UiO © Department of Mathematics
University of Oslo

Comparison of two lower bounds for availabilities in
multistate monotone systems
-an established one and a hew one

Tobias Abrahamsen
Master’s Thesis, Autumn 2017

AL o AR O
Zy = = = S
4 AT G
X 3 = = = &
) | = :
§
N i
74|
QY
i \
i
]
S > 2 ;
i ¥
4‘.
A . = < a 7
J < \
i T
) -
i ~ 3 8
) (L]
|
N
8, i X S
R "
o K
g\ A\ s
A za’
2 SN e
S
i b7
N D Z 837 i
1
i %
: e g
i
oo
;s
]
~ /

This master’s thesis is submitted under the master’s programme Modelling
and Data Analysis, with programme option Finance, Insurance and Risk, at
the Department of Mathematics, University of Oslo. The scope of the thesis
is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group FEg, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842-1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

The lower bounds are used to determine availabilities of a system,
and are used in many different companies.
Such is for example a company that supplies water to a city. The com-
pany would most likely want to know how reliable the water system
is. Does the water system deliver minimum 40% or more of its water
capacity to the city? It is important to have a lower bound that is
close to the real value.
I will therefore in this paper show, and explain, what a Multistate
Monotone System (MMS) is, and compare two lower bounds. The
bounds are a new lower bound and an established lower bound. T will
also present the theorems linked to the bounds, and establish some
points to make computer implementation easier. I am also going to
show something that I have figured out, a new theorem, and an algo-
rithm which makes it easier to identify minimal cut vectors.
Part of the computer code will be discussed and explained, where some
of the algorithms will be shown as Pseudocode. The computer simu-
lation gives data that will be shown in plots and used to compare the
two bounds. The comparison of the two bounds shows that the new
bound is better than the established bound.

Acknowledgements

I would like to thank my supervisor Arne Bang Huseby for all the
times I have been to his office to get help and to discuss the program-
ming. I have also appreciated all the nice conversations we have had.
I would also like to thank Bent Natvig for the support, proofreading
and for all the help with the theoretical part. Thanks to Jerund Gase-
myr for deep questions that made me think about parts of the new
algorithm that I have figured out.

I would like to thank my partner, family and friends because they
have been there and given support when I have needed it. I would also
like to give an extra thanks to my partner, who has let me work far
out and in the early morning hours the times I have had to finish up
my thoughts. A big thank you to my fellow students, especially Jonas
Christensen for all the deep conversations and the friendships we have
got over the years at the University of Oslo.

Contents

1 Notation

1.1 Introduction
1.2 Flownetwork
1.3 Established lower bounds
1.4 New lower bounds
1.5 Why lower bounds?

Early assumptions and attempts
2.1 Some practical notational assumptions
2.2 Identifying minimal cut vectors

Computer code
3.1 Computer language and starting points
3.2 Some practical information about the simulation
3.3 Componentclass
34 Cutsetclass
3.5 Systemclass.
3.6 Find vectorclass
3.6.1 Algorithm for Minimal cut Vectors
3.6.2 Algorithm for Minimal path Vectors
3.7 Calculate class
3.7.1 Algorithm for the new bound here called I;

Results
4.1 Check of the program
4.2 The different systems
4.3 System with 8 components L.
4.3.1 Plots for the different bounds
4.3.2 Plotsonestateatatime.
4.3.3 Plots of the differences
4.3.4 Summary
4.4 System with 11 components
4.4.1 Plots for the different bounds
4.4.2 Plotsonestateatatime.
4.4.3 Plots of the differences
4.4.4 Summary
4.5 System with 13 components
4.5.1 Plots for the different bounds
4.5.2 Plotsonestateatatime.
4.5.3 Plots of the differences
4.5.4 Summary
4.6 System with 16 components
4.6.1 Plots for the different bounds
4.6.2 Plotsonestateatatime.
4.6.3 Plots of the differences
4.6.4 Summary
4.7 Times
4.8 Conclusion.

12
12
13

17
17
17
17
18
18
18
18
19
19
20

5 Further-studies

6 Full computer code
6.1 Main class . . .

6.2 Find minimal cut setsclass
6.3 Default simulator class
6.4 Phiclass (System class)

6.5 Component class

6.6 Cutorpathsetclass

6.7 Minimal path or

minimal cut vector class

6.8 Find minimal path and minimal cut vectors class

6.9 Calculate class

Bibliography

49

50
50
67
74
7
81
85
87
88
94

100

1 Notation

1.1 Introduction

In multistate reliability theory we consider Multistate Monotone Systems
(MMS). An MMS (C,¢) consists of the component set C = {1,2,...,n} and
a structure function ¢. The states of component i is S; = {0,1, ..., M;} for
all i € C, while the states of the system is S = {0, 1, ..., M'}. Here n and M
are positive integers. The state of component ¢ at time t is denoted by z;(t),
and it belongs to a subset S; of S, which is assumed in Natvig (2011) [5] to
contain 0 and M. We will allow M; = max(S;) to be smaller than the M. If
we let M = M; = 1, all the results will cover the binary case.

The system state is supposed to be a non-decreasing function of the compo-
nent states, and is given by ¢(X(t)), where X (¢) = (X1(t), ..., Xu(t)). Let
us assume that ¢(0,...,0) = 0 and ¢(My, ..., M,,) = M. Let us consider the
time points t in some subset 7(I) of an interval I of interest, with 7(I) being
finite and 7(I) = I to being typical special cases. I will typically be chosen
for operational considerations.

An MMS is a generalization of the concept of a Binary Monotone System
(BMS). This will give us a more refined description of a system than a BMS.
This can often be necessary in the cases where we need to handle more com-
plex systems that can perform at different levels. The systems could e.g. be
a water transportation system, or electrical grid, where the probabilities for
the system performing above certain given levels at any given time interval
I are of interest. In some applications there may be natural to let .S and .5;
consist of arbitrary real numbers. In general, the elements of S and S; will
be representing an ordering of meaningful performance levels.

The following is needed .

(‘Z‘,X) = (xl, ey Li—1,y 7y Ti+1, ,wn)

y < x means y; < x; for i =1,...,n, and y; < x; for some 1.
We will also need the following definitions from Natvig(2011) [5].

Definition 1.1. Let ¢ be the structure function of a BMS. A vector x is
said to be a path vector iff p(x) = 1. The corresponding path set is Ci(x). A
minimal path vector is a path vector x such that ¢(y) =0 for all y < « The
corresponding minimal path is C1(x).

Definition 1.2. Let ¢ be the structure function of an MMS and let j €
{1,..., M}. A vector x is said to be a path vector to level j iff ¢(x) > j. The
corresponding path set and binary type path set are respectively given by

Cl(@) = {ilei = 1} and € py(a) = {il; = j}

A minimal path vector to level j is a path vector x such that ¢(y) < j for all
y < x. The corresponding path set and binary type path set are also said to
be minimal.

Definition 1.3. Let ¢ be the structure function of a BMS. A vector x is
said to be a cut vector iff ¢(x) = 0. The corresponding cut set is Co(x). A
minimal cut vector is a cut vector x such that ¢(y) = 1 for all y > x The
corresponding minimal cut is Co(x).

Definition 1.4. Let ¢ be the structure function of an MMS and let j €
{1,....; M}. A vector x is said to be a cut vector to level j iff p(x) < j. The
corresponding cut set and binary type cut set are respectively given by

DJ(x) = {ilz; < M} and D} po(x) = {il; < j}

A minimal cut vector to level j is a cut vector & such that ¢(y) > j for all
y > x. The corresponding cut set and binary type cut set are also said to be
minimal.

Let us illustrate this:

Let C ={1,2},5; =5 =1{0,1,2,3} and
¢(x) = max(z1, z2)
Then this system consists of two components that are in a parallel system.

1

2

Figure 1: Example of a parallel system

The performance processes to the components {X;(t),t € 7(I)}, i = 1,2,
are random, possibly stochastically dependent processes that are involving
repair at fixed or random points of time. The processes are assumed to be
continuous from the right.

Throughout this paper we will consider methods based on the component
availabilities and unavailabilities.

pg = P(X;(t) >jforallter(I))=P(mi(IIl) Xi(t) > 4),
ter
1=]_’ ,,,’n,j = O,...,M

¢ = P(X;(t) < jforall t € 7(I)) = P(min Xi(t) <),
ter

i=1,.,m,j=0,..,M

Here,lzp?Zp}Z---ZpiMi >0, andpg:pg_l ifj—l%Si,pg:Oif
M; < j,j=10,...,M}. We denote by Py{p]}i=1,.n the vector

j=1,..,M
consisting of all the availabilities for all the components. The determina-
tion of p] can be based on expert opinions, test data or operational data, or
on a combination of these information sources.

The components’ availabilities over an interval I do not determine the cor-
responding system availabilities

P, = P(¢(X(t)) > j forall t € 7(I)),j = 1,.... M

The components’ unavailabilities over an interval I do not determine the cor-
responding system unavailabilities

g, = P(¢(X(t)) < j forall t € 7(I)),j = 1,.., M
j=1,..M

These system availabilities can not be calculated, even in the case of in-
dependent components, and we have to resort to bounds.

Basic bounds are based on the sets of minimal path vectors and minimal
cut vectors to level j.

1.2 Flow network

An MMS(C, ¢) is said to be a generalized flow network (GF-system), if ¢
can be written in the following way:

where K7, ..., K, are non-empty subsets of C, the set of components. Let
us assume that the subsets Kj, ..., Ky, are distinct incomparable sets. That
is, no set is contained in any of the other sets, i.e. K; € K for all ¢ # .
The sets K7, ..., Ky, are referred to as the minimal flow cut sets of the sys-
tem. Note that if Ki,..., K, are the minimal flow cut sets in a directed
two-terminal flow network with edge set C, and ¢ denotes the maximal flow
that can be sent through the network from one terminal to another, then
(C, ¢) is called a flow network. A generalized flow network is a more general
concept since we do not require that the system can be represented as a
directed two-terminal flow network.

As an example think that we will send water through 2 different systems.
One of them is an directed network and the other one is an undirected net-
work. If you look at the figures 1 and 2 you can see that the directed network
got directions on which way the component can transport water. The undi-
rected networks’ components can transport water in any directions.

Figure 2: Example of an directed network Figure 3: Example of an undirected network

So here we will get the following minimal cut sets for a directed network:
{17 27 3}7 {17 2’ 4’ 7}? {]" 67 3}7 {17 67 7}? {5? 27 3}7 {57 2? 4? 7}’ {57 67 3}7
{5,6,7}

For the undirected network we will get the following minimal cut sets:
{1,2,3}, {1,2,4,7}, {1,4,6,3}, {1,6,7}, {5,2,3}, {5,2,4,7},
{5,4,6,3}, {5,6,7}

The minimal cut sets are almost identical, but there are 2 large differences:
In the directed network where you have the minimal cut sets {1,6,3} and
{5,6,3} you must in the undirected system add the component 4. This is
done because there are no direction limits in the undirected system. So it
is important to use the right type of system for analysis. If we make the
mistake to use an undirected network to analyze a system that is a directed
network, an analysis will in this case predict a greater chance of performing
at a higher state than what the system actually does. Throughout this thesis
we will only consider directed network systems.

1.3 Established lower bounds

We are going to go through bounds from Natvig (2011) [5]. Definition 1.2
and 1.4 are used here. We will also need the following definition:

For p; € [0,1] we have [[',pi=1-[["(1—p)

With these definitions in our toolbox, we can now look at theorem 2.27
and theorem 2.28 from Natvig(2011) [5].

Theorem 2.27 Natvig(2011) [5] ‘ ' 4
Let (C, ¢) be an MMS. Furthermore, for j € {1,..., M} lety] = (yi, .-, ¥) k =
1... ,nfﬁ be its minimal path vectors to level j and z|, = (2],,...,2.,),k =

1... ,mé) be its minimal cut vectors to level j and
Cé(yi),k‘ = 1...,nfb and Dé)(zi),k = 1...,mf;S
the corresponding minimal path and cut sets to level j. Let

ty) = max Pl0ey (Xi2up)] 4= max PN (Xi < 2]

eI (o
1<k<n] 1<k<m), €Dy (=)

Then

Furthermore, let

Theorem 2.28 Natvig(2011) [5]

Let (C, cb) be an MMS where X, ..., X, are associated. Furthermore, for
jedl,...,M} let y, = (ylk,...,ynk) k=1.] be its minimal path
vectors to level j and zfg =

vectors to level 7 and

(z{k,...,zik),k = 1...,mqs be its minimal cut

Cé(yi),k:l...,n‘é and be(z{c),kzln"mé

the corresponding minimal path and cut sets to level j. Let

o =1] P(Uie i () (Xi >) Ly =11 P(Uieoiyy (Xi < i)

Furthermore, let

CI(Py) =

i ,’:]%

H i) =11 I «"
et -

If Xy,..., X,, are independent, then

0 =07 (Py) < pl, <1-059(Qy) =117

We will in the chapter "Early assumption and attempts" go through these
two theorem and make some practical changes which makes it easier for us
to find the following lower bound:

B (Py) = maxmax(€7 (Py), ¢ (P,))

i'Z] ¢

1.4 New lower bounds

We will now go through the new lower bound given in the paper "Improved
availability bounds for binary and multistate monotone systems with inde-
pendent component processes"[4].

Let us first look at a special case where the interval I collapses to a point,
I = [t,t].Let us also assume that the states at ¢ are independent, and that
the system availabilities are deterministic functions hZP(P¢) of the component

availabilities. To see this, define for i = 1,...n, k € S; (with pf‘/"iﬂ =0),

= P(Xi(t) = k) =pf —pi™

7)

collected in the vector r. Then by the independence of X;(t), i =1,...,n

p,=EBIX®)=j)r)= > Iex) =[] =

XEST XX Sp =1
n
. i i+1y def ;4
S I6x) =) [[eF -t E B(Py)
xXES] XX Sp, i=1

If we can calculate the last equation numerically, then the need of a lower
bound is eliminated in this special case.

Returning to the general interval I , we can still evaluate the function hfp(P(i,),
even when p now represents the component availabilities in I. The idea is
to use the number hé(P(;s) as a lower bound in the case of independent
component processes.

In the following theorem it will be shown that a lower bound is in fact
obtained that way.

Theorem 1.5. Assume that the component processes are independent. De-

fine

X; = min X;(t),i=1,...,n
ter(I)

and let X = (X1,...,X,). Let p be the vector with components
psz((, >k, i=1,...,n, kESi)

Define

Then
), > 1y(Py)
If the component processes are independent, then

[, = 1l (Py)

10

1.5 Why lower bounds?

In this paper we are going to investigate if the new lower bound is better
than the established lower bound. But a general question is: Why is the
lower bound of general interest?

The lower bound would in many situations be a better approach to find
system reliability than what an upper bound does. This is because we are
interested in what the worst situation would be. We are more often inter-
ested in finding the worst case, than what the best case would be.

Let us look at an example of why we often like to use the lower bound.

Say that you own a company that supplies water to a city. You would then
therefore most likely want to know how reliable the water system is. Does
the water system deliver minimum 40% or more of its water capacity to the
city? It will in this type of case be crucial that you use the lower bound and
not the upper bound. Since the upper bound in this situation can give us
a better picture of the situation than what it really is. We would therefore
use the lower bound since it can give us the worst picture of the situation
than what it really is. You can then find which part of the water system
that needs improvement to fulfill wanted system reliability.

But this will not say that the upper bound is useless and never used. There
are situations where you want to find the upper bound, e.g. if you have
a power grid where you want the power capacity to be the highest possi-
ble without the transformers being overloaded. In this situation the upper
bound gives the best picture of the situation and could therefore also be
used.

11

2 Early assumptions and attempts

2.1 Some practical notational assumptions

When we later are going to simulate and calculate the new and the estab-
lished lower bounds we need to make some assumptions.

First let us look at the established lower bounds. Since we are going to use
the minimal path and cut sets the following parts of Theorem 2.27 and 2.28

from Natvig(2011) [5] are going to be used to calculate the lower bound for
the established ones.

(From theorem 2.27) 09 (P¢, irllcax H pZ““
1 n

1601 %8
",
(From theorem 2.28) 6**](H H pzlkﬂ
=1 D] (zk)

Here we will assume that p! = P[X; > j] and for p; € [0,1] [T, pi =
1 -l (1 — p;). We can therefore write:

J

pi* = PIX; >yl
and
p/’““ P[X; > zlk +1].

To make 2.28 more easy to implement on a computer we write it as follows:

i
i
(From theorem 2.28) ZZ*J(P@ = H (1 _ H (1- pZ”“H))
k=1 iEDé(zi)

Further let us assume that the component processes are independent. We
can then assume that the newer bound is

I, = hj(p)

This gives us the opportunity to use the following simple but inefficient
expression

n
> I
X|6(02) -1

T x;+1
where ;" = pi* — p;

These changes will make the implementation go much easier on the com-
puter.

12

2.2 Identifying minimal cut vectors

In the simulation later in this paper we need to identify the minimal path
vectors and the minimal cut vectors in a flow network. The algorithm for
doing this is shown on page 18 under the chapter "Find vector class". In
order to show that this algorithm is correct we need some results about flow
networks.

The first result provides a necessary condition for when a vector is a minimal
cut vector. For a similar and essentially equivalent approach see Jgrund
Gasemyr "Note on flow network systems" [3].

Theorem 2.1. Assume that x is a minimal cut vector to level j < M. Then
there exists a minimal flow cut set K such that

in:j—l, and x; = M; for alli ¢ K.
ieK
Proof. By the definition of ¢ we know that:
x)= min T;.
B, 2
J

Hence, for any x there must exist a minimal flow cut set K with total flow
through K equal to the system flow, that is:

$@) = @i

€K
Assume that x is a minimal cut vector to level j, and let K be chosen so
that the total flow through K is equal to the system flow. Then it follows

that ¢(x) < j. In fact, since all component states are integers, it follows
that ¢(x) < j— 1.

If p(x) < j — 1, we may increase the state of one of the components in
K by 1, and still have ¢ < j — 1. However, this contradicts that x is a
minimal cut vector to level j. Thus, we conclude that ¢(x) = j — 1.

If there exists a component i ¢ K such that x; < M;, we may replace x;
by M; without changing the flow through K, and thus still have ¢ < j — 1.
However, this also contradicts that o is a minimal cut vector to level j.

Hence, we conclude that), - 2; = ¢(x) = j — 1 and z; = M; for all
i ¢ K, which completes the proof. O

Theorem 2.1 shows that in order to identify the minimal cut vectors of the
system, we must look among vectors of the form @ where for some minimal
flow cut set K we have:

in:j—l, and x; = M; for all ¢ ¢ K.
i€eK

Unfortunately, while all vectors of this form must be cut vectors to level j,
not all such vectors are minimal cut vectors to this level. Thus, we need a
way to determine whether or not a given cut vector & is minimal or not.

13

To determine if a vector is a minimal cut vector at level j < M or not
in a simple way we first need to sort the minimal flow cut sets. We sort
them by number of elements:

K = {Kl,KQ,....,Km¢}, where ’Kﬂ S |K2| S S ’Km¢’

We then choose K, € K. Based on this K, we choose an « satisfying the
condition given in theorem 2.1. The next step is to determine if this is a
minimal cut vector or not. There are 3 different scenarios:

Scenario 1: 3K, # K, such that > z; < j — 1. This implies that
€K

¢(x) < j —1. We can then discard the current @, since this implies that x

obviously is not minimal at level j.

Scenario 2: VKg; # K, we have > z; > j — 1. Then obviously x is a
1€EK
minimal cut vector at level j. Hence, we can then keep the current .

Scenario 3: VK # K, we have > x; > j— 1, and 3K, # K, such that
€K

> x = j — 1. For all such minimal flow cut sets we need to check if
€K

di € K, — K, such that x; < M;. If this is the case, we can increase x
by replacing x; by M; without increasing the value of ¢. Hence, & cannot
be a minimal cut vector and must be discarded. Assume instead that the
opposite is the case, i.e., x; = M; for all i € K, — K, for all K; € K such

that > x; = j — 1. If there are several minimal flow cut sets, K, with this
ieKs
propefty, we choose the one with the lowest index. In this case x cannot
be increased without increasing ¢. Hence, & must be a minimal cut vector.
However, we may have found the same a earlier in the process. If this is
the case we will discard this & at this stage in the process in order to avoid
duplicates. This happens if s < r. On the other hand if s > r, has not
been found earlier in the process, so in this case we can keep the current .

Figure 4: K, — K is the yellow part of the Venn
diagram.

Note that in order to identify the scenarios described above in the general
case we need to check all K; € K where s # r. However, if My = --- = M,
it is sufficient to check all K; € K where s < r. The reason for this is that
we have sorted the minimal flow cut sets with respect to their sizes. As a

result we must have > x; > j— 1 for any s > r. Thus, if Y z; <j—1
1€EK €K
for some s # r, we must have s < r. That is, Scenario 1 can only occur
for K where s < r. Assume conversely that > x; > j— 1 for all s < r.
ieKs
Then it may happen that there exists an s > r such that > z; = j — 1.
ieKs

14

However, if this is the case, we must have z; = M; for all i € K, — K (since
|Ks| > |K,|). Hence, x will not be discarded because of this K.

Let us illustrate how we can identify minimal cut vectors.

Example.

We have minimal flow cut sets K7 = {2,4} and Ky = {1,2,3} with states
j =1{0,1,2,3} and system state ¢; = {0,1,2,3,4,5,6,7,8,9}. We have the
following sorting of the minimal flow cut sets K = {Kj, K2}. We can then
find all the minimal cut sets for ¢; = 2 by using theorem 2.1 and here we
have the special case where all the components have the same states.

Let us look at the minimal flow cut K first.
First we need to find the component states for the components in the current
cut that fulfills:

Z Ty — 2

€Ky

We can first of all set all of the components that aren’t in the cut to their
maximum states. z; = 3, for all i ¢ K,
We can now look at the components in the current minimal flow cut set. We

see that 9 = 2 and z4 = 0 fulfills claims on) x; = 2. Since there are
€Ky

no minimal flow cut sets before K1, we therefore have the following minimal

cut vector:

x = (3,2,3,0)

The next xzo,x4 that fulfills the claims is 29 = 1,z4 = 1. We have the
following minimal cut vector:

x =(3,1,3,1)

And the last one for the current minimal flow cut set we have o = 0, z4 = 2.
We then have the following minimal cut vector:

x = (3,0,3,2)

Lets now look at the next minimal cut set Ko = {1,2,3}.

We now set x; = 3, for all i ¢ Ky
First we need to find the component states for the components in the current

cut that fulfills:
S =

i€ Ko

We see that 1 = 2, 9 = 0 and x3 = 0 fulfills claims on > z; = 2. We
i€EKo

then check the minimal flow cut set which is before the current cut set in K.

K is the only one and it does have a cut state larger than 2, we therefore

have the following minimal cut vector:

x = (2,0,0,3)

15

x1=1,290 = 1,23 = 0 is the next one. K; is larger than 2, we therefore have
the following minimal cut vector

x = (1,1,0,3)

We can find the rest of the the minimal cut vectors for ¢; = 2 by con-
tinuing. It is the same way for all the system states and all the minimal cut
vectors for this system is:

{0,1,1,3},{1,0,1,3},{1,1,0,3},{2,0,0,3},{0,2,0,3},{0,0, 2,3},
{3,1,3,1},{3,2,3,0},{3,0,3,2}

16

3 Computer code

3.1 Computer language and starting points

The main program that computes and simulate is written in Java The plots
are made through R. The Java code is provided at the end of this paper in
the section "Full computer code".

To represent a GF-system do we need three types of objects: A system
object, a component object and a minimal flow cut set object.

The system needs lists that says which components and minimal flow cut
sets that are in the system. The component object needs to know which
minimal flow cut sets it is in and also what state it has. When we have this
then we have a good starting point. So let us get more into it.

3.2 Some practical information about the simulation

The simulation is a discrete event simulation (DES) which means that a
state change is occurring at a given time. The given time has a distribution
which says when the next state change is going to happen.

To perform a DES it is four main elements that we need: States, a timer,
number of simulations and an event handler. [1]

The event handler finds the next event, and is the one that executes when
the next event is happening. In our case is the event handler the component
class. The event handler tells the event queue when a new event is going
to happen, and what’s going to happen. The event queue alerts the event
handler when the event is happening and what it should do.

The time distributions in this simulation is an exponential distribution with
parameter A = 2.0.

The exponential distribution: f(z,\) = e %, X > 0, z € [0,]
2]

3.3 Component class

In short the component class has to contain all the states it can go to and
what state it currently is in. It needs a starting state for when the simulation
is starting. For practical reasons will the component have a name and have
a component number.

Example

Component one will be called x1 and have component number 0.

The component also needs to know which minimal flow cut sets it is in
to alert them when it changes its state. The Component will be the class
that handles the simulation events. When the program is finished with the
simulation it needs to save the current state it is in. This value will later be
used in a class that calculates the bounds.

17

3.4 Cut set class

The minimal flow cut set class needs a list with the components that are in
it. When the class is starting, it needs to find all the states it can be in,
what the max state is, then sets what system class it belongs to, and what
index it has in the system class, and the components’ classes minimal flow
cut set lists.

The minimal flow cut set class alerts the system class when it’s updates
it state.

As the component class this class also saves it’s current state when the pro-
gram is finished with the simulation.

3.5 System class

The system class needs to know all the component classes, and all the min-
imal flow cut set classes that are in the system. The system class needs to
find all the minimal path vectors, and all the minimal cut vectors. To make
this more easy it has got its own class where it finds all the vectors, let us
call it find vector.

As the two other classes this class also saves it’s current state when the
program is finished with the simulation.

3.6 Find vector class

These classes purpose is to find all the minimal cut vectors, and all the
minimal path vectors. It uses the new theorem 2.1 and the 3 scenarios with
the special case where all the components have the same states to find the
minimal cut vectors, and it uses a similar approach to find the minimal path
vectors. After finding one vector does the program store it in a list for later
uses.

3.6.1 Algorithm for Minimal cut Vectors

Make a list minCutVectors that will contain all the minimal cut vectors
For each element in system states

Make a start list that contains the components and their
corresponding max state

For all components in a cut set
Make a copy of the starting list
Go through all the component states until the cut set state
is equal to the system state element before the current system

state element

Change the states for the components that has changed it’s state
in the copied list to the new component states

18

Check that all cut sets with an element size smaller than the
current cut set have a cut state larger or equal to the system
state. If this holds store the copied list in minCutVectors

3.6.2 Algorithm for Minimal path Vectors

Make a list minPathVectors that will contain all the minimum path vectors

Make a start list that contains the components and their corresponding max
state

For each element in system states
Make a copy of the starting list

Change the component states until all the cut sets state is equal the
current system state

Change the states for the components that has changed it’s state in
the copied list to the new component states and store the copied list
in minPathVectors

3.7 Calculate class

After the simulation we can start to calculate the different bounds. To do
that we need to find the r; for all components, minimal flow cut sets and
for the system. The values we can find by using the stored values of current
state, and divide it by number of simulations that has been done. When we
now have found the r’s we can easily find p; for components, minimal flow
cut sets and for the system. The latter one is the estimated value for the
system, this value converges to the real value if we have enough simulations.
We find p by adding the r’s For example:

T state 3 = 0.1, 7" state 2 = 0.3, 7 state 1 = 0.4, 7 state 0 = 0.2
then we have
D state 3 = T state 3 = 0.1
D state 2 = P state 3 T T state 2 = 0.4
D state 1 = P state 2 + 7 state 1 = 0.8

P state 0 = P state 1 T 7 state 0 = 1

Now that the program has the p values it can start to find the established
lower bound, and the new bound. After we have found them the program is
finished, and uses then R to make the plots.

19

3.7.1 Algorithm for the new bound here called /;

Make a list [; that contains all the float values and set the values equal 0
Make a float variable Value

Make a double list stateSums where we add the
components current state to

Do a for each on the components and a for each for all the component states
in an other function where the input values is Value and stateSums

Make a new float variable tempValue and set it equal
Value times the components state corresponding r; value

When at the last component find the cut with lowest state based
on the stateSums

Plus tempValue to all elements in /; that is bigger or equal to
lowest cut state.

Repeat till there are no more component states.

20

4 Results
4.1 Check of the program

In this section we will look at the example 4 in the article [4].

Example 4. [4] Let C = {1,2},5; = S, =1{0,1,2,....,5},5 ={0,1,2,...,10},
and ¢(x) = x1 + x2. Assume that the component states are independent.
Let p; = p2 = (0.95,0.90,0.85,0.80,0.75). In the article are only showing
lower bounds for the system availability to levels 9,6 and 3. But here I will
present for all levels.

For level 1:

Minimal path set:

Path 1 Path 2
X1 is in state: 0.0 X1 is in state: 1.0
X2 is in state: 1.0 X2 is in state: 0.0

0} (Py) = 0.95
Minimal cut set:

Cut 1
X1 is in state: 0.0
X2 is in state: 0.0

05 (Py) = 0.9975, £5(Py) = 0.9975

For level 2:

Minimal path set:

Path 1 Path 2 Path 3
X1 is in state: 0.0 X1 is in state: 1.0 X1 is in state: 2.0
X2 is in state: 2.0 X2 isin state: 1.0 X2 is in state: 1.0

0} (Py) = 0.9025
Minimal cut set:

Cut 1 Cut 2
X1 is in state: 0.0 X1 is in state: 1.0
X2 is in state: 1.0 X2 is in state: 0.0

052 (Py) = 0.9900, 03(Py) = 0.9925

21

For level 3:

Minimal path set:

Path 1
X1 is in state
X2 is in state
Path 4
X1 is in state
X2 is in state

: 0.0
: 3.0

: 3.0
: 0.0

Minimal cut set:

Cut 1
X1 is in state
X2 is in state

For level 4:

: 0.0
: 2.0

Minimal path set:

Path 1
X1 is in state
X2 is in state
Path 4
X1 is in state
X2 is in state

: 0.0
: 4.0

: 3.0
: 1.0

Minimal cut set:

Cut 1

X1 is in state:
X2 is in state:

Cut 4

X1 is in state:
X2 is in state:

0.0
3.0

3.0
0.0

Path 2 Path 3
X1 is in state: 1.0 X1 is in state: 2.0
X2 is in state: 2.0 X2 is in state: 1.0

(3 (Py) = 0.8550

Cut 2 Cut 3
X1 is in state: 1.0 X1 is in state: 2.0
X2 is in state: 1.0 X2 is in state: 0.0

053 (Py) = 0.9752, £5(Py) = 0.9850

Path 2 Path 3
X1 is in state: 1.0 X1 is in state: 2.0
X2 is in state: 3.0 X2 is in state: 2.0
Path 5
X1 is in state: 4.0
X2 is in state: 0.0

0} (Py) = 0.8100

Cut 2 Cut 3
X1 is in state: 1.0 X1 is in state: 2.0
X2 is in state: 2.0 X2 is in state: 1.0

054 (Py) = 0.9509, £45(Py) = 0.9750

22

For level 5:

Minimal path set:

Path 1
X1 is in state
X2 is in state
Path 4
X1 is in state
X2 is in state

: 0.0
: 5.0

: 3.0
: 2.0

Minimal cut set:

Cut 1
X1 is in state
X2 is in state
Cut 4
X1 is in state
X2 is in state

For level 6:

: 0.0
: 4.0

: 3.0
: 1.0

Minimal path set:

Path 1
X1 is in state
X2 is in state
Path 4
X1 is in state
X2 is in state

: 1.0
: 5.0

: 4.0
: 2.0

Minimal cut set:

Cut 1

X1 is in state:
X2 is in state:

Cut 4

X1 is in state:
X2 is in state:

0.0
5.0

3.0
2.0

Path 2
X1 is in state
X2 is in state

Path 5
X1 is in state
X2 is in state

Path 3

: 1.0 X1 is in state: 2.0
: 4.0 X2 isin state: 3.0

Path 6

: 4.0 X1 is in state: 5.0
: 1.0 X2 is in state: 0.0

03 (Py) = 0.7650

Cut 2
X1 is in state
X2 is in state

Cut 5
X1 is in state
X2 is in state

Path 2
X1 is in state
X2 is in state

Path 5
X1 is in state
X2 is in state

: 1.0
: 3.0

: 4.0
: 0.0

: 2.0
: 4.0

: 5.0
: 1.0

Cut 3
X1 is in state: 2.0
X2 is in state: 2.0

055 (Py) = 0.9155, 05(Py) = 0.9625

Path 3
X1 is in state: 3.0
X2 is in state: 3.0

05 (Py) = 0.7225

Cut 2
X1 is in state
X2 is in state

Cut 5
X1 is in state
X2 is in state

: 1.0
: 4.0

: 4.0
: 1.0

23

Cut 3
X1 is in state: 2.0
X2 is in state: 3.0
Cut 6
X1 is in state: 5.0
X2 is in state: 0.0

055(Py) = 0.8072, 5(Py) = 0.8775

For level 7:

Minimal path set:

Path 1
X1 is in state
X2 is in state
Path 4
X1 is in state
X2 is in state

: 2.0
: 5.0

: 5.0
: 2.0

Minimal cut set:

Cut 1

X1 is in state:
X2 is in state:

Cut 4

X1 is in state:
X2 is in state:

For level &:

1.0
5.0

4.0
2.0

Minimal path set:

Path 1
X1 is in state
X2 is in state

: 3.0
: 5.0

Minimal cut set:

Cut 1

X1 is in state:
X2 is in state:

Cut 4

X1 is in state:
X2 is in state:

2.0
5.0

5.0
2.0

Path 2 Path 3
X1 is in state: 3.0 X1 is in state: 4.0
X2 is in state: 4.0 X2 is in state: 3.0

0] (Pg) = 0.6800

Cut 2 Cut 3
X1 is in state: 2.0 X1 is in state: 3.0
X2 is in state: 4.0 X2 is in state: 3.0
Cut 5
X1 is in state: 5.0
X2 is in state: 1.0

057 (Py) = 0.7204, (3(Py) = 0.7945

Path 2 Path 3
X1 is in state: 4.0 X1 is in state: 5.0
X2 1s in state: 4.0 X2 is in state: 3.0

L5 (Py) = 0.6400

Cut 2 Cut 3
X1 is in state: 3.0 X1 is in state: 4.0
X2 is in state: 4.0 X2 is in state: 3.0

C58(Py) = 0.6521, £5(Py) = 0.7150

24

For level 9:

Minimal path set:

Path 1 Path 2
X1 is in state: 4.0 X1 is in state: 5.0
X2 is in state: 5.0 X2 is in state: 4.0

£ (Pg) = 0.6000
Minimal cut set:

Cut 1 Cut 2 Cut 3
X1 is in state: 3.0 X1 is in state: 4.0 X1 is in state: 5.0
X2 is in state: 5.0 X2 is in state: 4.0 X2 is in state: 3.0

059(Py) = 0.6000, (3(Py) = 0.6375

For level 10:

Minimal path set:

Path 1
X1 is in state: 5.0
X2 is in state: 5.0
0J0(Py) = 0.5625

Minimal cut set:

Cut 1 Cut 2
X1 is in state: 4.0 X1 is in state: 5.0
X2 is in state: 5.0 X2 is in states: 4.0

05 10(Py) = 0.5625, £)°(Py) = 0.5625

The program gives the same values and minimal cut and path sets as for
the levels that are calculated in the article [4]. The only difference is at level
3 where it is a typo in the article.

25

4.2 The different systems

I have chosen to use 4 different systems that are related to each other in
the structural way. The reason for this decision is to make it more easy
to compare what is happening to the different bounds when we add a new
serial-connection. The simplest one of them is the system with 8 components.

Figure 5: System with 8 components

Then we have the more complex one with 11 components. There it is
added three serial-connections at component 1, 2 and 3 from the previous
system.

Figure 6: System with 11 components

The third system has 13 components. Here it is added two serial-connections
at component 7 and 8 from the previous system.

26

Figure 7: System with 13 components

At last we do have the largest system that we are going to look at.
The system has 16 components. Here it is added two serial-connections at
component 11, 12 and 13 from the previous system.

1
v 14
8
2 5 12 15
—O0—>—>0—>—0—>
16
9
3 A

Figure 8: System with 16 components

As you can see it is a large similarity between this three systems. This
similarity we will use to our advantage to make our comparison more easy.

27

4.3 System with 8 components

Let us first look at the system with 8 components. This system is a good
starting point to check the different bounds, and how they are compared to

the estimated value p.

4.3.1 Plots for the different bounds

First of all I will show three plots where you can see how the different bounds

are changing over time.

Plot for sy with 8 ponents: Esti d values Plot for sy with 8 p hed bound
e 4 State =0 e State = 1
© @ |
o o
Z o 2 o
3 o 3 o 7
© ©
3 3
<3 State= 5 <] State = 6
a a
;’- - State = 6 ; - State = 7
State = 7 State= 8
g- - State = 8 g - State = 9
State = 9
e e
o o
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
Plot for system with 8 comp ts: New lower Bound
,‘3 - State = 0
©
@
Q ©
3 o 7
©
Q
o State = 5
[|
;’- - State = 6
State = 7
g - State = 8
State = 9
e
o
T T T T T T T
0 5 10 15 20 25 30

Time

If we compare the established lower bound and the new lower bound against

the estimated value, we see that both of the bounds miss on low states.

28

4.3.2 Plots one state at a time

Let us plot all the bounds at one state at a time to better see the differences.

Plot for system with 8 components: All bounds for state 1

3 - Estimated values
New bound
24 Established bound
©
z °
=
o
3
<
o«
pg
~N
8
o
e
T T T T T
0 5 10 15 20
Time
Plot for system with 8 components: All bounds for state 3
3 = Estimated values
New bound
3 Established bound
© |
g. o
=
o
Q
<
o«
pg
N
o
o
e
T T T T T
0 5 10 15 20
Time
Plot for system with 8 components: All bounds for state 5
,‘3 Estimated values
New bound
2 - Established bound
©
‘? o
=
o
Q
Qo
['%

0.4
I

N
=]
T T T

5 10 15

o

Time

20

29

Probability

Probability

Probability

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Plot for system with 8 components: All bounds for state 2

Estimated values

New bound

Established bound

o
o -
=
o

Plot for system with 8 components: All bounds for state 4

Estimated values

New bound

Established bound

\

o

5 10

Time

Plot for system with 8 components: All bounds for state 6

Estimated values

New bound

Established bound

K

5 10

o

Time

Plot for system with 8 components: All bounds for state 7 Plot for system with 8 components: All bounds for state 8

f_’- = Estimated values S — Estimated values
New bound New bound
g - Established bound g - Established bound
© _| © _|
5 5
@ o
e o
) <}
a o« o <
c 7 S A
o o
o 7| S+
o o
c 7 S
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
Time Time
Plot for system with 8 components: All bounds for state 9
S- = Estimated values
New bound
24 Established bound
©
z S
=
@
a
Q2
Q<
g
o~
84
o
S
T T
0 5 10 15 20
Time

The new bound looks better than the old established one. Let us first find
the differences between the lower bounds against the estimated value. This
makes it easier to see how much better the new bound is.

4.3.3 Plots of the differences

The differences are found by taking the value for the estimated value and
subtract it by the value to one of the other bounds. The closer the plot
is to zero, the closer is the bound to the estimated value. Let us plot the
difference between the estimated value against the two others.

30

Differences

Differences

Differences

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

Plot for system with 8 components: Differences for state 1

Established and estimated
New bound and estimated

Time

Plot for system with 8 components: Differences for state 3

Established and estimated
New bound and estimated

Time

Plot for system with 8 components: Differences for state 5

Established and estimated
New bound and estimated

Time

31

Differences

Differences

Differences

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

Plot for system with 8 components: Differences for state 2

Established and estimated
New bound and estimated

Time

Plot for system with 8 components: Differences for state 4

Established and estimated
New bound and estimated

Time

Plot for system with 8 components: Differences for state 6

Established and estimated
New bound and estimated

Plot for system with 8 components: Differences for state 7 Plot for system with 8 components: Differences for state 8

© _| © _|
o o
Established and estimated Established and estimated
New bound and estimated New bound and estimated
(73 (73
g« | s o«
o © g °
£ £
a a
N N
o o
o _| o |
o o
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
Time Time
Plot for system with 8 components: Differences for state 9
© |
o
Established and estimated
New bound and estimated
(73
g = |
E o
£
a
o~
8
o
S
T T T T T
0 5 10 15 20
Time

4.3.4 Summary

As you can see the new bound is good, and hits the estimated value on many
points. The new bound gets faster similar the estimated value then what
the established one does. Both of the bounds miss on low state values.

32

4.4 System with 11 components

Let us now look at the system with 11 components. This system is extended
with 3 more component’s as shown earlier.

4.4.1 Plots for the different bounds

As for the system with 8 components I will first show three plots where you
can see how the different bounds are changing over time.

Plot for syst

with 11 cc

te: Ectimated

values

P

1.0

Probability
0.6
1

0.4
1

0.0
1

State =0

State = 5
State = 6
State = 7
State= 8

State = 9

with 11 cc

Time

ts: New lower Bound

Plot for syst:

P

0.8 1.0
1

0.6

Probability

0.2

State =0

State = 5
State = 6
State = 7
State = 8

State = 9

Time

Probability

1.0

0.8

06

0.4

0.2

0.0

Plot for syst:

with 11

hed bound

P

State = 1

State = 6
State = 7
State = 8

State= 9

If we compare these new plots for established lower bound and the new lower
bound against the estimated value, it now seams like the two bounds look
much more like the estimated value.

33

4.4.2 Plots one state at a time

Let us plot all the bounds at one state at a time to better see the differences.

Plot for system with 11 components: All bounds for state 1 Plot for system with 11 components: All bounds for state 2
3 = Estimated values S — Estimated values
New bound New bound
© © :
s Established bound s Established bound
© | ©
z ° z °
3 3
o o
Q Qo
< <
o o« o <
o 7| e
N N
o o
e o
o o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time
Plot for system with 11 components: All bounds for state 3 Plot for system with 11 components: All bounds for state 4
,‘3 - Estimated values S - Estimated values
New bound New bound
2 A Established bound 2 Established bound
© © |
z ° z °©
3 3
o o
Q Q
< <}
o« o <
S c 7
N N
o o
< o
o o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time
Plot for system with 11 components: All bounds for state 5 Plot for system with 11 components: All bounds for state 6
,‘3 — Estimated values S — Estimated values
New bound New bound
24 Established bound 2 Established bound
© © |
5 5
o o
Q Q
Qo <}
[o <
o 7 c 7
N N
o o
e | o
o o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time

34

Probability

Probability

The bounds are now much closer to the estimated value.

Plot for system with 11 components: All bounds for state 7

1.0

0.8

0.6

0.4

0.2

0.0

Plot for system with 11 components: All bounds for state 9

1.0

0.8

0.6

0.4

0.2

0.0

Estimated values

New bound

Established bound

Time

Estimated values

New bound

Established bound

Time

Probability

1.0

0.8

0.6

0.4

0.2

0.0

Plot for system with 11 components: All bounds for state 8

Estimated values

New bound

Established bound

The new lower

bound does here also look closer to the estimated value than what the es-
tablished lower bound does.

4.4.3 Plots of the differences

The differences are found by taking the value for the estimated value and
subtract it by the value to one of the other bounds. The closer the plot
is to zero, the closer is the bound to the estimated value. Let us plot the
difference between the estimated value and the two others.

35

Differences

Differences

Differences

Plot for system with 11 components: Differences for state 1

©
o

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 11 components: Differences for state 3

©
o

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 11 components: Differences for state 5

©
o

0.5

0.4

03

0.2

0.1

0.0

Established and estimated

New bound and estimated

Time

Established and estimated

New bound and estimated

Time

Established and estimated

New bound and estimated

36

Differences

Differences

Differences

Plot for system with 11 components: Differences for state 2

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 11 components: Differences for state 4

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 11 components: Differences for state 6

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

Plot for system with 11 components: Differences for state 7 Plot for system with 11 components: Differences for state 8

© ©
[SI [SI
Established and estimated Established and estimated
g - New bound and estimated g - New bound and estimated
<~ < |
o o
(73 (73
Q Q
o o
g § <
5 o b3 o
£ £
a a
N N
o o
5 5
o o
o 7 c 7
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time
Plot for system with 11 components: Differences for state 9
©
=3
Established and estimated
g — New bound and estimated
<~
o
(73
@
o
g «
5 o
£
a
N
o
; -
o
2 4
T T T T T T
0 2 4 6 8 10 12

4.4.4 Summary

As you can see the new lower bound is better than the established lower
bound. As time passes, the values of both bounds will be more similar and
after some time be equal to the estimated value. The value of the new bound
will faster be more similar, but also gradually be equal to the estimated value.
The established bound is slower to get similar to the estimated value. Both
of the bounds are closer to the estimated value at high states than at low
states.

37

4.5 System with 13 components

Let us now look at the system with 13 components. This system is a exten-
sion to the system with 11 components and here has added 2 more compo-
nents.

4.5.1 Plots for the different bounds

As for the two other systems I will first show three plots where you can see
how the different bounds are changing over time.

Plot for sy with 13 p : Esti d values Plot for sy with 13 E: ished bound

P

1.0

State =0

1.0

- State = 1

0.6
0.6

State = 5 State = 6

Probability
Probability

0.4

State = 6

0.4

- State = 7

State= 7 \ State = 8

0.2
1

State = 8

0.2
1

State = 9

State= 9

Time Time

Plot for system with 13 comp ts: New lower Bound

1.0

State =0

0.8

Probability
0.6
L

State= 5

State = 6

04

State = 7

0.2

State = 8

State= 9

0.0

Time

If we compare these new plots for the established lower bound, and the new
lower bound against the estimated value, it seams like as for the system with
11 components that the two bounds look much more like the estimated value.

38

4.5.2 Plots one state at a time

Let us plot all the bounds at one state at a time to better see the differences.

Plot for system with 13 components: All bounds for state 1 Plot for system with 13 components: All bounds for state 2
3 = Estimated values S — Estimated values
New bound New bound
© © :
s Established bound s Established bound
© | © _|
z ° z °
3 3
o o
Q Qo
< <
o o« o <
S 7 T
o o
o o
e o
o o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time
Plot for system with 13 components: All bounds for state 3 Plot for system with 13 components: All bounds for state 4
,‘3 - Estimated values S - Estimated values
New bound New bound
2 A Established bound 2 Established bound
© © |
z ° z °©
3 3
o o
Q Q
< <}
o« o <
S 7 S
N o
o o
o | o |
o o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time
Plot for system with 13 components: All bounds for state 5 Plot for system with 13 components: All bounds for state 6
,‘3 — Estimated values S - Estimated values
New bound New bound
24 Established bound 2 Established bound
© © |
5 5
o o
Q Q
Qo <}
[o <
S 7 S 7
N o
o o
o | o |
o o
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time

39

Probability

Probability

Plot for system with 13 components: All bounds for state 7

1.0

0.8

0.6

0.4

0.2

0.0

Plot for system with 13 components: All bounds for state 9

1.0

0.8

0.6

0.4

0.2

0.0

Estimated values

New bound

Established bound

Time

Estimated values

New bound

Established bound

Time

Probability

1.0

0.8

0.6

0.4

0.2

0.0

Plot for system with 13 components: All bounds for state 8

Estimated values

New bound

Established bound

The new lower bound is also here closer to the estimated value than what
the established lower bound is.

4.5.3 Plots of the differences

The differences are found by taking the value for the estimated value and
subtract it by the value to one of the other bounds. The closer the plot
is to zero, the closer the bound is to the estimated value. Let us plot the
difference between the estimated value and the two others.

40

Differences

Differences

Differences

Plot for system with 13 components: Differences for state 1

©
o

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 13 components: Differences for state 3

©
o

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 13 components: Differences for state 5

©
o

0.5

0.4

03

0.2

0.1

0.0

Established and estimated

New bound and estimated

Time

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

41

Differences

Differences

Differences

Plot for system with 13 components: Differences for state 2

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 13 components: Differences for state 4

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 13 components: Differences for state 6

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

Differences

Differences

Plot for system with 13 components: Differences for state 7

©
o

b
o

0.3 0.4

0.2

0.1

0.0

Plot for system with 13 components: Differences for state 9

©
o

©
o

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

Time

Established and estimated

New bound and estimated

4.5.4 Summary

Differences

Plot for system with 13 components: Differences for state 8

©
S}

b}
o

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

The new bound gets even faster similar to the estimated value and it seams
like the new bound is equal to the estimated value after state 5. As time
passes, the values of both bounds will be more similar and after some time
be equal to the estimated value. The value of the new bound will faster
be more similar, but also gradually be equal to the estimated value. The
established bound is slower to get similar to the estimated value. It seams
like the established lower bound is equal to the estimated value at state 9.

42

4.6 System with 16 components

Let us now look at the system with 16 components. This system is an
extension of the system with 13 components and has here added 3 more
components.

4.6.1 Plots for the different bounds

As for the other systems, I will first show three plots where you can see how
the different bounds are changing over time.

Plot for sy with 16 : Esti d values Plot for sy with 16 E:

ished bound

P P

1.0

State =0

1.0

- State = 1

0.8
1

0.6
0.6

State = 5

Probability

0.4

State = 6

State = 7

0.2
1

State = 8

Probability

0.4

0.2

State = 6
State = 7
State = 8

State = 9

State= 9 K

Plot for system with 16 comp ts: New lower Bound

1.0

- < State =0

0.8

Probability
0.6
L

State= 5

- State = 6

04

State = 7

0.2

- State = 8

State= 9

0.0

T T T T T
0 5 10 15 20

Time
If we compare these new plots for established lower bound, and the new lower
bound against the estimated value, it seams like as for the systems with 11
and 13 components that the two bounds look much more like the estimated
value.

43

20

4.6.2 Plots one state at a time

Let us plot all the bounds at one state at a time to better see the differences.

Probability

Probability

Probability

1.0

0.8

0.6

0.4

0.2

0.0

=]
-

0.8

0.6

0.4

0.2

0.0

e
)

0.8

0.6

0.4

0.2

0.0

Plot for system with 16 components: All bounds for state 1

Estimated values

New bound

Established bound

Time

Plot for system with 16 components: All bounds for state 3

Estimated values

New bound

Established bound

Time

Plot for system with 16 components: All bounds for state 5

Estimated values

New bound

Established bound

44

Probability

Probability

Probability

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Plot for system with 16 components: All bounds for state 2

Estimated values

New bound

Established bound

Time

Plot for system with 16 components: All bounds for state 4

Estimated values

New bound

Established bound

Time

Plot for system with 16 components: All bounds for state 6

Estimated values

New bound

Established bound

Plot for system with 16 components: All bounds for state 7 Plot for system with 16 components: All bounds for state 8

f_’- = Estimated values S = Estimated values
New bound New bound

g - Established bound g - Established bound

© _| © _|
3 3
@ o
e o
) <}
a o« o <

c 7 S A

o o

o 7| o 7|

(= o |

o o

T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time Time
Plot for system with 16 components: All bounds for state 9
3 — Estimated values
New bound

2 Established bound

©
z S
=
o
e
Q2
o o«

g

o

84

o

S

T T T T T T
0 2 4 6 8 10 12
Time

The bounds are now much closer to he estimated value. The new lower bound
does here also look closer to the estimated value than what the established
lower bound does.

4.6.3 Plots of the differences

The differences are found by taking the value for the estimated value and
subtract it by the value to one of the other bounds. The closer the plot
is to zero, the closer is the bound to the estimated value. Let us plot the
difference between the estimated value and the two others.

45

Differences

Differences

Differences

Plot for system with 16 components: Differences for state 1

©
o

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 16 components: Differences for state 3

©
o

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 16 components: Differences for state 5

©
o

0.5

0.4

03

0.2

0.1

0.0

Established and estimated

New bound and estimated

Time

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

46

Differences

Differences

Differences

Plot for system with 16 components: Differences for state 2

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 16 components: Differences for state 4

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Plot for system with 16 components: Differences for state 6

©
S}

0.5

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

o

Time

Established and estimated

New bound and estimated

Differences

Differences

Plot for system with 16 components: Differences for state 7

©
o

b
o

0.3 0.4

0.2

0.1

0.0

Plot for system with 16 components: Differences for state 9

©
o

©
o

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

Time

Established and estimated

New bound and estimated

4.6.4 Summary

Differences

Plot for system with 16 components: Differences for state 8

©
S}

b}
o

0.4

0.3

0.2

0.1

0.0

Established and estimated

New bound and estimated

The new bound gets even faster similar to the estimated value and it seams
like the new bound is equal to the estimated value after state 4. As time
passes, the values of both bounds will be more similar and after some time
be equal to the estimated value. The value of the new bound will faster
be more similar, but also gradually be equal to the estimated value. The
established bound is slower to get similar to the estimated value. It seams
like the established lower bound is equal to the estimated value at state 9.

47

4.7 Times

It is also interesting to see how long time the different bounds use and how
long the simulation is for the different systems. We will therefore now show
three plots:

Plot for times: The established bound

1000 1500 2000
|

Time in seconds

500

o 4

Plot for times: The new bound

15000
1

10000
1

Time in seconds

5000
1

o o

T T T T T

8 comps 11 comps 13 comps 16 comps 8 comps
Systems
Plot for times: The simulation

o

@

o

v

N

o
172}
°
i
Q
o
[
"
s &
o o
£
=

©

o

T T T T
8 comps 11 comps 13 comps 16 comps

Systems

T T T
11 comps 13 comps 16 comps

Systems

We here find the time for the established bound by adding the time it takes
to find the minimal path and cut sets to the time it takes to calculate the
established bound. The new bounds time is simply found by taking the
time it uses to do the calculation. With simulation does it here mean the
discrete event simulation. The new bound uses much more time than what
the established bound does, in seconds does the new bound use 14980.09
more time than the established bound. This is approximately 4 hours and
10 minutes. This comparison may be a bit unfair since it is possible that it
exists a better way to calculate the new lower bound or a better algorithm
that makes the calculation time much smaller.

48

4.8 Conclusion

From the theory we would expect that the estimated value has a higher value
than the two bounds. We would also expect state 0 to have a higher value
than state 9. If we look at the different plots that have been shown we can
see that this is the case. Let us sum up pro’s and con’s about the different
bounds. It seems like the new bound is better in all cases. And the new
bound gets faster similar to the estimated value than what the established
lower bound does. It looks like that the lower bound gets better when there
are more components in the system. So the best bound without thinking
about calculation time is the new lower bound. The only cons about the
new bound is the calculation time. The established lower bound does as well
improve when having more components in a serial-connection, but it is’nt as
good as the lower bound. But the established bound is faster to calculate
and this is a really good thing about this bound.

5 Further-studies

One of the things that I would like to keep studying and do more research
on is to find a more optimal way to calculate the new lower bound. I would
also like to check if there is a similar way to find the minimal cut vectors for
systems that are not a flow network.

49

6 Full computer code

In this section you can look at the computer code.

6.1 Main class

import
import
import
import
import
import
import
import
import

import
import
import

import
import

import

class

java.io.
java.io.
java.io.

java.io.

File;
FileWriter;
IOException;
PrintWriter;

java.util.ArrayList;

java.util .Map;

java.util .Random;

java.util.Iterator;

java.util.Set;

no.uio.stochutils.Formula;

no.uio.stochutils.FormulaParser;

sim . DefaultSimulator ;

java.util.Arrays;

java.util .HashMap;

java.util.List;

Main {

/x*This
private
private
static
static
static

static

public

private

private

class is the starting class and start it allxx/
static Double[] state;

static List<Component> components;

Phi phi;

Calculate calc;

double simTime = 0;

int numSims = 10000;

static void main(String|[] args) {

/++*Unmark the one you want to runsxsx/

//start for example 4();
//startAll () ;

static void start for example 4() {
setStateSet4 () ;
components = getComponentsiexampleiél (state) ;

set Phi_ and cutSets example 4();
set _p for example 4();
) .

set _q_for example 4();

calc.calculate _new_lower bound();
calculate 1s();
calculate established bound () ;

print _all_to_documents () ;

static void setStateSet4 ()

double[] s = { 0.0, 1.0, 2.

state = new Double [6];

for (int i = 0; i < s.length; i++) {
state[i] = s[i];

{
0, 3.0, 4.0, 5.0 };

50

60

86

87

89
90
91
92
93
94

95

96

97

private static List<Component> getComponents example 4 (Double []
state2) {
Component x1 = new Component(state2, "X1", 0);

private

private

private

private

private

Component x2 = new Component(state2, "X2", 6 1);

x1l.setFirst (true);
x2.setFirst (true);

x1.goesTo(new ArrayList<Component>(Arrays.asList(x2)));
x2.goesTo(new ArrayList <Component>());
return new ArrayList<Component>(Arrays.asList(x1, x2));

static void set_Phi_and cutSets example 4() {
phi = new Phi();
phi.changeFlow (true);

phi.setComponents (components) ;
set sets for example 4();

find vector () ;

static void set_ sets for example 4() {

HashMap<Integer , Cut or path set> cutSets = new HashMap<
Integer , Cut_or_ path set>();

Cut_or_ path_set cutl = new Cut_or path_ set();

Cut_or_path_set cut2 = new Cut_or_ path_set();

List <Component> cutllist new ArrayList<Component>(Arrays.
asList (components. get (0), components.get(1)));

cutl.add component vector(cutllist , 0, phi);
cutSets.put (0, cutl);
phi.set cut_ sets(cutSets);

static void set_p_ for example 4() {

calc = new Calculate (numSims, components, phi.get cut_sets
(), phi);

List <double[] > pi_Components = new ArrayList<double[]>();

double[] pi = { 1,(double) 0.95, (double) 0.9, (double)
0.85, (double) 0.8, (double) 0.75 };

pi_Components.add(pi);

pi_Components.add(pi);

calc.pi_Components = pi_Components;

static void set q_ for example 4() {

List <double[] > qi_Components = new ArrayList<double[]>();

double [] gi = { (double) 0.05,(double) 0.05, (double)
0.05,(double) 0.05, (double) 0.05, (double) 0.75 };

qi_Components.add(qi);

qi_Components.add(qi);

calc.ri_Components = qi_Components;

static void print_all to documents() {

File file Lj = new File("Lj.txt");

File file 1 doubleStar = new File ("l doubleStar.txt");
File file 1 apostrophe = new File ("l apostrophe.txt");
File file min_cut = new File("min cut.txt");

File file min path = new File("min path.txt");

51

130
131

132

133

139

146
147

148

160

161

try {

FileWriter fw_Lj = new FileWriter (file Lj, false);
PrintWriter pw_Lj = new PrintWriter (fw_Lj);
pw_Lj.append("0,1,2,3,4,5,6,7,8,9,10" + "\r\n");

FileWriter fw_1 doubleStar = new FileWriter (
file_1_doubleStar , false);

PrintWriter pw_1 doubleStar = new PrintWriter (
fw_1_doubleStar);

pw_1 doubleStar.append("1,2,3,4,5,6,7,8,9,10" + "\r

")

FileWriter fw_1_ apostrophe = new FileWriter (

file 1 apostrophe, false);
PrintWriter pw_1_apostrophe = new PrintWriter (

fw 1 apostrophe);
pw_1_apostrophe.append("0,1,2,3,4,5,6,7,8,9,10" + "

\r\n");

FileWriter fw_min_ cut= new FileWriter (file min_cut,
false);
PrintWriter pw_min_ cut = new PrintWriter (fw_min_cut

)

FileWriter fw_min_ path= new FileWriter (
file_ min_ path, false);

PrintWriter pw_min_path = new PrintWriter (
fw_min_path) ;

double[] 1 doubleStar = calc.get 1 doubleStar();
double[] 1_apostrophe = calc.get 1 apostrophe();
double [|] Lj = calc.get new_ lower bound();
HashMap<Double , List <
Minimal path or maximal cut vector>> min cut =
phi.get maximal cut_vectors();
HashMap<Double , List <
Minimal path or_ maximal_ cut_vector>> min_path =

phi.get minimal path_ vectors();

go_through all _min_cut_or_path and_write_ out(
pw_min_cut, min_cut, "Cut ");
go_through all _min_cut_or_path and_write_ out(

pw_min_path, min_path, "Path ");

String string Lj = Arrays.toString(Lj);

string Lj = string Lj.replaceAll("[\\] [", "").
replace AIL("\\[", "");

pw_Lj.append(string Lj + "\r\n");

String string 1 doubleStar = Arrays.toString(
1_doubleStar) ;

string 1 doubleStar = string 1 doubleStar.
replace AIL("[\\] |", "").replaceAIL("\\[", "");

pw_1 doubleStar.append(string 1 doubleStar + "\r\n"

)

String string 1 apostrophe = Arrays.toString(
1 _apostrophe);

string 1 apostrophe = string 1 _apostrophe.
replace AIL("[\\]]", "").replaceAIl("\\[", "");

"

pw_1_apostrophe.append(string 1 _ apostrophe +

)

\r\n"

pw_Lj.close ();
pw_1 doubleStar. close () ;
pw_1 apostrophe.close () ;

52

184

185

186

187

188

189

190

191

private

pw_min_cut.close () ;

pw_min_path. close () ;

} catch (IOException

e) {

TODO Auto—generated catch block
e.printStackTrace () ;

static void go_through all min_cut_or_ path and_write out(

PrintWriter pw_min_ cut_ or path, HashMap<Double, List <
Minimal path_or_ maximal_cut_vector>> min_cut_or_path, String

path or cut) {

private

List <Double> system _

state = phi.get system states();

for (int j = 1; j < system state.size(); j++){
double current state = system state.get(j);

pw_min_cut_ or_ path.append("State:

+ "\r\n

" + current stat

"o \\ r \\ n") ;

List <Minimal path_ or maximal cut vector> listVect

(List <Minimal path or_ maximal cut_vector>)

min_cut__

int i = 1;

3

or path.get(current state);

for (Minimal path or maximal cut_ vector ve

listVect

) A

e

pw_min_ cut_or_ path.append(path or cut + i +

i+

A g\ my .
\r\n)7

HashMap<Component, Double> vector = ve.

returnVector () ;

Set set2 = vector.entrySet ();

Iterator iterator2 = set2.iterator ();
while (iterator2.hasNext()) {

}

Map. Entry mentry2 = (Map.Entry)
iterator2.next () ;

Component comp = (Component)
mentry2.getKey () ;

pw_min_ cut_or_ path.append (comp.
getName() + " is in state: "

mentry2.getValue() + "\r\n");

pw_min_cut_or_path.append("\r\n");

}

pw_min_cut_or_path.append("\r\n" +

static void startAll

double maxSimTime =

"y r\n") .
VA 3

0 A1
10;

File file Lj = new File("Lj.txt");

File file p = new Fi

File file_ B = new Fi

le("p.txt");

le ("B.txt");

File file_t_ s = new File("time sim.txt");

File file_t B = new File("time B.txt");

File file_t_Lj = new

File file_t_ maxmin =

/* Make new files to
try {

File ("time Lj.txt");

new File ("time maxmin.txt");

store values in x*/

FileWriter fw_Lj = new FileWriter (file Lj, false);
PrintWriter pw_Lj = new PrintWriter (fw_Lj);
pw_Lj.append("t,0,1,2,3,4,5,6,7,8,9" 4+ "\r\n");

93

+

222
223
224
225
226
227
228
229
230

231
232
233

234
235
236

237
238
239

240

241

242

243

245

246

N
ot

N
ot
o

261
262
263
264
265

private

FileWriter fw_p = new FileWriter (file _p, false);
PrintWriter pw_p = new PrintWriter (fw_p);
pw_p.append("t,0,1,2,3,4,5,6,7,8,9" + "\r\n");

FileWriter fw_B = new FileWriter (file_ B, false);
PrintWriter pw_B = new PrintWriter (fw_B);
pw_B.append("t,1,2,3.4,5,6,7,8,9" + "\r\n");

FileWriter fw_t_s = new FileWriter (file _t_s, false)

PrintWriter pw_t_s = new PrintWriter (fw_t_s);

FileWriter fw_t B = new FileWriter (file_t_ B, false)

PrintWriter pw_t B = new PrintWriter (fw_t_B);

FileWriter fw_t_ Lj = new FileWriter (file_t_Lj,
false);
PrintWriter pw_t_Lj = new PrintWriter (fw_t_Lj);

FileWriter fw_t maxmin = new FileWriter (
file t maxmin, false);
PrintWriter pw_t maxmin = new PrintWriter (

fw_t maxmin) ;

/* Unmark the one you want to simulate x/

set Starting Values For 8comps(pw_t maxmin) ;

//set starting values for 13 comps(pw_t maxmin) ;
//set _starting values for 16 comps(pw_t_ maxmin) ;
//set starting values for system 11 comps(

pw_t_ maxmin) ;

/* Set simulation time and start simulation x/
for (simTime = 0.001; simTime <= maxSimTime;
simTime = simTime + 0.5) {
start _simulation_and_calculation (pw_Lj,
pw_p, pw_B, pw_t_s, pw_t B, pw_t Lj);

pw_Lj.close ();
pw_p.close ();
pw_B.close () ;
pw_t_s.close ();
pw_t_B.close () ;
pw_t Lj.close();
} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

static void set_ Starting Values_ For_ 8comps(PrintWriter

pw_t_maxmin) {

private

set _state set ();

components = get components system 8 comps(state);

// set _Phi_and_ let it find_ cuts();
set Phi_ and cut_ sets(8, pw_t maxmin) ;

static void set_state set () {

double[] s = { 0.0, 1.0, 2.0, 3.0 };

state = new Double [4];
for (int i = 0; i < s.length; i++) {
state[i] = s[i];

o4

280

281
282
283
284
285

287
288
289
290
291
292
293
294
295
296

297
298
299
300
301
302

303
304
305

306
307
308
309
310
311
312

313
314
315
316
317
318
319
320
321

326
327
328
329
330
331

332
333
334
335
336
337

338
339
340

private

(1 s)

static

{

/*Makes new components and give them

Component x1 = new Component(s, "X1", 0);
Component x2 = new Component(s, "X2", 1);
Component x3 = new Component(s, "X3", 2);
Component x4 = new Component(s, "X4", 3);
Component x5 = new Component(s, "X5", 4);
Component x6 = new Component(s, "X6", 5);
Component x7 = new Component(s, "X7", 6);
Component x8 = new Component(s, "X8", 7);

/xSet the

firs

t componentssxk/

x1l.setFirst (true);
x2.setFirst (true);
x3.setFirst (true);

/% Tell

x1

return new ArrayList<Component>(Arrays.asList (x1,

private

the

next*/

.goesTo (new
x2.
x3.
x4 .
x5 .

goesTo (new
goesTo (new
goesTo (new
goesTo (new

x4, x5, x6

different components which components

ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays.

, XT, x8));

PrintWriter pw_t_maxmin) {

set _state set ();

a names/

asList (x6,

List <Component> get components system 8 comps(Double

it goes to

x4)));

asList (x7)));

asList (x8,

x5)));

asList (x7)));
asList (x7)));

static void set_starting values for system 11 comps(

components = get_components_system_11_comps(State) ;
set Phi_and_ let it find cuts();

set_Phi_and_cut_sets(11, pw_t_maxmin) ;

private

Double[] s) {

/*Makes new components and give them a namex/
Component x1 = new Component(s, "X1", 0);
Component x2 = new Component(s, "X2", 1);
Component x3 = new Component(s, "X3", 2);
Component x4 = new Component(s, "X4", 3);
Component x5 = new Component(s, "X5", 4);
Component x6 = new Component(s, "X6", 5);
Component x7 = new Component(s, "X7", 6);
Component x8 = new Component(s, "X8", 7);
Component x9 = new Component(s, "X9", 8);
Component x10 = new Component(s, "X10", 9);
Component x11 = new Component(s, "X11", 10);
/*Set the first componentssx/

x1.setFirst (true);
x2.setFirst (true);
x3.setFirst (true);

/*xTell the
next*/
x1.goesTo (new

x2.

x3
x4
x5

goesTo (new

.goesTo (new

.goesTo (new

.goesTo (new
x6 .

X7 .
x8.
x9 .

goesTo (new
5

goesTo (new

goesTo (new

goesTo (new

different components which components

ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays.

ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays .

95

x2,

x3,

static List <Component> get components system 11 comps(

it goes to

asList (x4)));
asList (x5)));
asList (x6)));

asList (x7,

x9)));

asList (x10)));

asList (x8,

asList (x10)
asList (x10)
asList ()));

x11)))

)) s
))s

346

347
348
349
350
351
352
353

390
391
392

393
394
395
396
397
398
399

private

x10.goesTo (new ArrayList<Component>(Arrays.asList ()));

x11.goesTo(new ArrayList<Component>(Arrays.asList()));

return new ArrayList<Component>(Arrays.asList (x1,
x10,

x4, x5,

x6 ,

X7,

x8, x9,

x2, x3,

x11));

static void set_starting values for 13 comps(PrintWriter

pw_t_maxmin) {

private

set _state_set ();

components — get components system 13 comps (state) ;

set _Phi_and_let it find cuts();

set Phi_ and cut_ sets(13,pw_t maxmin) ;

static

Double[] s) {

private

/« Makes
Component
Component
Component
Component
Component
Component
Component
Component
Component
Component
Component
Component

Component

/*Set the

x10
x11
x12
x13

firs

/*Tell the
next*/
x1.goesTo (new

x2.
x3.
x4 .

x5 .
x6 .

x7.
x8 .

x9

goesTo (new

goesTo (new

goesTo (new
5

goesTo (new

goesTo (new
)3

goesTo (new

goesTo (new

.goesTo (new

x10 . goesTo (new

x11.goesTo (new

(
x12. goesTo (new
(

x13.goesTo (new

return new ArrayList<Component>(Arrays.asList (x1,
x10,

x4, x5,

x1 =
X2 =
x3 =
x4 =
X5 =
x6 =
X7 =
x8 =
X9 =

t

ArrayList <Component>(Arrays .
ArrayList <Component >(Arrays .
ArrayList <Component>(Arrays .
ArrayList <Component >(Arrays .

ArrayList <Component >(Arrays.
ArrayList <Component>(Arrays .

ArrayList <Component>(Arrays .

ArrayList <Component >(Arrays.
ArrayList <Component>(Arrays .

x6 ,

new compo nents

new
new
new
new
new
new
new
new
new

new

Component (s
Component (s
Component (s
Component (s
Component (s
Component (s
Component (s
Component (s

Component (s

and give

)

)

)

)

)

)

Component (s

Component (s

Component (s

Component (s

components*/
x1l.setFirst (true);
x2.setFirst (true);
x3.setFirst (true);

different

ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays .
ArrayList <Component >(Arrays.
ArrayList <Component>(Arrays .

X7,

x8, x9,

)

)

)

)

components which

List <Component> get components system_ 13 comps (

them a namex/

X1, 0);
"Xan 1);
"X3", 2);
X4, 3);
"X5", 4);
"X6", 5);
X", 6);
"X8" 7);
n"xXgn 8)
"X10", 9);
"X11", 10);
"X12", 11);
"X13", 12);

components it goes to
asList (x4)));
asList (x5)));
asList (x6)));
asList (x7, x11)))

asList (x12)));
asList (x10, x13))

asList (x8)));

asList (x12)));
asList (x12)));
asList (x9)));
asList ()));
asList ()));
asList ()));
x2, x3,

x11, x12, x13));

static void set starting values for 16 comps(PrintWriter

pw_t_ maxmin) {

private

set state set();

components = get_components_system_16_c0mps(state) ;
set Phi_and let it find cuts();
set_Phi_and_cut_sets(16,pw_t_ maxmin) ;

static

Double [| s) {

o6

List <Component> get components system 16 comps (

424
425
426
427

430
431
432
433
434
435
436

438
439
440
441
442

443

/*Makes

Component x1 = new Component(s, "X1", 0);
Component x2 = new Component(s, "X2", 1);
Component x3 = new Component(s, "X3", 2);
Component x4 = new Component(s, "X4" [3);
Component x5 = new Component(s, "X5", 4);
Component x6 = new Component(s, "X6", 5);
Component x7 = new Component(s, "X7", 6);
Component x8 = new Component(s, "X8", 7);
Component x9 = new Component(s, "X9", 8);
Component x10 = new Component(s, "X10", 9)
Component x11 = new Component(s, "X11", 10
Component x12 = new Component(s, "XI12", 11
Component x13 = new Component(s, "X13", 12
Component x14 = new Component(s, "X14",6 13
Component x15 = new Component(s, "X15", 14
Component x16 = new Component(s, "X16", 15
/*Set the first componentssx/

new COHII)OI]CHLS

and give

x1.setFirst (true);
x2.setFirst (true);
x3.setFirst (true);

/xTell

x1
x2 .
x3.
x4 .

x5 .
x6

x7.
x8 .
x9.
x10
x11

x12.
x13.
x14 .
x15.
x16 .

the dif

nextx/

.goesTo (new

goesTo (new

goesTo (new

goesTo (new
5

goesTo (new

.goesTo (new

)i
goesTo (new
goesTo (new
goesTo (new
.goesTo (new
.goesTo (new
goesTo (new
goesTo (new

(

(

goesTo (new

goesTo (new
(

goesTo (new

ferent components which

ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays.

ArrayList <Component>(Arrays.
ArrayList <Component>(Arrays .

ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays .
ArrayList <Component>(Arrays .

ArrayList <Component>(Arrays .
ArrayList <Component >(Arrays .
ArrayList <Component>(Arrays .
ArrayList <Component >(Arrays .
ArrayList <Component>(Arrays .
ArrayList <Component >(Arrays .
ArrayList <Component>(Arrays .

return new ArrayList<Component>(

/*Function
parts

private

Arrays.asList (x1, x2, x3, x4, x5, x6, xT7,
x8, x9, x10, x11, x12, x13, x14, x15,
x16));

that can find minimal cut sets for system without cyclic
and set the phix/

static void set_ Phi_and_let

it _find _cuts()

phi = new Phi();
phi.changeFlow (true);

phi.setComponents (components) ;
find cutSets () ;
find _vector () ;

private

static void find cutSets () {

phi.findCuts () ;

private

static void find_ vector () {

phi.find _vectors();

o7

components

them a namesx/

)
)
)
) .
)
)

)

)

)

asList (x4)))
asList (x5)))
asList (x6)))
asList (x7,

asList (x12))
asList (x10,

asList (x8)))
asList (x12))
asList (x12))
asList (x9))
asList (x14)
asList (x15)
asList (x16)
asList ()));
asList ()));
asList ()));

{

it goes

3
)

3

)

x13))

)
)
)
))
)
))

x11)))

3

)

3

462

486
487
488
489
490
491
492
493
494
495
496
497

498
499

506

507

508

509

510
511

private

static void set_ Phi_and cut_sets(int i, PrintWriter

pw_t_ maxmin) {

private

phi = new Phi();
phi.setComponents (components) ;
if (i = 8) {

set _cut_sets for 8();

} else if (i = 11) {

set cut_sets for system 11 comps();
} else if (i = 13) {

set cut_ sets for system 13 comps();
} else if (i = 16) {

set cut_sets for system 16();

long time = System.nanoTime() ;
find vector () ;

time = System.nanoTime ()—time;
pw_t_ maxmin.append (time + "\r\n");

pw_t_ maxmin. close () ;

static void set_cut_sets for 8() {
/*Makes cut sets and a list to store them all x*/
HashMap<Integer , Cut_or_path_set> cutSets = new HashMap<
Integer , Cut_or path set>();
Cut_or_path_set cutl = new Cut_or_ path_set();
Cut_or_ path_ set cut2 = new Cut_or_ path_ set();
Cut_or_path_set cut3 = new Cut_or_ path_set();
Cut_or_ path_ set cut4 = new Cut_or_ path set();
Cut_or_path_set cutb5 = new Cut_or_ path_set();
Cut_or_ path_ set cut6 = new Cut_or path set();
Cut_or_ path_set cut7 = new Cut_or_ path_ set();
Cut_or path_ set cut8 = new Cut_or path set();

/*Add the components in the right cut setsx/
List <Component> cutllist = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(2)));
List <Component> cut2list = new ArrayList<Component>(
Arrays.asList (components.get (1), components
.get (2), components.get(3), components.
get (5)))
List <Component> cut3list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (2), components.get(6)));
List <Component> cut4list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(4), components.
get (7)) ;
List <Component> cut5list = new ArrayList<Component>(
Arrays.asList (components.get (2), components
.get (5), components.get(6)));
List <Component> cut6list = new ArrayList<Component>(Arrays.
asList (components.get (1), components.get(3),
components. get (4), components.get(5),
components. get (7)));
List <Component> cut7list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (6), components.get(7)));
List <Component> cut8list = new ArrayList<Component>(
Arrays.asList (components.get (5), components
.get (6), components.get(7)));

/*Add cut list to the cut and add the cut sets to the list
that contains all the setsx/

cutl.add component vector(cutllist , 0, phi);

cut2.add component vector(cut2list , 1, phi);

o8

560

561

562

563

564

private

cut3.add component vector(cut3list , 2, phi);
cut4.add component vector(cut4list , 3, phi);
cut5.add component vector(cutblist , 4, phi);
cut6.add component vector(cut6list , 5, phi);
cut7.add component_vector(cut7list , 6, phi);
cut8.add component vector(cut8list , 7, phi);

cutSets.put (0, cutl);
cutSets.put(1l, cut2);
cutSets.put (2, cut3);
cutSets.put(3, cutd);
cutSets.put (4, cuth);
cutSets.put (5, cut6);
cutSets.put (6, cut7);
cutSets.put (7, cut8);
phi.set cut_sets(cutSets);

static void set cut_ sets for system 11 comps() {
/*Makes cut sets and a list to store them all x/
HashMap<Integer , Cut_ or_ path set> cutSets = new HashMap<
Integer , Cut_or path set>();

Cut_or path_ set cutl = new Cut_or path set();
Cut_or_ path set cut2 = new Cut_or_ path set();
Cut_or path set cut3 = new Cut_or path set();
Cut_or_ path set cut4 = new Cut_or_ path set();
Cut_or path_ set cutb = new Cut_or path set();
Cut_or_path_set cut6 = new Cut_or_ path_ set();
Cut_or_ path_set cut7 = new Cut_or path_ set();
Cut_or_path_set cut8 = new Cut_or_ path_set();

/*Add the components in the right cut setsx/
List <Component> cutllist = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(2)));
List <Component> cut2list = new ArrayList<Component>(
Arrays.asList (components.get (1), components
.get (2), components.get(6), components.
gt (8)))
List <Component> cut3list = new ArrayList<Component>(
Arrays.asList (components. get (0), components
.get (2), components.get(9)));
List <Component> cut4list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(7), components.
get (10)));
List <Component> cutb5list = new ArrayList<Component>(
Arrays.asList (components.get (2), components
.get (8), components.get(9)));
List <Component> cut6list = new ArrayList<Component>(Arrays.
asList (components. get (1), components.get (6),
components. get (7), components.get (8),
components. get (10)));
List <Component> cut7list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (9), components.get(10)));
List <Component> cut8list = new ArrayList<Component>(
Arrays.asList (components. get (8), components
.get(9), components.get (10)));

List <List <Component>> cuts = new ArrayList<List<Component
>>(
Arrays.asList (cutllist , cut2list, cut3list,
cut4list , cutblist, cut6list , cutTlist
, cut8list));

/*Add cut list to the cut and add the cut sets to the list

that contains all the setsx/
cutl.add component vector(cutllist , 0, phi);

99

568 cut2.add component vector(cut2list , 1, phi);

569 cut3.add component vector(cut3list , 2, phi);

570 cut4.add component vector(cut4list , 3, phi);

571 cut5.add component vector(cutb5list , 4, phi);

572 cut6.add component vector(cut6list , 5, phi);

573 cut7.add component vector(cut7list , 6, phi);

574 cut8.add component vector(cut8list , 7, phi);

575 cutSets.put (0, cutl);

576 cutSets.put(l, cut2);

577 cutSets.put(2, cut3d);

578 cutSets.put (3, cutd);

579 cutSets.put(4, cuth);

580 cutSets.put(5, cut6);

581 cutSets.put (6, cut7?);

582 cutSets.put(7, cut8);

583

584 /*Make two list of components. One that are going to be
switched to another component

585 #+ and the other list contains the components that it is
going to be switched to x/

586 List <Component> change comps = new ArrayList<Component>(

587 Arrays.asList (components.get (3), components

.get (4), components.get(5)));

588 List <Component> change from comps = new ArrayList<Component
>(

589 Arrays.asList (components.get (0), components

.get (1), components.get(2)));
590
591 /*Switch the components and add the new cut set to the list

with all the cut setsx/

592 for (int i = 0; i < change comps.size (); i++) {
593 List <List <Component>> cuts2 = new ArrayList<List<
Component >>();
594 for (List<Component> comps : cuts) {
595 List <Component> cutlist = new ArrayList<
Component > () ;
596 boolean changes = false;
597 for (Component comp : comps) {
598 if (comp == change from comps.get (i
) A
599 cutlist .add(change comps.
get (i));
600 changes = true;
601 } else {
602 cutlist .add(comp) ;
603 }
604 }
605 if (changes) {
606 cuts2.add(cutlist);
607 Cut_or_path_set cut = new
Cut_or_path_set();
608 int n = cutSets.size();
609 cut.add component vector(cutlist , n
, phi);
610 cutSets.put(n, cut);
611 }
612 }
613 cuts.addAll(cuts2);
614 }
615
616 phi.set cut sets(cutSets);
617 }
618
619 private static void set_cut_sets for system 13 comps() {
620 /*Makes cut sets and a list to store them all x*/
621 HashMap<Integer , Cut_or_path_set> cutSets = new HashMap<
Integer , Cut_or path set>();
622 Cut_or_ path set cutl = new Cut_or_ path set();

60

636
637

638
639

640
641

642

643

644
645

646
647

648
649

660
661
662
663
664
665
666
667
668
669
670

3

Cut_or_path_ set cut2 = new Cut_or_path_set(

)

Cut_or_ path_set cut3 = new Cut_or path_ set(

3

Cut_or_path_set cut4 = new Cut_or_path_set(

Cut_or_path_ set cut6 = new Cut_or_path set();

3

)

)
)
)
Cut_or_ path_set cutb = new Cut_or_ path_ set();
)
Cut_or_ path_set cut7 = new Cut_or_ path_ set()
)

Cut_or_path_ set cut8 = new Cut_or_path_ set();
/*Add the components in the right cut setsx/
List <Component> cutllist = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(2)));
List <Component> cut2list = new ArrayList<Component>(
Arrays.asList (components.get (1), components
.get(2), components.get(6), components.
get (10))) ;
List <Component> cut3list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get(2), components.get(11)));
List <Component> cut4list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(9), components.
get (12)));
List <Component> cut5list = new ArrayList<Component>(
Arrays.asList (components.get (2), components
.get (10), components.get(11)));
List <Component> cut6list = new ArrayList<Component>(Arrays.
asList (components.get (1), components.get (6),
components. get (9), components.get (10),
components. get (12)));
List <Component> cut7list = new ArrayList<Component>(
Arrays. asList (components.get (0), components
.get(11), components.get(12)));
List <Component> cut8list = new ArrayList<Component>(
Arrays.asList (components.get (10),
components. get (11), components.get (12))

)

List <List <Component>> cuts = new ArrayList<List<Component
>>(
Arrays.asList (cutllist, cut2list, cut3list,
cutdlist , cutblist , cut6list , cutT7list
, cut8list));

/*Add cut list to the cut and add the cut sets to the list
that contains all the setsx/
cutllist ,
cut2list ,
cut3list ,
cutdlist
cutblist ,
cut6list ,
cut7list ,
cut8list ,

T
=n

cutl.add component_ vector
cut2.add_component_vector

T T
[~

cut3.add component_ vector
cut4.add_component_vector

cut5.add component_vector

o]
=

cut6.add_component_vector

T
=

cut7.add component_ vector

el
=
— = — — — — — —

A~~~ A~~~
N OO W N = O
T
=

cut8.add_component_vector
cutSets.put (0, cutl);
cutSets.put(l, cut2);
cutSets.put(2, cut3);
cutSets.put (3, cutd);
cutSets.put(4, cutb);
cutSets.put (5, cut6);
cutSets.put (6, cut7?);
cutSets.put (7, cut8);

o]
=

/+*Make two list of components. One that are going to be
switched to another component
* and the other list contains the components that it is

going to be switched to x/

61

672

674

680
681

682
683

684

685

686
687
688
689
690
691
692
693

694

695

696
697
698
699
700
701
702
703
704
705
706
707

716
717

718

719
720

List <Component> change comps = new ArrayList<Component>(
Arrays.asList (components. get (3), components.get (4),
components. get (5), components.get (7),
components. get (8)));
List <Component> change_ from_ comps = new ArrayList<Component
>(Arrays.asList (components.get (0), components.get (1),
components. get (2), components.get (6),

components. get (9)));

/*Switch the components and add the new cut set to the list
with all the cut setsx/

for (int i = 0; i < change comps.size (); i++) {

List <List <Component>> cuts2 = new ArrayList<List<

Component >>();
for (List<Component> comps : cuts) {
List <Component> cutlist = new ArrayList<
Component > () ;

boolean changes = false;
for (Component comp : comps) {
if (comp == change from comps.get (i

) A

cutlist .add(change comps.
get (i));
changes = true;
} else {
cutlist .add(comp) ;

}
if (changes) {
cuts2.add(cutlist);

Cut_or_path_set cut = new
Cut_or_ path_set();
int n = cutSets.size ();

cut.add component vector(cutlist , n
» phi);
cutSets.put(n, cut);

}
cuts.addAll(cuts2);

phi.set cut_sets(cutSets);

private static void set cut sets for system 16() {
/*Makes cut sets and a list to store them all x/
HashMap<Integer , Cut_or_ path set> cutSets = new HashMap<
Integer , Cut_or_ path_ set>();
Cut_or path_set cutl = new Cut_or path_ set(

5
Cut_or_path_ set cut2 = new Cut_or_path set();

3

)

Cut_or_ path_set cut3 = new Cut_or path_ set(

Cut_or_ path_set cutb = new Cut_or_ path_ set();

)

Cut_or_path_set cut6 = new Cut_or_path_set(

)

Cut_or path_set cut7 = new Cut_or path set();

3

)
)
)
Cut_or_path_ set cut4 = new Cut_or_path set();
)
)
)
)

Cut_or_ path set cut8 = new Cut_or_ path set();
List <Component> cutllist = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get (1), components.get(2)));
List <Component> cut2list = new ArrayList<Component>(
Arrays.asList (components.get (1), components
.get (2), components.get(6), components.
get (10)));
List <Component> cut3list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get(2), components.get(11)));
List <Component> cut4list = new ArrayList<Component>(

62

728

729
730

760

761

762

763

764

765

Arrays.asList (components.get (0), components
.get (1), components.get(9), components.
got (12)))
List <Component> cut5list = new ArrayList<Component>(
Arrays.asList (components.get (2), components
.get (10), components.get(11)));
List <Component> cut6list = new ArrayList<Component>(Arrays.
asList (components.get (1), components.get (6),
components. get (9), components.get (10),
components. get (12)));
List <Component> cut7list = new ArrayList<Component>(
Arrays.asList (components.get (0), components
.get(11), components.get(12)));
List <Component> cut8list = new ArrayList<Component>(
Arrays.asList (components. get (10),
components. get (11), components.get (12))

)5

List <List <Component>> cuts = new ArrayList<List<Component
>>(
Arrays.asList (cutllist , cut2list, cut3list,
cut4list , cutblist , cut6list , cutTlist
, cut8list));

/*Add cut list to the cut and add the cut sets to the list
that contains all the setsx/
cutllist
cut2list ,
cut3list ,
cutdlist ,
cutblist ,
cut6list
cut7list
cut8list ,

cutl.add_component_vector phi);
phi);

phi);

cut2.add component vector

cut3.add_component_vector

cut4.add component vector

T
=3

cut5.add_component_vector

cut6.add component vector

cut7.add_component_vector

ko)
=

e e e e e N
N O Ut W N = O
ko)
=
-

T

=3
e e e
— — — —

cut8.add component vector
cutSets.put (0, cutl);
cutSets.put(l, cut2);
cutSets.put(2, cut3);
cutSets.put(3, cutd);
cutSets.put(4, cuth);
cutSets.put (5, cut6);
cutSets.put (6, cut7?);
cutSets.put (7, cut8);

el
=3

/*Make two list of components. One that are going to be
switched to another component
#+ and the other list contains the components that it is
going to be switched to */
List <Component> change comps = new ArrayList<Component>(
Arrays.asList (components.get (3), components
.get(4), components.get(5), components.

get (7),
components. get (8) ,
components. get (13),
components. get (14) ,
components. get (15)));
List <Component> change from_ comps = new ArrayList<Component

>(
Arrays.asList (components.get (0), components
.get (1), components.get(2), components.
get (6),
components. get (9),

components.get (10) ,
components.get (11)
components. get (12)));

/+*Switch the components and add the new cut set to the list

with all the cut setsx/
for (int i = 0; i < change comps.size (); i++) {

63

766 List <List <Component>> cuts2 = new ArrayList<List<
Component>>();

767 for (List<Component> comps : cuts) {
768 List <Component> cutlist = new ArrayList<
Component > () ;
boolean changes = false;
for (Component comp : comps) {
if (comp == change from comps.get (i
) A
772 cutlist .add(change comps.
get (i));
773 changes = true;
774 } else {
775 cutlist .add(comp) ;

778 if (changes) {

779 cuts2.add(cutlist);

780 Cut_or_path_set cut = new
Cut_or_ path_set();

781 int n = cutSets.size();

782 cut.add component vector(cutlist , n
, phi);

783 cutSets.put(n, cut);

784 }

785 }

786 cuts.addAll(cuts2);

787 }

788

789 phi.set cut sets(cutSets);

790 }

791

792 private static void start simulation and_calculation(PrintWriter

pw_Lj, PrintWriter pw_p, PrintWriter pw B, PrintWriter pw t s,
PrintWriter pw_t B, PrintWriter pw_t Lj) {

793 startSimulation (pw_t_s);

794 calculate r();

795 calculate p();

796

797 /*Calculate the different bounds and write them to the

right filesx/

798 calculate _new _lower_ bound(pw_t_Lj);

799 String string Lj = Arrays.toString(calc.get new_lower bound
0);

800 string Lj = string Lj.replaceAlIl("[\\] |", "").replaceAll("
RYEAEY

801 pw_Lj.append (simTime + "," + string Lj + "\r\n");

802 long time = 0;

803

804 time = time + calculate ls();

805 String string p = Arrays.toString(calc.get _p());

806 string _p = string p.replaceAll("[\\]]", "").replaceAll("
RYERREY

807 pw_p.append (simTime + "," 4 string p + "\r\n");

808

809 time = time + calculate established bound();

810 String string B = Arrays.toString(calc.
get _established lower bound());

811 string B = string B.replaceAll("[\\] |", "").replaceAll("
NEARDY

812 pw_B.append(simTime + "," + string B + "\r\n");

813

814 pw_t_ B.append(time+ "\r\n");

815

816 }

817

818 private static void startSimulation(PrintWriter pw_t_ s) {

64

819 DefaultSimulator simulator = new DefaultSimulator (numSims,

simTime) ;

820

821 /*Get the state distributions for the differnt statesx/

822 HashMap<Double, Formula> stateDistributions = new HashMap<
Double, Formula>();

823 // "GAMMA3(1.0;0.5)"

824 // "EXPON(2.0)"

825 String stl = "EXPON(2.0)";

826 String st2 = "EXPON(2.0)";

827 String st3 = "EXPON(2.0)";

828 String st4 = "EXPON(2.0)";

829

830 FormulaParser .SET MAKERS(FormulaParser .CONSTANT MAKER +
FormulaParser .STANDARD MAKER) ;

831

832 Formula dist_1 0 = FormulaParser.strToFormula(stl);

833 Formula dist 1 1 = FormulaParser.strToFormula(st2);

834 Formula dist_1 2 = FormulaParser.strToFormula(st3);

835 Formula dist 1 3 = FormulaParser.strToFormula(st4);

836

837 stateDistributions.put (0.0, dist 1 0);

838 stateDistributions.put (1.0, dist_1 1);

839 stateDistributions.put (2.0, dist 1 2);

840 stateDistributions.put (3.0, dist_1_ 3);

841

842 /+*Set the state distributions for the componentssx/

843 for (Component comp : components) {

844 comp.set state distributions(stateDistributions);

845 comp.set start state and simTime(state[state.length

— 1], simTime);

846 simulator.addEventHandler (comp) ;

847 }

848

849 long time = System.nanoTime() ;

850 simulator.startSimulator () ;

851 time = System.nanoTime ()—time;

852

853 pw_t_s.append(time + "\r\n");

854 }

855

856 private static void calculate_ p () {

857 calc.findAllp () ;

858 }

859

860 private static void calculate r () {

861 calc = new Calculate (numSims, components, phi.get cut_sets
(), phi);

862 calc.calculate_r_s();

863 }

864

865 private static long calculate ls() {

866 long time = System.nanoTime() ;

867 calc.findAll _1();

868 time = System.nanoTime ()—time;

869 return time;

870 }

871

872 private static long calculate established bound () {

873 long time = System.nanoTime() ;

874 calc.find established lower bound();

875 time = System.nanoTime ()—time;

876

877 return time;

878 }

879

880 private static void calculate new lower bound(PrintWriter pw_t_ Lj)

{

65

long time = System.nanoTime() ;
calc.calculate new lower bound();

time = System.nanoTime ()—time;

pw_t_Lj.append(time + "\r\n");

66

6.2 Find minimal cut sets class

import
import

import

public

java.util.ArrayList;
java.util .HashMap;

java.util.List;

class Find minimal cut_sets {

private HashMap<Integer , Cut_or_path_set> cutSets = new HashMap<
Integer , Cut_or path set>();

private HashMap<Component, List<List<Component>>> path_ sets = new
HashMap<Component, List<List<Component>>>();

private List<Component> firstComponents;

private List<Component> path = new ArrayList<Component>();

boolean flow;

Find minimal cut_sets(List <Component> firstComponents, boolean flow
, Phi system) {
this.firstComponents = firstComponents;
this. flow = flow;
loop path_set();
minimalCut (system) ;

public HashMap<Integer , Cut_or path set> returnCutSets () {
return cutSets;

private void minimalCut(Phi system) {
HashMap<Component , HashMap<Integer , List<Component>>> cuts
= find _cuts_for each branch();
find _cuts(cuts, 0, new ArrayList<Component>(), true, system

)

private void add_ minimal cut(List<Component> list , Phi system) {
Cut_or path set cutSet = new Cut_ or_ path set();
cutSet.add component vector(list , cutSets.size (), system);
cutSets.put(cutSet.getIndex (), cutSet);

private void find_cuts(HashMap<Component, HashMap<Integer , List<
Component>>> all cuts sorted after first comp, int compNumber,
List <Component> cantHave, boolean first
) A
HashMap<Integer , List<Component>> cutList =

all cuts sorted after first comp.get (firstComponents.

, Phi system

get (compNumber)) ;

List <Component> first comps has only one next =
check and_find_which_first comps_thta_ has_ only one_next
()3

find _cut_lists(all_cuts_sorted after first comp, cutList,
compNumber, cantHave, 0, first , system);

private void find_ cut_lists (HashMap<Component, HashMap<Integer ,
List <Component>>> all cuts sorted after first comp,
HashMap<Integer , List<Component>> cutList, int
compNumber, List<Component> cant have in_ path,
int lengthLooping,
boolean first , Phi system) {
boolean added last_ element in_lists to_cant have in_path =

false ;
int lengthLists = O0;
boolean not_entered_loop = true;
boolean first _comp_has_only one_ next = false;
Component nextComp = null;

if (firstComponents. get (compNumber) .

get list _of which_ components this goes_ to().size () =—

67

{

50 first _comp_ has only one_ next = true;

51 nextComp = firstComponents.get (compNumber) .
get list _of which components this goes to().get
(0)

52 }

53 for (List<Component> cut : cutList.values()) {

54 lengthLists++;

55 if (!check if list_is_in_path(cut, path)) {

56 for (Component comp : cut) {

57 if (first_comp_ has only one next &&

comp != nextComp) {

58 cant _have in_path =
add to_ cantHaveInPath (
cutList.get (cutList.
size () — 2),
cant_have in_path);

59 }

60 if (!

check if component is in cantHavelnPath
(comp, cant_ have in_ path)) {

61 not entered loop = false;

62 if (compNumber = 0 &&
first && cutList.get(
cutList.size() — 1).
containsAll (cut)) {

63 cant _have in_path =

new ArrayList<
Component > () ;

64 }

65 cant _have in_path =
add to cantHaveInPath (
cut, cant have in_path)
5

66 if (cutList.size () > 1 &&
first) {

67 cant _have in_path =

add_to_cantHavelnPath
(cutList . get (
cutList.size ()

-1,

cant _have in_path

)3

68 }

69 if (cutList.size() < 3 &&
cutList.get (cutList.
size () — 1).containsAll
(cut)) {

70 cant _have in_path =

add_to_cantHaveInPath
(cutList.get (0)

)

cant _have in_path

)5

71 }

72 path.add (comp) ;

73 boolean enteredIf = false;

74 if (!cutList.get(cutList.
size () — 2).containsAll
(cut)

75 && !cutList
.get (
cutList
.size ()
- 1).

containsAll

68

~
~

78

79

80

81

83

84

90

91

96

97

69

(cut))
{

List <Component>
sendIn = new
ArrayList <
Component > () ;

sendIn.addAll(
cant_have in_path
)3

find cut lists (

all_cuts_sorted after first comp

, cutList ,
compNumber,
sendIn ,
lengthLooping +

1, false,
system) ;
enteredIf true;

cant _have in_path =

add_to_cantHavelnPath
(cutList.get (
lengthLists),
cant _have in_ path
)3
}
if (compNumber < (
firstComponents.size ()
— 1) & & !enteredIf) {
List <Component>
sendIn = new
ArrayList <
Component > () ;
sendIn.addAll(
cant _have in_path
)5

find _cuts (

all _cuts_sorted after_ first comp

, compNumber +

1, sendIn, true

, system);
enteredIf

true;

}
if (!lenteredIf) {

List <Component>
setCut = new
ArrayList <
Component > () ;

setCut .addAll(path)

add _minimal cut (
setCut , system)

3

path.remove (comp) ;

cant _have in_ path =
remove_from_cantHavelnPath
(cut, cant_ have in_ path
)3

if (cutList.size() > 1 &&
first) {

cant _have in_path =

remove from cantHaveInPath
(cutList.get(

cutList.size ()

-1,

105

106

107
108
109
110

143

145
146
147

cant _have_in_path

)
}

if (first_comp_has only one_ next){
cant _have in_path =
remove_from_cantHaveIlnPath
(cutList.get (cutList.
size () — 2),

cant _have in_ path);

}

} else if (cut != cutList.get(cutList.size() — 1)
&& not entered loop) {
cant _have in_ path = add_to_cantHavelnPath (
cutList.get (cutList.size() — 1),
cant_have in_path);
added last element in_ lists to cant have in_path
= true;

}
if (first _comp has only one_ next){
cant have in path = add to cantHaveInPath(cutList.
get (cutList.size () — 2), cant_ have in_path);
}
if (added_last_element in_lists to_ cant have in_ path &&
lengthLooping == 0){
if (compNumber < (firstComponents.size () — 1)) {
List <Component> sendIn = new ArrayList<
Component > () ;
sendIn.addAll (cant have in_path);
find cuts(all _cuts_sorted after first comp ,
compNumber + 1, sendIn, true, system);
}
} else if (not_ entered loop) {
List <Component> setCut = new ArrayList<Component>()
setCut .addAll(path);

add_minimal cut(setCut, system);

private boolean check if list is_in_path(List <Component> list , List
<Component> statePaths) {
for (Component comp : list) {
if (statePaths.contains(comp)) {
return true;

}

return false;

private List<Component> remove from cantHaveInPath(List<Component>
list , List<Component> cantHave) {
for (Component remove : list) {
cantHave.remove (remove) ;

}

return cantHave;

private List<Component> add_to_cantHaveIlnPath (List <Component> list ,
List <Component> cantHave) {
for (Component add : list) {
cantHave.add (add) ;
}

return cantHave;

70

160
161

162
163

169

180

181
182
183
184
185

186

192
193
194

195

private boolean check if component is in_ cantHaveInPath (Component
comp, List<Component> list) {
for (Component 1 : list) {
if (l.equals(comp)) {

return true;

}

return false;

private HashMap<Component, HashMap<Integer , List<Component>>>
find _cuts_for each branch() {
HashMap<Component, HashMap<Integer , List <Component>>> cuts
= new HashMap<Component, HashMap<Integer , List<

Component>>>();
for (Component ¢ : firstComponents) {
List <List <Component>> cut = new ArrayList<List<
Component >>();

cut.addAll(path _sets.get(c));
cuts.put(c, split_cut_ branches(cut, c.
get comp number()));

}

return cuts;

private List<Component>
check and_find which first comps thta has only one next() {
List <Component> listOfNextComps = new ArrayList<Component
>0;
for (Component comp: firstComponents) {
List <Component> next = comp.
get list _of which_ components this goes to();
if (next.size () = 1){
listOfNextComps.addAll (next) ;

}

return listOfNextComps;

private HashMap<Integer , List <Component>> split_ cut_branches(List<
List <Component>> cut, int firstCompNumber) {
HashMap<Integer , List<Component>> cuts = new HashMap<
Integer , List <Component>>();
int j = 0;
List <Component> firstComp = new ArrayList<Component>();

List <Component> first comp_next_only_ one = null;
int nextCompNumber = —1;
if (firstComponents. get (firstCompNumber) .
get list _of which components_this goes_ to().size() = 1
&& cut.size () != 1){
first_comp _next_only one = firstComponents.get (

firstCompNumber) .
get list _of which components this_goes_ to();

nextCompNumber = first comp next only one.get (0).
get _comp_ number () ;
}
boolean first_comp_not_added = true;
for (List<Component> list : cut) {
List <Component> setCuts = new ArrayList<Component
>0

for (int 1 = 0; i1 < list.size(); i++) {
path.add(list .get(i));
if (!checkIfExists(cuts, path) && list.get(
i).get _comp number () != firstCompNumber
&& list .get(i).get comp number() !=
nextCompNumber) {
setCuts.addAll (path);

71

196

239
240
241

242

248
249

250

} else if (list.get(i).get comp number() =—

firstCompNumber &&
first _comp_not_added) {
firstComp .addAll(path);

first _comp_not_added = false;
}
path.remove(list .get(i));
}
cuts.put(j, setCuts);
J++s
}
if (first_comp next only one != null){
cuts.put(j, first comp next only one);
JA5
}

cuts.put(j,

return cuts;

firstComp) ;

private boolean checkIfExists (HashMap<Integer , List<Component>>
cuts, List<Component> setCut) {

(List <Component> list : cuts.values()) {

list .contains (setCut)) {
return true;

for

}

if

(

return false;

private void loop_ path_ set () {

if (flow
} else {
}

for

for

true)

{

(Component ¢ : firstComponents) {
List <List <Component>> Path = new ArrayList<

List <Component>>();

find path set flow(c, c, Path);
set _minimal path information(Path, c);

(Component ¢ : firstComponents) {
List <List <Component>> Path = new ArrayList<

List <Component >>();

set _minimal path information(Path, c¢);

private void set_minimal path information (List<List <Component>>
Path, Component c¢) {
path sets.put(c, Path);
0; i < path_sets.get(c).size(); i++) {
(Component add_info_to_component : path_sets.
get(c).get (1)) {
add_info_to_component.

for

(int

i
for

add minimal path vector info(c, i);

private void find_ path_set_ flow(Component first , Component c, List<
List <Component>> Path) {
path.add(c);

if

(c.get_list _of which components this goes to() != null)
{
for (Component next : c.
get list _of which components this goes to()) {
if (!first.

get list _of which_components_ this_goes_to

72

N
ot
%)

() .contains (next) || first = ¢) {
if (next.
get list _of which_ components_ this_goes_to
() !'= null && next.
get list _of which_components_ this_goes_to
() size () = 1) {
Component nextsnext = next.
get list of which components this goes to
(). get (0) ;
if (!path.contains(
nextsnext)) {
find path set flow(
first , next,
Path) ;

} else {
find path_ set flow(first ,
next , Path);

List <Component> setPath = new ArrayList<Component
>()s
setPath.addAll (path);
Path.add(setPath);
}
path.remove(c);
return ;

73

)

0 N O w;

10
11
12
13
14

16
17
18
19

20

21

22
23

24

26

27

28

29

30

31

32

33
34

36
37
38
39
40
41
42
43
44

46
47
48
49

6.3 Default simulator class

package sim;
/*

sk 3k ok ok sk ko kR R KRR KRR R R R R R R KRR R R R R R KRR R R R R R R R R R R R R R KRR R R R R R R R R R Rk R K

Type: DefaultSimulator

Package: no.uio.simutils

@author arne

Qversion 1.0

Description: Default implementation of the simulator interface

Copyright (C) 2006 by University of Oslo. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification , are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice , this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright
notice , this list of conditions and the following disclaimer in
the
documentation and/or other materials provided with the

distribution .

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’

AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF

SUCH DAMAGE.

sk 3k ok ok ko kR KRR R R R R R R R R R KRR KRR KRR KRR KRR R R KRR R R KRR R R KRR R R R R R R R R R R Rk K

*/
import java.util.Vector;

public class DefaultSimulator implements Simulator

{
private static boolean DISPLAY ITERATIONS = false;

private static int DISPLAY FREQUENCY = 1;
public static void SET_DISPLAY ITERATIONS(boolean flag)

{
DISPLAY ITERATIONS = flag;

public static void SET DISPLAY FREQUENCY(int freq)
{

74

51 DISPLAY_ FREQUENCY = freq;

52 }

53

54 protected static final double EPS = 1le—10;

55

56 private Vector<SimEventHandler> eventHandlers;

57 protected int numSims; // The number of
simulation runs

58 protected double simTime; // The length of
each simulation

59

60 public DefaultSimulator (int numSims, double simTime)

61 {

62 eventHandlers = new Vector<SimEventHandler >();

63 this .numSims = numSims;

64 this.simTime = simTime;

65 }

66

67 public DefaultSimulator (int capacity, int numSims, double simTime)

68 {

69 eventHandlers = new Vector<SimEventHandler>(capacity);

70 this.numSims = numSims;

71 this.simTime = simTime;

72 }

73

74 public int eventHandlerCount ()

76 return eventHandlers.size ();

79 public void addEventHandler (SimEventHandler eventHandler)
80 {

81 eventHandlers .add (eventHandler) ;

82 }

83

84 public SimEventHandler getEventHandlerAt(int index)
8 {

86 return eventHandlers.elementAt (index);

87 }

88

89 protected void initSimulator ()

90 {

91 // NULL—method

92 }

93

94 protected void initIteration (int iteration)

95 {

06 if (DISPLAY ITERATIONS)

97 {

08 if (DISPLAY FREQUENCY <= 1)

99 {

100 System.out.println ("Iteration " + iteration

)

101 }

102 else

103 {

104 if (iteration % DISPLAY FREQUENCY = 0)
105 {

106 System.out. println("Iteration " +

iteration);
107 }
108 }

109 }

110 }

111

112 public void startSimulator ()
113 {

114 initSimulator () ;

75

int num = eventHandlerCount () ;

for (int i = 1; i <= numSims; i++)

{

initIteration (i);
SimEventQueue eventQueue = new SimEventQueue() ;
for (int j = 0; j < num; j++)

{

getEventHandlerAt (j).prepareToSim (

eventQueue) ;

eventQueue. processAllEvents (simTime + EPS);

public void stopSimulator(boolean displayResults)

{
NULL—method

76

6.4 Phi class (System class)

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

public class Phi {

private List<Component> components = null;

private HashMap<Integer ,Cut_or_path_set> cutSets = new HashMap<
Integer ,Cut_or path set>();

private List<Component> first components = new ArrayList<Component
>0;

private Find_minimal cut_sets find_cut_sets;

private Find_minimal_path_and_maximal_cut_vectors
find _minimal path_and_ maximal_ cut_vectors;

private HashMap<Double, List <Minimal_path_or_maximal_cut_vector>>
maximal cut_vectors;

private HashMap<Double, List <Minimal_path_or_maximal_cut_vector>>
minimal path_vectors;

private List<Double> systemStates;

private double systemState;

private double system minimum _state;

private Cut_or_ path set cut_with lowest state;

/xx Is it a flow network? Yes = true and no = false. Standard is
false. x/

private Boolean flow = false;

private Integer || stored state values;

private Integer [] stored minimum _values;

private int cuts_ that has stored its value = 1;

private double maxState;

public void addComponent(Component c) {
this.components.add(c);
setFirst ();

public void setComponents(List<Component> c) {
this.components = c;
setFirst ();

public void set system states(List<Double> states){
systemStates = states;

private void initialize stored state values and_ minimum _values() {

stored state values = new Integer[systemStates.size()];
stored _minimum _values = new Integer[systemStates.size () |;
for (int i = 0; i < systemStates.size(); i++) {
stored state values[i]| = 0;
stored minimum values[i] = 0;
}
}
public void find_ vectors () {
find_minimal path_and_maximal_cut_vectors = new

Find _minimal path_and_ maximal cut_vectors(cutSets,
components) ;

systemStates = find minimal path_and_ maximal cut_vectors.
get _system _states () ;

find _max_state () ;

maximal cut vectors =

77

58

83
84
85
86
87
88
89
90

116
117
118

find_minimal path_and_maximal cut_vectors.
get maximal cuts();

minimal_path_vectors =
find _minimal path_ and maximal cut_vectors.
get _minimal paths();

initialize stored state values and_ minimum _values();

private void find_ max_state() {
maxState = systemStates. get(systemStates.size ()—1);
systemState = maxState;

system minimum _state = systemState;

public void findCuts () {

find cut_ sets = new Find minimal cut_sets(first components,
, this);
cutSets = find cut_sets.returnCutSets();

flow

public void addComponents(List <Component> c) {
for (Component comp : c) {
this.components.add (comp) ;
}
setFirst ();
findCuts () ;

public void removeComponent(Component c) {
components.remove(c);
first _components.remove(c);
findCuts () ;

public void changeFlow (Boolean f) {
flow = f;

public void setFirst () {
for (Component ¢ : components) {
if (c.is_this_one_ first()) {
first components.add(c);

public void find_system state(){

systemState = maxState;
Set set = cutSets.entrySet();
Iterator iterator = set.iterator();

while (iterator.hasNext()) {
double tempSystemState = 0;
Map. Entry mentry = (Map.Entry) iterator.next();
Cut_or_ path_ set cut = (Cut_or path set) mentry.
getValue () ;
if (cut.get current set state() < systemState){
systemState = cut.get current_set_ state();

cut with lowest state = cut;

public HashMap<Double, List <Minimal path_or_maximal_cut_vector>>
get maximal cut_ vectors(){
return maximal_cut_vectors;

78

119 public HashMap<Double, List <Minimal path_ or_maximal_ cut_vector>>
get minimal path_ vectors() {

120 return minimal_path_vectors;

121 }

122

123 public List<Double> get system states(){

124 return systemStates;

125 }

126

127 public Double get system state(){

128 return systemState;

129 }

130

131 public void find new current state(double subsetState ,

Cut_or_path_set cut) {

132 if (subsetState < systemState){

133 systemState = subsetState;

134 cut _with lowest state = cut;

135 }

136 else if (systemState < subsetState && cut_with lowest state

= cut){

137 find system state();

138 }

139 if (systemState < system minimum state){

140 system _minimum _state = systemState;

141 }

142 }

143

144 public void set cut_sets(HashMap<Integer , Cut_or_ path_set> cutSets)

{

145 this.cutSets = cutSets;

146 }

147

148 public HashMap<Integer , Cut_ or path set> get cut sets(){

149 return cutSets;

150 }

151

152

153 public void tell phi_ to_ store state value() {

154 if (cuts_that has_stored its_value == cutSets.size ()) {

155 store_state value();

156 store_minimum _value () ;

157 systemState = maxState;

158 system _minimum _state = systemState;

159 cut_with lowest state = null;

160 cuts_that_ has_stored_its_value = 1;

161 } else {

162 cuts_that_has_stored_its_valuc++;

163 }

164 }

165

166 public void store_ state value() {

167 for (int i = 0; i <= maxState; i++) {

168 if (i = systemState) {

169 stored state values[i] =
stored state values[i] + 1;

170 break ;

171 }

172 }

173 }

174

175 private void store minimum_value() {

176 for (int i = 0; i < systemStates.size(); i++) {

177 if (systemStates.get(i) == system minimum _state) {

178 stored minimum values[i] =

stored minimum _values|[i] + 1;
179 break ;

79

181
182
183
184
185
186
187
188
189
190
191
192
193
194

public

public

Integer [] get_Stored Minimum_Value Counts () {

return stored minimum _values;

Integer [] get Stored State Values(){

return

stored _state_values;

80

6.5 Component class

import
import

import

import
import
import
import

public

java.util.ArrayList;
java.util .HashMap;

java.util.List;

no.uio.stochutils.Formula;
sim.SimEvent;
sim.SimEventHandler;

sim . SimEventQueue;

class Component implements SimEventHandler{

/*% Set the states of the component. Example:

private Double[] states;

/*% Distribution for each state */

private HashMap<Double, Formula> state distributions = new HashMap<

Double , Formula > () ;
//Set the starting state for this Component

private double start_state;

/*x Set name of the component. Example: X1 x/

private String name;

{0,1,2,3}

/*% Set witch components this one is passing to x*/

private List<Component> goesTo = null;
/*% Is this the first component? x/
private boolean first = false;

/** Which component number is this? =/
private int compNumber;

private double current state;

private double minimum _state;

/#*+ MinimalPaths this component is in x*/

private HashMap<Component, Integer >

minimal_path_vectors_this_component_is_in = new HashMap<

Component, Integer >();
// private HashMap<Integer , List<Component>>
minimalCutsThisComponentIsIn =

// mnew HashMap<Integer , List <Component>>();

private List<Cut_or_ path_ set> cutSets = new ArrayList<

Cut_or_ path_ set>();
private Integer[] stored last state values;
private Integer || stored minimum values;
private double simTime;

Component (Double[] s, String n, int number) {

states = s

initialize stored last state values and minimum values();

name = n;

compNumber = number;

private void initialize stored last_ state_values_and_minimum _values

O A{

stored last state values = new Integer[states.length];
stored _minimum _values = new Integer[states.length|;
for (int i = 0; i < states.length;i++){

stored last _state values[i] = 0 ;

stored minimum _values[i] = 0;

public void goesTo(List<Component> c) {
goesTo = c;

public boolean is_this_one_first () {

return first;

81

61

62 public void set current state(double newState) {

63 tell _cut_sets of the change(newState—current state);
64 current state = newState;

65 if (current state < minimum _state) {

66 minimum _state — current state;

67 }

68 }

69

70

71 private void tell cut_sets of the change(double stateDiff) {
72 for (Cut_or path set cut:cutSets){

73 cut.find new current state(stateDiff);

76

77 /%

78 * Here you can set that the component is the first component the
system

79 * starts with.

80 */

81 public void setFirst (boolean f) {

82 first = f;

83 }

84

85 public void add minimal path vector info(Component c, int i) {

86 minimal path_vectors this component is in.put(c, i);

87 }

88

89 public HashMap<Component, Integer >
get _minimal path vectors this component is_in() {

90 return minimal path vectors this component is in;

91 }

92

93

94 public void addCutSet(Cut_ or path set cutSet) {

95 cutSets.add(cutSet);

96 }

97

98 public List<Cut_or_ path_ set> get cut_sets this component is_in() {
99 return cutSets;

100 }

101

102 public Double[] getStates (){

103 return states;

104 }

105

106 public Integer get comp_ number () {

107 return compNumber;

108 }

109

110 public List<Component> get list of which components_this goes_to(){

111 return goesTo;

112 }

113

114 public Double get current state ()

115 return current state;

116 }

117

118 public void set_ start state and_ simTime(double startState, double
simTime) {

119 this.start state = startState;

120 this.simTime = simTime;

121 }

122

123 public void set_state distributions (HashMap<Double , Formula>
stateDistributions){

124 this.state distributions = stateDistributions;

82

126

127 public String getName () {

128 return name;

129 }

130

131

132 @Override

133 public void prepareToSim (SimEventQueue eventQueue) {

134 current state = start_ state;

135 minimum _state = current_state;

136 prepare simEvent and add_ to queue(eventQueue);

137 }

138

139 @Override

140 public void handleSimEvent(SimEvent event, SimEventQueue eventQueue
) A

141 int eventCode = event.getEventCode();

142 if (eventCode = 1){

143 updateState () ;

144 prepare_simEvent and add_to_ queue(eventQueue);

145 }

146 else{

147 store last state value();

148 store_minimum _value() ;

149 tell cuts to store values();

150 current _state = start_state;

151 minimum _state = current state;

152 }

156 private void tell cuts to store values() {
157 for (Cut_or path set cut:cutSets){
158 cut.tell set to_ store values();

162 private void store last state value() {

163 for (int i = 0; i <= states.length—1; i++){

164 if (states[i] == current_state){

165 stored _last_state values|[i] =
stored last state values[i] +1;

166 break ;

167 }

168 }

169 }

170

171 private void store minimum _value() {

172 for (int i = 0; i <= states.length—1; i++){

173 if (states[i] == minimum_state){

174 stored _minimum _values[i] =

stored minimum _values[i] + 1;
175 break;

179
180 private void prepare simEvent and add to queue(SimEventQueue
eventQueue) {

181 Formula f = state distributions.get(current state);

182 double eventTime = f.getFormulaValue();

183 double next event time = eventTime + eventQueue.
getCurrentTime () ;

184 int eventCode = 0;

185 /*Check if the next event is before simTime. If not set
next event time equal simTimex/

186 if (next event time < simTime) {

83

187
188
189
190
191
192

216

218
219
220
221
222
223
224
225
226

eventCode = 1;

}
else{
next event time — simTime;
}
SimEvent simEv = new SimEvent(next event time,
this);

eventQueue.addEvent (simEv) ;

private void updateState (){
double newState = find next state();
set _current state(newState) ;

}
private double find next state() {
int number_of states = states.length —1;
if (current state = states [0]) {
return states [number_ of states]|;
}
else{
for (int i = number of states—1; i >= 0;
double state = states[i];
if (current state > state){
return state;
}
}
}

return 0.0;

public Integer [] get Stored State Values () {
return stored last_state_values;

public Integer [] get Stored Minimum_ Value Counts () {
return stored_minimum _ values;

84

eventCode ,

i—){

6.6 Cut or path set class

import
import
import
import

public

java.util.ArrayList;
java.util.Collections;
java.util.List;
java.util .HashMap;

class Cut_or_ path_set {
private Phi system;

private List<Component> component_ vector = new ArrayList<Component

>0
private Integer index;
private double set state;
private double set minimum _state;
private Integer [|] stored_ state_ values;
private Integer || stored minimum _value counts;
private List<Double> states = new ArrayList<Double>();
private Double maxState;
private int number_ of states = 1;
private int components_ that has stored its_ value = 1;
private int size_ component_vector;

public void add_component_ vector(List<Component> comps, int index,
Phi system) {
component _vector.addAll(comps) ;
add_set to_ Component () ;
this.system = system;
find _max_state () ;
findStates () ;
initialize stored state values and_ minimum _values();
this.index = index;
size _component vector — component_ vector.size () H
}
private void findStates () {
calculate state (0,0);
}
private void calculate state(int compNumber, double state) {
for (double compState : component vector.get (compNumber) .

getStates ()) {
state = state + compState;
if (state <= maxState) {

if (compNumber < component vector.size ()—1)

{

calculate state (compNumber + 1,

state);
} else if (!states.contains(state))
states.add(state);

}

Collections .sort (states);

private void find max_state() {
maxState = 0.0;

for (Component comp : component vector) {
Double || states = comp.getStates();
maxState = maxState + states[states.length —
number of states = number of states+(states.

—1);
}

set _state = maxState;

set _minimum _state — set state;

85

{

1]
length

61

62

64

80

86
87
88
89
90

96
97
98
99
100
101
102
103
104
105
106

107
108
109
110

private void initialize stored state values and_ minimum _values() {

stored state values = new Integer[number_ of states];
stored _minimum value counts = new Integer [number of states
[
for (int i = 0; i < number_ of states; i++) {
stored _state values[i] = 0;
stored _minimum _value counts[i]| = 0;

private void add_set_to_ Component () {
for (Component comp : component vector) {
comp.addCutSet (this);

public List<Component> get Component_vector () {

return component_vector;

public Integer getIndex () {

return index;

public void find new current state(double stateDiff){
set state += stateDiff;
if (set state < set minimum _state){
set_minimum _state = set_state;

}
tell _Phi_about the change();

private void tell Phi_ about the change() {
system.find new current state(set state, this);

public double get current_set_state() {
return set_state;

public void store_ state value() {
for (int i = 0; i <= maxState; i++) {
if (i = set_state) {
stored state values[i] =
stored state values[i] + 1;
break;

public double get maxState() {

return maxState;

public Integer [] get stored state values() {

return stored state values;

public void tell set to_store_ values() {
if (components that has stored its value =—
component _vector.size ()) {
store state value();
store_minimum _value () ;
system.tell phi to store state value();
set _state = maxState;

86

126 components that has_ stored_its_value = 1;
127 } else {
128 componcnts_that_has_storcd_its_valuc++;

132 private void store minimum _value() {

133 for (int i = 0; i < states.size(); i++) {

134 if (states.get(i) == set_minimum _state) {
135 stored minimum value counts[i] =

stored _minimum _value counts[i]| +1;
136 break ;

139 }

140

141 public List<Double> getStates () {

142 return states;

143 }

144

145 public Integer [] get Stored State Values () {

146 return storedistateivalues;

147 }

148

149 public Integer | get Stored Minimum Value Counts(){
150 return stored minimum _ value counts;

151 }

152

153 public String get Component names () {

154 String names = "";

155 for (Component comp: component vector){

156 names = names + comp.getName() + ", ";
157 }

158 return names;

161 public Integer get set size() {
162 return size_component_vector;

6.7 Minimal path or minimal cut vector class

1 import java.util.HashMap;

3 public class Minimal path or maximal cut vector {
4 /*% This class will contain a minimal path or maximal cut vector =

* /

w

private HashMap<Component,Double> vector = new HashMap<Component,

Double >() ;
6
7 public void makeVector (HashMap<Component, Double> v){
8 vector = v;
9 }
10
11 public HashMap<Component, Double> returnVector () {
12 return vector;

87

6.8 Find minimal path and minimal cut vectors class

import
import
import
import
import
import
import
import

public

java.
java.
java .
java.
java .
java.
java.

java.

util .

util
util

util.

util

util.
util .
util .

ArrayList;
.HashMap
.Iterator;
List ;

.Map;

Set ;

Arrays;
Collections;

class Find minimal path and maximal cut_vectors {

/*xThis

private HashMap<Double,

private HashMap<Double,

HashMap<Integer ,
HashMap<Integer ,
HashMap<Integer ,

class finds the minimal path and maximal cut vectorsxx/

maximal _cuts = new HashMap<Double, List<

Minimal path or maximal cut_vector>>();

minimal paths = new HashMap<Double, List<

Minimal path_or_ maximal cut_vector>>();

Cut_or_path_set> cutSets;
List <Cut_or_path_set>> sorted_cut_sets = new
List <Cut_or_ path set>>();

List <Minimal _path_or_ maximal cut_vector>>

List <Minimal _path_or_maximal_cut_vector>>

private List<Double> systemState = new ArrayList<Double >();
double highest system state = Double.MAX VALUE;
List <Component> components;

Find _minimal path and_ maximal cut_vectors(HashMap<Integer ,

Cut_or_path set> cutSets, List<Component> components)

private

private

this.cutSets = cutSets;

this.components = components;

find _highest system state();

find _all system states();
find sorted cut_set();

find maximal cut_ vector();

find _minimal path_ vector();

void find sorted cut

_set () {

Set set = cutSets.entrySet();

Iterator iterator =

set.iterator ();

while (iterator.hasNext()) {

Map. Entry mentry = (Map.Entry) iterator.next();
Cut_or_path_set cut = (Cut_or_ path set) mentry.

getValue () ;
int size = cut.get set size();
List <Cut_or path set> sets;
if (sorted cut_sets.containsKey(size)){

sets

}

else {

sets = new ArrayList<Cut_or_ path_ set>();

}

sets.add(cut

= sorted cut_ sets.get(size);

)

sorted cut sets.put(size, sets);

void find highest system state() {
Set set = cutSets.entrySet();

Iterator iterator =

set.iterator ();

while (iterator.hasNext()) {

Map. Entry mentry = (Map.Entry) iterator.next();
Cut_or_path_set cut = (Cut_or_ path_ set) mentry.

getValue () ;

if (cut.get maxState()<highest system state){
highest system _state = cut.get maxState () ;

88

{

68

69

T
78
79
80

81

83

84

85
86

96

97

98
99
100
101
102
103

104
105

106
107
108
109

private void find_all system states() {
Set set = cutSets.entrySet();
Iterator iterator = set.iterator();
while (iterator.hasNext()) {
Map. Entry mentry = (Map.Entry) iterator.next();
Cut_or_ path_set cut = (Cut_or_ path_ set) mentry.
getValue () ;
double cutState = 0;
List <Component> componentVector = cut.
get Component vector () ;
calculate cut_set state(componentVector.get (0), O,

cutState, componentVector, true) H

private void calculate cut_set state(Component cutComp, int
compNumber, double cutState, List<Component> componentVector,
boolean previous comp in_last state) {
boolean lastComp = check if this is the last comp (cutComp,
componentVector) ;
Double[] states = cutComp.getStates();
for (double state : states) {
cutState = cutState + state;
if (cutState <= highest system state) {
boolean is this last state =
is_this_comp_in_last_ state_ and_previous_last_state
(previous comp in_last state, states,
state);
if (!lastComp) {
calculate cut_ set state(
componentVector. get (compNumber
+ 1), compNumber + 1, cutState,
componentVector,
is_this last state)
5
} else {
add_system _state(cutState, lastComp
, is_this last state);
¥
} else {
break ;
}

cutState = cutState — state;

private boolean check if this is_the_ last comp (Component cutComp,

List <Component> componentVector) {

boolean lastComp = false;
if (cutComp == componentVector.get (componentVector.size () —
1) {
lastComp = true;

}

return lastComp;

private boolean is_this comp in_last state and_ previous last_ state(
boolean last comp state, Double[] states, double state) {
boolean is_this_ last_state = false;
if (state == states|[states.length — 1] && last comp state)
{
is_this last state = true;

}

return is this last state;

89

110
111

133

135

136

138
139

140
141

private void add_system state(double cutState, boolean lastComp,

boolean last_ comp _state) {
if (!systemState.contains(cutState) && cutState <=
highest system _state) {

systemState.add (cutState) ;

}

if (lastComp && last comp state) {
systemState.removelf(u —> u > cutState);
highest system state = cutState;

private void find maximal cut_vector () {

for (double system state : systemState.subList (1,
systemState.size ())) {

HashMap<Component, Double> start vector = new
HashMap<Component, Double >();

start _vector =
put_components_in_minimal_ path_or_ maximal cut_vector
(start vector , true);

Set set = cutSets.entrySet();

Iterator iterator = set.iterator();
while (iterator.hasNext()) {
HashMap<Component, Double> new vector = new

HashMap<Component, Double>();

new vector.putAll(start vector);

Map. Entry mentry = (Map.Entry) iterator.
next () ;

Cut_or_path_set cut_set = (Cut_or_path_set)
mentry . getValue () ;

double comps_State = 0;
if (system state = systemState.get (1)) {
for (Component comp : cut_set.

get Component vector()) {
new _vector.put(comp, comp.
getStates () [0]) ;
comps_State = comps_State +
new _vector. get (comp) ;
}
add _to_maximal cut_vectors(
new_vector, system _state,
comps_ State) ;
} else {
calculate cut_state(system _state,
cut _set.get Component vector(),
0, comps_State, new_vector, 0)

private void calculate cut_ state(double system state, List<

Component> comps, int compNumber, double comps_ summed _state,

HashMap<Component, Double> vector, int cut_ Number)

{

Component comp = comps. get (compNumber) ;
for (double compState : comp.getStates()) {
vector.put(comp, compState);
double temp comps summed state = comps summed state
+ vector.get (comp);
if (system state < temp comps summed state) {
return;

90

163
164
165
166
167

168
169
170

182
183
184
185
186
187
188
189

190

191
192

193
194

204

205
206
207
208

}
if (compNumber == comps.size () — 1) {
check other cuts(vector, system state,
temp comps_ summed state,comps.size ());
} else {
calculate cut state(system state, comps,
compNumber + 1, temp_comps_summed_state

, vector , cut_Number);

private void check other cuts(HashMap<Component, Double> new vector
, double system state, double comps State, int cut_ size) {
for (int i = cut_size—1; i >= 1; i——) {

if (sorted cut_ sets.containsKey(i)) {

for (Cut_or_ path set cut : sorted cut_sets.
get (1)) {
double state = calculate state(

new _vector, cut.
get _Component _vector());
if (state <= comps_State) {
return ;

}

add _to maximal cut_ vectors(new vector, system state,
comps_State) ;

private double calculate state(HashMap<Component, Double>
new_vector, List<Component> comps) {
double state = 0;
for (Component comp : comps) {
state += new vector.get (comp) ;

}

return state;

private void add_to_ minimal path_ vector (HashMap<Component, Double>
vect , double system _state) {
HashMap<Component, Double> sendIn = new HashMap<Component,

Double > () ;
sendIn.putAll(vect);
Minimal _path_or_maximal cut_vector new_vector = new

Minimal path or maximal cut_vector() ;
new _vector.makeVector(sendIn);
add_comps to_max_or_ min(system state, sendIn, new_ vector,

this.minimal paths);

private void add_to_maximal cut_vectors(HashMap<Component, Double>
vect , double system state, double comps summed state) {
if (comps summed_state == system state — 1) {

HashMap<Component, Double> sendIn = new HashMap<
Component, Double >();

sendIn.putAll(vect);

Minimal _path_or_maximal_ cut_vector newVector = new
Minimal path or maximal cut_ vector();

newVector . makeVector(sendIn) ;

add _comps_to max_or_ min(system state, sendIn,
newVector, this.maximal cuts);

private void add_comps_to max_ or_min(double sysState, HashMap<

91

209

210

N
-
=

N
N

228
229
230
231

245

Component, Double> sendIn, Minimal path_ or_ maximal cut_vector
new_vector,
HashMap<Double, List<
Minimal _path_or_maximal_cut_vector>>
add_to_this_vector list) {
List <Minimal path_or_ maximal cut_ vector> listVect;
if (add_to_this_ vector list.containsKey(sysState)) {
listVect = add_to_ this vector list.get(sysState);
boolean exists =
check if the comp combination already exists(
sendIn, listVect);
if (lexists) {
listVect .add (new _vector) ;
add to_ this vector list.put(sysState,
listVect);
}
} else {
listVect = new ArrayList<>(Arrays.asList(new vector
))s

add _to_ this vector list.put(sysState, listVect);

private boolean check if the comp combination already exists(
HashMap<Component, Double> sendIn, List<
Minimal path or maximal cut_ vector> vect list) {
boolean exists = false;
for (Minimal path or maximal cut_ vector vector : vect list)

{

HashMap<Component, Double> v = vector.returnVector

OF

int number of existens of comps_ in sendIn = 0;
for (Component ¢ : components) {
if (v.get(c) = sendIn.get(c)) {

number of existens_ of comps_in_sendIn

++5

}
if (number of existens of comps_in_ sendIn —
components.size ()) {

exists = true;

}

return exists;

private void find_ minimal path vector() {
for (double sysState : systemState) {
HashMap<Component, Double> start vector = new
HashMap<Component, Double >();
start _vector =

put components in minimal path or maximal cut vector

(start vector , false);

HashMap<Component, Double> new_vector = new HashMap
<Component, Double>();

new _vector.putAll(start vector);

set comp states and_calculate cut set state(
sysState , new_vector, 0);

private void set_comp _ states and_calculate cut_set state(double
system state, HashMap<Component, Double> vector, int compNumber
) A
Component comp = components.get(compNumber);
for (double compState : comp.getStates()) {
vector.put(comp, compState);
if (compNumber < components.size () — 1) {

92

256

[CE N}
ot
o

259
260
261
262

263

283
284
285

286
287
288
289
290
291
292
293
294
295
296
297

302
303
304

set _comp_states_and_calculate cut_set_state
(system state, vector , compNumber + 1);
} else {
calculate and_ check cut_set states(
system state, vector, 0);

private void calculate and check cut_ set states(double system state
, HashMap<Component, Double> vector, int cutNumber) {
Cut_or path set set = cutSets.get (cutNumber);

List <Component> comps = set.get Component vector () ;
double cutState = 0;
for (Component comp : comps) {

cutState = cutState + vector.get (comp);
if (system state < cutState) {

return ;

}
if (cutState == system state) {
if (cutNumber < cutSets.size() — 1) {
calculate and_check cut_set states(
system state, vector, cutNumber + 1);
} else {
add to minimal path vector(vector,
system state);

private HashMap<Component, Double>
put_components in_ minimal path or maximal cut_vector (HashMap<
Component, Double> vector, boolean max) {
for (Component ¢ : components) {
if (max) {
vector.put(c, c.getStates()[c.getStates ().
length — 1]);
} else {

vector.put(c, c.getStates () [0]);

}

return vector;

public List<Double> get system states() {

return systemState;

public HashMap<Double, List<Minimal_ path_or_maximal cut_vector>>
get maximal cuts() {
return maximal_cuts;

public HashMap<Double, List<Minimal path or maximal cut vector>>
get _minimal paths () {

return minimal paths;

93

18

44

6.9 Calculate class

import
import
import
import
import
import

import

public

/**This

java.util.ArrayList;
java.util.Collections;

java.util .HashMap;
java.util.Iterator;

java.util.List;

java.util .Map;

java.util.Set;

class Calculate {

class calculate the different bounds

Componcnts * %k /

public List<double[]> ri_Components
public List<double[] > pi_ Components

and find r_ i and p_i for the

new ArrayList<double[] >();
new ArrayList<double[]>();

new ArrayList<double[] >();
new ArrayList<double[]>();

Cut_or_path_set> cuts;

private List<double[]> ri_Cuts =
private List<double[]> pi_Cuts =
private double[] r_ System;
private double[] p_System;
private double[] 1_apostrophe;
private double[] 1_doubleStar;
private double[] established lower bound;
private double[] new_ lower bound;
private int numSims;

private List<Component> comps;
private HashMap<Integer ,

private Phi system;

Calculate (int numSims,
Cut_or_path set> cuts,

this .numSims = numSims;
this.comps = comps;
this.cuts = cuts;
this.system = system;

public void calculate r_s() {
calculate Component rs();
calculate Cut_rs();

calculate System r();

private
for (Component comp
double []
(int i

for = 0;

List <Component> comps,
Phi system) {

void calculate Component rs ()
comps) {
r = new double|[comp.getStates ().length];
i < r.length;
int storedValueCount

HashMap<Integer ,

{

i++) {

= comp.

get Stored Minimum Value Counts () [i];
r[i] = ((1.0xstoredValueCount) / (1.0x
numSims)) ;

comp.get Stored Minimum_Value Counts()[i] =

0;

}

ri_ Components.add(r);

private void calculate Cut_rs() {

Set set = cuts.entrySet ();

Iterator iterator

Map. Entry mentry =
Cut_or_path_set cut
getValue () ;

double []

set.iterator ();
while (iterator.hasNext()) {
(Map. Entry)

iterator .next () ;

(Cut_or_path_set) mentry.

r = new double[cut.

get _Stored Minimum_Value_Counts () .length |;

for (int i = 0;

94

i < r.length;
double storedValueCount = (double)

i++) {

cut.

N

0 0 N N N N N N
= O © 0 N O U = W

82

113
114
115
116
117

private

get _Stored Minimum_Value Counts () [i];
r[i] = (1.0xstoredValueCount) / (1.0x%
numSims) ;
cut.get Stored Minimum_Value Counts()[i] =
03

ri_Cuts.add(r);

void calculate System r () {
r System = new double[system.
get _Stored Minimum _Value Counts () .length |;
for (int i = 0; i < r_System.length; i++) {
double storedValueCount = (double) system.
get Stored Minimum _Value Counts () [i];
r_System[i] = (1.0xstoredValueCount) / (1.0*numSims
)i

system.get Stored Minimum_Value Counts()[i] = 0;

public void findAllp () {

private

private

private

private

{

calculate Component p();
calculate Cut_p();
calculate System p();

void calculate System p() {
double [] pi = new double[system.
get Stored Minimum_Value Counts () .length |;
List <Double> compStates = system.get system states();
calculateP (pi, compStates, r_ System);
p_System = pi;

void calculate Cut_p () {

Set set = cuts.entrySet();

Iterator iterator = set.iterator();

while (iterator.hasNext()) {
Map. Entry mentry = (Map.Entry) iterator.next();
Cut_or_path_set cut = (Cut_or_path_ set) mentry.

getValue () ;

int i = cut.getIndex();
double [] pi = new double|[cut.getStates ().size ()];
List <Double> compStates = cut.getStates ();
calculateP (pi, compStates, ri_Cuts.get(i));
pi_Cuts.add(pi);

void calculate Component p() {
for (int i = 0; i < comps.size(); i++) {
double [| pi = new double[comps.get(i).getStates ().
length |;
Double [] compStates = comps.get(i).getStates();
calculateP (pi, compStates, ri_ Components.get(i));

pi_Components.add(pi);

void calculateP (double|[] pi, Double[]| states, double[] qi)

double p = 1;

pi[0] = p;

for (int i = 1; i < states.length; i++) {
double g = qi[i — 1];
p —= q;

95

118
119
120

122

140

141
142

143

145
146
147
148
149

150

private

pi[i] = p;

void calculateP (double[] pi, List<Double> states, double []

ai) {

double p = 1;

pi[0] = p;

for (int i = 1; i < states.size(); i++) {
double g = qi[i—1];
p — q;
pi[i] = p;

public void findAll_1() {

private

private

calcualte 1 apostrophe();
calcualte 1 doubleStar () ;

void calcualte 1 doubleStar () {
1 _doubleStar = new double|[system.get system states().size ()
—1];
HashMap<Double, List<Minimal path or_ maximal cut_vector>>
maximalCuts = system.get maximal cut_ vectors();
for (int i = 1; i <= 1_doubleStar.length; i++) {
List <Minimal path or maximal cut_ vector> paths =
maximalCuts. get (system.get system states().get(
i));
double value = 1;
for (Minimal path or maximal cut_ vector vect
paths) {
double vectorValue = (double) 1.0;
Set set = vect.returnVector ().entrySet();
Iterator iterator = set.iterator();
while (iterator.hasNext()) {
Map. Entry mentry = (Map. Entry)
iterator .next () ;
Double compStateInPath = (Double)
mentry . getValue () ;

Component comp = (Component) mentry
.getKey () ;
int j = 0;
double state = comp.getStates()[j];
while (state != compStateInPath) {
i+t

state = comp.getStates () []

15

}
if (state != comp.getStates () [comp.
getStates () .length — 1]) {
JHts
vectorValue = (1 — (1.0%
piicomponents .get (comp.
get _comp_ number())[j]))
* (1.0%xvectorValue);
}
}
vectorValue = 1 — vectorValue;
value = (1.0xvectorValue) % (1.0xvalue);

}

1 doubleStar[i — 1] = value;

void calcualte 1 apostrophe() {
1 _apostrophe = new double|[system.get system states().size ()

96

I3

172 HashMap<Double, List<Minimal_ path_or_maximal_cut_vector>>

minimalPaths = system.get minimal path vectors();
173 for (int i = 0; i < 1 _apostrophe.length; i++4) {
174 List <Minimal _path_or_maximal_ cut_vector> paths =

minimalPaths . get (system.get system states().get

(1))

175 double biggestValue = 0;

176 for (Minimal path or_ maximal cut_vector vect
paths) {

177 double vectorValue = 1;

178 Set set = vect.returnVector().entrySet();

179 Iterator iterator = set.iterator();

180 while (iterator.hasNext()) {

181 Map. Entry mentry = (Map. Entry)

iterator .next () ;
182 Double compStateInPath = (Double)
mentry . getValue () ;

183 Component comp = (Component) mentry
-getKey () ;

184 int j = 0;

185 double state = comp.getStates () []];

186 while (state != compStateInPath) {

187 j++;

188 state = comp.getStates () []

15
189 }
190 vectorValue = (1.0%xvectorValue) x*

(1.0%pi_Components. get (comp.
get _comp number ())[j]);
191 }
192 if (biggestValue <= vectorValue) {
193 biggestValue = vectorValue;
194 }
195 }
196 1 _apostrophe[i] = biggestValue;
197 }
198 }
199
200

201

202 void calculate_new lower_bound () {

203 new lower bound = new double[system.get system states().
size ()

204 state enumeration (new double[comps.size()],0,1.0);

205 }

206

207 private void state enumeration(double[] componentsStates,int

compNumber, double value) {

208 Component comp = comps. get (compNumber) ;

209 Double[] states = comp.getStates();

210 for(int statePlace = states.length —1; statePlace >= 0 ;
statePlace —){

211 componentsStates [compNumber| = states|[statePlace |;

212 double tempValue = valuexri_Components. get (

compNumber) [statePlace |;
213 if (compNumber < comps.size ()—1){
214 state enumeration (componentsStates,

compNumber+1,tempValue) ;
215 }

216 else{

217 double lowestCutState =
find _lowest cut_ state(tempValue,
componentsStates) ;

218 add _enumeration (tempValue ,lowestCutState) ;

219 }

220 }

221 }

97

223 private void add_enumeration(double value, double lowestCutState) {
224 List <Double> systemStates = system.get_ system states();
225 for (int statePlace = 0; statePlace < systemStates.size ();
statePlace++){
226 if (systemStates.get(statePlace) <= lowestCutState) {
227 double tempValue = new_lower bound |
statePlace |;
228 new_lower bound[statePlace| = tempValue +
value;
229 }
230 else{
231 return;
232 }
233 }
234 }
235
236 private double find lowest cut_state(double tempValue, double[]
componentsStates) {
237 Set set = cuts.entrySet();
238 Iterator iterator = set.iterator();
239 double minState = Double .MAX VALUE;
240 while (iterator.hasNext()) {

241 Map. Entry mentry = (Map.Entry) iterator.next();
242 Cut_or_path_set cut = (Cut_or_ path_ set) mentry.
getValue () ;

243 double tempState = 0.0;

244 for (Component comp : cut.get Component vector()) {

245 tempState += componentsStates|[comp.
get _comp number () |;

246 }

247 if (tempState < minState){

248 minState = tempState;

249 }

250 }

251 return minState;

252 }

253

254 public void find_established lower bound () {

255 int lenght = 1_doubleStar.length;

256 double [|] B_temp = new double[lenght |;

257 for (int i = lenght—1; i >= 0; i——) {

258 if (1_apostrophe[i+1] <= 1 doubleStar[i]) {

259 B_temp[i] = 1_doubleStar[i];

260 } else {

261 B_temp[i] = 1_apostrophe[i+1];

262 }

263 if (i !'= (lenght—1)){

264 if (B_temp[i] < B_temp[i+1]){

265 B_temp[i] = B_temp[i+1];

266 }

267 }

268 }

269 established lower bound = B_temp;

270 }

271

272

273 public double[] get_p() {

274 return p_System;

275 }

276

277 public double || get established lower bound () {

278 return established lower bound;

279 }

280

281 public double || get 1 doubleStar () {

282 return 1 doubleStar;

283 }

98

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

public

public

public

public

public

double [] get 1 apostrophe()

return 1_apostrophe;

{

List <double[] > get_Component_r
return ri_Components;

List <double[] > get_Cut_r

return ri_ Cuts;

double [| get new lower bound () {

return new_lower_bound;

double [| get System r
return r_System;

_s0)

99

_s0)

{

{

_s0)

Bibliography

1]

2l

3]

4]

[5]

Discrete event simulation. Discrete event simulation— Wikipedia, The
Free Encyclopedia. [Online; accessed 20-September-2017]. URL: https:
//en.wikipedia.org/wiki/Discrete_event_simulation.

Exponential distribution. Exponential distribution— Wikipedia, The Free
Encyclopedia. |Online; accessed 20-September-2017|. URL: https://en.
wikipedia.org/wiki/Exponential_distribution.

Jorund Géasemyr. “Note on flow network systems”. Private communica-
tion. October (2017).

Jgrund Gasemyr and Bent Natvig. “Improved availability bounds for
binary and multistate monotone systems with independent component
processes”. In: Journal of Applied Probability 54.73 (2017), pp. 750-762.
DOI: https://doi.org/10.1017/jpr.2017.32.

Bent Natvig. Multistate Systems Reliability Theory with Applications.
WILEY, 2011. 1SBN: 978-0-470-69750-4.

100

