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Abstract

Conventional 2D medical ultrasound imaging is based on analyzing the
backscatter (echoes) from multiple, focused, transmitted acoustic beams.
Most imaging systems are very similar in the way they create and record
beams. Their main difference comes from their analysis of the recorded
data. Traditionally, ultrasound images are created by transmitting beams
in various directions and, for each beam, create image samples along its
trajectory. Often, however, there is a large overlap between the areas
covered by the respective beams. This phenomena can be used to achieve
higher spatial resolution by creating image samples based on multiple
beams instead of a single one. Beamformers that use multiple beams per
image sample are often referred to as multibeam beamformers, as opposed
to the traditional singlebeam beamformers. Some approaches to multibeam
beamforming have shown to result in increased ability to resolve scatterer
points over their singlebeam counterpart, as well as increased robustness
to noise for adaptive beamformers.

Previous studies showed that singlebeam beamforming in the presence
of tissue motion may result in visible amplitude variations of the scatterer
points in motion. They also showed that those amplitude variations
can be kept below a certain visibility threshold with a sufficiently high
density of transmit and receive beams. We confirm those results, show that
multibeam beamformers can also suffer from visible amplitude variations
and find that the robustification approach proposed in this study also
works with multibeam beamformers. Furthermore, we show for both
singlebeam and multibeam beamformers that tissue motion can cause
shape distortion of scatterer points in addition to potential amplitude
variations. The magnitude of shape distortion not only depends on the
scatterer points’ velocities, but also on the type of beamformer and its
image acquisition time. Multibeam beamformers tend to be more sensitive
to that effect than their singlebeam counterpart.

The conventional DAS beamformer and the adaptive MV beamformer
are well known in the medical ultrasound domain and often taken as
standards of comparison in academical studies. In order to build con-
fidence in our results for multibeam beamformers, the same experiments
and analyses are done with the singlebeam DAS and MV beamformers.
This also provides a common base with existing studies. The multibeam
beamformers used in this thesis are using the Iterative Adaptive Approach
(IAA), which has recently been presented as an alternative adaptive beam-
forming technique. IAA works by building a model of densely-separated
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potential reflectors in the imaged medium and iteratively fitting the model
to the recorded data. In this thesis, we implement two variants of the multi-
beam IAA beamformer, both based on the multibeam approach during the
iteration process and hence referred to as IAA-MB. The variants differ in
the final image sample estimate. One is based on the singlebeam output
(SB) approach and the other one is based on the multibeam output (MB)
approach. The two variants are therefore referred to in this thesis as IAA-
MBSB, respectively IAA-MBMB.

It has been shown that multibeam IAA can achieve similar scatterer
points resolvability to MV while being more robust than MV to signal
cancellation. It has however only been studied with static imaged media.
We show that the presence of tissue motion can induce distortions that
reduce the scatterer point resolvability of IAA-MB below that of MV. In
extreme cases, the resolvability of IAA-MBMB can even become worst
than that of DAS. The multibeam IAA beamformers are more sensitive to
motion-induced distortions than singlebeam DAS and MV and may require
a shorter image acquisition time in order to be robust to tissue motion.

A commonly-used approach to reducing image acquisition time while
retaining high resolution is parallel-receive beamforming (PRB), also
known as multiple-line acquisition (MLA). The principle of MLA is to
allow relatively low transmit beam densities by angular oversampling of
the receive beams. We show that MLA can be used to reduce motion-
induced distortion effects and maintain high resolvability capacities of
a beamformer. Furthermore, we find that the IAA-MBMB beamformer
impressively corrects for the receive beams misalignment induced by MLA.

Although multibeam beamformers are by nature more sensitive to
tissue motion than singlebeam ones, we show that, with an appropriate
use of the MLA technique, the IAA-MB beamformers can be made robust to
motion-induced distortion. We think that the multibeam IAA beamformers
can globally be made as robust and easy to use as the conventional DAS
beamformer, while maintaining high resolution and frame rate capacities.
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Chapter 1

Introduction

Medical ultrasound imaging is a non-invasive technique that provides
a visual representation of internal body elements. It typically consists
of using a probe to transmit directional beams and record their echoes
backscattered from the imaged body elements. Beams are physically
created from multiple transducers sending the same signal pulse with
different time delays in order to result in constructive interference at a
given point of focus and hopefully in destructive interference in other
directions. A similar approach is done on the recorded data. Given a point
of focus, the data recorded by each transducer can be time-delayed such
that potential signals coming from that focus point are aligned and can be
added up coherently if summing the data recorded by all transducers.

The algorithms used for beam transmission and recording are mostly
referred to as beamformers. In medical ultrasound imaging, many beam-
formers have been proposed over the years. Most of them work in the
same way for beam transmission and recording, but the major difference
between them comes from how the recorded data is combined. Given the
set of data recorded by all transducers after a beam transmit, each trans-
ducer can be given a different time-delay and amplitude weight values.
Conventional beamformers work very similarly to parabolic dishes for an-
tennas. A pre-defined set of amplitude weights and time delays defines the
aperture of the array, which in that analogy corresponds to the shape of the
parabolic dish. The set of time delays also defines the focus point of the
array. The major advantage of digital beamformers over parabolic dishes
is that they are not constrained to a single physical shape and focus point.
A digital array has the ability to have simultaneously multiple focus points
on reception simply by assigning different sets of time delays to the same
recorded data. The Delay-And-Sum (DAS) beamformer is a conventional
beamformer that, as its name indicates, simply builds an image sample by
time delaying the recorded data to focus the array towards the correspond-
ing position and sum the time-delayed data. This algorithm is conceptually
and computationally simple, very reliable and still very much used to this
day. For those reasons, it is the beamformer of reference for many studies
and this thesis is no exception.

Another major type of digital beamformers, often referred to as adaptive

1



beamformers, emerged in the 60s as ’high-resolution’ beamformers (Capon
(1969)). Their main difference with conventional beamformers is that,
instead of using pre-defined amplitude weights, adaptive beamformers
have the ability of adapting their aperture to the perceived wavefield.
This ability allows the beamformers to generally form narrower receive
beams and achieve higher resolution than conventional beamformers. Such
beamformers are however generally less reliable, more computationally
complex and less intuitive to use than conventional beamformers. Some
of the early concerns such beamformers faced included their notable
sensitivity to:

1. Signal cancellation in the presence of coherent signals (Trees (2002))

2. Visible artifacts in the presence of motion in the imaged medium
(Åsen et al. (2014))

3. High beam density requirements due to narrow receive beams

4. High computational complexity prohibiting real-time ultrasound
imaging

5. High configuration complexity

High-resolution beamformers have been, and still are, a great source of
academical interest as possible alternative to the widely used conventional
beamformers. In industry, they have however for a long time mainly
been used in passive systems, where transducers do not transmit signals,
but record potential signals from sources in the imaged medium. The
main reason that adaptive beamformers were not much used in active
systems is due to their sensitivity to coherent signals. Their use in
medical ultrasound imaging only started in beginning of the 2000s
and a majority of commercial ultrasound imaging systems still prefer
conventional beamformers to the adaptive ones.

One of the oldest and most known adaptive beamformers is the Capon,
also known as minimum variance distortionless response (MV or MVDR),
beamformer introduced by Capon (1969). Different approaches have been
proposed over time to solve or limit the effects of one issue or another. In
this thesis, some of those MV improvements are retraced and used.

An alternative approach to adaptive beamforming known as the
Iterative Adaptive Approach (IAA) has recently been introduced to
ultrasound imaging (Jensen and Austeng (2014)). IAA has shown to
yield promising results concerning high resolution capability and low
configuration complexity. It has however only been studied with stationary
images so far. This thesis aims to explore the effects of tissue motion
on the IAA approach and compare its performances to the DAS and
Capon beamformers regarding the for-mentioned concerns for adaptive
beamformers.

The theoretical goal of forming directional beams is to radiate energy
towards a specific point or direction without radiating energy towards
other directions. In practice, it is not possible to do it perfectly due to the
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omnidirectional nature of wave propagation. This means that, for a single
transmit beam, the recorded wavefield does not only hold information
about potential scatterer points at the transmit beam focus point, but also
in other directions. A lot of beamformers treat this energy leakage as
noise and typically build image samples based on their nearest transmit
beam trajectory. Such beamformers are often referred to as singlebeam
beamformers. Another approach to building image samples is to combine
the information contained in multiple beams and use this energy leakage to
that purpose. The beamformers based on this approach are often referred to
as multibeam beamformers. Both conventional and adaptive beamformers
can be implemented as multibeam beamformers. The IAA beamformers
used in this thesis are built as multibeam beamformers. Their performances
with the presence of motion in the imaged medium are compared to those
of the DAS and MV beamformers. Both DAS and MV are implemented as
singlebeam algorithms in order to provide results and analysis comparable
to existing studies.

Tissue motion in ultrasound imaging is not a new concept and is known
to possibly cause visible artifacts in the beamformed images. Åsen et al.
(2014) showed with the MV beamformer that lateral motion of elements in
the imaged medium can result in their apparent amplitude or size varying
from frame to frame. This effect is caused by angular undersampling and
can potentially result in medium elements, or scatterer points, to visibly
appear or disappear from one frame to another. One of our main objective
is to provide a similar analysis for the IAA beamformers, as well as for the
DAS and MV beamformers for comparison. Given a simulated probe and
medium, the objectives of our first experiments are to illustrate the effect
of angular undersampling and to estimate under which conditions the
magnitude of that effect is highest. We then test each beamformer with this
worst-case scenario and produce a minimum beam density requirement
in order to guarantee non-visible angular undersampling effects. We also
provide a similar analysis with examples of noisy media more realistic than
that of the worst-case scenario.

A scatterer point’s motion is often seen as merely a shift in its position
from one frame to another. This representation would be accurate if
the image acquisition of a single frame was instantaneous. Obviously
image acquisition is not instantaneous, which means that tissue motion can
potentially induce artifacts within a single frame as well. That is one aspect
of motion that multibeam beamformers are expected to be more sensitive
to than singlebeam beamformers, since they combine information from
multiple, and potentially all, transmit beams for every image sample. We
provide an initial exposition to motion within a single frame and explore
potential artifacts both for the singlebeam and multibeam beamformers.
Based on the results of this exploration, as well as those of the experiments
on motion between frames, we build a comparison of the beamformers’
sensitivity to motion within frames and suggest robustification approaches
to tissue motion.

Even though the analyses done on the IAA beamformers are the most
novel part of the thesis, we chose not to solely focus on them, but to pay
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equal attention to the DAS and MV beamformers. We believe that this
approach provides a major confidence factor to the novel results and a very
instructive journey into ultrasound imaging in general.

Chapter 2 provides a short introduction to ultrasound imaging and its
applications in the medical domain. After some necessary explanations
on signal propagation and the concept of beamforming, it gives a
presentation of conventional and adaptive beamforming along with several
robustification methods. Each of the beamformers used in this thesis are
presented and thoroughly explained in this chapter.

All the experiments done in this thesis are simulations run in MATLAB
with the Field II Simulation Program (Jensen (1996); Jensen and Svendsen
(1992)). Chapter 3 describes how the simulations are made and presents the
choice of parameters for the simulated ultrasound probe, imaged medium
and beamformers used.

Chapter 4 presents the experiments run in this thesis and their expected
output. Chapter 5 contains the results of those experiments along with
our analysis of those results. Since a lot of our experiments are heavily
correlated, and some experiments require the analysis of other ones, we
have chosen to merge our results and discussion of those into a single
chapter. Finally, Chapter 6 provides a short summary of our findings as
well as a few ideas for possible continuations of this thesis.
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Chapter 2

Background

This chapter provides a short introduction to ultrasound imaging in
general and its use in the medical domain in particular. It then moves
on to basic explanations on wave propagation, before moving deeper into
the concept of beamforming. The excellent book ’Array Signal Processing
- Concept and Techniques’ by Johnson and Dudgeon (1993) has been a
valuable source of information for this chapter.

Once the concept of conventional beamforming is thoroughly ex-
plained, this chapter builds on this theory to introduce the concept of adapt-
ive beamforming and presents different algorithms using that concept. Most
of the theory is first presented as broadly as possible, then narrowed down
specifically to standard medical ultrasound imaging applications.

2.1 Ultrasound imaging

Ultrasound imaging, also known as sonography or ultrasonography, is an
imaging technique based on acoustic waves at frequencies above those
audible by humans. It relies on the use of beamforming (Section 2.3) to give
a spatial meaning to the recorded signals time and amplitude information.
The frequency ranges used in ultrasound imaging vary depending on the
application, but typically lie between 20 kHz and 20 MHz. This technology
is used in multiple fields, some of the biggest being sonar (Kolev (2011))
and medical (Pope (1999)). Most ultrasound imaging systems can be
classified into two groups:

• Passive: The system listens for sound waves emitted by sources in
the zone of interest.

• Active: The system emits sound waves and listen to echoes coming
from the zone of interest.

2.1.1 Medical ultrasound imaging

In the medical domain, ultrasound imaging is typically used as a noninvas-
ive diagnostic tool to image body structures, such as organs or tissue. Ul-
trasound imaging systems are relatively cheap and portable, which makes
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them more accessible than the other imaging methods presented in Section
2.1.2. Another advantage of ultrasound imaging is its ability to capture and
process data in real-time, thus allowing real-time image analysis. It is also
considered safer than X-ray imaging, since it is based on non-ionizing radi-
ation. Besides its ability to image body elements, it can also be used to es-
timate blood flow velocities in arteries or vessels by analyzing the Doppler
effect of backscattered signals (Franklin et al. (1961)). The term ’Doppler
ultrasound imaging’ is then often used.

Since most, if not all, body structures do not emit acoustic waves,
active imaging systems have to be used. A probe consisting of multiple
transducers is typically pressed against the skin of the patient, and pointed
towards the zone of interest, for example his/her heart, as illustrated in
Figure 2.1.

Figure 2.1: Illustration of ultrasound echocardiography (medmovie.com).

2.1.2 Medical imaging

Medical imaging refers to non-invasive techniques, unlike surgery, that
provide a visual representation of internal body elements. Various imaging
techniques exist, some of the most used ones being Magnetic Resonance
Imaging (MRI), X-ray, Nuclear and Ultrasound. The choice of imaging
technique depends on the the body part of interest and the diagnostic
purpose. Table 2.1 shows a non-exhaustive comparison of those methods.

2.1.3 Therapeutic medical ultrasound

Ultrasound is most widely used in the medical domain as a noninvasive
diagnostic tool. It can however also be used for therapeutic applications.
Ultrasound waves have been proven to cause local heating of tissue and
increase in blood flow if radiating high levels of energy. It can also produce
cavitation in extreme cases. Ultrasound probes used for medical imaging
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Spatial resolution [mm]
Ultrasound 1 - 5

X-Rays 0.1
MRI 0.3 - 1

Nuclear 5 - 15
Safety

Ultrasound No known hazards
X-Rays Small radiation dose

MRI Pacemakers and implants can be a hazard
Nuclear Moderate radiation dose

Bone imaging
Ultrasound Poor - Ultrasound does not penetrate bone

X-Rays Preferred technique
MRI Gives weak MRI signal

Nuclear Good for early diagnosis
Heart and circulation imaging

Ultrasound Preferred technique
X-Rays Needs contrast medium

MRI Good resolution capabilities
Nuclear Useful for flow studies

Soft tissues imaging
Ultrasound Preferred technique for areas with low bone density

X-Ray Poor
MRI Preferred technique for muscles and joints

Nuclear Poor
Chest imaging

Ultrasound Poor - Ultrasound can not image past air spaces
X-Ray Preferred technique for lung screening
MRI Not good for imaging air spaces

Nuclear Very good for air and blood flow imaging
Brain and spinal cord imaging

Ultrasound Poor - Difficult to image through skull
X-Ray Limited use
MRI Preferred technique

Nuclear Poor

Table 2.1: Comparison of some of the main medical imaging techniques
taken from ’Medical Physics: Imaging’ by Pope (1999).

are subject to strict restrictions in order to avoid or limit such effects. The
use of such probes are therefore most of the time painless and completely
harmless to the patient.

The potential side-effects of the use of ultrasound have however shown
to be useful when used wisely. They gave birth to several therapeutic
applications of ultrasound, such as targeted ultrasound delivery, high
intensity focused ultrasound or lithotripsy, which is a procedure that uses
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shock waves to break up stones in the kidney, bladder, or ureter (Holmer
et al. (1991)).

2.2 Signal propagation and acquisition

2.2.1 Acoustic waves

A wave is an oscillation transferring energy in space without, or with little,
transfer of mass. There are two main types of waves: Mechanical, which can
only propagate in a medium, and Electromagnetic, which can propagate in
vacuums as well.

Ultrasound waves, and acoustic waves in general, are mechanical
waves. There exist two basic types of wave motion for mechanical
waves: Longitudinal and Transverse. As shown in Figure 2.2, a longitudinal
wave (P-wave) propagates through compression and dilatation along its
direction of propagation, whereas a transverse wave (S-wave) propagates
through oscillation of particles orthogonal of its direction of propagation.
In ultrasound medical imaging, the probe’s transducers are oscillated in
order to create pressure variations, and therefore longitudinal waves, in
the imaged medium. It is worth mentioning that transverse waves may
be induced in that process and can be used in specific domains such
as elastography. However, in conventional ultrasound medical imaging,
transverse waves are often ignored and therefore fall out of the scope of
this thesis.

Figure 2.2: Longitudinal and transverse waves propagation. Illustration
generated with GeoGebra (2017).

2.2.2 Propagating waves

Information can be transmitted from one transducer to another by the
means of propagating waves. The actual physics of the propagation
depends on the type and properties of the wave and of the medium
in which it propagates. Luckily a single formula can be used both for
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electromagnetic waves and acoustic waves. The lossless wave equation
describes the propagation of a waveform s(x, t) in an ideal medium:

∇2s =
δ2s
δx2 +

δ2s
δy2 +

δ2s
δz2 =

1
c2

δ2s
δt2 , (2.1)

where x = (x, y, z) is the three dimensional spatial variable, t the
time variable, ∇2 is the Laplacian operator and c the wave’s speed of
propagation. An ideal medium is a medium that does not induce any
disturbance to the propagation of the wave, such as dispersion, refraction
or attenuation. The lossless wave equation can easily be derived from
Maxwell’s equations for electromagnetic waves. For acoustic waves,
the same equation can be built from fundamental physics principles
(conservation of mass, equation of state, Newton’s second law of motion).
The derivation of the wave equation is however much more complicated
for acoustic wave due to the fact that there is no unified set of equations,
such a Maxwell’s equations, defining all acoustic waves. The proof of the
lossless wave equation is not provided in this thesis.

For electromagnetic waves, c =
√

εµ, where ε is the medium’s dielectric
permittivity and µ is its magnetic permeability. For acoustic waves,
c is dependent on the medium’s pressure and density. As a rule of
thumb, electromagnetic waves typically propagate at speeds in the order
of 108 m/s (3 · 108 in free space) whereas acoustic waves propagate much
slower, typically in the order of hundreds or thousands of m/s.

A monochromatic wave is a wave composed of a single frequency ω.
Such a wave can be described in the time domain as a complex exponential
of frequency ω:

s(x, t) = Aejωt+φ, (2.2)

where A is a real or complex valued amplitude factor and φ is a phase delay
dependent on x. Assuming that φ = 0 at x0 = (0, 0, 0) and x is at distance
D = |x| from x0, the phase delay φ is then φ = ωD/c, where c is the wave’s
speed of propagation

The theory presented in this section focuses on monochromatic waves,
but Equation (2.2) can be extended to nonmonochromatic waves by
applying the superposition principle:

s(x, t) =
I

∑
i=1

Aiejωit+φi , (2.3)

where I is the length of the set Ω = [ω1, ..., ωI ] of frequencies present
in s(x, t). In practice, Ω is often an infinite set and Equation (2.3) is
approximated with a finite set of frequencies.

Although waves are fundamentally considered as spherical waves, they
can sometimes be approximated to plane waves. Whereas spherical waves
propagate in all directions, a plane wave can be seen as propagating in a
single direction ζ. Its phase delay can then be defined as φ = ωζ · x/c. The
wave’s propagation speed c and direction ζ are often combined into the
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wave’s slowness vector α = ζ/c. The equation of a monochromatic plane
wave can then be expressed as a function of a single variable:

s(x, t) = Aejω(t−α·x) = s(t− α · x). (2.4)

The same equation is also often written as s(x, t) = Aej(ωt−k·x), where
k = ωα is the wave’s wavenumber vector. The wavenumber vector
is a vector whose direction follows the direction of propagation ζ and
whose magnitude |k| = ω/c represents the number of cycles (of temporal
period T = 2π/ω) per meter the monochromatic wave exhibits along that
direction. The inverse relation, i.e. the distance propagated during one
period T, is the wave’s wavelength λ = 2π/|k|.

The term plane wave is used because any point lying in the plane
kxx + kyy + kzz = C, where C is a constant, experiences the same value
of s(x, t). This plane wave approximation is used in farfield beamforming
(Section 2.3.5).

Real media often diverge from the ideal medium in the fact that they can
induce disturbances to propagating waves, such as dispersion, attenuation
or refraction to name only a few. Such disturbances are numerous, complex
and still studied to this day. Since the physics of wave propagation is not
the focus of this thesis, those divergences are not further explored. The
’Array Signal Processing - Concept and Technique’ book by Johnson and
Dudgeon (1993) provides more thorough explanations on the topic.

2.2.3 Signal transmission and recording

In order to represent physical waves by an electrical signal (i.e. recording),
a transducer able to convert propagating energy into electrical energy
must be designed. The same holds for signal transmission, converting
electrical energy into propagating energy. Transducers can be designed
for either or both of these functions. An omnidirectional transducer simply
samples the field at a particular location and/or transmits a spherical wave,
propagating in all directions at the same speed, if in the same medium.
Note that a transducer would have to be infinitely small to be able to
transmit truly spherical waves. A directional transducer has the ability to
focus its signal recording and/or transmission on a particular propagation
direction.

The equation of a spatiotemporal signal is, as its name indicates,
a function of space and time f (x, t), where x = (x, y, z) is the three
dimensional spatial variable and t the time variable. A single transducer
at location xm can convert the field’s value at its location f (xm, t) and
output a corresponding electrical signal ym(t). Due to the transducer’s
finite bandwidth and non-linear transformation, ym(t) most of the time
does not fully represent f (xm, t) and some information is lost during the
energy conversion.

Real transducers are not truly infinitely small, so their position is not
restrained to a single point xm. A transducer’s aperture can be represented
by the set of positions Xm for which it can gather signal energy. Its aperture
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function, in its simplest form, describes its aperture geometry:

w(x) =
{

1, x ∈ Xm
0, otherwise

. (2.5)

As example, let us consider a transducer as a linear surface of length D
along the X axis such that xm = (0, 0, 0) is a the center of the transducer.
Such a transducer can be described by the following aperture function:

w(x) =
{

1, x ≤ D/2, y = 0, z = 0
0, otherwise

, (2.6)

where x, y and z are the 3D components of the position vector x.
Besides defining the transducer geometry, the aperture function can

also define the relative weighting of the field within the aperture. This
concept of aperture weighting, also known as shading, tapering or
apodization, is actively used in adaptive beamforming methods (Section
2.4).

2.2.4 Aperture smoothing function

In most, if not all, signal processing applications, it is often useful to have
a frequency-domain representation of signals. Among other advantages, it
makes it easy to analyze the frequency content of any signal and intuitive
to represent any signal by a weighted sum of sinusoidal functions. The
Fourier Transform and its inverse function are very useful tools to alternate
between time-domain and frequency-domain representations. The Fourier
Transform of a spatiotemporal signal s(x, t) can be written as:

S(k, ω) =
∫ ∞

−∞

∫
R3

s(x, t)e−j(ωt−k·x)dxdt, (2.7)

where k is the signal’s wavenumber vector variable and ω its frequency
variable. A transducer aperture smoothing function W(k) is defined as the
Fourier Transform of its aperture function w(x).

Going back to the example of Section 2.2.3, Equation (2.8) develops
how the transducer’s aperture smoothing function is calculated from its
aperture function defined in Equation (2.6). Figure 2.3 illustrates how such
an aperture smoothing function looks.

W(k) =
∫

R3
w(x)ejk·xdx =

∫ D/2

−D/2
ejkxxdx

=
1

jkx
(ejkx D/2 − e−jkx D/2)

=
2j

2kx
(e−jkx D/2 − ejkx D/2)

=
sin(kxD/2)

kx/2
. (2.8)

The transducer aperture smoothing function has a shape similar to a sinc
function, with a mainlobe at kx = 0 and sidelobes decreasing in amplitude
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Figure 2.3: Aperture smoothing function of a singular transducer shaped
as a linear surface of length D.

as kx increases towards ∞ or decreases towards −∞. Equation (2.8)
also reveals that the longer the transducer is, the narrower the aperture
smoothing function’s mainlobe is. A narrow mainlobe is often a desired
feature in beamforming, as it can increase the angular resolution of the
resulting image. There exists many definitions of resolution in ultrasound
imaging, which is why it may be confusing to compare results from
different articles.

In this thesis, angular resolution is defined as the minimum distance
between two reflectors for them to be resolved. This measure, often
referred to as classical resolution or resolvability, is governed by the Rayleigh
criterion. The Rayleigh criterion states that two incoherent plane waves
propagating in different directions can be resolved if the distance between
the mainlobe of their resulting aperture smoothing function replica is not
smaller than half of the largest mainlobe width.

Notice however that the Rayleigh criterion only defines a theoretical
maximum resolution and not an actual resolution measurement. Also,
for this definition to make sense, one must define how mainlobe width is
measured. Figure 2.3 shows that this width differs depending on the gain
level. In this thesis, a mainlobe width is always measured at -3 dB gain
from its peak. On the same note, two waves are considered resolved only if
the minima between their peaks is less or equal than the lowest peak gain
minus 3 dB.

2.2.5 Transducer arrays

A single transducer, even directional, can not give accurate spatial meaning
to a recorded wavefield, since it only outputs an electrical signal ym(t)
as a function of time. The concept of beamforming (Section 2.3) uses
the combined output of multiple transducers to give spatial meaning to
a recorded wavefield. Such a combination of transducers is called a
transducer array. A transducer array can be of virtually any shape, for
example circular, spherical or sparse. The aperture function wm(x) of each
transducer is defined by Equation (2.6), but the array itself can also be
considered to have an aperture shape wa(x), regardless of the shape of each
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transducer:

wa(x) =
{

1, x ∈ Xa
0, otherwise

, (2.9)

where Xa is the set of positions xm of the array elements.
Despite the theory presented being applicable to various array shapes,

this thesis only focuses on discrete linear arrays of transducers able to both
transmit and record signals, since it is the type of array simulated in this
thesis and still one of the most widely used types of array in medical
ultrasound.

Let us then assume a discrete linear array consisting of M infinitely
small transducers uniformly distributed along the X axis, each separated
by a distance D. Let us also consider that x = 0 is the center of the array.
For simplicity, let us further assume that M is odd, so that the transducers
can be numbered from m = −(M − 1)/2 to m = (M − 1)/2 and their
position can be expressed simply as x = mD. The array aperture function
is then:

wa(x) =
{

1, x = m D, y = 0, z = 0
0, otherwise

. (2.10)

The array aperture smoothing function, defined as the Fourier Transform
of Equation (2.10), is:

Wa(k) =
∫ ∞

−∞
w(x)ejk·xdx =

(M−1)/2

∑
m=−(M−1)/2

ejkx Dm

= e−jkx D(M−1)/2k
M−1

∑
m=0

ejkx Dm

= e−jkx DM/2ejkx D/2 1− ejkx DM

1− ejkx D

=
2j
2j

e−jkx DM/2 − ejkx DM/2

e−jkx D/2 − ejkx D/2

=
sin(kxDM/2)

sin(kxD/2)
, (2.11)

where the lemma ∑N−1
n=0 rn = 1−rN

1−r has been used.
Equation (2.11) reveals that the array smoothing function, unlike that of

a single transducer (Equation (2.8)), is periodic. This function is maximized
for kx = n2π/D, n ∈ Z, only one of which is the mainlobe (kx = 0). The
other maximas are called grating lobes. This can result in spatial aliasing,
as signals propagating from different directions become indistinguishable.
However the array elements’ own aperture geometry influence the array’s
total aperture wt(x). The array aperture smoothing function of a discrete
linear array can be defined as the product of a single element aperture
smoothing function Wm(k) and the one of the same array with infinitely
small elements Wa(k) (Landmark (2016)):

Wt(k) ≡Wm(k) ·Wa(k). (2.12)
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Figure 2.4 illustrates the effect of a transducer’s aperture smoothing
function applied to the one of the array. Wm(k) is a non-periodic function,
so the resulting effect is an attenuation of the array aperture smoothing
function in all directions k with kx 6= 0. One positive outcome of
this attenuation is that the resulting function Wt(k) has attenuated side
lobes and grating lobes and is therefore less prone to signal propagation
confusion.

(a) W(kx) amplitude (b) W(kx) power

Figure 2.4: Aperture smoothing function of discrete linear array of M=5
transducers.

2.3 Conventional beamforming

Beamforming is a signal processing technique using multiple transducers
to restrain the directionality of signals transmission or reception (Veen and
Buckley (1988)). In the case of near-field beamforming (Section 2.3.5), this
technique also restrains the range of focus. Medical ultrasound imaging
is an example of a near-field scenario. And, since it uses active systems
(Section 2.1.2), the beamforming can be done both on transmission and
reception. This is often referred as two-way beamforming, while one-way
beamforming designates beamforming on reception only. Although based
on the same theory, beamforming on transmission and reception have two
different goals:

• Transmission: Produce signals such that they become all in phase at
the focus point and result in a maximized energy radiation towards
it.

• Reception: Align the recorded signals such that any potential signal
coming from the focus point adds up coherently and maximizes
its signal-to-noise ratio (SNR) when all recorded waveforms are
summed together. The same approach can be applied to different
focus points on the same signal measurements, which is why it is
often referred to as dynamic focusing.

In this thesis, all beamformers use two-way beamforming and create beam-
formed images by sequentially transmitting narrow beams in a number of
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directions and, for each transmitted beam, dynamically delaying the re-
ceived signals from all channels.

2.3.1 Beamforming on transmission

Whenever multiple waves are present in a wavefield, their superposition
may result in interference. As an example, let us imagine two monochro-
matic plane waves s1(x, t) and s2(x, t) of same frequency ω and amplitude
A being transmitted by two different emitters t1 and t2. The equation of
such waves can be extracted from Equation (2.4):

si(x, t) = A ej(ωt−ki ·x+Φi), i = [1, 2], (2.13)

where Φi is the phase value of si at position x = (0, 0, 0). Let us have a
receiver r exposed to those waves. Its wavefield measurement yr(xr, t) is
then, according to the superposition principle, equal to the sum of the two
waves at that location and time:

yr(xr, t) = s1(xr, t) + s2(xr, t)

= A ejωt(e−j(k1·xr−Φ1) + e−j(k2·xr−Φ2)), (2.14)

where e−j(k1·xr−Φ1) + e−j(k2·xr−Φ2) is a periodic function with values in the
[-2, 2] range, which means that, depending on the receiver’s position
xr, it can be exposed to energy amplitudes ranging from 0 to 2A. The
waves interference is often referred to as constructive interference when
the recorded energy amplitude is higher than A, respectively destructive
interference when lower amplitude than A.

The example above shows that the effects of constructive interference
can be used to achieve higher SNR than when transmitting a single signal.
Beamforming on transmission uses this physical property to aim towards
a spatial point xt and ensure constructive interference of its transmitted
signals in that point.

Given an array of M transducers, each sending a signal sm(t) =
s(t − ∆m), the delays ∆m can be made such that constructive interference
occurs at the focus point xt. The set of those time-based delays e =
[∆0, ∆1, ..., ∆M−1]

T can be seen as a beamforming focus vector, since it
defines at which positions x constructive, and respectively destructive,
interference occurs.

2.3.2 Beamforming on reception

Given an array of M transducers and a set Y(t) = [y1(t), y2(t), ..., yM(t)]T,
where ym(t) is the data recorded by transducer m.

Beamforming on reception can be done in a similar way as beamform-
ing on transmission by creating a set of time-delays e = [∆1, ..., ∆M]T and
applying the time-delays to the recorded data. Given any receive focus
point xr, the time-delays set er is built such that any potential signal coming
from xr gets aligned coherently in the recorded data Y(t). Let us define the
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set of time-delayed recorded data Ye(t) = [y1e(t), y2e(t), ..., yMe(t)]T, where
yme(t) = ym(t− ∆m).

Assuming a signal s(t) sent towards the array from a source at position
xr, each transducer’s recorded wavefield ym(t) can be defined as:

ym(t) = s(t− ∆rm) + nm(t), (2.15)

where ∆rm is a time delay attribute dependent on the position of transducer
m relative to the position of the source and the signal propagation
properties, and nm(t) random noise recorded by transducer m. The
beamformer can focus on the source position by applying time delays equal
to −∆rm. Given er = [−∆r1,−∆r2, ...,−∆rM], the time-delayed vectors
yme(t) are then:

yme(t) = ym(t− ∆m) = ym(t + ∆rm)

= s(t) + nm(t + ∆rm). (2.16)

The signal s(t) can then be added constructively and result in a signal
amplitude M times higher than if recorded by a single transducer. If the
noise nm(t) recorded by each transducer is assumed to be spatially white
noise, it can be considered to be statistically uncorrelated to ni(t), i 6= m.
This means that the sum of time-delayed signals also results in a signal
SNR M times higher than that of a single transducer recording.

Signals coming from other sources are expected to result in lower SNR
than the one coming from xr, although, as seen in Section 2.2.4, this can not
always be guaranteed. The terms constructive and destructive interference are
usually connoted to physical interference, so they are not used in this thesis
for beamforming on reception to avoid confusion.

2.3.3 Delay-And-Sum (DAS) beamforming

DAS beamforming is one of the simplest beamforming algorithms, yet
still widely used in medical ultrasound imaging. The DAS beamformer’s
output signal can be defined as:

z(t) ≡
M−1

∑
m=0

wmym(t− ∆m), (2.17)

where ym(t − ∆m) is the data recorded by transducer m after time-delay
(Section 2.3.2) and wm is the amplitude weight applied that data. If no
shading (Section 2.2.3) is applied, then wm = 1∀m ∈ {0, 1, ..., M− 1}. With
the set of time-delayed received signals Y e(t) = [y1e(t), ..., yMe(t)]T defined
as in Section 2.3.2, Equation (2.17) can be rewritten in the vectorial form as:

z(t) = wHYe(t), (2.18)

where w is the vector of amplitude weight values wm applied to transducer
m and wH its conjugate transpose.
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By using dynamic focusing on reception, a different time-based focus
vector ex can be defined for each focus point x in the imaged sector. The
DAS beamformer output power can then be defined as a function of ex:

Z(ex) ≡ E[|z(t)|2](ex) = E{(wHYex)(wHYex)
H}

= wHE{YexY H
ex}w = wHRexw,

(2.19)

where E[] is the expected value function and Rex is the spatial correlation
matrix, or covariance matrix, of Yex. Section 2.3.8 explains how this matrix
can be estimated.

2.3.4 Beamforming with narrowband signals

Considering a monochromatic signal s(t) = ejωt, a time-shift of ∆m
corresponds to a phase-shift of e−jω∆m :

s(t− ∆m) = ejω(t−∆m) = ejωte−jω∆m . (2.20)

Steering the transducers array can then easily be done by multiplying the
set of received signals Ym(ω) with a set of phase delays e−iω∆m . This
set of phase-delays define the beamformer’s phase-based steering vector a.
Unlike the time-based focus vector e (Section 2.3.1), the phase-based one is
only properly defined for a single frequency ω. In fact, for any frequency
ω2 6= ω, the phase shift e−iω∆m differs of that of the e−iω2∆m phase required
for constructive signals superposition at the chosen focus point.

Although only valid for monochromatic waveforms, the phase-based
steering approach is often used in narrowband applications, for which
most of the energy radiated or recorded is within a small frequency
bandwidth relative to the center frequency. In such scenarios, the
phase shift difference e−i(ω2−ω)∆m can be considered negligible. In
broadband applications, such as ultrasound medical imaging, the phase
shift difference can only be considered negligible for small shifts, meaning
for steering angles close to perpendicular to the array. For larger steering
angles, the time-based dynamic focusing approach (Section 2.3.2) can be
used to fall back to reasonable phase shifts (Jensen and Austeng (2012)).
This technique is used throughout this thesis and all the theory presented
from this point on is focusing on monochromatic waveforms.

2.3.5 Near-field and far-field beamforming

As mentioned in Section 2.2.2, waves do not propagate along a single
direction, but in all directions such that the set of coordinates with the
same wave phase looks like a sphere, as illustrated in Figure 2.5. Due to
this type of propagation, sensors at different locations can experience a
different wave propagation direction. This seems logical since the source of
the propagating wave is potentially located at different relative orientations
to each sensor. It is this difference in relative propagation direction that
allows the possibility to focus a sensor array to a specific point in space.
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However, if a wave’s direction of propagation is approximately equal
for all sensors, the perceived waveform resembles more the one of a plane
wave, as illustrated in Figure 2.5. This scenario can occur if the source
of the propagating wave is located far from the array and plane wave
approximation (Section 2.2.2) can be applied. In that case, beamforming
can resolve the source orientation but not its distance to the array.

Sources located close enough to the array to extract their distances to it
are said to be in the array’s near field, whereas sources beyond that are said
to be in its far field. In most cases, the focus of interest is either in the near
field or in the far field and different beamforming algorithms are usually
used in either case. Therefore the terms nearfield beamforming and farfield
beamforming are often used to differentiate the two scenarios.

The crossover distance dc between near field and far field is not a
hard-defined one. It is based on deciding at which distance to the array
the different wave propagation directions perceived by each sensor can
be approximated to equal directions with a negligible phase error. The
definition of negligible can vary a lot depending on the beamforming
application and expected outcome.

An intuitive example of the crossover distance for linear arrays can be
found in Wright (1997). This example’s crossover distance is dc = A2/λ,
where A is the length of the linear array and λ is the maximum signal
wavelength present in the recorded wavefield. In conventional ultrasound
imaging, the array’s length is typically in the order of centimeters, whereas
the signals transmitted are in the order of MHz. Given the crossover
distance dc = A2/λ, most of the medical ultrasound imaging applications
occur in the array’s near field.

(a) Nearfield (b) Farfield

Figure 2.5: Illustrations of nearfield and farfield beamforming. The black
lines and curves represent planes of constant phase.

2.3.6 Beampattern and steered response

An array’s aperture smoothing function, or array pattern, W(k) defines
its response to a monochromatic plane wave. For a discrete array of M
transducers, its aperture function w(x) is defined by Equation (2.9) and its
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array pattern W(k) from Equation (2.11) as:

W(k) =
∫

R3
w(x)ejk·xdx =

M−1

∑
m=0

wmejk·xm , (2.21)

where xm is the position of transducer m.
Assuming a monochromatic plane wave s(x, t) of temporal frequency

ω0 and slowness vector α0 and no other signal or noise, the resulting
wavefield f (x, t) is then:

f (x, t) = s(x, t) = s(t− α0 · x) = ejω0(t−α0·x), (2.22)

where s(t− α0 · x) comes from Equation (2.4). The DAS beamformer output
defined in Equation (2.17) is then:

z(t) =
M−1

∑
m=0

wms(t− α0 · xm − ∆m), (2.23)

where ∆m is the time delay applied to the signal recorded by transducer m.
As explained in Section 2.2.2, for a monochromatic signal, this time delay
can also be expressed as a phase delay φ = ω0ζmxm/c, where ζm is the
direction of focus of transducer m and c the signal’s propagation speed.
Furthermore, if that signal is considered to be a plane wave, all transducer
have the same direction of focus ζ. To simplify the comparison between the
array’s focus and the recorded wavefield properties, we say that the array is
looking for signals propagating with slowness vector α = −ζ/c. The minus
sign represents the fact that ζ is the orientation of the array as a vector
originating from it and directed outwards, whereas the signals it is looking
for are expected to originate away from the array and propagate towards
it. This definition allows for a more intuitive expression of Equation (2.23):

z(t) =
M−1

∑
m=0

wms(t + (α− α0) · xm). (2.24)

Equation (2.24) shows that a signal originating at the array’s focus point
is then added coherently by the DAS beamformer. It also reveals that the
DAS output can be expressed as a function of W(·). Indeed, combining
Equations (2.21), (2.22) and (2.24) yields the following equation:

z(t) =
M−1

∑
m=0

wmejω0(t+(α−α0)·x)

= ejω0t
M−1

∑
m=0

wmej(ω0α−k0)·xm

= ejω0tW(ω0α− k0), (2.25)

where k0 = ω0α0 is the wavenumber vector of s(t).
This equation shows that, under the monochromatic plane wave

assumption, the DAS beamformer can be seen as a linear and time-
invariant system. Indeed, considering a linear and time-invariant system,

19



its output equals the recorded wavefield f (x, t) = s(x, t) convolved with
the system’s impulse response h(x, t) (Johnson and Dudgeon (1993)). In
the frequency domain, this convolution becomes a multiplication:

z(x, t) = s(x, t) ∗ h(x, t) F
=⇒ Z(k0, ω0) = S(k0, ω0)H(k0, ω0), (2.26)

where ∗ is the convolution operator and H(k0, ω0) is the frequency domain
expression of the system’s impulse response. The notation k0 and ω0

is kept in order to avoid confusion with the array’s targeted slowness
vector α = k/ω. With s(x, t) as defined by Equation (2.22), its Fourier
transform is S(k0, ω0) = ejω0t. The system’s space-time filter h(x, t) is
therefore built such that H(k0, ω0) = W(ω0α− k0). This space-time filter is
often referred to as the wavenumber-frequency response of a linear and time-
invariant system.

The expression of the wavenumber-frequency response W(ω0α − k0)
shows that its input ω0α − k0 is a combination of both the wavefield’s
propagation parameters k0 and ω0 as well as the array’s configuration
α. The analysis of the wavenumber-frequency response can then be
interestingly partitioned into two different angles of observation. One
focused on the effects of different wavefield parameters with a fixed array
configuration. This corresponds to W(ω0α− k0) with fixed α and is known
as the array’s beampattern. The second approach is to analyze the effects
of different array configurations given a fixed wavefield. This corresponds
to W(ω0α − k0) with fixed ω0 and k0 and is known as the array’s steered
response.

2.3.7 Parallel-receive beamforming

When performing ultrasound imaging of moving structures, such as a
moving heart, relatively high image acquisition rates are often required.
One common way to increasing frame rate while maintaining high
resolution is using a higher beam density on reception (Section 2.3.2)
than on transmission (Section 2.3.1). This approach is often referred to
as parallel-receive beamforming (PRB, Hergum et al. (2007)) or multiple-line
acquisition (MLA), in opposition to the traditional single-line acquisition
(SLA) approach.

The concept is to use the imperfect beamforming on transmission by
creating multiple receive beams per transmit beam in order to extract in-
formation available in several directions. The beamforming on transmis-
sion is said here to be imperfect because energy is not only radiated to-
wards the transmit beam’s focus point, but also in other directions. A
beamformer can then potentially use this phenomenon to detect signals
backscatterered by scatterer points in directions where energy is sent.

However, the misalignment between transmit and receive beams
causes several geometric distortions in their corresponding two-way
beampattern. Those distortions are separated in Hergum et al. (2007) into
three categories: Beam wrapping, beam skewing and energy loss.

Beam wrapping, also known as beam wander, is the effect that the
two-way beam does not follow a straight line. When the transmit and
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receive beams are not aligned, the transmit beam pulls the two-way beam
towards its center. This phenomenon is illustrated in Figure 2.6, where the
direction-of-arrival (DOA) of two-way beam is visibly in between those of
the transmit and receive beams.

For linear arrays, both the transmission beampattern and the reception
one are symmetric functions. Yet, when they are not aligned, the two-way
beampattern can become non-symmetric. This effect is known as beam
skewing. In Figure 2.6, the skewing is most apparent around the local
minimas of the two-way beampattern, especially by comparing the local
minimas at −2.2◦ and 3.2◦ DOA.

Energy loss is visible in Figure 2.6 with the two-way beampattern
having a general lower gain than that of the transmission and reception
ones. Misalignment between transmission and reception beams causes
then loss in signal-to-noise ratio (SNR). Furthermore, the scale of SNR drop
is dependent on the level of misalignment.

Figure 2.6: Example of DAS transmission, reception and two-way beam-
patterns with misalignment of transmit and receive beams.

An example of PRB approach is displayed in Figure 2.7. Three two-way
beams are created from a single transmit beam, which means that image
acquisition time can be reduced in this case by a factor of three without
resolution loss. However, the two-way beams that are not aligned with the
transmit beam display lower maximal gain than the one that is aligned.
Their maxima, at -0.5 and 0.5◦ DOA, is also shifted towards that of the
transmit beam compared that of their relative receive beams, at -1 and 1◦

DOA.
Several approaches to reducing artifacts caused by PRB exist. Some of

them, known as synthetic transmit beams, dynamic steering or the Wright
approach, are explained and compared by Hergum et al. (2007).
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Figure 2.7: Example of PRB approach, with a single transmit beam centered
at 0◦ and 3 receive beams at -1, 0 and 1◦. The resulting two-way
beampatterns are displayed along with the transmit beam.

2.3.8 Covariance matrix estimation

The covariance matrix of the set of time-delayed recorded signals Ye(t) is
defined Re(t) = E[Ye(t)Ye

H(t)]. Assuming the transducer array to record
only monochromatic waves in the far-field (Section 2.3.5), Ye(t) can be
considered as a stationary process in time, which means Re is only dependent
on the focus vector e. Considering that all backscatterers in the imaged
medium are uncorrelated and Ye is a stationary process, Re is a Toeplitz
matrix (Trees (2002)). A Toeplitz matrix is a matrix whose descending
left-to-right diagonals are constants. It notably has the property of being
persymmetric:

R = JRT J, J =


0 0 ... 0 1
0 0 ... 1 0
: : ... : :
0 1 ... 0 0
1 0 ... 0 0

 , (2.27)

where J is a MxM exchange matrix. This property is notably used by the
forward-backward approach (Section 2.4.5). This matrix is used in Equation
(2.19) for obtaining the DAS beamformer power output Z(e). However,
this matrix is unknown and an estimate of it, R̃e, needs to be built.

In medical ultrasound imaging, the recorded signals are often broad-
band and in the array’s near field. The assumption that Y is a stationary
process is therefore often not true. However, instead of building a global
covariance matrix estimate R̃ for the whole beamformed image, a different
covariance matrix estimate R̃θ,n can be built for each image sample Zθ,n, i.e
each sample range index n and angle index θ. Note that a range index n
can consist of a multiple temporal samples t of the recorded wavefield Y(t)
if time averaging (Section 2.4.4) is used. The discrete covariance matrix
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estimate R̃θ,n can be expressed as follow:

R̃θ,n =
1

2T + 1

T

∑
t=−T

Ye[n− t]Ye
H [n− t], (2.28)

where 2T + 1 is the number of temporal samples per radial range and Ye is
the set of recorded wavefield time-shifted by vector e. The time-delay focus
vector e can be defined as a function of n and θ. The local estimates of Re
should then technically be defined as R̃e(θ,n). We have chosen to simplify
the notation to R̃θ,n.

Yet, even for local estimates of Re, Ye is not always stationary. In
medical ultrasound imaging, it is often the case that the transducer array
is sending short pulses and only recording a few temporal samples t per
radial range n. This means that the pulse reflected by a target out of the
array’s focus might not be recorded by all transducers for the same sample
range n. However, the stationary assumption holds for targets close to
the array’s focus point, since the recorded data is aligned such that their
reflected signal adds up coherently.
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2.4 Adaptive beamforming

Adaptive beamformers, unlike conventional ones, can adapt their aperture
weights depending on the recorded wavefield. This adaptive nature
allows to build steered responses (Section 2.3.6) with narrower mainlobe by
allowing large side-lobes in directions in which there is no/little received
energy, thus enduring no/limited energy leakage. This often results in
improved image resolution and noise suppression, but at the cost of higher
computational complexity.

2.4.1 Minimum Variance (MV) beamforming

The MV beamformer, also known as Capon beamformer (Capon (1969)),
uses what may be the most straightforward approach to adaptive beam-
forming. The approach is to minimize the beamformer’s global output
power (Equation 2.19) while maintaining a unit gain in its steering dir-
ection. Note that this limitation is the reason this beamformer is classed
as a distortionless beamformer, which is why it is also often referred to as
the Minimum Variance Distortionless Response (MVDR) beamformer. In
mathematical terms, this comes to solving the following constrained op-
timization problem:

min
w

wHRew, subject to wH1 = 1, (2.29)

where w = [w1, ..., wM]T is the set of weights applied to the array
transducers [1, ..., M], the vector 1 is a vector of length M whose elements
are all equal to 1, e is the beamformer focus vector on reception, as defined
in Section 2.3.2, and Re = E[YeYe

H ] is the covariance matrix of Ye(t) and
Ye(t) = [y1e(t), ..., yMe]

T is the set of the signals recorded by the array
transducers and time-delayed by e.

As mentioned in Section 2.3.8, Re is unknown and needs to be
estimated. Local covariance matrix estimates R̃θ,n can be built from
Equation (2.28) for each angle index θ and sample range n of the
beamformed image Z(θ, n). If the array is steered using the phase-based
approach presented in Section 2.3.4, Equation (2.29) can be written as:

min
w

wHR̃θ,nw, subject to wHa = 1, (2.30)

where a is the array’s phase-based steering vector. The solution to this
minimization problem is:

w =
R̃−1

θ,na

aHR̃−1
θ,na

. (2.31)

The MV beamformer power output is therefore:

Z(a) = wHR̃θ,nw =
1

aHR̃−1
θ,na

. (2.32)

R̃θ,n is often computed from 2T + 1 < M observations, where 2T +
1 is the number of temporal samples and M the number of receiving
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transducers in the array. As rank(R̃θ,n) ≤ min(2T + 1, M), the matrix is
often rank-deficient, therefore not invertible (Vignon and Burcher (2008)).
Furthermore, if not all observations are independent, rank(R̃θ,n) becomes
strictly less than T. Due to this condition, R̃θ,n is often pseudo-inverted
rather than truly inverted. It must also often be diagonally loaded (Section
2.4.2) to ensure a robust (pseudo-)inversion.

The MV approach can result in a major increase in resolution, but not
without cost. Although narrow beams increase the image resolution, one
fundamental drawback is that more beams are required to image the same
angular range and avoid angular undersampling. Angular undersampling
occurs when the angle between two beams’ mainlobes becomes so large
that it results in angles for which signals are heavily attenuated or
suppressed. Scatterer points can then appear weaker or completely
disappear from the beamformed image if in between two beams. This
signal attenuation effect is often referred to as scalloping loss. This effect
can be attenuated by forming wider beams and/or more beams.

As Equations (2.31) and (2.32) might hint, one major drawback of the
MV beamformer, in comparison to DAS, is its computational complexity.
R̃θ,n has to be created, inverted and then applied. The matrix inversion
is a very time consuming operation (complexity O(M3), where M is the
number of receiving transducers).

2.4.2 Diagonal loading

The MV beamformer is particularly sensitive to divergences between the
array and medium assumed model and their true model. Such divergences
can for example be inaccuracies in the speed of signals propagation in the
medium, differences in the sensors sensitivity or the presence of faulty
sensors.

Diagonal loading is a technique used to increase robustness to such
divergences in the model by adding a small value ε to the diagonal of the
covariance matrix estimate:

R̂θ,n = R̃θ,n + εI, (2.33)

where ε is typically chosen as a fragment of the trace of R̃θ,n (Synnevåg
et al. (2007a)):

ε = δtr{R̃θ,n}/L, (2.34)

where δ ≥ 0 is the diagonal loading factor, typically taken as a user parameter,
and L is the size of the subarrays used for spatial smoothing (Section 2.4.3).

This approach is conceptually similar to adding spatially white noise to
the recorded signals and results in a wider mainlobe of the steered response
(Synnevåg et al. (2007a)). The value ε influences therefore directly the
width of the steered response’s mainlobe and is a trade-off between image
resolution and beamformer robustness to errors in the model. Note that as
ε increases, the covariance matrix estimate R̂θ,n loses more of its adaptive
nature and, if L = M, converges towards the one of the conventional DAS
beamformer.
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2.4.3 Spatial smoothing

Since medical imaging is a domain using mainly active systems (Section
2.1), most of the recorded signals are echoes from the same transmitted sig-
nals and are therefore generally highly correlated, or coherent. This coher-
ency between the received signals can cause noticeable signal cancellation
and result in lower SNR. Figure 2.8 illustrate this effect with two closely-
separated scatterer points.

In order to correct this effect, the coherent signals have to be decorrel-
ated. Spatial smoothing, also known as spatial filtering or subarray averaging,
is a method first introduced by Evans et al. (1981) to decorrelate the signal
of interest from the noise-and-interference signals. The approach divides
the receiver array of M elements into K smaller overlapping arrays of L
elements, where K = M− L + 1 and 1 ≤ L ≤ M. The covariance matrix es-
timate R̂θ,n can then be built by averaging the covariance matrix estimates
of all K subarrays:

R̂θ,n =
1
K

K−1

∑
k=0

R̂k(θ, n), (2.35)

where each subarray covariance matrix estimate Rk(θ, n) is defined by
Equation (2.28). If no temporal averaging (Section 2.4.4) is used, Equation
(2.35) can be expressed as:

R̂θ,n =
1
K

K−1

∑
k=0

Yk[n]Yk
H [n], (2.36)

where, for each subarray k, Yk is the set of recorded wavefield time-delayed
and/or phase-shifted to focus on angle index θ and range index n.

L is often taken as a user parameter and its value chosen depending
on the application. As L converges towards M, the covariance matrix
estimate converges to the original one and the beamformer converges to
the original MV beamformer. On the other hand, as L converges towards
1, each element gets considered as an array and the beamformer converges
to the conventional DAS beamformer. The choice of L is then a trade-off
between image resolution and robustness to signal coherence.

Figure 2.8 illustrates the effects of spatial smoothing by comparing the
steered response of 4 beamformers variants:

1. Conventional DAS beamforming, no spatial smoothing

2. MV beamforming without spatial smoothing, L = M

3. MV beamforming with long subarray length, L = 3 M / 4

4. MV beamforming with half subarray length, L = M / 2

An array of M = 100 sensors is simulated and two coherent signals in ran-
dom Gaussian noise are generated at -1 and 1 degrees direction-of-arrival
(DOA) from the array center. In this scenario, the standard MV beamformer
suffers extreme signal cancellation. As expected spatial smoothing suc-
ceeds in partially decorrelating the two signals and attenuating the signal
cancellation.
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Figure 2.8: Effects of spatial smoothing with coherent signals.

2.4.4 Time averaging

The MV beamformer has shown to be able to achieve higher resolvability
of scatterer points than the conventional DAS. However, the spatial
covariance matrix estimate used in the MV beamformer affects the patterns
of homogeneous tissue. Homogeneous tissues are typically represented in
beamformed images by speckle, which consists of the transmitted signals
scattered by a large number of small, densely distributed, scatterer points.
In this thesis, speckle is generated by simulating a large number of small
scatterer points uniformly distributed in the medium. Synnevåg et al.
(2007b) showed that the MV beamformer has a tendency to attenuate
the homogeneity of the speckle and may give the impression of scatterer
points existing in the homogeneous tissue. Spatial averaging can enhance
scatterer points resolution, but tend to result in lower average speckle
magnitude. This effect can be beneficial for certain applications, as it tends
to improve the SNR of isolated scatterer points, but can be undesirable in
applications that use speckle in their image formation and/or analysis (e.g.
skin tissue imaging).

Temporal averaging is a solution proposed by Synnevåg et al. (2007b)
to reduce the effect of spatial averaging on speckle. Temporal averaging
consists of using multiple samples per range for the spatial covariance
matrix estimation. The idea is to allow a better capture of the speckle
statistics by using multiple temporal samples, to the expense of reduced
spatial resolution in the range dimension. Equation (2.37) reflects the
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addition of temporal averaging on Equation (2.28):

R̂θ,n =
1

(2T + 1)K

T

∑
t=−T

K−1

∑
k=0

Yk[n− t]Yk
H [n− t], (2.37)

where 2T + 1 temporal samples t are used per range unit n.

2.4.5 Forward-backward averaging

In Equation (2.37), each vector Yk is the vector of time-delayed signals for
each array k. Those vectors are typically defined as:

Yk[n] = [yk[n], yk+1[n], ..., yk+L−1[n]], k = 0, ..., K− 1. (2.38)

This approach is often referred to as forward-only estimate. On the other
hand, any other definition of Yk[n] can result in a different covariance
matrix estimation. Equation (2.39) reflects the definition opted by the
backward-only approach:

Yk[n] = [yK−k+L−1[n], yK−k+L−2[n], ..., yK−k[n]], k = 0, ..., K− 1. (2.39)

The forward-backward (FB) averaging is an approach that builds covari-
ance matrix estimates by combining the forward-only and backward-only
approaches (Trees (2002)):

R̂FB
θ,n =

1
2
(R̂F

θ,n + R̂B
θ,n). (2.40)

The idea behind the FB approach is to enforce the persymmetric
property of the covariance matrix R (Equation (2.27)) and thus removing
coherency between the recorded signals.

2.4.6 Beamspace projection

When only imaging a subsection of the whole -90 to 90◦ angular range,
adaptive beamformers can potentially be disturbed by the lack of energy
sent and received outside of the image sector. Diagonal loading (Section
2.4.2) is often applied to ensure some energy distribution along the whole
-90 to 90◦ angular span and render the beamformer’s covariance matrix
estimate R̂ (pseudo-)invertible. Although this approach works, it can be
viewed as inefficient, since it can potentially model a much wider image
sector than the one actually imaged.

Another approach to making R̂ invertible is to reduce the dimension-
ality of the beamspace model to the one of the imaged sector. It is worth
noting that this approach corrects for the lack of energy outside of the im-
age sector, but does not correct for any potential lack of energy within it.
For that reason, diagonal loading is often still used along with beamspace
projection.

Transmitted beams are typically both directional and narrow enough
so that only a subsection of the image sector is insonated by a single beam.
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These properties result in most of the energy transmitted by a single beam
to be restrained to a relatively small spatial frequency range. With the use
of time-delay on received beams, most of this energy can be shifted towards
the array’s center line, which effectively transposes those spatial frequency
ranges to low spatial frequencies. Since then most of the energy lies within
low spatial frequencies, one could potentially apply a spatial low-pass filter
without losing a lot of information.

This is what beamspace projection conceptually does. The time-delayed
signals Ye[n] can be transposed to a reduced-dimensional beamspace with
a simple multiplication by a transformation matrix Bbs mapping CM to
CB, where M is the number of transducers in the array and b the targeted
beamspace dimensionality:

Ye
b = BbsYe. (2.41)

The transform can alternatively be applied to the covariance matrix
estimate instead of the time-delayed signals:

R̂B
θ,n = BT

bsR̂θ,nBbs. (2.42)

This is the approach selected in this thesis. The transformation matrix
Bbs can be built in several ways. In this thesis, Bbs is conceptually built
as a spatial lowpass filter, where only the spatial frequencies covering
the imaged sector are kept. This approach uses the monochromatic
signals assumption presented in Section 2.3.4 which allows to map a
physical angle of arrival θ to a spatial frequency fθ = sin(θ) · M/2.
The reduced-dimensional beamspace should therefore ideally include all
spatial frequencies from 0 to fθmax , where θ = 0 is the direction of the
transducers array’s normal vector and θmax is the angle of the imaged sector
extremities, and excludes all spatial frequencies f > fθmax .

The number of dimensions B in the projected beamspace should then
ideally reflect this condition. If the imaged sector spans the whole ±90◦,
then the transformation matrix should be the identity matrix, mapping CM

to CM, meaning that B = M. On the other extreme case, if the image
sector consists only of one direction, θ = 0, the resulting beamspace should
only have one dimension (B = 1). The beamspace dimensionality B can be
defined a linear function of fθmax :

B = 2 · fθmax + 1 = 2 · sin(θmax) ·M
2

+ 1, (2.43)

where the added 1 represents the central angle θ = 0 and the factor 2
represents the two halves of the image sector. However, the number of
dimensions B has to be an integer and fθmax is not always one. Different
rounding approaches can be implemented. In this thesis, the nearest
integer higher than fθmax , using the ceiling function, is used to define B.
The reduced-dimension beamspace then spans a sector bigger or equal to
the imaged sector. Equation (2.43) is redefined accordingly:

B = 2 · d fθmaxe+ 1 = 2 · dsin(θmax) ·M
2

e+ 1, (2.44)
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where de is the ceiling function. The transformation matrix Bbs is built as a
MxB matrix whose columns b = {1, 2, ..., B} are built as:

Bbs(1 : M, b) = ei·n· 2·πM c·(bB/2c−b), (2.45)

where n is a vector of size M containing all integers within the range [−(L−
1/2), L − 1/2]. In addition to the monochromatic wave assumption, this
implementation of B implicitly assumes the beamforming to be working in
the far-field (Section 2.3.5), since it assumes all transducers to experience
the same spatial frequency fθ for a signal coming from angle θ.

2.4.7 Multibeam covariance matrix approach

One major drawback to adaptive beamforming methods, in comparison to
conventional ones, is their computational complexity. Standard adaptive
beamformers compute (and inverse) a separate covariance matrix estimate
R̂θ,n for each image sample, e.i. each radial distance of each received beam.
R̂θ,n is sometimes referred to as sample covariance matrix. Since such a matrix
is built from a single beam, it also requires the use of spatial averaging
(Section 2.4.3) to decorrelate coherent signals.

Another approach would be to compute a single covariance matrix
estimate R̂n for each radial distance n, thus reducing the number of matrix
inversions to the number of radial distances (Jensen and Austeng (2012)).
Such a matrix should be formed such that the beamformers weights can be
extracted from it for any steering angle θ. This condition is expressed in
Equation (2.46), which is Equation (2.30) adapted to this situation:

min
w

wHR̂nw, subject to wHaθ,n = 1. (2.46)

And its solution:

wa =
R̂−1

n aθ,n

aθ,n HR̂−1
n aθ,n

. (2.47)

It is worth mentioning that phase-based focusing is working under the
assumption of narrowband signals. Although this assumption usually does
not hold in medical ultrasound imaging, phase-based focusing can be done
for small phase shifts. This issue is explained in more details in Section
2.3.4.

Let the set of time- and phase-delayed signals Ŷn be defined as:

Ŷn = An ◦ Yn, (2.48)

where An is a the set of steering vectors aθ,n for any given radius index n
and ◦ denotes the Hadamard product. The covariance matrix estimate R̂n
can then be formed from Ŷn:

R̂n =
1
S

Ŷ
T
n Ŷn, (2.49)

where S is the number of received beams steering angles (θ1, ..., θS). This
approach to multibeam covariance matrices is often simply referred to as the
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multibeam approach, and beamformers using this approach as multibeam
beamformers.

Once the adaptive array weights are extracted from the covariance
matrix estimate, they can actually be used in multiple ways. The most
straightforward use is the single-beam (SB) output. An image sample Zθ,n
is created by applying the weights wa, coming from Equation (2.47) with
steering vector aθ,n, to its corresponding array sample Ȳa:

Zθ,n = |wa
TŶθ,n|2. (2.50)

However, due to the adaptive nature of the beamformer, the recorded data
used for different directions than that of the image sample can also hold
information for that direction. An alternative approach known as multibeam
compound (MBC) output, or multibeam (MB) output forms an image sample
based on the whole covariance matrix estimate rather than a single array
sample:

Zθ,n = wa
TR̂nwa. (2.51)

2.4.8 Iterative Adaptive Approach (IAA)

As stated in the introduction of this thesis, adaptive beamformers are still
nowadays struggling to truly emerge as commercial products in medical
ultrasound imaging. This has arguably been mainly due to their global
reduced robustness compared to those of the conventional beamformers,
their increased computational load, making real-time imaging difficult,
and the introduction of additional user parameters to control their degree
of adaptivity, which makes them much more difficult to use without a
profound knowledge of how they work.

As the available computational capacities are constantly improving, the
computational load issue is becoming less of a concern. It has actually
recently been shown that adaptive beamforming (MV) can now be used for
real-time imaging when implemented in a Graphics Processing Unit (GPU)
framework (Åsen et al. (2012)). The introduction of various robustification
methods allows for more stable beamformers, often at the cost of reduced
resolution capacity and increased computational load. However, those
methods have to be precisely calibrated in order to yield optimum results.
This typically restrains the use of such beamformers to people trained
in the domain of beamforming. In order to limit this parametrization
burden, new approaches to adaptive beamforming have emerged and are
often referred to as parameter-free approaches (Yardibi et al. (2008, 2010); Du
et al. (2009); Jensen and Austeng (2014)). This thesis builds on the Iterative
Adaptive Approach (IAA) as presented by Jensen and Austeng (2014).

The MV beamformer as presented in Section 2.4.1 creates image
samples from local estimates of the recorded signal’s covariance matrix R.
IAA takes a different approach and creates image samples by building a
model of R and iteratively fitting it to the recorded data. IAA is based on
the sparse signal representation (Yardibi et al. (2008)), as it models a number
of potential reflector in the imaged medium often much denser than the
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actual number of sources. The received signal of any potential source q can
be modeled as:

ȳq(t) = sq(t)aq, (2.52)

where sq(t) is the source’s signal and aq is the phase-based steering vector
pointing to the location of the source q. The covariance matrix model of a
single source is then:

R̄q = E[ȳq(t)ȳq(t)
T] = |sq(t)|2aqaT

q . (2.53)

Assuming Q uncorrelated sources spread across the image sector, the total
covariance matrix model R̄ is the sum of R̄q for each source q:

R̄ =
Q

∑
q=1
|sq|2aqaT

q = APAT, (2.54)

where A is the matrix of steering vectors aq and P is a QxQ diagonal matrix
with the sources’ squared amplitudes |sq|2 along its diagonal.

Given an estimate R̂ of the covariance matrix R, an initial estimate of P
can be built by applying matched spatial filtering:

P̂ = AT
n R̂An. (2.55)

This initial estimate of P actually corresponds to the output of the DAS
beamformer (Equation (2.19)) using the multibeam covariance matrix
estimation approach (Section 2.4.7).

IAA then improves P̂ by iteratively minimizing the following weighted
least square cost function:

Q

∑
q=1
||yq(t)− ȳq(t)||2Q̄−1

q
, (2.56)

where Q̄q = R̄− PqqaqaT
q is the covariance matrix of the interference and

noise when focusing on the location of source q. The iterative minimization
process is done as follow until a given stop condition is reached:

1. The covariance matrix model R̄ is built from Equation (2.54) using P̂.

2. For each potential source q, a new set of weights wq is built from R̄
using the MV beamformer (Equation (2.31)).

3. Those weights wq are then used to form new estimates of the sources’
squared amplitudes:

P̂qq = wT
q R̂wq. (2.57)

The iteration stop condition can either be a fixed number of iterations, a
convergence threshold or a combination of both. The studies by Yardibi
et al. (2008) and Jensen and Austeng (2014) empirically show reasonable
convergences after 5 to 10 iterations. It is worth mentioning that the IAA
minimization process as explained in this thesis is based on the multibeam
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(MB) approach, but can also be implemented following the singlebeam
approach (Jensen and Austeng (2014)). In order to avoid confusion with
existing publications, we refer to this implementation of IAA as IAA-MB.

The IAA minimization problem, much like that of MV, outputs a set
of weights wq for each focus point q. Those weights can then be used
to produce a beamformed image Z either following the singlebeam (SB)
approach or the multibeam one. In both methods, each image sample Zθ,n
is built from the set of weights wq for the source q located at (θ, n). With
the multibeam approach, Zθ,n is built from R̂:

Zθ,n =
√

wT
q R̂wq. (2.58)

The singlebeam approach, on the other hand, applies wq directly to the
recorded data:

Zθ,n = |wT
q Ŷq|, (2.59)

where Ŷq is the set of data recorded by the array’s transducers and time-
and/or phase-shifted in order to align the focus of the array to the position
of source q. In this thesis, we refer to the IAA-MB variant using Equation
(2.58) as IAA-MBMB and the variant using Equation (2.59) as IAA-MBSB.
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Chapter 3

Material and Methods

Simulating ultrasound data can be an extremely useful technique to
thoroughly test different setups. Unlike real data recording, simulations
allow full control of the setups parameters. One of the most widely used
programs for ultrasound imaging simulations is the Field II Simulation
Program created by Professor Jørgen Arendt Jensen at the Technical
University of Denmark (Jensen (1996); Jensen and Svendsen (1992)). All
simulations produced in this thesis are done in MATLAB using Field II.

3.1 Simulation parameters

In all the simulations, the simulated ultrasound probe consists of a linear
array of 96 transducers all transmitting at fc = 3 MHz center frequency
with a bandwidth of 2.3 MHz (77%). They are also all serving the dual
function of recording ultrasound data at the same center frequency and
bandwidth. The recorded data is sampled at 90 MHz sampling frequency.
Each transducer has a height of 10 mm and a width of 0.24 mm. The
transducer’s pitch, defined as the distance from a transducer’s center to the
center of its neighboring one, is set to d = λ/2, where λ is the wavelength
of the transducer’s center frequency.

The speed of ultrasound propagation c in a medium can vary signific-
antly depending, among other parameters, on the imaged medium tem-
perature and content, whether it is fatty or non-fatty tissue, bone, liver, any
other organ or a combination of those. Bamber and Hill (1979) showed
that c is most often lies in the 1400− 1600 m/s range. In this thesis, c is
set to 1500 m/s. The transducer’s pitch is then d = λ/2 = c/(2 · fc) =
1500/(2 · 3 · 106) = 0.25 mm. With a kerf, or distance between transducers,
of 0.01 mm, the transducer’s width is then of 0.24 mm (pitch minus kerf)
and the total length of the array is 96 · 0.25 = 24 mm.

A signal pulse s(t) is created by simulating an excitation in the form of
alternating voltage:

s(t) =
{

1, 0 ≤ t < T/2
-1, T/2 ≤ t < T , (3.1)

where T is the signal’s period and is equal to 1/ fc ≈ 0.33 µs.
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Figure 3.1: Simulated signal pulse on reception.

The transducer’s output pulse is defined by the excitation function
convolved with the transducer’s impulse response ht(t). In this thesis, ht(t)
is implemented as a bandpass filter around the pulse’s center frequency
(3 MHz) using a Blackman window (Harris (1978)). The same impulse
response is used for signals reception (hr(t) = ht(t)). The medium and
backscatterer points are assumed to be ideal in the sense that they do not
alter the signals properties. This means that s(t) ∗ hm(t) ∗ hp(t) ∗ hm(t) =
s(t), where hm(t) is the medium’s impulse response and hp(t) the one of
the scatterer point. The medium’s impulse response is applied twice since
the signal is traveling from the array to the scatterer point and back. Under
those conditions, a signal pulse s(t) sent by a transducer, backscattered by
a point in the medium, and recorded by a transducer can be defined as:

y(t) = s(t) ∗ ht(t) ∗ hm(t) ∗ hp(t) ∗ hm(t) ∗ hr(t)
= s(t) ∗ ht(t) ∗ ht(t), (3.2)

where ∗ is the convolution operator. The perceived pulse y(t) is illustrated
in Figure 3.1.

The imaged section is chosen to span from −17.5 to 17.5◦ from the
array’s normal vector, and 35 to 60 mm range to it. The aperture default
focus is set to 40 mm radius. Note that this thesis differentiates the terms
radius, which defines the absolute distance to the array center in any
direction, and range, which defines the radius projection onto the array’s
normal plane. A point’s azimuth is its radius projection onto the array’s
parallel plane.

All transmit or receive beams are focused at the same radius (40 mm)
and distributed uniformly along the imaged azimuth sector. In other
words, the beams distribution is uniform in sin(θb), where θb is the
direction angle of beam b from the array center. The beams with outermost
direction θb from the array center are set to sin(θb) = -0.3 and 0.3. For any
given range r, the azimuth distance dB between two transmit beams is a
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constant value:

dB = 0.3 · r/bbtr/2c, (3.3)

where btr is the number of beams used to illuminate the imaged sector and
bc is the floor operator.

Unless specified otherwise, all beamformed images are built by sequen-
tially transmitting beams in various directions and, for each transmit beam,
focusing the array towards that same direction during receive. The number
of receive beams bre is then equal to the number of transmit beams btr. This
approach is often referred to as single-line acquisition (SLA). In practice,
a lot of beamformers are configured to use parallel-receive beamfoming
(PRB), also known as multiple-line acqusition (MLA), presented in Section
2.3.7. The purpose of MLA is to improve a beamformer’s frame rate by
reducing the number of transmit beams while maintaining a similar res-
olution level by increasing the number of receive beams. However, this
approach has shown to induce artifacts and various MLA approaches have
been introduced to try to limit those artifacts (Rabinovich et al. (2013)). In
order to avoid this problem, perfect MLA is simulated in this thesis by up-
sampling the number of transmit beams and using SLA. Assuming perfect
MLA, an image built from btr = bre = 195 beams can therefore also be seen
as built from btr = 65 transmit beams and bre = 3 · btr = 195 receive beams,
or btr = 39 and bre = 5 · btr = 195 beams.

The imaged medium contains scatterer points either in a noiseless
medium or in a speckle background, depending on the experiment. Speckle
noise consists of the transmitted signals scattered by a large number
of small, densely distributed, scatterer points and is used to simulate
homogeneous tissues. The noiseless background scenario is a very
controlled setup, with no randomness in the medium which could possibly
alter the results. It is typically run first and its results are used to make
fundamental observations and in-depth analysis. The speckle scenario is
a more realistic one, typically used to verify the observations from the
first scenario and obtain qualitative results closer to those of a real use
case. This thesis focuses on noiseless media, but provides an exposure to
more realistic media with two examples of randomly-generated speckle
background. Due to the randomness of the speckle noise, a thorough
analysis of the influence of motion with the presence of speckle noise
would require to run the same experiments with dozens or even hundreds
of different randomly-generated speckle backgrounds to be statistically
meaningful. The speckle simulations are therefore targeted to be used as
examples of realistic divergences from the noiseless medium and not data
of statistical significance. In this thesis, speckle is generated by simulating
one million small scatterer points uniformly distributed along the full
image plane, covering -90 to 90 degrees angular span and 5 to 75 mm
range. Figure 3.2 displays DAS beamformed images of the two speckle
backgrounds used in this thesis.

The parameters used for the aperture and medium simulation are
summarized in Tables 3.1 and 3.2.
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(a) Speckle randomness seed = 2. (b) Speckle randomness seed = 42.

Figure 3.2: DAS beamformed image of speckle background with btr = 65
transmit beams. The speckle background displayed in (a) is generated with
randomness seed = 2, whereas the one displayed in (b) is generated with
randomness seed = 42.

Probe parameters
Transmit and record center frequency 3 MHz

Transmit and record frequency bandwidth 2.3 MHz
Sampling frequency 90 MHz

Number of transducers 96
Transducer height 10 mm
Transducer width 0.24 mm
Transducer pitch 0.25 mm

Kerf 0.01 mm
Array length 24 mm

Default aperture parameters
Imaging sector -17.5 to 17.5 degrees
Imaging range 35 to 60 mm

Radial focus 40 mm
Impulse response window Blackman

Distribution of transmit beams Uniform along azimuth
Distribution of receive beams Matching transmit

Table 3.1: Probe parameters.

3.2 Beamformers parameters

Four different beamforming algorithms are implemented and tested in this
thesis:

• DAS: Conventional Delay-And-Sum beamforming (Section 2.3.3)

• MV: Minimum-Variance beamforming (Section 2.4.1)

• IAA-MB: Iterative Adaptive Approach (Section 2.4.8). Two variants
of the algorithm are compared:
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Medium parameters
Speed of propagation 1500 m/s

Speckle sector -90 to 90 degrees
Speckle range 5 to 75 mm

Speckle azimuth -75 to 75 mm
Speckle distribution Uniformly distributed

Number of points in speckle 106

Random generator seed 2 and 42
Scatterer points amplitude 30 dB over speckle

Table 3.2: Medium parameters.

IAA-MBSB: (Multibeam/Singlebeam) The MB approach is used
during the iteration stage and the SB approach for the final sources
amplitude.

IAA-MBMB: (Multibeam/Multibeam) The MB approach is used
both during the iteration stage and the final sources amplitude
estimation.

As explained in Section 2.4.1, the MV beamformer in its standard form is
prone to artifacts and requires some robustification improvements. In this
thesis, the MV beamformer is enhanced with the use of spatial smoothing,
diagonal loading, temporal averaging and forward-backward averaging
(Sections 2.4.2, 2.4.3, 2.4.4 and 2.4.5). Based on Figure 2.8, the subarray
length value is chosen as half the array length (96/2 = 48). Diagonal
loading and time averaging are set to relatively low values, respectively
5% and +/- 2 samples, in order to keep a high MV image resolution. The
time averaging value of T = 2 means that 2T + 1 = 5 samples are used
per range index. With a sampling frequency of 90 MHz, this corresponds
to 5/(90 · 106) = 55.5 · 10−9 seconds and, with a speed of propagation
c = 1500 m/s, to 1500 · 55.5 · 10−9 = 83.3 · 10−6 m = 0.0833 mm per range
index. For the signals transmitted at 3 MHz, these 5 samples correspond to
5 · 3/90 = 1/6th of their wavelength.

The DAS and IAA beamformers are by nature more robust than MV. In
this thesis, none of the for-mentioned robustification methods are applied
to those beamformers. The beamspace projection concept introduced in
Section 2.4.6 is however used with the IAA-MB approaches. A MxB
transmformation matrix, where M is the number of transducers in the array
and B the chosen number of dimensions in the projected beamspace, is built
from Equation (2.45). The value of B is obtained from Equation (2.44):

B = 2 · dsin(θmax) ·M
2

e+ 1 = 2 · d0.3 · 96
2
e+ 1 = 2 · 15 + 1 = 31, (3.4)

where θmax is the angle of the extremities of the imaged sector, set to±17.5◦

as described in Section 3.1.
As its names suggests, the IAA approach is an iterative method, which

therefore requires an iteration stop condition. The iteration steps are
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developed in Section 2.4.8. The iteration stop condition can either be a
fixed number of iterations, a convergence threshold or a combination of
both. A fixed number of 10 iterations has been chosen in this thesis, based
on empirical data from Yardibi et al. (2008) and Jensen and Austeng (2014).
Using a convergence threshold, in this case probably a threshold on how
much P̂qq varies between two iterations (ref. Section 2.4.8), might yield
better result, but to the cost of varying computational load. This variance
in number of iterations could, in extreme cases, lead to varying frame rates,
which can be problematic. Furthermore, the IAA approaches have not been
explored enough yet to provide reliable convergence thresholds for each
variant of the beamformer. Table 3.3 summarizes the parameters used for
all beamformers.

Parameter Beamformer Value
Subarray length MV 48

Diagonal loading MV 5 %
Forward-backward averaging MV Enabled

Temporal averaging MV +/- 2 samples
Beamspace projection IAA 31
Number of iterations IAA 10

Table 3.3: Beamformers parameters.
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Chapter 4

Experiments

As mentioned in this thesis’ introduction, adaptive beamformers have
often been criticized as not reliable enough in their raw form for most active
system applications such as medical ultrasound imaging. Some of the early
concerns such beamformers faced included their notable sensitivity to:

1. Signal cancellation in the presence of coherent signals (Trees (2002))

2. Visible artifacts in the presence of motion in the imaged medium
(Åsen et al. (2014))

3. High beam density requirements due to narrow receive beams

4. High computational complexity prohibiting real-time ultrasound
imaging

5. High configuration complexity

Different approaches have been proposed to solve or limit the effect of
one issue or another, some of which are presented in this thesis (Sections
2.4.2 - 2.4.7). Multiple studies have compared different versions of the
MV beamformers with the DAS one (Synnevåg et al. (2009, 2007a); Åsen
et al. (2014)), both in idle scenarios and in scenarios exposed to motion.
One objective of this thesis is to build experiments that create similar
comparisons and hopefully confirm the conclusions of these publications.
This aims to provide confidence in the experiments and analysis with new
content.

The multibeam Iterative Adaptive Approach (IAA-MB) has been
presented in ultrasound image processing by Jensen and Austeng (2014)
as an alternative beamformer to MV. Although very promising, it has only
been studied in medical ultrasound imaging on scenarios with stationary
imaged media. The effects of motion on the IAA-MB approach is an aspect
that this thesis hopes to explore and uncover.

In the domain of medical ultrasound imaging, motion in an imaged
medium is often, implicitly or explicitly, defined as position shift of
scatterer points from one image, or frame, to another. However, the
acquisition of a single frame is not instantaneous, which means that motion
within a frame is a real concept and a potential source of issues for different
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beamformers. This thesis aims to provide a thorough analysis of the effects
of motion within frames and the resulting limitations on each beamformer.

The combined analysis of all scenarios experimented with in this
thesis is expected to provide a reliable and thorough understanding of
the fundamental issues and artifacts induced from motion in ultrasound
imaging, along with realistic limitations, and enhancement possibilities, of
each beamformer presented in this thesis.

4.1 The effect of motion between frames

This section aims to compare how well each beamformer copes with
motion between frames. Åsen et al. (2014) already revealed results
comparing the MV beamformer with DAS. The goal of this section is to
build on this study, hopefully confirm its findings, and provide a similar
analysis for the different versions of the IAA approach presented in this
thesis.

The for-mentioned study showed that the MV algorithm requires a
much higher beam density than DAS in order to ensure no visible artifact.
Due to the MV beams being very narrow at the radial focus, the reflections
from scatterer points located in between two beams focus points can be
heavily attenuated compared to scatterer points located at a beam focus
point. This signal attenuation effect is known as scalloping loss (Åsen et al.
(2014)). In the case of a moving scatterer point, this scalloping loss effect
will result in the point’s apparent intensity varying with its position. When
combining beamformed images into videos, as done for example in real-
time imaging, scatterer points in motion may appear blinking. Figure 4.1
illustrates the effect of scalloping loss with the DAS beamformer. A single
scatterer point is simulated in a speckle noise background. The white lines
indicate transmit beams trajectories. The scatterer point starts on the center
beam trajectory and is shifted half the distance between two beams per
frame, such that it ends exactly on the neighboring beam trajectory in the
third frame. In this example, the scatterer point is visible in frames 1 and 3,
but completely disappears in the speckle background in frame 2.

Scalloping loss, for any scatterer point in the medium, can be caused
by a lack of energy transmitted towards the point’s position or by signal
suppression from the array towards that position. Two of the most
straightforward approaches to reducing scalloping loss are by either
increasing the density of transmit beams or their width. However both
methods have obvious drawbacks. The choice of beam width is a trade-off
between sensitivity to scalloping loss and image resolution, whereas the
choice of their density is a trade-off between sensitivity to scalloping loss
and image acquisition time.

A beamformed image is considered in this thesis to be formed by
sequentially transmitting and recording focused beams. Its acquisition
time tim can be expressed in seconds as:

tim = 2 · rmax · btr/c, (4.1)
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(a) Position of s1 = (0, 40) mm. (b) Position of s1 = (1.2, 39.98) mm.

(c) Position of s1 = (2.4, 39.93) mm.

Figure 4.1: DAS beamformed images of a scatterer point s1 moving in
speckle. The scatterer point is shifted, along the beamformer’s focus radius,
half the distance between beams per frame. The position (x, y) of s1 is
(0, 40) mm in (a), (1.2, 39.98) mm in (b) and (2.4, 39.93) mm in (c), where
x is the offset of s1 relative to the center of the array along the azimuth
dimension and y is the offset along the range dimension. The white lines
are added on top of the beamformed image and represent the transmit
beams trajectories.

where btr is the number of transmit beams, rmax is the maximum range in
meters for which the probe is recording data and c, in m/s, is the speed
of ultrasound propagation in the medium. The factor 2 represents the fact
that active systems are used, which means that the signals need to travel
to rmax and back to the probe in order to be recorded. With rmax = 0.15 m
and c = 1500 m/s, tim = 2 · 0.15 · btr/1500 = 2 · 10−4 · btr seconds. A single
beam transmission and acquisition is then considered to take 0.2 ms.

Instead of acquisition time, it is often slightly more intuitive to talk
about frame rate, in number of images per second, especially in the domain
of real-time imaging. The beamformers’ frame rate fim are calculated
through this thesis as:

fim = 1/tim = 1/(2 · 10−4 · btr) = 5 · 103/btr. (4.2)

A beamformer’s frame rate is dependent on the number of transmit
beams btr, but not dependent on the number of receive beams bre. For
beamformers using single-line acquisition (SLA), those number are equal.
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However, as explained in Section 2.3.7, multi-line acquisition (MLA) is an
approach that can create multiple receive beams per transmit beam and
output beamformed images with bre > btr. Given an image resolution
threshold, MLA approaches can often be used to reduce the required
transmit beam density compared to that of the SLA approach, thus
increasing a beamformer’s maximum frame rate.

Since data processing and acquisition can often be done simultaneously
and computation capabilities are constantly increasing, we focus in this
thesis on analyzing delays due to data acquisition and assume data
processing can be made such that it does not result in additional delays. In
order to avoid potential artifacts, the whole imaged medium is considered
to be idle within a single frame. The effects of motion within frames are
studied in Section 4.2.

In order to give a meaningful interpretation of the effects of scalloping
loss, and qualitatively compare these results with previous studies, the
scalloping visibility threshold is taken from Åsen et al. (2014):
In an ultrasound image with 50dB dynamic range mapped to 256 gray levels, a
1dB loss corresponds to 5 gray levels. This is approximately equal to the visibility
threshold [Weber fraction of 2%] for grayscale images. A loss larger than 1dB
could therefore end up being visible to the observer.

Since focused beams are by definition the narrowest at their radial
focus, it is the range at which the scalloping loss of scatterer points is
expected to be the most severe. This assumption has to be verified
before comparing beamformers performance at radial focus. To simulate
the highest possible scalloping loss, the scatterer point motion follows
the aperture’s focus radius and is therefore physically a circular motion.
Multiple frames are recorded with the point at different angles from the
aperture’s center. The maximum scatterer point gain is expected to be
recorded when its angle matches one of the array’s beams. Its minimum
gain is expected to be recorded when its angle is exactly in between
two beams angle. The scatterer point maximum scalloping loss is then
calculated by subtracting its estimated minimum gain to its estimated
maximum gain.

4.2 The effect of motion within frames

In Section 4.1, the back-scattered image was assumed to be still within
each frame. This section is analyzing the effects of motion within a
single frame. This domain has been very little studied so far in medical
ultrasound imaging, which makes it harder to predict the outcome of such
experiments. However this might hint that motion within frames has not
revealed any known major issue for conventional beamformers and might
only induce negligible errors in the beamformers model. The purpose
of this section is to analyze the effects of such motion and give sensible
information about how robust the different beamformers are in realistic
scenarios.

The domain of photography, although fundamentally different in its
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signal acquisition process from ultrasound beamforming, is dramatically
affected by motion within frames. Almost anybody who has ever handled
a camera has experienced motion in the imaged scenery leading to blur in
the image. This experience, perhaps misleadingly, directs us to expect such
motion in the ultrasound imaging domain to result in distortions of the
scatterer points shape and amplitude.

In order to give more insightful predictions, it is worth analyzing the
photography analogy a bit deeper. First of all, cameras capture frames
by recording light waves simultaneously for the whole spatial spectrum.
The reason blur or artifacts can appear is that the frame’s capture is not
instantaneous. The camera’s exposure time is what defines how long a
frame is recorded for. A long exposure time allows us to record a lot of
light and get brighter pictures. A short exposure time limits the effects of
motion blur, but also results in darker pictures. This process can be seen as
continuously taking instantaneous frame for a given period and produce
the final picture by averaging those frames. If an object moves during
that time, it can appear blurry since not at the same spatial location for all
frames. Motion in any direction would then result in the object appearing
bigger than if idle.

In ultrasound imaging, the probes are typically sending short pulses
which are reflected by scatterers in the imaged medium. In such scenarios,
with only a few samples per range pixel, motion in the medium within a
single beam is way beyond human perception for velocities v << c, the
speed of ultrasound propagation, and can be ignored. However, blur and
artifacts can occur due to the sequential nature of image acquisition, i.e.
the formation and recording of directional beams. Frames are produced
by transmitting and recording directional beams along the imaged spatial
spectrum. In this thesis, the beams are transmitted sequentially from
negative to positive degrees/azimuth. Each beam needs to propagate
until the desired maximum image range and back to the array before
another beam can be transmitted. The image acquisition time is defined
by Equation (4.1).

In the photography analogy, it would be similar to taking a panoramic
picture, where picture frames are extended by other ones in order to form a
picture with extended spatial range. Assuming this time that each picture
is instantaneous, no blur or artifact can occur within a single picture. For
simplicity, it is first considered that all pictures are forming a perfectly
aligned panoramic picture, with no overlap in their imaged sector. Multiple
scenarios of a single object moving in a stationary background are then
proposed in Table 4.1, where the object motion mo is expressed relative to
the panoramic picture acquisition direction mp.

With these initial intuitions in mind, the photography analogy can be
extended to the scenario for which the different pictures overlap in their
imaged sector. The same scenes as Table 4.1 are analyzed with pictures
overlap in Table 4.2.

The first part of this section aims to give a first exposure to the effects
and possible issues of motion within frames. The assumptions of Tables
4.2 and 4.1 made from the photography analogy are then compared to
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Scenario Expected result
Object appears only in one frame No artifact or blur

mo in same direction as mp The object can appear dilated, or, in
extreme cases, a duplicate can appear

mo opposite to mp The object can appear eroded
or, in extreme cases, disappear

mo perpendicular to mp The object can appear distorted

Table 4.1: Photography analogy of an object moving in between frames of
a panoramic picture. Expected artifacts with perfect image segmentation.

Scenario Expected result
Object appears only in one frame No artifact or blur

The object can appear blurry,
mo in same direction as mp dilated or, in extreme cases,

a duplicate can appear
mo opposite to mp The object can appear

blurry or eroded
mo perpendicular to mp The object can appear

blurry or distorted

Table 4.2: Photography analogy of an object moving in between frames of a
panoramic picture. Expected artifacts with imperfect image segmentation.

the results in medical ultrasound imaging. Different motion patterns and
velocities are studied with a single scatterer point at the array’s focus
range, in a noiseless background. Then, the same analysis is done with the
presence of speckle noise, in order to confirm or disprove the conclusions
made from the first analysis.

Blood flow velocities in arteries are typically on average around 0.12
m/s, with peaks around 0.6 m/s (Gabe et al. (1969)). With this in mind, this
section’s analysis focuses on the 0 to 0.6 m/s velocity range. The second
part of this section analyses the effect of motion with multiple scatterer
points in an attempt to discover any potential additional effect in scenarios
with coherent signals. The experiments run are very similar to those of
the first part of this section, although with the presence of signal coherence
induced by two closely-separated scatterer points in the imaged medium.
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Chapter 5

Results and Discussion

5.1 The effect of motion between frames

In this thesis, we explore the effects of tissue motion mainly with worst
case scenarios. We believe this allows for more straightforward analyses
and results bound by physical constrains rather than arbitrary ones. The
first part of this section aims to define what a worst case scenario consists
of.

The first experiment simulates two scatterer points, s1 and s2, at 40 mm,
respectively 55 mm, distance to the transducer array in an a noiseless
medium. Multiple image frames are created with the scatterer points at
different angles from the array’s normal vector. Each image is built from
bre = btr = 11 transmit and receive beams. The first frame has s1 and s2
located at angle θ = −3.44◦, which corresponds to the angle of focus of one
of the transmit beams. Then 16 additional frames are built with the scatterer
points shifted 1/8th of the angular separation between two beams. This
means that, in the first, middle and last frames, both scatterer points are
on the trajectory of a transmit beam. An illustration of the transmit beams
trajectories and the scatterer points position is provided in Figure 5.1. The
vertical and diagonal lines represent the trajectory of transmit beams for
each frame, and the ellipses represent the set of scatterer points positions
for all frames combined. Notice that the points’ range varies with angular
shift so that they always remain at the same radius, i.e. distance to the
array’s center.

For each raw image, all four beamformers presented in Section 3.2
are used to produce a different beamformed image. As example of
beamformed images, 2 of the 17 DAS beamformed frames are displayed
in Figure 5.2, one with the scatterer points aligned with a beam trajectory
(0 mm azimuth) and the other with the scatterer points in between
two beams (1.2 mm and 1.65 mm azimuth). Both scatterer points have
lower apparent gain in Figure 5.2b than in Figure 5.2a. Note that all
the beamformed images displayed in this thesis are interpolated to yield
smoother displays. Although image interpolation is common practice
before display, it is not applied to the raw data in order to avoid any
potential artifact that could disturb the analysis.
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(a) Illustration of whole imaged scene. (b) Illustration of the position set of s2.

Figure 5.1: Illustration of imaged scene with two scatterer points s1 and s2
moving along constant radius lines, respectively 40 mm and 55 mm radius.
The vertical and diagonal lines represent the trajectory of the btr = 11
transmit beams. The ellipses represent the set of positions of s1 and s2 for
the 17 frames combined. Image (a) shows the whole illustration and image
(b) is a subset of image (a) around the position set of s2.

The variation in the backscattered signals gain is caused by scalloping
loss, as explained in Section 4.2. In this first experiment, for each
beamformed image, the gain of the signals backscattered by each scatterer
point is extracted and used for analysis. The resulting gains are displayed
in Figure 5.3. Since the target of analysis is the difference in signal gain
and not their absolute value, all gain values are normalized to that of the
first frame. Multiple observations can be made from these results. First of
all the MV algorithm experiences much heavier scalloping loss than DAS
in this example. This is expected from the ability of the MV beamformer
to form narrow receive beams compared to those of DAS. This ability is
the reason for the MV beamformer to be originally referred to as a high-
resolution beamformer and is also the source of its increased sensitivity to
angular undersampling compared to DAS. Perhaps surprisingly, the IAA
beamformers, also able to form narrow receive beams, are experiencing
scalloping loss of lower or equal magnitude than DAS. We do not want
to draw conclusions based on a single experiment, but it seems at least in
that example that the multibeam approach is effective in compensating for
scalloping loss with angular undersampling.

As mentioned in Section 4.1, in this thesis scalloping loss is considered
invisible (and therefore negligible) if of magnitude lower or equal to 1 dB.
A second observation is that, for all beamformers, the recorded gain of
the scatterer points consistently appears to be maximized when they are
aligned with a transmit beam and minimized when exactly in between two
beams. Given these results and the definition of scalloping loss in Section
4.1, the following experiments assume the maximum scalloping loss of a
scatterer point to be its gain difference when aligned with a transmit beam
and when exactly in between two beams. For example, the maximum
scalloping loss of the MV beamformer for the scatterer point at 40 mm
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(a) Position of s1 = (0, 40) mm, s2 =
(0, 55) mm.

(b) Position of s1 = (1.2, 39.98) mm,
s2 = (1.65, 54.97) mm.

Figure 5.2: DAS beamformed images, with btr = bre = 11 transmit and
receive beams, of two scatterer points s1 and s2 at 40 mm and 55 mm radius.
The position (x, y) of s1 is (0, 40) mm in (a) and (1.2, 39.98) mm in (b), where
x is the offset of s1 relative to the center of the array along the azimuth
dimension and y is the offset along the range dimension. The position of s2
is (0, 55) mm in (a) and (1.65, 54.97) mm in (b).

radius is 43.2 dB.
A final observation is that scalloping loss is more severe at 40 mm

radius than 55 mm for all beamformers. In Section 4.1, we emitted
the hypothesis that scalloping loss can potentially be more severe at the
array’s focal distance than at any other radius. In order to confirm that
hypothesis, we set up an experiment similar to the previous one with a
single scatterer point s1 at various distances from the array, ranging from
36 to 56 mm radius. For every given radius, we create two frames; one with
s1 aligned with the array’s center transmit beam, at 0◦ angle, and another
frame with s1 shifted along the same radius value so that it is placed
exactly in between two beams. For each beamformer and radius value, the
scatterer point’s recorded gain difference between the two frames defines
its maximum scalloping loss. The results of that experiment, displayed in
Figure 5.4, follow the hypothesis that the scalloping loss is most severe at
the array’s focal distance (40 mm radius). The magnitude of scalloping loss
experienced by the IAA approaches are again lower or roughly equal to
that of DAS.

We are now able to define a worst case scenario regarding scalloping
loss. The highest scalloping loss is expected to occur along the array’s focus
distance, assuming that the array’s transmit focus line and receive focus
line are the same. Also assuming single-line acquisition (SLA), the highest
scalloping loss for any given radius is expected to occur exactly in between
two beams. The highest scalloping loss magnitude is obtained in this thesis
by simulating a scatterer point located at the array’s focus distance (40 mm
radius) and in between the array’s center beam and its closest one towards
the positive angle/azimuth values. The following experiment recreates this
worst case scenario with a noiseless medium.

We stated in Section 4.1 that there is an obvious dependence of the
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(a) Scatterer point at 40 mm radius.

(b) Scatterer point at 55 mm radius.

Figure 5.3: Normalized backscattered gain of scatterer point shifted 1/8th
of the distance between beams per frame. The scatterer point is located at
a constant 40 mm radius in (a) and 55 mm radius in (b).

scalloping loss magnitude on the array’s beam density and width. We
expect from Åsen et al. (2014) that scalloping loss can be reduced by
increasing either the transmit and receive beam density and/or width.
Since the choice of beam width is a trade-off between angular sampling
and image resolution, we prefer to focus on the choice of beam density in
this section. The transmit beam density gives a trade-off between angular
sampling and image frame rate. We first focus on SLA beamforming.
For each transmit beam density btr, the maximum scalloping loss of each
beamformer is recorded and displayed in Figure 5.5.

The DAS beamformer requires at least 65 beams to guarantee no visible
scalloping loss in the imaged scene. Since the same algorithm is used for
all beamformers for beams transmission, this number can be taken as basis
for the required number of transmit beams btr. We think that the other
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Figure 5.4: Maximum scalloping loss of single point moving at constant
radius r, where r varies between 36 and 56 mm.

beamformers can then achieve non-visible scalloping loss with btr = 65
by using multiline acquisition (MLA, Section 2.3.7). This can be done
by creating multiple receive beams per transmit beam. In this thesis, the
beamformed images are obtained by sequentially transmit beams and, for
each transmit beam, create a single receive beam aimed at the same focus
point. The perfect receive beam reconstruction is simulated by simply
increasing the number of transmit beams so that btr = bre. Scalloping loss
can obviously also be attenuated by simply increasing btr, but this results
in an increased image acquisition time and therefore reduced frame rate.
The transmit beam density is therefore always kept as low as possible. The
transmit beam density could be set even lower by increasing their width,
but this would result in a resolution loss, as explained in Section 4.1.

As expected from Figures 5.3 and 5.4, the MV beamformer requires a
much higher beam density than the other beamformers. At the end of
this section, we show an extension of Figure 5.4 for the MV beamformer
with higher beam densities until invisible scalloping loss is achieved.
As expected from the previous experiments, the IAA-MB approaches
are experiencing lower scalloping loss than DAS at low beams densities
(bre < 35 for IAA-MBSB and bre < 31 for IAA-MBMB), but experience
higher scalloping loss at higher beams densities. They require a higher
beams density that DAS to avoid visible scalloping loss. This shows that
the multibeam approach is good at attenuating major scalloping losses,
by combining the information contained in several beams. However,
since the IAA approaches are high-resolution beamformers, any remaining
scalloping loss not corrected by the multibeam approach can be of higher
magnitude than DAS due to the difference in their steered response
mainlobe width.

The same experiment is then done on an imaged section containing
speckle. Since speckle noise introduces randomness in the imaged
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medium, the same experiment is done with two different randomness
generator seeds, 2 and 42. Since a background with speckle noise is not
smooth, different resolution cells can have different values, which means
that a beamformer’s maximum scalloping loss can not be estimated as done
previously. The experiment displayed in Figure 5.3 is reiterated here with a
speckle background and displayed in Figure 5.6. The results show that the
scatterer point minimum gain is not guaranteed to be exactly in between
two beams anymore, due to the randomness of the background level. For
that reason, for a given beam density btr, four frames are created with a
single scatterer point shifted 1/4th of the angular distance between two
beams per frame. Note that this does not guarantee to obtain the maximum
possible scalloping loss, but it is considered in this thesis as good enough
for the targeted accuracy. Those speckle simulations are indeed targeted
to be used as examples of realistic divergences from the noiseless medium.
Accurate analysis of speckle media would not only require a much higher
number of frames per simulation, but also many more speckle background
example in order to obtain meaningful statistical data. The scale of added
computations and workload puts this out of the scope of this thesis.

With the new approach to maximum scalloping loss estimation, the
next experiment simulates a medium with speckle noise and a scatterer
point at 40 mm radius. The experiment is run with the two speckle
backgrounds generated. The results are displayed in Figure 5.7. As
observed in the previous experiments, the MV algorithm experiences much
heavier scalloping loss than the other beamformers. The IAA algorithm
performs very well for an adaptive method, but some scalloping loss can
still be visible for low beam densities. Another interesting observation is
that the adaptive beamformers are more sensitive to the medium properties
than the DAS one. They are sensitive to the presence of speckle noise and
are consistently requiring fewer transmit beams to guarantee no visible
scalloping loss. This can easily be explained by the adaptive nature of the
beamformers steered response. Adaptive beamformers can take advantage
of directions towards which no or little energy is recorded and build steered
responses with big sidelobes along those directions if it helps to build
a higher and narrower mainlobe. The noiseless scenario can therefore
produce globally narrower mainlobes, which results in an increase in their
required density to avoid visible scalloping loss.

The required number of receive beams for each beamformer is sum-
marized in Table 5.1. The numbers for the MV beamformer are obtained
from extending bre up to 981. An extension of Figures 5.5 and 5.7 for the
MV beamformer is displayed in Figure 5.8. It is worth mentioning that 981
beams for 35 degrees coverage is well above typical beam densities and,
even assuming that perfect MLA with bre > 15 · btr is feasible, such a high
number of receive beams may cause significant computational delays. In
practice, the required receive beam density may have to be reduced. This
can be achieved to the cost of reduced resolution by for example increasing
the diagonal load and/or by creating wider beams.

As explained in Section 4.1, the number of transmit beams has an
impact on the beamformer’s maximum frame rate. With btr = 65, the
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Beamformer Without speckle Speckle - seed 2 Speckle - seed 42
DAS 65 71 71
MV 981 381 381

IAA-MBSB 191 101 123
IAA-MBMB 173 101 121

Table 5.1: Required number of beams for non-visible scalloping loss.

acquisition time of a single image can be obtained from Equation (4.1):
tim = 2 · 0.15 · 65/1500 = 13 ms. In terms of frame rate (Equation (4.2)),
this results in a maximum of fim = 104/(2 · 65) = 76.9 frames per second.
It is however important to mention that all images produced in this thesis
are relatively small, only 2.5 cm range and 35◦ angular extent, and are
produced with all beams focused at the same radius (40 mm). In many
applications, bigger images are produced by creating beams with various
focal radii. Many applications create images by sequentially transmitting
and recording focused beams with a constant focal radius, such as done in
this thesis, and repeat the sequence with a new focal radius. Each sequence
is often referred to as a line of focus. For images with multiple lines of focus,
the maximum frame rate can be estimated to that of an image with single
line of focus divided by the number of lines of focus.
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(a) Maximum scalloping loss of DAS, MV, IAA-MBSB and IAA-MBMB beam-
formers for bre ∈ [11, 191].

(b) Maximum scalloping loss of DAS, IAA-MBSB and IAA-MBMB beamformers
for bre ∈ [31, 191].

Figure 5.5: Maximum scalloping loss of single scatterer point at 40 mm
radius in a noiseless medium with varying number of receive beams bre.
The maximum scalloping loss values of all beamformers are displayed for
bre ∈ [11, 191] in (a). For enhanced visibility, a focus on the DAS, IAA-MBSB
and IAA-MBMB values for bre ∈ [31, 191] is provided in (b).
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(a) Scatterer point at 40 mm radius.

(b) Scatterer point at 55 mm radius.

Figure 5.6: Normalized backscattered gain of scatterer point shifted 1/8th
of the distance between beams per frame in a speckle background (seed 2).
The scatterer point is located at a constant 40 mm radius in (a) and 55 mm
radius in (b).
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(a) Maximum scalloping loss for bre ∈ [11, 191] in a speckle background (seed 2).

(b) Maximum scalloping loss for bre ∈ [11, 191] in a speckle background (seed 42).

Figure 5.7: Maximum scalloping loss of single scatterer point at 40 mm
radius in a speckle background with bre ∈ [11, 191] receive beams. The
results with speckle seed 2 are displayed in (a) and those with speckle seed
42 are displayed in (b).
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Figure 5.8: MV Maximum scalloping loss of single scatterer point at 40 mm
radius in different media. MV is in noiseless medium, MV-2 and MV-42 in
speckle noise (Seed 2, respectively 42).
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5.2 The effect of motion within frames

Going past the assumption of static scenery within frames, the experiments
of this section aim to provide an understanding of the possible effects
of motion within frames and the limitations resulting from it. Adaptive
beamformers are generally based on models assuming multiple static
uncorrelated reflectors in the imaged medium. Section 2.4.3 focused on
divergences from the model due to the highly correlated nature of the
reflected signals. Moving reflectors are also diverging from the assumed
model, which might result in visible artifacts.

In Section 5.1, the experiments focused on scatterer points moving at
the array focus radius, since it was assessed to be the motion type causing
the highest scalloping loss. This motion type occurs very rarely, if ever, in
real ultrasound imaging. This section focuses on more realistic scenarios
with various linear motion types.

In this section, the velocity vs of a scatterer point s is defined as vs =
(vx, vy) m/s, where the X axis is the image azimuth dimension and Y its
range dimension. An illustration of a beamformed image with various
examples of linear motion directions vs at 10 m/s is displayed in Figure
5.9. Within a single frame, motion is simulated by shifting a scatterer point
before every beam transmit. Let us for example consider a scatterer point
located 40 mm from the array and moving laterally at vs = (5, 0) m/s. With
a single beam transmit taking 0.2 ms, the scatterer point is laterally shifted
5 m/s · 0.2 ms = 1 mm per transmit beam.

It is of interest to compare vs to the image acquisition time tim, since
a long image acquisition time is expected to result in higher sensitivity
to scatterer points motion. Equation (4.1) defined the image acquisition
time as function of the number of transmit beams btr. In this thesis, the
simulated probe always transmits beams sequentially from left to right
(towards positive X). In order to relate the scatterer points velocity vs to the
acquisition time tim, Equation (5.1) defines the transmit beams distribution
lateral velocity vtr as:

vtr = btr · db/tim, (5.1)

where db, defined in Equation (3.3), is the lateral distance between two
beams at range r. Combining Equations (4.1) and (3.3), Equation (5.1)
becomes:

vtr =
btr · 0.3 · r · c

2 · bbtr/2c · rmax · btr
=

1500 · r
bbtr/2c , (5.2)

where rmax = 0.15 m is the maximum acquisition radius, c = 1500 m/s the
transmitted signals’ speed of propagation and bc is the floor operator. For
example, let us imagine an image illuminated by btr = 11 transmit beams.
Their lateral velocity at 40 mm range is vtr40 = 1500 · 40 · 10−3/5 = 12 m/s,
and at 55 mm range vtr55 = 1500 · 55 · 10−3/5 = 16.5 m/s. This example is
illustrated in Figure 5.9.

If not mentioned otherwise, all beamformed images of this section are
considered to be built from btr = 65 transmit beams and bre = 3 · 65 = 195
receive beams. The number of transmit beams corresponds to the required
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Figure 5.9: Illustration of beamformed image with various velocities. The
velocity vectors are at a different scale than the image azimuth and range.

number of beams to guarantee no visible scalloping loss for DAS in a
noiseless medium and bre = 195 ensures no visible scalloping loss for
the IAA and DAS beamformers (Table 5.1). In order to simulate perfect
multiline acquisition (MLA) on reception, the images are actually created
from btr = bre = 195 beams, but the image acquisition time is still
considered to be tim = 0.3 · 65/1500 = 0.013 s = 13 ms. We could
also have chosen bre ≥ 981 in order to ensure no visible scalloping loss
for the MV beamformer as well, but such high beam densities are too
computationally demanding for us to run all the experiments with such
simulations. Furthermore, we consider such beam densities to be too
high to be realistically implementable and therefore not very interesting
to analyze.

The linear motion of a scatterer point is, as explained previously,
simulated with a constant shift of its position before each beam transmit
and recording. With the MLA approach, the scatterer points should
actually only move in between two transmit beams and remain static for
receive beams constructed from the same transmit beam. With a MLA
coefficient of MLAc = bre/btr = 195/65 = 3, the scatterer points should
only be shifted once every three receive beams. We have however chosen
to have the scatterer point shifted in between all beams for two main
reasons. First of all, with continuous motion, the results of this section can
be extended to MLA approaches with virtually any coefficient value MLAc,
including single-line acquisition (MLAc = 1). Secondly, this thesis focuses
on worst-case scenarios and continuous motion seems to us to be a bigger
divergence from the beamformers’ model of static points than partial
motion. We do not expect the partial motion implementation to result
in additional artifacts for multibeam beamformers than for singlebeam
beamformers.
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5.2.1 Single scatterer point in a noiseless medium

In this thesis, a scatterer point shape in a beamformed image is defined by
the area within 3 dB of its peak gain. This section focuses on imaging a
single scatterer point and analyzing the effects of motion within frames on
its shape.

As initial exposure to motion within frames, let us start with a simple
example. A single scatterer point s is positioned at 40 mm range and
0 mm azimuth in a noiseless medium. In this example, s1 is imaged with
different lateral velocities vs = (vx, 0), vx ∈ {−0.6, 0, 0.6} m/s. The DAS
beamformed image and steered response of s1 when static are displayed in
Figure 5.10. The problems with those plots are that the beamformed image
does not clearly outline the shape of the scatterer point and the steered
response plot only shows its width. Instead, we have chosen to replace both
plots with a contour plot of the beamformed image with 3 color-coded gain
levels (from darkest to brightest): max-100, max-10 and max-3 dB. Figure
5.10 can then be replaced by the DAS contour plot of Figure 5.11b, where
the white area represents the perceived shape of the scatterer point. This
contour plot representation is used as a visualization tool for the rest of this
thesis.

Figure 5.10: DAS beamformed image and steered response of a static scatter
point in a noiseless medium.

Figure 5.11 displays the results of the current experiment for the three
different velocities vx ∈ {−0.6, 0, 0.6} m/s and all beamformers. First
of all, the beamformers obviously have different resolution capacities,
which is why the shape of the scatterer point varies so much depending
on the beamformer used even if static (Figure 5.11b). The comparison
of the DAS and MV beamformed images gives a good example of why
the MV beamformer has historically been introduced as a high-resolution
algorithm.

Compared to the static scene, the scatterer point consistently appears
bigger when it is moving in the same direction as vtr (vx > 0) and smaller
when vx < 0, although the size variation is hardly visible in the MV
beamformed images. The MV beamformer seems much less sensitive
to lateral motion than the other beamformers. But, besides this lateral
dilation or erosion of the scatterer point’s shape, none of the beamformed
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(a) vx = −0.6 m/s. (b) vx = 0 m/s.

(c) vx = 0.6 m/s.

Figure 5.11: Contour plot of DAS beamformed images. Scatter point in
lateral motion in a noiseless medium: vs = (vx, 0) m/s, vx ∈ {−0.6, 0, 0.6}.

images seem to contain visible artifacts. It is worth mentioning that, in
this section, all images are built such that the scatterer point is at 0 mm
azimuth when the center beam is transmitted, regardless of the point’s
velocity, which is why the center of its shape always is at 0 mm azimuth
and 40 mm range. That way we limit potential artifact due to differences
in the scatterer point’s position, including possibly visible scalloping loss
for the MV beamformer. Note that a scatterer point having a linear motion
type, even at constant range, has a varying radius to the array, which means
that it can potentially go in and out of the array’s focus radius.

For the next experiment, multiple frames are simulated with a single
scatterer point located at 40 mm range and moving at different lateral
velocities vx from -0.6 to 0.6 m/s. For any given frame, the width of the
scatterer point is estimated by the mainlobe width of the array’s steered
response at 40 mm radius. For each frame, the resulting scatterer point
width is displayed in Figure 5.12 both as an absolute value and as a relative
increase, in %, compared to that of the scatterer point when static.

As predicted in Table 4.2, the point’s apparent width gets dilated with
positive velocities along its motion path. Motions opposite to the beam
distribution direction (vx < 0) result in the point’s width appearing smaller.
This can be explained by the fact that the scatterer point potentially hits
more transmit beams as vx increases. Following that principle, if vx
increases to very high values, the apparent width of the scatterer point
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(a) Steered response mainlobe width in mm.

(b) Steered response mainlobe width relative to that of the static scatterer point
scenario.

Figure 5.12: Scatter point in lateral motion in a noiseless medium: vs =
(vx, 0) m/s, −0.6 ≤ vx ≤ 0.6.

should decrease. The maximum apparent width should happen when vx
is equal to vtr, where vtr is defined by Equation (5.2). This statement can
be confirmed by extending the current experiment to extreme velocities.
The results with velocities vx ≤ 3 m/s are displayed in Figure 5.13a. With
btr = 65, the acquisition lateral velocity at 40 mm radius is vtr40 = 1500 ·
40 · 10−3/b65/2c = 60/32 = 1.875 m/s. For all beamformers, the scatterer
point’s width increases with its lateral velocity vx and peaks when vx = vtr,
then decreases as vx increases beyond that. This effect is indeed not an
artifact caused by a particular beamformer algorithm but by a physical
limitation, even if different beamformers have different sensitivities to that
effect.

In most imaging applications, one would want to avoid scenarios where
vx converges towards vtr, since the scatterer point can potentially appear
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(a) 0 ≤ vx ≤ 3 m/s.

(b) −3 ≤ vx ≤ 0 m/s.

Figure 5.13: Scatter point in lateral motion in a noiseless medium: vs =
(vx, 0) m/s, −3 ≤ vx ≤ 3.

much wider than it should and may result in a dramatic loss of resolution.
This imposes an upper limitation on the number of transmit beams. Such a
limitation depends on how much resolution loss is considered acceptable,
which depends on the application. As an example, let us consider the
limitation that any scatterer point should not move faster than 80% of the
beam distribution velocity: vx ≤ 0.8 · vtr. Adding to that the assumption
of Section 4.2 that vs ≤ 0.6 m/s, the upper limit beam distribution velocity
with this setup is: vtr = 0.6/0.8 = 0.75 m/s. Since vtr is defined in Equation
(5.2) as a function of the range r, for btr = 65, the upper limit of vtr implicitly
sets a minimum range limit rlim = vtr · bbtr/2c/1500 = 0.75 · 32/1500 =
16 mm. This means that, in this example, resolution losses beyond what is
considered acceptable might occur for range values r < 16 mm.

As mentioned previously, the cause of the apparent dilation or erosion
of a scatterer point is a physical one, but different beamformers have
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different sensitivities to that effect. A quick comparison of the DAS and
MV beamformers shows that the MV beamformer is much less sensitive
to lateral motion, for the same beam density, both in terms of absolute
mainlobe width or relative width increase. One could then speculate that,
for singlebeam beamformers, their sensitivity to lateral motion is highly
correlated with the mainlobe width of their receive beams. Although we
do not prove this speculation in this thesis, it seems logical that, given
the same beam density, creating wider beams would result in the scatterer
point hitting more of them and, consequently, lead to increased sensitivity
to lateral motion.

Regardless of the veracity of this speculation, the sensitivity to lateral
motion of the multibeam IAA approaches can not be solely explained
from their mainlobe width. They appear indeed more sensitive to motion
than their sheer mainlobe width would suggest. The IAA beamformers
are based on the sparse signal representation approach (Yardibi et al.
(2008)), which means that they model static scatterer points and try
to adapt that model to the recorded data. A moving point does not
fit well with this model since the different beams can potentially hold
contradicting information about the presence of a scatterer point in a given
direction. When combining the receive beams into a multibeam covariance
matrix estimate, the mismatch between the beams’ information can cause
distortions in the scatterer point’s apparent shape. We did not know how
such a divergence between the expected model and the recorded data
would affect the performance of the IAA beamformers. We see from
Figures 5.11 and 5.13 that this divergence only seems to result in loss
of image resolution. The IAA-MBSB beamformer is more sensitive than
DAS in terms of relative loss of resolution, but still maintains an absolute
resolution under or equal to that of the DAS. The width of the scatterer
point follows the same general pattern with the IAA-MBSB as with the
singlebeam beamformers. It increases with vx, peaks at vx = vtr and then
decreases.

The IAA-MBMB, on the other hand, displays a different behaviour with
vx ≤ −0.6 m/s. While, with the other beamformers, the width of the
scatterer point diminishes with vx going towards−∞, it appears with IAA-
MBMB to grow back and even beyond its value when static. The IAA-
MBMB is also altogether more sensitive to lateral motion than IAA-MBSB
and can yield results with lower resolution than DAS for relatively high
velocities, both positive and negative. Both the IAA-MBSB and IAA-MBMB
beamformers suffer from this discrepancy of the imaged medium from the
assumed model. However, the IAA-MBMB approach is more sensitive
to this divergence since it uses the multibeam R̂ for the final estimate of
the scatterer point amplitudes (Equation (2.58)), whereas the IAA-MBSB
approach only uses the corresponding time- and phase-shifted array data
for that final step (Equation (2.59)).

For the next experiment, scatterer points moving in different directions
are imaged. The beamformed images are simulated in the same manner
as for the previous experiment, with a single scatterer point moving in a
noiseless medium. The only difference is that the scatterer point is not only
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assumed to move laterally (vx 6= 0), but also vertically (vy 6= 0). The goal
of this experiment is to find out if the vertical component of a scatterer
point’s velocity induces additional artifacts in its apparent shape. Different
scatterer point velocities vs such that |vs| = 0.6 m/s are experimented with
and the resulting beamformed images are displayed in Figure 5.14.

The results of Figure 5.14 converge with those of Figure 5.12 in the
sense that motion within frames only seems to result in dilation or erosion
of the scatterer point. However, it is worth noticing that the direction of
dilation ds = (dx, dy) m does not always correspond to the direction of
motion vs = (vx, vy) m/s. The Y component dy is always of same sign
as vy, but the X component is not only dependent on vx, but also vy and
vtr. Figures 5.14c and 5.14d reveal that the scatterer point appears dilated
along the X axis also with vertical linear motion (vx = 0). Since the images
are formed by sequentially transmitting beams from left to right (vtr ≥ 0),
the direction of dilation has dx > 0 even if the scatterer point has no lateral
motion. This can result in visual confusion of the direction of dilation, since
the resulting scatterer point shape can look very much alike for various
velocity directions.
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(a) vs = (−0.6, 0) m/s. (b) vs = (0.6, 0) m/s.

(c) vs = (0,−0.6) m/s. (d) vs = (0, 0.6) m/s.

(e) vs = (−0.42, 0.42) m/s. (f) vs = (0.42,−0.42) m/s.

(g) vs = (−0.42,−0.42) m/s. (h) vs = (0.42, 0.42) m/s.

Figure 5.14: A single scatterer point in various linear motions vs with
|vs| = 0.6 m/s in a noiseless medium. Contour plot levels: max-100, max-
10 and max-3 dB.
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5.2.2 Closely separated points in a noiseless medium

Section 2.4.3 explored the issues with the presence of coherent signals in
a recorded wavefield. Adaptive beamformers such as MV assume signals
reflected by different scatterer points to be totally uncorrelated. Since active
beamforming systems are by definition transmitting signals and recording
their echoes from elements in the imaged medium, those echoes are by
nature correlated. This deviation from the model can induce apparent
signal cancellation and result in lower SNR of the signals backscattered
by the scatterer points in the imaged medium. The MV beamformer used
in this thesis actively uses the spatial smoothing robustification method
(Section 2.4.3) to decorrelate as much as possible the scatterer point echoes
and reduce the signal cancellation effect.

The IAA approaches do not use spatial smoothing, since they are both
based on the sparse signal representation and the multibeam covariance
matrix estimate approaches. As mentioned in Section 2.4.7, the multibeam
approach can be used as an alternative method to spatial averaging
to partially decorrelate spatially different signals. Furthermore, due to
the sparse signal representation, when fitting the recorded data into the
covariance matrix model, the data from two closely-separated scatterer
points does not match with any potential single point in the model. For
those reasons, spatial averaging is deemed not necessary for the IAA
approaches.

Closely-separated scatterer points are a deviation from the expected
model, not due to their proximity, since the model expects closely-
separated points, but due to the high coherence of their respective
backscattered signals. The spatial averaging approach (Section 2.4.3) is
used for the DAS and MV beamformers to decorrelate the backscattered
signals. Since the length of the subarrays is typically taken as a user
parameter, we can expect this approach to yield sub-optimal performances.
The IAA beamformers are able to decorrelate recorded signals without
spatial averaging or required user parameter. We therefore expect the
IAA beamformers to globally yield more optimal corrections for signal
coherence than the beamformers using spatial averaging.

However, we do not know how two closely-separated points in motion
would affect the performances of the IAA beamformers. We saw in Section
5.2.1 that motion of a single scatterer point may result in shape distortion
and resolution loss. But the presence of motion with coherent signals might
become too much of a deviation from the expected model for the IAA
beamformers to correctly handle it.

In this section as well as the previous one, all beamformed images are
considered to be built from btr = 65 transmit beams and bre = 3 · 65 = 195
receive beams by simulating perfect parallel receive beamforming. The
beamformed images are also displayed as contour plots in order to outline
the apparent shape of the scatterer points. As defined in Section 2.2.4, two
points are considered resolved only if the minima between their peaks is
of lower or equal amplitude than the lowest peak gain minus 3 dB. In the
contour plots, the scatterer points are resolved only if their shape, delimited
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by the white colored layer, do not intersect.
Let us first start with static scatterer points. Two scatterer points s1 and

s2 are simulated in a noiseless medium at 40 mm range and respectively 0
and 0.75 mm azimuth (or 0 and 1.07◦). With btr = 65, the distance between
two transmit beams at 40 mm range is 0.375 mm. The scatterer points
are therefore both located on a transmit beam trajectory and are separated
by a transmit beam exactly in between them. Since both points are static
and on a transmit beam trajectory, they are not subject to scalloping loss.
The resulting beamformed images are displayed in Figure 5.15. In this
case, none of the beamformers are able to resolve the two scatterer points,
although the MV beamformer is very close to achieving it. The two points
are spatially too correlated, or in other words too close to each other, for the
beamformers to resolve them.

Before adding motion into the imaged scene, it is worth having a short
reflection on the image acquisition sequence. In this thesis, an image is
formed by sequentially transmitting and recording beams with their focus
point shifted from negative azimuth to positive azimuth, or in other words,
towards positive X (Figure 5.9). Imagining that a scatterer point s1 located
at position (x1, y1) is illuminated at time t1, then any point s2 located at
position (x2, y2), such that x2 > x1 is illuminated at time t2 ≥ t1. If
the scatterer points are not illuminated by the same transmit beam, then
t2 > t1. Let the true distance between s1 and s2 be δx = x2 − x1 and the
distance perceived by the beamformer be δxBF. Let us further assume that
both s1 and s2 are moving at the same lateral velocity vx. Then the true
distance δx is constant regardless of vx, but the perceived distance δxBF
can vary depending on δx, vx and δt = t2 − t1. Based on those reflections,
one could predict that lateral motion vx > 0 may help to resolve closely
separated scatterer points, since their apparent relative distance δxBF might
increase. At the opposite, a lateral motion vx < 0 may make it harder to
resolve s1 and s2.

Moving past static scatter points, the experiments of Section 5.2.1 are
reproduced with the following scenario. Different images are simulated
with the scatterer points moving in different directions at 0.6 m/s in a
noiseless medium. In Section 5.2.1, the scatterer point was guaranteed to
hit the center beam regardless of its velocity. In this section, this guarantee
still holds for s1, but not for s2. If s2 has a higher lateral velocity vx than that
of the image acquisition, vtr as defined in Equation (5.2), it may even exit
the image sector before being illuminated and would then not be detected.
In our experiments, the number of transmit beams is set to btr = 65, which
means that the image acquisition lateral velocity at 40 mm range, defined
in Equation (5.2), is vtr = 1500 · 40 · 10−3/bbtr/2c = 60/32 = 1.875 m/s.
Since the scatterer points lateral velocity vx ≤ 0.6 m/s, both points are
guaranteed to be illuminated. However, since s2 is not guaranteed to
perfectly hit a transmit beam trajectory, scalloping loss can occur. With
bre = 195 receive beams and perfect MLA, the scalloping loss is kept below
the visibility threshold (1 dB) for the DAS, IAA-MBSB and IAA-MBMB
beamformers. The effects of scalloping loss might be visible in the MV
beamformed images.
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Figure 5.15: Contour plot of beamformed image with two closely-separated
scatterer points in a noiseless medium. Color levels are: max-100, max-10
and max-3 dB.

The beamformed images resulting from this experiment are displayed
in Figure 5.16 as contour plots similar to those of Figure 5.14. It may seem
logical that introducing motion vx < 0, opposite to the image acquisition
direction, can add difficulties to resolve the two points, since their apparent
distance δxBF decreases with vx. One could then hope that the inverse
is true as well, with vx > 0 inducing an increased apparent distance
and therefore increased chance of resolving s1 and s2. These assumptions
seem to hold for the MV beamformer, but not for the IAA approaches.
This can be explained by the fact that our MV beamformer is based on
the single-beam covariance matrix estimation approach, whereas the IAA
beamformers are based on the multibeam covariance matrix estimation
(Section 2.4.7). For single-beam beamformers, let us assume that the
scatterer points are located in the direction matching that of the nearest
beam. This assumption is technically false and a simplification of reality,
but not that far from it for velocities vx well under vtr. The first scatterer
point is then always paired with the array’s center beam (θ = 0). If s2
is paired with beam n, where n = 0 is the center transmit beam, then its
apparent distance to s1 is n · dB. Lateral motion may then affect which beam
s2 is paired with and thus influence on the points’ apparent distance. This
tendency is also true for the DAS beamformer, since it is also a single-beam
beamformer. However, due to its poor resolution capacity, the DAS is not
able to resolve the two scatterer points in any of the scenes of Figure 5.16.

For multibeam beamformers, each beamformed image cell is built
from multiple beams, so the scatterer points can not be paired with a
single beam. If the scatterer point are moving, the beams hold different
information about their location. As seen in Section 5.2.1, the more vx
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converges towards vtr, the more beams are likely to illuminate the scatterer
point. This divergence in the scatterer points apparent location can result
in loss of resolvability. For velocities in opposite direction (vx < 0), fewer
beams contain information about the same scatterer point, which means
that the data is more likely to correspond to the expected model of static
scatterer points. Note that extreme velocities (vx < −1.2 m/s) may cause
mismatch with the expected model, since a point detected by a beam
might not be detected by the neighboring beams, which might confuse the
beamformer (Figure 5.13b).

The multibeam beamformers are therefore more sensitive to positive
lateral motion (vx > 0) than the single-beam ones, but more robust to
negative lateral motion (vx < 0), at least to some extent. The resolvability
performances of the IAA approaches are, for −0.6 ≤ vs ≤ 0.6 m/s, at best
better than MV and at worst similar to DAS. The vertical component vy
is less of a disturbance to the resolvability of the points than vx. In fact,
any vertical velocity, negative or positive, helps to differentiate the two
points. Figure 5.16 shows the same confusion of dilation direction than
Figure 5.14, where the direction of dilation ds does not always point in the
same direction as the scatterer point velocity vector vs.
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(a) vs = (−0.6, 0) m/s. (b) vs = (0.6, 0) m/s.

(c) vs = (0,−0.6) m/s. (d) vs = (0, 0.6) m/s.

(e) vs = (−0.42, 0.42) m/s. (f) vs = (0.42,−0.42) m/s.

(g) vs = (−0.42,−0.42) m/s. (h) vs = (0.42, 0.42) m/s.

Figure 5.16: Two scatterer points, initially 0.75 mm apart, in various linear
motions vs with |vs| = 0.6 m/s in a noiseless medium. Contour plot levels:
max-100, max-10 and max-3 dB.
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5.3 Motion with naive MLA

We have so far only focused on perfect MLA, so it would be interesting
to see if real MLA induces artifacts. There exist several MLA approaches
(Hergum et al. (2007)), but we choose to experiment with a naive approach
to MLA. For each transmit beam, three receive beams with different
focus points are created by time-delaying the recorded data. With this
naive approach, the magnitude of the receive beams is not corrected to
compensate for the difference in the energy sent towards their focus point.

In this example, the receive beams are built such that they are uniformly
distributed along the image azimuth. If dB is the distance between two
transmit beam, the receive beams are built with focus points shifted
{−dB/3, 0, dB/3}mm from those of the transmit beams. The experiment of
Figure 5.5, where the beamformers’ maximum scalloping loss is estimated
for different beam densities, is repeated in Figure 5.17 with varying
transmit beam densities btr and bre = 3 · btr.

Since no beam correction is done, the beamformers are generally
experiencing higher scalloping loss than with perfect MLA. However naive
MLA converges towards perfect MLA for high beam densities, since little
correction is then required. For that reason, the MV and IAA-MBSB
require roughly the same bre threshold to become shift-invariant with SLA,
or perfect MLA, and naive MLA, whereas the bre threshold for DAS is
significantly higher with naive MLA (bre = 145) than with SLA (bre =
65). We can notice though that the IAA-MBMB beamformer impressively
yields a lower bre threshold with naive MLA than with SLA. As explained
in Section 5.1, we can reasonably expect the multibeam beamformers to
roughly correct for scalloping loss by combining overlapping beams in
directions where scalloping loss occurs. However, we did not expect the
IAA-MBMB to require fewer receive beams when using MLA without
scalloping loss correction than when using SLA. In order to have a closer
look at this issue, we can take a look at the actual maximum and minimum
gains of the imaged scatterer point instead of their difference, which is the
maximum scalloping loss. This gain decomposition is done both for the
SLA (Figure 5.5) and MLA (Figure 5.17) approaches and is displayed in
Figure 5.18.

For the singlebeam beamformers, the maximum gain of the scatterer
point is constant, regardless of the transmit and/or receive beam density or
whether MLA is used. This makes sense, since the scatterer point is in this
case perfectly aligned with both a transmit beam and a receive beam. For
the minimum gain scene, the naive MLA is logically suffering from higher
scalloping loss than SLA, since the transmit beam density is a third of the
SLA one and the scalloping loss induced from the angular undersampling
of the transmit beams is not corrected for. We notice nevertheless that
the minimum gain experienced by MLA converges towards that of SLA
for high receive (and therefore transmit, since the ratio bre = 3 · btr is
maintained) beam density. This last comment is also true for the multibeam
beamformers. The main difference with the singlebeam beamformers is
that the maximum gain varies with the beam density. Given a receive
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beam focused towards a scatterer point, the point’s gain variation is caused
by the neighboring receive beams. When focusing on the position of the
scatterer point, the beamformers try to maximize the energy received from
that point while minimizing energy received from other directions. For
singlebeam beamformers, each cell of the beamformed image is only based
on a single beam, so the energy perceived by neighboring beams does not
influence the estimated gain of that cell. For multibeam beamformers,
given the same image cell, the energy perceived by neighboring beams
is included in the covariance matrix estimate and is seen as noise data
to minimize. Due to the beams’ proximity to the direction of focus, the
multibeam beamformers may in this case not be able to fully cancel out
the noise from the neighboring beams and therefore may yield steered
responses with wider, but lower, mainlobes.

For the IAA-MBSB, this variation is minor (less than 1 dB between
bre = 11 and bre = 195) both with the SLA and MLA approaches. The
reason for this low variation is that the IAA-MBSB gets its final gain
estimates from a single beam (Equation (2.59)), even if the set of weights
used to produce that estimate are based on the data from multiple beams.
For the IAA-MBMB beamformer, this behavior is accentuated due to the
image cells being formed from the multibeam covariance matrix estimate
(Equation (2.58)) instead of the time-delayed recorded data from a single
receive beam. The MLA approach is less sensitive to this gain drop effect
than the SLA approach for the same receive beam density bre, since the
transmit beam density btr is then lower and therefore less energy from
neighboring transmit beams is radiated towards the scatterer point.

With the issue of motion between frames explored with the naive
MLA approach, we also want to analyze the effects of motion between
beams and repeat the experiments of Section 5.2.2. Similarly as for Figure
5.15, we simulate two points s1 and s2 at 40 mm range such that both
are on the trajectory of a transmit beam. With dB defined by Equation
3.3 as the distance between two beams, given a range r, s1 and s2 are
laterally separated by 2 · dB = 0.75 mm. Figure 5.19 shows the resulting
beamformed images, as contour plots, with static scatterer points. In
that case, naive MLA seems to yield better results than perfect MLA
(Figure 5.15), with an apparent higher resolvability for all beamformers
except DAS. The MV beamformer is even this time able to resolve the two
points. Since both points are on a transmit beam trajectory, the scalloping
loss experienced in between them is not corrected for in the naive MLA
approach, which, in this case, helps for resolving them.

However, we can not always expect this lack of correction to be so
advantageous for us. Figure 5.20 shows the results of the same scene as
Figure 5.19, but with both scatterer points moving in various directions at
0.6 m/s. In this experiment, s1 is still always guaranteed to hit the array’s
center transmit beam, but s2 can experience scalloping loss. Figures 5.20a,
5.20e and 5.20g are good examples of s2 experiencing visible scalloping loss,
which is why it appears smaller than s1 for the beamformed images from
the MV and IAA-MBSB beamformers.

In Figures 5.20c-5.20h, both scatterer points appear rippled for the DAS,
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MV and IAA-MBSB beamformers. This ripple is caused by the MLA
approach that, in this case, creates three receive beams for each transmit
beam. The DAS beamformed image of Figure 5.20c is a flagrant example
as this ripple. We can see roughly three distinct range levels of the white
shape (at −3 dB). Each range level represents a different transmit beam, at
0, 0.375 and 0.75 mm azimuth.

In every imaged scene, the IAA-MBMB yields impressive results
compared to the other beamformers. It manages to correct both for the
visible scalloping loss and shape distortion induced by the naive MLA
approach. The IAA-MBMB beamformed images look identical to those of
Figure 5.16 with perfect MLA.
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(a) Maximum scalloping loss of DAS, MV, IAA-MBSB and IAA-MBMB beam-
formers for bre ∈ [15, 195].

(b) Maximum scalloping loss of DAS, IAA-MBSB and IAA-MBMB beamformers
for bre ∈ [75, 195].

Figure 5.17: Maximum scalloping loss of single scatterer point at 40 mm
radius in noiseless medium with naive MLA. All beamformers use MLA
with bre = 3 · btr. The maximum scalloping loss values of all beamformers
for bre ∈ [15, 195] are dispalyed in (a). For enhanced visibility, a focus on
the DAS, IAA-MBSB and IAA-MBMB values for bre ∈ [75, 195] is provided
in (b).
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(a) DAS (b) MV

(c) IAA-MBSB (d) IAA-MBMB

Figure 5.18: Maximum and minimum gains of single scatterer point at
40 mm radius in a noiseless medium.

Figure 5.19: Contour plot of beamformed image, using naive MLA, with
two closely-separated scatterer points in a noiseless medium. Color levels
are: max-100, max-10 and max-3 dB.
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(a) vs = (−0.6, 0) m/s. (b) vs = (0.6, 0) m/s.

(c) vs = (0,−0.6) m/s. (d) vs = (0, 0.6) m/s.

(e) vs = (−0.42, 0.42) m/s. (f) vs = (0.42,−0.42) m/s.

(g) vs = (−0.42,−0.42) m/s. (h) vs = (0.42, 0.42) m/s.

Figure 5.20: Two scatterer points, initially 0.75 mm apart, in various linear
motions vs with |vs| = 0.6 m/s in a noiseless medium. Contour plot levels:
max-100, max-10 and max-3 dB.
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Chapter 6

Conclusion

Conventional 2D medical ultrasound imaging is based on transmitting
focused acoustic beams and recording their echoes from potential scatterer
points in the imaged medium. Traditionally beams are transmitted
sequentially towards a set of focus points at a fixed distance, or radius, to
the array’s center. The transmission process can be iterated for different
radii, also known as focus lines. For each transmit beam, the array is
often dynamically focused towards the same focus point as the transmit
beam and the resulting image samples contain information about physical
elements in the medium on, or close to, the transmit/receive beam
trajectory. Many different image acquisition processes have been presented
over the years as alternatives to this process. Different approaches can for
example transmit multiple beams in parallel, create multiple receive beams
per transmit beam or combine multiple receive beams in order to extract
spatial information outside of their focus trajectories.

In general, the backscatterered signals from scatterer points that are not
on a transmit and/or receive beam trajectory can be attenuated and cause
scalloping loss, although different beamformers have different sensitivities
to that effect. Scalloping loss can become problematic when its magnitude
is high enough to cause visible dim of the scatterer points’ gain and, in
extreme cases, result in them disappearing in the background. When
producing series of images in presence of tissue motion, scalloping loss
is known to potentially result in scatterer points visibly blinking.

If a beamformer system is built such that the magnitude of scalloping
loss is guaranteed to be below a visibility threshold in all cases, the system
is said to be lateral shift-invariant. When the effects of scalloping loss are
visible, the system is often said to be subject to angular undersampling,
which means that the density of transmit and/or receive beams is too low.
We showed that all beamformers used in this thesis, including the IAA-
MB approaches, can be made lateral shift-invariant with a sufficiently-high
beam density. Furthermore, the IAA-MB approaches, despite being high-
resolution beamformers, require significantly lower beam densities than
that of the MV beamformer.

Most of the existing studies on motion in ultrasound imaging focus
on the effect of motion on multiple image frames. A high transmit beam
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density is desirable to limit the scale of scalloping loss, but can result in
a high image acquisition than and thus impact the frame rate capacity
of a beamformer. Another aspect to motion that is often overlooked is
its effects within a single frame. Since the acquisition of a single frame
is not instantaneous, motion in the imaged medium can also result in
artifacts due to position shifts between each beam transmission. The pulse
signal transmitted by the probe is typically very short (about 1 µs in this
thesis), so any scatterer point with realistic velocity (vs << c, where c
is the speed of propagation of the transmitted signal) can be considered
idle while reflecting it. The main artifact of motion within a single frame
is possible distortion of the scatterer point’s shape, mostly in the form of
dilation or erosion, depending on how many transmit beams hitting it.
With a relatively high image acquisition time, such distortions can become
visible and result in image resolution loss. Singlebeam beamformers are
relatively robust to that aspect of motion since each image cell is only based
on a transmit single beam.

Multibeam beamformers produce images whose cells can be computed
from multiple transmit and/or receive beams. Due to that property, we
predicted multibeam beamformers to be more sensitive to tissue motion
within a single frame than singlebeam beamformers. We showed that the
IAA-MB beamformers are indeed more prone to distortions of the scatterer
point’s shape than the singlebeam DAS and MV beamformers. In extreme
cases, the resolution capacity of the IAA-MB beamformers can drop to that
of DAS or even worst for the IAA-MBMB approach.

Since in real applications the imaged medium properties are not under
our control, the image acquisition time should be kept as low as possible
in order to attenuate any distortion of the scatterer points’ shapes. It
seems that there is a choice to make between reducing distortion effects,
by keeping the transmit beam density low, and reducing the effects of
scalloping loss, by ensuring a transmit beam density high enough. Both
issues can also be solved with a low density of wide transmit beams, but
to the cost of reduced image resolution. An alternative option used in
this thesis is multi-line acquisition (MLA), which is the concept of creating
multiple receive beams for each transmit beam. Since the transducer
arrays used in medical ultrasound imaging use dynamic focusing on
receive, an increase of the receive beam density mostly costs computational
time. In most systems, the data recording and processing can be done
simultaneously. Furthermore, data processing can often be made faster
than data recording, which is limited by the propagation speed of the
transmitted pulses.

Assuming a transmit beam density high enough to allow for scalloping
loss correction, a MLA beamformer can be made shift-invariant with a
lower image acquisition time, and therefore higher robustness to tissue
motion, than that of its SLA variant with same receive beam density. Given
the probe and medium parameters as defined in Section 3.1, we estimated
the minimum transmit beam density required for the DAS beamformer
using SLA to be considered lateral shift-invariant and took it as reference
for the all beamformers. We then assumed that it is possible to make

80



the MV and IAA-MB beamformers lateral shift-invariant with the same
transmit beam density as SLA DAS and a smart use of the MLA approach.
Several MLA approaches have be presented over time and some are more
efficient than others to correct for scalloping loss for receive beams that are
not focused to the same point than the transmit beam they are based on.
In Section 5.3, we found out that even a naive approach to MLA, without
correction for scalloping loss, can help to improve the maximum frame
rate of a lateral shift-invariant beamformer. In addition, the IAA-MBMB
beamformer impressively proved to be able to automatically correct for
scalloping loss and to give similar performances than with perfect MLA. It
is on the other hand more sensitive than the other beamformers to motion
within frames, although it might be of little consequences for realistic
scatterer point velocities, depending on the image acquisition time.

The IAA-MB beamformers are emerging as robust adaptive beam-
formers. They also are qualified as parameter-free algorithms. With some
smart pre-calibration, we think that they they could become as easy to
use as DAS and produce high-resolution images with similar, if not bet-
ter, frame rate and robustness to DAS. With some more studies and testing
on real images, the IAA-MB beamformers might come out as strong altern-
atives to DAS.
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