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Abstract

Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response

in patients with idiopathic normal pressure hydrocephalus, but may potentially cause compli-

cations such as bleeding and infection. We tested how a proposed surrogate parameter for

pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived

pulse pressure gradient, compared with its invasive counterpart. In 22 patients with sus-

pected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure

monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient

from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities

obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Re-

peated measurements of the pulse pressure gradient were also undertaken in four healthy

controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal

pressure hydrocephalus in the patient cohort. However, there was no correlation between

the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial

pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and

healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial

pressure above or below established thresholds for shunt treatment (P = .97). Assessment

of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive

monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal

pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the

pulse pressure gradient from magnetic resonance imaging comprises short-term pressure

fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at

the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

marker for intracranial pressure pulsations.
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Introduction

Idiopathic normal pressure hydrocephalus (iNPH) is a chronic condition characterized by gait

ataxia, dementia and urinary incontinence[1] and can be treated successfully with shunt sur-

gery. However, it remains a challenge to select which patients who will respond to such treat-

ment. Unlike invasively obtained monitoring of mean intracranial pressure (ICP), over-night

monitoring of pulsatile ICP has previously demonstrated to predict a beneficial shunt response

in 9 of 10 patients [2, 3]. Increased pulsatile ICP is expected in iNPH while reduced pressure-

volume capacity (reduced intracranial compliance) is a common feature [2, 4, 5].

The disadvantage with invasive monitoring of pulsatile ICP is the risk of severe complica-

tions such as cerebral bleeds and infections, which may occur in about 1%[6], and trends

towards higher risk in iNPH patients who are older and with more comorbidity[7]. Given the

useful role of invasive monitoring in patient care, there is an urgent need to develop alterna-

tive, non-invasive methods. There have been many attempts to apply phase-contrast MRI

(PC-MRI) at intracranial locations to guide clinical decision making, particularly at the aque-

duct level, but with varying degrees of success [8–13].

A non-invasively obtained marker for pulsatile ICP has been proposed, namely the PC-

MRI-derived peak-to-peak pulse pressure gradient (MRI-dP), which is calculated from the

cerebrospinal fluid (CSF) flow velocity change during one cardiac cycle at the upper cervical

spinal canal[14]. Image acquisition is thus obtained in close proximity to the intracranial com-

partment; however, any pressure assessment at this level must be considered a surrogate for

direct monitoring of pulsatile ICP.

Use of MRI-dP has previously shown promise in studies on computational fluid dynamics

[15], baboons and humans[14, 16], as well as in patients with hydrocephalus[17, 18], Chiari

malformation[19] and NPH[20]. MRI-dP has thus the potential to replace invasive monitoring

in the pre-surgical diagnostic work-up of iNPH patients that are shunt candidates. Compari-

sons with invasive monitoring have though been few, and direct comparison with its invasive

counterpart, pulsatile ICP, has so far been carried out in one baboon only[14].

It has previously been validated that over-night measurements of pulsatile ICP are compa-

rable with measurements at daytime and are therefore neither sensitive to head position of the

patient, unlike mean ICP [2].

The purpose of this study was therefore to assess the feasibility of MRI-dP by comparison

with overnight invasive monitoring of pulsatile ICP in iNPH patients under clinical work-up

for surgical shunting. We also compared MRI-dP derived from patients and healthy controls.

Materials and methods

Study population and design

The study and patient consent procedure was approved by the Institutional Review Board

of Oslo University Hospital (07/5869) and Regional Ethics Committee (REC), South-East,

Norway (S-07237). Each study participant was given written and oral information about the

study and signed the consent form prior to inclusion in the study. All research was conducted

according to the principles expressed in the Declaration of Helsinki. The institution that

granted permission was Oslo University Hospital.

In this prospective study, a cohort of 34 consecutive patients with clinically probable iNPH, hos-

pitalized within the department of neurosurgery as part of their preoperative diagnostic work-up,

were enrolled. PC-MRI was done at the end of a routine MR image acquisition protocol and pre-

ceded invasive ICP monitoring performed during the same hospital admission. Additionally, four

healthy controls were examined with PC-MRI acquisitions at different time points during one day.
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Clinical management

All patients were scored clinically using a clinical NPH grading scale [2], which assesses the

combined severity of (I) gait disturbance, (II) urinary incontinence, and (III) dementia. Each

of the three variables is graded from 1 to 5, giving a possible worst score of 3 and best score of

15. The decision for shunt surgery was based on a combination of clinical assessment, radio-

logical assessment and results of continuous ICP monitoring [2].

The shunt response was defined as an increase by at least 2 points on the NPH grading

scale, and clinical score was assessed at regular intervals, 3, and 6–12 months following

shunting.

ICP monitoring

The procedure for continuous overnight ICP monitoring has previously been described[2]. In

short, an ICP sensor is placed in the frontal lobe of the brain through a small burr hole in the

skull, using local anesthesia. The monitoring is carried out in the patient ward with the patient

in the supine position (equal to patient position at PC-MRI) using a computerized system

(Sensometrics AS, dPCom, Oslo) for automatic identification of individual cardiac-induced

single ICP waves. The amplitude of the ICP wave (pulsatile ICP) is defined as the pressure dif-

ference between the systolic maximum and diastolic minimum pressures (Fig 1). Pulsatile ICP

expressed by the mean ICP wave amplitude (MWA) is determined during consecutive 6-sec-

ond time intervals, and over the entire observation period. Mean (static) ICP is the average of

absolute ICP relative to a zero pressure level. The MWA was used for selection to shunting

according to the department routine [2]. MWA in average�4 mmHg and/or percentage of

MWA�5 mmHg in�10% of recording time was set as threshold levels for shunting.

Fig 1. Single cardiac-induced ICP wave. One single ICP wave is illustrated with its individual parameters. We measured pressure in mm Hg; with a heart

rate of 60, the duration of a single wave is about 1 second. The mean ICP wave amplitude (MWA) is determined as the average of amplitudes from single

ICP waves during consecutive 6-second time intervals.

https://doi.org/10.1371/journal.pone.0188896.g001
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PC-MRI acquisition protocol

For the iNPH patients, all PC-MRI images were obtained in a Philips 3 Tesla Achieva system

(Philips Medical Systems, Best, The Netherlands) with a 16-channel head coil and an acquisi-

tion plane perpendicular to the upper cervical spinal canal at level C2, which is typically the

closest level to the intracranial compartment where the assumption of the spinal canal as a

rigid, cylindrical tube can be made when estimating MRI-dP. The PC-MRI scanning parame-

ters were as follows: Repetition time (TR) and echo time (TE) was shortest possible, typically

TR/TE = 16/11 ms, pixel size 0.56 x 0.56 mm2 to 0.63 x 0.63 mm2, slice thickness 7 mm, veloc-

ity encoding 6 cm/sec, and 32–40 phases with retrospective peripheral cardiac gating based on

pulse oximeter plethysmography. Potential sources of inaccuracy in velocity measurements,

such as eddy currents, Maxwell terms and gradient field non-linearities[21] had been corrected

for as far as possible by the vendor of the scanner before the study, and also sought minimized

during the study by optimal patient positioning. Duration of the PC-MRI acquisition was

approximately 6 minutes. MR imaging always preceded any surgical shunting procedure.

The healthy controls were scanned in a Philips 3 Tesla Ingenia system (Philips Medical

Systems, Best, The Netherlands) with a 32 Channel head coil, and with identical acquisition

plane,—level and—parameters as for the patients. Each healthy control was scanned with four

PC-MRI acquisitions over at least two different time points during one day and with duration

between time points of approximately two hours. Acquisitions within one time point were

obtained consecutively without pause. All patients and controls were studied at daytime

between 8 a.m. and 4 p.m.

Fig 2 A demonstrates the slice orientation and level for all PC-MRI acquisitions.

Fig 2. (A) Level of PC-MRI acquisitions. PC-MRI was performed perpendicular to the cervical spinal canal at level C2, which is typically the closest level to

the intracranial compartment where the assumption of the spinal canal as a rigid, cylindrical tube can be made when estimating MRI-dP. (B) ROI outlining.

The subarachnoid space was manually defined from phase images with a region of interest (ROI).

https://doi.org/10.1371/journal.pone.0188896.g002
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PC-MR image outlining

The subarachnoid fluid compartment surrounding the spinal cord was manually defined from

phase images with a region of interest (ROI) by use of dedicated software, nordicICE1 (Fig

2B) (NordicNeuroLab AS, Bergen, Norway) and was performed by an experienced neuroradi-

ologist, blinded to NPH score and ICP data.

Pixel transformation and treatment of aliasing

Recorded velocities were converted by linear transformation from pixel values to centimeters

per second by applying the velocity encoding using MATLAB1 (Mathworks, Natick, United

States). Aliased velocities were treated with a filter that was activated if the temporal variation

between two consecutive time steps of the examined pixel velocity exceeded a threshold value

of 1.1 times the VENC. The aliased pixel was replaced by v = va ± 2 × Venc, where v is the fil-

tered velocity, va is the aliased pixel value and Venc is the velocity encoding.

Computation of pressure gradients

The method for computation of MRI-dP (mm Hg/cm) has been described in detail previously

[14].

Mean velocities were computed by summarizing velocities at each pixel over the domain,

and dividing the sum with the number of pixels.

MRI-dP was computed according to Navier-Stokes equations for incompressible and New-

tonian fluid. Velocities were recorded across an axial (x,y) plane, which reduced the Navier-

Stokes equations to the z-component. Further, the flow was assumed parallel to rigid walls of a

cylindrically shaped tube and the convective term was neglected. The resulting equation for

the pressure gradient is given by

@p
@z
¼ � r

@V
@t
þ m

@2V
@x2
þ
@2V
@y2

� �

where the first term on the right-hand side describes the transient inertial forces and the sec-

ond term describes the viscous forces in the flow. ρ = 1.0007 g/cm3 is the density of the CSF,

and μ = 1.1 cP is the dynamic viscosity, and which are considered not to be affected by the

iNPH condition.

Pressure gradients for all pixels in the ROI were computed before they were averaged over

the domain, resulting in one mean pressure gradient for each period. MRI-dP was calculated

as the difference between the maximum and minimum pressure gradient within the cycle

(Fig 3).

Statistical analysis

ICP data, counting several thousands of observations from over-night monitoring, were

assumed normally distributed, and presented in each patient with mean and standard devia-

tion. For patients and healthy controls (n = 22 and 4, respectively), PC-MRI data were assumed

not normally distributed and presented with median and range. Correlations were determined

by Pearson correlation coefficient, and agreement between methods was evaluated with a

Bland-Altman plot. Comparisons between patients and healthy controls were performed with

Mann-Whitney U test. One-way ANOVA was used to compare means of more than two

groups. Reliability (absolute agreement, two-way mixed) of multiple quantitative measure-

ments within individuals was estimated with the intraclass correlation coefficient (ICC). The

Non-invasive assessment of pulsatile ICP with PC-MRI
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significance level was set to 0.05. Statistical analysis was performed using SPSS Statistics ver-

sion 20 (IBM Corporation, Armonk, NY, US).

Results

Study population

Of 34 enrolled patients, 12 were excluded from the study due to motion artifacts at PC-MRI

(5/12), termination of the examination by the patient or MRI technician before completion (5/

12), PC-MRI obtained at a suboptimal level (1/12) or image artifacts (1/12). Thus, 22 patients

were included. Shunt surgery was performed in 17 of these, of which 16 (94%) were clinical

responders. Other patient data are given in Table 1 and S1 File. Age and gender of four healthy

controls are also presented in Table 1.

ICP scores

A summary of the ICP data from the iNPH patients are given in Table 2, and the full dataset

from the patient cohort is presented in S1 Table. The coefficient of variation (CV = standard

deviation/mean) illustrates the span of fluctuations in measured pulsatile and static ICP during

overnight monitoring. Overnight monitoring of pulsatile and static (mean) ICP demonstrated

large fluctuations, where CV was 26% (12, 41) and 128% (19, 5600), respectively (median and

range). Fig 4 exemplifies recordings from a study patient demonstrating pulsatile ICP

expressed by MWA (a), static ICP expressed by mean ICP (b) and heart rate (c) as a function

Fig 3. The PC-MRI derived pulse pressure gradient (MRI-dP). MRI-dP is calculated as the difference

between the maximum and minimum pressure gradient within the cycle.

https://doi.org/10.1371/journal.pone.0188896.g003
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of time. For patient specific measurements, MWA was to a very limited degree affected by HR,

as the association between pulsatile ICP (MWA) and heart rate (HR) was low with median R =

.02 (S1 Table).

PC-MRI data from patients and healthy controls

A summary of the PC-MRI data from patients and healthy controls is shown in Table 3, and

an extended set of data from the PC-MRI studies of iNPH patients and healthy controls are

presented in S2 and S3 Tables, respectively, and in S2 File.

MRI-dP at level C2 was not different in iNPH patients and healthy subjects (P = .39). Only

area of the subarachnoid space (ROI area and hence number of pixels) differed between groups

(P = .016).

Comparison of patient ICP scores and MRI-dP

There were no associations between invasively measured pulsatile ICP and the non-invasive

assessment of MRI-dP (R = -.18, P = .43) (Fig 5A) or mean ICP and MRI-dP (R = .10, P = .68)

(Fig 5B). Moreover, the MRI-dP did not differ between individuals with MWA above or below

established thresholds for shunting (P = .97), or healthy controls (P = .44) (Fig 6).

Table 1. Demographic information about patients and healthy controls.

NPH patients

Number 22

Age (yrs) 71 (45–84)

Gender (F/M) 8/14

BMI (kg/m2) 25.4 (20.3–30.9)

Cardiovascular co-morbidity (n) 12

Treatment

Shunt (Responders/Non-responders) 17 (16/1)

No shunt 5

Healthy individuals

Number 4

Age (yrs) 31 (23–40)

Gender (F/M) 1/3

Results presented as numbers for categorical data and as median (range) for continuous data.

https://doi.org/10.1371/journal.pone.0188896.t001

Table 2. Summary of ICP data from iNPH patients.

Patients Observations

(6-s windows)

MWA

(mm Hg) (mean)

MWA

(mm Hg)

(SD)

CVMWA

(%)

Mean ICP

(mm Hg)

(mean)

Mean ICP

(mm Hg)

(SD)

CVMeanICP

(%)

All

(n = 22) (median with range)

13.283

(1501, 21397)

4.4

(2.2, 7.3)

±1.1

(±.5, ±2.2)

26

(12, 41)

2.8

(-4.5, 14.5)

±4.4

(±1.9, ±11.8)

128

(19, 5600)

ICP: intracranial pressure

iNPH: idiopathic normal pressure hydrocephalus

MWA: mean ICP wave amplitude (pulsatile ICP)

CV: coefficient of variance (SD/mean)

SD: standard deviation

https://doi.org/10.1371/journal.pone.0188896.t002

Non-invasive assessment of pulsatile ICP with PC-MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0188896 November 30, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0188896.t001
https://doi.org/10.1371/journal.pone.0188896.t002
https://doi.org/10.1371/journal.pone.0188896


Fig 4. Trend plots of (a) MWA (6.6±1.8 mmHg), (b) mean ICP (2.8±4.8 mmHg), and (c) HR (76.2±13.7 beats/

min) for patient 20, who underwent prolonged invasive monitoring, illustrating the variation in the ICP-derived

parameters over time. In (d) is shown one individual cardiac-beat induced ICP wave with its amplitude (dP)

and rise time (RT).

https://doi.org/10.1371/journal.pone.0188896.g004

Table 3. PC-MRI data from patients and healthy controls (median with range).

Patients (n = 22) Healthy (n = 4) P-value*

MRI-dP (mmHg/cm) .041 (.015, .083) .053 (.031, .093) .39

ROI area (cm2) 1.74 (1.20, 3.50) 1.26 (.77, 1.58) .016

Number of pixels 446 (306, 895) 323 (198, 405) .016

Heart rate (/min) 68 (52, 92) 61 (49, 69) .25

PC-MRI: phase-contrast magnetic resonance imaging

MRI-dP: MRI-derived peak to peak pulse pressure gradient

ROI: region of interest

*Mann-Whitney U-test.

https://doi.org/10.1371/journal.pone.0188896.t003
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Fig 5. MRI-dP and ICP parameters. The association between MRI-dP and standardized over-night, invasive

monitoring (11 p.m. to 7 a.m.) of (a) pulsatile ICP (MWA) and (b) static ICP (mean ICP).The Pearson

correlation coefficient (R) and significance level are presented for each plot.

https://doi.org/10.1371/journal.pone.0188896.g005
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Heart rate during PC-MRI and ICP monitoring

There was a high correlation between heart rates (HR) from PC-MRI and invasive ICP moni-

toring (R = .71, P = .001) (Fig 7A), and the Bland-Altman plot revealed no systematic differ-

ences in HR registered during invasive ICP monitoring and PC-MRI (Fig 7B).

Discussion

Invasive monitoring of pulsatile ICP has previously proven to be a precise tool to select which

iNPH patients who will respond to surgical shunting. In this study, we tested the utility of

PC-MRI to non-invasively assess a surrogate marker for pulsatile ICP, MRI-dP, obtained at

level C2. MRI-dP did not correlate with invasively obtained pulsatile ICP from over-night

monitoring, and did not discriminate iNPH patients from healthy subjects.

Increased pulsatile ICP due to reduced intracranial compliance is common in iNPH [7],

and patients with this disease should therefore be well suited for a study of non-invasive assess-

ment of pulsatile ICP using PC-MRI. In the present study cohort, increased pulsatile ICP

expressed by MWA above threshold level was diagnosed in 17 of 22 patients. Surgical shunting

yielded a clinical improvement in 16 of 17 treated patients, indicating a high proportion of

what may be considered “true iNPH”.

Fig 6. MRI-dP and pulsatile ICP (MWA) thresholds for shunting in iNPH. The MRI-dP values are shown

for iNPH patients with preoperative MWA values either above (n = 16) or below (n = 6) the thresholds used for

selection of patients for shunting, and also for the healthy reference subjects. There were no significant

differences between groups (P>0.44).

https://doi.org/10.1371/journal.pone.0188896.g006
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Fig 7. HR from PC-MRI and ICP monitoring. (a) The association between MRI-derived HR and ICP-derived

HR, Pearson correlation coefficient (R) and significance level. (b) Bland-Altman plot of all MRI- and ICP-

derived HR observations. The line in the middle is the mean difference (2.3 beats/min) and the upper and

lower lines represent mean+2SD (standard deviations; 15.0 beats/min) and mean– 2SD (-10.4 beats/min),

respectively.

https://doi.org/10.1371/journal.pone.0188896.g007
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MRI-dP has previously been applied in a proposed method for non-invasive estimates of

static (mean) ICP [14]. With this method, the elastance index is estimated by dividing MRI-dP

by the per cardiac cycle total intracranial volumetric change (MRI-dV), i.e. MRI-dP/MRI-dV.

The linear relationship between elastance and ICP is expected owing to the monoexponential

relationship between intracranial volume and pressure[22]. Precise assessment of MRI-dP is

thus an important precondition for such estimation of static ICP as well.

Should a non-invasive measure such as MRI-dP be valid, it would have to reflect its gold stan-

dard of invasive measurement (pulsatile ICP). Both pulsatile and static (mean) ICP demonstrated

in this study large fluctuations during the overnight monitoring, and this phenomenon is also a

determining factor as to why clinical decisions based on monitoring of pulsatile ICP are made

after analysis of observations from an extended time span (Fig 4). A PC-MRI based method

applied to obtain measures of pulsatile ICP through a surrogate parameter like MRI-dP from a

short time interval should therefore be interpreted with great care. One previous study could not

demonstrate different MRI-dP between Chiari malformation type 1 patients and controls[23],

even though elevated pulsatile ICP is frequently observed when measured over-night[24].The

aqueductal stroke volume is another, MRI derived, CSF velocity based parameter obtained from a

short time interval, which has been proposed to serve as a surrogate for ICP recordings[8], and

were also unable to demonstrate any association with its invasive counterpart[13, 25].

There may be several reasons as to why MRI-dP derived from one simple PC-MRI acquisi-

tion does not reflect pulsatile ICP measured overnight. First, MRI-dP is based on acquisition

of CSF velocity change at the upper cervical spinal canal, and is thus a surrogate marker for

intracranial pressure change. A simplified model of a rigid, cylindrically shaped tube is desir-

able in order to make valid assumptions in fluid dynamic equations used in post-processing of

PC-MRI data, where attempts made intracranially, with much more complex anatomy, are

mostly restricted to the Sylvian aqueduct. However, even though the upper spinal canal is

anatomically in close proximity with the intracranial compartment, the geometry is funda-

mentally different, and from computational fluid flow dynamics, it has been demonstrated

that lower pressure values can be expected at level C2 than in the posterior fossa due to pres-

sure gradients that become steep in the cervical canal[26].

Secondly, the CSF flow at level C2 is the result of a dyssynchronous pressure pulsation caus-

ing a pulsating cranio-cervical pressure gradient pumping CSF in and out of the cranial vault.

The pressure gradient estimated from MRI is relatively small, and in this study, less than 0.1

mm Hg per cm in all patients. This magnitude corresponds well with previous studies. From

numerical studies, where the CSF flow has been modeled in rigid and impermeable surround-

ings, the fluid flow has been predominated by velocities orthogonal to the axial plane, and the

observed pressure gradients at level C2 in healthy subjects is also less than 0.1 mm Hg per cm

[27, 28]. Computations that take into account the elasticity of the cervical spinal cord, tonsillar

motion and the presence of nerve roots and denticulate ligaments, all predict pressure gradi-

ents of similar magnitudes[29–31]. Hence, the pressure gradient between the cervical and cra-

nial compartments is but a fraction of the total pressure pulsation.

Moreover, the pressure gradient computation in this study is based on a number of simpli-

fying assumptions such as rigid and impermeable surroundings and laminar flow. CSF flow

patterns are, however, complex due to the anatomy of the cervical subarachnoid space[26],

and flow velocities in axial sections of the spine have been shown to have non-uniform distri-

butions throughout the cardiac cycle as demonstrated from computational simulations[28]. In

our study, the pixel-by-pixel analysis revealed a wide dispersion of flow velocities from within

the same PC-MRI slab (Fig 8). Averaging of flow velocities from a ROI defining the CSF space

therefore does not fully describe the diversity or complexity of velocity changes that occurs

through a section of the cervical spine during one cardiac cycle.
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Interestingly, it may be noted that the healthy control with smallest CSF ROI area also had the

largest MRI-dP among controls (No. 2 in S3 Table), and larger than in many iNPH patients with

invasively proven increased pulsatile ICP (S2 Table). Previously, the inverse and almost linear rela-

tionship between MRI-dP and CSF flow area has been reported[14], and very steep pressure gra-

dients have also been demonstrated in Chiari patients with tonsillar crowding at the foramen

magnum[32]. For the patient group in our study, there was a trend towards an inverse correlation

between MRI-dP and area of the subarachnoid fluid area at level C2 (ROI area), but this did not

reach significant levels (R = -.32, P = .15). However, we notice that measuring reliability (ICC)

was almost identical for MRI-dP and ROI area measurements in healthy controls. Thus, while

MRI-dP should ideally be a marker of pulsatile ICP only, it may be hypothesized that a narrow

CSF space surrounding the spinal cord may influence directly on MRI-dP. However, CSF area is

already implicitly accounted for when estimating pressure based on the Navier-Stokes equation.

Finally, but not least, recent studies have demonstrated respiration to have a major influ-

ence on CSF flow [33, 34]. With cardiac gated PC-MRI, which can be considered to represent

current state-of-the-art methodology in PC-MRI based measurements of intracranial and

intraspinal CSF flow quantification, only cardiac beat induced CSF flow is detected. Patient

breathing is not controlled for.

The invasive ICP measurements of this study were not performed synchronously with

PC-MRI, but overnight, as standardized according to previous empirical observations support-

ing this routine. In principle, our data do therefore not in principle contradict that MRI-dP

may reflect pulsatile ICP in real time. The comparison with invasive monitoring for a pro-

longed time period is, however, highly relevant, because clinical decision making is rarely

based on ICP monitoring from a time interval as short as the duration of a PC-MRI acquisi-

tion. It has previously also been validated that over-night and daytime measurements of pulsa-

tile ICP are comparable, unlike measurements of static ICP[2].

Another limitation was that technically adequate PC-MRI was obtained in less than 2/3 of

enrolled patients, while all examinations in healthy subjects were successful. NPH patients are

Fig 8. Heterogeneity of CSF flow velocities. Patient 4, demonstrating spatial variations in flow velocity

within the ROI at one time step (t = 0.70 s). The color bar represents velocities in cm/s.

https://doi.org/10.1371/journal.pone.0188896.g008
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typically elderly and suffer from discomfort during long MRI scan times, and the experimental

PC-MRI acquisitions were performed towards the end of the imaging protocol. In iNPH,

dementia is a common feature, which may be a challenge to patient cooperation throughout

the scan. MRI-dP from PC-MRI may therefore seem more feasible in subjects that cooperate

well rather than in patients where compliance to instructions from the MR technician can be a

challenge. The inability to exam patients with the poorest level of cooperation skills may have

introduced bias to the study, because more severely affected patients might have been more

likely to be excluded.

Moreover, the velocity encoding gradient (venc) was set at a low level for the PC-MRI

acquisitions in patients and healthy controls. Because of flow heterogeneities, flow aliasing was

quite frequent. We consider, however, this potential source of error to be small because of the

aliasing correction procedure and that flow velocity values from each time point represent the

average of velocities from the entire region of interest. Pixels with any inaccuracies of flow

velocity measurements should therefore not have contributed substantially to the calculated

MRI-dP.

As for PC-MRI based measurements of CSF flow in general, a major concern with the tech-

nique would be the extraction of data from a limited time interval to make a diagnosis in

patients where well-known physiological fluctuations are present. In the present study, all

PC-MRI exams may be assumed to have been performed within normal physiological bound-

aries, as they were obtained within a normal range for heart rate (Tables 2 and 3), and the sta-

tistical analysis did not reveal any systematic differences in heart rate (HR) between PC-MRI

and ICP monitoring. This indicates that influence from patient stress and discomfort was not

very different during PC-MRI and ICP monitoring, and this source of bias in comparing the

methods should therefore have been modest.

Conclusions

Invasively obtained pulsatile ICP with level above thresholds has previously been demon-

strated to predict a beneficial shunt response in 9 of 10 patients with iNPH. In our study cohort

of iNPH patients, patient selection with this method yielded a beneficial shunt response in

94%. However, pulsatile ICP was not associated with its non-invasive counterpart, the

PC-MRI derived MRI-dP. Moreover, MRI-dP did not discriminate between patients with

either preoperative values of pulsatile ICP above or below thresholds, and neither patients

from healthy subjects. MRI-dP obtained at level C2 was therefore not found feasible to replace

invasive monitoring of pulsatile ICP in selection of iNPH patients for surgical shunting. Unlike

invasive, overnight monitoring, MRI-dP comprises short-term pressure fluctuations only.

Moreover, complexity of cervical CSF flow and -pulsatility at the upper cervical spinal canal

may render MRI-dP a poor surrogate marker for intracranial pressure change.
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Mardal, Kyrre Eeg Emblem, Per Kristian Eide.

Software: Erika Kristina Lindstrøm, Kent-André Mardal, Per Kristian Eide.
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