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Abstract

The solution of the time-dependent Schrédinger equation plays a central
role for our understanding of quantum mechanical systems, spanning from
studies and implementations of quantum circuits to nuclears reactions in stars
and the synthesis of the elements. It provides invaluable information about
the temporal evolution of quantum mechanical systems and their behavior
when interacting with matter and/or external probes. The time-dependent
Schrodinger equation (TDSE) plays thus a ubiquitous role when studying
interacting quantum mechanical many-particle systems. Due to the high
level of complexity involved in time-dependent studies, TDSE applications
and studies have often been limited to few-body systems only.

In order to tackle the increasing complexities of different many-particle
systems, we have in this thesis developed an efficient many-body approach
based on the orbital-adaptive time-dependent coupled-cluster [1] (OATDCC)
method. The coupled-cluster method which we base our theoretical deriva-
tions on, has been applied to a wide range of time-independent many-particle
systems, from atomic and molecular physics to strongly interacting matter as
seen in compact objects like neutron stars. Coupled cluster theory allows for
systematic approximations to the full many-body problem and circumvents
thus many of the dimensionality problems encountered in for example large-
scale diagonalization problems. We refer our implementations and studies
to as just the time-dependent coupled-cluster (TDCC) method. The TDCC
method approximates solutions to the quantum N-body problem and for
N = 2 TDCC is equivalent to the time-dependent configuration-interaction
method (TDCI). The latter provides, within a given effective space, exact
results that can be used to benchmark results from approximative methods
like the TDCC developed here.

In this work, in order to compare our TDCC method with exact results,
we have also developed and implemented a TDCI solver. This is shown to be
correct by comparing with previous studies and is used as a foundation for
verifying the implementation of the TDCC method. We demonstrate that
the methods are equal to numerical precision for one and two-dimensional



quantum dot systems with two particles. The TDCC solver is then used to
compute the time evolution of more complicated many-particle systems. As
a proof of principle, we study a six-electron circular quantum dot in two di-
mensions. The properties of quantum dots play a central role in constructing
quantum circuits to be used in future quantum computers.

Additionally, in order to demonstrate the feasibility of our codes and
formalism, we present ground state energies for circular quantum dot systems
in three dimensions using the Hartree-Fock, Configuration Interaction and
Coupled Cluster methods. The results are shown to be in agreement with
results obtained with other many-body methods.
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Chapter 1

Introduction

Quantum mechanics is a theory that describes the properties of microscopic
systems. It postulates that given the wavefunction, W(r,t), we can in prin-
ciple compute all that there is to know about the system. Given suitable
initial conditions, ¥(r,t) can be determined for all future times by solving
the time-dependent Schrodinger equation (TDSE),

P .
ih—V(r,t) = HV(r,t). (1.1)
ot
The initial conditions are typically taken as a linear combination of what is
called stationary states, which in turn can be found by solving what is known
as the time-independent Schrédinger (TISE) equation

HU(r) = EV(r). (1.2)

Analytical solutions to the TISE is possible only for the simplest systems
and general solutions to the TDSE is even rarer. Thus, one must resort to
numerical methods. Of particular interest is the so-called many-body prob-
lem where one considers systems with large numbers of interacting particles,
where large can be anywhere from two to infinity.

1.1 Many-Body Methods

Several approaches for solving the many-body TISE approximatively have
been devised such as Hartree-Fock (HF) theory [2], Density Functional The-
ory (DFT) [3,4], Configuration Interaction (CI) theory and Coupled Cluster
(CC) theory [5-7]. While efficient, Hartree-Fock and DFT are insufficient if

one wants a high degree of accuracy.

11



CHAPTER 1. INTRODUCTION 12

Configuration Interaction theory and the various Coupled Cluster meth-
ods are hierarchical in the sense that one can systematically construct in-
creasingly accurate approximations. If the CI method is not truncated we
have what is known as Full Configuration Interaction (FCI). Full Configura-
tion Interaction can be seen as exact (within some finite space), however it
suffers from exponential scaling. Truncated CI methods which would achieve
polynomial scaling are problematic since they are not size-consistent and ex-
tensive. Truncated CC methods on the other hand are size-consistent and
extensive and achieve polynomial scaling [7]. Due to this fact CC theory is
considered as the gold standard of many-body techniques if high accuracy is
desired.

Similarly, there exist different approximations to the solution of the TDSE
with the Multiconfiguration Time-Dependent Hartree-Fock method [8] (MCT-
DHF) being considered the most accurate. Multiconfiguration Time-Dependent
Hartree-Fock, which is a combination of CI and HF generalized to the time
domain, suffers from exponential scaling. In a recent article [1], Simen
Kvaal proposed a method based on CC theory, the so-called Orbital-Adaptive
Time-Dependent Coupled-Cluster method (OATDCC), which is a hierarchi-
cal approximation to the MCTDHF method. The OATDCC inherits size-
consistency and extensivity from the CC method and achieves polynomial
scaling.

1.2 Goals

The main goal of this thesis is to implement a simplified version of the OAT-
DCC method, which we refer to as the Time Dependent Coupled Cluster
(TDCC) method and apply it to one-, two- and three-dimensional quantum
dot systems. Before we can compute the time evolution of a system an ini-
tial condition must be prepared. The initial condition is taken as the ground
state of the system under consideration and is computed via the Coupled
Cluster method in a Hartree-Fock basis. We will write Hartree-Fock and CC
codes from scratch. This is advantageous since TDCC is an extension of the
CC method for computing the ground state.

It turns out that TDCC is equal to the Time-Dependent Configuration
Interaction [8] (TDCI) method in the special case of N = 2 particles. Thus,
a possible way of validating the TDCC implementation is by comparing it
with TDCI calculations. We demonstrate this in the present document. As
such, we will also write a TDCI program. A study by Zanghellini et al. [9]
studies the time evolution of a one-dimensional quantum dot system, which
we will use to verify the TDCI program. The implementation may then be



CHAPTER 1. INTRODUCTION 13

split into the following steps:

a) Develop Hartree-Fock, Configuration Interaction and Coupled Cluster
programs for ground state computations.

b) Expand the CI and CC program to the time domain.
c¢) Establish the validity of the TDCI program by comparing with Ref. [9]

d) Compare results obtained from the TDCC method with those resulting
from TDCI calculations. If the results are equal to some numerical
precision for N = 2 we take this as a strong indication that the TDCC
method has been correctly implemented.

e) Having validated the implementation of the TDCC method we apply
the program to more complex two- and three-dimensional quantum dot
systems.

It should be noted that a working implementation of the TDCC method in
the future can be expanded to the full OATDCC method.

1.3 Owur contributions

There already exist many professionaly written computer codes for many-
body calculations. Competing with these highly optimized implementations
is in no way realistic. In order to gain valuable insight, Hartree-Fock, Coupled
Cluster and Configuration Interaction codes have been written from scratch.
Furthermore, the Coupled Cluster and Configuration Interaction programs
have been expanded to the time domain, i.e TDCC and TDCI.

All programs have been written in both Python and C++ and the source
code is available at the Github site!?. C++ is more suited for high-performance
computing since it can be easily combined with Message Passing Interface
(MPI) and/or OpenMP for parallellization. See for example the textbook by
Karniadakis and Kirby [10].

However, throughout the thesis we will focus on the Python implementa-
tion since it is considerably easier to present in text, with additional pedagog-
ical advantages. The hope is that future Master of Science students or other
interested scientists, will find the Python implementation easier to read than
standard implementations in for example C++. Furthermore, we do not con-
sider large many-particle systems, thus high-performance computing topics

Thttps://github.com /haakoek /PythonVersionMaster
Zhttps://github.com /haakoek /Cpp VersionMaster
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are not the main concern of this work. The main objective is to demonstrate
a working implementation of the Time-Dependent Coupled Cluster method.

The choice of Python is due to its flexibility and extensive support for
graphics, smoothing the development process. Computationally demanding
parts are handled by the use of the NumPy? library which supports operations
on N-dimensional arrays. In addition, the symbolic mathematics library
SymPy* contains a second quantization toolbox® which is of great help when
working with many-body methods.

3numpy.org/
sympy.org/
®http://docs.sympy.org/latest /modules/physics/secondquant.html


http://www.numpy.org/
http://www.sympy.org/en/index.html
http://docs.sympy.org/latest/modules/physics/secondquant.html

Chapter 2

Quantum Many-Body Theory

In this chapter we will briefly review key concepts of quantum many-body
theory. The material presented is based on the lecture notes [11] written by
Simen Kvaal for the course Fys-Kjm4480/9480 given during autumn 2015 at
the University of Oslo.

2.1 The Many-Body Problem

The goal of quantum many-body theory is to model systems of N inter-
acting particles. It is a postulate of quantum mechanics that all infor-
mation about the system is contained within a complex-valued wavefunc-
tion, W(xy, -+ ,xy), also commonly referred to as the systems state func-
tion. The wavefunction has a probabilistic interpretation in the sense that
|U(z1, ..., zx)|* is the probability density for locating all particles at the point
(z1,-++ ,ony) € XN, Since the total probability must be 1 (the particles have
to be somewhere) one demands that,

/N|\P<$1,...7$N)|2d171"'d1‘]\[:1. (21)
X

A system is defined by a linear Hermitian operator, H, commonly referred
to as the system Hamiltonian.

Another fundamental postulate in quantum mechanics is that all physical
observables, i.e properties of a system that we can measure, are represented
by Hermitian operators Q The expectation value of an operator,

([0 0) z/ U(ay, o an) OV, ox)des---zy,  (22)

XN
represents the average of repeated measurements on an ensemble of identi-
cally prepared systems [12]. Note that if ¥ is an eigenfunction of @) with

15
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eigenvalue ¢, i.e Q\Il = qV, then the expectation value is certain to give ¢,

el - [

q|V|*dzy - aNn = q. (2.3)
XN

Therefore, eigenfunctions of Q are often called determinate states since a
measurement always gives the value q.

The Hamiltonian is the operator representing the total energy of a sys-
tem and the eigenvalue equation for the Hamiltonian is known as the time
independent Schrédinger equation (TISE),

H (21, 2) = EpUp(zy, - zy). (2.4)

The eigenfunctions of H are commonly referred to as energy eigenstates. Of
particular importance is the eigenstate with the lowest eigenvalue which is
a systems ground state. The eigenfunctions of H (or any other Hermitian
operator) form a basis such that any other state, ¥(zq,---,zy), can be
expanded in the eigenstates

U(zy, - ,an) =Y Uz, 2y). (2.5)
k=1
The time evolution of an initial state, W(xy, -+ ,xn,to), is given by the

time dependent Schrodinger equation (TDSE)

0 .
Zh&@(xl’ a$N7t):H\Ij(x17"' 7'IN7t)’ (26)
where H is the Hamiltonian of the system. If the Hamiltonian is independent
of time, ¥(xq, - ,xy,t) is given by
U(xy, - ,oN,t) = rVi(xy, - ay)e Bt (2.7)
k=1

with U, being the eigenfunctions of H with corresponding eigenvalues Ej, [12].
The coefficients ¢, are determined by writing W(zy,--- ,zn,%) in terms of
the eigenfunctions,

\Ij(mla' o 7xN7t0) = ch\pk('xla' o wa)' (28)
k=1

This implies that for time independent Hamiltonians, if we can solve the
TISE in Eq. (2.4), we are in principal done since the time evolution of an
arbitrary state is given in terms of the eigenstates.
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However, we will in general work with a time dependent Hamiltonian,
H (t), meaning that we have to solve the TDSE explicitly. The general ap-
proach is to first solve the TISE for the ground state, using this as an initial
state, and then compute the time evolution dictated by the TDSE. Thus, in
this thesis we will study methods and write computer programs that solves
both the TISE and TDSE for a time dependent Hamiltonian.

2.2 Identical particles

When working with quantum mechanics all particles of the same type must be
treated as identical and indistinguishable. Suppose that we have two particles
A and B which are identical. Intuitively this means that the probability of
finding particle A at position x4 and particle B at position x g is the same as
the probability of finding particle A at position xp and particle B at position
x 4 since we cannot tell the particles apart.

Formally, our probability density must be permutation invariant in the
sense that if o € Sy is a permutation of N indices and (z1,--- ,xy) gives
the position of N particles, we must have

2
|\I’(1}1,--- 75UN)‘2 = ’\Ij<xa(1)7"' 7$0(N)>‘ . (29)

Since ¥(xq,--- ,xy) can take complex values, this is equivalent to
U(zy, - ,xN) = em(")\lf(xg(l), L Teny), alo) ER. (2.10)

Define the permutation operator P, via
(PU\I/)(:zzl,~~ L ON) = W(To), 0 s To(ny)- (2.11)

Thus, the condition (2.10) is equivalent to ¥ being an eigenfunction of P,
for every o € Sy with eigenvalues possibly depending on o.

It can be shown that either 2, ¥ = ¥ for every o € Sy, or P, = (—1)lehw
for every o € Sy, where |o| is the number of transpositions in o. In the first
case W is said to bo totally symmetric with respect to permutations, while
in the second case we say that W is totally anti-symmetric.

All particles carry an intrinsic property known as spin which can take
integer or half-integer values. Particles with integer spin are called bosons
and have symmetric wavefunctions. On the other hand, particles with half-
integer spin are called fermions and must have anti-symmetric wavefunctions.
In this work we will restrict our attention to fermions and we will therefore
require that our wavefunctions are anti-symmetric.
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2.3 Slater Determinants

From now on, we consider systems consisting of /N identical fermions which
must have a totally anti-symmetric wavefunction W(xq,--- ,xy). Further-
more, we must require that the wavefunction satisfies

/N|\Ij($1,"' ,I‘N)|dl'1"'d$N:1. (212)
X

It would be highly desirable to have an orthonormal basis, {®(z1,- -, zn) L,
that we could expand our wavefunction in such that!,

M
‘I’(xb'“ ,SUN) :ZAICDI(%,"' 737N)- (2-13>
I=1

Suppose now that we are given an orthonormal basis, {¢,(z)};_; which
we will refer to as single-particle functions, such that the wavefunction for a
single particle can be written

Y(x) =) cpop(a). (2.14)

Now, if we take the tensor product of N single-particle functions,

(I)Pl"'pzv(xh T "TN) = ¢p1($1) T QSPN(J;N)v (2'15)

we get a many-body wavefunction that satisfies (2.12),

(I)pl...pN(ZEl, cee ,.TN)‘2 dl‘l cee d.QTN
- / 6%, (1) (1) / / b () o ()l = 1.

Furthermore, if p = (p1,--- ,pn) and ¢ = (g1, - - - , gn) We have ((i)p@q) = Opgs

this means that the collection of these wavefunctions form an orthonormal

basis for the wavefunctions of N particles satisfying (2.12). However, these

functions are not anti-symmetric and can therefore not describe fermions!
This issue is solved by introducing the Slater determinant

q)pl"'pN(Il"” 7IN) = [¢P17"' 7¢pN]('T17"' ,ZL'N)

'In theory the basis can be infinite, but in pratice we must restrict ourselves to a finite
basis since computer memory is limited.
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defined by,

Gpu(T1)  Bpy(22) -+ Ppy(aN)
¢p2($1) ¢p2<x2) (bpz(xN)

[¢p17"' >¢pN]<x1"" >~TN) =

Oon(@1) G (@2) - Gy len)

> (- H Do (py) (1)

=l

1
WUESN
- \/% > (= H Gy, (0(23)),

where 1/4/N! is a normalization factor.
Observe that interchange of single-particle indices p corresponds to an
interchange of rows which gives a sign change,

[¢p1"" 7¢p,j>"' a¢pi7"' 7¢pN] - _[gbpm"' v¢pj7"' agbpiv"' >¢pN]' (2'16)

Interchange of the coordinates corresponds to an interchange of columns
which also gives a sign change,

[¢p17”' 7¢pN](xla"' y Lyttt 3 Ljy 7$N)
— —[¢p17... 7¢pN]<x17... 7I'j7... ;(L‘iy." ,xN). (217)

The latter observation implies that the Slater determinants are anti-symmetric.
In order for the Slater determinants to form a basis we want only those
that are linearly independent. If we choose an ordering of the single-particle
indices,
p1<--<DN (2.18)

then the collection of Slater determinants ®,,,..,,, (1, - - , zn) satisfying (2.18)
form an orthonormal basis for the the anti-symmetric functions of NV particles
which satisfies (2.12).

Thus, given a Slater determinant basis, {®;}2,, for some subspace of all
normalized anti-symmetric wavenfunctions, we can write such a function in
terms of our Slater determinants

U(zy, - ,aon) =Y A®(zy,--- ay), Ar€C. (2.19)
I
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2.4 Second Quantization

When developing methods for solving the TISE and TDSE for fermionic sys-
tems, working directly with the definition of Slater determinants will become
cumbersome in the long run. The second quantization formalism provides
a framework with compact and efficient notation for manipulation of Slater
determinants.

2.4.1 Creation and annihilation operators

Let L2 be the one-dimensional space spanned by |—), the vacuum state,
which represents the space with zero particles. Furthermore (—|—) = 1 and
note that |—) # 0. In the following we define the so-called creation and
annihilation operators ¢} and c,.

Loosely speaking c:; creates a particle by inserting a row with index ¢
and a column with coordinate xy,; in a Slater determinant. In the same
way the annihilation operator destroys a particle by removing a row and a
column. More precisely we define CII by its action on the vacuum state and
an arbitrary Slater determinant.

Definition 1 (The creation operator). For every single-particle index g,

chl=)=la), (xlg) = dq(x). (2.20)

Let |py - - - pn) be an arbitrary Slater determinant with N > 0, then we define

chp1---pn) = lgpr---pw)- (2.21)

Observe that if there is a j such that ¢ = p;, then c:f] |p1---pNn) = 0. Further-
more we have that

cpr-pn) = (=1 |1 pjapji1 - pN) . 4 F# Dy (2.22)

Recall that we defined the basis determinants to be the determinants with
ordered indices. If we choose j such that the augmented index set is ordered
we have created a new basis determinant. Finally, after a particle is created
the new determinant has to be renormalized.

Definition 2 (The annihilation operator). The annihilation operator is the
Hermitian adjoint of the creation operator.

Using this defintion one can show that the annihilation is characterized
as follows:
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(I) ¢;]—) =0, since there are no particles to remove in the vacuum state.
(IT) Tf ¢ = p; for some j, c;[pr---pn) = (=1) " |py - “Pj_1Pjt1" " PN)-
(III) If ¢ # p; for all j, ¢, |p1---pn) = 0.
Now, the anticommutator of two operators A and B is defined as
{A, B} = AB + BA. (2.23)

We want to use the creation and annihilation operators to compute the ma-
trix representation of other operators such as the Hamiltonian. This can
be realized via the following anticommutator relations for the creation and
annihilation operators:

{cl,cl} =0 (2.24)
{cp,cs} =0 (2.25)
{cp, ct} = bpq (2.26)

Equation (2.26) is commonly referred to as the fundamental anticommutator.

If we want to compute matrix elements using the anticommutator rela-
tions the key obeservation is that by repeated use of the fundamental anti-
commutator we move creation operators to the left and annihilation operators
to the right until we are left with expressions on the form,

5p1q1--'5pqu <_|_> = 5p1q1--'5pk%- (2-27)

In principle we can do this for any operator on second quantized form for
arbitary N. However, the number of anticommutators grows rapidly so it
quickly becomes cumbersome and error prone. The process can be simplified
through what is known as Wick’s theorem which we discuss later.

2.4.2 Representation of operators in Second quantiza-
tion.

One can show that any one-body operator H, can be written in second quan-
tization as,

N
Hy=>"h(i)=>_ (plhlg) e, (2.28)
i=1 Pq

where

~

@zwmwz/%mw%mm.
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Furthermore, any two-body operator can be written as

N
- 1
W = E w(i,j) = 5 E wf?gc;c:;cscr. (2.29)

1<J pqrs

Here,

wi! = (pqlw|rs) = /dxl/d$2¢p($1)*¢q($2)*w($1a$2)¢r($1)¢s(932)-

Alternatively we can write

o 1 .
W = 1 Z (pq|w|rs) og chgcscT, (2.30)

pgrs

which is the form that will be used most frequently throughout this thesis.
Here
(pgl[rs) 45 = (pgld|rs) — (pqlw]sr) (2.31)
is the anti-symmetrized matrix element. It is common practice to suppress
the AS subscript and we will make it clear when it is done.
Thus, we can write the full Hamiltonian, H = Hy+ W in its second
quantized form as

H= Z (plhlq) ¢ cheq + = wag clcleser (2.32)
2
1 .
= Z (p|hlq) c;r,cq + 1 Z (pq|w|rs) sq c;r,c:r]cscr. (2.33)
pars

2.4.3 Normal order and Wick’s Theorem.

It is possible to compute matrix elements by the use of the fundamental
anticommutator relations. However, for arbitary N, the matrix elements of
the Hamiltonian is on the form,

(D] Hy| D) = th (—lepy - cpclerch - cpn| =) (2.34)

<(I)|W’(I) Z wgigiAS _|CPN ’ Cmc;lcjpcmcmc;rn T CPN’_> ) (235>

fI1f121"17“2

which quickly becomes unmanageable. In the following, we describe how
expressions on the above form, known as vacuum expectation values, can be
simplified by introducing the normal order of an operator. In the end we
state Wick’s theorem, which tells us how to compute vacuum expectation
values in terms of normal ordered operators.
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Definition 3 (Vacuum expectation value). Let A, --- A, denote a string of
n operators with A; € {ct} U{c,}. Then we say that (—|A;--- Ay|=) is a
vacuum expectation value.

Given hf and wl?, ¢ the problem of computing the matrix elements (of

the Hamiltonian) is reduced to computing vacuum expectation values. Before
Wick’s theorem is stated, we first define the normal-ordered product form
of A;--- A, and the contraction of two arbitary creation and annihilation
operators.

Definition 4 (Normal ordering). Let A = A, --- A, be an arbitary operator
string of creation and annihilation operators. Let o € S, be a permutation
such that all creation operators in A are to the left of all the annihilation
operators. Then the normal order of Ay - - - A,, denoted by {A;...A,} is defined
as,

(A1 A = (D) ALy -+ Ay = (= 1) [ereation ops.] x [annihilation ops.).
Note that:

o The normal order is not unique since o can be chosen in different ways.

e In general Ay--- A, # {A1---A,}.

I
Definition 5 (Contraction). A contraction, XY, between two arbitary cre-
ation and annihilation operators X andY (relative to the vacuum state, |—))

s the number —
XY = (—|XY|-). (2.36)

The possible contractions are given by,

M

Tl —
cpcy =0
1
cpCq =0
—

Tr —
Cpcq =0
CpCy = Opg

Further we can define contractions inside a normal ordered string of opera-
tors.



CHAPTER 2. QUANTUM MANY-BODY THEORY 24

Definition 6. Let Ay --- A, be an operator string, and let (z,y), v <y, be a
pair of operators. Let o be any permutation such that o(1) = z and 0(2) = y.
Then,

1 1
{Ap- Ay Ay A = (D)1 AA ALz - Aoy} (2.37)

In general we can contract m pairs of operators as follows: Let (x;,v;), T; < y;
be a pair of operators and select o such that

o(1) =z, o(2)

hn
0(3) =x9, 0(2)=y

2

Then

m contractions
——
{4, A, }= (_1)|0|{A$1Ay1 o Ay Ay Asomen)  Aen) |- (2.38)

Finally we can state Wick’s theorem.

Theorem 1 (Wick’s theorem). Let Ay --- A, be an operator string, then

one contraction
——N—
§ : {A A, }

all single contractions

Ap- Ay ={A - A} +

I_%J contractions

+ot > { A A}

all L%J contractions

Notice that when n is even, the last term is fully contracted such that there
are no creation and annihilation operators left. If n is odd there is one
uncontracted operator left in each term of the last sum.

So, what is the great simplifaction that we promised with Wick’s theorem?
Notice that the vacuum expectation value of a normal ordered operator is
always zero,

(=H{A1---An}|=) =0, (2.39)

since all annihilation operators are to the right. Furthermore if n is odd
Wick’s theorem implies that

(—|A;--- A,|—) = sum over {gJ terms on the form &) - - - &y (—|cM|—=) = 0,
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since (—|c'|—) = 0. Finally for even n we have that

all contracted

<_|A1"'An|_>:Z{)A1"'ATl }. (2.40)
5]

Since cﬂcq is the only non-zero contraction, the number of contractions we

have to consider in this final sum is further reduced.
Another useful result is that the sign of each term in the sum is (—1)*,
with k& the number of crossings of contraction lines.

2.4.4 Particle-hole formalism.

The starting point of a many-body treatment is to solve the TISE,
H|U) = E|T). (2.41)

In many cases a single Slater determinant can be a good approximation to
the exact eigenfunction |W). In Hartree-Fock theory, which we discuss in
more detail in chapter 3, one seeks a single Slater determinant, |®), that
minimizes the energy expectation value

E[®] = (D|H|D) . (2.42)

We can motivate a single determinant approximation as follows: Suppose
that |®) = |p; - - - pn) is an arbitary Slater determinant, then

, |®) = Z <¢p|hl¢q> C;f;cq [p1--pN)
pa

=D

= (Z€Z> @), & =hp.

p1-'PN)s DPi € [p1pN)

Thus, the eigenfunctions of Hy are single Slater determinants. Now, consider
H|U) = Hy |T) + W |T). (2.43)

The rationale is that if T/ |¥) is in some sense "small" compared to Hy|¥)
then a single Slater determinant can be a good approximation. In particular,
as a starting point we can use the eigenfunctions of Hy. However, this will in
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general not be good enough and we want a way to make systematic correc-
tions to the solution. Also, while Wick’s theorem simplified the evaluation of
vacuum expectation values, the number of terms we have to consider grows
quickly with the number of particles N. One way to adress both of these
issues is through the particle-hole formalism.

In practice we must always restrict ourself to a finite set of basis functions
{¢p},-, with L the number of basis functions. We start by dividing the
single-particle space into two distinct sets,

{¢p p=1 " { ¢1 i=1 U { ¢a a=N+1" (244)
Occupied Unoccupied

The N first single-particle states are commonly referred to as occupied or-
bitals while the rest are called unoccupied orbitals. The indices i, j,k, - - -
are reserved for occupied orbitals while we use a, b, ¢, --- for the unoccupied
ones. Finally, p,q,r, - denote an arbitrary orbital. We define the reference
determinant, |®.), to be the Slater determinant filled with the occupied
orbitals,

@)=L 1) (2.45)

The reference state can be chosen in various ways, exercising some foresight
we consider two references in this thesis

(I) |(b>ref = HiEOCC Cj |_>7 with {¢P}£=1 8.t ]ib¢p = €P¢P
(II) |®@),.s = |Pur), where |®yp) is the Hartree-Fock state.

Hartree-Fock theory will be discussed later. In the following we drop the
ref-subscript and write |®) . = |®).

Excitation and de-excitation operators.

A string of creation and annihilation operators on the form

%l?ﬁf_'_'f = ... cdepdeicte (2.46)
is referred to as an excitation operator. Let X = {ijk--- ,abc---} denote

a general excitation index. Then we write 7x for a general excitation
operator. The name excitation operator is due to the fact that if we act
with 7x on a reference determinant we substitute particles with indices
less than N with particles with indices larger than N. If we act with an
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excitation operator on a reference determinant we write

with |®x) being referred to as an excited determinant. Similarly one can
define a de-excitation operator

with X = {abc--- ,ijk---} denoting a general de-excitation index. We
note that A |®) = 0 since ¢, |®) = 0. Hence, de-excitation operators
must act on excited determinants to give a non-zero determinant.

x |®) = 7T @) = |95 = [Px), (2.47)

z]k’ ik

5\5( P — --~chcc}cchca, (2.48)

A complete Slater determinant basis can now be constructed by acting on a
reference state with excitation operators as follows:

|®%) = cle; |®) , single excitation

|5 b — ¢lcjche; | @), double excitation

Note that [®¢7) = — [®V) = — |D4P) = |®b). We can now make wavefunction
ansatzes to the exact solution, |¥), in a systematic way by including linear
combinations of different excitation levels,

W) ~

W)

&)

|®) , single determinant approximation,

~ Ay |D) + Z A? |®?), all single excitations,

a

~ Ay |P) + Z A DY) 4 Z Adb , all single- and double excitations,

ia z]ab

Furthermore, we can define creation and annihilation operators, b;, b ARA

ar ¥y Yar

relative to the reference determinant in the following manner,

b; = cj, be = g
bZT =¢, b=l

These are commonly referred to as quasiparticle creation and annihilation
operators. Notice then that since the reference state by definition contains
all occupied orbitals we have,

b, |®) =0 Vp,
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which means that |®) is the vacuum for quasiparticles. We say that b! creates
a hole since it removes one of the occupied orbitals, while we say that b}
creates a particle since it inserts one of the unoccupied orbitals.

The anticommutaor relations are preserved such that we have,

{0, b:;} = Opg, {bp: by} = 0. (2.49)

Normal ordering, contractions and Wick’s theorem are defined in terms of
the anticommutator relations and the fact that ¢,|—) = 0. Thus Wick’s
theorem is also valid for quasiparticles.

We stress that contractions now are defined relative to the reference state,
since this is a quasiparticle vacuum,

[
XY = (B|XY|D), X,Y € {b;b,}U{bl,b}}. (2.50)

The only non-zero contractions are then,
o i
bibj = <q)’bibj‘q)> = 0ij
T i
baby, = (P|bob}|P) = Ogp.

This is a great simplification since we now only have to consider contractions
relative to the reference vacuum when using Wick’s theorem!

Slater-Condon rules

Let i,j,k,l = 1,..,N, a,b,c,d = N +1,... and p,q,r,s = 1,.... Sup-
pose that |®) = [[X, ¢l |—) is a reference determinant and that Hy =
qu hZCIT?Cq and W = }Lqurs ufgcztcgcscr Where U’fg = <¢p¢q|a’¢r¢s>As-
Then the Slater-Condon rules state,

(D] (I%JrW) D) = Zhﬁézug (2.51)
7 ij

(D (ﬁo +W) @) = by + > ub (2.52)
(@ (Ho+ W) o) = ulh (2.53)

Proof: We prove the Slater-Condon rules using the particle-hole
formalism. This means that we consider |®) as the vacuum when apply-
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ing Wick’s theorem. First consider the expectation value,

(®|Ho|D) th (|che,|®)

=Zh§ (@[b:b|@) + Y Bl (@[bib,|®)
ij

ia

+ ) hi (@[lo][@) + Y h (@[bLbs| @)

ab

= hid;=> hi. (2.54)
i 7

In the following we include only terms which have a non-zero contribution
when we write out the sums. Now, consider

(D|W|D) = Zu (®|bsb;bibL|D) .
zykl

By Wick’s theorem we have that

(BlbibbjbL|D) = Y (D[bb;blbL|®)

all contracted

| =
= (®|bibblbL|®) + Y (®|b;b;b]bL|)

Klij klij

- Z (_5il5jk + 5ik5jl) .

klij

Then we get,

Zu (®|b;b;bib]|®) = Zukl —0uljk + 0ixdji)

ijkl klz]

= - Z u” + u”
=3 Z ul. (2.55)
ij
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Combining Egs. (2.54) and (2.55) proves the first rule (2.51). For the
second rule we first consider,

(@[ Ho|5) =37 1 (@lcheyclen )

pq

. 1
= " hi, (®|bibab{b}|D)

= Z hfiéikéac
=h. (2.56)

Next,

(D|W|DS) = %Zufq (CI>|cT Tcscr e | D) .
pars

We notice that ¢ and k are fixed, thus s or » must be larger than N to get
a non-zero contraction with ¢/. Similarly either p or ¢ must be less than
or equal to N to have a non-zero contraction with ¢;. The remaining
operators to be contracted will then be on the form c;,cq/ which is non-
zero if and only if both p', ¢’ is less than N. Finally, we consider the case
where p = i,q = j,r = a, and s = [. Writing out and applying Wick’s
theorem we get,

—Zu <I>|ccclca 1o |®)

ijal

1 g —, =
= 23wl (@Ibdsb]bbIo}I®) + (Blbibb{bbib] )

ijal

1 4
= Z Z ua]l ((L'k(sj'ldca - 6il(5jk5ac)

ijal
1 ki
SN
i
If we set r = [, s = a we get the same result, thus in total we have

(D] |®5) Zu (2.57)
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‘ which combined with (2.56) proves the second rule (2.52).

2.5 The variational principle

A fundamental result in quantum mechanics is what is known as the vari-
ational principle. The variational principle establishes a link between the
expectation value of the Hamiltonian and its eigenfunctions and gives an
upper bound to the exact ground state energy.

First, recall that H is an Hermitian operator. In quantum mechanics
it is customary to assume that His diagonlizable and that we in principle
can find a set, {|¢y) }, of orthonormal eigenfunctions of H such that any
wavefunction can be written in terms of the eigenfunctions,

“I’> = ch |¢k> . (2-58)

We assume that |U) is normalized such that (¥|¥) =1 and ), |ex|* = 1.
Now, if we consider the expectation value of H we find

(UIH|W) = o (i H|gbx)
kl
=> |l By
p

where we used that the |1);,) are orthonormal eigenfunctions of H with eigen-
value E). Now, since the ground state energy Ej is, by definition, the smallest
eigenvalue we obtain

(DIHW) > By |exl? = Eo. (2.59)
k

Thus, we have found that the expectation value of H is an upper bound on
the ground state.

In particular, this inspires the Hartree-Fock method which we examine
further in the next chapter. In Hartree-Fock theory we seek the single Slater
determinant that minimizes the expectation value of H, thus providing an
upper bound on the ground state energy.

Furtheremore, one can show the following theorem [2]:

Theorem 2. Consider the expectation value functional defined by

e (11

SR (2.60)
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Let |W,) be given. Then E, = E[V.] is a stationary value of € if and only if
H|U,) =E,|v,). (2.61)

This is an interesting result in itself since it means that in the context
of quantum mechanics, finding critical points of the expectation value of H
is equivalent with the time independent Schrodinger equation! Specifically,
if we construct the matrix representation H of H relative to some finite
orthonormal Slater determinant basis, {|®),}~ |, given in terms of its matrix
elements

Hpy = (;|H|D,) (2.62)

then diagonalization of H would give an approximation to the first L eigen-
pairs of H. We are also guaranteed that it provides an upper bound on the
L first eigenvalues.

To see this we recall that the eigenvectors of a Hermitian matrix are
orthogonal with real eigenvalues [13]. We order the eigenvectors by mag-
nitude of the corresponding eigenvalue (Ey, 1), (E1, 1), (F2,12), -+ where
Ey < Ey < Ey---. Here Ej is the ground state energy, F; the energy of first
excited state and so on. We assume that (1o| V) = 0 where |¥) is given by
(2.58). Then we see that

(tho| W) = Z ¢k (Yoltbw) = cx = ¢, = 0. (2.63)

Repeating the argument for the upper bound on the ground state we obtain

(U|H|T) = ZEk|ck] >EIZ|C,€\ = B, (2.64)

where we used that ¢, = 0. Thus, if we have a Wavefunctlon that is orthogonal
to the ground state the expectation value of H is an upper bound on E;. In
terms of the matrix representation the eigenpair (E,;) is an upper bound
on the next lowest eigenvalue of H. This argument can be generalized to
higher eigenvalues if we assume (o|¥) = 0, (¢1|¥) = 0,---. Thus, if we
consider larger and larger Slater determinant bases we are guaranteed to get
a better estimate for the eigenvalues of H.

Diagonalization of H is known as the Configuration Interaction method
which we discuss in more detail in chapter 4.

2.6 Density Matrices

It is hard to visualize a multivariate complex-function such as the wavefunc-
tion, W(xy, -+ ,xy) and it is therefore useful to introduce the so-called single-
particle density function also referred to as the one-body density, p(z,t),
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defined by integrating over all coordinates except one

ZEl, /|\If Ty, ,IN)|2dl'2"'deN. (265)

The one-body density is interpreted physically as the probability of finding
a particle in dz; at z1, independent of where the other electrons are.

If the wavefunction is expanded in a Slater determinant basis built from
the single-particle functions, {¢,}, the one-body density can be written as [14]

=D Aop(e1)dy(x1) (2.66)

where we have defined,
ph = (Ucle, | W) (2.67)
Similarly, we can define the two-body density

p(x1, z9,1) /]\II zy, - ay)| des - dey, (2.68)

which is interpreted as the probability of finding some particle in dz; at x;
and some other particle in dzs at x5. The two-body density can be written
in terms of the single-particle funtions as

p1,w2) = > pleer (1) g (1) 65 (22)ds(22) (2.69)

pqrs

where we have defined
o = (Wlchcheye, ). (2.70)

The matrices p; and py formed from the matrix elemetns pf and pl7 are
referred to as the one- and two-body density matrices.

For the one- and two-body density matrices we can show the following two
relations which are useful as test cases when we implement the Configuration
Interaction and Coupled Cluster methods:

For the one- and two-body density matrices respectively we have the
following relations,

> (Wlche,| W) = qu (2.71)

q

D (Wlciele,e,| ) = Zpgg = —-1), (2.72)

pq

given any normalized state | ).
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Proof: Let
N
=[I1-)
p=1

a normalized reference determinant for a state containing N particles,
i.e. (¥|W) = 1. The first relation follows immediately since,

N N

D (Wleheg|0) =D (W]¥) =

g=1 q=1

For the second relation we compute
NN i
SN T (Wlclcege, | W) W‘Ck“h"‘mz (W]bybbibT W) + (Wb, bTbT|x1/>

p=1 g=1
= Z —0pqOqp + Z OppOagq
Pq Pq

N N
=-> 1+ 1=N"-
p pq

:N(N - 1)7

which shows Eq. (2.72).




Chapter 3

Hartree-Fock theory

In this chapter we will give an overview of Hartree-Fock theory, which is one
of the oldest methods of computing an approximative solution to the many-
body problem. In Hartree-Fock theory it is assumed that the wavefunction
can be approximated by the single Slater determinant, |®) (commonly re-
ferred to as the Hartree-Fock state), that minimizes the energy expectation
value. This is in many cases a good approximation. When the Hartree-Fock
approximation itself is not sufficient it turns out that it is possible to use the
Hartree-Fock state as a starting point for more complicated approximations
such as the Configuration Interaction or Coupled Cluster methods. The latter
two methods are normally referred to as post-Hartree-Fock methods. Thus,
Hartree-Fock theory is a natural starting point when discussing many-body
methods.

In this chapter we will review the basics of Hartree-Fock theory. We state
the so-called Hartree-Fock equations and show how they can be rewritten in
terms of a self-consistent eigenvalue problem.

3.1 The Hartree-Fock equations

The starting point in Hartree-Fock theory is that we want to find an approx-
imative solution to the exact ground state, | W), of the many-body Hamilto-
nian H which is given by time independent Schrédinger equation,

L 1Wo) = Fo | W) (3.1)

In the following we drop the subscript for the ground state wavefunction and
just write |U) = |¥o). As mentioned in the introduction to this chapter the
fundamental idea in Hartree-Fock theory is to approximate the exact ground

35
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state, |¥), by a single Slater determinant

N
(I)> :ch|_> = |¢1a"' 7¢N>'
=1

The single-particle functions {¢;}¥; must be orthonormal and (®|®) = 1.
Recall that the Hamiltonian can be written in second quantization as

H= Zh{; CpCq+ = Zuffg ; jzcscr = Hy+ W (3.2)

qu’S

and observe that,

Hy |®) = Zh Teg |®) = (Z) € = h. (3.3)

which leads us to the following observation,

H|®) = (HO+W) 1B) = (Z@) 1) + T | @) . (3.4)
The intuitive idea behind the single determinant approximation is that if
W |®) can be considered small in some sense, |®) is a reasonable approxima-
tion to the exact eigenfunction [¥).

The expectation value of H is given by,

i

B®) = (BIH18) = 3 (9iilo) +5 3 dslilondhes . (35)

The ground state Hartree-Fock wavefunction is obtained by minimizing E
under the constraint that the single-particle functions are orthonormal. In
other words, we seek a set of orthonormal single-particle functions, {¢;}Y
such that |®) = |¢1, -, ¢n) is a minimum of E. The solution is denoted by
|®yr) and is referred to as the Hartree-Fock state.

It can be shown [11] that |Pyp) = [¢1,-- -, ¢n) is an extremal point of
E[®] if the single-particle functions satisfy what is known as the canonical
Hartree-Fock equations,

fA(¢177¢N)‘¢Z>:61‘¢1>7 /L:laaNa (36)

which we recognize as a non-linear eigenvalue problem. We name the one-
body operator f for the Fock operator and it is defined by,

fA(¢17"'7¢N)Eﬁ+@HF<¢17'“7¢N) (37)
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with
@HF |¢> = (Adirect . Aexchange) ‘¢>
= Z [/gb To)W x1,$2)¢J($2)d$2] Y(z1)

—Z{ [ Sitamyitonan)(aa)dn] 6o

The last expression can be rewritten more compactly if we define the single-
particle function (-¢1|w|p203),

(olilncs) () = [ Gileluwlon,a)oa(o)oulaa)ldes, (35)
where the inner product with any single-particle funtion 1 is given by,

(V| (-p1| 0| p203) = (W1 |W|Pap3)
/@/J 1) 01 (22)W (21, 2) P2 (1) P3(w2)dr1d2s.

Using this notation, we can write

O ) =) (eldlves) = (-oldlo) (3.9)

J J

Thus, if we can solve the so-called canonical Hartree-Fock equations (3.6)
for the single-particle functions |¢;), the single Slater determinant |®) =
|61, -+, ¢n) is an extremal point of E[®]. Note however that we are not
guaranteed that |®) is a global or local minimum. It could also be a saddle
point.

Now, let us assume that a solution, {¢;}¥ ;, to the canonical Hartree-Fock
equations has been found. Then the Hartree-Fock energy, Eyp, is given by,

Eur = <¢HF‘ﬁ‘¢HF> = Z <¢1W¢z> + %Z (Gij|0]0:05) g
—Z (il f — ") + 5 Z (01031 0|6i5)

= Zez - = Z ¢z¢]|w’¢z¢]
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To establish the last inequality we used that f|¢;) = € |¢;) by assumption
and that,

(@0"716) = (1] D (051010105) 45 = D {0rsli0londy) a5 (3.10)

J

In order to construct the Hartree-Fock state we only use the N first eigen-
functions of f . In principle we can find a complete basis, {¢,}, of eigenvectors
for f. Using the notation we introduced in the section on particle-hole for-
malism we write

{(bp} = {¢z i\il U {¢a}ZiN+17

where the ¢;’s are the occupied orbitals and the ¢,’s are unoccupied. This
means that we can use the Hartree-Fock state as a reference determinant
for further corrections by building |®¢),|®¢?) ,--- where |®) = |[Pyp) and
making the ansatz,

a a ]' a a
[U) = Ag [@) + ) A |q>i>+ZZAif|q>i;’>+---. (3.11)

ijab

We mention a result known as Brillouin’s theorem |[2], which is important
when the Hartree-Fock state is used as a starting point for more complicated
approximations such as the Configuration Interaction and Coupled Cluster
method. Brillouin’s theorem states that if |®) = |®yp) then,

(D¢ H|®) = 0. (3.12)

3.2 The Roothan-Hall equations

The canonical Hartree-Fock equations (3.6) are formulated as integral-differential
equations. We would like to reformulate them as a matrix eigenvalue problem
instead, which is normally easier to deal with numerically.

We do this by expanding the Hartree-Fock single-particle functions in
terms of a fixed chosen orthogonal basis, {1,} (such as the Harmonic oscil-
lator functions),

[0p) = D Uap [ta) (3.13)

Note that since (¢,|¢p,) = 0pq, this corresponds to a unitary transformation,
U = [ugy| with UU* = I, of the HF single-particle functions |¢,). To see this



CHAPTER 3. HARTREE-FOCK THEORY 39

we compute,

Opg = <¢q|¢p>
= Z <w,3|¢oz> u;quap
ap

= Z OapUpyUap
aB

= Z Uapllag:
«

Thus, we see that }  uayul, = d4p which is the same as UU* = I. The fact
that U is a unitary transformation is important, since unitary transforma-
tions preserve norm and orthonormality, which are highly desirable features
when we do numerical computations.

Inserting the expansion of Eq. (3.13) into Eq. (3.6) we have,

P ey e = €9t [t (3.14)
Left-projecting this equation with (ig| results in,
Z Fatiap = € Z Uap (V5| ta)
=€ Z UapOap

= €plap,
where we have defined, X
Fgo = (Y3l f[ta) - (3.15)
The above equation can be written on matrix form
F(U)U = Uk, (3.16)
where U = [U,,] and € is a diagonal matrix with ¢, on its diagonal. F =

[Fa] is the so-called Fock-matrix. This equation is called the Roothan-Hall
equation.

In order to solve the Roothan-Hall equations we need to choose a fixed
basis, {¥s }£_,, which in practice must be truncated after a finite number of
functions L. The choice of basis functions depends on the specific problem
under consideration. The quality of the solution depends on the number of
basis functions included in the basis and if we at some point do not get a
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significant different result when increasing the basis size we say that we have
reached the Hartree-Fock limit.
Let us write out the explicit form of the elements of the Fock-matrix

Fga = (¢8f1%a)
= (glh + 0" [tpa)

N N
= (Walhla) + D _ (Wadsliblbads) = > (Wadsliblésva)

j=1 j=1
X L N L N
= (Wplhlvoa) + Y D wiyus; (athn blbatss) = Y Y ulus; (Vv blsida)
v5 =1 V5 j=1
R L
= (Vs|h[va) + Z Dys <wﬁwv|w|wa¢6>As ) (3.17)
¥é
where we have defined the density matrix,
N
Das = uus;. (3.18)
j=1

Thus, we see that we have to determine the one- and two-body integral
elements <w5|ﬁ|wa> and (¢31;|W|1Ya1);) in the chosen basis before starting to
solve Eq. (3.16).

The Roothan-Hall equation is a non-linear eigenvalue problem due to the
fact the Fock matrix depends on U. Thus, it has to be solved iteratively. One
possibility is to solve equation (3.16) by what is known as self-consistent field
iterations. This is the strategy we have chosen and which will be described
in more detail in the implementation and results chapter.

Finally, we comment that when a solution U has been found the Hartree-
Fock state is given by the N first eigenvectors of F' represented by the columns
of U. The one- and two-body integral elements in the Hartree-Fock basis can
be found by computing,

<¢p|h|¢q> = Z UgpUBq <¢p|ﬁ|¢q> , (3.19)
ap

(DpBal|Grds) = Dl uhythrtiss (Pptbgl|thrtds) (3.20)

afyd

which are useful as a starting point for more advanced approximations.



Chapter 4

The Configuration Interaction
Method

Having introduced the Hartree-Fock method in the previous chapter, we con-
tinue our review /survey of many-body methods by introducing the Configu-
ration Interaction (CI) method. The CI method is a conceptually simple and
powerful method, but suffers from exponential scaling with respect to the
number of particles N present. Thus, CI is only feasible for small systems.
However, it is of great value as a way to benchmark the implementation
of other approximative methods since they can be compared with results
obtained with CI for small systems.

Furthermore, it is quite straightforward to extend the CI method to the
time domain which serve as a starting point for time dependent studies.
The time dependent version is referred to as time-dependent Configuration
Interaction (TDCI) method.

4.1 Time Independent Configuration Inter-
action

As usual, our starting point is the time-independent Schrodinger equation,
H|W) = By [Wy), (4.1)

and we want to find the ground state of H, i.e the eigenpair (|¥),Ep),
corresponding to the lowest eigenvalue Ej. In Hartree-Fock theory we used
a single Slater determinant as an approximation to the exact |¥). In the CI
method however we write |U) as a linear combination of Slater determinants.
The idea is then to write the TISE (4.1) as a matrix eigenvalue problem which
can be solved by diagonalization.

41
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4.1.1 Full Configuration Interaction

Assume now that we are given an orthonormal Slater determinant basis
{|®)} built from a set of orthonormal single-particle functions {¢;}. Then
we can expand an arbitrary wavefunction |W ;) in this basis as follows,

U)) =) Axs|®k). (4.2)
K
Inserting this expansion into (4.1) we obtain,
S H|Pk)Axs = E;Axs|®k). (4.3)
K K

If we left-project the above equation with (®;| we obtain

Z (1| H|Dx) Ay = Z Ej Ay (®r|Pk)
K K

= EJAIJ7

where the last equality follows by the assumption (®;|®x) = d;x. The above
equation can be written as an eigenvalue problem,

HA = AE, (4.4)

where H = [Hy,] is the Hamiltonian matrix, A = [A;,] is a matrix containing
the expansion coefficients and E is a diagonal matrix with the eigenvalues
E}. on its diagonal. Here we have defined

H[JE <®[|ﬁ’®]> (45)

Thus, the TISE can now be solved by diagonalizing H. A straightforward di-
agonalization of H would give all eigenpairs, (|¥), E)), not just the ground
state. Notice that column k of A contains the expansion coefficients of |Uy).
This way of solving the TISE is known as the Configuration Interaction
method. The naming configuration results from every possible way of order-
ing the single-particle states as a Slater determinant. Such an ordering is
usually referred to as a configuration.

Now, if we want to solve the eigenproblem (4.4) in practice we must
truncate the Slater determinant basis, {CIDI}?[:‘I, such that |¥;) is written
as a linear combination of a finite number of Ny determinants built from
a finite number L of single-particle functions, {¢;}%,. As in Hartree-Fock
theory the choice of single-particle functions depends on the specific system
under consideration.
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In order to diagonalize the matrix H we have to compute its elements
Hj;. If we write out the expression for the matrix elements we have,

(@1H|®s) =) (d5lhldg) (Brlcfey| )

pq

+— Z ¢p¢q|w|¢r¢s>As <CI)I|C C CSCT|®J>'

pqrs

Again we see that if we can determine the integral elements (¢,|h|¢,) and
(Dpdq|W|drs) in the chosen basis, {¢;}, we can in principle solve the TISE.

Ideally we would like to include all linearly independent Slater determi-
nants in the expansion (4.2). If we use all determinants we get what is called
the Full Configuration Interaction (FCI) method. The power of FCI is that
it provides an exact result within the computational space defined by the
single-particle basis {¢;}-,. However, if we look at a system of N particles
the number of linearly independent Slater determinants are,

sa=(v) =5 o

which grows exponentially. Thus, FCI is only feasible for relatively small
systems. Nevertheless, the FCI method is an invaluable tool since we can
benchmark the implementation of other approximative methods for small
systems with results obtained with FCI.

4.1.2 Hierarchical CI

One way to adress the exponential scaling of the FCI method is to choose
the Slater determinants in a systematic way. In particular, we can choose
the Slater determinants as excitations relative to a reference, |®), such as the
Hartree-Fock state.

Now, let |®) be a reference determinant and define the operator C' as,

C=C,+Cy+- Z ch ¢+ — Z A,]abc cbc]cZ , (4.7)
z]ab

whered,j =1,--- N and a,b=N+1,---, L. Then the expansion (4.2) can
be written as

W) = Ao |P) + (Z Agacles + = ZAWI,C c,CiCi + ) |D) (4.8)

zgab

=A0|‘I>>+2Aia|¢?>+121‘1ia’ab|¢§?>+"' : (4.9)

ia ijab
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where
|DF) = cle; | D),
B2y = clefesei | @) .

Using this representation we get a systematic way to refine the computa-
tional space. The space defined by Vers = span{|®) , |®¢)} is known as the
CI-singles (CIS) space and Versp = span{|®) ,|®f) ,|®¢)} is the Cl-singles-
doubles (CISD) space and so on. If all excitations are included we regain the
FCI method. Observe that in the special case of N = 2 particles, the CISD
space is equivalent with the FCI space.

If we now consider the CISD space, we see that the number of linearly
independent Slater determinants are given by,

1
Newsp = N(L — N) + ZNZ(L — N)? (4.10)

which grows like O(N?(L — N)?). This is a vast improvent over the expo-
nential scaling of the FCI method. However, it turns out that truncated CI
methods are problematic since they are not size-consistent and extensive [14].
On the other hand, truncated Coupled Cluster methods which we discuss in
the next chapter, are size-consistent and extensive and are therefore favored
over truncated CI methods.

Furthermore, as we demonstrate in the next chapter on Coupled Cluster
theory, the Configuration Interaction and Coupled Cluster spaces are equiva-
lent for N = 2 particles. The CI approach (with its hierarchy of truncations)
is comparatively much easier to implement for small systems than CC meth-
ods and are a great tool for verfifying an implementation of the Coupled
Cluster method. This is the main motivation for introducing the CI method
in this work. In the implementation chapter we describe a straightforward
implementation of the CISD (FCI for N = 2) method, which later on is
used extensively to check the validity of our implementation of the Coupled
Cluster method.

4.2 Time Dependent Configuration Interac-
tion

We have shown how to compute the eigenfunctions of H using the CI method.
Recall that the time evolution of an arbitrary state, |U(¢)) with initial con-
dition |W(ty)), is given by the time dependent Schrédinger equation,

D -
i [U(0) = H() [0 (1)) (4.11)
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We will take the initial condition to be some (normalized) linear combination
of the CI eigenfunctions. In particular, we are interested in the time evolution
of the ground state.

The time-dependent Configuration Interaction (TDCI) method is ob-
tained by placing a time-dependence on the expansion coefficients in the
Cl-wavefunction while keeping the single-particle basis fixed. Analogous to
what we did in the previous section, we expand |¥(¢)) in a given orthonormal
Slater determinant basis {|®)}

ZAI )|D) . (4.12)

If we now insert this expansion into the time-dependent Schrédinger equation

we obtain,
8A
h§ i § Ar(tH (L) |®;) . (4.13)

Left-projecting the above equation with (®;| and using the orthonormality
of the Slater determinants, we are left with a differential equation for each
expansion coefficient A;(t)

n?0 = 3 o) (@il D). (4.14)

Equivalently we can write this as the matrix-vector equation
0A(t)
ot

where H(t) is the time dependent Hamilton matrix defined in terms of its
elements,

ih = H(A(t), (4.15)

Hyy(t) = (| H(t)|®,) (4.16)

and A(t) = [Ao(t), Ai(t),---] is the vector containing the expansion coef-
ficients. We refer to this as the time dependent Configuration Interaction
(TDCI) method.

Completely analogous to the time independent case we have a hierarchy
of TDCI methods defined by our CI space. Thus we have a series of pos-
sible approximations ranging from TDCI to TDFCI. If we did not have to
truncate the Slater determinant basis, TDFCI would be an exact solution
to the TDSE. However, we must in practice truncate the basis and TDFCI
suffers from the fact that the size of FCI-space grows exponentially. In order

to obtain a good approximation to the exact solution we would need a huge
fixed basis [1].



CHAPTER 4. THE CONFIGURATION INTERACTION METHOD 46

On the other hand it is quite straightforward to implement, especially
when a program for computing the Cl-ground state already has been written.
Again, the fact that the CI and CC space are equivalent for N = 2 makes
it worthwhile to write a TDCI program, which we can use to compare with
the time dependent Coupled Cluster method discussed in the next chapter.

4.3 Density matrices

In addition to computing the energy we want to compute the single-particle
density which is given in terms of the one-body density matrix and the single-
particle functions as

L
p(F) =) Pl (P B3 (7). (4.17)
Pq
Using a Slater determinant basis we have in turn

o= (Ul 0) = 37 A3 A, (Brlche,|2). (4.18)
1J



Chapter 5

Coupled Cluster Theory

In this section we review Coupled Cluster (CC) theory. We will look at the
"classical" way of obtaining the CC equations. The presentation borrows
heavily from the excellent review by Crawford and Schaefer [6].
Furthermore we look at a different approach which in addition to the usual
CC equations also gives a method to solve the time dependent Schrodinger
equation, the so-called Orbital Adaptive Coupled Cluster (OATDCC) method

[1].

5.1 The exponential ansatz

As usual we start by considering the time-independent Schrédinger equation
H|U) = E|0).

In Coupled Cluster theory an exponential ansatz
T)ee =" |®), (5.1)

is used to approximate the exact solution. Here |®) is a reference Slater
determinant and 7' = S T, is the sum over n-orbital cluster operators.
The the one- and two-orbital cluster operators are defined as

T, = Zt?clci (5.2)

and {
T =~ 1 Zt“bcbcchci. (5.3)
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Generally an n-orbital cluster operator is defined as
) 1)\?
T, = (5) Z tebe- clenciescle. (5.4)
"/ ijk..abe...

We see that the cluster operators are linear combinations of excitation oper-
ators as defined by (2.46). Recalling the exponential series we can write (see
the derivation below),

W) = ¢ [®) = (1 Yy %T) @), (5.5)

k=1

where T' contains the one-body, two-body etc cluster amplitues defined above.

Properties of Cluster operators.

e Tn.1|®) =0, where T = Ty +Th+- - -, |®) a reference determinant
and N the number of particles in [®). This implies that for a given
N the cluster operator T has a finite number of terms,

~

T=Ty+Ty+ - +Tn. (5.6)

e The rank of an excitation/cluster operator is defined as the number

of creation or annihilation operators, i.e rank (T 2) = 2.

e The product of two excitation/cluster operators is an excitation/-
cluster operator.

e All excitation/cluster operators commute. We can prove this by
considering the action of the commutator on a reference determi-
nant as follows,

ches.chei)|0) = (ceseles — cheicle; ) )
- ab ba
= |@F) |2%)
- ab ab
— o) — |o%)
_ ab
=0- |(I)ij> :

Thus c;rcjclci = clcichj, meaning that chj and ¢! ¢; commute. The
result for a general excitation operator follows by induction.
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e rank <TnTm> =n-+m.

e Excitation operators are nilpotent,

7% = ( = cickclﬁcjcici)Q = 0. (5.7)
This follows immediately from the fact that,
(clc,-)2 |®) = cle; |BY) =0
since ¢; |P¢) = 0.

A

o #l— i fe che ol

i
cTckcbc]cT cz> = <ci CaCjChChCe ) is a de-excitation op-

erator. Thus,
(®| 7x = 71 |®) = 0. (5.8)

e Since all cluster operators commute, e =c'e

We can now state a fundamental result in CC theory:

Existence of cluster expansion.

Suppose (®|¥) = 1 (normally referred to as intermediate normalization).
Then there exist cluster operators T and A such that

W) = <1+A) @) = T |) . (5.9)

Proof: Let X denote a general excitation index and let 7x be a
general excitation operator. Assume that (®|¥) =1 and let

{|®),|®x) | for all X}

be a Slater determinant basis where (®|®x) = 0. We can expand |¥) in
the basis, giving

| A0|(I) ZAX|(DX AQ,AX e C. (510)

Note that (®|¥) = 1 implies that Ay = 1. Using |Px) = 7x |D) we get,

W) = &) + Y Axty|®) = (1+A) 1®), (5.11)
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Where we have defined A = > x AxTx. We now want to find T such that
— 1+ A. Rewrite A as,

A= ZAXTX—ZA“A“nLﬁZAZb 78 4

ijab

By expanding ¢! as a series

. R 1 .
eT=1+T+§T2—|—-~-, (5.12)

and note that e = 1+ A if they have the same singles, doubles, etc.
parts. Let N be given and insert T = T} + --- + Ty into Eq. (5 12),
expand each power and group terms of equal rank together,

; A (P
eT:1+T+§T2+6T3+---

. . 1/. N2
=14 (T4 ) +5 (fi+- -+ )

1 /.4 . 1 /- A\ 4
(T ... T) —(T T)
+6< 1+ + 1N +24 + +iIn) +
. .1 1. .
=14+ Ty + (Do + =T )+ (T3 + =T+ 1T | +
~— 2 6
rankl N ~ ~ ~ _
rank?2 rank3

Note that in the last equation, the rank k& term contains only one term
from T}, while all other terms are products of cluster operators of lower
rank. For the above expression to be equal to 1 + A; + Ay + -+ each

rank k& term must equal Ay
A =Ty
A A 1 ~o
A2 :TQ + §T1
" ~ 1~ A a
Az =T3 + ETE’ + 115
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Then we can find T}, recursively,

T, =A, (5.13)
. A 1. A 1.
N n 1. PN
Ty =As — ng —T\Ty (5.15)
A e A A 1 .
:Ag - éAl - Al A2 - §A1 (516)
(5.17)

Hence, given |¥), we can find A which in turn gives 7.

We notice that the expansion |¥) = (14 A) |®) actually is the CI expan-
sion. Thus, the CC expansion el |®) is a nonlinear reparametrization of the
linear CI parametrization. In practice, for a system contamlng N particles,
one must truncate 7 =Ty +---+ Ty and A = A; +--- + Ay. Now, truncate
the expansion at the k-th operator in the sum Wlth 1 < k < N such that
T=T,++T,and A= A, +---+ A;. Observe that

U) = (1+ Ay + -+ A) |D)

is a linear combination where the highest excitation contribution has rank k.
The exponential ansatz on the other hand

N - -~ - 1 T 2
€T1+~~~+Tk |CI)>: (1—|—<T1++Tk> §<T1++Tk) +) |CI)>’

contains contributions from determinants of higher excitation than rank &
which is immediately clear from the inclusion of the term T,f in the second
parenthesis in the above expression. It turns out that this gives the truncated
CC ansatz an advantage over the truncated CI ansatz. The latter is not size-
consistent and extensive while the former is.

Loosely speaking size-consistency and extensivity means that if A and B
are two noninteracting subsystems, we should get the same energy for the
supersystem AB irrespective of whether we have carried out the calculations
for each subsystem separately or for both subsystems simultaneously. In gen-
eral truncated exponential wavefunctions have this property while truncated
linear wavefunctions does not [14].

Depending on the truncation we get a sequence of more and more accurate
CC approximations:



CHAPTER 5. COUPLED CLUSTER THEORY 52

o |[Uees) = el |®) coupled-cluster singles (CCS)
o |Ueep) = e |®) coupled-cluster doubles (CCD)
o |Ucesp) = el | @) coupled-cluster singles doubles (CCSD)

o |[Wecspr) = el 12473 |§) coupled-cluster singles doubles triples (CCSDT)

Equality of CC and CI for N = 2.

An important special case is the case N = 2. In that case the CC
expansion equals the CI expansion. This is an invaluable information
when we want to implement the CC method since we can then compare
it with the corresponding CI method to verify the implementation. To see
this let N = 2 and let |®) be a reference determinant as usual. Observe
that As |®) = 0 and Ty =0. Thus, A = Ay + Ay and T = Ty +T5 will give
all non-zero contributions. Additionaly all products of cluster operators
where the product has rank larger than 2, acting on the reference will
give a zero result. Inserting T 1 Al and T2 = AQ 1A2 into the CC
expansion including only terms of at most rank 2 we obtam

L R 1.
2 0) = | 1+ T +(T2+§Tf) |D)

rankl N ——
rank?2

. 1 1.
= (1 + A+ Ay — 514% + 5/1%) |D)
= <1 —i-zzh + AQ) |D)
which indeed is the CI expansion. For N = 2, A= /11 + /:12 corresponds
to a full configuration interaction treatment, while 7' = T} + T, CCSD.

For the two-particle case CCSD is actually equal to FCL. Morover, if we
consider only 7' = T, (CCD), we get

W)eep = ¢ [®) = (1+72) [@)
A 1 A2 1 12

(1 + A2) 1®) = V) -
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The importance of these two results is that one can verify a CCD im-
plementation by comparing with a CID implementation and a CCSD
implementation can be verified by comparing with an FCI/CISD imple-
mentation.

5.2 The Coupled Cluster Equations

We now proceed by inserting expression (5.1) into the time-independent
Schrodinger equation ) )
He® |®) = Be” |®). (5.18)

Left-projecting with (®| we get an expression for the energy,

(@|HeT|®) = E (@] |0) = E (B[ Vec)
=F

where intermediate normalization, (®|Woc) = 1, is assumed. Furthermore
one can obtain an expression for the amplitude t?}f'_i - upon left-projection with
(@51,

(@[ He''|) = E(@F]e"|®). (5.19)

Notice that this equations are non-linear (due to the presence of e?) and
depend on the energy equation. This is impractical and is resolved by per-
forming a similarity transformation of the Hamiltonian.

Multiply Eq. (5.18) with e=7 and left-project with (®| in order to obtain

(®leTHeT|®) = E (d|e TeT|®) = E. (5.20)
Left-projection with (®¢”| now results in,
ab...| —T iy T . ab... -
(®fle™" He' |®) = E (g [®) = 0. (5.21)

Equations (5.20) and (5.21) are commonly referred to as the Coupled Cluster
equations. Notice now that the equation for the amplitudes does not depend
on the energy. The amplitude equation is non-linear and has to be solved
iteratively. We say that we have a self-consistent solution to CC equations if
the energy converges to some pre-defined precision.

In order to implement the Coupled Cluster method we need algebraic
expressions for the CC equations.

Theorem 3 (Baker-Campbell-Hausdorff expansion). For any matrices A
and S the Baker-Campbell-Hausdorff (BCH) expansion is given by,

e=SAeS = A+ [A, 8] + %[[A, S, 8] + %[[[A, S1,81,8] ... (5.22)
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where

[A,S] = AS — SA
1s the commutator between A and S.

Under the assumption that H contains at most a two-body operator the
BCH-expansion truncates after the first five terms on the right-hand side of
Eq. (5.22) [15]. This fact greatly simplifies the evaluation of the left-hand
sides of the equations (5.20) and (5.21).

These expressions can be evaluated using the second quantization formal-
ism as demonstrated in [6] or by diagrammatic techniques [5|. Alternatively
one can use the second quantization toolbox in the Python library Sympy!
to compute these expressions.

5.3 A variational CC theory?

One drawback with the CC-method is that it does not satisfy the variational
principle of Eq. (2). Consider the operator e~ He” which appears in the sim-
ilarity transformed energy equation (5.20). This operator is not Hermitian.
In order to see this compute Tf ,

T = (Z t?clci> = Z(t?)*cica £Ty. (5.23)

ia a

Then it follows that
LNt . ) . .
(e_THeT) = (D HEe ) =" He ™ £ e THE . (5.24)

Hermiticity of the operator was a necessary condition for the variational
theorem, thus Eq. (5.20) is not variational. However, if T is not truncated
the spectrum of e~THeT is identical to the original Hermitian operator H,
justifying thereby its use in quantum mechanical models [16].
There have been attempts to construct a variational solution by deriving
the amplitude equations by minimizing the functional,
(U H|W) _ (@|(") HeT|®)

w0 = BT (5.25)

Notice that since (eT)T]:I e’ does not conform to the Baker-Campbell-Hausdorff
formula, the series has no natural truncation, complicating thereby matters
greatly.

thttp://docs.sympy.org/latest /modules /physics /secondquant.html
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5.4 The Orbital Adaptive Time Dependent
Coupled Cluster Method

Kvaal demonstrates in Ref. [1] that it is possible to derive the equations
of motion for the CC ansatz by computing critical points of a bivariational
expectation value functional. In his approach both the orbitals and CC am-
plitudes are allowed to vary and the method can be used to solve the time-
dependent Schrodinger equation. The method is called the Orbital Adaptive
Time-Dependent Coupled Cluster (OATDCC) and is a hierarchical approxi-
mation to MCTDHEF. Furthermore, if the orbitals are held fixed the method
gives an approximation to the Time-Dependent CI method which we refer to
as the Time-Dependent Coupled Cluster (TDCC) method. While the TDFCI
and MCTDHF approaches suffer from exponential scaling, the OATDCC and
TDCC methods achieve polynomial scaling.

The main goal of this thesis is to implement the TDCC method for a time-
dependent Hamiltonian. As such we will in the following summarize the key
ingredients needed to achieve this. For technical details the interested reader
is referred to the article by Kvaal [1].

5.4.1 The Bivariational Principle

As we have established, the Coupled Cluster method is not variational in the
usual sense since the similarity transformed Hamiltonian,

H= e’TI:[eT

is not Hermitian. Following Ref. [1], let A be an operator (possibly non-
Hermitian) over Hilbert space H and consider the expectation value func-
tional

VA[Y)
Ea:H — C, EA[(V],|W)] = <—
A H XH ? A[< ‘7‘ >] <‘I]/’\I]>
This is referred to as the the bivariational expectation value functional. In
contrast to the usual variational principle (U’| and |¥) are treated as indepen-
dent parameters. The conditions for 64 = 0, for all independent variations
of (V'] and |W) is

(5.26)

(A—a)|¥) =0 and (V'|(A—a)=0, (5.27)

with
a=Es[(V'], V)]

being the value of £4 at the critical point.
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Equations of motion can be derived from so-called time-dependent vari-
ational principles. One such variational is set up using the Lagrange formu-
lation [17],

T
5/ L[|W)]dt =0, (5.28)
0
where the Lagrangian functional is given by
A 0
L] = (U)H — ih [9(1)) (5.29)
with the boundary conditions L(t;) = dL(t2) = 0. The functional
T ~ 0
S[|wY] = / (WA~ i W) di (5.30)
0
is referred to as the action functional and computing equations of motion

from 6S = 0 is known as the prinicipal of least action.
By considering a bivariational generalization of the action functional

(5.30).

st wy = [ 0T RO g 5)
oSN

/0 h g~ SO e (652

Kvaal [1] derives equations of motions generalizing the Coupled Cluster method
to the time domain. Here, one should note the appearance of the bivariational
generalization of the energy expectation value,

(V' 1)

Eally. 19)] = g

(5.33)

which is required to be complex analytic as shown in Ref. [18|.

5.4.2 The Coupled Cluster Ansatz

The fundamental idea in Ref. [1] is to introduce different exponential parametriza-
tions |¥), (V'] and compute 6S = 0, with S given by (5.32), which ultimately
result in time dependent Coupled Cluster equations.

In particular one makes the ansatzes

¥ = [9) (5:34)
(W] = (g|e", (5.35)
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where T is the familiar excitation operator

T = Z TiChE; + ﬁ Z Z‘;bclczcbcj - (5.36)

ijab

and T" is a de-excitation operator on the form

. 1
T = Z( Nicle, + o Z( )anCTCaC Cot - (5.37)

ia ijab

Here |¢) = @, 0py) and (@] = (@, -+ , Ppy| are Slater determinants
built from biorthogonal single-particle functions, (@,|p,) = d,4, belonging to
separate Hilbert spaces V and V. The biorthogonality condition implies the
anticommutator relation

{Gp, et} = Gyl + ey = 64, (5.38)

which preserves Wick’s theorem. Here ¢, 6;, ¢, and c;f) are creation and anni-
hilation operators associated with the biorthogonal single-particle functions.
It should be noted that when ¢, or & acts on the determinant |¢) it is only
responsible for removing or adding ¢, (not ¢,) from the determinant [1].
The notation ® = (py,--- ,¢r) and ® = (Gy,--- , @) to denote the set of
orbitals used to build the Slater determinants |¢) and (¢|.

In standard CC theory and virtually every other many-body method,
the single-particle functions are taken to be orthogonal such that V = V.
This relaxation of orthonormality of the single-particle functions is necessary
to ensure that the bivariational functional is complex analytic if the single-

particle functions are to be treated as variational parameters [1].
Next, a change of variables from (T’, T) to (A, T), with

A= Z c Cq + oF Z /\abc CaCj T+ - (5.39)

ijab
with a subsequent application of a de-excitation operator results in

5 (Y

(| = e (@] (14 A)eT. (5.40)

Using this parametrization (¥|¥) = 1. The amplitudes {2, 7 TP, .-} are the
usual Coupled Cluster amplitudes which we refer to as the excitation am-
plitudes or T-amplitudes. Furthermore, we have introduced a second set of
amplitudes {\: A% ...} which we will refer to as the de-excitation ampli-
tudes or A-amplitudes.
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The bivariational expectation value functional (5.33) reads
Eul\, 7, 0] = (BI(I + Ay THET|g) (5.41)

Inserting the wavefunction ansatzes into the action functional of Eq. (5.32)
one arrives at the following expression,

S[\, 7, ®, D] :/0 z‘h(é\(HA)e—T%e%) — Eu[At), (1), D(t), (t)]dt.

(5.42)

Kvaal then shows that the action can be written,

~ T ~
S[\, 7, D, ®] = / i N = Eninp [\, 7, , D]dt (5.43)
0
T 1
= /0 ihA T+ pl(hS —ihn?) + 4pgf,uggdt (5.44)
where the operator Dy is defined as,

Do =) (Bplq) chiy. (5.45)

pq
Here p denotes a general excitation {ia,ijab, - --}. Furthermore,
pi = pi(A\T) = (Wche | v)

o = A0 T) = (Bl )
= (B, @) = (@ylhles)

77q = nq( ) <95p|90q> )
UZZ = UZZ(Q% P) = <‘15p95r|U|90q908>AS

The quantities pf and pf; are the CC reduced one- and two-body density
matrices. Note that these do not depend explicitly on the orbitals since they
are evaluated by Wick’s theorem which only depends on the anti-commutator
relations (2.24). Thus, they only depend on the amplitudes.

5.4.3 OATDCC equations

Finally, equations of motion are derived by demanding S (U], |W)] = 0 for
all independent variations of (¥| and |W¥). In general both the single-particle
functions and the amplitudes are allowed to vary resulting in equations of
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motion for both the amplitudes and the single-particle functions. A detailed
derivation can be found in the supplementary material to Ref. [1].
For the amplitudes the equations of motion read,

0

it = aTgH Do\ T, @, @] = (bl (H —ihDy) €7 |o) (5.46)
—ili\, aaugﬂ Do\ T, @, @] = (0| (1 4+ A)e T[H — ihDy, X,)eT|p) .

(5.47)

Here X, are the excitation operators,

a -
X = clcz,

ab __ ~ 1
XZ-]- = cjlczcbc],

Note that in the absence of Dy the right-hand side of (5.46) is equivalent
with the usual amplitude equations (5.21).
The equations for the unknowns nq(CI) (ID) are given by

S Al = S o= S b+ 5 | S e — S ot z;; (5.48)
bj P q

L prs rqs
—ihy Al Zp“hf’ quhu— Zp;;i uff = piu z;“ + ihgy,
bj L prs rqs
’ ’ ' (5.49)
where

Al = (W][c]ey, ] W) = ool — ot

For the single-particle functions the equations of motion are given by

mZp Q) = Zp Qhley) + D P QWY | eq) (5.50)

qrs

—thpp (Gl @ = pr (@ol hQ + )~ p% (Bl WIQ, (5.51)

prs

where () = I — P with P being the projection operator

PE=) o) (&l- (5.52)
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The operators W are defined by,

Wi lY) = (-@rlultes) E/d:cl/d:czsér(xz)U(xuxz)w(xl)ws(fﬁz) (5.53)

Equations (5.46)-(5.51) are collectively referred to as the OATDCC equa-
tions.

It is not at all obvious how one should compute the initial state for the
OATDCC equations when the single-particle functions are allowed to vary
and Kvaal proposes several different solutions in his article.

5.4.4 The TDCC equations

A special case of OATDCC equations arises if the orbitals are held fixed in
time. Then the operator Dy drops out and the OATDCC equations reduce
to only the amplitude equations

ihit = isH[A,T, D, ®] = (dle”THE|¢) (5.54)
O\,
—ili\, = %EH[)\, 7,®,®] = (¢ (1 + Ne T[H, X,)eT|¢), (5.55)

which we refer to as the TDCC-equations. Notice now that Eqs. (5.54) and
(5.21) are equivalent. Furthermore, we take ® = ®*.

The initial amplitudes (A, 7)) are obtained by solving the non-linear
equations

(Gule™THET|¢) =0 (5.56)
(6|1 + N)e T [H, X, ]e"|¢) = 0. (5.57)

For the time evolution one then propagates the amplitudes by solving
Egs. (5.54) and (5.55). The energy is taken as the real part of

En[A®), 7(t)] = (B|(I + A)e "He"|o) (5.58)

where the imaginary part should be "small".

Approximations to the TDCC equations are obtained by truncating T" and
A. For example T'="T) + T5 and A = A; + A, corresponds to the TDCCSD
approximation while 7' =T, and A = A, gives the TDCCD approximation.

It is shown in Ref. [1] that the singles amplitudes are redundant when
the single-particle functions are varied. We will therefore restrict ourselves
to the TDCCD approximation, using the Hartree-Fock state as reference
determinant. This allows for flexibility if one wants to extend the program
written in this work to the full OATDCC method.
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5.4.5 The TDCCD approximation

In order to write a computer program that solves the TDCC equations we
need algebraic expressions for the right-hand sides of Eqgs. (5.54) and (5.55).
Now, in the TDCCD approximation we take T'= T, and A = Ay. We want
expressions for the amplitudes and the one- and two-body density matrices.
Thus we must evaluate the vacuum expectation values,

a T2 T2
8%5}1 = (¢37le” " He™|9) (5.59)
0 ) .
aT%bSH = (¢|(1 4 As)e 2 [H, XP)e™|¢) (5.60)
Py = (Wle)ce| T), (5.61)
Py = <\If|cT Tcscq,|\I/>. (5.62)

These are generated by the CoupledClusterSympy.py script, which uses the
second quantization package in SymPy, and is found in the src folder at the
github page?.

Recall that the Hamiltonian in second quantization is given by,

H=HY+H® =) "hbcle, + - Zup’“ felese, (5.63)

qs p Cr
Pq pqrs

where ufy = (0por | H® | 0g05) 1g- Bvaluation of the right hand side of equa-
tion (5.59) gives,

g Enen = (i P(ig) + hiTii P(ab), (5.64)
0 kl ab 1 D

NG Epe = zku P(ij) + 7" x;P(1))
ab

T TP (ab)
1 c, a
+ Tzk X’z]bp(ab)p( ) - §Tjdl udlc)
+ uw , (5.65)

where P(ij) is an anti-symmetrizer in the sense that f(ij)P(ij) = f(ij) —
f(ji) and similarly for P(ab). We have defined the so-called intermediates,

Zhttps://github.com/haakoek /PythonVersionMaster /tree /master /src
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Xt = ireduﬁé + % (5.66)
= gttt (5.7
Xh = gl (5.68)
Xe = uly + ;uklfbd (5.69)

We use the Einstein summation convention over repeated indices of opposite
vertical placement. The appearance of a P(ij) or a P(ab) should be ignored
for the invocation of the summation convention. This means that for example
the expression hf74l P(ij) is interpreted as,

RETRP(ig) = ) (Wi — hyTiy) -
k

In other words, we sum over all indices that don’t appear on the left-hand
side of all following expressions.

Evaluation of the right hand side of Eq. (5.60) results in,

9
orab

ij

Epay = heNLP(ab) 4+ hi Ny P (i), (5.70)

9
orab

ij

Eper =Aae&iyPab) + Ny P(i7)
A + )‘zk&%P(ab)P( )
KT P (i) + N
FNiEP(ab) — (5.71)

where we have defined the intermediates,
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cji L ge ji
kb = o Tkt Ybd (5.72)
» 1 g
ko = — 5Tk Ul (5.73)
g_ L 1,
le = _57%‘_ 171?1 (o (5.74)
b = T U + i (5.75)
: I ,
£ = — il — ol (5.76)
C 1 C 1 C
= 1 gy — Equ (5.77)
C 1 C C
& = _571?1 Ulzf(li - Ubil? (5.78)
If we precompute and store all intermediates Eq. (5.65) scales as
O (N*(L - N)*Y)
while Eq. (5.71) scales as
O (N*(L—N)*).
For the onebody density matrix we get
: 1 ..
pi = 0ij — 5)\%7135’7 (5.79)
1 ij _bc
Pa = ST (5.80)
o =gl = 0. (5.81)
The non-zero elements of the two-body density matrix are given by,
1 1
piy = —OudpP(if) = S P(i7)P(RD)SAG Tom + 5 NaeTje (5.82)
Py = Ay (5.83)
; 1 ‘ , ‘ .
Pla = 50uNacTii = NcTik = —Pra = —Pai = P (5.84)
1. .
Pib = 5Ty (5.85)
ab 1kl ab,_dc . . ]'kl ab,_dc ]'kl ac,_bd . .
Pij = _Z_l)‘dcTik Tjl P(ab)P(ij) — ZAdchl Tii — ZAdchl Tji P(ij)
1
+ i TP (i) = G NaeTs i P ) = 7 (5.86)
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Finally, the energy is taken as the real part of the expectation value (5.58)
which in the CCD approximation is given by,

En[A®), ()] = (S|(I + Az)e > He™|¢)
= (ple ™ He™|¢) + (¢|Ase™ " He™|o)

- R 1 - R
= (Gl P He®|¢) + 7 Y X (9 le” ™ He™|g)

ijab
where ] 1
(ple”2He™2|g) = hi + iug + ZTzC;bUZJb (5.87)

Notice that in the groundstate
(@gle 2 He™|g) =0,

which means that the energy for the ground state is simply given by (5.87).

Note also that the one- and two-body density matrices depend only on
the amplitudes (7, A). This is an advantage when we want to verify the im-
plementation of the A-amplitudes since we can compare the density matrices
with the density matrices computed with the CI method.

In order to verify that the r-amplitudes have been computed correctly
for the ground state we compute the ground state energy and compare with
previous published results.



Chapter 6

Quantum Dots

As an application of the many-methods we have introduced we will consider
models of quantum dots. Electrons confined in small areas in semiconduc-
tors, so-called quantum dots, form a hot research area in modern solid-state
physics, with potential applications ranging from medical imaging to quan-
tum computing. For example, the article by Loss and DiVincenzo [19] inves-
tigates quantum computing devices with quantum dots.

The choice of quantum dots as model systems is due to the fact that
there is a vast literature body with results for both ground state and time-
dependent studies, providing us with invaluable benchmarks for various im-
plementations.

6.1 The One-Dimensional Quantum Dot

In the article [9] by Zanghellini et al., a one-dimensional quantum dot model
is studied. The Hamiltonian, in atomic units, for two interacting electrons
moving in a confining potential is given by,

. 1/ d? d?
Ho(xl,fﬂg) = —5 (d_x% + d_.Tg> + ‘/con(xl) + ‘fcon(xZ) + ‘/int(xth)- (61)

If we define the single-particle operator,

~ 1 d?
h([)’}) = —5@ + ‘/Con<x>7 (62)

65
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the Hamiltonian can be written on second quantized form relative to a (finite)
single-particle basis {¢,(z)}/_, as,

Hy =Y {(dplh()6g) chey

rq

+- Z (Dl Vins (1, 2) |6, 85) 5 il sy (6.3)

pqrs

In the above paper by Zanghellini the confining potential is taken to be
the usual harmonic oscillator potential,
L oo
‘/con(x) = §UJ X (64)
with oscillator frequency w. In three dimensions the interaction between the
electrons would be given by the Coulomb interaction. One-dimensional and
two-dimensional models are effective models and the interaction between the
electrons is modelled by a "shielded" Coulomb potential [20]

A
\/(xl —19)2 + a2’

where A is a dimensionless constant. The screening parameter a removes
the singularity at xy = o, while retaining the asymptotic behavior at large
distances. We will frequently refer to this model as the one-dimensional
quantum dot.

For the one-dimensional quantum dot we will use spin-orbitals {¢,},—1
built from harmonic oscillator eigenfuntions, i.e

Vi (21, x2) = (6.5)

(_g% L ) U() = epty(0) (6.6)

as single-particle functions. The above equation has analytic solutions given
by

w\ 1/4 1 e
() = ( Ho(viz)e 12, (6.7)
1
where p = 0,1,2,---. Here, H,(y) are the so-called Hermite polynomials

given by,

Ho(y) = (—1)7e? (%)ne—y? (6.9)
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The derivation can be found in any elementary introduction to quantum
mechanics such as [12]. Thus the spin orbitals are given by

Do) (T) = (@) X0 (5), (6.10)

where x, are the spinor basis functions and (p,o) = {(1, £1), (2, £2),--- }.
Following Zanghellini we will, for time-dependent studies use the time-
dependent perturbation,

ﬁl(l'l,l'g,t) = (l’l + 332)50 sin(Qt), (611)

which models a laser-field with frequency 2 and amplitude &. Thus, we have
the total time-dependent Hamiltonian,

f](xl,:cg,t) = ﬁg(ﬂ?l,ﬂfg) + F[l(ﬂil,l@,t). (612>

The parameters used by Zanghellini are w = 0.25 for the oscillator frequency.
The parameters for the shielded Coulomb potential are a = 0.25 and A = 1
while & = 1 and 2 = 8w are used as parameters for the laser.

One can also consider other confining potentials such as the double well

potential
1 1\? 1\?
‘/con(x) = ﬁ xr — §d x + §d 5 (613)

where d is the distance between the wells. In this case a more suitable single-
particle basis is obtained by solving,

<_§dd_ b ( _ %d) ( n §d>) Uyl@) = eple). (6.14)

Note however that this equation cannot be solved analytically and we have
to use a numerical method for ¢,. Relevant parameters which can be used
for a numerical experiment, given in for example Sigve Bg Skattum’s master
thesis [21], are d = 8 for the distance between the wells, while A = 0.6 and
a = 0.1 are employed for the shielded Coulomb potential. The range of the
grid is taken as x € [—15,15]. For two electrons confined to the double
well using six spin-orbitals Bg Skattum reports a ground state energy of
Ey = 1.0467.
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6.2 The Two-Dimensional Quantum Dot

We will also study the two-dimensional quantum dot. The Hamiltonian for
N electrons confined by a harmonic oscillator potential is given by,

— Z <——V2 - ;m Wwr; ) - i ke’ (6.15)

. Tz'j
1<)
= Hy+ W (6.16)
Here
A~ N ~ ~ hz 1
Ho= 3 h(F),  hF)=—5 Vit gmatt. (617)
where r = |r], r; = |r}], and r;; = |r; — 7;]. Hartree atomic untis is used

(e=me=h=k.=kp=1).
Following B¢ Skattum [21] we will for time dependent studies use the
following perturbation

Hy(t) = Esin(Q) >z (6.18)

which models a laser polarized along the x-axis with amplitude & and fre-
quency €2. Thus, during the time evolution we get an addition in the one-body
operator such that

2
1
h V2 + —mew?r? + & sin(Qt)z;. (6.19)

B_;at:_
(75, 1) o Vi T3

The total Hamiltonian can now be written on a second quantized form rela-
tive to a single-particle basis {¢,} as,

= _hi(t)che + 5 Zwi’z delescr, (6.20)

where
W) = (6, h(7, 1)) (6.21)
wyd = <¢P¢Q|w|¢r¢s> . (6.22)

We will use spin-orbitals based on the harmonic oscillator eigenfunctions
Unm (7, 0) in polar coordinates as our single-particle basis functions,

WP (7, 0) = €pmthnm (75 60), (6.23)
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with eigenvalue e,
enm = w(2n + |m| + 1). (6.24)

The eigenfunctions are given by,

MZ—W(GT)MLYZ” (a®r?) exp(—a®r?/2),  (6.25)

Y (1, 0) = ae™
where a = y/w and L™ are the so-called Laguerre polynomials.

The quantum number n = {0, 1,...} is the number of nodes in the radial
part, while m = {0, £1,£2, ...} is the orbital angular momentum.

The spin-orbitals become

¢;5'(r7 0) = @Dnm(n G)XQ(U)’ ﬁ: (TL, m, Oé) (626)

where o = +1/2 is the quantum number for the z-projection of the electron
spin, and X, is the corresponding spinor basis function satisfying (x.|xs) =
dap3- The spin orbitals form so-called closed shells, where each shell contains
orbitals with the same eigenvalue and all both spin values. The shell structure
can be visualized using the Fock-Darwin representation as in figure 6.1. We
will only look at systems with full shells. The number N of spin-orbitals
needed to fill k shells are called magic numbers and of which the first few are
N =1{2,6,12,20,30,42,56, - - }.

€
wt o
78 9 10 1112
wt
3 4 o5 6
1ot c
1 2

-2 -1 0 +1 +2

Figure 6.1: Spin-orbitals for an electron in a two-dimensional oscillator well
using a so-called Fock-Darwin representation. Here we show the states and
their oscillator energies for three harmonic-oscillator levels. The oscillator
energies are given by e,,, = hw(2n + |m|+ 1).

In order to study the two-dimensional quantum dot with the Hartree-
Fock, the Configuration Interaction and the Coupled Cluster methods we
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need to compute the one- and two-body integral elements hb(t) and w?? in
the harmonic oscillator basis.

Writing p' = (n,, m,, o) and ¢ = (n,, my, o) we have the following ex-
pression for the one-body integral,

BE(t) = Gayay (g [hlngm,) + E0510(28) (Gnm, 7 c0S(6) [,
= 0p.qCn,m, + Eo5I0(Q)0a,a, (Vnym, |7 €08(0)|Vn m,) -

Notice the appearance of the term r cos(#) in the time dependent part since
we work in polar coordinates. For ground state computations this expression

reduces to,
hy = 05.q€nym,- (6.27)

The spatial part of the time-dependent perturbation

(nym, |7 c08(0)[Vngm,) (6.28)

is solved analytically using the symbolic algebra package SymPy.
Furthermore the matrix elements of the Coulomb interaction W become,

wfg = <Xap’Xar> <Xaq’Xas> <wnpmpwnqmq’w’wnrmrwnsms>
= 5apar5ocqas <¢npmp¢)nqmq |w|¢nrmrwnsms> ) (629)

where,

<,¢npmp r(/}qu’fnq |/ZI) |¢nrmr ¢nsms > =

1
// 7“1d7”1d917"2d7"2d92¢2pmp(7"1, 91)1/1:;1% (7“292)F¢nrmr(7"17 01)Vn,m, (T2, 02).
ij
(6.30)

This integral can be solved analytically when using the harmonic oscillator
eigenfunctions as basis with explicit expressions given in Ref. [22].

6.3 The Three-Dimensional Quantum Dot

The Hamiltonian for N electrons confined by a possibly deformed harmonic
oscillator potential in three dimensions is given by,

ke?

7”1']'

H=Y" — Ho+W, (6.31)

N
—1

h? 1 al
<_2m AV §mew2(a:2 + + a222)> + g
i e i<j
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where a controls the strength of the deformation in the z-direction. Vor-
rath [23] gives analytical expressions for both the one- and two-body integrals,
using the eigenfunctions @, (7, 0, @) of the thee-dimensional harmonic os-
cillator in spherical coordinates (see appendix A.3) as basis. We have done a
preliminary implementation with o = 1 where we compute the ground state
energies of the three-dimensional quantum dot for N = {2, 8} using the HF,
CI and CC method for a small number of basis functions.



Chapter 7

Implementation and Results

In this chapter we give a detailed description of the implementation of the
methods discussed in Chapters 4-6. Furthermore, we present and discuss in
detail our results for different many-particle systems.

7.1 Overall structure of the Software Suite

7.1.1 Program flow

We want to simulate the time evolution of a quantum-mechanical system by
solving the time-dependent Schrodinger equation (TDSE). Specifically, we
consider the time evolution of one- and two-dimensional quantum dots. Ad-
ditionally we compute ground state energies for three-dimensional quantum
dots.

Before we can solve the TDSE we must define a system and an initial
condition.

A system is characterized by a single-particle basis {¢;}~ |, with L being
the number of basis functions and its integral elements relative to the basis.

Depending on the system, the integral elements must either be computed
numerically or they are given by analytical expressions. Thus, the first step
is to set up the system and compute the integral elements.

The initial condition is taken as the ground state of the system which
is found by solving the time-independent Schrédinger equation (TISE). The
ground state is found by first performing a change of basis to a Hartree-Fock
single-particle basis and then solving the TISE in this basis using either the
Configuration Interaction method or the Coupled Cluster method.

Finally, we compute the time evolution by solving the TDSE using the
ground state as initial condition. We note that since the one-body part of the

72
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Hamiltonian in general is allowed to be time dependent we have to update
the one-body integral elements during the time evolution.

7.1.2 Object-orientation: A description of the basic
classes.

Using an object-oriented approach the program is split into the classes Sys-
tem, HartreeFock, ConfigurationInteraction and CoupledCluster. The phi-
losophy behind the establishment of such classes is that we then can make
adjustments and implement new features to separate parts without affecting
the implementation of other parts of the program.

Specific systems such as the one-, two- and three-dimensional quantum
dots are implemented as subclasses of the System class.

The Hartree-Fock, Configuration Interaction and Coupled Cluster pro-
grams are independent of the specific system in the sense that they take
either a whole system or just integral elements as input. The advantage of
such an approach is that the programs can be used to study a variety of sys-
tems, as long as we can provide the integral elements. One disadvantage is
that it is hard to exploit properties of a specific system such as certain sym-
metries. If large scale simulations are desired one should probably write a
program that is tailored more specifically for the system under consideration.
We have however opted for a more general code, emphasing thus more over-
arching features of quantum-mechanical systems. Furthermore, we believe,
strongly, that this approach results in a better pedagogical approach since
focusing on generic aspects enhances the capability to make new abstractions.

The TDCI and TDCC methods are features of the ConfigurationInterac-
tion and CoupledCluster respectively. A future project would be to expand
these classes to handle the MCTDHF method [8] and the full OATDCC
method as described in Ref. [1].

In the following sections we will discuss the details of the implementation
of the classes described above.

7.2 The System class

In this section we present how to implement a system. In particular, we
describe the implementation of the quantum dot systems described in chapter
6.

Common to all systems is that we want to be able to retrieve its inte-
gral elements relative to some single-particle basis. How we compute these
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elements depends on the system under consideration. We introduce a su-
perclass System which guarantees that it can return the integral elements.
Explicit implementations of a specific system is then written as a subclass of
the System class.

7.2.1 The One-Dimensional Quantum Dot

Consider the Hamiltonian for N electrons confined by some potential Vi, ()
in one spatial dimension relative to some single particle basis {¢,},

= Z <¢p|ﬁ|¢q> c;gcq + i Z <¢p¢q|a|¢r¢s>As C;C;CSCT. (7.1)
Prq

pars

In one dimension the interaction operator u is taken to be the shielded
Coulomb potential described in section 6.1. Before we can do ground state
and time dependent computations we must define a single-particle basis. We
must also compute the integral elements <¢p|iz|gz5q) and (¢pdq|t|drs) g A
typical choice for a single-particle basis are the eigenfunctions of the single-
particle operator iL, which in one spatial dimension is given by

. 1 d?
=——— . 2
h 5 772 + Veon() (7.2)
That is, we can take our single-particle basis to be the solutions of
ilﬁbp(x) = &pPp(T). (7.3)

When Vo, () is taken to be the harmonic oscillator potential this equation
can be solved analytically. In general this is not possible, but especially when
we work in one dimension it is quite straightforward to solve (7.3) numerically.
When a single particle basis is found, we can compute the integral elements
by numerical integration.

In the following we describe how to compute a single-particle basis for a
general one-dimensional potential and how to obtain the integral elements..

Computing the single-particle functions

The most straightforward way to solve Eq. (7.3) numerically for a general
confining potential is to use a uniform discretization,

Tit+1 :IL'Z—f-ZAZL‘, 1= 1, 7Ngrida (74)

where Ngiq are the number of grid points and o = a and w41 = b for
x € [a,b].
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Let u(z;) = u; denote the approximation of ¢,(x) at the point x;. Using
the standard central difference approximation of the second derivative we
have,

Lug—y — 2u; + Ui
(_5 A.ZEQ + chon(l'i)ui> = epui, (75)

which can be written on matrix form,
Au, = €,u,, (7.6)

where A is a tridiagonal matrix with elements,

1 .
Ai,i: _Qsz +V;:0n<xi>7 = 17 7Ngrid
1
Aiiv1 = Aipri = N L+, Ngria — 1,
and u = [¢,(71), -+, ¢p(xn)]". Diagonalization of A will then give an ap-

proximation to the N first eigenfunctions of h. One should note that the
quality of the eigenfunctions depends on the number of grid points Ngsq and
care should be taken with how many is useful.

Computing integral elements

We now assume that a single-particle basis {¢;}Z, has been defined. We
want to compute the integral elements

by = (@plilog) = [ 63 (e)da, (.7)

W= (6,0lil0n0) = [ [ 6304l 22)0 (00)0u(z2)dridoa. (T5)

The one-body operator is given by Eq. (7.2) and the two-body operator is
taken to be the shielded Coulomb potential
A

V(T —x2)2 + a2

We assume that the single-particle functions, ¢;(z), are the eigenfunctions of
the one-body operator. In this case the one-body integral elements are given
by

(1, 29) = (7.9)

h? = €,0pq- (7.10)
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In order to compute the two-body integral elements we first rewrite Eq. (7.8)
as

ull = /cb 1) {/cﬁ T2)U(21, T2)Ps(12)dxo | ¢ (21)d7y
= [ G Wia)on e, (7.11)

where we have defined the function

.fL’l /¢ I‘Q I1,$2)¢3($2)d$2 (712)

The functions W can be computed numerically by the trapezoidal rule. In
theory the integration limits are 0o but in practice we must choose some
cut-off L, such that 1,2, € [-L,, L,;]. Choose a stepsize Ax = 2L, /Ngiq
where Ngiq is the number of integration points and uniform gridpoints such,

T; = —Lx—l—ZAl‘, Z:O, aNgrid-

Applying the trapezoidal rule we get that WJ(z, ;) are given by,

N, rid_l
Az S
Wi(x1,) = 5 [ (21,0, 20) + 2 Z f@ri, o) + f (210, 228) |
j=1

where

f(@r, w2,5) = ¢g(@2,5) (1,5, T2,5) Ps(22,5)-
The integral elements u?? can be computed similarly by the trapezoidal rule
as follows

grld 1

A
wt = =2 g1 0) +2 Z (@13) + 9(@18,) | (7.13)

where
9(1’1,1') = ¢;($1,i)Wf($1,i)¢r($1,i)-
Additionally, when we study the time evolution of the one-dimensional
quantum dot we have the time-dependent perturbation,

Hi(t) = &sin(Q0) 3 (dylal6,) cle, (7.14)

and we have to compute the integrals (¢,|z|¢,). This is done analogously by
the trapezoidal rule.
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7.2.2 Two- and Three-Dimensional Quantum Dots

For the two- and three-dimensional quantum dots we choose a less flexible
approach. In particular, the computation of the two-body integrals become
much more expensive in two or three dimensions.

In two dimensions the single-particle basis, {¢,}, is taken as spin-orbitals
built from the eigenfunctions of the harmonic oscillator in polar coordinates
as described in chapter 6.2,

hop(r,0) = €qmdp(r,0), p=(n,m,o). (7.15)
Then the one body integral elements are given by,
by = dpqtp- (7.16)
Using this representation the two body integrals are given by,

Ufg = 5%%-6%&5 <7/)npmp¢nqmq|w|¢n7-mr¢nsms> ) (7'17)

where the integrals (v, m, Vn,mq |W|Vn,m, Vn,m,) are given analytically in Ref.
[22].

Similarly for the three-dimensional quantum dot we use spin-orbitals built
from harmonic oscillator functions in three dimensions using spherical coor-
dinates (see appendix A.3). The integral elements are given analytically in
Ref. [23].

A C++ program that evalutates the integral elements according to Refs. [22,
23| can be found in the source code associated with this work!.

Other confining potentials.

It would be interesting to study electrons confined by some other potential
than the harmonic oscillator (HO) potential. The challenge is then to have
a suitable basis of single-particle functions.

For the HO potential we have analytical expressions for the eigenfunc-
tions, ¢,(r), of the single particle operator,

- 1
hHO = —§v2 + VHo(T), (718)
d d

82
r=> al, vzzzw, d={1,2,3}, (7.19)

i=1 i=1

Thttps://github.com /haakoek /PythonVersionMaster /tree/master /src
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which we use as single-particle functions. In particular, we have analytical
expressions for the two-body integral elements
1
<¢p¢q|_|¢q¢s>
Tij
in two and three dimensions.

For other confining potentials of interest we can in general not solve for
the eigenfunctions analytically and we also have to compute the two-body
integrals. In one dimension we could just solve for the eigenfunctions by nu-
merical diagonalization. However, in two and three dimensions the number
of grid points required to get reasonable approximations with such a straight-
forward approach grows rapidly. If we use a quadratic grid in two dimensions
with 200 grid points in the x and y-direction we would need a total of 40.000
grid points to diagonalize h!

One possible approach is write the unknown eigenfunctions in terms of
the HO eigenfunctions and solve for the coefficients instead. Suppose that
we seek the solutions of the eigenvalue problem

1
(=577 Vil ) () = ). (7.20)
where Vo, (1) is some confining potential other than the HO potential. Since

the eigenfunctions ¢,(r) of hpo form a basis we can expand the unknown
functions ¢, (r) in this basis

Up(r) = Zquqbq(T), Apg € C. (7.21)
q
Inserting this expansion into (7.20) and multiplying with ¢(r) we obtain
* 1 2 *
Z Ay (r) _iv + Veon(r) | &4(r) =€, Z Agp@y(r)gq(r). (7.22)
q q

Integrating over the whole space and using the orthonormality of the HO-
eigenfuntions we recognize this as the matrix eigenvalue problem

hA = Ae, €= diag(ep, €1, - ,€L). (7.23)
where |
heg = =3 (0| V2[0p) + (00| Veon (1) 0p) (7.24)

and A = [A,,]. Strictly speaking, this is just the CI method for a single
particle!
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Since we know the harmonic oscillator eigenfunctions analytically the first
term in the above equation can be evaluated exactly, while the second term
must, in general, be computed numerically. Diagonalization of h will give
the expansion coefficients A and the eigenvalues €¢,. When A is known, we
can compute the two-body integrals (1p1,|1/7i;]1r1)s) in terms of the known
HO two-body integrals,

1
<wp77bq W}MDS Z A A;;qA’yrA& <¢p¢q|r_|¢r¢s> (725)
apyé v
where .
<¢P¢(I|F|¢r¢s> (7.26)
ij

are the integrals given by Refs. [22,23] in two or three dimensions respectively.

7.3 Hartree-Fock theory

The implementation of the Hartree-Fock method is quite straightforward.
We want to iteratively solve the non-linear Roothan-Hall equation (3.16),

F(U)U = U,

where F'is the Fock matrix, U is the matrix of expansion coefficients and e is
a diagonal matrix. Specifically we need a procedure for diagonalizing F'(U).
Since F' is Hermitian (symmetric when F is real) this can be done efficiently
using the eigh? function in numpy which exploits the Hermiticity of F.

7.3.1 Solving the Roothan-Hall equations by SCF it-
erations.

One possible solution scheme is by so-called Self-Consistent Field (SCF) it-
erations [24]. Let U®) be the matrix of expansion coefficients in iteration k.
Using an initial guess U®) with (U©)TU®) = [, the SCF-iteration computes
U*+1) by solving,

FUMU*HD) = gt kD) (7.27)

The process is repeated until some predefined convergence criteria is met, for

example
max \e(kﬂ) Zk)| <9, (7.28)
1<i<L

2https://docs.scipy.org/doc/numpy-1.13.0 /reference/generated /numpy.linalg.eigh.html
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with 6 some small number. When this criteria is met we terminate the
iterations and the system is said to have reached self-consistentency.

According to Liu et al. [24] it is well known that the SCF-iterations con-
verge slowly or fails to converge. However, it turns out that it is sufficient
for our needs as we demonstrate in section 7.3.4. In order to speed up con-
vergence the so-called Direct Inversion of the Iterative Subspace (DIIS), sug-
gested in Ref. [14] could be used.

7.3.2 Implementation details

Let N denote the number of particles and L the number of single-particle
functions. Furthermore, assume that we are given h = [hl] and u = [u]?]
relative to some basis {¢;}2, with u anti-symmetrized. In order to write a
working Hartree-Fock program we have to compute

Dy = UyUy;, (7.29)

qu = hg + Z Dsrug;7 (730)

Eyr = Z U;ithpi + Z U;z‘ (Z Dsru ) pis (7'31)
Pqi pqi

and diagonalize F' for every SCF-iteration in order to obtain U and e. Note
that the indices i, 5 = 0,--- , N while p,q,r,s =0, --- , L. If the method con-
verges, we can compute the matrix elements of hgr and ugr in the Hartree-
Fock basis as,

= (plhlibg) = Z Uys (al | d5) (7.32)

rs HF <wpwq,u|¢r¢s Z U;a ;a T,BUSB <¢a¢ﬁ’a‘¢7¢5> ’ (733)

afyd

where .
- Z Upa ‘¢a> : (734>

Listing (7.1) demonstrates how these expressions can be evaluated using
numpy’s einsum?® function. This function allows for use of the Einstein sum-
mation convention by specifying the summation indices, the arrays which we

3https://docs.scipy.org/doc/numpy-1.13.0 /reference/generated /numpy.einsum.html
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sum over and the dimension of the resulting array. This gives a very compact
code and makes it a lot easier to debug. Furthermore, it is extremely useful
when we implement the Coupled Cluster equations.

Listing 7.1: Einsum example

occ = 0:N #Indices of occupied SPF’s.

D = einsum(’sj,rj->sr’,U, U).

F = h + einsum(’sr,qrps->qp’,D,u)

EHF = sum(epsl[self.ol)
-einsum(’qi,sr,qrps,pi->’,U[:,0cc],D,u,U[:,0cc])

hHF = einsum(’sp,rq,sr->pq’,U,U,h)

uHF = einsum(’ap,bq,cr,ds,abcd->pqrs’,U,U,U,U,u)

7.3.3 Limitations of the implementation

The most computationally expensive step in the Hartree-Fock procedure is
the formation of the Fock matrix, F', which requires O(L*) operations since
we sum p,q,7,s = 0,---, L. The diagonalization of F' is performed by a
highly efficient library function and is on the order of O(L?) operations.

Another limitation is that of memory. In particular, the storage of the
two-body integral elements u?? is prohibitive for a large number of basis
functions L. If each element is stored with double-precision it takes 8 bytes
of memory. Thus, if we want to use L = 180 basis functions we need 180* -
8 bytes &~ 8.4GB of memory. Most personal computers in 2017 have 4 —8GB
of RAM, meaning that such a calculation would be in the limit of what is
possible on a standard machine. However, u?? is typically sparse which can
be exploited by considering certain symmetries of the specific system under
consideration, see for example Ref. [25]. Storing only the non-zero elements
of uP? will reduce the memory requirements drastically.

In this work we don’t consider any optimization with respect to memory
since we only use a modest number of basis functions. A complete Hartree-
Fock program is listed in the appendix C.1.

7.3.4 Verification

In order to verify the Hartree-Fock program we compute the energy and com-
pare with results in the article by Zanghellini et al. [9] for the one-dimensional
quantum dot. For the two-dimensional quantum dot we compare the com-
puted Hartree-Fock energies with those reported by Lohne, Hagen, Hjorth-
Jensen, Kvaal and Pederiva [26].
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For the one-dimensional quantum dot we use the parameters reported by
Zanghellini et al. [9]. The oscillator frequency is set to w = 0.25. We use a
uniform grid [—L,, L,] with L, = 10 and gridspacing Az = 0.1. The con-
vergence threshold for the SCF-iterations (7.28) is set to § = 1078, The two-
body integrals are computed as described in chapter 7.2.1. For the shielded
Coulomb potential,

1
\/(xl — x9)? + a?

the shielding parameter is set to a = 0.25.

For N = 2 Zanghellini et al. |9] obtain Eyr = 1.1795. In table 7.1 we
have computed the energy as a function of spatial basis functions L and it is
clear that it converges to the result reported by Zanghellini et al.

Vc(1'1>$2) =

Table 7.1: Eyxp computed as a function of the number of (spatial) basis
functions L for the one-dimensional quantum dot with N = 2 and w = 0.25
using SCF-iterations (7.27). Mj denotes the number of iterations required
to reach convergence in the sense of (7.28). We have used 6 = 1078, The
results converge to the Hartree-Fock energy reported in Ref. [9].

L Eur M
4 1.1910313 22
6 1.1795909 29
& 1.1795871 29
10 1.1795713 29
12 1.1795690 29
14 1.1795690 29

For the two-dimensional quantum dot we compare the Hartree-Fock en-
ergy with the energies reported in Ref. [26] for N = {2,6} and w = {0.5, 1}.
The results summarized in table 7.2 agrees with the energies reported by
Lohne et al. [26]. For N = 6 and L = 21 the measured cpu time of the
program was 0.423 seconds averaged over 100 runs.

7.4 Configuration Interaction
We want to solve the time-independent Schrédinger equation

H|U) =B |¥) k=0,1,2,---, (7.35)
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Table 7.2: Eyp computed as a function of the number of (spatial) basis
functions L for the two-dimensional quantum dot for N = {2,6} and w =
{0.5,1.0} using SCF-iterations. Mj denotes the number of iterations required
to reach convergence in the sense of (7.28). We have used 6 = 107, The
results are in agreement with the energies reported by Lohne et al.

N =2 N =6

w L Eyr M FEur M
6 | 1.799856 8 | 13.051619 10
10 | 1.799856 8 | 12.357471 14

0.5 15| 1.799748 10 | 12.325128 16
21 | 1.799748 10 | 12.271499 18
6 | 3.162691 7 | 21.593198 8
10 | 3.162691 7 | 20.766919 14

1.0 151 3.161921 9 | 20.748402 15
211 3.161921 9 | 20.720257 15

using the Configuration Interaction (CI) method. Recall that the CI ansatz
was given by,

(W) = Z Am [®1) (7.36)

where {|®;)} is a given Slater determinant basis built from a set of single-
particle functions {¢;}. Equation (7.35) could then be written as the matrix
eigenvalue problem

HA = AE, (7.37)

where

Hyy = (®;|H|Dy) (7.38)

and the columns of the matrix A contain the expansion coefficients of |Wy).
The symbol E represents a diagonal matrix with the eigenvalues Ej’s on its
diagonal. If we can compute the matrix H we can solve equation (7.37) by
diagonalization of H.

In this chapter we present how to implement the computation of H by
using the so-called occupation number representation of Slater determinants.
Furthermore, it is shown how the computation of the matrix elements is
simplified by the use of the Slater-Condon rules from Egs. (2.51)-(2.53).

We also show how to extend the implementation to compute the time
evolution of a state using the TDCI method.

Finally, the implementation is verified by comparing results with previous
studies.
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7.4.1 Representation of Slater determinants

Using second quantization the matrix elements H;; are given by,
Hpy = (9;|H|®,)

1
= Zhg’ (@]cheq|® ) + 1 Zufg (@]t eser @)

rq pqrs

where

hz = <¢p‘m¢q> )
Ufg - <¢P¢Q|a|¢r¢s>AS :

Assuming that Al and uP? are available in computer memory, if we can evalu-
ate (®;|clc | @) and (;|cfclesey|P ) we can in priniciple compute the matrix
elements Hy;.

One way to achieve this is by using the so-called occupation number
representation of a Slater determinants and apply the rules of the creation
and annihilation operators. Assume now that we have a finite number of
Slater determinants {|®;)} 4 built from the single-particle functions {¢; }£,.
Then we can represent an N-particle determinant by an array with length
L containing 0’s and 1’s. Index k is set to 1 if the determinant contains the
SPF ¢, and 0 otherwise. As an example, let N =4 and L = 8, and consider
the determinant |popa¢3¢6) which can be represented as,

|podadp3de) — [1,0,1,1,0,0,1,0]. (7.39)

In general we can represent an N-particle determinant [®) = |y, )
where n;, € {0,1,--- ,L} as

@) = |pn,, =+ Pni ) = [R0, 01,02, -+ 0] (7.40)

where ny, = 1 if ¢,,, € |®) and 0 otherwise.

The action of a creation and an annihilation operator on an arbitrary
determinant in this representation can be evaluated by Algorithm 1. The
evaluation of (®|clc,|® ;) and (®r|cicicsc,|Ps) is then realized by repeated
use of Algorithml. If none of the operations produces the zero result, one
obtains

cheg |®y) = (—1)r 0 |B))

chebeser |g) = (—1)rrreatester 9f),
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Algorithm 1 Algorithm for evaluating the action of the creation or annihi-
lation operator on a Slater determinant in the occupation number represen-
tation.

1.) Creation operator:
CL D) = c;f,[no,nl,nQ, ceung] = (=1)* @)

— If n;, = 1 return the zero result.

— If n,, = 0 compute « as the number of 1’s before ny, and set ny = 1
in order to obtain |®').

— Return the sign (—1)* and |®')
2.) Annihilation operator:
¢ |®) = ¢plng, na,ma, -+ ) = (1) ‘(I),>

— If n;, = 0 return the zero result.

— If n, = 1 compute « as the number of 1’s before n; and set n, = 0
to obtain |®’)

— Return the sign (—1)* and |®')
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and checks whether (®;], |®’;) and (@], |P’) contains the same single-particle
functions. If they do contain the same single particle functions we have that

<®I|C;)cq’@J> = (_1)04p+01q
(]chcheac, | @) = (—1)wautastar
otherwise the zero result is returned.

These algorithms are implemented in the CreationAnnihilation module
listed in the appendix C.4.

7.4.2 Slater-Condon rules applied to the CI Hamilto-
nian

If we denote a Slater determinant |®;) = [¢;,, -+, Piy) = |i1,- - ,in) and
apply the Slater-Condon rules to the evalutation of Hy; we are left with the
following non-zero matrix elements,

1.) For identical determinants we have

Hyp=Y" h§+% SN ud (7.41)

i€|®r) i€|®r) jE€|®r)

2.) For determinants that differ by one single-particle function, i.e

By = |- mn- )
|(pJ> — ’...pn...>7
where p # m, we have
Hyy=s|h+ > unt]. (7.42)
a€|®1)
Here s = (—1)"** where k, is the number of single-particle func-

tions set before p while k,, is the number of single-particle functions

set before m. The sign results from the fact that (®;|cl clc,c,|®s) =
(—1)kmtho+2hy — (1 )km-+hp,

3. For determinants that differ by two single-particle functions,

1) = |- -mn- )
lopg-),

D)
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where m # p and n # g, we have
H[J = sul’Zn. (743)
Here s = (—1)km*kathotha gince we must account for (®y|cf cf c,c | P ) =

(—1)km+hnthpthy

This reduces the computational effort drastically since we do not have to
perform the expensive sum, which is an O(L*) operation,

L
Z ubl (Qllc;c;cscrm)ﬂ (7.44)
pars

when computing H; ;.
In order to take advantage of the Slater-Condon rules we have the follow-

ing algorithm:

1.) Construct a CI space (CIS,CID, CISD,...) consisting of a total of
Ny linearly independent Slater determinants

{|(I)I> |[:O> aNsd_l}
represented in occupation number representation.

2.) Loop over all distinct pairs
{|®r),[®5) |1 =0, \Na—1,J=1+1- Nag—1}
of determinants:

— If the pair differs by one single-particle function,

|®7)
D)

l-omn )
leopnee),
compute the sign

s = (Prlch,cp|® ) = (=1)Fmthe

and store (I,.J,m,p,s) in a table diff ByOne.

— If the pair differs by two single-particle functions,
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compute the sign
§= <¢1!CL¢Cchcq\<I>J> = (—1)kmthnthothq

and store (I, .J,m,n,p,q,s) in a table diff ByTwo.

— Else: Continue
3.) Compute H;; according to the Slater-Condon rules as follows:

— Loop over I = 0,---, Ngg — 1 and compute H;; according to
(7.41).

— Loop over all elements in the table diffByOne and update
element Hy; according to (7.42).

— Loop over all elements in the table diffByTwo and update
element Hy; according to (7.43).

4.) Since H is Hermitian set H;; = Hj,; since we only looped over
distinct pairs in step 2.).

The algorithm is implemented in the function computeHamiltonian in the
class ConfigurationInteraction listed in appendix C.2.

7.4.3 Computing the CI ground state.

Let us return to the TISE method written now on matrix form,
HA = AFE. (7.45)

Consider a model space defined by {|®;) [l =0,---, Nyg}. We can compute
H by the procedure described in the previous section. A straightforward di-
agonalization of H will give us an approximation to the Ny first eigenvectors,
given by the columns of A, and eigenvalues of the operator H. The ground
state corresponds to the eigenpair with the lowest eigenvalue.

When we have obtained A we can compute the one-body density matrix

o = (Wlele, [ W) = 37 434, (@4|che,|0,) (7.46)

1J

which is done using Algorithm1. Then, we can compute the single-particle
density

p(r) = plen(r)dy(r). (7.47)
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7.4.4 Time evolution of the expansion coefficients.

Assume now that we have an initial condition A(ty) available. Then, the
time evolution of A is given by

240 gy ae (7.48)
ot
where H(t) is the Hamiltonian matrix given by
Hpy(t) = (@] H(1)|®,) . (7.49)

We assume throughout that it is only the one-body part of the Hamiltonian
H (t) = H, (t) + H, that changes in time. Thus, since we keep the single-
particle functions fixed in time we only have to update the one-body part of
the Hamiltonian matrix. This reduces the computational time significantly
since we do not re-calculate the two-body part in every iteration.

Equation (7.48) can be solved numerically by the fourth order Runge-
Kutta (RK4) method (see appendix B.1). Choose a time step At such that
tn, = nAt for n = 0,--- , N; and let A,, denote an approximation of A(t,).
Define

ki = H(t,)A(t,)

o=t (1 57 ) (e + 5 )
{30

ky = H (t, + At) (A(ty) + ks)

Applying the RK4 method to Eq. (7.48) gives the following scheme for com-
puting an approximation A, 1 of A(t, + At),

At

7.4.5 Limitations of the implementation

How large systems can we expect to treat with the current implementation of
the CI method? One limitation is the storage of two-body integral elements as
we pointed out in chapter 7.3.3. Another point is that we form the Hamilton
matrix, H € CNsa*Nsa explicitly. If we use the FCI space the number of
linearly independent Slater determinants are given by,

L
Nsd,FCI = <N)



CHAPTER 7. IMPLEMENTATION AND RESULTS 90

where L is the number of single-particle basis functions and N is the number
of particles. If we consider a system with N = 6 particles and a modest
number of basis functions L = 20 the storage of H, if we use double-precision,
requires roughly

20\ °
< 6) -8 bytes = 38760 - 8 bytes ~ 12GB

of RAM, which is in the limit of the available memory on personal computers.
If we consider a CISD space instead, the number of linearly independent
determinants are given by
N(N—-1)(L—=N)(L-N —-1)

Na,cisp =1+ N(L—N)+ 1 )

A system with N = 6 particles and L = 20 basis functions would now require

approximately
1450% - 8 bytes ~ 17MB

to store H.

Additonally, performing a full diagonalization of H is costly since it re-
quires O(N3,) operations. Using numpy’s eigh function to diagonlize a ran-
dom symmetric N x N matrix with N = 1000 takes on average 1 second
on my computer. Thus, diagonalizing a matrix with N = 30.000 would take
roughly 7 hours and 30 minutes assuming that the time used is on the order
O(N?).

Taking all of this into account it is clear that such a straightforward
implementation of the CI method is only feasible for small systems. If one
wants to study larger systems using the CI method one has to make use
of iterative methods such as the Lanczos algorithm [27] which computes
an approximation to the extremal eigenvalues of H. Use of the Lanczos
algorithm avoids the storage of H altogether and only works with the matrix-
vector product Hv. In this work the CI method is used to compare with the
Coupled Cluster method for small systems and it is sufficient with such a
brute-force approach.

7.4.6 Verification of ground state computations.

In order to verify the CI program we will again compare with Ref. [9] for the
one-dimensional quantum dot. It should be noted that Zanghellini use the
MCTDHF method [8] for both ground state computations and time evolu-
tion. Hence, the methods are not equal but for a sufficiently large number of
basis functions we expect the CI result to approach the MCTDHF result.
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According to Zanghellini et al. the exact ground state energy is given by
E. = 0.8247. In table 7.3 we have computed the FCI ground state energy for
an increasing number of basis functions which clearly approaches the exact
value. In addition, we have computed the one body density for L = 5 which
is shown in figure 7.1. Visually the plot is indistinguishable from figure 1 in
Ref. [9].

Table 7.3: In the table we have compared ground state energies computed
with FCI for increasing number of (spatial) basis functions L with those
computed by Zanghellini with MCTDHF. According to Zanghellini et al. [9],
the exact ground state energy is F,, = 0.8247 and it is apparent that the
FCI energy approaches this value.

N =2 Ercr E7angheltini
L =2 0.891597 1.0214
L =3 0.827278 0.8261
L =4 0.826667 0.8255
L=5 10.826169 0.8250
L =6 0.825835 0.8249
L =10 0.825218 —

L =15 0.824947 —

For the two-dimensional quantum dot we compare the ground state energy
computed with FCI with those computed with CCSD by Lohne et al. [26].
As we have discussed earlier, FCI and CCSD are equivalent for N = 2. In
table 7.4 we have computed the ground state energy for w = {0.5,1.0} and
the energies are in agreement with those reported by Lohne.

Table 7.4: Epcr computed as a function of the number of (spatial) basis
functions L for the two-dimensional quantum dot with N = 2 and w =
{0.5,1}.

w=05 w=1.0
L Ercr Ercr
6 1.681632 3.038604
10 1.673872 3.025231
15 1.669498 3.017606
21 1.667257 3.013626
28 1.665799 3.011020
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Figure 7.1: The figure shows the one-body density in the ground state for the
one-dimensional quantum dot with oscillator frequency w = 0.25 computed
with the FCI method which is in excellent agreement with figure 1 in Ref. [9].

7.4.7 Verification of TDCI

To verify the implementation of the TDCI method we compute the proba-
bility of being in the ground state,

UOIRO)) 2 =[S A1) AL(0) (D,],)

2

=0
IS A3(1)45(0)
J

=[(A(t), A0))[* (7.51)

and compare with figure 2 in Ref. [9]. It should be noted that in the article
MCTDHEF is used, hence we cannot expect perfect agreement. However,
for an increasing number of basis functions L we should approach the same
answer. Figure 7.2 shows the probability for L = {3,5,8,10}. For L = 8 it is
apparent that we approach the exact value and the difference in the computed
probability is relatively small when increasing to L = 10. To compute the



CHAPTER 7. IMPLEMENTATION AND RESULTS 93

time evolution of the expansion coefficients we used RK4 with At = 1073,
Furthermore it is observed that (A(t)|A(t)) = 1 and tr(p(t)) = 2 during the
simulation as it should.

12} T

o U w

| i e

1.0

=
o
|

0.8 -

0.6

| < w(t)[e(0) > |?

0.4 -

0.2+

0.0 I L L | |
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Qt/(2r)

Figure 7.2: Probability of being in the ground state | (¥(¢)|¥(0)) |* for L =
{3,5,8,10} computed with TD-FCI. Compared with figure 2 in [9] we see
that we approach the distribution of the exact solution.

7.5 Coupled Cluster

In this section we describe how to implement the Coupled Cluster Doubles
(CCD) approximation. In particular, we discuss how to solve the amplitude
equations for the ground state. We show how the amplitudes can be evolved
in time using the RK4 method and discuss the limitations of the current
implementation. The implementation is verified by comparing the energy
and one-body density in the ground state with results obtained with the
CID method. The Hartree-Fock state is used as reference determinant for
both methods. Similarly, we verify the time evolution by comparing the time
evolved energy and one-body density computed with TDCCD and TDCID.
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7.5.1 Iterative solution of the amplitude equations for
the ground state.

Next, we want to write an implementation of the CCD method. Thus,
T="T,= Zwab Ut c:flczcbc] and A = Ay = Zijab /\abc cac ¢. The key compo-
nent to implement is the evaluation of the right-hand 81des of the amplitude
equations,

ih#l = (~“b|e_T2HeT|¢>> (7.52)

—iliAy, = (l(1+ Ag)e ™ [H, X{]e7|6), (7.53)

which are given by (5.64), (5.65) and (5.70), (5.71) respectively. In addition

we have to evaluate the (excitation) intermediates (5.66)-(5.69) and the (de-

excitation) intermediates (5.72)-(5.78). Before we can compute the time

evolution of the amplitudes we have to compute the ground state. Thus, for
the ground state we seek amplitudes (), 7) such that the equations

0= (¢l Hel|p) (7.54)

0= (Al(1+ As)e ™ [H, X]es |9), (7.55)

are satisfied. The equations are non-linear so we have to solve them itera-

tively.
Recall from section 5.4.5 that the right-hand side of (7.54) is independent

of the A-ampltitudes. However, the right-hand side of (7.55) depends on the
T-amplitudes. Therefore, we solve for the 7-ampltitudes first. Define,

Gi(r) =Y (1= 6a) TR P(if) + Y (1= beq) Tl

0
Go(T) = a)\abgH<2) A, 7],
with Go(7) given by Eq. (5.65). Equation (5.64) can be now be written as,
0
oA ——Epm [\ 7] = =it — thab + hoTl + hyr® 4+ Gi(7),

and we can rewrite Eq. (7.54) as

(@5fle ™ Hez|g) = a)\abgH<1 o]+ 6)&”’5 uo A7)
= —him = i)+ her + Wy + Gu(7) + Ga(7)

=0.
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Let 7(%) denote the set of amplitudes in iteration k. Then we can compute
7+1) as suggested in [25],

(k) (k) ,
(Tic;b)(kJrl) _ Gi (7' )l;;bGz (7’ )7 qu]b =hl+ h; — ho — hz) (7.56)
ij

with the initial condition,

ab

() = 25, (7.57)
ij

We iterate until self-consitency is reached in the sense that

EED — E®) | <, (7.58)

corr COI‘I‘

with € some pre-defined convergence threshold. In the CCD approximation
we have that

— Z Tl (7.59)

l]ab

At convergence the ground state energy is given by,
Eccp = Eret + Ecorr (7.60)
where
Erot = Z hi + % Z ull. (7.61)
i ij
Notice that if we use the Hartree-Fock state as reference determinant we have
Eret = Eyr.

Iterative solvers may run into oscillating solutions and in that case so-called
ad hoc linear mixing can help the iterations break this cycle [25,28],

FE+1) aT(k+1)~ . (1 - 06>7'(k)7 o€ [07 1]'

no_ mixing

When the 7 amplitudes have been computed we can solve for the A-
ampltitudes in similar fashion. Define,

G1(\) = (1 — dea) RENLP (ab) +Z — 8k )i NE P (i)

= &gy (A, 7]
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where G5(\,7) is given by Eq. (5.71). We can write equation (5.70) as,

0 i G i i
Galnm N Tl = oA, + hoAg, — hiXS, — hING, + G1(X)
1]

while the expression for equation (7.55) becomes,

- ~ . B B
(Ol(1+ Ap)e 2 [H, XPed|¢) = WgHﬂ) (A, 7]+ W&m) (A, 7]
Tij Tij
= WA + BAD — NS — WIND + G1 () + Ga (A, 7)
= 0.

We want to solve this equation for the set of »-amplitudes. Let A(®¥) denote the
amplitudes in iteration k£ and let 7, denote the converged T-amplitudes. Then
we can compute A1) by the same procedure we used for the 7 amplitudes,

y G (OB £ Gy (ANF) 7,
(i e+ = il )EJ( ™), (7.62)
ij
with the initial condition,
ij \(0) Ui]&,
(M) = Fa- (7.63)
b Dzjb

Again we iterate until self-consistency is reached. Note that for the 7-
amplitudes we used the difference in the correlation energy as the criteria
for self-consistency. The ground state energy does not depend on the A-
amplitudes, so we have to choose some other criterion. We iterate until

ghyes ‘ (AZJb)(kH) - (/\Z]b)(k)‘ <9, (7.64)
with 0 some pre-defined threshold. Oscillating solutions may occur and one
can try to break the cycle by mixing as described for the rT-amplitudes.

In section 5.4.5 it was pointed out that the one- and two body density
matrices, p1, p2, depend on both sets of amplitudes 7 and A. Therefore, for
the computation of these matrices it is important to consider, in order to be
confident, that we have computed the A\ amplitudes correctly. In the special
case of N = 2, these matrices are in theory equivalent to the corresponding
density matrices computed with the CID method.

In practice, this will be true to some numerical error. Especially, since the
matrices computed with CCD depend on two sets of amplitudes which are
computed iteratively while in the CID case the matrices depend only on one
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set of parameters, namely the CID expansion coefficients. Let pccp and poip
denote density matrices computed with CCD and CID respectively. Then it
seems reasonable to expect that the difference,

|pcep — pemn| < k(e 0), (7.65)

where k is some number which possibly depends on the convergence criteria e
and ¢ for 7 and X respectively. The fact that we can compare these matrices
in order to verify the computation of the A-amplitudes was, to a large extent,
the main motivation for implementing the CI method at all.

7.5.2 Time evolution of the amplitudes.

Suppose now that we have computed amplitudes (\,, 7,) such that equations
(7.54) and (7.55) are satisfied. We now want to compute the time evolution
of the amplitudes according to,

L0 )
ZﬁT b— a)\abgH(l) [)\ T] a)\abgH(z) [/\ T]
i 0 0

—zh)\jb = 87_” SH(U [)\ T] 0773- (C,' (2) P\ T]

where H®) might depend on time. In that case we have to remember that the
one-body elements must be updated. This is now an initial value problem
which can be solved numerically by the class of Runge-Kutta methods. We
choose to use the fourth-order Runge-Kutta (RK4) method since it is quite
straightforward to implement while still being numerically accurate (see ap-
pendix B. 1)

Let 70, \(™ denote the amplitudes at time ¢, = nAt with At being the
timestep and define,

i 0 0
f(tn, ") ~ (8)\ab£H(l) (A", 7] + (,WbSH@) A" 7 ]) , (7.66)

g (tn, A , T ) ﬁ <?ZI)EH(1) [)\ , T ] + WEH@) [)\ , T ]) . (767>
Then we get the following scheme for computing the amplitudes at time ¢,
with the RK4 method,
At
ab\(n+1) __ ab\n
(Tij)( +)_(Tij) +F

g g At
()‘:z]b)(nﬂ) = ()" + 6 (mq + 2mg + 2mg + my) , (7.69)

(ky + 2k + 2ks + k) (7.68)
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with (72)© = (72), and (A7) = (A%).. The expressions on the right
hand side are given by

kl = f(tann)a
At At

k?g :f (tn+7,7n+7k1>,
At At

ks = f (tn+777n+7k‘2>7

k?4:f<tn+At,7'n+Atk3)

Similarly we have that,

mp=4g (tna )‘n7 Tn) )

At At AL
meo =g tn—F?,)\ —F?ml,’?’ +7]€1 y

At At At
ms =4g tn+7,)\ +7m2,7' +7]€2 s

my = g (t, + At, \" + Atmg, 7" + Atks) .

7.5.3 Implementation details

In the following we will discuss some details concerning the implementation
of the TDCCD method.

Assume that we have N particles and L basis functions and that the one-
and two-body integral elements are given. Consider the representation of
the amplitudes, {Tf}b}, {)\Zjb where 7,5 = 1,....N and a,b = N +1,--- , L.
Since the equations of motion for the amplitudes contain the imaginary unit
explicitly we have to use complex numbers. In addition to the amplitudes,
we have to store the intermediates (5.66)-(5.69) and (5.72)-(5.78). In a naive
implementation the amplitudes and intermediates are conveniently stored
using two-, four- and six-dimensional arrays. For larger systems, the storage
of especially the intermediates in Egs. (5.72) and (5.73) would quickly be
prohibitive.

However, as we have mentioned several times already, we consider only
relatively small systems and such a naive storage of the amplitudes and inter-
mediates is adequate. Another aspect is that since we use a time dependent
Hamiltonian, amplitudes which are zero initially can become non-zero. Thus,
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in order to avoid storage of redundant zeros one has to take the time depen-
dent perturbation into consideration.

Using the einsum function, evaluation of the intermediates, one- and two-
body density matrices (5.79)-(5.86), can be written in a compact and efficient
manner. Listing (7.2) demonstrates how we can compute the intermediate

1
kb __ kb bd, kl
Xej = Uej + 5 3l Ued-

Listing 7.2: Example of evaluation of Coupled Cluster Intermediate
using the einsum function.

#u is a 4-dimensional array containing

#the anti-symmetrized integral

#elements <pqlulrs>

o = slice(0,N) #range of indices i,j,k,1,...

v = slice(N,L) #range of indices a,b,c,d,...

Xkbcj = ulo,v,v,0] + O0.5*%einsum(’bdjl,klcd->kbcj’,
t2, ulo,o,v,v])

Similarly the right-hand sides of the equations,

k1) Gi (7)) + Gy (7))

(Ti(;b) ab )
DX
]
) G O0) + G (40,7

can be implemented by repeated use of einsum calls. We note that equations
(7.66) and (7.67) can be written in terms of G1(7), Go(7) and G1(\), Ga(\, 7)

in the following manner,
?
tn? ") =—=
(b ™) = —2
o

9t X", 1) = = (=DEOG) + G + Ga(3", 7).

(=D )"+ Galr") + Galr™)

Hence, it is sufficient to write methods/functions which compute Gy, G, C~¥1
and G in order to update the amplitudes both for ground state computa-
tions and for time evolution. We also note that G5 and ég depend on the
intermediates which must be updated in each iteration. A complete TDCCD
program is listed in appendix C.3.
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7.5.4 Limitations of the implementation

How large systems can we expect to treat with the current CCD/TDCCD
implementation?

One limitation is the storage of the amplitudes and intermediates. As
usual, let N denote the number of particles and L the number of basis func-
tions. The total number of 7 and A-amplitudes are 2N?(L — N)?. There are
a total of

N*(L — N)> 4+ N*+ (L — N)* + N?

intermediates (5.66)-(5.69) while the total number of intermediates (5.72)-
(5.78) are given by

N*L — N)?+ N*(L — N)*
+N*+ N*(L — N)?
+N?+ (L - N)*+(L—-N)%

The total number of amplitudes and intermediates, S(N, L), is then given by

S(N,L) =N*(L — N)* + NY(L — N)? + (L — N)*
+4N*(L — N)? + 2N* +2(L — N)? + 2N?

and is completely dominated by the storage of fg% (Eq. (5.73)) totalling
N?(L — N)* elements. If we use complex numbers, with double-precision,
each element requires 16 bytes of memory.

We want to study the time evolution of the two-dimensional quantum
dot, where we consider closed shell-systems with the possible number of par-
ticles limited to N = {2,6,12, 20,42, 56,72,90,110,---} being the so-called
magic numbers. In table 7.5 we list the memory requirement for different
system sizes N, L. If we assume that 8GB of RAM are available on a stan-
dard desktop considering the time evolution of a quantum dot with N = 6
electrons and L = 56 basis functions or N = 12 and L = 42 is in reach with
the current implementation without taking special measures to handle the
storage of the amplitudes and intermediates.

We are, of course, also limited by the fact that computing new 7-amplitudes
scales as O(N?(L—N)*) while computing new A\-amplitudes scales as O(N3(L—
N)%). In order to estimate the duration of a simulation it is interesting to
measure the time the program needs to update the 7 and the A-amplitudes,
including the computation of the intermediates. We expect that the com-
putation of the A-amplitudes are on the order of O(NN) more expensive to
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Table 7.5: The table shows the estimated memory needed for a TDCCD
calculation using with NN particles and L basis functions. It is assumed
that double-precision complex numbers are used to store amplitudes and
intermediates.

N L Memory [GB]
2 72 2.35
2 90 2.85
2 110 13.24
6 42 1.08
6 56 3.92
6 72 11.77
12 30 0.37
12 42 2.24
12 56 9.53

compute than the 7-amplitudes. In table (7.6) we have measured the time
it takes to compute one new set of 7 and A amplitudes including updating
the intermediates for different N and L values. The timings are extremely
rough and are taken just as an indication on how much time we need to
compute the time evolution of different system sizes. Since we use the RK4
method, we have to compute new amplitudes four times per timestep when
evolving the amplitudes in time. Running a simulation with 1000 timesteps
with N =6 and L = 42 would take approximately 10.5 hours.

7.5.5 Verification of ground state computations.

In chapter 7.4 we demonstrated that the CI/TDCI program was implemented
correctly. Since the CC approximations are equal to the corresponding CI
methods for N = 2 we can use this to verify the implementation of the
CCD/TDCCD program. One of the main difficulties during the development
was to be sure that the A-amplitudes were computed correctly, since the
ground state energy does not depend on these. However, the density matrices,
which we can compare directly with those computed with the Configuration
Interaction method depend on the A-amplitudes.

Furthermore, we can compare the time evolved energies and density ma-
trices computed with TDCC and TDCI respectively to be confident that the
TDCC method is correctly implemented. For these computations we com-
pare quantities computed with the CCD and CID approximation using the
Hartree-Fock state as the reference determinant.
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Table 7.6: The table shows the time that the current implementation of the
TDCCD method needs to compute new 7 and A-amplitudes for increasing N
and L.

L tT[S] tA[S] t)\/tT
12 0.003 0.004 1.33
20 0.01 0.04 4
30 0.06 0.20 3.33
42 0.20  0.80 4
56 0.57 238 4.17
72 148 6.75  4.56
20 0.04 026 6.5
30 021 1.89 9
42 0.85 857 10.08
56  2.70 3237 11.98
30 043 527 1225
42 2.08 35.85 17.23

— =
D Roloo oo N2

First, we compute the ground state energy of the two-electron one-dimensional
quantum dot for w = 0.5 and L = {4,6,8,10}. For the shielded Coulomb
potential we use a = 0.25. The computation of integral elements was done
with 2 € [—7,7] with gridspacing Az = 0.1.

The convergence criterion for the r7-amplitudes was set to e = 107% and
the mixing parameter is after some trial and error set to o = 0.93 in order
to obtain convergence to the chosen precision. The results are summarized
in table 7.7 and we see that the difference in the CCD and CID energies is
lower than e.

Next, we want to compare the one-body densities computed with CCD
and CID. The convergence criteria for the A-amplitudes was set to § = 107°
while the mixing parameter was set to § = 0.85. Figure 7.3 shows the
electron density and the difference, k = |pccp — pop|, for L = 10. Let Kz
denote the maximum of the absolute diffrence. With the given parameters
we get that Kpax = 2.58 - 1077, Previously we argued that x depends on
(€,9). In table 7.8 we compute Ky for L = 10 as a function of § keeping
e = 1079 fixed. Keeping € fixed seems reasonable due to the fact that the
A-amplitudes depends on the T-amplitude while the converse is not true.
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Table 7.7: Ground State energies computed for the two-electron one-
dimensional quantum dot computed with CCD and CID using the HF state
as reference determinant. For the CCD calculation the convergence threshold
used in Eq. (7.58) for the T-amplitudes was set to ¢ = 107°.

w=0.5 Eccp Ecm |Ecep — Ecml
L =4 14374447 1.4374443 3.64-1077
L =6 1.4352960 1.4352956 3.63-1077
L =8 14332307 1.4332310 2.77-107"
L =10 1.4321945 1.4321942 3.29-1077
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Figure 7.3: The figure shows the one-body density in the ground state for the
one-dimensional quantum dot with oscillator frequency w = 0.5 and L = 10
computed with the CCD method.

7.5.6 Verification of TDCCD

We compute the time evolution of the two-electron one-dimensional quantum
dot with L = 4. The frequency of the laser is set to {2 = 8w where w is the
frequency of the harmonic oscillator potential. For this simulation we used
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Table 7.8: The maximum of the difference kK = |pccp — pcip|, computed as
a function of & with € = 107 held fixed where § and € are the convergence
critetion for the A\- and 7-amplitudes respectively. It is apparent that lowering
0 results in a lower Kpax.

5 Hmax<5)
107t 2.58-1073
1072 4.63-10~*
1073 2.58-107°
107* 2.35-10°
107 2.58 1077

w = 0.5. The timestep is At = 1073 and the simulation is run until,

Ot

5.
2T

During the time evolution we monitor the energy and one-body density and
compare the values obtained with the corresponding quantities obtained with
TDCID. Figure 7.4 shows one-body density at the end of the simulation
computed with TDCCD and TDCID and the absolute difference over the
entire grid. The maximum difference is on the order of ~ 10~ which seems
satisfactory.

Furthermore, as Kvaal points out in Ref. [1| expectation values may gain
small imaginary parts during the TDCCD computation. Therefore, we also
monitor |[ImFccp(t)]. From figure 7.5 we see that the difference between the
CCD and CID energy varies over the simulation with a maximum of ~ 1073,
Furthermore, we see that we have a imaginary part in the CCD energy which
is small compared to the real part.

In conclusion, the results agree well with theory in the sense that the
difference between the time evolved energies and single-particle densities are
small. Furthermore, we observe that the time evolved CCD method picks up
a non-zero imaginary component which is several orders of magnitude smaller
than the real part. In total, this really is the pinnacle of the thesis since we
have demonstrated that we have, for N = 2, a working implementation of a
time dependent Coupled Cluster method using a time dependent Hamilto-
nian. In principle, there should not be any difference going to higher particle
numbers. However, one can never test and verify enough and to guarantee
the absence of human errors is close to impossible.
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Figure 7.4: The figure shows the time evolved one-body density computed
with CID and CCD using the Hartree-Fock state as reference determinant.
We have also plotted the absolute difference between the two at t* and we
see that the largest difference over the entire grid is on the order of 107° as
we expect since the methods should be equal for N = 2.

7.6 Additional results.

Now that it seems plausible that the TDCCD implementation is correct we
will perform the following numerical experiments on two-dimensional quan-
tum dot systems:

We compute the ground state with the CCD method using the Hartree-
Fock state as reference determinant. Then, we compute the time evolution
with the TDCCD method, using a laser frequency Q@ = AE = (Ej, — Ey),
where Ej is the ground state energy and Ej is the energy of some excited
state. According to Ref. [12] the result should be an excitation of the system.
During the simulation we monitor the energy and the imaginary component
of the energy expectation value given by Eq. (5.58).

If we want to compute excited states with the Coupled Cluster method
we have to use the so-called Equation-of-Motion Coupled-Cluster (EOM-CC)
method, see for example Refs. [28,29]. However, we can use the CI method
to compute an approximation to excited state energies Fj.
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Figure 7.5: The figure shows the time evolved energy computed with CID
and CCD using the Hartree-Fock state as reference determinant. Additionaly
we have plotted the absolute difference between the energy over the entire
simulation. Furthermore, we monitor the imaginary part of the time evolved
CCD energy which we can see is small compared to the real part as expected
according to Ref. [1].

Furthermore, using the expressions for the integral elements in Ref. [23]
we compute ground state energies for the three-dimensional quantum dot
with the HF, CISD and CCD method.

7.6.1 Time evolution of the two-dimensional quantum
dot

In table (7.9) we have computed the ground state energy with the CCD
method using the Hartree-Fock state as reference determinant for the two-
dimensional quantum dot with N = {2,6} confined electrons. Additionally,
we have used CID (with HF as reference determinant) to compute the energy
of the first excited state of the CCD/CID wavefunction. We also include the
first excited energy using the CISD approximation.

We note that the first excited state of the CID and CISD is not necessarily
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the same. When using only doubles excitations we "miss" contributions from
singles excitations. Using the Hartree-Fock state we know that

(DI H|D) = 0 (7.70)

due to Brillouin’s theorem (3.12). However, we have no guarantee that terms
on the form (®§?|H|®f) are zero. Since we work with in the CCD approxi-
mation we will tune the laser with the difference between the ground state

energy and the first excited CID energy.

Table 7.9: The table shows the ground state energies of the two-dimensional
quantum dot with N = {2,6} confined electrons computed with the CCD
method. Additionally, we have computed the first excited energy of the CID
and CISD wavefunctions.

N w  Lgatia Fccpwr  Fcospi  Eomonri

2 0.28 6 1.0330  1.1528 1.4391
2 0.5 6 1.6822  1.9243 2.4306
2 10 6 3.0393  3.6079 4.6142
2 0.28 10 1.0291 1.1452 1.4257
2 05 10 1.6742  1.9163 2.4169
2 10 10 3.0256  3.5996 4.6003
6 0.5 6 12.9020 13.0275  13.0275
6 1.0 6 21.4242 21.8889  22.0821
6 0.5 10 12.0575 12.4861 12.6328
6 1.0 10 20.4294 21.2175  21.6374

We will now investigate the time evolution of both a quantum dot with
N =2 and N = 6 electrons. We radiate the systems with a laser polarized
along the z-axis, modelled by

=1

where & is the amplitude and €2 is the laser frequency. The laser frequency is
set to the energy difference between the ground state and first excited state,
2 = Ecipg — Ecep,o, while the amplitude is set to & = 1. If the system is
radiated for for a sufficiently long time we expect an excitation of the system.
For the two-elctron system we use L = 6 spatial basisfunctions while for the
six-electron system we use L = 10 spatial basis functions. For all simulations
we used the RK4 method with timestep At = 1073.
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Figure 7.6: The time evolved energy of the two-dimensional quantum dot
with NV = 2 confined electrons. Here the strength of the confining potential
is set to w = 1.

Figure 7.6-7.8 shows the time evolved energy of the two-electron quantum
dot for w = {0.28,0.5,1}. It is clear that all systems have experienced an
increase in energy by the end of the simulation. Furthermore, we see that
it is harder to excite the more strongly confined system. Finally, figure 7.9
and 7.10 shows the time evolved energy for the six-electron quantum dot,
where the strength of the confining potential is set to w = 1 and w = 0.5,
respectively. Again, we see that both system’s have been excited from the
ground state. We note that for all system’s the imaginary part of the energy
expectation value is small compared to the real part.

7.6.2 Ground state energies of the three-dimensional
quantum dot

We have computed the ground state energies of the three-dimensional isotropic
quantum dot with oscillator frequency w = 1 for N = {2,8} confined elec-
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Figure 7.7: The time evolved energy of the two-dimensional quantum dot
with N = 2 confined electrons. Here the strength of the confining potential

1s set to w = 0.5.
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Figure 7.8: The time evolved energy of the two-dimensional quantum dot
with N = 2 confined electrons. Here the strength of the confining potential

1s set to w = 0.28.
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ImE(t)|
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Figure 7.9: The time evolved energy of the two-dimensional quantum dot
with NV = 6 confined electrons. Here the strength of the confining potential

is set to w = 1.
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t

Figure 7.10: The time evolved energy of the two-dimensional quantum dot
with NV = 6 confined electrons. Here the strength of the confining potential
is set to w = 0.5.
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trons using HF, FCI and CCD with HF basis. The results, which are sum-
marized in tables 7.10 and 7.11, clearly approaches the values reported by
Hggberget [30] using Quantum Monte-Carlo methods.

Table 7.10: The table shows the ground state energies of a three-dimensional
quantum dot with two confined electrons. Lgpatia denotes the number of
spatial basis functions used in the calculation while w is the frequency of the
confining potential.

N w  Lgatial Eur Ercr Eccp-nr
2 0.01 4 0.109788 0.092483 0.092483
0.1 4 0.552313 0.526418 0.526418
0.28 4 1.262200 1.235277 1.235277
0.5 4 2.064189 2.037123 2.037123
1.0 4 3.797884  3.770825 3.770825

0.01 10 0.093727 0.080119 0.080485
0.1 10 0.529042 0.501229 0.501232
0.28 10 1.237335 1.206433 1.206467
0.5 10 2.038786 2.007186 2.007225
1.0 10 3.772064 3.740191 3.740222
0.01 20 0.093727 0.079392 0.079427
0.1 20 0.529042 0.500716 0.500728
0.28 20 1.237335 1.204368 1.204368
0.5 20 2.038786 2.004104 2.004105
1.0 20 3.772064  3.736006 3.736008
0.01 35 0.092743 0.079203 not converged
0.1 35 0.529042  0.500437 0.500550
0.28 35 1.237180  1.203299 1.203347
0.5 35 2.038452  2.002486 2.002516
1.0 35 3.771498  3.733756 3.733775

DO DN DO DN NN DO DN DN NN DNDNDNDNDDNNDN DN
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Table 7.11: The table shows ground state energies for the three-dimensional
quantum dot with N = 8 confined electrons computed with the Hartree-
Fock and CCD methods. For increasing number of basis functions the values
approach the values obtained with Variational Monte Carlo methods in Ref.

[30].

N w Lspatial Fur FEocp.nr

8§ 0.1 10 6.642160 not converged
8 0.28 10 13.306843 13.1728

8 0.5 10 20.173748 20.035253

8 1.0 10 33.995902 33.853376

8§ 0.1 20 6.005028  not converged
8 0.28 20 12.483030 12.3348

8 0.5 20 19.242582 19.070177

8 1.0 20 32.944312 32.748237

8 0.5 35 19.224922 19.0242

8 1.0 35 32.936945 32.717020




Chapter 8

Conclusions and Perspective

8.1 Summary

The aim of this thesis has been to study numerical methods for solving the
time-dependent Schrodinger equation for many-body problems. In particu-
lar, we wanted to implement the Time-Dependent Coupled-Cluster method
which is a simplified version of the Orbital-Adaptive Time-Dependent Coupled-
Cluster (OATDCC) method presented in the article by Kvaal in Ref. [1].

To begin with, we reviewed many-body theory with an emphasis on
the second quantization formalism. In order to solve the time-dependent
Schrédinger equation it is necessary to first solve the so-called time-independent
Schrodinger equation (TISE). We discussed three of the most commonly used
methods for solving the TISE, namely the Hartree-Fock (HF), the Config-
uration Interaction (CI) and the Coupled Cluster (CC) methods. Next, we
reviewed how to extend the CI and the CC methods to the time domain giv-
ing rise to the Time-Dependent Configuration Interaction (TDCI) method
and the Time-Dependent Coupled-Cluster (TDCC) method.

Of particular importance is the fact that the CI and CC methods give the
same results for systems with N = 2 particles. This fact was used as a basis
for establishing the validity of the implementation of the TDCC method.
Implementations of the Hartree-Fock and Configuration Interaction methods
were verified by comparing with previous studies of one- and two-dimensional
quantum dot systems from Refs. [9,26,28]. The article by Zanghellini et al. [9]
examines also the time evolution of the one-dimensional quantum dot which
was used to verify the implementation of the TDCI method. Finally, we
could establish the validity of the implementation of the TDCCD method by
comparing the time evolution with a working TDCI program. The methods
were shown to produce the same results within a numerical error on the
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order of ~ 1073 for time evolved energies when applied to a one-dimensional
quantum dot system with N = 2 electrons.

We used the TDCC method to compute the time evolution of two-dimensional
quantum dot systems with N = 2 and N = 6 electrons. Radiating the
quantum dots with a laser, tuned with the energy difference between the
ground state and the first excited state, we were able to produce excited
states for these systems. Additionally, we used our Hartree-Fock, Configura-
tion Interaction and Coupled Cluster codes to compute ground state energies
of three-dimensional quantum dot systems using integral elements given by
Vorrath [23]. Our results agree well with the Variational Monte Carlo and
Diffusion Monte Carlo calculations of Ref. [30].

In summary, we have developed an extensive software suite in Python and
C++ that is flexible enough to handle different quantum mechanical systems,
spanning from solid state physics devices like quantum dots to atoms and
molecules, or atomic nuclei. Here we have focused on quantum dots, but
our software is not limited to systems described by harmonic oscillator basis
sets only. A proper object orientation, as implemented in the software suite
developed by us, allows for straightforward extensions and studies of other
quantum mechanical systems.

8.2 Future work

We have seen that the TDCC method produces the same results as the
TDCI method when applied to a system with N = 2 particles. Furthermore,
we have demonstrated that we can simulate system’s with more than two
particles, using the two-dimensional quantum dot with six particles as an
example.

There are several possibilities for future work. In contrast to the MCT-
DHF and the TDCI methods (see for example Ref. [8]) which suffer from
exponential scaling, the TDCC and OATDCC approaches achieve polyno-
mial scaling. A more memory efficient and parallelized version of the current
implementation is planned for studies of larger systems. The C++ code de-
veloped as a part of this thesis project will then form the basis for a suite
of software tailored to existing High-Performance Computing facilities. The
present investigations are planned to form the basis for an article in the
Journal of Chemical Physics [31].

Extending the implementation to handle the full OATDCC discussed in
Ref. [1] is another possibility, especially since the amplitude equations are
the same for both methods.

The current implementation is general in the sense that no assumption
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is made on the systems other than it is fermionic. Thus, given integral ele-
ments one can study other systems than electrons confined by the harmonic
oscillator. This applies equally well to bosonic systems, that is collections of
quantum mechanical systems where the total wavefunction is symmetric and
the particles carry integer values of the intrinsic spin.

Using the integral elements given by Vorrath [23] a more thorough study
of the three dimensional quantum dot is possible. In particular, one can study
systems where the confining potential is deformed in the z-direction allowing
for the inclusion of other potentials than the harmonic oscillator. The latter
is of importance if one wishes to study the time evolution of quantum dots
systems tailored to construct quantum gates and circuits.
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Appendix A

The Quantum Harmonic
Oscillator

The quantum (isotropic) harmonic oscillator in dimension d, where d = 1,2
or 3, is where we solve the Schrodinger equation for one particle confined to
the potential,

(A.1)

Here,

, it is the mass of the particle, while w is the oscillator frequency. The
Hamiltonian of this system is given by,

d 2
H = —iw + V(r), V2= 0 ) (A.2)

2m B — 8_1’12
The TDSE for this problem,

Hiy(r) = B, (r), (A.3)

can be solved analytically for d = 1,2, 3.
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A.1 One dimension

The eigenstates and corresponding eigenenergies in one dimension are given

by,

(W 1/4 1 —a222/2
Yn(z) = <7rh> mHn(a:ﬁ)e , (A.4)
1
E, = (n + 5) hw, (A.5)
where n =0,1,2,--- and we have defined

a

@. (A.6)

Here, H,(y) are the so-called Hermite polynomials given by,

) = (-1 (1) e (A7)

A.2 Two dimensions

In two spatial dimensions the eigenfunctions of the harmonic oscillator in
polar coordinates are given by,

Upm (1, 0) = Nnmaeima(ar)‘m|L|7T| (a2r2) e‘a2r2/2, (A.8)
Epm = hw (2n+ |m| + 1), (A.9)
where n = 0,1,2,--- and m = 0,£1,4+2,---. N,,, is a normalization con-

stant given by,

while L(y) are the so-called associated Laguerre polynomials, which for ar-
bitary real ¢ and p > 0 is given by,

Lg(y) — yq(d/d?;—!_l)pyp+q_ (A.ll)
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A.3 Three dimensions

In three dimensions the eigenfunctions of the harmonic oscillator in spherical
coordinates are given by,

1
Um (1,0, 0) = Nklrle_aZTQ/QL,iHQ)(a2r2)Ylm(9, ©), (A.12)
3
By = hw(2k + 1 + 5), (A.13)
where k,0 =0,1,2,--- and —] < m < [. The normalization constant Ny is

given by,

9,3 9k+20+3L| 1w
Nu =11/ == =L Al4
K \/ T k+2a+D0 U7 2 (A.14)

Li(y) is the associated Laguerre polynomials while Y;™ is a spherical har-
monic funtion,

Y™ (0, ¢) = Ne"™? P™(cos 6). (A.15)

N is a normalization constant and P/"(y) is the associated Legendre function,

|m|
Pr(y) = (1— )7 (i) Ply). (A.16)

where Pj(z) is the {th Legendre polynomial,

R(z) = o1 (di) (1) (A.17)



Appendix B

Numerical Integration

B.1 The Runge-Kutta 4 method

Consider the initial value problem:

Y~ fltw) ylto) = o (B.1)

Pick a step-size At > 0 and define

At
Yn+1 = Yn + — (k1 + 2k + 2k3 + k)

6
bns1 = b, + At
forn=20,1,2,---, where
k= f(tn, yn)
ko= f (tn + %,yn + %]ﬁ)
ks = f (tn + %,yn + %k’g)

Yn+1 is the Runge-Kutta 4 [32] (RK4) approximation of y(¢,.1). The local
truncation error of the RK4 method is on the order of O(At#°) and the total
accumulated error is on the order of O(At?).
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Appendix C

Code listings

C.1 Restricted Hartree Fock class

Suppose that we have the one- and two-body integrals h? and ul? = (pg|i|rs) ,g
available, then a complete RHF program which at convergence returns the
RHF energy and the matrix of expansion coefficients U can be written in
Python as:

Restricted Hartree Fock Program

import numpy as np
class RestrictedHartreeFock:
def __init__(self,N,L,h,u):

#N is the number of particles
#L is the number of spatial orbitals
#h is the LxL array of one-body integrals <plhlqg>
#u is the LxLxLxL array of anti-symmetrized
#two-body integrals <pqlulrs>

self .nrO0fParticles = N

self .nr0fSpatialOrbitals = L

self .U = np.eye(L)

self.D = np.zeros ((L,L))

self .F = np.zeros ((L,L))

self.h = h.copy()

self.u = u.copy Q)

self.o = slice(0, N/2) #range of occupied orbitals
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def compute_Eref (self):
occ = self.o
return 2*x(np.einsum(’ii’ ,self.h[occ,occ])
+np.einsum(’ijij’,self.ulocc,occ,
occ,occl))

def computeRHFEnergy (self,eps,D,U):
occ = self.o
return 2*sum(eps[occ])
-np.einsum(’qi,sr,qrps,pi->’,U[:,0cc],D,
self.u, U[:,o0cc])

def compute_DensityMatrix(self ,U):
occ = self.o
return 2*np.einsum(’sj,rj->sr’,
Ul:,o0cc], U[:,o0cc])

def computeFockMatrix(self ,D):
return self.h.copy ()
+np.einsum(’sr,qrps->qp’,D,self.u)

def doSCF(self ,max_iters = 20, delta=1E-8):
#delta is the convergence threshold
#and max_iters the maximum
#number of SCF iterations.

ERHF = self.compute_Eref ()

eps_old = np.zeros(self.nr0OfSpatialOrbitals)
diff_eps = 100

iters =0

while( (diff_eps > delta) and (iters < max_iters)):

self.D self.compute_DensityMatrix (self.U)
self .F self.computeFockMatrix (self.D)
eps, self.U np.linalg.eigh(self.F)

ERHF = self.computeHFEnergy (eps,self.D,

self .U)

if (iters > 0):
diff_eps = max(abs(eps-eps_old))
eps_old = eps.copy()
iters += 1
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if (diff_eps < delta):
return ERHF, iters, self.U

else:
print "Did not convergence to given precision"
sys.exit (1)

Note that program depends only on the number of particles, basisfunctions
and the integral elements. Thus, in principle the program can run for any
(spin-restricted) system given h and u as input in some basis {¢;}7 .

C.2 Configuration Interaction class
Configuration Interaction Program
class ConfigurationInteraction:

def init__(self ,Np,L,h,u,system=None):

self .Np = Np

self .L = IL

self.h = h

self.u = u
self.SlaterDeterminants = []
self .diffByOne = []
self.diffByTwo = []

self .nSds = 0

self.system = system

def TDCI(self,A,dt=1e-3,T=1,sampleFrequency=50):

Nt = int(T/dt)

H1, H2 = self.computeHamiltonian(self.h,self.u)

Hamiltonian = np.zeros ((self.nSds, self.nSds),
dtype=np.complex128)

At = A.copy()

overlap = np.zeros (Nt/sampleFrequency+1)

E_vec = np.zeros (Nt/sampleFrequency+1)

overlap [0] abs (np.vdot (At ,A)) *x2

t0 = time.time ()

counter = 0
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k1 = np.zeros(len(At))
k2 = np.zeros(len(At))
k3 = np.zeros (len(At))
k4 = np.zeros(len(At))

for i in range(O,Nt+1):

t = ix*dt
#RK4 stepl:
ht = self.system.

updateOneBodyElements (self.h,t=t)
H1 self.computeH1 (ht)
np.add (H1,H2,out=Hamiltonian)
k1 = -1j*np.matmul (Hamiltonian , At)

#RK4 step2:

A_tmp np.add (At ,dt*0.5%k1)

ht self .system.
updateOneBodyElements (self .h,t=t+0.5xdt)

H1 = self.computeHl (ht)

np.add (H1 ,H2,out=Hamiltonian)

k2 = -1j*np.matmul (Hamiltonian ,A_tmp)

#RK4 step3:
A_tmp = np.add(At,dt*0.5%k2)
ht = self.system.
updateOneBodyElements (self.h,t=t+0.5%dt)
H1 = self.computeH1 (ht)
np.add (H1 ,H2 ,out=Hamiltonian)
k3 = -1j*np.matmul (Hamiltonian ,A_tmp)

#RK4 step4:
A_tmp = np.add(At,dt*k3)
ht = self.system.
updateOneBodyElements (self.h,t=t+dt)
H1 = self.computeH1 (ht)
np.add (H1,H2,out=Hamiltonian)
k4 = -1j*np.matmul (Hamiltonian ,A_tmp)

if (i%sampleFrequency == 0):
E_tn = np.vdot(At,np.matmul (Hamiltonian ,At))/
np.vdot (At ,At)
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E_vec[counter] = E_tn.real

overlap[counter] = abs(np.vdot (At,A))*x*2
rhoCI = self.computeOneBodyDensityMatrix (At)
counter += 1

At = At + (dt/6.0)*(k1+2.0%(k2+k3)+k4)
return At, overlap, E_vec

def createCISDspace(self , Nsps,CIspace="CISD"):

Refstate = np.zeros(self.Np)
for i in range(0,self.Np):

Refstate[i] = 1
self .nSds += 1
self.SlaterDeterminants.append (
ca.createBinaryState (Refstate,self.L))

if (CIspace == "CISD"):
for i in range(0,self.Np):
for a in range(self.Np,Nsps):
#A1ll singles excitations
state = Refstate.copy()
state[i] = a
self.SlaterDeterminants.append (
ca.createBinaryState (state,self.L))
self .nSds += 1
for j in range(i+1,self.Np):
for b in range(a+1l,Nsps):
#A1ll doubles excitations
state = Refstate.copy()
state[i] = a
state [j] b
self.SlaterDeterminants.append(
ca.createBinaryState(state,self.L))
self .nSds += 1

elif (CIspace == "CID"):
for i in range(0,self.Np):
for a in range(self.Np,Nsps):
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for j in range(i+1,self.Np):
for b in range(a+1l,Nsps):
state = Refstate.copy()
state[i] = a
state[j] = b
self.SlaterDeterminants.append(
ca.createBinaryState(state,self.L))
self.nSds += 1
elif (CIspace == "CIS"):
for i in range(0,self.Np):
for a in range(self.Np,Nsps):
state = Refstate.copy()
state[i] = a
self.SlaterDeterminants.append (
ca.createBinaryState (state,self.L))
self .nSds += 1
else:
print "Provide one of the following CI-spaces:
CIS, CID or CISD"
sys.exit (1)

def sortCIspace():
for I in range(0,self.nSds):
for J in range(I+1,self.nSds):
sI = self.SlaterDeterminants[I]
sJ = self.SlaterDeterminants [J]
diff, id_s1, id_s2 = ca.diffState(sI,sJ)

if (diff == 1):
tmp = sJ.copy()
sl = ca.sign(id_s2[0],tmp)
tmp[id_s2] = False
s2 = ca.sign(id_s1[0], tmp)
tmp [id_s1] = True
sign = slx*s2
1st = [I,J,id_s1[0],id_s2[0],sign]
self .diffByOne.append (1lst)

if (diff == 2):
tmp = sJ.copy ()
sl = ca.sign(id_s2[0], tmp)
tmp[id_s2[0]] = False
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s2 = ca.sign(id_s2[1], tmp)

tmp[id_s2[1]] = False

s3 = ca.sign(id_s1[1],tmp)

tmp[id_s1[1]] = True

s4 = ca.sign(id_s1[0], tmp)

sign = sl*s2*xs3*s4

1st = [I,J,id_s1[0],id_s1[1],
id_s2[0],id_s2[1],sign]

self .diffByTwo.append (1lst)

def computeGroundState (self):
H1, H2 = self.computeHamiltonian(self.h,self.u)
Hamiltonian H1+H2
Energies, A = np.linalg.eigh(Hamiltonian)
return Energies, A

def computeHamiltonian (self ,h,u):
Hi= np.zeros((self.nSds,self.nSds),
dtype=np.complex128)
H2= np.zeros((self.nSds,self.nSds),
dtype=np.complex128)

for I in range(0,self.nSds):
sI = self.SlaterDeterminants[I]
idI = np.where(sI) [0]
for m in idI:
H1[I,I] += hlint(m),int(m)]
for k in idI:
if(k !'= int(m)):
H2[I,I] += 0.5*ulint(m),int(k),
int (m),int (k)]

for K in self.diffByOne:
I=K[0]
J= KI[1]
sI= self.SlaterDeterminants [I]
sJ= self.SlaterDeterminants [J]
idI= np.where(sI) [0]
id_s1= K[2]
id_s2= K[3]
sign = K[4]
H1[I,J] += hl[id_s1,id_s2]*sign
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for q in idI:
H2[I,J] += ulint(id_s1),int(q),
int(id_s2),int (q)]*sign

for M in self.diffByTwo:
I= M[0]
J= M[1]
id_s1= [M[2],M[3]]
id_s2= [M[4],M[5]1]
sign = M[6]
H2[I,J] += ulint(id_s1[0]),int(id_s1[1]),
int (id_s2[0]),int(id_s2[1])]*sign
for I in range(0,self.nSds):
for J in range(I,self.nSds):

if(I'=J):
H1[J,I] = H1i[I,J]
H2[J,I] = H2[I,J]

return H1,H2

def computeH1 (self ,h):
H1 = np.zeros((self.nSds,self.nSds),
dtype=complex)
for I in range(0,self.nSds):
sI = self.SlaterDeterminants[I]
idI = np.where(sI) [0]
for m in idI:
H1[I,I] += hlint(m),int (m)]

for K in self.diffByOne:
I= K[0]
J= KI[1]
id_s1= K[2]
id_s2= KI[3]
sign = K[4]
H1[I,J] += h([id_s1,id_s2]*sign

for I in range(0,self.nSds):
for J in range(I,self.nSds):
if(It1=J):
H1[J,I] = H1[I,J]
return H1
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def computeOneBodyDensityMatrix (self ,A):

rho = np.zeros((self.L/2,self.L/2),dtype=complex)
for p in range(0,self.L/2):
rpp = O
for I in range(0,self.nSds):
sI = self.SlaterDeterminants[I]

if (sI[2*p] == True):
rpp += np.conj(A[I])*A[I]
if (sI[2*%p+1] == True):

rpp += np.conj (A[I])=*A[I]
rho[p,pl = rpp

for K in self.diffByOne:

sI = self.SlaterDeterminants [K[0]]
sJ = self.SlaterDeterminants [K[1]]
id_si = K[2]

id_sj = K[3]

tmp, sl = ca.removeParticle(id_sj,sJ)
tmp2, s2 = ca.addParticle(id_si,tmp)
sign = sl%*s2

rho[id_si/2,id_sj/2] += np.conj(A[K[0]])
*A[K[1]]*sign

for p in range(0,self.L/2):
for q in range(p+1,self.L/2):
rho[q,p]l = rholp,ql
return rho

C.3 Coupled Cluster class

CreationAnnihilation

import numpy as np

import sys

import time

from memory_profiler import profile

class CoupledCluster:
def __init__(self ,N,L,h,u,system=None):
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self .N = N
self.L = L
self.o = slice (0, N)
self.v = slice(N, L)
self.h = h
self.u = u
self.system system

self.t2, self.12

Np = L-N
self.Xklij =

np.zeros ((N,N,N,N),

dtype=np.complex128)

self .Xbc = np.zeros ((Np,Np),

self .X1j
self .Xkbcj =
self .Ejk
self .Ecb
self .Edcab
self .Eijkl
self .Ecjkb
self .Ecijkla

self .Edcikab

dtype=np.complex128)

np.zeros ((N,N),

dtype=np.complex128)

np.zeros ((N,Np,Np,N),

=np

= np.

= np.

=np

me

me

np.

dtype=np.complex128)
.zeros ((N,N),
dtype=np.complex128)
zeros ((Np,Np),
dtype=np.complex128)
zeros ((Np,Np,Np,Np),
dtype=np.complex128)
.zeros ((N,N,N,N),
dtype=np.complex128)
.zeros ((Np,N,N,Np),
dtype=np.complex128)
.zeros ((Np,N,N,N,N,Np),
dtype=np.complex128)
zeros ((Np,Np,N,N,Np,Np),
dtype=np.complex128)

def initializeAmplitudes(self):

N = self.N;

L:

self.L

self.initializeAmplitudes ()
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t2 = np.zeros((L-N,L-N,N,N),dtype=np.complex128)

12

uNew = np.zeros((L,L,L,L),dtype=np.complex128)

np.zeros ((N,N,L-N,L-N),dtype=np.complexl128)
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hNew = n

for p in
for r
hNew
for
fo

self.h
self.u

for i inm
for j
for

fo

return t

def TDCCD (
Nt = int
hO = sel
N = self
k1 = np.
k2 = np
k3 = np.
k4 = np.
ml = np.
m2 = np.
m3 = np.
m4 = np.
E_vec
t_vec
counter

p.zeros ((L,L) ,dtype=np.complex128)

range (0,L):
in range(0,L):
[p,r] = self.hlp,r]
q in range(0,L):
r s in range(O,L):
uNew[p,r,q,s] = self.ulp,r,q,s]

hNew.copy ()
uNew . copy ()

range (0,N):
in range(0,N):
a in range(N,L):
r b in range(N,L):

Dabij = self.h[i,i] + self.hl[j,j]
-self.h[a,a]l] - self.h[b,bl]
t2[a-N,b-N,i,j] = self.ula,b,i,jl/Dabij
12[i,j,a-N,b-N] self.uli,j,a,bl/Dabij

2, 12

self ,dt=1e-3,T=1,sampleFrequency=50):

(T/dt)
f.h.copyO

.N; L = self.L
zeros ((L-N,L-N,N,N),dtype=np.complex128)

.zeros ((L-N,L-N,N,N),dtype=np.complex128)

zeros ((L-N,L-N,N,N),dtype=np.complex128)
zeros ((L-N,L-N,N,N),dtype=np.complex128)

zeros ((N,N,L-N,L-N),dtype=np.complexl128)
zeros ((N,N,L-N,L-N),dtype=np.complex128)
zeros ((N,N,L-N,L-N),dtype=np.complex128)
zeros ((N,N,L-N,L-N),dtype=np.complex128)

= np.zeros (Nt/sampleFrequency+1,
dtype=np.complex128)

= np.zeros (Nt/sampleFrequency+1)

=0
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for i in range(0,Nt+1):
t = i*xdt

#RK4 stepl:
self .h = self.system.
updateOneBodyElements (hO,t=t)
self .updateExcitationInterMediates (self.t2)
self.updateDeExcitationInterMediates (self.t2)

if (i%sampleFrequency == 0):
E_tn = self.compute_ETDCCD(self.12,
self.t2,t)
E_vec[counter] = E_tn
t_vec[counter] = t

k1 = -1j*self.compute_dEdLijabH(self.t2,t=t)

ml = 1j*self.compute_dEtabijH
(self.12,self.t2,t=t)

#RK4 step2:

self .h = self.system.
updateOneBodyElements (hO,t=t+0.5%dt)

t2_tmp = np.add(self.t2,0.5*dtx*kl)
self .updateExcitationInterMediates (t2_tmp)
self .updateDeExcitationInterMediates (t2_tmp)
k2 = -1j*self.compute_dEdLijabH(t2_tmp,t=t)
m2 = 1j*self.

compute_dEtabijH

(np.add(self.12,0.5*xdt*ml),

t2_tmp,t=t+0.5%dt)

#RK4 step3:
self .h = self.system.
updateOneBodyElements (hO,t=t+0.5*dt)

t2_tmp = np.add(self.t2,0.5*%dt*k2)
self .updateExcitationInterMediates (t2_tmp)
self .updateDeExcitationInterMediates (t2_tmp)
k3 = -1jxself.compute_dEdLijabH(t2_tmp,t=t)
m3 = 1j*self.compute_dEtabijH

(np.add(self.12,0.5*xdt*m2),
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#RK4

self.

t2_tmp ,t=t+0.5*dt)

stepé4:
h = self.system.

updateOneBodyElements (hO,t=t+dt)

t2_tmp = np.add(self.t2,dt*k3)

self
self
k4 =
m4 =

self

self

.updateExcitationInterMediates (t2_tmp)
.updateDeExcitationInterMediates (t2_tmp)
-1j*self.compute_dEdLijabH(t2_tmp,t=t)

1j*self.compute_dEtabijH
(np.add(self.12,dt*m3),
t2_tmp,t=t+dt)

.t2 = self.t2

+(dt/6.0)*(k1+2.0*%(k2+k3)+k4)

.12 = self.12

+(dt/6.0)*x(m1+2.0*%(m2+m3)+m4)

return E_vec, t_vec, overlap

def updateExcitationInterMediates (self ,t2):
.build_Xk1lij (t2)

.build_ZXbc (t2)

.build_X1j (t2)

.build_Xkbcj (t2)

self
self
self
self

def updateDeExcitationInterMediates (self ,t2):

self
self
self
self
self
self
self

.build_Ejk (t2)
.build_Ecb (t2)
.build_Edcab (t2)
.build_Eijk1(t2)
.build_Ecjkb(t2)
.build_Ecijkla(t2)
.build_Edcikab (t2)

def computeGroundState (self):

= self.computeTamplitudes ()
self.computeLamplitudes ()
return ECC.real

ECC

def computeTamplitudes (self ,max_iters,eps,alpha):

135



Ecorr = Ecorr_new
print ("%.4f" % (Eref+Ecorr).real)

if (diff < eps):
converged = True
else:
print (diff)

print ("T-amplitudes did not converge.")

print ("**x Exit program *x*")
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self.updateExcitationInterMediates (self.t2)
N = self.N; L = self.L
Eref = self.compute_Eref ()
Ecorr = self.compute_Ecorr(self.t2)
converged = False
diff = 100
iters = 1
t_tot = 0
while(diff > eps and iters < max_iters):
self .updateExcitationInterMediates (self.t2)
t2_new = self.compute_dEdLijabH(self.t2)
t_tot += t1-tO
for i in range(O,N):
for j in range(O,N):
for a in range(N,L):
for b in range(N,L):
Dabij = self.h[i,i] + self.h[j,j]
- self.h[a,a] - self.hl[b,bl]
t2_new[a-N,b-N,i,j] /= Dabij
Ecorr_new = self.compute_Ecorr (t2_new)
diff = abs(Ecorr_new-Ecorr)
iters += 1
self.t2 = alpha*t2_new + (l-alpha)*self.t2
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sys.exit (1)
return Eref+Ecorr

def computeLamplitudes (self ,max_iters,eps,alpha):

N = self.N; L = self.L

max_rhs = 100
iters = 0
converged = False
t_tot =0

while (max_rhs > eps and iters < max_iters):

self.updateDeExcitationInterMediates (self.t2)
12_new = self.compute_dEtabijH(self.12,self.t2)

for i in range(O,N):
for j in range(O,N):
for a in range(N,L):
for b in range(N,L):
Dabij = self.h[i,i] + self.h[j,j]
- self.hl[a,a] - self.h[b,b]
12_newl[i,j,a-N,b-N] /= Dabij

iters += 1

diff = np.amax(abs(l2_new - self.12))
RHS self.compute_dEtabijH(l2_new,self.t2)

for i in range(O,N):
for j in range(O,N):
for a in range(N,L):
for b in range(N,L):

Dabij = self.h[i,i] + self.h[j,j]
- self.hl[a,a] - self.h[b,b]

RHS[i,j,a-N,b-N] -= 12_newl[i,j,

a-N,b-N]
*Dabi j

self .12 = alpha*12 new + (l-alpha)*self.12
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max_rhs = np.amax (abs(RHS))

if max_rhs < eps:
converged = True
else:
print max_rhs
print ("L-amplitudes did not converge.")
print ("*x Exit program **x")
sys.exit (1)

def compute_Eref (self):
o = self.o; v = self.v
Eref = np.einsum(’ii’,self.h[o,0])
Eref += 0.5*np.einsum(’ijij’,self.ulo,0,0,0])
return Eref

def compute_Ecorr (self ,t2):
o = self.o; v = self.v
Ecorr = 0.25%np.einsum(’ijab,abij->"’,
self .ulo,o0,v,v],t2)
return Ecorr

def compute_ETDCCD(self ,12,t2,t):
Ecorr_t = 0
if(t > 0):
RHS = self.compute_dEdLijabH(self.t2,t=t)
Ecorr_t = 0.25*np.einsum(’ijab,abij->’,12,RHS)
return self.compute_Eref ()
+ self.compute_Ecorr(t2)+Ecorr_t

def compute_dEdLijabH(self ,t2,t=0):

o = self.o; v = self.v
#dEdLijabH1
if (t==0):
one_dki = np.ones((self.N,self.N))

np.eye(self.N)
np.einsum(’ki,ki,abjk->abij’,
one_dki ,self.hf[o,0],t2)

Pi j
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Pij - Pij.swapaxes(2,3)
np.ones ((self.L-self.N,self.L-self.N))
- np.eye(self.L-self.N)
Pab = -np.einsum(’ac,ac,bcij->abij’,
one_dca,self.h([v,v],t2)
Pab - Pab.swapaxes (0,1)

t2_new
one_dca

t2_new +

else:
Pij = np.einsum(’ki,abjk->abij’,
self .h[o,0],t2)
t2_new = Pij - Pij.swapaxes(2,3)

Pab = -np.einsum(’ac,bcij->abij’,
self .h[v,v],t2)
Pab - Pab.swapaxes (0,1)

t2_new +

#dEdLijabH2
Pab = np.einsum(’acij,bc->abij’,t2,self.Xbc)
t2_new += Pab - Pab.swapaxes(0,1)

Pij = -np.einsum(’abik,kljl->abij’,t2,
self.ulo,0,0,0])
t2_new += Pij - Pij.swapaxes(2,3)

t2_new += np.einsum(’abkl,klij->abij’,t2,
self.Xklij)

Pijab = np.einsum(’acik,kbcj->abij’,t2,self.Xkbcj)
t2_new += Pijab - Pijab.swapaxes(2,3)

- Pijab.swapaxes (0,1)

+ Pijab.swapaxes (2,3).swapaxes(0,1)

np.add(t2_new, O0.5%np.einsum(’dcij,abdc->abij’,t2,
self .ulv,v,v,v]),out=t2_new)

Pij = np.einsum(’abil,lj->abij’,t2,self.X1j)
np.add(t2_new,(Pij - Pij.swapaxes(2,3)),
out=t2_new)

#t2_new += self.ulv,v,o0,0].copy()
np.add(t2_new,self.ulv,v,o0,0],out=t2_new)

return t2_new

def compute_dEtabijH(self ,12,t2,t=0):
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o = self.o; v = self.v
#H1 part
Pab = -np.einsum(’ca,ijbc->ijab’,

self.h[v,v],12)
Pab - Pab.swapaxes (2,3)

12_new

Pij = np.einsum(’ik, jkab->ijab’,
self .hl[o,0],12)
12_new += Pij - Pij.swapaxes(0,1)

if (t==0):
Pab = -np.einsum(’aa,ijba->ijab’,
self.h[v,v],12)
12_new += -Pab + Pab.swapaxes(2,3)

Pij = np.einsum(’ii, jiab->ijab’,
self .h[o,0],12)
12_new += -Pij + Pij.swapaxes(0,1)

#H2 part
np.add(12_new,self.ulo,0,v,v] ,out=12_new)

Pij = np.einsum(’jkdc,dcikab->ijab’,12,
self .Edcikab)
12 _new += Pij - Pij.swapaxes(0,1)

Pab = np.einsum(’klbc,cijkla->ijab’,l2,
self .Ecijkla)
12_new += Pab - Pab.swapaxes(2,3)

12_new += np.einsum(’klab,ijkl->ijab’,12,
self .Eijkl)

Pabij = np.einsum(’ikac,cjkb->ijab’,12,
self .Ecjkb)
12_new += Pabij - Pabij.swapaxes(0,1)
- Pabij.swapaxes(2,3)
+ Pabij.swapaxes (2,3).swapaxes(0,1)

Pij = np.einsum(’ikab,jk->ijab’,12,self.Ejk)
12_new += Pij - Pij.swapaxes(0,1)
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Pab = np.einsum(’jiac,cb->ijab’,12,self.Ecb)
12_new += Pab - Pab.swapaxes(2,3)

12_new += np.einsum(’jidc,dcab->ijab’,12,
self .Edcab)
return 12_new

#Excitation intermediates

def build_Xklij(self,t2):
o = self.o; v = self.v
np.add (0.5*xself .ulo,0,0,0],0.25
*np.tensordot (t2,self.ulo,o0,v,v],
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axes=((0,1),(2,3))) ,out=self.Xklij)

def build_Xbc(self,t2):
o = self.o; v = self.v
np.add(np.einsum(’bkck->bc’,self .ulv,o,v,0]),
0.5*np.einsum(’bdkl ,kldc->bc’,t2,

self .ulo,o0,v,v]) ,out=self.Xbc)

def build_X1j(self,t2):
o = self.o; v = self.v
np.einsum(’dcjk,kldc->1j’,0.5%t2,
self .ulo,0,v,v],out=self.X1j)

def build_Xkbcj(self ,t2):
o = self.o; v = self.v
np.add(self.ulo,v,v,0],0.5
*np.einsum(’bdjl ,klcd->kbcj’,t2,
self .ulo,0,v,v]),out=self.Xkbcj)

#De-excitation intermediates
def build_Eijkl(self,t2):
o = self.o; v = self.v
np.add (0.5*self.ulo,0,0,0],
0.25*xnp.einsum(’dckl ,ijdc->ijkl’,t2,
self .ulo,o0,v,v]),
out=self.Eijkl)

def build_Ecjkb(self ,t2):
o = self.o; v = self.v
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np.subtract (self.ulv,o0,0,v],
np.einsum(’dckl, jlbd->cjkb’,t2,
self.ulo,0,v,v]),out=self.Ecjkb)

def build_Ejk(self ,t2):
o = self.o; v = self.v
np.add (-0.5*np.einsum(’dckl, jldc->jk’>,t2,
self .ulo,0,v,v]),
-np.einsum(’jlkl->jk’,
self.ulo,0,0,0]),
out=self.Ejk)

def build_Edcab(self,t2):
o = self.o; v = self.v
np.add (-0.5*self .ulv,v,v,v],
-0.25*np.einsum(’dckl ,klab->dcab’,t2,
self.ulo,o0,v,v]),
out=self.Edcab)

def build_Ecb(self ,t2):
o = self.o; v = self.v
np.add(-np.einsum(’ckbk->cb’,self.ulv,o,v,0]),
-0.5%np.einsum(’dckl ,klbd->cb’,t2,
self .ulo,0,v,v]),
out=self.Ecb)

def build_Ecijkla(self ,t2):
o = self.o; v = self.v
np.einsum(’dckl ,ijad->cijkla’,-0.5*%t2,
self .ulo,o0,v,v],out=self.Ecijkla)

def build_Edcikab(self ,t2):
o = self.o; v = self.v
np.einsum(’dckl,ilab->dcikab’,0.5*%t2,
self .ulo,0,v,v] ,out=self.Edcikab)

def compute_spinReducedOneBodyDensityMatrix(self):
rho = self.compute_OneBodyDensityMatrix(self.12,
self .t2)

L_half int(self.L/2)
rho_red = np.zeros((L_half,L_half),
dtype=np.complex128)
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for p in range(0,L_half):
for q in range(0,L_half):
rho_red[p,q] = rho[2*p,2*xql+rho [2*%p+1,2*%xq+1]
return rho_red

o = self
Il self
rho_ji =

rho_ba =

rho = np.

rho [0, 0]
rho[v,v]

.0
.L

def compute_OneBodyDensityMatrix(self ,12,t2):

; vV = self.v
; N = self.N

np.eye(N)-0.5*%np.einsum(’kjab,abki->ji’,

0
z

return rho

12,t2)

.b*np.einsum(’ijac,bcij->ba’,12,t2)
eros ((L,L) ,dtype=np.complex128)
rho_ji

rho_ba

def compute_TwoBodyDensityMatrix(self ,12,t2):

o = self.o; v = self.v
L = self.L; N = self.N
delta_oo = np.eye(N)
Pijkl = -0.5%np.einsum(’jl,kmdc,dcim->klij’,
delta_oo0,12,t2)
rho_k1lij = Pijkl - Pijkl.swapaxes(0,1)
- Pijk1l.swapaxes(2,3)
+ Pijkl.swapaxes(0,1).swapaxes(2,3)
Pij = -np.einsum(’il, jk->k1lij’,
delta_oo,delta_oo)
rho_klij += Pij - Pij.swapaxes(2,3)
rho_k1lij += 0.5*np.einsum(’lkdc,dcji->klij’,12,t2)
rho_jbia = 0.5*np.einsum(’ij,klac,bckl->jbia’,
delta_oo0,12,t2)

- np.einsum(’jkac,bcik->jbia’,12,t2)
rho_cdab = 0.5*np.einsum(’ijab,cdij->cdab’,12,t2)
rho_ijab = 12.copy ()
rho_abij = t2.copy()
rho_abij += -0.25*np.einsum(’kldc,abkl,dcji->abij’

,12,t2,t2)
Pabij = -0.265xnp.einsum(’kldc,abik,dcjl->abij’

,12,t2,t2)
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rho_abij += Pabij - Pabij.swapaxes(0,1)
- Pabij.swapaxes(2,3)
+ Pabij.swapaxes (0,1).swapaxes(2,3)
Pij = -0.25*np.einsum(’kldc,ackl,bdji->abij’,
12,t2,t2)
rho_abij += Pij - Pij.swapaxes(2,3)
Pij = np.einsum(’kldc,acil ,bdjk->abij’,

12,t2,t2)
rho_abij += Pij - Pij.swapaxes(2,3)
Pij = -0.26*np.einsum(’kldc,acji,bdkl->abij’,
12,t2,t2)

rho_abij += Pij - Pij.swapaxes(2,3)

rho = np.zeros((L,L,L,L),dtype=np.complex128)

rho[o,0,0,0] = rho_klij
rho[o,0,v,v] = rho_ijab
rhol[o,v,0,v] = rho_jbia

-rho_jbia.transpose((1,0,2,3))
-rho_jbia.transpose ((0,1,3,2))
rho_jbia.transpose ((1,0,3,2))

rho[v,0,0,v]
rho[o,v,v,0]
rho[v,o0,v,0]

rho_cdab
rho_abij

rho[v,v,v,v]
rho[v,v,0,0]

return rho

C.4 CreationAnnihilation module

CreationAnnihilation

import numpy as np

def createBinaryState(state,L):
binState = np.zeros(L+1,dtype=np.bool)
for i in range(O0,len(state)):
binState[int (state[i])] = True
return binState

def sign(p,binState):
k = np.count_nonzero(binState[0:p])
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sign = (-1)x*xk
return sign

def addParticle(p,binState):

phase = sign(p,binState)
newState binState.copy ()

if newStatel[p] =

= False:
newState [p]

= True
else:
newState [-1] = True

return newState, phase

def removeParticle(p,binState):

phase sign(p,binState)

newState binState.copy ()

if newStatel[p] == True:
newState [p] = False
else:
newState[-1] = True

return newState, phase
def oneBodyOperator(p,q,statel,state2):
tmp, signl = removeParticle(q,state2)
if (tmp[-1] == True):
return O
tmp2, sign2 = addParticle(p,tmp)

if (tmp2[-1] == True):
return O

if (np.array_equal (tmp2,statel) == False):

return O

return signl*sign2
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def twoBodyOperator(p,q,r,s,statel,state2):

tmp, signl = removeParticle(r,state2)
if (tmp[-1] == True):
return O

tmp2, sign2 = removeParticle(s,tmp)
if (tmp2[-1] == True):
return O

tmp3, sign3 = addParticle(q,tmp2)
if (tmp3[-1] == True):
return O

tmp4, sign4 = addParticle(p,tmp3)
if (tmp4 [-1] == True):
return O

if (np.array_equal (tmp4,statel) == False):

return O
return signl*sign2*sign3*sign4

def diffState(statel,state2):

diff = statel.astype(np.int)
-state2.astype(np.int)
abs_diff = np.sum(abs(diff))

indices_s1 = np.where(diff > 0)[0]
indices_s2 np.where (diff < 0)[0]

return abs_diff/2, indices_sl1, indices_s?2



Bibliography

(1]

2l

17l

8]

191

[10]

S. Kvaal, “Ab initio quantum dynamics using coupled-cluster,” The Jour-
nal of Chemical Physics, vol. 136, p. 194109, 2012.

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction
To Adavanced FElectronic Structure Theory. Macmillan Publishing Co.,
1982.

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical
Rewview, vol. 136, p. B864, 1964.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange
and correlation effects,” Physical Review, vol. 140, p. A1133, 1965.

[. Shavitt and R. J. Bartlett, Many-Body Methods In Chemistry and
Physics, ch. 10. Cambridge University Press, 2009.

T. D. Crawford and H. F. Schaefer, An Introduction to Coupled Cluster
Theory for Computational Chemists, p. 33. John Wiley & Sons, Inc.,
2007.

T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure
Theory, ch. 10.6.2, p. 460. Wiley, 2000.

D. Hochstuhl, C. Hinz, and M. Bonitz, “Time-dependent multiconfigura-
tion methods for the numerical simulation of photoionization processes
of many-electron atoms,” The European Physical Journal Special Topics,
vol. 223, p. 177, 2014.

J. Zanghellini, M. Kitzler, T. Brabec, and A. Scrinzi, “Testing the multi-
configuration time-dependent hartree—fock method,” Journal of Physics
B: Atomic, Molecular and Optical Physics, vol. 37, p. 763, 2004.

G. E. Karniadakis and R. M. K. II, Parallel Scientific Computing in
C++ and MPI: A Seamless Approach to Parallel Algorithms and their
Implementation. Cambridge University Press, 2003.

147



BIBLIOGRAPHY 148

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

22]

23]

S. Kvaal, Lecture Notes for Fys-Kjm4480/9480; Quantum Mechanics
For Many-Particle Systems. University of Oslo, 2015.

D. J. Griffiths, Introduction to Quantum Mechanics. Pearson Prentice
Hall, 2 ed., 2005.

G. H. Golub and C. F. V. Loan, Matriz Computations. Johns Hopkins
University Press, 3 ed., 1996.

T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure
Theory. Wiley, 2000.

T. D. Crawford and H. F. Schaefer, An Introduction to Coupled Cluster
Theory for Computational Chemists, p. 48. John Wiley & Sons, Inc.,
2007.

T. D. Crawford and H. F. Schaefer, An Introduction to Coupled Cluster
Theory for Computational Chemists, p. 49. John Wiley & Sons, Inc.,
2007.

M. Beck, A. Jiackle, G. Worth, and H.-D. Meyer, “The multiconfiguration
time-dependent hartree (mctdh) method: a highly efficient algorithm for
propagating wavepackets,” Physics Reports, vol. 324, p. 1, 2000.

S. Kvaal, “Variational formulations of the coupled-cluster method in
quantum chemistry,” Molecular Physics, vol. 111, p. 1100, 2013.

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum
dots,” Physical Review A, vol. 57, p. 120, 1998.

Q. Su and J. H. Eberly, “Model atom for multiphoton physics,” Physical
Review A, vol. 44, p. 5997, 1991.

S. B. Skattum, “Time evolution in quantum dots using the multiconfigu-
ration time-dependent hartree-fock method,” Master’s thesis, University
of Oslo, 2013.

E. Anisimovas and A. Matulis, “Energy spectra of few-electron quantum
dots,” Journal of Physics: Condensed Matter, vol. 10, p. 601, 1998.

T. Vorrath and R. Bliimel, “Electronic structure of three-dimensional
quantum dots,” The European Physical Journal B - Condensed Matter
and Complex Systems, vol. 32, p. 227, 2003.



BIBLIOGRAPHY 149

[24] X. Liu, X. Wang, Z. Wen, and Y. Yuan, “On the convergence of the self-
consistent field iteration in kohn—sham density functional theory,” SIAM
Journal on Matrix Analysis and Applications, vol. 35, p. 546, 2014.

[25] M. Hjorth-Jensen, M. P. Lombardo, and U. van Kolck, eds., An Ad-
vanced Course itn Computational Nuclear Physics, Bridging the Scales
from Quarks to Neutron Stars. Springer, 2017.

[26] M. P. Lohne, G. Hagen, M. Hjorth-Jensen, S. Kvaal, and F. Pederiva,
“Ab initio computation of the energies of circular quantum dots,” Phys-
ical Review B, vol. 84, 2011.

[27] M. Hjorth-Jensen, Computational Physics, Lecture Notes Fall 2015. Uni-
versity of Oslo, 2015.

[28] F. Yuan, S. J. Novario, N. M. Parzuchowski, S. Reimann, S. K. Bogner,
and M. Hjorth-Jensen, “Addition and removal energies of circular quan-
tum dots,” The Journal of Chemical Physics, vol. 147, p. 164109, 2017.

[29] Z. Wang, Z. Tu, and F. Wang, “Equation-of-motion coupled-cluster the-
ory for excitation energies of closed-shell systems with spin—orbit cou-
pling,” Journal of Chemical Theory and Computation, vol. 10, p. 5567,
2014. PMID: 26583239.

[30] J. Hogberget, “Quantum monte-carlo studies of generalized many-body
systems,” Master’s thesis, University of Oslo, 2013.

[31] H. E. Kristiansen and M. Hjorth-Jensen, “Time evolution of two-
dimensional quantum dot systems using coupled cluster theory.” In
preparation for the Journal of Chemical Physics.

[32] H. P. Langtangen, A Primer on Scientific Programmin with Python.
Springer, 2011.



	Introduction
	Many-Body Methods
	Goals
	Our contributions

	Quantum Many-Body Theory
	The Many-Body Problem
	Identical particles
	Slater Determinants
	Second Quantization
	Creation and annihilation operators
	Representation of operators in Second quantization.
	Normal order and Wick's Theorem.
	Particle-hole formalism.

	The variational principle
	Density Matrices

	Hartree-Fock theory
	The Hartree-Fock equations
	The Roothan-Hall equations

	The Configuration Interaction Method
	Time Independent Configuration Interaction
	Full Configuration Interaction
	Hierarchical CI

	Time Dependent Configuration Interaction
	Density matrices

	Coupled Cluster Theory
	The exponential ansatz
	The Coupled Cluster Equations
	A variational CC theory?
	The Orbital Adaptive Time Dependent Coupled Cluster Method
	The Bivariational Principle
	The Coupled Cluster Ansatz
	OATDCC equations
	The TDCC equations
	The TDCCD approximation


	Quantum Dots
	The One-Dimensional Quantum Dot
	The Two-Dimensional Quantum Dot
	The Three-Dimensional Quantum Dot

	Implementation and Results
	Overall structure of the Software Suite
	Program flow
	Object-orientation: A description of the basic classes.

	The System class
	The One-Dimensional Quantum Dot
	Two- and Three-Dimensional Quantum Dots

	Hartree-Fock theory
	Solving the Roothan-Hall equations by SCF iterations.
	Implementation details
	Limitations of the implementation
	Verification

	Configuration Interaction
	Representation of Slater determinants
	Slater-Condon rules applied to the CI Hamiltonian
	Computing the CI ground state.
	Time evolution of the expansion coefficients.
	Limitations of the implementation
	Verification of ground state computations.
	Verification of TDCI

	Coupled Cluster
	Iterative solution of the amplitude equations for the ground state.
	Time evolution of the amplitudes.
	Implementation details
	Limitations of the implementation
	Verification of ground state computations.
	Verification of TDCCD

	Additional results.
	Time evolution of the two-dimensional quantum dot
	Ground state energies of the three-dimensional quantum dot


	Conclusions and Perspective
	Summary
	Future work

	Appendices
	The Quantum Harmonic Oscillator
	One dimension
	Two dimensions
	Three dimensions

	Numerical Integration
	The Runge-Kutta 4 method

	Code listings
	Restricted Hartree Fock class
	Configuration Interaction class
	Coupled Cluster class
	CreationAnnihilation module


