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ABSTRACT

Statistical downscaling is useful for managing scale and resolution problems in outputs from global climate

models (GCMs) for climate change impact studies. To improve downscaling of precipitation occurrence, this

study proposes a revised regression-based statistical downscaling method that couples a support vector

classifier (SVC) and first-order two-state Markov chain to generate the occurrence and a support vector

regression (SVR) to simulate the amount. The proposed method is compared to the Statistical Downscaling

Model (SDSM) for reproducing the temporal and quantitative distribution of observed precipitation using 10

meteorological indicators. Two types of calibration and validation methods were compared. The first method

used sequential split sampling of calibration and validation periods, while the second used odd years for

calibration and even years for validation. The proposed coupled approach outperformed the othermethods in

downscaling daily precipitation in all study periods using both calibration methods. Using odd years for

calibration and even years for validation can reduce the influence of possible climate change–induced non-

stationary data series. The study shows that it is necessary to combine different types of precipitation state

classifiers with a method of regression or distribution to improve the performance of traditional statistical

downscaling. These methods were applied to simulate future precipitation change from 2031 to 2100 with the

CMIP5 climate variables. The results indicated increasing tendencies in both mean and maximum future

precipitation predicted using all the downscaling methods evaluated. However, the proposedmethod is an at-

site statistical downscaling method, and therefore this method will need to be modified for extension into a

multisite domain.

1. Introduction

Increasing concentrations of greenhouse gases in the

atmosphere have accelerated global and regional cli-

mate change; as a result, global climatic change has

become a globally popular research topic (Boé et al.

2007; Chen et al. 2011; Pavlik et al. 2014; Marhaento

et al. 2016; Li et al. 2016; Awan et al. 2016). Global cli-

mate models (GCMs), originally aimed at predicting

area-average, synoptic-scale, and general circulation

patterns of the atmosphere, have been used extensively

to provide potential climatic change scenarios (Xu 1999;

Xu et al. 2005). However, the coarse resolution ofGCMs

results in an imprecise explanation of regional pre-

cipitation, which is a stochastic variable that occurs at

finer spatial-scale geographic grids than those of GCMs.

Therefore, downscaling techniques have been proposed

to relate large-scale atmospheric variables to local- or

station-scale meteorological variables and manage the

differences in the spatial scale to improve the accuracy

of GCM outputs at smaller scales (Rudd and Kay 2016).

Downscaling techniques are generally divided into two

categories: dynamical downscaling (DD) and statistical

downscaling (SD). Dynamical downscaling achieves aCorresponding author: Hua Chen, chua@whu.edu.cn
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higher spatial resolution of atmospheric physics in a

limited area by combining regional climate models

(RCMs) with corresponding boundary conditions from

GCMs (Giorgi et al. 2001; Xu et al. 2005). RCMs pro-

vide more detailed precipitation dynamics than GCMs.

Recent studies have focused on RCM ensemble fore-

casting (e.g., Rockel and Woth 2007; Nowreen et al.

2015). However, RCMs require considerable comput-

ing resources and are as expensive to run as a global

GCM; therefore, the availability of higher-resolution

long-term data remains limited (Plummer et al. 2006;

J. Chen et al. 2012b). Many applications still need to

downscale the results from such models to individual

sites or localities for impact studies (J. Chen et al.

2014a). Statistical downscaling has been widely ap-

plied to climate change studies because of its simplicity

and flexibility (Wilby et al. 1998; Zorita and Von

Storch 1999; Diaz-Nieto and Wilby 2005; Liu et al.

2012). Statistical downscaling links the spatial-scale

GCM or RCM output variables (predictors) to the

local- or station-scale observed variables (predictands)

by employing mathematical and statistical methods.

Compared with dynamical downscaling, statistical

downscaling requires fewer calculations and is easier for

users to apply (Ghosh and Mujumdar 2008; Jacobeit

et al. 2014).

According to Maraun et al. (2010), statistical down-

scaling can be classified into three main types: perfect

prognosis (PP; Bürger and Chen 2005; Mandal et al.

2016), stochastic weather generators (WGs; Wilby and

Wigley 1997; Chen et al. 2017), and model output sta-

tistics (MOS; Rummukainen 1997; Chen et al. 2016). PP

downscaling methods construct a relationship between

meteorological predictors and observed predictands,

including weather typing and regression-based down-

scaling approaches. One representative method for

weather typing is the analog method, which generates

climate series and meteorological parameters from re-

sampling local observed data with anomalies among the

simulations from different time periods (Zorita and Von

Storch 1999; Hewitson and Crane 2002; Wetterhall et al.

2005; Paredes et al. 2006; Cheng et al. 2010; Osca

et al. 2013).

Regression-based downscaling methods are designed

to construct an empirical statistical relationship between

large-scale predictors and local-scale predictands with a

regression algorithm. Regression-based downscaling

methods offer good performance in simulating pre-

cipitation amounts, especially on long time scales

(Dibike and Coulibaly 2005; Liu et al. 2012). Multiple

studies have focused on the dimensionality reduction of

input data and improvement in the regression algorithm.

For example, Schubert and Henderson-Sellers (1997)

integrated all available variables of a GCM into six

principal components as the input of a multiple linear

regression (MLR) to improve temperature downscaling

in Australia. Crane and Hewitson (1998) used artificial

neural networks (ANNs) in an empirical downscaling

procedure to derive daily subgrid-scale precipitation

from GCM data and succeeded in simulating the pre-

cipitation magnitude, but the ANNs frequently under-

estimated precipitation occurrence because ANNs

generatemore trace precipitation than zero data. Schoof

and Pryor (2001) compared linear regression models

and ANNs with the input data handled with principal

components analysis (PCA) and cluster frequencies.

Their results showed that the ANN was superior to the

MLR and that its performance in downscaling monthly

precipitation was far superior to its downscaling of daily

precipitation. They also found that temperature models

performed better than precipitation models because of

the precipitation models’ failure to represent pre-

cipitation variability on short synoptic time scales.

H. Chen et al. (2010) compared a statistical downscaling

approach based on the smooth support vector machine

(SSVM) method with ANNs to predict the daily pre-

cipitation of changing climate in the Hanjiang River

basin. The SSVM provided more satisfactory perfor-

mances than ANNs in reproducing the mean value of

the seasonal precipitation amount. However, the ex-

treme daily precipitation amounts and standard de-

viation of daily precipitation were still poorly preserved

in the SSVM. From these prior studies, it is clear that it is

more effective to apply an advanced nonlinear re-

gression algorithm in downscaling instead of MLR to

simulate the magnitude of precipitation. However, be-

cause of lack of information on precipitation state clas-

sification, the disadvantage of this kind of approach is its

poor performance in describing precipitation variance

on daily and shorter time scales (Liu et al. 2012).

WGs are also popular downscaling methods, and

much effort has been expended on downscaling WG

parameters (Zhang 2005; Kilsby et al. 2007; Chen and

Brissette 2014). WGs are generally two-step multivari-

ate models: the simulation of occurrence and the cal-

culation of amounts (Kilsby et al. 2007). The adjustment

of WG parameters can be classified into two categories.

The first calibrates the parameters on a daily scale using

the atmospheric variables as inputs (Wilby et al. 2002a),

and the second, most-used, method adjusts WG pa-

rameters based on climate change signals projected

from climate models. Several WGs, such as Climate

Generator (CLIGEN; Nicks et al. 1995), Long Ashton

Research Station Weather Generator (LARS-WG;

Semenov and Barrow 1997), Weather Generator

(WGEN; Wilks 1999a), and Weather Generator of the
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École de Technologie Supérieure (WeaGETS; J. Chen

et al. 2012a), have been developed and used as down-

scaling tools for climate change impact studies. The

advantage of using WGs is their ability to produce an

ensemble of climate scenarios to study the impacts of

risk-based climate events.

In some cases, the merits of PPs and WGs have been

combined, as in the Statistical Downscaling Model

(SDSM; Wilby et al. 2002b) and Automated Statistical

Downscaling (ASD; Hessami et al. 2008), two of the

most widely used statistical downscaling methods. They

both try to combine the advantages of the regression-

based downscaling technique and weather generators.

For example, SDSM has two separate downscaling

modules: unconditional and conditional (Wilby and

Dawson 2013). The unconditional module represents a

simple regression-based downscaling method with a

multiple linear regression. It is suitable for series with

continuous distributions, such as temperature. Mean-

while, the conditional module has an occurrence classi-

fier to evaluate the state of the features; therefore, it is

suitable for precipitation downscaling. SDSM has

proven to have a good performance in downscaling cli-

mate series in different river basins (Chu et al. 2010;

Tatsumi et al. 2014) and offers a better performance

than the simple regression-based downscaling methods

or weather generators in many cases (Khan et al. 2006;

Hassan et al. 2014).

To evaluate downscaling performance, the occurrence

and magnitude of precipitation need to be evaluated. In

terms of the occurrence, H. Chen et al. (2012) concluded

that SDSM was better than the SSVM in downscaling

precipitation using statistics describing temporal and

spatial characteristics. J. Chen et al. (2012b) pointed out

that SDSM had a slight error in precipitation occur-

rence, which may have been caused by its occurrence

generator, while occurrence can be well replicated with

WGs. However, compared with MLR, the nonlinear

regression algorithm performs better in simulating the

magnitude of precipitation, and especially in reproduc-

ing extreme events (Schoof and Pryor 2001; H. Chen

et al. 2010). J. Chen et al. (2014b) combined discriminant

analysis and linear regression to downscale daily pre-

cipitation with different scenarios. The results showed a

disappointing performance in both occurrence and

magnitude.

Accordingly, based on a combination of precipitation

occurrence and magnitude generator, a new approach is

proposed in this study. The method integrates a com-

mon precipitation occurrence generator from WGs

and a machine learning algorithm as a precipitation

occurrence classifier and uses an advanced nonlinear

regression algorithm as a precipitation amount generator.

This approach has been applied in the Xiangjiang River

basin using the following steps 1) construction and

evaluation of the statistical downscaling methods by

combining Markov chain (MC) and support vector

machine (SVM) approaches, 2) evaluation of the un-

certainty in simulating future climate change with two

different climate scenarios and three different down-

scaling methods, and 3) evaluating different com-

binations of occurrence generators and precipitation

generators to determine the optimal choice.

2. Method and evaluation

a. The basic algorithm for downscaling methods

A revised regression-based statistical downscaling

method based on the least squares support vector ma-

chine (LS-SVM) and MC is proposed to improve sim-

ulations of precipitation magnitude and occurrence. For

completeness, the procedure is described below.

1) LS-SVM

The SVM method was proposed in Vapnik (1998),

based on the Vapnik–Chervonenkis (VC) dimension

and structural risk minimization (SRM) of statistical

learning theory. SVM is an original, small-sample

learning method with a solid theoretical basis. In con-

trast to other statistical methods, it does not incorporate

probability measures or the law of large numbers. It has

been proven that the global optimal solution can theo-

retically be found with the SVM method. Thus, it

overcomes the problem of local extremum often found

in the ANN computational process. In sum, the SVM

approach avoids the traditional process from induction

to deduction, achieves effective transductive inference

from training samples to forecast samples, and simplifies

general classification and regression problems. Based

on a relatively strict statistical learning theory, models

established with the SVM method are capable of good

generalization. The SVM can produce a strict boundary

for the generalization abilities of established models, an

advantage not found in other learning methods. The

SVMmethod offers superior results in classification and

regression with small samples, nonlinear relationships,

and high-dimensional datasets.

However, the constrained optimization programming

in SVM leads to a relatively high computation demand.

The LS-SVM proposed in Suykens and Vandewalle

(1999) takes the equality constraint instead of the in-

equality constraint in SVM to solve the problem of con-

vex quadratic optimization. Compared with the standard

SVM, LS-SVM only requires shape parameters of the

kernel function and penalty coefficient, instead of the

SEPTEMBER 2017 HOU ET AL . 2387



value of the insensitive loss function (Suykens et al. 2002).

It simplifies the calculation, requires less memory, and

makes the algorithm practical to use, all of which makes

LS-SVM more suitable for statistical downscaling than

SVM. In this study, two LS-SVM modules are used: one

for classification [support vector classification (SVC)] and

one for regression [support vector regression (SVR)].

The first application of the LS-SVM in downscaling

was to simulate monthly precipitation (Tripathi et al.

2006); since then, LS-SVM has proven to be a reliable

method for conducting climate impact studies. Anandhi

et al. (2008) used LS-SVM to downscale monthly pre-

cipitation to the river basin scale in India and found that

the LS-SVM model was a feasible choice for obtaining

future precipitation projections at a river basin scale, but

that it was unable to mimic observed extreme pre-

cipitation events. More recently, LS-SVM has been

widely used in regression-based downscaling methods

(Raje and Mujumdar 2011; Sachindra et al. 2013).

LS-SVM assumes that there is a training set

fXi,Yigli51, where X represents a multidimensional in-

put vector and Y is an output vector (Wang and Hu

2005). A functionf(X) is utilized to translateX from the

original space into high-dimension space:

f(X)5 [f(X
1
),f(X

2
), . . . ,f(X

l
)]. (1)

In the high-dimension space, an optimal decision

function is constructed:

y5WTf(X)1 b , (2)

where W and b are the parameters.

To minimize the structural risk, an objective function

R is constructed as

R5min

(
1

2
kWk2 1C�

l

i51

j2i

)
, (3)

where j is the loss function and C is the regularization

parameter, subjected to

y
i
5WTf(X

i
)1 b1 j

i
(z

i
$ 0) , (i5 1, . . . , l). (4)

This optimization problem can be solved with

Lagrange multipliers:

L(W, b, z
i
,a)5

1

2
kWk2 1C�

l

i51

j2i

2 �
l

i51

a
i
[WTf(X

i
)1 z

i
2 y

i
] , (5)

where ai is the ith Lagrange multiplier.

Setting the partial derivative of these four parameters

to 0 in Eq. (5) gives

›L

›W
5

›L

›b
5

›L

›z
i

5
›L

›a
5 0, (6)

W5 �
l

i51

a
i
f(X

i
) , (7a)

�
l

i51

a
i
5 0, (7b)

a
i
5Cz

i
(i5 1, . . . , l), and (7c)

y
i
5WTf(X

i
)1b1 j

i
. (7d)

A kernel function K(Xi, Xj) that meets the Mercer

condition F is one way to handle an input vector, such that

K(X
i
,X

j
)5F[f(X

j
),f(X

i
)]. (8)

In LS-SVM, we generally use the radial basis function

(RBF) as the kernel function:

K(X
i
,X

j
)5 exp[2(X

i
,X

j
)2/2s2], (9)

where s is the width of a kernel, which is a positive real

constant.

Finally, the determined decision function f (Xi) can be

written as

f (X
i
)5 �

l

i51

a
i
K(X

i
,X

j
)1 b. (10)

This decision function can also be regarded as a re-

gression function instead of a classifier, which means that

the LS-SVM is capable of performing high-dimensional

nonlinear regressions. For the remainder of this paper,

LS-SVM is shortened to SVM for convenience.

2) THE GENERATING OCCURRENCE ALGORITHM:
MARKOV CHAIN

AMarkov chain is selected in the proposed approach to

add a stochastic term to the SVC classifier for generating

precipitation and nonprecipitation occurrences, that is, a

wet day or dry day. MC has proven relatively stable (Katz

1981) and is widely used in weather generators (Gregory

et al. 1993;Wilks 1999b; Breinl et al. 2015). The probability

of a given day being wet or dry is determined from the

precipitation state of the day before.

b. Three proposed downscaling methods based on
SVM: R-LD, CR-LD, and MC-LD

1) R-LD (SVR DOWNSCALING)

R-LD is a single-step downscaling method in which

the large-scale climatic predictors and site-specific

2388 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



observed precipitation are directly relatedwith the SVM

regression algorithm. Many researchers use this simple

SVM regression method to statistically downscale the

regional and at-site temperature and precipitation at

daily and monthly scales (Tripathi et al. 2006; H. Chen

et al. 2010; Ghosh 2010; Aksornsingchai and Srinilta

2011; Srinivas et al. 2014):

Robs
t 5F

SVR
(u1

t , u
2
t , . . . ,u

j
t), (11)

where Robs
t is the observed precipitation amount on day

t, uj
t is the jth corresponding climatic predictor on the tth

day in the calibration period, and FSVR is the constructed

regression function.

This regression relationship constructed as described

is then used to generate the precipitation in the valida-

tion period.

Rsim
t 5F

SVR
( bu1

t ,
bu2
t , . . . ,

b
u
j
t), (12)

whereRsim
t is the derived precipitation on the tth day andb

u
j
t is the jth corresponding climatic predictor on the tth

day in the validation period.

2) CR-LD (SVC-SVR DOWNSCALING)

The above-describedR-LDmethod has a limitation: it

cannot distinguish the state of precipitation. All pre-

cipitation data for both wet and dry days are used to

construct the regression relationship, which makes the

simulations contain more trace daily precipitation,

which leads to far more wet days (values greater than 0)

than observed.

Based on R-LD, the CR-LD method adds an occur-

rence classifier using an SVC before simulating the pre-

cipitation magnitude, as shown on the left side of Fig. 1.

This CR-LDmethod has also been described in S. T. Chen

et al. (2010). In this method, the total series of pre-

cipitation in a calibration period is divided into two cate-

gories: wet days (defined as 1) and dry days (defined as 0)

after determining that the daily precipitationmagnitude is

larger than a given threshold (in this study, the threshold is

0.1mm). The precipitation state and predictors are then

used to construct a relationship using an SVC:

wobs
t 5F

SVC
(u1

t ,u
2
t , . . . , u

j
t), (13)

where wobs
t is the observed precipitation state on the tth

day and FSVC is the constructed occurrence classifier.

Meanwhile, the observed precipitation and corre-

sponding predictors of wet days are utilized to generate

the relationship using the SVM regression:

Robs
t 5F

SVR
(u1

t , u
2
t , . . . , u

j
t) wobs

t 5 1 . (14)

In the validation period, the precipitation states are

first simulated, and then rainfall occurring on wet days is

generated. The precipitation on dry days is set to 0:

WSVC,vali
t 5F

SVC
( bu1

t ,
bu2
t , . . . ,

b
uj
t), (15)8>><>>:

Rsim
t 5F

SVR
( bu1

t ,
bu2
t , . . . ,

b
uj
t)1 e WSVC,vali

t 5 1

Rsim
t 5 0 WSVC,vali

t 5 0
, (16)

whereWSVC,vali
t is the SVC-simulated precipitation state

on the tth day in the validation period and e is a residual

term, which obeys the normal distribution with zero

mean and constant variance to better fit the variance in

the observed series.

3) MC-CR-LD (MC-SVC-SVR DOWNSCALING)

The CR-LD downscaling method incorporates the

classification of precipitation states and simulates the

precipitation magnitude on wet days. In the CR-LD

downscaling method, the SVC generates deterministic

precipitation states based on the deterministic re-

lationship between atmospheric variables and observed

precipitation states, which cannot represent the sto-

chastic characteristics of precipitation. However, it is

necessary to add a stochastic term to the deterministic

occurrence generator, a process that has proven effec-

tive in many mature statistical downscaling methods.

For example, the occurrence generator of ASD and

SDSM in a conditional downscaling module is based on

the linear regression of predictor variables and a com-

parison of the regressed result to a random number

(Wilby et al. 2002b; Hessami et al. 2008). Meanwhile,

simple weather generators combine the random number

and Markov chain to derive the stochastic occurrence

series (Wilks 1999a).

Compared with these methods, the CR-LD down-

scaling method does not well describe the transition

process for daily precipitation occurrence using ran-

domness. Therefore, it is necessary to adjust the pre-

cipitation classifier by introducing the concept of

randomness to the precipitation process.

The randomness of precipitation is mainly reflected

in the difference between wet and dry days and the

transition process. The MC can thus be used as an ad-

ditional effective tool to generate a random occurrence

to describe the transition characteristics of pre-

cipitation states. There is a difference between ob-

served and SVC-simulated transition parameters in the

calibration period, which is considered a bias between

simulation and observation. Therefore, we can

construct a correction parameter factor between the
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observed and SVC-simulated MC parameters in the

calibration period to carry forward and then apply the

bias in the MC parameters to correct SVC-simulated

precipitation occurrence in the validation period. After

correcting the parameters in the validation period, the

generated occurrence conforms to the deterministic

precipitation occurrence downscaled using the SVC of

precipitation and maintains the characteristic of ran-

domness in the validation period. The MC-CR-LD

flowchart is shown on the right side of Fig. 1. In the

remainder of the text, tables, and figures, we use

‘‘MC-LD’’ instead of ‘‘MC-CR-LD’’ for brevity. The

modeling procedure is as follows. The precipitation

state of the observed precipitation series is distin-

guished using a given threshold. A first-order, two-state

Markov chain is utilized to distinguish the precipi-

tation states of dry or wet days using the transition

parameters. The transition probabilities of observed

precipitation occurrence in the calibration period are

generated by

Pobs,cali
01 5Pfwobs

t 5 1jwobs
t21 5 0g

Pobs,cali
11 5Pfwobs

t 5 1jwobs
t21 5 1g

, (17)

where Pobs,cali
01 is the probability that day t2 1 is dry

and that day t is wet, as generated from the observed

precipitation in the calibration period, and Pobs,cali
11 is

the probability that the day t2 1 is wet and day t is

wet, generated from observed precipitation in the

calibration period.

The bias between observed and simulated transition

probabilities in the calibration period is calculated to

correct probabilities in the validation period. To derive

the simulated transition probabilities in the calibration

period, the modeled occurrence series needs to be

reproduced using the proposed downscaling model.

FIG. 1. (left) The CR-LD (SVC-SVR downscaling) flowchart. (right) The MC-CR-LD (MC-SVC-SVR downscaling)

flowchart.

2390 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



The SVC relationship in the calibration period is

constructed using the observed occurrence and climatic

predictors, which are the same as described for Eq. (13).

Then, this constructed relationship FSVC is utilized to

simulate the precipitation state WSVC,cali
t with the same

predictors u1
t , u

2
t , . . . , u

j
t in the calibration period.

The precipitation state transition parameters in the

calibration period are derived from the SVC-simulated

occurrence using the Markov chain:

PSVC,cali
01 5PfWSVC,cali

t 5 1jWSVC,cali
t21 5 0g

PSVC,cali
11 5PfWSVC,cali

t 5 1jWSVC,cali
t21 5 1g

. (18)

Referencing the bias correction method (Chen et al.

2013), the bias in the state transition parameters be-

tween the observed and SVC-simulated occurrences in

the calibration period is then used to adjust the SVC-

simulated parameters in the validation period. The

biases are quantified into two correction factors s and g,

which are calculated below:

s5
Pobs.cali
01

PSVC,cali
01

and (19)

g5
Pobs.cali

11

PSVC,cali
11

. (20)

Meanwhile, the SVC-simulated occurrence in the

validation period is calculated by

WSVC,vali
t 5F

SVC
( bu1

t ,
bu2
t , . . . ,

b
u
j
t), (21)

whereWSVC,vali
t is the SVC-simulated precipitation state

on the tth day in the validation period and
b
u
j
t is the jth

corresponding climatic predictor on the tth day in the

validation period.

Then, the SVC-simulated transition parameters

PSVC,cali
01 and PSVC,cali

11 in the validation period are calcu-

lated using WSVC,vali and the correction factors:

PSVC,vali
01 5PfWSVC,vali

t 5 1jWSVC,vali
t21 5 0g

PSVC,vali
11 5PfWSVC,vali

t 5 1jWSVC,vali
t21 5 1g . (22)

Therefore, the SVC-simulated transition parameters

in the validation period can be corrected with the cor-

rection factors:

Pvali
01 5PSVC,vali

01 3s

Pvali
11 5PSVC,vali

11 3 g
. (23)

Parameters Pvali
01 and Pvali

11 are the corrected transition

probabilities utilized to generate the random occurrence

in the validation period. The precipitation state series in

the validation period is generated using the MCmethod

and a random number:

WMC,vali
t 5

8>>>><>>>>:
1 rand#Pvali

11 ,WMC,vali
t21 5 1

0 rand.Pvali
11 ,WMC,vali

t21 5 1

1 rand#Pvali
01 ,WMC,vali

t21 5 0

0 rand.Pvali
01 ,WMC,vali

t21 5 0

, (24)

where WMC,vali
t is the MC-simulated precipitation state

on day t and rand is a uniformly distributed random

number ranging from 0 to 1.

The MC-simulated precipitation state is used to cor-

rect the randomly SVC-simulated precipitation occur-

rence when the states generated with the MC and SVC

methods in the same day t are opposite:

W
t
5

8><>:
WMC,vali

t WMC,vali
t 5WSVC,vali

t

WMC,vali
t WMC,vali

t 6¼ WSVC,vali
t , rand# threshold

WSVC,vali
t WMC,vali

t 6¼ WSVC,vali
t , rand. threshold

,

(25)

where Wt is the final simulated objective precipitation

state on day t and threshold is a number ranging from

0 to 1 defined by the user. When threshold is 0, W is a

completely SVC-simulated series, while when threshold

is 1, W is a completely MC-simulated series. In this

study, threshold 5 0.7.

After the generation of precipitation occurrences, the

precipitation amount is then simulated using the SVM

regression algorithm. The statistical regression re-

lationship between observed data and NCEP–NCAR

predictors was constructed on wet days:

Robs
t 5F

SVR
(u1

t ,u
2
t , . . . ,u

j
t) wobs

t 5 1 . (26)

Finally, the precipitation series was generated with a

residual term added to each precipitation amount onwet

days to fit the precipitation variance:8><>:Rsim
t 5F

SVR
( bu1

t ,
bu2
t , . . . ,

b
u
j
t)1 e W

t
5 1

Rsim
t 5 0 W

t
5 0

. (27)

c. Evaluation of the results

Maraun et al. (2010) suggested some useful statistics

for evaluating precipitation downscaling. The statistics

of downscaling results, which can represent intensity,

temporal and spatial characteristics, and metrics,

characterize the relevant physical processes that are

used in evaluating the effect of downscaling, such as the

mean value, variance, and quantiles for quantizing the

precipitation distribution. H. Chen et al. (2012) found

that the accuracy of a statistical downscaling model

cannot be completely proven, even for cases in which
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the most widely used statistics in the literature for

evaluating statistical downscaling methods show a

good performance.

In this study, meteorological statistics, including sea-

sonal and annual mean value, standard deviation, 95th

percentile value, 5-day maximum precipitation, per-

centage wet, average dry spell length, average wet spell

length, maximum dry spell length, maximum wet spell

length (details in Table 1), relative error (RE), and

relative root-mean-square error (RRMSE) were calcu-

lated and utilized to verify fitness between simulations

and observations.

Of these meteorological statistics, percentage wet,

average dry spell length, maximum dry spell length,

average spell length, and maximum wet spell length are

influenced only by precipitation occurrence. From these

five statistics, the performance of downscaling pre-

cipitation occurrence can be examined. The mean value

is influenced only by the amount simulation. Both oc-

currence and precipitation amount downscaling influ-

ence the remaining statistics. In this study, the monthly

mean value was used to evaluate the RE and analyze the

effect of precipitation amount simulation.

RE is calculated using the following equation:

RE5
R

sim
2R

obs

R
obs

, (28)

where Rsim is the average of a simulated precipitation

series and Robs is the average of an observed

precipitation series.

RRMSE is calculated using the following equation:

RRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

 
Ri

sim 2Ri
obs

Ri
obs

!vuut 3 100%, (29)

where n is the total number of months in the given

precipitation series, Ri
obs is the ith month observed

precipitation, and Ri
sim is the ith month simulated

precipitation.

In this study, the proposedmethods were compared to

SDSM. To further examine the differences between

statistical downscaling methods in terms of generating

precipitation given climate model outputs, the above

evaluation criteria were first applied to precipitation

generated from the GCM for the historical record

(1965–2005). Then, using each method, GCMs provided

simulated future (2031–2100) precipitation to evaluate

the effects of future climate change under two emission

scenarios. Because the R-LD method cannot simulate

extreme precipitation well, it is not considered in the

future maximum precipitation simulation.

3. Study region and data

To verify simulations using the proposed downscal-

ing model, the upper Xiangjiang River basin in China

was selected as a case study. The corresponding grid-

ded NCEP and GCM output variables were the input

predictors for the downscaling methods. Observed site-

specific precipitation was used to evaluate the perfor-

mance of the proposed model.

a. Study region

TheXiangjiangRiver basin in China, ranging between

248310 and 298000Nand 1108310 and 1148000E, as shown in
Fig. 2, is one of the principal tributaries to the Yangtze

River. It has a drainage area of 94 660 km2 and is 856km

long with an average land slope of 0.134&. The upper

part of the Xiangjiang River basin, which has an area of

52 150 km2, has been selected to perform the study.

For the historical period, the mean annual air tem-

perature of the Xiangjiang basin was 178C. Theminimum

temperature is about 48–88C in January, and maximum

temperature was about 298–308C in July. The mean an-

nual precipitation is 1300–1700mm, increasing from

south to north, and average annual evapotranspiration

TABLE 1. Definitions of the indicators for evaluating the statistical downscaling methods.

Indicators Definition Major influence factor

Mean Average of all values Amount

Standard deviation Standard deviation of all values in each time period Amount and occurrence

Percentile 95 Value of the user specified percentile Amount and occurrence

5-day maximum

precipitation

Annual maximum total accumulated over 5 days Amount and occurrence

Percentage wet Percentage of days that exceed the wet-day threshold Occurrence

Maximum dry spell length Annual maximum spell with amounts less than the wet-day threshold Occurrence

Maximum wet spell length Annual maximum spell with amounts greater than or

equal to the wet-day threshold

Occurrence

Average dry spell length Annual average spell with amounts less than the wet-day threshold Occurrence

Average wet spell length Annual average spell with amounts greater than or equal

to the wet-day threshold

Occurrence
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is about 641mm (Xu et al. 2013). Nearly 80% of the in-

cidents of extreme precipitation in the Xiangjiang basin

last less than a day, and most occur in June, July, and

August. Recently, the intensity and frequency of extreme

precipitation have shown an increasing trend, which

makes the accurate prediction of precipitation in this

basin even more important.

b. Data

Fifteen hydrometeorological stations in the upper

Xiangjiang River basin with daily-observed pre-

cipitation from 1965 to 2014 were used in this study. All

stations have a complete series of precipitation with no

missing data. Two types of calibration and validation

period combinations were used for the downscaling.

One uses the period from 1965 to 1990 for calibration

and 1991–2005 for validation (sequential split sample),

and the other uses odd-numbered years of the whole

time period for calibration and even-numbered years for

validation (odd–even-year split sample). Moreover, the

period from 2006 to 2014 is selected as themutual testing

period to evaluate the performance of both calibration

methods. The odd–even-year division reduces the in-

fluence of possible climatic changes caused by human

activity. NCEP reanalysis data, with a resolution of

2.58 3 2.58 in longitude and latitude, were used as pre-

dictors to calibrate and validate the statistical relation-

ship with the observed data using different downscaling

methods during the historical period.

The output variables from the BCC_CSM RCP4.5

and RCP8.5 were utilized as predictors to simulate fu-

ture climate change. These GCMs belong to the fifth

phase of the Coupled Model Intercomparison Project

(CMIP5), which aims to provide essential data to study

climate change in the IPCC AR5 assessment process

(Taylor et al. 2012). In CMIP5, representative concen-

tration pathways (RCPs) represent possible future

emission scenarios. RCP8.5 represents a high-emission

environment, while RCP4.5 simulates a medium-

emission environment (van Vuuren et al. 2011).

The initial gridded variables, which represent the spa-

tial resolution in a large-scale grid, cannot completely

represent station-scale data. Therefore, prior to using

them as the inputs to the downscaling models, all chosen

factors in the NCEP data in the nearest nine grids were

interpolated into point-scale data at each station using the

inverse distance weighted method (Gemmer et al. 2004)

to improve their representativeness.

4. Results and discussion

In this proposed MC-LD method, precipitation oc-

currence was generated using the SVC and MC, cali-

brated using the precipitation states in the observed

data. The statistical relationship between the observed

precipitation series and NCEP reanalysis factors on wet

days, in terms of the precipitation magnitude, was con-

structed using the SVM in the calibration period. That

relationship was then used to simulate the precipitation

series for the validation period. To reduce the number of

calculations, large-scale climate variables extracted

from the NCEP reanalysis data were screened; the cor-

relations between each of the factors and the observed

series were ranked with the correlation coefficient

threshold for each factor set to 0.25. The filtered climate

factors used in the downscaling methods are sea level

pressure (mslpgl), geopotential height at 500 hPa

(p500gl), specific humidity at 850 hPa (p8_sgl), wind

speed at 500hPa (p5_fgl), air temperature at 850 hPa

(p8_tgl), and surface air temperature (tempgl). Two

types of calibration and validation periods were used to

construct the three statistical downscaling methods and

their results are compared in the following sections.

a. Evaluation of uncertainty caused by optimized
parameters in SVM

Before comparing the performance of multiple

downscaling methods, the uncertainty brought because

of SVM must be evaluated. In SVM, the regularization

parameter C and kernel bandwidth s are two parame-

ters that required adjusting. As these two parameters

are used as a whole, the values of the parameters directly

determine the SVM training and generalization perfor-

mance. The parameter C describes the balance between

the maximum classifier boundary and classifier error in

FIG. 2. Location of the upper Xiangjiang River basin and selected

weather stations.
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the training process. A larger value of C produces a

more accurate classified result in the training dataset;

however, the generalization ability will decline with

larger values ofC. When using the RBF kernel function,

s can control the width of the RBF kernel; if s gets too

big, the RBF kernel performance becomes similar to

that of a first-order polynomial kernel, losing the ad-

vantage of the RBF kernel status. An optimization

method is required to derive suitable parameters, which

may also cause overfitting. To avoid the overfitting

problem, we utilized the iteratively reweighted SVM, an

effective technique to improve the robustness of SVM

by reweighting the samples to reduce the negative in-

fluence of the abnormal samples. The grid search

method and leave-one-out cross-validation method

were used to optimize the parameters and construct the

cost function of optimization. We defined the range inC

and s as 1–50, which prevents the parameters from

reaching the minimum or maximum value.

Because of the randomness in the parameter optimi-

zation algorithm, the sets of SVM parameters can vary

with different runs, even with the same inputs. Figure 3

shows the fluctuation in parameters of the regression

and classification results using the CR-LD method with

100 runs in June in the flood season. As shown in the

figure, the values of C and s have a relatively stable

variance with multiple simulations, and there are few

cases where parameters reach extreme values, which

proves the robustness of the SVM in this case study.

b. Comparison of precipitation occurrence
simulations

The statistics from 15 stations were averaged to rep-

resent area mean values. As all stations are from

neighboring areas and have strong relationships, the

comparison between the results of the closest 15 stations

is conducted to reflect regional uncertainty analysis.

Tables 2 and 3 present the total average statistics of

observed and downscaled precipitation using different

downscaling methods with two types of calibration and

validation periods [i.e., sequential split-sample method

(Table 2) versus odd–even-year split-sample method

(Table 3) proposed in this study].

A statistic in bold font indicates that the corre-

sponding method performs better than other methods

in the table. Nine statistics were evaluated at an annual

time scale. All statistics were divided into two cate-

gories, which are related to amounts (mean, standard

deviation, 95th percentile, and 5-day maximum pre-

cipitation) and occurrences (percentage wet, maximum

dry spell length, maximumwet spell length, average dry

spell length, and average wet spell length). With the

sequential split-sample method, the MC-LD, CR-LD,

and SDSM resulted in smaller errors for more of the

statistical parameters in the calibration period than

R-LD. MC-LD performed better than SDSM accord-

ing to the percentage wet and maximum and average

wet spell length, while SDSM performed better than

MC-LD in maximum dry spell lengths. Over the vali-

dation period, MC-LD showed a slight advantage

over SDSM in most statistical comparisons; generally,

MC-LD performed better than SDSM in reproducing

the precipitation occurrence in the calibration period.

In both periods, CR-LD produced slightly less accurate

statistics than those from MC-LD. In addition, CR-LD

showed a substantial disadvantage in terms of dry

and wet spell lengths. Using the odd–even-year split-

sample method (odd-numbered years for calibration

and even-numbered years for validation) resulted in

FIG. 3. Box plots of the SVM parameters in the CR-LD method

with 100 runs in June as the calibration period and using the

sequential split-sample method at 15 stations, (a),(b) SVR and

(c),(d) SVC. Panels (a) and (c) indicate variations in the C

parameter and (b) and (d) indicate variations in the s parameter.
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similar accuracies between the downscaling methods

compared with those produced from the sequential

split-sample method. The exception was that MC-LD

had an obviously better standard deviation and 5-day

maximum precipitation performance using the split-

sample calibration–validation.

Based on simulated precipitation occurrence, the

coupling of the support vector classifier and Markov

chain approach provides a more stable performance in

these indicators. This approach also provides a better

performance for the SDSM and SVC occurrence gen-

erators. Comparing the performances of MC-LD,

CR-LD, and R-LD, it is clear that regardless of model

calibration and validation used, the R-LD method has

poor ability to generate precipitation series with daily

characteristics and can only generate the mean value of

precipitation. TheMarkov chain brings an improvement

over the SVC method in precipitation occurrence sim-

ulation. Meanwhile, the existence of an occurrence

classifier is important for the regression method, as

proven from comparisons between the R-LD and other

methods.

Figure 4 shows themonthly occurrence statistics in the

two types of validation periods and indicates that in both

calibration types, there is little difference between

MC-LD, SDSM, and CR-LD in terms of wet day pre-

dictions. However, MC-LD and SDSM outperformed

CR-LD on average dry and wet spells. Compared to the

other methods, without an occurrence generator, the

R-LD’s performance was weak for most statistical

parameters.

Figure 5 shows box plots of annual statistics at all

stations in the validation period. As shown, the distri-

butions of most statistical values generated from

MC-LD at different stations were closer to observations,

especially in the percentage of wet days. While SDSM

and CR-LD had better performances in some seasonal

cases, most annual results from SDSM and CR-LDwere

not as good as those of MC-LD. However, there was a

great mismatch between the observed and simulation

precipitation from the R-LD method in most statistical

values. Influenced by the lack of an occurrence genera-

tor, the R-LD method does not show a stable enough

performance to simulate the spell lengths. Furthermore,

TABLE 2. Mean annual statistics for meteorological stations in the Xiangjiang River basin using the sequential split-sample method. The

value in bold font indicates that the corresponding method performs better than other methods in the table.

Calibration period (1965–90) Validation period (1991–2005)

Indicators Obs. MC-LD SDSM CR-LD R-LD Obs. MC-LD SDSM CR-LD R-LD

Mean (mm) 4.19 3.6 4.83 3.44 3.77 3.99 3.79 4.87 3.71 3.78

Standard deviation (mm) 10.5 9.07 9.17 8.81 3.46 9.93 9.75 9.25 9.64 2.99

Percentile 95 (mm) 23.84 20.74 25.49 19.79 10.54 22.65 21.88 25.46 21.55 8.82

5-day maximum precipitation (mm) 163.18 158.38 130.59 167.27 62.67 154.05 173.9 127.09 185.84 56.76

Percentage wet 0.41 0.39 0.35 0.65 0.75 0.4 0.39 0.34 0.37 0.91

Maximum dry spell length (days) 25.61 19.96 22.64 37.44 22.9 24.87 18.61 19.09 28.39 3.61

Maximum wet spell length (days) 11.34 10.1 8 14.65 60.36 10.76 10.26 7.4 13.35 183.16

Average dry spell length (days) 4.05 3.91 3.69 5.81 3.6 4.04 3.94 3.46 4.94 1.06

Average wet spell length (days) 2.82 2.51 1.99 3.51 14.14 2.76 2.52 1.78 2.93 15.5

RE (%) — 20.78 24.73 27.93 27.92 — 214.22 15.27 217.93 210.11
RRMSE (%) — 41.41 54.55 57.12 37.59 — 63.82 72.96 74.38 63.33

TABLE 3. As in Table 2, but for the odd–even-year split-sample method.

Indicators

Calibration period (odd years) Validation period (even years)

Obs. MC-LD SDSM CR-LD R-LD Obs. MC-LD SDSM CR-LD R-LD

Mean (mm) 3.93 3.85 4.88 3.79 3.99 3.99 3.71 5.01 3.67 3.67

Standard deviation (mm) 9.73 9.53 9.07 9.34 3.54 10.06 9.18 9.2 9.11 3.8

Percentile 95 (mm) 22.2 21.71 25 21.52 11.09 22.76 21.13 25.28 21.05 10.22

5-day maximum precipitation (mm) 147.27 172.71 131.29 178.98 67.32 161.1 164.5 132.74 179.7 78.2

Percentage wet 0.4 0.4 0.35 0.64 0.9 0.4 0.39 0.36 0.38 0.91

Maximum dry spell length (days) 25.83 19.92 21.39 39.09 7.12 26.43 20.25 21.2 38.87 5.82

Maximum wet spell length (days) 5.35 5.58 4.16 8.49 61.96 5.41 5.36 4.32 7.63 55.31

Average dry spell length (days) 4.03 3.95 3.63 6.12 2.31 4.2 4.03 3.6 6.29 2

Average wet spell length (days) 2.74 2.65 1.97 3.91 23.81 2.77 2.54 2.02 3.8 22.58

RE (%) — 21.86 24.18 23.4 1.5 — 7.05 25.34 28.09 28.15

RRMSE (%) — 40.81 54.05 52.75 39.62 — 56.70 62.94 68.54 60.22
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FIG. 4. (top) Monthly average statistical values for the Xiangjiang River basin resulting from downscaling using

the sequential split-sample method in the validation period. (bottom) Monthly average statistical values for the

Xiangjiang River basin resulting from downscaling using the odd–even-year split-sample method in the

validation period.
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the length of each box can explain the variance in the

corresponding statistical values at all 15 stations.

MC-LD values showed a similar distribution as the

observations in percentage wet and average dry spell

length, which proves that MC-LD described the

otherness of different stations quite well. Meanwhile,

there were large differences in spell lengths between

the observations and R-LD calculations with both

calibration methods. With the odd–even-year split-

sample method, MC-LD outperformed SDSM and

CR-LD in most statistical parameters. These results

revealed that MC-LD was an overall significant im-

provement over CR-LD and R-LD.

The occurrence statistical values from MC-LD,

SDSM, and CR-LD were generally satisfactory, while

R-LD had poor ability to generate the occurrence.

FIG. 5. (left) Box plots of annual indicators for the Xiangjiang River basin using the sequential split-sample method in the validation

period. (right) Box plots of annual indicators for the Xiangjiang River basin using the odd–even-year split-sample method in the

validation period.
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MC-LD, meanwhile, had a better capacity to simulate

the precipitation occurrence, which was not possible

using SVM regression exclusively. Meanwhile, when

the split-sample methods were changed, MC-LD

maintained a stable performance, while SDSM did

not adapt to calibrating the discontinuous data. Fur-

thermore, lowering the disparity between the pre-

cipitation in the calibration and validation periods

resulted in the MC-LD offering an even better

performance.

c. Comparison of the precipitation amount
simulations

Tables 2 and 3 represent the relative error using dif-

ferent downscaling methods, time periods, and calibra-

tionmethods. TheMC-LD, CR-LD, andR-LDmethods

provided better agreement with the precipitation

amount than SDSM in terms of the relative error, which

confirmed the reliable robustness of SVM for simulating

the precipitation amount (Anandhi et al. 2008). Tables 2

and 3 indicate that there were about 10%–20% positive

errors in precipitation simulated with SDSM in all cases,

while the relative errors simulated with MC-LD,

CR-LD, and R-LD were better than those from

SDSM. There are no clear differences in the relative

errors between the calibration and validation periods

with both split-sample methods. In terms of the

RRMSE, while none of the downscaling methods

provided a completely satisfactory result, MC-LD and

R-LD performed better than SDSM for both calibration

methods (Tables 2 and 3), and there was no clear dif-

ference between MC-LD and R-LD. It is also clear that

the simulations using the sequential split-sample vali-

dation periods performed slightly better than those us-

ing the odd-even-year split-sample method.

The precipitation amount statistics presented in Fig. 5

show that the SDSM results were closer to those of the

observation in standard deviation using the sequential

split-sample method, while MC-LD performed better

using the odd–even-year split-sample method. How-

ever, most annual results from SDSM and CR-LD were

not as good as those fromMC-LD. TheMC-LDmethod

provided statistical values from different stations that

were close to the observed statistical values, especially in

mean value and 95 percentile. In contrast, except for the

mean value, the R-LD method performed the worst.

The monthly average statistical values produced from

the MC-LD, CR-LD, R-LD, and SDSM methods for

two validation period types in the Xiangjiang River

basin are presented in Fig. 6. Generally, MC-LD,

CR-LD, and R-LD had a better agreement with the

monthly mean value than SDSM, which overestimated

the mean value in the first half of the year while

performing relatively well in the second half. The

SDSM, MC-LD, and CR-LD had relatively accurate

estimations of standard deviation, while R-LD often

underestimated the standard deviation. Meanwhile, the

statistical values using the odd–even-year split-sample

method showed an obvious improvement in 5-day

maximum precipitation simulation compared to statis-

tical values using the sequential split-sample method.

The overall better performance of MC-LD can be at-

tributed to the advantages of the nonlinear regression

(SVM) over the linear regression method (SDSM).

For illustrative purposes, Fig. 7 shows the quantile–

quantile plots for the daily precipitation on wet days

at randomly selected stations for validation periods.

The MC-LD significantly outperformed the CR-LD,

followed by the SDSM, especially for precipitation

greater than 50mmday21. For precipitation amounts

above 50mmday21, the SDSM underestimated the

precipitation amount, while the MC-LD and CR-LD

simulations were closer to observations. The excellent

agreement with observations indicated that MC-LD

was a more accurate model for simulating extreme

events. Overall, the R-LD regression method per-

formed the worst. The underestimation shown in most

of the percentiles may have been caused by the lack of

an occurrence generator to distribute the pre-

cipitation over more wet days. In addition, in the

validation period, MC-LD performed better using

the odd–even-year split-sample method than using the

sequential split-sample method; therefore, it can be

inferred that using odd and even years for calibration

and validation eliminates potential effects from

trending data.

d. Comparison of simulations using different
split-sample methods

Because the validation periods of the two split-sample

methods were different, comparing the two split-sample

methods was challenging. To evaluate their difference in

the same time period, the period from 2006 to 2014 was

selected as a test period. The area-average statistical

values from all downscaling methods are shown in

Tables 4 and 5.

Results indicated that all downscaling methods pro-

vided relatively stable and satisfying performance using

both methods. In addition to these average statistical

values, it is also meaningful to evaluate the performance

in downscaling precipitation at each site. The pre-

cipitation annual average mean, standard deviation, and

percentage wet values from observations and different

downscaling methods at each station are shown in Fig. 8.

The results indicated that each station had values similar

to the regional averages in Tables 4 and 5. However,

2398 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



FIG. 6. (top) Monthly average statistical values for the Xiangjiang River basin influenced by both amount and

occurrence of downscaling using the sequential split-sample method in the validation period. (bottom) Monthly

average statistical values for the Xiangjiang River basin influenced by both amount and occurrence of downscaling

using the odd–even-year split-sample method in the validation period.

SEPTEMBER 2017 HOU ET AL . 2399



there was an underestimation of the standard deviation

and percentagewet atmost stations in the testing period.

Comparing the different downscaling methods, the

statistical values from the MC-LD method were closer

to observations than the other downscaling methods at

more stations. Among all downscaling methods,

MC-LD had the best performance in the testing period.

Furthermore, all downscaling methods provided stable

FIG. 7. Quantile-to-quantile plot for daily precipitation regression on wet days with less than 200mmday21 at

selected stations using different calibrating methods in the validation period: (left) sequential split-sample method

and (right) odd–even-year split-sample methods.
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and satisfying performances using both split-sample

calibration methods in the testing period.

e. Comparison of future simulations

The proposed downscaling methods were used to

simulate changes in future precipitation. Historical

precipitation simulated using a GCM and different

downscaling methods are compared to the observed

series in Table 6.

For historical simulations, MC-LD performed better

than the other methods according to the evaluation

parameters using both types of calibration methods. It

was observed that changing the predictors (from NCEP

to GCM historical) had an influence on the SDSM oc-

currence generator; MC-LD was more accurate when

using different predictors as the model input.

Changes in annual mean precipitation in the

medium-term future (2031–60) and long-term future

(2071–2100) periods compared to the historical

period (1971–2000) are shown in Fig. 9. The results

indicated increasing trends in future precipitation

from all model simulations at most stations. For the

medium future, the precipitation did not show a clear

increase, except for the precipitation generated from

SDSM in the RCP8.5 scenario. Furthermore, there

was no clear difference generated between different

emission scenarios for the medium-term future.

However, in the long-term future, precipitation de-

rived from all methods showed a positive increasing

trend, and mean precipitation and variability in the

RCP8.5 scenario was significantly larger than in the

RCP4.5 scenario.

Influenced by the East Asian subtropical monsoon,

the monsoon period of the Xiangjiang River basin falls

mainly in June and July. Similar to annual precipitation,

in the monsoon season, there was a slight increase in

precipitation as derived from all methods, with less

fluctuation at different stations in the medium-term fu-

ture. For the long-term future, distinct increasing trends

were found, and variations in mean precipitation in the

RCP8.5 scenario were clearly larger than those in

RCP4.5 scenario. Generally, the monsoon season has

smaller increasing trends and variability in precipitation

than the annual totals.

TABLE 4. Mean annual statistics for meteorological stations in the testing period in the Xiangjiang River basin using the sequential

split-sample method. The value in bold font indicates that the corresponding method performs better than other methods in the table.

Indicators

Testing period

Obs. MC-LD SDSM CR-LD R-LD

Mean (mm) 3.80 3.74 4.39 3.21 3.70

Standard deviation (mm) 10.10 9.48 8.77 9.14 2.38

Percentile 95 (mm) 22.28 20.73 24.07 19.23 7.78

5-day maximum precipitation (mm) 165.68 173.06 124.41 189.56 43.54

Percentage wet 0.39 0.36 0.33 0.29 0.96

Maximum dry spell length (days) 25.83 25.45 21.15 113.65 6.30

Maximum wet spell length (days) 10.81 7.66 7.07 27.21 276.79

Average dry spell length (days) 4.20 4.98 3.57 9.09 0.81

Average wet spell length (days) 2.71 2.96 1.74 4.19 7.37

RE (%) — 21.58 15.53 215.53 22.63

RRMSE (%) — 66.87 74.66 76.60 64.94

TABLE 5. As in Table 4, but for the odd–even-year split-sample method.

Indicators

Testing period

Obs. MC-LD SDSM CR-LD R-LD

Mean (mm) 3.80 3.55 4.57 3.20 3.93

Standard deviation (mm) 10.10 9.38 8.87 8.95 3.03

Percentile 95 (mm) 22.28 20.92 24.42 19.32 9.55

5-day maximum precipitation (mm) 165.68 168.57 118.42 172.54 60.29

Percentage wet 0.39 0.35 0.33 0.31 0.95

Maximum dry spell length (days) 25.83 20.70 19.20 42.41 8.41

Maximum wet spell length (days) 10.81 9.41 6.90 12.59 260.95

Average dry spell length (days) 4.20 4.06 3.53 6.33 2.45

Average wet spell length (days) 2.71 2.27 1.71 2.97 10.91

RE (%) — 26.58 20.26 215.79 3.42
RRMSE (%) — 63.15 71.50 77.58 65.53
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Extreme events determine the extent taken in preventive

measures as communities anticipate future floods. There-

fore, extreme events play a crucial role in the economy and

environment and must be evaluated. From the trend in

annual maximum precipitation from 2031 to 2100 in Fig. 9,

future precipitation at most stations and all downscaling

methods and scenarios showed positive trends. With re-

spect to the RCP8.5 scenario, the precipitation generated

from statistical downscaling methods at 15 stations showed

higher amplitude variations than the RCP4.5 scenario.

Furthermore, the MC-LD results from the RCP8.5 sce-

nario showed a more conservative trend and larger fluctu-

ations than the CR-LD and SDSM predictions.

5. Conclusions

This study presented a revised regression-based sta-

tistical downscaling method coupling a first-order, two-

state Markov chain and least squares support vector

machine developed to improve the performance of sta-

tistical downscaling methods. The following conclusions

were drawn:

1) A comparison of precipitation occurrence simula-

tions from theMC-LD, CR-LD, and SDSMmethods

showed that the first-order Markov chain provides a

better performance to SVC in precipitation occur-

rence frequency simulation, such as percentage wet

FIG. 8. (left) Evaluation statistical values for each station using the sequential split-sample period in the testing period. (right) Evaluation

statistical values for each station using the odd–even-year split-sample period in the testing period.

TABLE 6. Mean annual statistics for the meteorological stations in the Xiangjiang River basin with GCM historical indicators as input

(1965–2005). The value in bold font indicates that the corresponding method performs better than other methods in the table.

Indicators

Sequential split sample Odd–even-year split sample

Obs. MC-LD SDSM CR-LD R-LD Obs. MC-LD SDSM CR-LD R-LD

Mean (mm) 3.99 3.79 4.87 3.71 3.78 3.99 3.8 4.97 3.83 3.66

Standard deviation (mm) 9.93 9.75 9.25 9.64 2.99 9.93 9.84 9.23 9.86 3.5

Percentile 95 (mm) 22.65 21.88 25.46 21.55 8.82 22.65 21.78 25.56 22.19 10.06

5-day maximum precipitation(mm) 154.05 173.9 127.09 185.84 56.76 154.05 174.35 133.84 190.8 70.15

Percentage wet 0.4 0.39 0.34 0.37 0.96 0.4 0.38 0.35 0.37 0.91

Maximum dry spell length (days) 24.87 18.61 19.09 28.39 3.61 24.87 19.09 23.12 36.2 6.02

Maximum wet spell length (days) 10.76 10.26 7.4 13.35 183.16 10.76 9.89 9.3 15.83 108.56

Average dry spell length (days) 4.04 3.94 3.46 4.94 1.06 4.04 3.93 3.85 6.08 1.99

Average wet spell length (days) 2.76 2.52 1.78 2.93 15.5 2.76 2.43 2.12 3.63 20.57

RE compared with Obs. (%) — 24.93 22.01 26.91 25.21 — 24.72 24.45 24.06 28.39

RE compared with NCEP simulation (%) — 2.65 1.04 6.42 3.08 — 0.89 0.19 2.93 23.6
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days and wet spell length. With an efficient pre-

cipitation occurrence classifier, MC-LD overcame

the disadvantages of a simple SVM and provided a

better occurrence simulation than CR-LD. In addi-

tion, MC-LD performed better than the SDSM in

most of the meteorological statistical parameters for

precipitation in the Xiangjiang River basin.

2) Based on a comparison of the MC-LD and R-LD

methods, the simple regressionmethodwas generally

good at simulating precipitation amounts over long

time scales without concentrating on the daily vari-

ance. However, with a precipitation classifier and

random residual term, MC-LD well represented the

temporal structure of precipitation while maintain-

ing accurate large-scale amount simulations. The

results prove that the MC-LD method utilized the

advantages of the Markov chain, SVC, and SVR,

facilitating better agreement with observed daily

series than the SDSM.

3) It can be inferred that by reducing the impact of the

climatic variation, the evaluation using the odd–

even-year split-sample method made the simulations

more accurate than using the sequential-years

method as the calibration period, especially for

MC-LD. These results also showed that MC-LD

was more suitable than SDSM for handling cases

with missing data from precipitation observations or

otherwise fragmented data.

4) In terms of future precipitation simulations, all

methods showed a similar increasing precipitation

trend in the Xiangjiang River basin, with a greater

variance and larger growth represented in scenario

FIG. 9. Box plots of the change in mean future precipitation in (a),(b) the medium-term future (2031–60) and

(c),(d) the long-term future (2071–2100) compared with the observed precipitation in the historical period

(1971–2000) at 15 stations. (e),(f) Box plots of trends in annual total and maximum precipitation in the future

(2031–2100). Green boxes are RCP4.5 and red boxes are RCP8.5.
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RCP8.5 compared to scenario RCP4.5. The trends for

maximum precipitation indicated the future will be

characterized by more extreme precipitation events

and higher abundances of available water resources.

5) Notably, the proposed MC-LD method is an at-site

statistical downscaling method, whichmay be limited

in describing intersite correlation structures of ob-

served precipitation in neighboring locations. In

future work, it would be meaningful to extend this

method to multisite domains for a wider range of

hydrological applications.

This study also proposes that researchers will develop

more effective regression-based downscaling methods

by combining different types of precipitation occurrence

classifiers with regression or distribution methods. More

combinations should be tested and evaluated to

advance a more reasonable theory of downscaling in

future research.
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