INVARIANCE OF THE CUNTZ SPLICE

SOREN EILERS, GUNNAR RESTORFF, EFREN RUIZ, AND ADAM P. W. SORENSEN

ABsTrRACT. We show that the Cuntz splice induces stably isomorphic graph
C*-algebras. This result is a key step towards the recent complete classification
of unital graph C*-algebras both with respect to K-theoretical classification
and with respect to geometrical classification in terms of an equivalence rela-
tion on the underlying graphs.

1. INTRODUCTION

Cuntz and Krieger introduced the Cuntz-Krieger algebras in [CK80|, and Cuntz
showed in [Cun81| that if we restrict to the matrices satisfying the modest Con-
dition (II), then the stabilized Cuntz-Krieger algebras are an invariant of shifts of
finite type up to flow equivalence. Shortly after Franks had made a successful clas-
sification of irreducible shifts of finite type up to flow equivalence ([Fra84]), Cuntz
raised the question of whether this invariant or the Ky-group alone classifies simple
Cuntz-Krieger algebras up to stable isomorphism. He sketched in [Cun86] that it
was enough to answer whether Oy and O_ are isomorphic, where Os and O5_ are
the Cuntz-Krieger algebras associated with the matrices

1 1
1 1 1 1
(1 1) and g

0 0
respectively. This question remained open until Rgrdam in [Rer95] showed that O,
and O, _ are in fact isomorphic and elaborated on the arguments of Cuntz to show
that the Ky-group is a complete invariant of the stabilized simple Cuntz-Krieger
algebras. The concept of Cuntz-Krieger algebras has since been generalized to the
so-called graph C*-algebras, and this procedure of gluing the graph corresponding
to the former matrix above onto another graph has since been known as Cuntz

splicing a graph at a certain vertex.

Since the K-theory of a Cuntz-Krieger algebra or a graph C*-algebra can not
distinguish the C'*-algebra associated to a graph E from its Cuntz spliced version
E_, any ambition of classifying C*-algebras in this class by K-theoretical invariants
contains the challenge of proving that the C*-algebras associated to E and E_
are stably isomorphic, as indeed established in the seminal case described above
in [Rgr95]. But in fact, in a series of results [Rgr95, [Hua95l Hua96l Res06], it
has emerged that when such invariance has been established, it can be used to
prove classification by extensive elaborations of Cuntz’ original idea. Indeed, in
the case considered by Rgrdam, Franks showed that the corresponding shift spaces
are flow equivalent if and only if U(I — A)V = I — A’ for some SL-matrices U
and V, where we have made the sizes of the adjacency matrices A and A’ (for
E and E’, respectively) equal by adding isolated vertices. On the other hand,
K-theory isomorphism is shown to be equivalent to the same condition only with
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U and V being GL-matrices instead. Philosophically speaking, it transpires from
the sequence of papers listed above that for the cases considered (which are all
of real rank zero), it suffices to use the Cuntz splice to — if necessary — change
one of the graphs so that the sign of the determinant changes in such a way that
we may assume that U and V are SL-matrices to reach from K-theory to stable
isomorphism.

Trying to push this strategy further, we show in this paper that Cuntz splicing a
vertex that supports two distinct return paths yields stably isomorphic graph C*-al-
gebras — only assuming that the graph is countable. In a similar way as in the above
mentioned cases, this result is a key step in the recent development in the geometric
classification of general Cuntz-Krieger algebras and of unital graph C*-algebras
(JERRS164, [ERRS16D]) as well as in the question of strong classification of general
Cuntz-Krieger algebras and of unital graph C*-algebras (JCRR17, [ERRSI6b]). In
fact, using the results as well as the proof methods of the present paper, these
papers close the classification problem for all Cuntz-Krieger algebras and for all
unital graph C*-algebras. The results and methods of this paper have also further
gained attention from other perspectives; e.g., from the perspective of classifying
Leavitt path algebras, the analogous question is open and of paramount interest
(see [JS16]).

To prove the results of this paper we recast Rgrdam’s now classical idea using the
recent concept of relative graph algebras and appeal to several results from graph
C*-algebra theory. The results we appeal to apply only in certain configurations,
but we shall see that these suffice to establish such a highly specialized isomorphism
result in complete generality. One may think of this approach as localizing the
classification problem to the Cuntz splice situation. We mention that even though
it is at present not at all clear if classification of non-unital graph C*-algebras is
obtainable by a route similar to the one leading to our complete resolution in the
unital case, the fact that Cuntz splice invariance holds in general at least provides
evidence that a classification result by K-theory may be possible.

With the recent work on the relation between move equivalence of graphs and
stable isomorphism of the corresponding graph C*-algebras, the question of whether
Cuntz splicing yields stably isomorphic C*-algebras has become of great interest.
Bentmann has established this for purely infinite graph C*-algebras with finitely
many ideals ([Benl5|), and Gabe recently has generalized the result to also cover
general purely infinite graph C*-algebras (J[Gab16]). Their methods are very differ-
ent from the ones we will use here, as they use classification and depend heavily on
the result of Kirchberg on lifting invertible ideal-related KK-elements to equivari-
ant isomorphisms for strongly purely infinite C*-algebras (JKir00]), which is not
available in general.

We proved invariance of the Cuntz splice in the special case of unital graph
C*-algebras in an arXiv preprint (1505.06773) posted in May 2015. Bentmann’s
recent paper showed us how to reduce the general question to the row-finite case,
and we proceeded to discover that our arguments applied with only minor changes
to that case.

2. PRELIMINARIES

Definition 2.1. A graph E is a quadruple E = (E?, E!r, s) where E° and E! are
sets, and 7 and s are maps from E! to E°. The elements of E° are called vertices,
the elements of E' are called edges, the map r is called the range map, and the
map s is called the source map.

When working with several graphs at the same time, to avoid confusion, we will
denote the range map and source map of a graph E by rg and sg respectively.
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All graphs considered will be countable, i.e., there are countably many vertices
and edges.

Definition 2.2. A [oop is an edge with the same range and source.

A path p in a graph is a finite sequence u = ejes---e, of edges satisfying
r(e;) = s(ej1), for all i = 1,2,...,n — 1, and we say that the length of p is n. We
extend the range and source maps to paths by letting s(u) = s(ey) and r(p) = r(en).
Vertices in FE are regarded as paths of length 0 (also called empty paths).

A cycle is a nonempty path p such that s(u) = r(u). We call a cycle ejeq - e,
a vertez-simple cycle if r(e;) # r(e;) for all i # j. A vertex-simple cycle ejes--- e,
is said to have an exit if there exists an edge f such that s(f) = s(ex) for some
k=1,2,...,n with ex, # f. A return path is a cycle u = ejeq---e, such that
r(e;) # r(p) for i <n.

For a loop, cycle or return path, we say that it is based at the source vertex of
its path. We also say that a vertex supports a certain loop, cycle or return path if
it is based at that vertex.

Note that in [BHRS02] [Szy02], the authors use the term loop where we use cycle.

Definition 2.3. A vertex v in E is called regular if s~1(v) is finite and nonempty.
We denote the set of regular vertices by EY,.

A vertex v in E is called a sink if s~1(v) = (). A graph E is called row-finite if
for each v € E°, v is either a sink or a regular vertex.

It is essential for our approach to graph C*-algebras to be able to shift between a
graph and its adjacency matrix. In what follows, we let N denote the set of positive
integers, while Ny denotes the set of nonnegative integers.

Definition 2.4. Let E = (E°, E',r, s) be a graph. We define its adjacency matriz
Ag as a E° x E° matrix with the (u,v)’th entry being

[{e € E' | s(e) =u,r(e) =v}|.

As we only consider countable graphs, Ag will be a finite matrix or a countably
infinite matrix, and it will have entries from Ny L {oco}.

Let X be a set. If A is an X x X matrix with entries from No U {oo}, we let E4
be the graph with vertex set X such that between two vertices z,z’ € X we have
A(x,2') edges.

It will be convenient for us to alter the adjacency matrix of a graph in a very
specific way, subtracting the identity, so we introduce notation for this.

Notation 2.5. Let E be a graph and Ag its adjacency matrix. Let Bg denote the
matrix Ag — 1.

2.1. Graph C*-algebras. We follow the notation and definition for graph C*-al-
gebras in [FLRO0]; this is not the convention used in Raeburn’s monograph [Rae05].

Definition 2.6. Let E = (E°, E',r, s) be a graph. The graph C*-algebra C*(E)
is defined as the universal C*-algebra generated by a set of mutually orthogonal
projections {p, | v € E°} and a set {s. | e € E'} of partial isometries satisfying
the relations

o sisy=0ife, fe E'and e # f,
$5Se = Pr(e) for all e € E*,
5e55 < ps(ey for all e € E', and,
Pv =D ces—1(y) Sese forall v € E° with 0 < |s71(v)| < oo.

Whenever we have a set of mutually orthogonal projections {pv | v E EO} and a
set {se ‘ eckE 1} of partial isometries in a C*-algebra satisfying the relations, then
we call these elements a Cuntz-Krieger E-family.
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We will also need moves on graphs as defined in [Serl3]. In the case of graphs
with finitely many vertices the basic moves are outsplitting (Move (0)), insplitting
(Move (1)), reduction (Move (R)), and removal of a regular source (Move (8)). It
turns out that in the general setting, move (R) must be replaced by the following

Definition 2.7 (Collapse a regular vertex that does not support a loop, Move
(Col)). Let E = (E° E',r,s) be a graph and let v be a regular vertex in E that
does not support a loop. Define a graph Ecor, by

Eg'OL = EO \ {’U},
EéOL =E! \ (rtw)usHv) U {[ef] | ecr!(v)and f € sil(v)} ,

the range and source maps extends those of E, and satisfy rg.,,, ([ef]) = r(f) and

o ([ef]) = s(e).

Move (Col) was defined in [Sgrl3, Theorem 5.2] for graphs with finitely many
vertices as an auxiliary move, and proved there to be realized by moves (I), (0)
and (R).

Definition 2.8. The equivalence relation generated by the moves (0), (I), (S),
(Col) together with graph isomorphism is called move equivalence, and denoted
~ME-

Let X be a set and let A and A’ be X x X matrices with entries from Ny LI {co}.
If EA4 ~yE Ear, then we say that A and A’ are move equivalent, and we write
A ~ME A

Remark 2.9. By [Serl3, Theorem 5.2|, the above definition is equivalent to the
definition in [Serl3| Section 4] for graphs with finitely many vertices.

These moves have been considered by other authors, and were previously noted
to preserve the Morita equivalence class of the associated graph C*-algebra. The
moves (0) and (I) induce stably isomorphic C*-algebras due to the results in
[BP04], and by [CGO6], moves (R), (S), (Col) preserve the Morita equivalence
class of the associated graph C*-algebras (see also [Ser13, Propositions 3.1, 3.2 and
3.3 and Theorem 3.5]). Therefore, we get the following theorem.

Theorem 2.10. Let E1 and E3 be graphs such that Fy ~yg Eo. Then C*(E;) ®
K= C*(Ey) ® K.

We now recall the definition of the Cuntz splice (see Notation 4.1 and Example
for illustrations).

Definition 2.11 (Move (C): Cuntz splicing at a regular vertex supporting two
return paths). Let E = (E°,E',r,s) be a graph and let v € E° be a regu-
lar vertex that supports at least two return paths. Let E, _ denote the graph
(E) _,E} _ Ty _,s,,) defined by
Eg’i =FEU {ul,UQ}
E}) _=E"U{e, e, f1, f2,h1, ha},
where 7, _ and s, _ extend 7 and s, respectively, and satisfy
51),—(€1> =, 51),—(62) = Ui, 51},—(fi) = Ui, 51),—(hi) = U2,
and
Ty, —(e1) =ur, 7Ty _(€2)=v, 1y _(fi)=ui, 7Tv,—(hi)=1u;.
We call E, _ the graph obtained by Cuntz splicing E at v, and say E, _ is formed
by performing Move (C) to E.
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The aim of this paper is to prove that C*(F) ® K = C*(E, _) @ K for any graph
E. In fact, we prove slightly more, since our proof allows for Cuntz splicing also at
infinite emitters supporting at least two return paths.

3. ELEMENTARY MATRIX OPERATIONS PRESERVING MOVE EQUIVALENCE

In this section we perform row and column additions on Bg without changing
the move equivalence class of the associated graphs. Our setup is slightly different
from what was considered in [Sgrl3 Section 7], so we redo the proofs from there
in our setting. There are no substantial changes in the proof techniques, which
essentially go back to [Fra84].

Lemma 3.1. Let E = (E°, E',rg,sg) be a graph. Let u,v € E° be distinct
vertices. Suppose the (u,v)’th entry of Bg is nonzero (i.e., there is an edge from u
to v), and that the sum of the entries in the u’th row of Bg is strictly greater than
0 (i.e., u emits at least two edges). If B' is the matriz formed from By by adding
the u’th column into the v’th column, then

Ag ~uE BI+I.

Proof. Fix an edge f from u to v. Form a graph G from E by removing f but
adding for each edge e € 7' (u) an edge € with sg(€) = sp(e) and rg(e) = v. We
claim that B’ = Bg. At any entry other than the (u,v)’th entry the two matrices
have the same values, since we in both cases add entries into the v’th column that
are exactly equal to the number of edges in E. At the (u,v)’th entry of B we have

(Isg" (w) Nrg' ()] = 1) + |s5' (u) Nrg' (w)] = Be(u,v) + Bp(u,u) = B'(u,v).

Thus to prove this lemma it suffices to show E ~pyg G.

Partition s3,'(u) as & = {f} and & = s3'(u) \ {f}. By assumption & is not
empty, so we can use Move (0). Doing so yields a graph just as F but where u is
replaced by two vertices, u; and wus. The vertex uy receives a copy of everything u
did and it emits only one edge. That edge has range v. The vertex uo also receives
a copy of everything v did, and it emits everything u did, except f. Since wu; is
regular and not the base of a loop, we can collapse it. The resulting graph is G
(after we relabel ug as u), so G ~yp E. O

We can also add columns along a path.

Proposition 3.2. Let E = (E°, E',rp, sg) be a graph and let u,v € E° be distinct
vertices with a path from u to v going through distinct vertices u = ug, U1, Ug, . . ., Uy =
v (labelled so there is an edge from w; to w41 for i =0,1,2,....,n—1). Suppose
further that u supports a loop. If B’ is the matriz formed from Bg by adding the
u’th column into the v’th column, then

Ag ~uE B/+I.

Proof. That u supports a loop guarantees that B’ + I is the adjacency matrix of a
graph B = EB/+1.

The vertex u; emits exactly one edge in FE if and only if it emits exactly one edge
in B/, fori=1,...,n—1. So by collapsing all regular vertices u;, : =1,2,...,n—1
emitting exactly one edge both in F and in E’, we get two new graphs E; ~yg E
and E] ~yp E'. In Ej, there is a path from u to v through vertices that all emit
at least two edges. Moreover, Bg; is obtained from Bg, by adding the u’th column
into the v’th column. Therefore, we may without loss of generality assume that all
the vertices u;, 1 = 0,1,2,...,n — 1 emit at least two edges.

By repeated applications of Lemma [3.1] we first add the u,_;’th column into the
Uy, 'th column of Bg, which we can since there is an edge from u,_1 to u,. Then
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we add the u,,_s’th column into the u,’th column, which we can since there now is
an edge from u,_o to u,. Continuing this way, we end up with a matrix C' which
is formed from Bg by adding all the columns w;, for i = 0,1,2,...,n — 1, into the
the u,,’th column. We have that Ag ~yg C + 1.

Now consider the matrix B’ = Bg:. By repeated applications of Lemma (3.1} we
first add the u,,_1’th column into the u,,’th column of B’ = By, which we can since
there is an edge from u,,_1 to u,. Then we add the u,_5’th column into the wu,’th
column, which we can since there now is an edge from wu,,_s to u,. Continuing this
way, we end up with a matrix D which is formed from B’ = Bg/ by adding all

the columns u;, for i = 1,2,...,n — 1, into the the u,’th column. We have that
B +1=Ag ~yg D+ 1.
But it is clear from the construction that C' = D. O

Remark 3.3. Similar to how we used Lemma[3-1] in the above proof, we can use
Proposition [3.3 “backwards” to subtract columns in Bg as long as the addition that
undoes the subtraction would be legal.

We now turn to row additions.

Lemma 3.4. Let E = (E°, E',rg,sg) be a graph. Let u,v € E° be distinct
vertices. Suppose the (v,u)’th entry of By is nonzero (i.e., there is an edge from v
to u), and that u is a reqular vertex. If B’ is the matriz formed from Bg by adding
the u’th row into the v’th row, then

Ag ~vp B +1.

Proof. Let E' = Ep:y; denote the graph with adjacency matrix B’ + I.

First assume that u only receives one edge in E (which necessarily is the edge
from v). Then u is a regular vertex not supporting a loop, so we can collapse it
obtaining a graph E”. Note that the vertex u is a regular source in E’, so we may
remove it. It is clear that the resulting graph is exactly E”.

Now assume instead that u receives at least two edges. Fix an edge f from v to
u. Form a graph G from E by removing f but adding for each edge e € s3'(u) an
edge € with sg(€) = v and rg(e) = re(e). We claim that E ~pp G. Arguing as in
the proof of Lemma we see that this is equivalent to proving Ag ~yg B’ + 1.

Partition 7' (u) as & = {f} and & = r'(v) \ {f}. By our assumptions on
u, & is nonempty, and u is regular, so we can use Move (I). Doing so replaces u
with two new vertices, u; and us. The vertex u; only receives one edge, and that
edge comes from v, the vertex us receives the edges u received except f. Since uq
is regular and not the base of a loop we can collapse it. The resulting graph is G
(after we relabel ug as u), so G ~yp E. O

We can also add rows along a path of vertices.

Proposition 3.5. Let E = (E°, E',rg, sg) be a graph and let u,v € E° be distinct
vertices with a path from v to u going through distinct vertices v = vy, v1, Vo, ...,V =
u (labelled so there is an edge from v; to viyq fori =0,1,2,...,n—1). Suppos
further that the vertex u is reqular and supports at least one loop. If B’ is the matriz
formed from Bg by adding the uw’th row into the v’th row, then

Ag ~ye B’ + 1.

Proof. That u supports a loop guarantees that B’ + I is the adjacency matrix of a
graph E = EB/+1.

First we prove the special case where all the vertices vy, ..., v, are regular. By
repeated applications of Lemma [3.4] we first add the v1’st row into the vg’th row
of Bg, which we can since there is an edge from vy to v; and vy is regular. Then
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we add the vo'nd row into the vy’th row, which we can since there now is an edge
from vy to vy and wve is regular. Continuing this way, we end up with a matrix C
which is formed from Bg by adding all the rows v;, for ¢ = 1,2,...,n, into the the
vo’'th column. We have that Ag ~ye C + 1.

Now consider the matrix B’ = Bg:. By repeated applications of Lemma [3.4] we
first add the v;’st row into the vy’th row of B’ = B/, which we can since there
is an edge from vy to v1. Then we add the vo'nd row into the vy’th row, which
we can since there now is an edge from vy to vy. Continuing this way, we end up
with a matrix D which is formed from B’ = Bg by adding all the rows v;, for
1=1,2,...,n— 1, into the the vy’th row. We have that B’ +1 = Ag: ~yp D + 1.
But it is clear from the construction that C' = D.

Now we prove that the general case when only u is assumed to be regular can be
reduced to the case where v, ..., v, are regular. Choose a path ege; - --e,_1 going
through the distinct vertices vy, ...,v,. For each singular vertex v;, i = 1,...,n—1,
we outsplit according to the partition £ = {e;} and £ = s,'(v;) and call the
corresponding vertices v} and vZ, respectively. Denote the split graph by Ej, and
denote the vertices v;, ¢ = 1,...,n — 1 that were not split by vil. Note that we now
have a path from v to u through distinct regular vertices. Note also that since all
vertices along the path are distinct, what happens to the v;’th entry of row u and
v is that it gets doubled for each vertex u; that gets split and stays unchanged for
the vertices u; = uz1 € EY that are regular. Let E’ be the graph Ep/t1, and let
E} be the graph constructed using exactly the same outsplittings as in the graph
above. Now it is clear that the graph we get from F; by adding row w into row v
is exactly Ef. Thus the general case now follows from the above. U

Remark 3.6. We can also use Proposition[3.5 “backwards” to subtract rows in Bg

(cf. Remark[3.3).

4. CUNTZ SPLICE IMPLIES STABLE ISOMORPHISM

In this section, we show that the Cuntz splice gives stably isomorphic graph
C*-algebras. We first set up some notation.

Notation 4.1. Let E, and E,. denote the graphs:
€1 €4
() e ()
olt - oV2

€3

E, =

fio fr fa

f1
f f [
~— ~— ~—

fs fs f3

The graph E, is what we attach when we Cuntz splice. If we instead attach the
graph E,., we have Cuntz spliced twice.

Let E = (EY, E',rg, sg) be a graph and let u be a vertex of E. Then E, _ can
be described as follows (up to canonical isomorphism):

E, _=E°UE]
E,_=E"UE!U{d,d}
with rg, _|p1 =rg, sp, _|pr = sE, 7, _|E! = TE., 5B, _|E! = SE,, and
sp,_(di1) =u re, _(d1) =v1

SE., - (dg) =1 rEu,, (dg) = U.
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Moreover, E, __ can be described as follows (up to canonical isomorphism):

E) __=EUEY,
E, _=E'UE] U{dy,dy}
with rg, __|p1 =7g, sp, __|gr = 8B, 7B, __|E1, = TE.., SE.__|E!, = SE,., and
SEu,,, (dl) =Uu TEu,,,(dl) = w1
sp, __(d2) = w; re, __(d2) = u.

Example 4.2. Consider the graph

Then
€1 €4
() e ()
Eu = oVl /e-? V2
, <2
di >d2
Ce
and
fio fr f1 fa
(Y (Y0 () ()
Ey__ = o fo o eWs o oWl f, e
) ~— ~— ~

da
CeD
The strategy for obtaining the result is as follows. By [Rer95|, the graph C*-al-
gebras C*(E,) and C*(E,,) are isomorphic. We first show in Proposition that
C*(E.) and C*(E,.) are still isomorphic if we do not enforce the summation re-
lation at v; and w; respectively, by appealing to general classification results. In
fact, we need to establish (Lemma that they are isomorphic in a way send-
ing prescribed elements of the nonstable K-theory to other prescribed elements.
Using this, we prove in Theorem [£.5] by use of Kirchberg’s Embedding Theorem
that Cuntz splicing once and twice yields isomorphic graph C*-algebras. Finally,
we establish in Proposition [£.7] that the graph obtained by Cuntz splicing twice is
move equivalent to the original, and the desired conclusion follows.

Proposition 4.3. The relative graph C*-algebras (in the sense of Muhly-Tomforde
IMT04]) C*(Ey, {va}) and C* (B, {ws, w3, ws}) are isomorphic.

Proof. Following [MT04, Definition 3.6] we define a graph

€1 €4
() e ()
—
oVl oV2

(E) (v} =
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Then by [MT04, Theorem 3.7] we have that C*(E., {va}) = C*((Ex){y,}). Similarly
we define a graph

fio0 fz fa

f1
DENRGENGERS

_ wy w3 w1 wo
(E**){wQ’w‘g’w‘l} - o $§/. f5 ° f3 [ ]

~— ~—
\\\f{ l /
fs f3

o,
/U.)l

Using [MT04, Theorem 3.7] again, we have that C*(E,., {ws, w3, w4}) is isomorphic
to C*((E**){wz,ws,w4})'

Both the graphs (E.){v,} and (Exx) fuw,,ws,w,) satisfy Condition (K). Using the
well developed theory of ideal structure and K-theory for graph C*-algebras, we see
that both have exactly one nontrivial ideal, that this ideal is the compact operators,
and that their six-term exact sequences are

Z{v]) —=Z——>0 Z{w)) —=7Z —0
0 0<—20 0<—0<~—0

Furthermore, in Ko(C*((Ex«){v,))) we have

[p'Ul] = _[pv{] = [pvz],
and in Ko(C* ((Bsx) {ws,ws,w})) We have

[pwl] = _[pwi] = [pr},
[Pws] = 0 = [pu,]-

Therefore the class of the unit is —[p,/] and —[p,], respectively. It now follows
from [BD96, Theorem 2| (see also [ERR13, Corollary 4.20]) that C*((E.){y,}) =
C*((Eux) {ws,ws,wa}y) and hence that C*(Ey, {va}) = C*(E.., {w2, w3, ws}). O

We also need a technical result about the projections in & = C*(E., {va}).

Lemma 4.4. Let £ = C*(E,,{va2}) and choose an isomorphism between & and
C* (B, {wa, w3, wa}) according to the previous proposition. Let Dy, Dyys Seys Seqs
Sess Ses be the canonical generators of C*(Ey, {va}) = &€ and let pw, , Puwss Pwss Prwgs
Sf1s Sy, -5 Sfi, denote the image of the canonical generators of C* (E,., {w2, w3, wa})
in € under the chosen isomorphism. Then
5615:1 + 5825:2 ~ Sflsj‘l + 5f25}2 + SfE\S;;{)’
Dvy — (861521 + 832822) ~ Pwy — (sfls;l +Sf25322 + sfi’)s;:s) ’
Le = Poy = Pvy ™~ Pwsy + Puwg + Puwy = L& — Puy
in £, where ~ denotes Murray-von Neumann equivalence. Thus there exists a uni-
tary zg in € such that
20 (Sey 55, + SepSi,) 26 = Sf 8t T SpSt, 81 8T
20 (pv1 - (8615:1 + 862‘9:2>) ZS = Pw; — (Sflsjﬁ + szs}z + sts}s) ’
20Pvq ZS = Pw;
20Pvs ZS = Pws, + ng + Pwa -

Proof. By [AMPOQT, Corollary 7.2], row-finite graph C*-algebras have stable weak
cancellation, so by [MT04, Theorem 3.7], £ has stable weak cancellation. Hence



10 SOREN EILERS, GUNNAR RESTORFF, EFREN RUIZ, AND ADAM P. W. SORENSEN

any two projections in £ are Murray-von Neumann equivalent if they generate the
same ideal and have the same K-theory class.

As in the proof of Proposition we will use [MT04, Theorem 3.7] to realize
our relative graph C*-algebras as graph C*-algebras of the graphs (E.)y,,; and
(Esx) {ws,ws,ws}- Denote the image of the vertex projections of C*((Ex){y,}) in-
side & under this isomorphism by ¢y, , qu,, ¢, and denote the image of the vertex
projections of (Eux) fuw,,ws,w,} inside & under the isomorphisms (Eux) {ws,ws,w,} =
C*(Eus, {wa, w3, wa}) = € DY Guy s Guys Gus» Gua» Gy - Using the description of the
isomorphism in [MT04, Theorem 3.7], we see that we need to show that q,, ~ qu,,
v, ~ Qu and qu, ~ qu, + Gug + Gu, -

Since (E*)?UZ} satisfies Condition (K) and the smallest hereditary and saturated
subset containing vy is all of (E*)?vz} we have that ¢,, is a full projection ([BHRS02,
Theorem 4.4]). Similarly qu,, ¢v, and qu, + qus + Guw, are full. In Ky(E) we have,
using our calculations from the proof of Proposition [4.3] that

[QUJ = [1] = [le]a
[90.] = [1] = [quw,] = [qwo] + [quws] + [qu.]-
So by stable weak cancellation g, ~ qu, and gy, ~ Gu, + Qus + Guw, -

Both ¢,; and ¢, generate the only nontrivial ideal J of & (IBHRS02, Theo-
rem 4.4]). Since that ideal is isomorphic to the compact operators and both [g,.]
and [gy, | are positive generators of K¢(J) = Ko(K) = Z, they must both represent
the same class in Ko(J), and thus also in Ko(E). Therefore q,; ~ gy -

Let u, v and w be partial isometries realizing the Murray-von Neumann equiva-
lences. Then zgp = u + v + w is a unitary that satisfies the required conditions. [

Theorem 4.5. Let E be a graph and let u be a vertex of E. Then C*(E, _) =
C*(Ey,—_).

Proof. As above, we let £ denote the C*-algebra C*(E,,{v2}), and we choose
an isomorphism between £ and C*(E.,., {ws, ws,ws}), which exists according to
Proposition [£.3]

Since C*(E,,_) and &£ are separable, nuclear C*-algebras, by the Kirchberg Em-
bedding Theorem [KP00], there exists an injective *-homomorphism

C*(Eu’f) ®E — Os.

We will suppress this embedding in our notation.

In Os, we denote the vertex projections and the partial isometries coming from
C*(Ey,-) by py,v € E,&_ and s.,e € E. | respectively, and we denote the ver-
tex projections and the partial isometries coming from & = C*(E,, {v2}) by p1, p2
and s1, So, S3, S4, respectively. Since we are dealing with an embedding, it follows
from Szymarnski’s Generalized Cuntz-Krieger Uniqueness Theorem ([Szy02, Theo-
rem 1.2]) that for any vertex-simple cycle ayaq - - - oy, in Fy — without any exit, we
have that the spectrum of s,, Sq, - - - Sa,, contains the entire unit circle.

We will define a new Cuntz-Krieger £, _-family. We let

—
)

Qv = Do for each v € E°,
q’Ul = p17
Quy = P2-

Since any two nonzero projections in Oy are Murray-von Neumann equivalent, we
can choose partial isometries x1, x2 € Oy such that

* * *
1T = Sdlsdl 11 = P1

Toxy = p1 — (8187 + S253) T3Ly = Py
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We let
te = Se for each e € E*,
te, = S; for each ¢t =1,2,3,4,
ta, = x1,
td2 = X2.

By construction {qv ‘ v E EO)_} is a set of orthogonal projections, and {te ’ ee€ E}L_}
a set of partial isometries. Furthermore, by choice of {t. | e # d1,ds} the relations
are clearly satisfied at all vertices other than v; and uw. The choice of 1, x5 ensures
that the relations hold at w and v; as well. Hence {g,,t.} does indeed form a
Cuntz-Krieger F, _-family. Denote this family by S.

Using the universal property of graph C*-algebras, we get a *-homomorphism
from C*(E, _) onto C*(S) C Oy. Let ajaz - - - o, be a vertex-simple cycle in E,, _
without any exit. Since u is where the Cuntz splice is glued on, no vertex-simple
cycle without any exit uses edges connected to u,v; or vy. Hence to,ta, - ta, =
SaySasy S, and so its spectrum contains the entire unit circle. It now follows
from [Szy02, Theorem 1.2| that the *-homomorphism from C*(E, _) to C*(S) is
in fact a *-isomorphism.

Let 2y be the C*-algebra generated by {pv ‘ v E EO}, and let 2 be the subalge-
bra of O, generated by {pv ’ v E EO} and £. Note that A =, D E.

Let us denote by {Twi,yfj | 1=1,2,3,4,5=1,2,..., 10} the image of the canon-
ical generators of C*(E,., {ws, w3, ws}) in Oz under the chosen isomorphism be-
tween C* (B, {ws, w3, ws}) and £ composed with the embedding into Os.

By Lemma [£.4] certain projections in £ are Murray-von Neumann equivalent,
so choose a unitary zo € £ according to this lemma, and set z = 20 + >, cgo P €
M(20). Clearly z is a unitary in M(2l). Since the approximate identity of 2 given

by
n
{zpvk . 15} |
k=1 neN

where {p, } v € E°} = {py,,Pu,, ...}, is an approximate identity of C*(S), we
have a canonical unital *-homomorphism from M () to M(C*(S)) which, when
restricted to 2A, gives the embedding of 2 into C*(S). So we can consider z as
a unitary in M(C*(S)). Hence, for all x € C*(S), we have that za and xz are
elements of C*(S). By construction of z, we have that

2qy = quz = ¢y, for all v e EY,
2te =tez =t,, forall e € B!,
2 (terts, +tests,) 25 = Yn U T URYS + Us Y,
2 (o = (terts, +teats,)) 25 = 1wy = (UnYj, + YRYs +YnY%)
2Qu, 2 = Tw,,

2Quy 2" = Twy + Tawg + Ty
We will now define a Cuntz-Krieger E,, __-family in Oy. We let

P, =q, = py for each v € E°,
Py, = ru, for each i = 1,2, 3, 4.
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Moreover, we let

Se =te = S, for each e € E*,
St =y, for each i =1,2,...,10,
Sa, = #tg, 2" = zz12%,
S, = 2ta, 2" = zxez™.
Denote this family by 7.

By construction {PU | v E Eg,,,} is a set of orthogonal projections, and {Se ‘ ec E}hff}
a set of partial isometries satisfying

S:8Se = 8¢8¢ = Dr(e)s SeS; = sese,
S5k = Y5 ur =740 S1.S%, = Yr.Y5,
S84, = Tw, Sa, 53, = 54,53,
S, Sdy = Dus Say S5, = 1w — (WnYF T YRYE Y YRYE)

for all e € E' and i = 1,2,...,10. From this, it is clear that 7 will satisfy
the Cuntz-Krieger relations at all vertices in E°. Similarly, we see that since
{rwt,yfj | 1=1,2,3,4,7=1,2,..., 10} is a Cuntz-Krieger (B, {wa, ws, w4 })-family,
T will satisfy the relations at the vertices ws, w3, wy. It only remains to check the
summation relation at wy, for that we compute

Z SES: :Sfls;l +Sf2S}k'z +sts;5+sd2522

58y, - (e)=w1 =Ynyh FYRYS YR e — (YR Y YR YY)
= Tw, = Rul .

Hence T is a Cuntz-Krieger £, __-family.

The universal property of C*(E,, __) provides a surjective *~-homomorphism from
C*(E,,—_) to C*(T) € Oz. Let agaz---a, be a vertex-simple cycle in E, __
without any exit. We see that all the edges a; must be in E', and hence we have

Sa15a2 "'Sozn :taltag "'tan = Sq,5a5 " Sa

n

and so its spectrum contains the entire unit circle. It now follows from [Szy02]
Theorem 1.2] that C*(E, __) is isomorphic to C*(T).

Recall that z € M(C*(S)). Therefore, T C C*(S) since A C C*(S) and since
Ty s, € E C CX(S), for i = 1,2,3,4, j = 1,2,...,10. So C*(T) C C*(S).

Since the approximate identity of 2 given by

{zpvk . 15} ,
k=1 neN

where {p, ‘ v € E°} = {pu,,Pvs, - - - }, is an approximate identity of C*(T), we get
that for all x € C*(T), zxz* and z*xz are elements of C*(7). But since 2 is
also contained in C*(7) and & C C*(T), we have that S € C*(T), and hence
C*(8) C C*(T). Therefore

C*(By_) 22 C*(S) = C(T) 2 C* (B ). O

The next two results will show that £ ~yg E, __ for a row-finite graph £ and
a vertex v € E° which supports two distinct return paths. This will be enough to
prove our main result since by [Benlb, Lemma 5.1], there exists a row-finite graph
F and a vertex v supporting two distinct return paths such that C*(E, _) ® K =
C*(F,-)®Kand C*(E) @ K= C*(F) ® K.
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Proposition 4.6. Let E be a row-finite graph and let u be a vertexr which supports
two distinct return paths. Then there exists a row-finite graph F and a vertezxv € F°
which supports two distinct loops such that E ~yg F and By —_ ~yp Fy ——.

Proof. Throughout the proof, we will freely use the following fact: Let G be a graph
and let w be a vertex and let w’ # w be a regular vertex that does not support
a loop. Let G’ be the resulting graph after collapsing w’. Then G ~pg G’ and
Gu,—— ~ue Gy .

Suppose u € E° supports two loops. Then set £ = F and v = u. Suppose u
does not support two loops. Then there exists a return path pu = ejes - - - e, with
n > 2. Starting at r(ey), if r(e1) does not support a loop, we collapse the vertex
r(e1). Doing this will result in reducing the length on p. Note that we may have
also added a loop at u. Continuing this procedure, we have obtained a graph E’
with u in (E')Y such that E ~yg E', Ey—— ~uE Eu __, and either u supports
two loops or u supports a return path v=fifs.. fm with m > 2, with r(f1)
supporting a loop.

If u supports two loops, set F' = E’ and v = u. Suppose u supports a return path
v=fifo...fm withm > 2 with r(f;) supporting a loop. Then by Proposition
we add the 7(f1)’th column to the u’th column twice, to get a graph F with u € F°
supporting two loops such that F' ~j;r E’. Note that we may perform the same
matrix operations to Bg: ~ and get that E;ﬁf ~mE Fu,——. Set v = u.

We have just obtained the desired graph F' and the desired vertex v € F© since
ENMEE NMEFand Eu —__ ~ME E’ NMEF7__. O

U, ——

We now show that performing the Cuntz splice twice is a legal move for a row-
finite graph.

Proposition 4.7. Let E be a row-finite graph and let v be a verter that supports
at least two distinct return paths. Then E ~yg F, __.

Proof. According to Proposition [4.6] we can assume that E satisfies the conditions
of that proposition — so we assume that v is a regular vertex that supports at least
two loops.

For a given matrix size N € NU{oo} and 4, j € {1,2,..., N}, we let E; ;) denote
the N x N matrix that is equal to the identity matrix everywhere except for the
(i,7)'th entry, that is 1. If B is a N x N matrix, then F(; ;) B is the matrix obtained
from B by adding j’th row into the i’th row, and BE(, ;) is the matrix obtained
from B by adding ¢’th column into the j’th column. Using E( i instead will yield
subtraction. In what follows we will make extensive use of the results from Section
[l but we do so implicitly since we feel it will only muddle the exposition if we add
all the references in.

Note that Bg, __ can be written as

010 0 0 0
1010 0 0
010 1 10

B —|\0 010 0 0
0010
00 0 0




14 SOREN EILERS, GUNNAR RESTORFF, EFREN RUIZ, AND ADAM P. W. SORENSEN

Now let BQ = E(372)Bl and B3 = BQE(;ll). Then B]_ +1 ~ME Bg—i-l ~ME Bg—|—[
We have that

-1 10 0 00
1 010 00
0 1 11 10

By=|\0 010 00
0010
0000 By

The 1st vertex in Ep,4; does not support a loop, so it can be collapsed yielding

0 0
10
0 0

By =

OO O ==
O = = =
OO O = O

Be

with By + I ~yg Bs + I. Now we let By = E(—Q}B)B4, Bs = Eu1Bs, Br =

E@}B)E@}g)BG, Bs = E(1,9B7 and By = BSE(;}3). We then have By + I ~um

Bs+1~yg Bs+1~yg By +1 ~pyp Bs+1 ~pyp By + 1. We have that

2 1 0 1 0
1 0 1 1 0
0 1 -1 0 0
By = 100
0 0 0

In Ep, 4 the 3rd vertex does not support a loop, so it can be collapsed to yield

() (1)

0 0 By

Big =

with By + I ~yE Bio + 1.

Now we look at the graph E again, and and let By = (b;;). Since the vertex
v (number 1) has at least two loops, we have b;; > 1. Now we can insplit by
partitioning r~!(v) into two sets, one with a single set consisting of a loop based
at v, and the other the rest. In the resulting graph, v is split into two vertices v*
and v2, and let E’ denote the rest of the graph. The vertex v! has the same edges
in and out of E’ as v had, but it has only b;; loops. There is one edge from !
to v2 and v? has one loop and there are bi; edges from v? to v! as well as all the
same edges going from v? into E’ as originally from v. Use the inverse collapse
move to add a new vertex u to the middle of the edge from v' to v? and call the
resulting graph F. Label the vertices such that v, u and v! are the 1st, 2nd and
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0 0 b1 bz -
1 -1 0 o ---

Br=| (0
0

3rd vertices, then Bp is:

1
0 B

where B is B except for on the (1, 1)’th entry, which is b;;—1. Note that b;;—1 > 0,
so that there is still a loop based at the 3rd vertex. Also, note that since F
is a row-finite graph, the bix’s are eventually zero. This is important since it

allows us to do the following matrix manipulations. Let Co = BpE(12)E 1 92),
Cy = E(19)Ca, Ci = E('Cy, C5 = CaE(y3) and Cg = C5E(1 ). We have that

Ci4+I~pyg Co+ 1 ~yp C3+ 1 ~yp Co+ 1 ~pyg Cs + 1 ~yE Ce+ 1. The matrix

Cs
1 1 1 0 --
(3 (o)
0 1

00 By

Ce =

Therefore, Cy is in fact equivalent to Byg upon relabeling of the first two vertices,
thus it follows, that £ ~yp E, —_. O

Thus we have the following fundamental result.

Theorem 4.8. Let E be a graph and let v be a vertex that supports at least two
distinct return paths. Then C*(E) @ K= C*(E, _) ® K.

Proof. By [Benlb, Lemma 5.1|, we may assume that F is a graph with no singular
vertices, in particular, F is a row-finite graph. By Theorem C*(Ey-)
C*(Ey,~ ) and hence, C*(E,, - )®K = C*(E, __)®K. By Proposition[L.7} C*(E)
K= C*(Ey--)®K. Thus, C*(E)@ K= C*(E, ) @ K.

O® IR
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