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A recently proposed variation principle [N. I. Gidopoulos, Phys. Rev. A 83, 040502(R) (2011)] for
the determination of Kohn–Sham effective potentials is examined and extended to arbitrary electron-
interaction strengths and to mixed states. Comparisons are drawn with Lieb’s convex-conjugate
functional, which allows for the determination of a potential associated with a given electron density
by maximization, yielding the Kohn–Sham potential for a non-interacting system. The mathematical
structure of the two functionals is shown to be intrinsically related; the variation principle put for-
ward by Gidopoulos may be expressed in terms of the Lieb functional. The equivalence between the
information obtained from the two approaches is illustrated numerically by their implementation in a
common framework. Published by AIP Publishing. https://doi.org/10.1063/1.4985883

I. INTRODUCTION

Variation principles lie at the heart of many quantum-
chemical theories, giving practical prescriptions for how to
obtain the best electronic energy, wave function, or electron
density via optimization. They may also offer insight into the
connections between traditional ab initio wave-function based
approaches and density-functional theory (DFT). In this work,
we examine a new variation principle, proposed by Gidopoulos
in Ref. 1 for the determination of the non-interacting system
of relevance to Kohn–Sham theory.

The variation principle proposed by Gidopoulos consists
of minimizing the left-hand side of the inequality

h |Ĥ0(v)| i � E0(v) � 0, (1)

with respect to the variations of the potential v , for a fixed
electronic wave function  corresponding to a system of
interest—typically, the physical ground-state wave function
for the system. The energy E0(v) in Eq. (1) is the ground-state
energy of a non-interacting system, associated with the non-
interacting Hamiltonian Ĥ0(v) = T̂ +

P
i v (ri), where T̂ is the

kinetic energy operator. As discussed in Ref. 1, the minimiza-
tion of the left-hand side of Eq. (1) yields the Kohn–Sham non-
interacting potential vs associated with a non-interacting sys-
tem that has the same density as that of the chosen input wave
function  . The same variation principle was also described
earlier by Davidson2 and used as a tool to understand the
analytic properties of the first-order reduced density matrix
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associated with  . This complements its use in Ref. 1, where
it provides a tool for the optimization of the potential v . Here
we refer to Eq. (1) as the Gidopoulos–Davidson variation
principle.

At first glance, the Gidopoulos–Davidson variation prin-
ciple appears to be markedly different from alternative
approaches for determining the Kohn–Sham system corre-
sponding to a reference wave function or density. For example,
in Levy’s constrained-search approach to DFT,3,4 a constraint
on the electron density is explicitly applied to determine the
Kohn–Sham system. More closely related is the Lieb variation
principle, which for a non-interacting system corresponds to
maximizing the left-hand side of the inequality5

E0(v) � (v |⇢)  Ts(⇢) (2)

with respect to the variations of the potential v for a given
input electron density ⇢. Here we introduce the notation (v |⇢)
= s v(r)⇢(r)dr. Both the Gidopoulos–Davidson and Lieb vari-
ation principles involve an unconstrained optimization over
v , yielding the Kohn–Sham potential vs as their optimizer.
Furthermore, their functional derivatives are identical up to
a sign.1,5

These observations motivate us to explore the connec-
tion between the Lieb and Gidopoulos–Davidson variation
principles in Eqs. (1) and (2), respectively. We begin by review-
ing standard variation principles in Sec. II. In Sec. III, we
highlight the connections between the Gidopoulos–Davidson
and Lieb variation principles, including extensions to gen-
eral interaction strengths and to mixed states. A brief review
of the adiabatic connection (AC) is then given in Sec. IV,
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providing a link between the generalized functionals and the
exchange–correlation energy DFT.

Having established the close connection between these
alternative variation principles, we present some results from
numerical implementation in a common framework in Sec. V,
highlighting the equivalent information they yield both in the
non-interacting limit and for arbitrary interaction strengths.
In Sec. VI, we make some concluding remarks and discuss
possible directions for future work.

II. VARIATION PRINCIPLES

In this section, we review the Rayleigh–Ritz varia-
tion principles for pure and mixed electronic states and the
Hohenberg–Kohn and Lieb variation principles of DFT.

A. Rayleigh–Ritz variation principle

Consider an electronic system described by a Hamiltonian
of the form

Ĥ�(v) = �1
2

X

i

r2
i +

X

i

v(ri) +
X

i>j

w�(|ri � rj |)

= T̂ + V̂ + Ŵ�, (3)

where T̂ is the kinetic-energy operator, V̂ is the external
potential operator, and Ŵ� is the electron–electron repulsion
operator for a given electron–electron interaction strength
� 2 [0, 1] such that w0 = 0 (for non-interacting systems) and
w1 = 1/|ri rj | (for physical systems). At a given interac-
tion strength �, the ground-state energy of an N-electron
eigenfunction  of the Hamiltonian H�(v) can be defined
in the context of wave-function theory by varying the
wave function  according to the Rayleigh–Ritz variation
principle,

E�(v) = inf
 2WN

D
 
���Ĥ�(v)��� 

E
, (4)

where WN is the set of all L2-normalized, antisymmetric N-
electron wave functions with a finite kinetic energy,

WN =
(
 �� h | i = 1 ,

PN
i=1 hri |ri i < 1

)
. (5)

The Rayleigh–Ritz variation principle is well defined for all
potentials v belonging to the vector space �⇤ = L3/2 + L1,
which includes all Coulomb potentials.5

It is often more useful to work with mixed rather than pure
states, giving the canonical-ensemble Rayleigh–Ritz variation
principle

E�(v) = inf
�̂2KN

tr �̂Ĥ�(v), (6)

where KN is the set of all admissible ensemble density
matrices,

KN =
�P

i �i | iih i | | �i � 0,
P

i �i = 1, i 2 WN
 
. (7)

Although the ground-state energy can always be defined as the
greatest lower bound in either Eq. (4) or (6), the formulation
in terms of ensembles is more flexible, allowing for mixed-
state solutions. This extra flexibility is important to establish
correspondence between the optimizers in the Rayleigh–Ritz
variation principle commonly used in ab initio theory and the
Hohenberg-Kohn variation principle used in DFT.6

B. Hohenberg–Kohn and Lieb variation principles

Being concave and continuous, the ground-state energy
defined in Eq. (4) may be expressed in terms of the Hohenberg–
Kohn variation principle

E�(v) = inf
⇢2�

(F�(⇢) + (v |⇢)), (8)

where Lieb’s universal density functional F� is obtained from
the ground-state energy by the Lieb variation principle,5

F�(⇢) = sup
v2�⇤

(E�(v) � (v |⇢)). (9)

The functionals E� and F� are a conjugate pair, related by
mutual Legendre–Fenchel transforms. The vector spaces of
admissible densities and potentials are the Banach spaces
� = L3 \ L1 and �⇤ = L3/2 + L1, respectively, encompassing
all N-representable densities ⇢ 2 � and all Coulomb poten-
tials v 2 �⇤, with which the density has a finite interaction
energy.

The Lieb functional defined above is equivalent to the
Levy–Lieb constrained-search functional when defined in
terms of ensembles,

F�(⇢) = inf
�̂!⇢

tr �̂Ĥ�(0), (10)

where Ĥ�(0) = T̂ +Ŵ�. The relationship between the function-
als may be better understood by rewriting the Lieb variation
principle of Eq. (9) in the form

F�(⇢) = sup
v2�⇤

 
inf

�̂2KN
tr �̂Ĥ�(v) � (v |⇢)

!
(11)

= sup
v2�⇤

inf
�̂2KN

⇣
tr �̂Ĥ�(0) � (v |⇢ � ⇢�̂)

⌘
, (12)

which may be viewed as the minimization of tr �̂Ĥ�(0) with
respect to �̂ subject to the constraint that ⇢�̂ � ⇢ = 0 with
Lagrange multiplier v , corresponding precisely to the Levy–
Lieb constrained-search functional in Eq. (10).

We note that the Levy constrained-search functional for
pure states

F�(⇢) = inf
 !⇢
h |Ĥ�(0)| i (13)

is an upper bound to the Lieb functional F�(⇢) � F�(⇢), with
equality whenever ⇢ is pure-state representable. Importantly,
F� gives the same ground-state energy E�(v) as F� in the
Hohenberg–Kohn variation principle for all potentials v , the
only difference being that the minimizing densities with F�

are always pure states.
As shown in Ref. 6, there is a one-to-one correspon-

dence between the ground-state densities obtained from the
Hohenberg–Kohn variation principle with the Lieb functional
as in Eq. (8) and from the Rayleigh–Ritz variation principle
with ensembles as in Eq. (6) but not with pure states as in
Eq. (4).

III. GIDOPOULOS–DAVIDSON VARIATION PRINCIPLE

The variation principle of Gidopoulos in Ref. 1 allows for
the determination of the non-interacting system of relevance
to Kohn–Sham theory and may be written in the form
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D0( ) = inf
v2�⇤

⇣
h |Ĥ0(v)| i � E0(v)

⌘
, (14)

where  2 WN is an electronic wave function correspond-
ing to the physical system of interest; typically the physical
ground-state wave function of Ĥ1(v) for some v 2 �⇤. The
energy E0(v) is the ground-state energy of the non-interacting
system, defined according to Eq. (4). Note that D0( ) is well
defined since h |Ĥ0(v)| i � E0(v) � 0 for each  2 WN by
the Rayleigh–Ritz variation principle.

A. Relationship to Lieb variation principle

The Gidopoulos–Davidson variation principle is related in
a simple manner to the non-interacting Lieb variation principle

F0(⇢) = sup
v2�⇤

(E0(v) � (v |⇢)). (15)

To see the relation, we decompose the non-interacting expec-
tation value h |Ĥ0(v)| i in the manner

h |Ĥ0(v)| i = T ( ) + (v |⇢ ), (16)

where T ( ) = h |T̂ | i and ⇢ are the kinetic energy and
density yielded by  , respectively. A comparison of the
functionals in Eqs. (14) and (15) then gives

D0( ) = T ( ) � F0(⇢ ) = T ( ) � F0(⇢ ), (17)

where we in the last step have replaced the Lieb functional by
the Levy constrained-search functional, noting that ⇢ is pure-
state representable. We conclude that that the Gidopoulos–
Davidson functional of a given system is simply the total
kinetic energy of this system minus the non-interacting Levy
constrained-search functional.

Since the non-interacting Levy functional is the non-
interacting Kohn–Sham kinetic energy,

F0(⇢) = Ts(⇢), (18)

we find that the Gidopoulos–Davidson functional is the Kohn–
Sham kinetic-energy correlation energy,

D0( ) = T ( ) � Ts(⇢ ), (19)

or alternatively,

D0( ) = h |T̂ | i � inf
� 7!⇢ 

h�|T̂ |�i, (20)

where � is a single Slater determinant describing the non-
interacting Kohn–Sham system.

The relationship of the Gidopoulos–Davidson functional
to the correlation kinetic energy is well known.1 Here we see
that, for pure states, the non-interacting Gidopoulos–Davidson
and Lieb variation principles yield the same Kohn–Sham sys-
tem from different directions. The Lieb variation principle
minimizes the value of the non-interacting kinetic energy
Ts, subject to a density constraint, whilst the Gidopoulos-
Davidson variation principle maximizes the correlation kinetic
energy Tc = T � Ts subject to a similar density constraint.
Following the discussion in Sec. II B, we observe that the
potential in the Gidopoulos–Davidson variation principle in
Eq. (14) may be viewed as the Lagrange multiplier for the
density constraint in Eq. (20).

B. Objective functions

The Gidopoulos–Davidson and Lieb functional are also
related in a simple way. Expressing the functionals in terms of
their objective functions, we find

D0( ) = inf
v2�⇤

G0(v , ), (21)

F0(⇢) = sup
v2�⇤

L0(v , ⇢), (22)

where

G0(v , ) = h |Ĥ0(v)| i � E0(v), (23)

L0(v , ⇢) = E0(v) � (v |⇢). (24)

Hence, we obtain in agreement with Eq. (17),

G0(v , ) = T ( ) � L0(v , ⇢ ). (25)

The functional L0(v , ⇢) is concave in v and affine in ⇢, whereas
G0(v , ) is convex in v . After a generalization to mixed
states, G0 becomes convex also in the second variable; see
Sec. III D.

C. Functional derivatives of objective functions

To determine the stationary points of the Gidopoulos–
Davidson and Lieb variation principles, we note that the
ground state energy E0(v) is differentiable with functional
derivative ⇢v if and only if v supports a ground state with a
unique density ⇢v . For a given  2 WN , the expectation value
h |Ĥ0(v)| i is always differentiable with respect to v , with
functional derivative ⇢ . Hence, assuming differentiability of
E0 at v , we have

�G0(v , )
�v(r)

= ⇢ (r) � ⇢v(r) (26)

and7

�L0(v , ⇢)
�v(r)

= ⇢v(r) � ⇢(r). (27)

When ⇢ = ⇢ , the functional derivatives are identical except
for the sign difference.

The second derivatives of G0 and L0 with respect to the
potential v may also be readily evaluated. They are equal to
(minus and plus) one half of the non-interacting static density
response function of the system,7

�2G0(v , )
�v(r)�v(r0)

= � �
2L0(v , ⇢)
�v(r)�v(r0)

= �1
2
�0(r, r0)

= �1
2

X

ia

'i(r)'⇤i (r0)'a(r0)'⇤a(r)

"i � "a
+ c.c., (28)

where the indices i and a denote occupied and virtual orbitals,
respectively, whose orbital energies are "i and "a. In Ref. 1,
focus is placed on the optimization of G0 with respect to v .
In passing, we note that the non-interacting Hamiltonian read-
ily separates into one-electron contributions Ĥ0(v)=

P
k ĥk(v)

with ĥk(v)=� 1
2r2

k + v(rk) and that the orbitals entering
Eq. (28) are the eigenfunctions of this one-electron Hamil-
tonian. The non-interacting ground-state energy is the sum of
the occupied orbital energies, E0(v)=

P
i "i. We also remark

that, although ± 1
2 �0(r, r0) is positive/negative semi-definite,

this does not imply that G0/L0 are convex/concave in v
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since the derivatives in Eq. (28) are not defined for all
potentials.

Throughout this discussion we have assumed differentia-
bility of L0(v , ⇢) and G0(v , ). The functional L0(v , ⇢) is not
straightforwardly differentiable as discussed by Lammert;8

however, this issue can be avoided by using a regularized
form as discussed in Ref. 9. Since the derivative of G0(v , )
amounts to taking the derivative of �L0(v , ⇢ ) [see Eq. (25)],
the same regularization techniques can be applied to this
functional.

D. Generalization to ensembles

Generalizing the Gidopoulos–Davidson functional for
pure states  2 WN to canonical ensembles �̂ 2 KN , we
obtain the functional

D0(�̂) = inf
v2�⇤

�
tr �̂Ĥ0(v) � E0(v)

�
.

= T (�̂) � sup
v2�⇤

�
E0(v) � (v |⇢ )

�
, (29)

where T (�̂) = tr �̂ T̂ . The ensemble Gidopoulos–Davidson
functional is concave. To show concavity, we select �̂1, �̂2
2 KN and obtain for each 0 < ⌫ < 1 the inequality

D0(⌫�̂1 + (1 � ⌫)�̂2)

= ⌫tr �̂1T̂ + (1 � ⌫)tr �̂2T̂ � F0(⌫⇢1 + (1 � ⌫)⇢2)

� ⌫tr �̂1T̂ (1 � ⌫)tr �̂2T̂ � ⌫F0(⇢1) � (1 � ⌫)F0(⇢2)

= ⌫D0(�̂1) + (1 � ⌫)D0(�̂2), (30)

where in the second step, we have used the convexity of the
Lieb functional.

Since  occurs quadratically in D0( ), a similar proof
is precluded for the pure-state Gidopoulos–Davidson func-
tional, which is indeed not concave. Note that, for pure states
�̂ = | ih |, the ensemble Gidopoulos–Davidson functional
reduces to the original functional: D0(�̂ ) = D0( ).

E. Generalization to arbitrary interaction strengths

The Gidopoulos–Davidson functional may be extended to
interacting systems in the manner

D�( ) = inf
v2�⇤

⇣
h |Ĥ�(v)| i � E�(v)

⌘
, (31)

which is related to the Lieb functional via

D�( ) = h |T̂ + Ŵ� | i � F�(⇢ ) (32)

and can re-expressed in the constrained-search form as

D�( ) = h |T̂ + Ŵ� | i � inf
�7!⇢ 

h�|T̂ + Ŵ� |�i. (33)

The first derivative of the objective functional, G�(v , )
= h |Ĥ�(v)| i � E�(v), is again a simple density difference,

�G�(v , )
�v(r)

= ⇢ (r) � ⇢v(r), (34)

and its second derivative can be expressed in terms of the �-
interacting density response function

�2G�(v , )
�v(r)�v(r0)

= �1
2
��(r, r0). (35)

To perform practical optimizations using Eq. (31), we
therefore require knowledge not only of the kinetic energy
associated with the input wave function  but also of
the �-interacting two-electron interaction energy, W�( )
= h |Ŵ� | i. In practice, these quantities can be computed
from the one- and two-particle reduced density matrices,
respectively.

IV. ADIABATIC CONNECTION

The adiabatic connection considers the link between the
non-interacting Kohn–Sham auxiliary and physically interact-
ing systems.10–13 In this approach, the interaction strength �
in Eq. (3) is varied between 0 and 1, whilst imposing the con-
straint that at each interaction strength, the electron density
⇢� remains fixed at that of the physical system ⇢1. Most fre-
quently, a linear path between these two limits is considered,11

where the Coulomb operator is simply scaled linearly by the
value of �. However, generalized ACs14 have been explored
along non-linear paths.15,16 In the present work, only the linear
path is considered but the generalization to non-linear paths is
straightforward.

For the Hamiltonian in Eq. (3), the �-dependent universal
density functional can be written in the constrained-search3–5

form for canonical ensembles,

F�(⇢) = min
�̂!⇢

tr Ĥ�(0)�̂, (36)

where the minimization is over all density matrices �̂ asso-
ciated with the input electron density ⇢. This functional is
convex in ⇢, concave in �, and non-negative for � � 0. The
�-interacting functional can be related to its non-interacting
counterpart via

F�(⇢) = F0(⇢) +
⌅ �

0

@F⌫(⇢)
@⌫

d⌫, (37)

where the derivative is well-defined on the real axis as a right-
or left-derivative. Evaluation of the derivative and application
of the Hellmann–Feynman theorem17,18 leads to an ab initio
expression for the exchange–correlation energy

Exc(⇢) =
⌅ 1

0
W�(⇢)d�. (38)

Here W�(⇢) is the AC integrand

W�(⇢) = tr �̂⇢�Ŵ � EJ(⇢), (39)

where �̂⇢� is the minimizing ensemble state at interaction-
strength � and EJ(⇢) is the Coulomb energy. Furthermore, the
exchange and correlation energies may be resolved into sepa-
rate components, resulting in an expression for the correlation
energy alone,

Ec(⇢) =
⌅ 1

0
{W�(⇢) �W0(⇢)} d�. (40)

For a review of the adiabatic connection, see Ref. 19.
To make practical use of these expressions, approaches

for the calculation of the �-interacting wave functions yield-
ing a chosen electron density are required; see, for example,
Refs. 20–22. The constraint that the density is fixed for all �
may be easily enforced by supplying fixed arguments ⇢ and  
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to Eqs. (9) and (31) for all �. We now discuss our implementa-
tion of the (generalized) Gidopoulos–Davidson variation prin-
ciple, exploring the close connections to the generalized Lieb
functional numerically.

V. RESULTS

From the discussion in Sec. III, it is evident that the
Gidopoulos–Davidson and Lieb optimizations are sufficiently
closely related that they may be implemented in a common
computational framework. We first discuss some details of our
implementation; we then demonstrate the equivalence of the
two approaches by performing numerical optimizations for a
set of small atomic and molecular systems.

A. Computational details

The variation principle given in Eq. (31) allows a value
to be obtained for the generalized Gidopoulos–Davidson func-
tional by evaluating its infimum with respect to v . If the density
yielded by the reference wave function ⇢ is v-representable,
the infimum becomes a minimum. To vary v such that an
optimization over the potential may be carried out in a practi-
cal computational scheme, the potential is modeled using the
basis-set expansion of Wu and Yang7,23

v�(r) = vext(r) + (1 � �)vref(r) +
X

t

btgt(r). (41)

Here vext(r) is the external potential due to the interaction of
the electrons with the atomic nuclei, vref(r) is a fixed ref-
erence potential chosen to ensure that v�(r) has the correct
asymptotic behaviour, and {gt } are a set of Gaussian basis func-
tions with coefficients {bt }. The reference potential employed
in the present work is the Fermi–Amaldi potential.24 With
this choice of potential expansion, the derivatives correspond-
ing to Eqs. (34) and (35) may be readily implemented as
described in Refs. 7, 21, and 22, allowing the objective func-
tional to be effectively optimized with respect to the set of
coefficients {bt }.

An un-contracted form of the Gaussian basis set aug-
cc-pVTZ25,26 in the spherical-harmonic basis is used for
both the orbital expansion and for the potential expansion in
Eq. (41), for all systems. An approximate Newton method
is employed to accelerate convergence of the optimization,27

in which the Hessian is regularized using a truncated sin-
gular value decomposition with a threshold of 10 6 a.u.
In all calculations, the convergence threshold was set to
10 6 a.u. on the L2 norm of the objective functional gra-
dient. To obtain a reasonably accurate approximation to the
Kohn–Sham system, the input quantities for each functional
F�(⇢ ) and D�( ) were determined at the coupled-cluster
singles-and-doubles (CCSD) level of theory. All calculations
were carried out with the quest rapid development plat-
form,28 an electronic-structure code developed in Python
and exploiting just-in-time compilation using the Numba
package.29,30

B. Kohn–Sham non-interacting system

In Table I, the optimized values of the non-interacting
Lieb functional F0(⇢ ) and Gidopoulos–Davidson functional
D0( ) are presented for a series of closed-shell atoms and for
the hydrogen molecule at several bond lengths. Additionally,
Kohn–Sham energy components are presented, including the
internuclear repulsion energy Enn, the non-interacting kinetic
energy Ts, the electron–nuclear attraction Ene, the Coulomb
energy EJ, the exchange energy Ex, and the correlation energy
Ec. These components have the same definition when com-
puted from F0(⇢ ) and D0( ). For comparison, the total
kinetic energy T and total electron–electron interaction energy
W are included, along with the total interacting ground-state
energy E1.

The consistency of the optimizations was verified by com-
paring the optimized values of F0(⇢ ) and D0( ) presented in
Table I with the energetic components Ts and Tc, respectively.
The value of Ts was determined from the Kohn–Sham orbitals
obtained at � = 0 and the value of Tc was obtained by the sub-
traction of Ts from T, where the latter was determined directly
from the � = 1 calculation.

The H2 molecule provides a simple prototypical system
with which the variation between dynamic and static correla-
tion may be explored. At equilibrium geometry, the electron
densities of the two hydrogen atoms overlap substantially,
thus binding the molecule and leading to both kinetic and
potential contributions to the correlation energy. As the inter-
atomic bond is extended, the system approaches that of two
isolated hydrogen atoms, with no kinetic correlation energy;
see Table I, where the value of the Gidopoulos–Davidson

TABLE I. Optimized functional values and energy components calculated in the aug-cc-pVTZ basis using the variation principles of Eqs. (14) and (15). All
quantities are in atomic units.

F0 D0 Enn Ts Ene EJ Ex Ec T W E1

He 2.8611 0.0355 0.0000 2.8611 �6.7455 2.0464 �1.0232 �0.0756 2.8967 0.9477 �2.9011
Be 14.5835 0.0661 0.0000 14.5835 �33.6945 7.2122 �2.6725 �0.1534 14.6496 4.3863 �14.6586
Ne 128.5050 0.2720 0.0000 128.5050 �310.9007 65.9350 �12.0691 �0.6071 128.7765 53.2589 �128.8654
H2 (R = 0.7) 1.7263 0.0324 1.4286 1.7263 �4.8614 1.6508 �0.8254 �0.0700 1.7588 0.7554 �0.9187
H2 (R = 1.4) 1.1390 0.0328 0.7143 1.1390 �3.6469 1.3215 �0.6607 �0.0729 1.1718 0.5879 �1.1729
H2 (R = 3.0) 0.8279 0.0418 0.3333 0.8279 �2.6181 0.9539 �0.4769 �0.1184 0.8697 0.3586 �1.0564
H2 (R = 5.0) 0.9520 0.0224 0.2000 0.9520 �2.3809 0.8193 �0.4097 �0.2063 0.9744 0.2033 �1.0033
H2 (R = 7.0) 0.9919 0.0052 0.1429 0.9918 �2.2826 0.7669 �0.3835 �0.2406 0.9971 0.1429 �0.9998
H2 (R = 10.0) 0.9981 0.0005 0.1000 0.9982 �2.1983 0.7245 �0.3623 �0.2623 0.9986 0.1000 �0.9997
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functional D0 decreases as the interatomic bond length R
increases, becoming just 0.0005 a.u. at R = 10.0 a.u.

C. General interaction strengths

In Fig. 1, results of optimizations pertaining to the gener-
alized Lieb and Gidopoulos–Davidson functionals, according
to Eqs. (9) and (31), respectively, are presented for interac-
tion strength � in the range 0–1. In the upper panel, the Lieb
functional F�(⇢ ) is shown as a function of � for the H2
molecule with bond length R = 0.7, 1.4, 3.0, 5.0, 7.0, and
10.0 a.u. The variation of F�(⇢ ) in � is broadly linear, indi-
cating that Tc,� = T1 � T� is relatively small and reflecting the
dominance of the Coulomb and exchange energies in the two-
electron energy W, both of which are linear in �. The slope
of F�(⇢ ) in � becomes progressively smaller as the bond
length is increased. This behaviour reflects the fact that the
H2 molecule dissociates into two one-electron fragments with
�EJ + �Ex + Ec,� ! 0 as R ! 1 (static correlation energy
cancelling the Coulomb and exchange energies).

In the lower panel of Fig. 1, the Gidopoulos–Davidson
functional D� = T1 �T� + � (W1 �W�) is also plotted as a
function of interaction strength. This functional adopts the
value of Tc at � = 0 and decreases with increasing � to become
0 at � = 1. In contrast to the Lieb functional, this small cor-
relation contribution to the energy reveals the higher-order
dependence of the correlation energy on � at increasingly
extended bond lengths. As the bond length R increases and

FIG. 1. F� of Eq. (9), upper panel, and D� of Eq. (31), lower panel (a.u.)
as functions of the interaction strength � for the H2 molecule at internuclear
separations R = 0.7, 1.4, 3.0, 5.0, 7.0, and 10.0 a.u.

the system approaches one of independent atoms, the value
of the Gidopoulos–Davidson functional is smaller at � = 0,
reflecting a decrease in Tc. However, it also exhibits more pro-
nounced curvature, indicating higher-order dependence on �
as static correlation becomes more significant.

D. Constructing the adiabatic connection

As described in Subsection IV, the AC comprises a link
between the non-interacting Kohn–Sham auxiliary system and
the physically interacting system through variation in inter-
action strength, modulated by coupling-constant �, with the
density equal to the physical density of � = 1 for all �. The AC
integrand is expressed in Eq. (39), from which an exact defini-
tion of the correlation energy may be constructed according to
Eq. (40). Given that the exchange energy scales linearly with
� (for the linear-attenuation AC path), the exchange contribu-
tion to Eq. (39) is simply a constant and may be subtracted to
give the correlation component of the AC integrand,

Wc,�(⇢) =W�(⇢) �W0(⇢). (42)

The Gidopoulos–Davidson variation principle of Eq. (31) and
the Lieb variation principle of Eq. (9) can both be exploited
to calculate this integrand, using the same input ⇢ or  but
with a range of different values of �, to construct the AC using
Eq. (42).

The equivalence of the AC curves constructed from
the Lieb and Gidopoulos–Davidson functionals is confirmed
numerically for the H2 molecule at the same geometries con-
sidered in Table I, with the AC integrands Wc,� plotted as a
function of � in Fig. 2. Here, values ofWc,� computed with the
Lieb functional Eq. (9) are represented by solid lines, whilst
values obtained from the Gidopoulos–Davidson functional
Eq. (31) are denoted by the point markers. It is evident from
Fig. 2 that the AC curves of these two methods agree with the
convergence of the optimization procedures.

The correlation energy can be computed from these curves
using Eq. (40) and the numerical values of Ec are presented
in Table I. The ratio |Ec |/Tc has been used to assess the rela-
tive importance of static correlation.31 |Ec | corresponds to the
area above each curve in Fig. 2, whilst Tc corresponds to the
area between each curve and a horizontal line defined by its

FIG. 2. The correlation adiabatic connection integrand values (a.u.) of Eq.
(42), calculated using the optimization of Eq. (9), lines, and Eq. (31), point
markers, for the H2 molecule at internuclear separations R = 0.7, 1.4, 3.0, 5.0,
7.0, and 10.0 a.u.
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value of W1( ). As R increases, this ratio grows and the curves
approach an L shape characteristic of systems dominated by
strong correlation, indicating that the value of Tc is approach-
ing zero, consistent with the effects of hydrogen molecule
dissociation discussed in Subsection V C.

VI. CONCLUSIONS

The variation principle proposed in different contexts by
Gidopoulos1 and Davidson2 has been examined and shown to
be closely linked to the Lieb variation principle.5 For the non-
interacting system, the two functionals approach the Kohn–
Sham system from different directions. The Lieb functional
minimizes the non-interacting kinetic energy Ts subject to
the constraint that the density is equal to that of the physical
system, whereas the Gidopoulos–Davidson functional maxi-
mizes the kinetic correlation energy Tc under the same density
constraint. In both cases, an unconstrained optimization can
be performed with respect to the potential expansion coeffi-
cients in Eq. (41), making the implementation straightforward
as described in Refs. 7 and 21. The external potential plays
the role of a Lagrange multiplier, which ensures that the den-
sity constraint is satisfied at the stationary point for each
functional.

An extension of the Gidopoulos–Davidson functional
to ensembles was also presented, for which the associated
functional can be shown to be concave with respect to �̂.
This contrasts the pure-state functional which is not con-
cave with respect to  . A further extension to treat general
electronic interaction strengths � was also presented, as has
previously been done with the Lieb functional.5,7,20–22 Utiliz-
ing this extension, it was shown that either functional may
be used to calculate the adiabatic connection between the
Kohn–Sham system of non-interacting electrons and the phys-
ically interacting system, highlighting the fact that the two
functionals are essentially equivalent, being related simply
by a constant T ( ) and a change of sign. As such, they
are amenable to implementation in a common computational
framework.
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