods. It is spread on a large frequency range and has low coherency from trace to trace, so
it could hardly be isolated and removed in the f — x, f — k, wavelet or curvelet domain. However,
since it is not highly coherent from trace to trace, it does not appear linear in the data, and it is why
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Figure 14: Denoised data that is obtained with (a) the proposed method, (b) FX-Decon, (c) FX-
Cadzow, and (d) the curvelet method.
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Figure 15: Noise that is removed by (a) the proposed method, (b) FX-Decon, (c) FX-Cadzow, and (d)
the curvelet method.
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Figure 16: The f — k spectra of the (a) data contaminated by barnacle-related noise, (b) denoised data
obtained with the proposed method, and (c) corresponding removed noise.

it can be filtered using FX-Decon, which reconstructs only the events that are linearly predictable.
Likewise, FX-Cadzow attenuates non-linear events and can be used to filter such noise. As is shown
in Figures 12 and 16, the noise appears quite white within a considerable part of the f — k spectrum.
This indicates that it cannot be represented with few curvelets because a curvelet is localized in the
f-k domain. Contrarily to that noise, the seismic wavefield is usually sparse in the curvelet domain
(Hennenfent and Herrmann, 2006). Hence, the compared curvelet method is based on the following
assumption: Because the signal is concentrated on few curvelet coefficients and the noise is spread on
many, the signal coefficients have a high amplitude while the noise coefficients have a low amplitude.
Therefore, picking only the largest coefficients may preserve the signal and attenuate the noise. The
results obtained with this method suggest that the noise was too correlated with the curvelets for the
method to work effectively. We note that there might be better ways to use the curvelet domain for
removing such noise.

In the field data examples showed, we observe signal leakage for the proposed and compared
methods. This signal leakage could be decreased by integrating additional steps to the denoising
process. For instance, one could add a noise detection step (Bekara and van der Baan, 2010). This
would consist in identifying the part of the data which is contaminated by noise. The identification
could be in the t — z or f — x domain and would result in the location of the noisy samples in the
t — x or f — x domain, correspondingly. In parallel, the denoising method would be applied to the
data to get a full noise model, but only the part of the noise model that was flagged as noisy during the
detection would be removed from the data. It would guaranty to preserve the signal at locations where
the data are not or little noisy. Another additional step in the processing could consist in detecting
eventual signal in the obtained noise model and adding it back to the denoised results. Such additional
processing steps are often applied in industrial processing.

For the presented examples, the proposed method was more expensive than FX-Decon but cheaper
than FX-Cadzow or the curvelet method. For instance, denoising the shot gather in Figure 10 took
8.48 min on one CPU for the proposed method when it took 1.01 min, 21.48 min, and 36.62 min
for FX-Decon, FX-Cadzow, and the curvelet method, respectively. These run times were found for
academic implementations of the different methods; be aware that they may not reflect run times found
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for industrial implementations. In the proposed method, the major part of the time is used to learn the
dictionary. For this part of the method, we use the implementation of the K-SVD algorithm proposed
by Rubinstein et al. (2008). The authors of this implementation evaluate the number of operations
per iteration of the algorithm to approximately M - (2NK + T?K + TTK + T3 + 4TN) + 5N K?,
where M is the number of patches in the training set, /V is the number of samples in a patch, K is the
number of atoms in the dictionary, and 7" is the sparsity of each coefficient vector.

In the proposed method, we selected only three textural attributes for the classification of the
atoms. They have proven to be very discriminative, and no additional attributes were needed to iden-
tify a mechanical noise pattern from a signal pattern. There is no guaranty that they would discrim-
inate any other types of noise. This is why increasing the number of attributes for the classification
would lead to a more robust method that could target many different types of noises. With more at-
tributes, the method could be used for other applications such as removing algorithm artifacts or noise
resulting from simultaneous source shooting. For an application in which there is no noise or signal
model, the method could still be used with an unsupervised classification. In contrast, if both a noise
and a signal model are available, the method could be applied with a supervised classification. Yet,
this method would have limitations on the types of noise that it could separated from seismic data. The
separation would be complete only if the morphology of the noise is different from the morphology
of the signal and if the occurrence of the noise in the data is independent from the occurrence of the
signal. For instance, it could not remove multiples because the atoms could not be classified as signal
or noise since they would represent both, i.e., a primary and a multiple. Neither could it remove a
processing artifact that would smear from the signal. This artifact would be systematically associated
to the signal, and therefore, atoms that contain both the signal and the noise would be learned in the
dictionary. These atoms could not be later classified as signal or noise because they would contain
both.

The proposed method can be improved in several other ways. To increase the accuracy of the
sparse representation, basis pursuit (Chen et al., 1998) could be used instead of OMP for solving the
MCA problem. To speed up the denoising process, K-SVD could be replaced with a more efficient DL
method, e.g., DDTF, or sparse K-SVD. However, we note that replacing K-SVD with sparse K-SVD
could affect the effectiveness of the proposed denoising process. Sparse K-SVD learns the atoms
as sparse linear combinations of fixed basis functions in contrast to K-SVD that learns unstructured
atoms. Using sparse K-SVD in the proposed process would result in signal and noise dictionaries
that are sparse linear combinations of the same fixed basis functions. This could increase the mutual
coherence between the signal and noise dictionaries and decrease the effectiveness of MCA, which
would reduce the accuracy of the signal and noise separation (Starck et al., 2004; Bruckstein et al.,
2009). Finally, an extension of the method in 3D is straightforward and would benefit from a better
description of the seismic wavefield.

CONCLUSION

We proposed a new sparsity promoting method for removing coherent noise from seismic data.
In this method, a dictionary is learned from the data and divided into two subdictionaries; one de-
scribing the morphology of the signal and the other one describing the morphology of the noise.
Then, both sub-dictionaries are used to separate the noise from the signal via MCA. For that step,
the sub-dictionaries are optimal because they have been specifically trained to provide a very sparse
representation of the data. Unlike conventional DL-based methods, the proposed method can remove
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coherent noise. In addition, this method does not require a manual search for optimal transforms that
may sparsify the signal and the noise, in contrast to existing MCA-based denoising methods. We
used the proposed method to remove the barnacle and steering device related noise from two field
data examples and compared the results with those of FX-Decon, FX-Cadzow and the curvelet based
denoising method. The proposed method provided the best results for removing the steering device-
related noise. For removing the barnacle-related noise, the proposed method performed as good as
FX-Decon and better than FX-Cadzow and the curvelet based denoising method.
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Chapter 6

Article II1

The third article is entitled "Parabolic dictionary learning for seismic wavefield reconstruction across
the streamers". It was submitted to the journal Geophysics on the 20" of September 2017 for publica-
tion. The page number located in the header of each page of the article except the first one is relative
to the article and is starting from A302, whereas the page number relative to the thesis is located in
the footer of the page.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

First, I analyzed sparse representation-based methods for random noise attenuation, signal separa-
tion, and signal reconstruction, and I assessed their effectiveness using simple experiments that were
tailored to control the sparsity level of the signal in the dictionary domain. I made the following
observations:

A sparse approximation of the recording attenuates the random noise, and the smaller the /-
norm of the signal representation is, the smaller is the error (see Figure 2.3).

* A sparse representation of the recording in a domain that comprises signal and noise subdo-
mains can be used to separate the coherent noise from the signal (see equation 2.11). If the
{yp-norm of the representation of the recording in the transform domain is under a threshold dic-
tated by the dictionary (see equation 2.4), then the signal and noise separation is exact. Above
this threshold, the error increases as the /y-norm of the representation increases (see Figure 2.6).

* A sparse representation of the recording can be used to reconstruct missing samples of the signal
(see equation 2.13). If the /y-norm of the fully sampled signal in the transform domain is below
a threshold dictated by the sampling scheme and the dictionary, then the reconstruction of the
signal is exact. Above this threshold, the error increases as the ¢y-norm of the representation
increases (see Figure 2.7).

I studied predefined dictionaries that define a domain in which the seismic data may have a sparse
representation. A particular attention was given to the Fourier bases, the DWT bases, and the curvelet
frames. 1 investigated their capability to represent a wavefield and I tested on a field data example
if they can be used to compute a sparse approximation of the seismic data that preserves the signal
to a high degree (see Figures 2.11, 2.12, and 2.13). The investigation showed that the wavelets of
a DWT dictionary have a limited capability to describe a wavefield due to their isotropic nature.
Besides, the sparse approximation of the seismic data in the DWT domain distorted significantly the
signal. The basis functions of a Fourier base are suited to describe a wavefield, as they are solutions
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to the wave equation in a homogeneous medium. In addition, the sparse approximation of the seismic
data in the Fourier domain represented a large part of the signal. The curvelets are also capable to
concisely represent a wavefield because a solution of the wave equation was proven to be sparse in the
curvelet domain (Candes and Demanet, 2005). From the three sparse approximations that were based
on predefined dictionaries, the curvelet-based sparse approximation was the closest to the original
data. Yet, a minor part of the seismic signal was not represented in the sparse approximation. Since
predefined dictionaries do not adapt to the data, they have a limited effectiveness to represent the
complex seismic events in a sparse manner.

I then investigated DL methods. DL locally adapts the dictionary to the data without requiring
human interaction. This is quite appealing for seismic data application because seismic data are
large, high-dimensional, and contain a signal whose morphology varies across the data. In addition, I
observed that DL was more effective to provide a sparse representation of the seismic data compared
to the Fourier base and the curvelet frame; for the same compression ratio, it provided a representation
that was more accurate. However, for random noise attenuation, coherent signal separation, and
seismic data reconstruction, I found that the conventional DL. methods have the following limitations:

(i) To attenuate the random noise, conventional DL methods need the a priori variance of the noise.
This is inconvenient because the random noise in the seismic data has a variance that is often
unknown and spatiotemporaly varying.

(i1)) When DL is applied to data contaminated by noise that has some spatial or temporal coherency,
the learned dictionary contains both atoms representing the signal morphology and atoms rep-
resenting the noise morphology. Hence, a sparse approximation of the signal in the dictionary
domain does not remove the noise.

(ii1)) The learned dictionaries do not have analytical expressions, they are numerically defined. Due to
this particularity, a sparse representation in the dictionary domain cannot be used to interpolate
the data over an arbitrary grid.

To overcome the limitation in (i), Turquais et al. (2017¢c) developed the coherence-constrained
dictionary learning (CDL) method. The CDL method learns the dictionary and attenuates the noise
using a coherence-based constraint such that the noise variance is not needed. Yet, CDL is ideal to
filter out Gaussian noise. If the seismic data are contaminated by Gaussian noise of constant variance,
CDL is as efficient as the conventional DL method that uses the knowledge of the noise variance.
Furthermore, if the seismic data are contaminated by Gaussian noise of spatiotemporally varying
variance, CDL provides a better denoising compared to conventional DL. In both cases in which the
noise variance is constant and spatiotemporally varying, the CDL method is more effective than the
industry-standard FX-Decon denoising method (Canales, 1984; Gulunay, 1986).

To overcome the limitation in (ii), Turquais et al. (2017a) combined DL, MCA, and a statistical
classification. DL combined with the statistical classification uses the noise contaminated data to
learn a dictionary that defines a domain in which the signal is sparse, and a dictionary that defines a
domain in which the noise is sparse. Then, MCA uses the two dictionaries to separate the signal and
the noise. Because the signal and the noise dictionaries are learned from the data, MCA is applied
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under optimal conditions. The method can be used to separate coherent noise from the signal as long
as the morphology of the noise is different from the morphology of the signal and the occurrence of
the noise in the data is independent from the occurrence of the signal. Field data examples showed that
the proposed method is more effective than FX-Decon (Canales, 1984; Gulunay, 1986), FX-Cadzow
(Trickett, 2002), and the curvelet denoising method (Hennenfent and Herrmann, 2006) to remove
mechanical noise.

To overcome the limitation in (ii1), Turquais et al. (2017f) developed a parabolic dictionary learn-
ing (PDL) method. In this method, each learned atom is constrained to represent an elementary
waveform that has a constant amplitude along a parabolic traveltime moveout characterized by kine-
matic wavefield parameters. Imposing such a parabolic structure is quite appropriate for seismic data
application because a wavefield can be locally approximated by a superposition of parabolic events
(see equations 2.16, 2.17, and 2.18). In addition, it can be used to easily interpolate or extrapolate the
atoms. Using this advantage, the method can interpolate and regularize the seismic data. Benefiting
from the parabolic structure, the sparsity promotion, and the data adaptation, the PDL method is able
to operate beyond aliasing. Synthetic and field data examples validated that PDL can interpolate the
recorded seismic data between the streamers of typical 3D acquisition configurations, and hence to
reconstruct the 3D seismic wavefield.

7.2 Outlook

7.2.1 Assessing the impact of the proposed methods on the final image

The next step in my research will be to assess the impact of the proposed methods on the migrated
image. Assessing this impact is crucial because migrated images are the data that are interpreted.
Although it has been shown that denoising, regularization, and interpolation improve the image (EI-
both et al., 2008, 2009a; Herrmann, 2010; Zhang and Wang, 2015; Charles et al., 2014; Mosher et al.,
2017), it is important to quantify the image quality uplift that results from applying each of the pro-
posed methods.

First, for each application, an appropriate data set will need to be selected. A data set that is
particularly noisy could be a good choice to test if the proposed denoising methods are effective
where conventional methods fail. To test the proposed wavefield reconstruction method, a shallow
water data set, or a data set acquired in a complex geological environment, would be preferred. Such
a data set is more likely to contain aliased energy, and the processing to suffer from a poor spatial
sampling. After selection of the data set, the impact on the final image of applying the proposed
methods could be assessed by comparing the images obtained with the three following workflows: (1)
The industry-standard seismic processing and imaging workflow; (2) The industry-standard seismic
processing and imaging workflow in which the standard noise attenuation / wavefield reconstruction
process was removed; (3) The industry-standard seismic processing and imaging workflow in which
the standard noise attenuation / wavefield reconstruction process was replaced with the proposed
method. Comparing the resolution of the image from the workflow 3 with the image from workflow
1 will reveal the improvement resulting from applying the proposed method in comparison to the
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standard method. Also, computing the differences between the images resulting from workflows 2
and 3 would point out a signal attenuation or would validate that the signal is untouched.

7.2.2 Multi-scale dictionary learning and processing

As proposed by Ophir et al. (2011), and implemented for seismic data denoising by Zhu et al. (2015),
the DL methods proposed by Turquais et al. (2017c¢,f) could be integrated into a scheme in which DL
and denoising/reconstruction is applied independently to each scale of the data. The 1D DWT would
be used to separate the seismic data into different scales containing different temporal frequency
subbands of the signal. Then, DL and denoising/reconstruction would be applied independently to
each scale, and the results at the different scales would be combined using the inverse DWT. Such a
process has two main advantages. First, it preserves the integrity of the frequency spectrum of the
data. In some cases, using DL methods directly on data may lead to partial attenuation of one of the
frequency subbands of the signal. This is due to the /,-norm minimization of the data misfit in the cost
function that is used to learn the dictionary and to denoise/reconstruct the data. When one frequency
subband of the signal has a very small /5-norm compared with another subband of the data, the cost
function places a higher focus toward representing the subband having the largest /5-norm. This leads
to the least squared error, but also to an error that is unequally spread over the spectrum. In contrast,
when the DL method is applied independently to each scale, as much atoms are learned to represent
each scale, which ensures an equal focus among the frequency subbands of the signal. As a second
advantage of multi-scale processing, some parameters, e.g., the size of the patches, can be adjusted
to each scale. When using DL methods, it is advised to set the size of the patches to the size of the
elementary patterns in the data. The low frequency elementary patterns are typically larger than the
high frequency elementary patterns. Using a multi-scale scheme enables setting a larger patch size to
process the scales containing the low frequency signal, and a smaller patch size to process the scales
containing the high frequency signal.

It would also be interesting to implement a multi-scale approach in which the dictionaries at
different scales are learned with a cross-scale cooperative learning (Chen and Chau, 2015). The
dictionaries would be learned such that the atoms from the dictionary at one scale would have the
same shape as the atoms from the dictionaries at the other scales, but would have different time-space
scales. For instance, an atom at a given scale would represent a pattern that has the same shape as the
corresponding atom of a subsequent finer scale, but would be twice longer in time and twice larger
in space, such that it would represent a signal of lower frequency and wavenumber. In contrast to the
multi-scale scheme without collaboration, the cross-scale cooperative learning approach could learn
information at a given scale and use it to represent a signal at another scale. Such a characteristic
could be advantageous for interpolation. An atom characterizing the kinematic of the wavefield could
be learned from the well sampled low frequency signal and be used to reconstruct the aliased higher
frequency signal.
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7.2.3 DL and processing in other dimensions

It would be straightforward to apply the proposed methods in other dimensions. This could be used
to resolve other seismic processing challenges. For instance, the PDL method (Turquais et al., 2017f)
could be applied to common receiver gathers instead of common shot gathers. A common receiver
gather is a set of traces that have been recorded for the same receiver position and for different source
positions. As a common shot gather, a common receiver gather contains a wavefield that can be lo-
cally described by a superposition of elementary waves whose traveltimes follow parabolic moveouts
(Hubral, 1983; Bortfeld, 1989; Cerveny, 2001). Therefore, it is reasonable to assume that PDL would
interpolate in the common receiver gathers with the same accuracy as it interpolates in the common
shot gathers. It would increase the spatial sampling of the common receiver gathers, which would
increase the source sampling of the seismic data set. This would be valuable because the seismic data
are acquired with a coarse source spacing such that they are aliased is the source dimension. This
aliasing is an issue for processing methods that are applied to common receiver gathers, e.g., source
deghosting methods.

7.2.4 DL and processing in more dimensions

The proposed methods could be extended to more dimensions. Extending the methods in more di-
mensions would consist to learn cubes or higher-dimensional vertices, and correspondingly, to process
cubes or vertices from the data (Yu et al., 2015). For instance, a 3D extension of PDL could be used
to learn cubes of dimensions time, crossline offset, inline offset, and to simultaneously interpolate in
the inline and crossline dimensions of common shot gathers. Such a method could use information
learned in the inline direction to interpolate in the crossline direction, and vice versa. Hence, the
3D extension is expected to improve the interpolation. On the other hand, the process would have a
higher computational cost compared with using the 2D PDL method to first interpolate in the inline
direction and then interpolate in the crossline direction. The quality uplift would need to be quantified
to judge if it would justify the additional computational effort.

7.2.5 Computational optimization

The proposed methods were in general computationally demanding. For instance, using one CPU,
the wavefield reconstruction method took 49 min per 3D shot gather (Turquais et al., 2017f), and the
coherent noise separation method took 8.48 min to process one inline shot gather (Turquais et al.,
2017a). A computational optimization is required to use the methods on a standard basis in seismic
processing. A modification of the DL process could reduce the computational cost of the methods.
The process used is iterative and alternates over a sparse coding stage and a dictionary update stage.
The dictionary update stage is the most time-consuming stage. To update the dictionary, we have
used SVDs or approximate SVDs. The computational cost could be reduced by using the sequential
generalization of K-means (SGK) instead (Sahoo and Makur, 2013).

The computational optimization could be simultaneously tackled on the software and hardware
sides. The proposed methods were coded using dynamic types of languages and have run on CPUs.
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They could be rewritten using a static language, which is generally several times faster. In addition,
the codes could be run on GPUs, which can be 10-15 times faster for tasks that require a lot of

computing power but relatively few memories.
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