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First paragraph  

 

Somatic cells acquire mutations throughout the course of an individual’s life. Mutations 

occurring early in embryogenesis will often be present in a substantial proportion of, but not 

all, cells in the post-natal human and thus have particular characteristics and impact1. 

Depending upon their location in the genome and the proportion of cells they are present in, 

these mosaic mutations can cause a wide range of genetic disease syndromes2 and 

predispose to cancer3,4. They have a high chance of being transmitted to offspring as de novo 

germline mutations and, in principle, can provide insights into early human embryonic cell 

lineages and their contributions to adult tissues5. Although it is known that gross 

chromosomal abnormalities are remarkably common in early human embryos6 our 

understanding of early embryonic somatic mutations is very limited. Here, we use whole 

genome sequences of adult normal blood from 241 individuals to identify 163 early embryonic 

mutations. We estimate that approximately three base substitution mutations occur per cell 

per cell-doubling in early human embryogenesis and these are mainly attributable to two 

known mutational signatures7. We used the mutations to reconstruct developmental lineages 

of adult cells and demonstrate that the two daughter cells of many early embryonic cell 

doublings contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study 

therefore provides insights into the mutation rates, the mutational processes and the 

developmental outcomes of cell dynamics operative during early human embryogenesis. 
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Main text 

Somatic point mutations of early embryonic derivation that are present in a substantial 

proportion of adult cells are detectable by standard DNA sequencing approaches. They can 

be distinguished from inherited single nucleotide polymorphisms (SNPs) as they will generally 

show lower variant allele fractions (VAFs). For example, early somatic mutations arising in 

one of the two daughter cells of the fertilized egg will show VAFs of ~25% in an adult tissue 

(Fig. 1a), compared to ~50% for inherited heterozygous polymorphisms, if the two cells have 

contributed equally to the adult tissue analysed8. Therefore, to identify early embryonic base 

substitutions, we analysed whole-genome sequences of blood samples from 279 individuals 

with breast cancer, in the first instance seeking mutations with VAFs ranging from 10% to 

35%. However, with sequencing coverage of these samples at a median of 32-fold 

(Supplementary Table 1) a substantial number (50,000-100,000) of inherited heterozygous 

SNPs would also be expected, by chance, to show VAFs less than 35% thus interfering with 

specific detection of early embryonic mutations. To address this problem, we examined the 

relationship of low VAF substitutions to nearby (<500bp distant) heterozygous germline 

SNPs. Early embryonic mutations will be found on just a fraction of the sequencing reads that 

also carry a particular allele of a nearby heterozygous germline polymorphism (Fig. 1b). By 

contrast, an inherited SNP that by chance has a low VAF will be found on all such reads. 

Given the presence of approximately two million heterozygous SNPs in an individual human 

genome, a significant number of low VAF base substitutions can be interrogated in this 

manner. After further filtering and subsequent experimental validation by ultrahigh-depth 

targeted sequencing (median read-depth=22,000x), we identified 605 somatic base 

substitutions with accurate VAF estimates that appeared to be present in only a proportion of 

adult blood cells (Methods). 

 

Mutations present in a subset of white blood cells can also reflect the presence of neoplastic 

clonal expansions arising from adult haematopoietic stem cells during the course of life9-11. 

However, blood samples in which neoplastic clones constitute a substantial proportion of the 

cells present will often display large numbers of low VAF mutations, because mutations 

present in the most recent common ancestor (MRCA) cell of the neoplastic clone have 
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usually been acquired over decades, rather than a few days for mutations of early embryonic 

origin (Extended Data Fig. 1). Indeed, the distribution of the number of mosaic mutations in 

the 279 samples indicated the presence of an outlier group of 31 samples harbouring more 

mutations (n≥5) than expected by chance, compatible with the presence of neoplastic clones 

in these samples (Fig. 1c). Several additional features support the proposition that the low 

VAF mutations in these blood samples were predominantly from neoplastic clones (Extended 

Data Fig. 1). These include: their absence from the breast cancers from the same individuals 

(Figs. 1c-1e); the presence of known driver mutations for haematological neoplasms; the 

median age of individuals carrying these clones being twelve years higher than the rest of the 

cases (64 vs. 52 years old, respectively; P=0.00003; Fig. 1f) consistent with previous reports 

that these cryptic neoplasms are more common in older individuals9-11; and mutations in these 

samples showing highly similar VAFs to each other, consistent with their presence in the 

same clone (Extended Data Fig. 2). We removed 38 samples with evidence of neoplastic 

clones in the blood from further analyses (Methods). 

 

After application of all filters, we obtained 163 mosaic mutations from 241 individuals, the 

large majority of which are likely to have arisen during early human embryogenesis (Fig. 1g; 

Supplementary Table 2; Extended Data Fig. 3). To confirm that such mutations are 

genuinely mosaic, we sequenced multiple single white blood cells from one individual and 

showed that the mutation analysed was only present in a subset (Fig. 1h).  

 

Most mutations of early embryonic origin would be expected to be present in all normal 

tissues and not just in white blood cells. From 13 individuals in whom putative early 

embryonic mutations had been detected in blood, we examined normal breast (composed of 

cells of ectodermal and mesodermal origins) and lymph nodes (composed of cells of 

mesodermal origin) for the presence of the early embryonic mutations. Most of the mutations 

were found in the additional normal tissues examined, with VAFs indicative of being mosaic 

and correlating with those found in blood, thus supporting the early embryonic origin of the 

mutations and further reducing the likelihood that they are due to neoplastic clonal 

haematopoiesis (Fig. 1i). The VAFs of the early embryonic mutations were lower in normal 
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breast and lymph node than in blood (Fig. 1i). This is expected if different tissues develop 

from slightly different subsets of ICM founder cells and/or if unequal lineage expansions take 

place later in development, but we cannot exclude other explanations (Supplementary 

Discussion 1). 

 

In contrast to normal tissues, which are composed of multiple somatic cell clones, a breast 

cancer derives from a single somatic cell. Thus an early embryonic mutation would be 

expected either to be present in all cells of a breast cancer or in none, rather than in a 

proportion of cells as observed in blood and other normal tissues (although in practice the 

presence of contaminating non-cancer cells in the cancer sample has to be corrected for; 

Method). This was the pattern observed, with 37 mosaic mutations shared between the blood 

and the breast cancer from the same individuals, 105 non-shared and 21 uncertain, either 

due to a large deletion in the relevant region of the cancer genome (n=14) or statistical 

ambiguity (n=7) (Figs. 2a, 2b). The proportion of early embryonic mutations shared between 

the blood and the cancer is predicted to change according to the stage of early embryonic 

development at which the mutation occurred, with mutations acquired later being shared less 

often (Extended Data Fig. 4). Consistent with this expectation, embryonic mutations with 

lower VAFs in blood were shared less frequently with breast cancers (Fig. 2c).  

 

These patterns of sharing of low VAF mutations in blood (which is of mesodermal origin) with 

normal and neoplastic breast tissue (which is of ectodermal origin) supports a model in which 

the most recent common ancestor (MRCA) cell of adult blood cells is the fertilized egg (Fig 

2d; Supplementary Discussion 2), or is the MRCA cell of all/most somatic cells, rather than 

an alternative model of a single MRCA of the blood occurring at a later stage of 

embryogenesis with very restricted subsequent fate. 

 

The VAFs of the 163 validated early embryonic mutations in blood, which ranged from 45% to 

1%, provide insights into the early cellular dynamics of embryogenesis (Fig. 3a). If, in the 

large majority of embryos, the first two daughter cells of the MRCA cell of blood contributed 

equally to adult blood cells (symmetric cell doubling), a narrow 25% VAF peak would be 



 7 

expected for mutations acquired at this stage. However, this peak was not observed 

indicating that asymmetric contributions are common.  

 

To explore the basis of this asymmetrical contribution systematically, we generated a series 

of models of cell genealogies in which different branches contributed unequally to adult blood. 

The asymmetry that best fitted the observed VAF distribution is an average, across embryos, 

~2:1 contribution of the first two daughter cells (cells I-1 and I-2; Fig. 3b, 3c). Moreover, this 

~2:1 asymmetric cell contribution appears to extend to some cells of the second cell 

generation (cells II-1 and II-2; Fig. 3b, 3c) and possibly of the third cell generation (Methods). 

The model with unequal contributions was clearly superior to a null model of strictly 

symmetric cell doublings (P=1x10-40, likelihood ratio test, Fig. 3a, 3b). This frequent unequal 

contribution of the earliest human embryonic cells to adult somatic tissues is consistent with 

previous indications from studies of mouse development5,12-15. 

 

The biological mechanisms underlying these asymmetrical contributions are not well 

understood. One daughter cell and its progeny may contribute more than the other because 

they intrinsically have a lower death rate, a higher proliferation rate and/or a preference for 

contributing to embryonic compared to extra-embryonic tissues14-16. Indeed, studies in mice 

have shown that cells separated from 2-cell embryos have different intrinsic developmental 

potentials16,17. Alternatively, the stochastic consequences of a bottleneck in early embryo 

development could be the source of the asymmetry. In the early blastocyst stage human 

embryo, which is composed of 50-100 cells (blastomeres), only the minority of cells (<20) 

present in the inner cell mass (ICM) eventually contribute to adult somatic tissues18. Under a 

model in which a small number (<20) of ICM founder cells are selected at random from a 

blastocyst composed of many (>50) equivalent blastomeres and most of the founder cells 

contribute to adult cell types, it is likely that the progeny of the first two cells will, in many 

embryos, be selected in unequal proportions, as recently observed in mouse19. Indeed, our 

simulations indicate that stochastic allocation of early human embryonic cells into the ICM 

results in levels of asymmetric contribution similar to those observed, without any intrinsic 

differences of early cells (Fig. 3d; Extended Data Fig 5; Methods). Assuming the stochastic 
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hypothesis is correct, our simulation estimates that the number of ICM founder cells giving 

rise to blood is approximately 10. Given that the VAF of embryonic mutations in non-blood 

tissues was lower than in blood, we note that the actual number of ICM founder cells may be 

larger if not all ICM cells contribute equally to blood. Further studies will be needed, however, 

to clarify the source of the observed asymmetry in the contribution of early cells of the embryo 

to adult tissues.  

 

Using the asymmetric cell-doubling model, we reconstructed the numbers of base 

substitutions present in each early embryonic cell. Taking into account the sensitivity of our 

low VAF mutation detection (Method; Extended Data Fig. 3e), approximately 14 

substitutions are present with VAF 10%-35% in the blood of a person and we estimated a rate 

of 2.8 substitution mutations per cell per cell-doubling (Fig. 4a; Supplementary Discussion 

3; 95% confidence interval 2.4-3.3) especially for the cell doublings at the first and second cell 

generations. A similar rate is obtained under a simple model without asymmetric contributions 

(Fig. 4a; Methods). This mutation rate per cell-doubling may not, however, directly equate to 

a rate per cell division because early embryonic development may involve cell loss, perhaps 

due to fatal chromosomal aberrations6, and thus a cell-doubling may entail more than a single 

cell division. If cell loss is common in the first few divisions of life, the mutation rate per cell 

per cell division will be lower than the estimated rate per cell per cell-doubling cited above. 

 

We then validated the early embryonic mutation rate using whole-genome sequences of 

bloods from three large families20 (Fig. 4b). We found seven substitution mutations in children 

that were not present in their parents and that had features described above of early 

embryonic mutations (Extended Data Fig. 6). Of these, four were on paternally derived and 

three on maternally derived chromosomes. We obtained a similar early embryonic mutation 

rate of 2.8 per cell per cell doubling (95% Poisson confidence interval 1.1-5.8; Fig. 4a). 

 

The mutational spectrum of early embryonic mutations was predominantly C>T (42.9%), T>C 

(25.1%) and C>A substitutions (16.6%) (substitutions are referred to by the pyrimidine of the 

mutated Watson-Crick base pair) and was similar to that of de novo germline mutations 



 9 

(Extended Data Fig. 7a). Somatic mutations are caused by a diverse array of mutational 

processes including exogenous and endogenous mutagenic exposures, DNA modification, 

DNA editing and DNA maintenance mechanisms7. Each mutational process imprints a distinct 

signature of mutations onto genomes on which it has been operative. We have previously 

developed methods for extracting mutational signatures from human cancers7 (Fig. 4c) and 

have identified >30 different mutational signatures 

(http://cancer.sanger.ac.uk/cosmic/signatures). A combination of just two of these signatures, 

signatures 1 and 5, optimally accounts for the spectrum of early embryonic mutations, 

contributing 28% and 72% mutations, respectively (Fig. 4c). Signature 1 is thought to be due 

to spontaneous deamination of 5-methyl cytosine to thymine which results in C>T transitions 

primarily at CpG dinucleotides (Extended Data Fig. 7b). The mutational process underlying 

signature 5 is currently unknown. These two mutational signatures are found in almost all 

human cancers and the numbers of mutations associated with them exhibit strong positive 

correlations with age, suggesting that their underlying processes are endogenous and 

operate in most normal somatic cells at relatively constant rates throughout life21. 

Furthermore, signatures 1 and 5 appear to be the dominant mutational signatures contributing 

to human de novo germline mutations20,21. The current study therefore extends their domains 

of activity to early embryogenesis. We do not exclude the possibility that more mutational 

signatures, contributing smaller numbers of mutations, are operating in early embryogenesis, 

but a larger set of mutations will be necessary to identify them. 

 

A very small number of early post-zygotic mutations have been previously reported22-24. This 

study therefore provides the first large-scale identification of early embryonic mutations with 

accurate VAF information, and illustrates the use of such information in elucidating 

developmental processes. The study reveals an average ~2:1 asymmetry of early human 

embryonic cells in terms of their contributions to adult tissues, at least to blood, thus providing 

insights into the fates of cells at very early developmental stages. Our results have also 

allowed the first estimate of the mutation rate and the mutational signatures and processes 

underlying base substitutions in the early human embryo, which appear to be comparable to 

those in mouse embryogenesis5 and in adult somatic human tissues20,25,26. The early human 

http://cancer.sanger.ac.uk/cosmic/signatures
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embryonic mutation rate estimated here implies that, using similar methods to those 

introduced in mice previously5, reconstruction of cell lineage trees using somatic mutations 

should be possible in humans.  
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METHODS 

 

Samples and sequencing data 

For initial discovery of early embryonic mutations, we analyzed whole-genome sequencing 

data from 304 blood samples of breast cancer patients which were sequenced as normal 

controls for the ICGC (International Cancer Genome Consortium) breast cancer study27. 

Genomic DNA was extracted from bulk white-blood cells collected from fresh peripheral 

bloods. Matched breast cancer samples for all the individuals were also analysed in parallel. 

Of these, 25 samples with putative DNA contamination were removed (see below for more 

details), and 279 samples were used for the detection of early embryonic mutations (the 

sample information is available in Supplementary Table 1). For validating the mutation rates, 

we also used whole-genome sequencing data from 19 blood samples from 3 families20. For 

confirmation of early embryonic mutations in non-blood normal tissues, we extracted genomic 

DNA from FFPE (formalin-fixed and paraffin embedded) lymph nodes and normal breast 

tissue surgically resected during mastectomy procedures. The whole-genome sequencing 

data analysed in this study were generated using Illumina platforms (either Genome Analyzer 

or HiSeq 2000). Sequencing reads were aligned to human reference genome build 37 

(GRCh37) using the BWA alignment tool28. All PCR duplicate reads were removed.  

 

DNA contamination control 

We thoroughly checked for possible sources of DNA contamination: tumour-normal swap; 

matched tumour DNA contamination in blood; and cross-contamination with DNA from other 

individuals. Cases of tumour-normal sample swap were identified by examining the presence 

of genome-wide copy number variations in the putative normal samples. Cases of matched 

tumour DNA contamination were identified by examining the VAFs in the blood sequencing 

data for the somatic substitution variants identified in the matched cancer using CaVEMan 

software29 (available at https://github.com/cancerit/CaVEMan/). When the average VAF of 

cancer specific substitutions was more than 1% in a blood sample, we regarded the blood 

sample to be contaminated by a matched tumour DNA sample. Finally, for each sample, the 

https://github.com/cancerit/CaVEMan/
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level of DNA cross-contamination with tissue from other individuals was estimated as 

described previously30.  

 

Variant calling 

VarScan2 software31 was used for initial early embryonic variant calling. Input vcf files were 

generated from whole-genome sequencing bam files using samtools32 mpileup with three 

options -q 20, -Q 20 and -B. Then VarScan2 somatic was applied to blood samples with 

matched tumour samples as reference. Three options were applied for the VarScan2 running, 

--min-reads2 4, --min-ave-qual 20, and --strand-filter. We selected substitution variants with 

VAFs ranging from 0.1 to 0.35 as putative early embryonic mutations. We removed putative 

mutations near germline indels (within 5bp), because these are mostly false positives due to 

mismapping. Putative mutations likely to be sequencing artifacts and/or germline 

polymorphisms were removed if the variants were also present in the unmatched blood 

samples analysed in this study, or were known germline polymorphisms with at least 1% 

population allele frequency identified from the 1000 Genomes Project (Nov.2013), or 

deposited in dbSNP (v138). We removed putative variants in segmental duplications, simple 

repeats, repetitive sequences (RepeatMasker) and homopolymer sequences in the human 

reference genome (downloaded from UCSC genome browser, http://genome.ucsc.edu/). 

  

Substitution phasing 

We phased the putative embryonic variants to heterozygous germline substitutions using 

sequences from whole-genome sequencing as described previously30,33. For more 

conservative phasing, we did not use sequences at the 4bp extremes of each read, where 

substitutions and indels are not well called. From blood whole-genome sequencing data, we 

classified the putative variants into 4 groups, ‘phasing not available’, ‘mixed pattern’, ‘no 

evidence of subclonality’ and ‘subclonal’ using criteria as follows:  

(1) Phasing not available: no available read covering both the mutation and the 

heterozygous SNP in the vicinity 

(2) Mixed pattern: the putative variant is present in both the bi-allelic haplotypes of 

heterozygote SNPs  

http://genome.ucsc.edu/
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(3) No evidence of subclonality: the putative variant is completely and exclusively 

present on one of the two haplotypes of heterozygote SNPs 

(4) Subclonal: the putative variant is present in a fraction of one of the two haplotypes of 

heterozygote SNPs. The variant is not present on the other haplotype. 

Putative mutations categorized other than subclonal were removed. For the subclonal 

mutations, we estimated the probability of false subclonality due to sequencing errors. For 

this calculation, we counted only informative reads, which were participating in the phasing: 

reads covering the putative mutation locus and one of the alleles of the inherited 

heterozygous SNP in which the early mutation is linked. 

𝑃𝑒𝑟𝑟𝑜𝑟 = ∏(𝑄1𝑖 + 𝑄2𝑖 −

𝑉

𝑖

𝑄1𝑖 ∙ 𝑄2𝑖) + ∏(𝑄1𝑗 + 𝑄2𝑗 −

𝑊

𝑗

𝑄1𝑗 ∙ 𝑄2𝑗) 

                                    −∏(𝑄1𝑖 + 𝑄2𝑖 −

𝑉

𝑖

𝑄1𝑖 ∙ 𝑄2𝑖) × ∏(𝑄1𝑗 + 𝑄2𝑗 −

𝑊

𝑗

𝑄1𝑗 ∙ 𝑄2𝑗) 

Q1 and Q2 are sequencing error rates of the bases at the putative mutation and the 

heterozygote SNP loci, respectively; i represents each of the informative reads harboring the 

mutant base at the early embryonic mutation site; V is the total number of informative reads 

with the mutant base; likewise, j represents each of the informative reads harboring a wild-

type base at the early embryonic mutation site and W is the total number of such reads. 

When there was more than one heterozygous SNP site that was used for phasing, we 

calculated a string of phasing error rates (Perror) from every SNP site and multiplied them to 

obtain an overall phasing error rate. 

 

Copy number of mutation loci 

We removed any putative mutation if it was located in a region with copy number higher than 

two. We isolated potential copy number variation of each genome using both intra-sample 

and inter-sample methods. For the intra-sample method, we calculated the standard deviation 

of read-depth from all (~2 million) germline heterozygous SNP sites from every normal whole-

genome sequencing dataset. When the local coverage of an early embryonic mutation 

candidate was higher than the 95% percentile (i.e. local depth is greater than genome-wide 

mean WGS coverage + 1.645 x stdev; it is ~46x in typical 30x coverage sequencing) of the 
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sample, we considered the site was possibly duplicated thus removed from our further 

analyses (Extended Data Fig. 8a). For the inter-sample method, we clustered the normalized 

normal WGS read counts of a candidate region (from 1kb upstream of the mutation site to 

1kb downstream) from all the samples included in this study. If the normalized copy number 

of the target sample was either an outlier in the clustering or was two times higher than 

expected from genome-wide average, the mutation candidate was considered to locate in a 

germline copy number variant region and thus filtered out (Extended Data Fig. 8b, 8c). 

 

Mutations shared by the paired tumour tissue 

Then we investigated whether the early embryonic mutation candidates were also present in 

cells of the breast cancer from the same individual. This is not always straightforward 

because (1) whole-genome sequencing of cancer tissue generates a mixture of sequences 

from cancer and contaminating normal cells and (2) copy number changes are quite frequent 

in the cancer genome. Using the ASCAT algorithm34, based on analysis of the variant allele 

fraction for heterozygous germline SNPs for regions departing from diploidy in the tumour 

genome, we estimated the tumour cell fraction (‘f’ in the formula below), ploidy of cancer 

genome (‘p’) and local A (major) and B (minor) allele copy numbers (‘a’ and ‘b’, respectively). 

Each mutant allele was previously phased to either A or B allele nearby. Using these 

estimates, we built a model for the expected number of reads (N) supporting the mutant allele 

in paired-cancer genome sequencing in three different scenarios: 

 

I) The mutant allele is not shared (and approximate 95% binomial confidence interval), 

𝑁 = 𝐷𝜋0 , (95% 𝐶𝐼: 1.96√𝐷𝜋0(1 − 𝜋0) ) 

, D is the read-depth of the mutant site in matched cancer WGS sequencing and 

𝜋0 = 
2(1 − 𝑓)𝜌

((𝑎 + 𝑏)𝑓 + 2(1 − 𝑓))
⁄    

, ρ is the expected VAF of the mutant allele. 

 

II) The mutant allele is phased to B allele (with 95% confidence interval), 

𝑁 =  𝐷𝜋1, (95% 𝐶𝐼: 1.96√𝐷𝜋1(1 − 𝜋1)) 
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,  𝜋1 = 
(𝑓𝑏 + 2(1 − 𝑓)𝜌)

((𝑎 + 𝑏)𝑓 + 2(1 − 𝑓))
⁄   

If nB = 0 we cannot differentiate scenario I and II (loss-of-mutant allele). 

III) The mutant allele is phased to A allele (with 95% confidence interval), 

𝑁 =  𝐷𝜋2, (95% 𝐶𝐼: 1.96√𝐷𝜋2(1 − 𝜋2)) 

, 𝜋2 = 
(𝑓𝑎 + 2(1 − 𝑓)𝜌)

((𝑎 + 𝑏)𝑓 + 2(1 − 𝑓))
⁄  

According to these models, we assigned our mutation to four groups: ‘non-shared’ (model I), 

‘shared’ (model II or III), ‘loss-of-mutant allele’ (when the mutant allele is phased to B allele 

and b is 0) and ‘uncertain’ (when more than 1 model could explain or no convincing ASCAT 

result is available for the sample).  

 

Visual inspection 

We visually inspected all the candidate embryonic mutations using the Integrative Genomic 

Viewer35 and JBrowse36. We confirmed that genomic regions with putative embryonic 

mutations were not in sequences with evidence of artifacts and thus that any putative 

mutation was supported by high quality sequencing reads.  Two examples of early embryonic 

mutations are shown in Figs. 2a and 2b. 

 

Validation by MiSeq amplicon sequencing 

We tried to validate all the putative early embryonic mutation sites. We designed 959 pairs of 

PCR primers (Supplementary Table 3) for 863 candidate early mutations to make amplicons 

for the putative mutation sites along with the nearby heterozygote SNPs used for phasing 

from the blood and paired-cancer DNA samples of the individual harboring the putative 

mutation. After clean-up using ExoSAP-IT (Affymetrix Inc., Santa Clara, CA, USA), all 

amplicons from blood and matched cancer tissues were separately pooled and sequenced by 

2 x 250bp MiSeq sequencing (Illumina Inc., San Diego, CA, USA) 2 runs per pool, expecting 

> 1000x coverage per amplicon. Because the read-depth is very high in amplicon 

sequencing, we could obtain a much more precise variant allele fraction of the putative 

embryonic mutation along with accurate phasing to the germline heterozygote substitution. 

The VAFs for germline heterozygote substitutions in non-repetitive genome regions showed a 
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clear peak at 0.5 (Extended Data Fig. 9a). To estimate the extent to which the amplification 

process biased the VAFs, we fitted a beta-binomial distribution with mean 0.5 and dispersion 

to the numbers of reads supporting both alleles in heterozygous SNPs (which have an 

expected VAF=0.5). This confirmed that the additional uncertainty introduced by 

amplifications was very small (θ = 223.88, overdispersion ρ = 1/(1+ θ) = 0.004). This 

estimate of the overdispersion was used in the maximum likelihood asymmetric models. The 

targeted amplicon sequencing showed high precision in the assessment of the VAF of a 

mutation (Extended Data Fig. 9b). The MiSeq validation experiment confirmed that the 

candidate mutations were not sequencing artifacts nor inherited mutations both from the 

resulting VAFs (ranged from 0.01 to < 0.5, mostly < 0.35) and from phasing to the local 

heterozygous SNP. From this validation study, we found that there is a clear linear 

relationship between phasing error rates (as calculated above) and validation success rate 

(Extended Data Fig. 10).  We could not create amplicons from some mutation candidates 

due to lack of DNA samples or unsuccessful PCR reactions. Finally, we rescued 14 early 

embryonic mutations because they are likely to be true on the basis of phasing error 

probability (Supplementary Table 2). 

 

Mutation validation using single cells 

From the blood of one individual (PD7344) we sorted 144 granulocytes. Genomic DNA of 

each single cell was extracted and whole-genome amplified using the REPLI-g Single Cell Kit 

(Qiagen Inc.) using the manufacturer’s protocol. Of the 144 single cells, 131 provided 

substantial amounts of WGA DNA. PCR amplicons were produced targeting the early 

embryonic substitutions in the sample (chr3:187268541 C>A). PCR reactions were successful 

from 118 WGA DNAs. After clean-up of the 118 PCR products, capillary sequencing was 

performed. Of these, 41 showed allelic dropout of the DNA haplotype on which the embryonic 

mutation was present (absence of the T allele of rs17726238) and thus were not further 

considered. Among the 77 informative amplicon sequencing results, 24 showed clear 

evidence of the embryonic substitutions as shown Fig 1h.  

 

Late somatic mutations due to clonal haematopoiesis 
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Age-related clonal haematopoiesis is quite common, and observed in more than 10% of 

persons older than 65 years old9-11. Like mutations that have occurred in the very early 

embryo, these late mutations appear to be subclonal (mosaic) in adult blood. However, such 

late mutations are rarely shared with the breast cancer sample from the same individual 

because the vast majority of them occurred after formation of the three germ layers, 

specifically in the mesodermal lineage. In addition, late clonal expansions in the blood 

invariably carry a large number of co-clonal mutations accumulated throughout life37, and so 

many subclonal mutations with similar VAFs are detected together in the blood sample. In this 

study, we found that each blood sample harbors a median of 1 validated phased subclonal 

mutation. According to their distribution (Fig. 1c), we regarded 31 samples with at least 5 

validated subclonal mutations as outlier samples, defined as deviating from the median value 

by more than twice the interquartile range. Consistent with the hypothetical presence of late 

clonal expansions in these outlier samples, the proportion of non-shared mutations abruptly 

increases from this point (Fig. 1c). Furthermore, we searched 73 cancer genes which have 

been reported to drive clonal haematopoiesis9-11 for low VAF somatic mutations (supported by 

at least 3 mismatches) and identified eight samples with mutations in DNMT3A, ASXL1, 

JAK2, PTPN11 and CBL genes. Of these, four samples were found among the 31 outlier 

samples. Conservatively, the remaining four samples were also classified as containing clonal 

haematopoiesis despite the small number of mutations found in them, and therefore removed 

from downstream analyses. Finally, we assessed whether mutation candidates obtained from 

each sample showed significantly similar VAFs to each other compared to the other samples, 

indicating that those mutations may be present in same blood clone, and thus filtered out 

three additional samples. Indeed, from the 38 filtered samples, we observe that mutations 

have more similar VAF to the other mutations in the same sample (calculated by 𝑉𝐴𝐹𝑖
𝑉𝐴𝐹̅̅ ̅̅ ̅̅⁄ , 

where I represents each mutation in the sample) compared to the mutations in samples with 

2-4 mutations (Extended Data Fig. 2). As a result, out of the total 279 samples, we classify 

241 samples as having no evidence of clonal haematopoiesis, and therefore informative for 

detecting embryonic mutations.  

Finally, we assessed whether matched tumour sequences showed evidence of the mutant 

allele with significantly higher VAFs than background sequencing error rate levels (Extended 
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Data Fig. 9c). This would be expected, because normal cells are always present in cancer 

samples and a fraction of the normal cells would carry the mutant allele if a mutation is truly 

embryonic origin. Fifteen candidate mutations, which were not found in the matched tumour 

samples, were removed through this step. After application of all filters, we identified 163 

likely early embryonic mutations from 241 samples. 

 

Asymmetry in early cell doublings 

In order to fit different lineage models to the VAF of embryonic mutations, we used a 

likelihood approach. If read counts were fully independent, allelic counts from each mutation 

could be modelled as being binomially distributed. However, to account for the overdispersion 

caused by the amplification process prior to library preparation, we assume allelic counts to 

be beta-binomially distributed. As shown above, we estimated the overdispersion parameter 

θ=223.9 (CI95%: 201-248). Over 98.7% of heterozygous SNPs had a VAF in the range 

[0.4,0.6] in the re-sequencing dataset (Extended Data Fig. 9a) 

 

If the first cell doubling gives rise to two daughter cells that contribute equal numbers of cells 

to the adult (or the adult blood population), the doubling is considered symmetrical. 

Otherwise, the doubling is considered asymmetrical, with one cell contributing a fraction α1 of 

the cells in the adult and the other cell 1-α1. Assuming that embryonic mutations are 

heterozygous, the expected VAF of a mutation occurring in branch 1 of the lineage is 0.5*α1 

and in branch 2 is 0.5*(1-α1). The same applies to any doubling in the lineage, with the two 

daughter cells contributing αn and 1-αn, relative to the contribution of the mother cell (n). This 

allows calculating the expected VAFs in the adult cell population for mutations occurring at 

each branch of the model lineage tree (vb). 

 

For each embryonic mutation, j, we observe the number of mutant reads (mj) and the total 

coverage at the site (cj). The likelihood of observing a given mutation under a particular 

lineage model requires integrating the likelihood of observing the mutation under each branch 

of the lineage, considering also the mutation rate at each branch and the sensitivity to 

mutations from each branch. In other words, the VAFs are fitted to a mixture model as 
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mutations could have occurred at any branch in the tree. The total log-likelihood of the model 

is the sum of the log-likelihoods from all mutations. 

 

 

 

Where N is the total number of mutations in the dataset (N=163), B is the total number of 

branches in the model and rb is the (relative) mutation rate of the branch. sb is the (relative) 

sensitivity to mutations from the branch, which is a function of the expected VAF of mutations 

from the branch (vb). Sensitivity as a function of VAF is calculated as described in the section 

below. 

 

Statistical comparison of models of increasing complexity 

In order to evaluate whether a lineage with one asymmetric doubling fits the data significantly 

better than a symmetric model, we obtained the maximum likelihood estimate for αn from 

each of the 15 doublings from the first 4 cell-generations while keeping all other doublings 

symmetrical. The best 1-asymmetric-rate model is tested against the symmetric model with a 

likelihood ratio test with 1 degree of freedom, and the p-value is subjected to Bonferroni 

multiple testing correction to account for the 15 models evaluated. This revealed that a 

lineage where the first doubling is asymmetric with α1≈0.61 fits the data much better than a 

symmetric model (LL0=-1444.4, LL1=-1366.3, P <10-16). 

 

In order to test models with additional asymmetric rates we used a heuristic approach. 

Instead of testing all possible combinations of asymmetric rates, we tested the impact of 

adding an extra asymmetric rate to the previous model (14 alternative models). The best 

model included asymmetry in the cell doubling of the dominant daughter cell in the first cell 

doubling (LL1=-1366.3, LL2=-1349.102, Bonferroni-corrected P=3.1e-08). The same 

approach was used to find a better model with three and four asymmetric doublings. The best 

model with three asymmetric doublings is only marginally better than the best model with two 
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asymmetric doublings (LL3=-1344.784, Bonferroni-corrected P=0.021). More complex models 

provided no significantly improved fits to the data. 

 

In order to evaluate whether other asymmetric lineages with two or three asymmetric rates 

could provide better fits, we exhaustively calculated the maximum-likelihood values of all 

possible lineages with two or three asymmetric doublings in the first four cell-generations. No 

model provided a better fit to the ones found by the heuristic approach. This analysis strongly 

supports a lineage with at least two asymmetric rates (first and second branches).  

 

The confidence intervals shown in Fig 3c were calculated by non-parametric bootstrapping 

(i.e. resampling the original data with replacement) followed by numerical search of the 

maximum likelihood values of the top seven rates in the lineage. 

 

Estimating the average mutation rate from asymmetric lineage models 

Assuming a given lineage model, a global estimate for the average mutation rate per genome 

per doubling in the early embryo can be obtained with the following equation: 

 

 

 

N is the total number of embryonic mutations detected (N=163), S is the number of samples 

studied (S=241) and sb is the sensitivity to detect a mutation from a particular branch of the 

lineage tree. Further, an approximate estimate of the average mutation rate at different cell 

generations could be obtained using an Expectation-Maximisation (EM) algorithm. These 

estimates may be more robust against possible contamination from neoplastic expansions at 

very low VAFs than the global estimate above. 

 

Assuming a particular lineage, the relative probability (expectation step) of a mutation (j) 

coming from one particular branch (b) is given by:  
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In the first iteration of the EM algorithm, the mutation rate (rj) of all branches is considered 

identical. The number of mutations estimated to come from each branch is then calculated as 

the sum of these probabilities across all mutations: 

 

 

 

Nb is then used to update the mutation rate per branch (maximisation step). And these two 

steps are iterated until convergence, obtaining an improved fit to the data and estimates of 

the mutation rates per branch. To constrain the parameters of the model, the rates of all 

branches from the same cell-generation are maintained identical during the EM algorithm. 

Confidence intervals were obtained by bootstrapping (400 replicates). Importantly, allowing 

the mutation rates of the first three cell-generations to vary freely with respect to the rest of 

the lineage (values shown in main text, Fig. 4a), does not significantly improve the fit of the 

model (LL=-1347.0 as opposed to LL2, p-val=0.24, 3 degrees of freedom). 

 

Simulation of sensitivity 

We estimated the sensitivity for early embryonic mutations from simulation studies. The 

sensitivity will be dependent on the target VAF (ρ) of early mutations. First, we randomly 

generated 1,000 in-silico embryonic mutations genome-wide. In-silico mutations within known 

gaps of the human reference genome were removed and replaced by newly generated 

mutations. Note that this means that sensitivity and so the mutation rates estimated in our 

study exclude mutations present in gaps, which approximately correspond to ten percent of 

the human genome. Next, under 21 different theoretical VAF (ρ; 0.016, 0.028, 0.031, 0.056, 

0.063, 0.083, 0.111, 0.125, 0.139, 0.167, 0.194, 0.222, 0.250, 0.278, 0.306, 0.333, 0.361, 
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0.389, 0.417, 0.444, 0.472) we queried how many of them could be detected on average from 

the whole-genome sequences of 241 samples. The same filtration steps for real mutation 

candidates were applied for the in-silico mutations: if mutations are found in 1000 Genomes 

Project dataset, dbSNP variation, segmental duplications, simple repeats, repetitive 

sequences by RepeatMasker, homopolymers, and potential copy number gain regions, we 

regarded these mutations as undetectable. Then, for each potentially detectable in-silico 

mutation, and under several given ρ, we calculated the fraction of mutations that could be 

successfully detected and successfully phased to at least one heterozygous SNP nearby in 

each individual WGS.   

𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝜌) =  𝑃(𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛|𝜌) ∙ 𝑃(𝑝ℎ𝑎𝑠𝑖𝑛𝑔|𝜌) 

where P(detection|ρ) is the probability of a mutation having a sufficient number of reads 

supporting the mutant allele (at least 4, or the cutoff value in this study) and a VAF within the 

range considered in the discovery phase of this study (from 10% to 35%). Likewise, 

P(phasing|ρ) represents the probability of successful phasing a mutation to the heterozygous 

SNP nearby. We calculated P(detection|ρ) and P(phasing|ρ) as below: 

𝑃(𝑑𝑒𝑡𝑐𝑡𝑖𝑜𝑛|𝜌) = ∑ (
𝐷

𝑟
) 𝜌𝑟(1 − 𝜌)(𝐷−𝑟)

𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓(0.35𝐷)

𝑟=max(4,𝑟𝑜𝑢𝑛𝑑𝑢𝑝(0.1𝐷))

 

𝑃(𝑝ℎ𝑎𝑠𝑖𝑛𝑔|𝜌) = 1 − ∏ ((0.5 + 𝜌)𝑆𝑖 + (1 − 𝜌)𝑆𝑖 − 0.5𝑆𝑖)

max (1,𝑁)

𝑖

 

where roundup () and roundoff() functions round to the higher or the closest integer number, 

respectively. D is the read-depth of each detectable in-silico mutation site, N represents the 

total number of heterozygous SNPs which are available for phasing, i is each of the 

heterozygote SNPs and Si is number of reads spanning both a mutation locus and the 

heterozygous SNP. For simplicity of simulation, we assumed all the bases have a good base 

quality (i.e. phred score >20). Finally, we added all probabilities, P(observed|ρ), obtained from 

an individual given ρ. When ρ is fixed, P(observed|ρ) correlates with read-depth of blood 

whole-genome sequencing, and the regression line was obtained using loess regression. We 

obtained our sensitivity estimates for the 21 different ρ values using this approach and a 

simulated coverage of 32-fold coverage (median coverage for 241 blood samples). For 
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example, 4.41% of the 1000 in-silico mutations with ρ=0.25 were detectable when whole-

genome sequencing coverage was 32x (Extended Data Fig. 3e). 

 

A stochastic model of embryoblast formation  

In the maximum likelihood fitting of lineage models described above, a single lineage tree 

was fitted to the data from multiple different individuals. The resulting lineage intends to be a 

merely descriptive representation of the average contribution of different cells across 

embryos. The model implicitly assumes that the same asymmetric lineage describes all 

patients and that the first divisions of the embryo follow a largely constant pattern across 

individuals. It remains unclear whether early embryonic development in viable embryos under 

physiological conditions follows a strict plan in humans or whether there is extensive variation 

between individuals, as observed in mouse19. In the presence of extensive variation in the 

early lineage across embryos, the asymmetry rates estimated using a constant lineage 

should be interpreted with caution. 

 

Interestingly, extensive asymmetry in the contribution of the first cells of the embryo to the 

adult cell pool can also emerge under more stochastic models of embryo development. As a 

proof-of-principle, here we show how a bottleneck in the pre-implantation embryo, in which 

only a randomly selected subset of cells contributes to the final somatic tissues, can give rise 

to extensive asymmetry in the contribution of the first few cells of the embryo to the adult cell 

pool, not dissimilar to the general patterns observed in this study. 

 

All final embryonic tissues are thought to derive from a fraction of cells in the blastocyst 

termed the inner cell mass (ICM), while the rest of the blastocyst (the trophoblast) will form 

the placenta and other extra-embryonic supporting tissues, and will not contribute to the adult 

cell pool. In mice this separation is thought to involve about 12 ICM cells gravitating at the 

center of the blastocyst at the 32-cell stage38. This imposes a significant bottleneck to the 

contribution of the first few cells in the embryo to the adult cell pool. Let us consider a simple 

bottleneck model where a completely random subset of l cells from the n-cell stage embryo 

are selected to form the adult cell pool. If there were m cells carrying an early somatic 
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mutation out of a total of n, the probability to subselecting k in a draw of l cells is given by the 

hypergeometric distribution. This is to be multiplied by the probability that m cells are mutated 

due to early germline mutations. Without a bottleneck, variant alleles would only be expected 

at powers of ½, with intensities following an 1/f power law due to the increase in the number 

of cells with every cell doubling. Hence the probability of selecting k mutated cells out of a 

total n cells is given by: 

 

P(k;l,n) = Σ0<= i <= 2
n phyperg(k; l, m = 2n-2i, n=2i) × 2i/ const            (1)               

where const is a normalisation constant. Note that this distribution has support on VAF k/l, 

rather than 1/2i. The latter is approached in the limit that l = n, that is that all cells would 

propagate to the final somatic tissue (Extended Data Fig. 5a). The overall probability of 

observing mutations at a given VAF v is then to be multiplied by the sensitivity S(v) to detect 

mutation a given frequency, and the additional dispersion arising from detecting mutations on 

a finite number of x sequencing reads at a given coverage c, modeled by a beta-binomial 

sampling model, as described in the deterministic modeling used in the previous sections. 

 

p(x;l,n,c) = Σk P(k;l,n) × S(k/l) × pbetabin(x; prob = k/l; disp =ρ)/ const (2) 

 

, the dispersion ρ is inferred from heterozygous SNPs and taken to be θ=223.9, ρ = 1/(1+ θ). 

 

We may hence fit the likelihood (2) to the observed data, knowing the number of mutated 

reads x and coverage c for each patient, given the number of ICM cells l and cells n. The 

maximum likelihood is obtained for l=11 ICM cells separating after 6 generations, or n=64 

cells (Extended Data Fig. 5b), although there are many solutions with similar likelihood.  

 

From Eq. (2), an estimate of the overall histogram p(v) can be computed as the average over 

all data points p(v; l, n) = Σi p(xi = vci; l, n, ci) / N, where N = 163 is the number of 

observations. Using a Bayesian approach, assuming a uniform prior on the number of cell 

generations at which ICM commitment occurs ranging from 3 to 8, and similarly a uniform 
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prior on the number of ICM cells ranging from 5:32, allows for computing the posterior 

probability of the observed data as: 

 

p(v) = Σl Σnp(v;l,n) × p(l) × p(n) (3) 

The result is shown in Extended Data Fig. 5c. 

 

This model shows how a simple random selection of a subset of the cells in the early embryo 

can lead to substantial asymmetries in the contribution of the first few cells in the embryo to 

the final adult cell pool. We note that this represents one extreme of possible combined 

deterministic and stochastic scenarios. It remains unclear to what extent viable embryos 

under physiological conditions follow a tightly predetermined developmental plan or whether 

largely stochastic processes dominate before the formation of the first structures in the 

blastocyst. The available data cannot distinguish between these models, but we anticipate 

that more detailed analyses of early embryonic somatic mutations could shed some light on 

this question. In particular, deterministic models predict that all individuals will share a very 

similar lineage pattern while stochastic models predict largely different early lineages among 

individuals. 

 

Family analyses  

Genomic DNA was extracted from peripheral blood of 19 individuals from three large families. 

We detected subclonal substitutions in 13 children using identical methods for the blood 

tissues of 241 breast cancer patients, i.e. DNA contamination control, variant calling, phasing 

to nearby heterozygous SNP, assessment of copy number of the mutation loci, and visual 

inspection as described above. We detected 7 early embryonic mutations (Extended Data 

Fig. 6), which were subclonal and not shared by the parents or any siblings, therefore these 

are highly likely to be post-zygotic mutations which occurred at the early embryonic stages of 

a specific child. 

 

We calculated the rate of early mutations from families (Rfamily) as below: 
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𝑅𝑓𝑎𝑚𝑖𝑙𝑦
𝑅

⁄ =

𝑁𝑓𝑎𝑚𝑖𝑙𝑦

𝑆𝑓𝑎𝑚𝑖𝑙𝑦
∙ 𝛼

𝑁
𝑆

⁄     

 

Where R is the overall average early mutation rate (2.8 mutations per cell per cell 

generation), N is the number of mutations (n=163) and S is the total sample size (n=241). 

Likewise, Nfamily is the number of mutations (n=7) identified from family data and Sfamily is the 

total number of children analysed (n=13). α is relative sensitivity of early mutations in family 

data, which must be less than 1 because sequencing coverage is ~7x coverage lower in 

families (25x) than the unrelated 241 blood samples (32x). The simulation of sensitivity 

(shown above) suggests that α is 0.796. A Poisson Exant test was used to calculate the 95% 

confidence interval of Rfamily. 

Detecting contributions of mutational signatures 

Mutational signatures were detected by refitting of previously identified and validated 

consensus signatures of mutational processes 

(http://cancer.sanger.ac.uk/cosmic/signatures). All possible combinations of at least seven 

mutational signatures were evaluated by minimizing the constrained linear function: 

min
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠𝑖≥0

||𝐷𝑒𝑁𝑜𝑣𝑜𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −  ∑(𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖)|| 

𝑁

𝑖=1

 

Here, 𝐷𝑒𝑁𝑜𝑣𝑜𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  represent vectors with 96 components 

corresponding to the six types of single nucleotide variants and their immediate sequencing 

context and 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖 is a nonnegative scalar reflecting the number of mutations contributed 

by this signature. 𝑁  reflects the number of signatures being re-fitted and all possible 

combinations of consensus mutational signatures for N between 1 and 7 were examined, 

resulting in 2,804,011 solutions. Model selection framework based on Akaike information 

criterion was applied to these solutions to select the optimal decomposition of mutational 

signatures. The analysis revealed that signature 1 and signature 5 best describe the set of 

embryonic mutations. Including any other mutational signature did not improve the 

explanation of the set of embryonic mutations. 

http://cancer.sanger.ac.uk/cosmic/signatures
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Figure Legends 

 

Figure 1. Detection of somatic mutations acquired in early human embryos.  

(a) Phylogenetic tree of early embryonic cells and transmission of an early embryonic 

mutation. Each white-filled circle represents an embryonic cell. The diploid genome is 

represented by two black bars inside the white circles. An early embryonic mutation occurring 

in a cell at the 2-cell stage is represented by a red square.  

(b) Early embryonic mutations appear as somatic mosaicism in normal polyclonal tissue, for 

example, blood. The mutations are found on a subset of sequencing reads from bulk tissue. 

(c) Distribution of the numbers of early embryonic mutations per individual genome showing 

all samples (red bars), and the finally selected samples with no evidence of haematopoietic 

clonal expansions (blue bars). The proportion of non-shared mutations (not present in breast 

cancers) is represented by the green line. Error bars denote 95% confidence intervals 

(binomial test). 

(d-e) Early embryonic mutations are either absent from cancer cells (‘non-shared’; d) or are 

fully clonal mutations in the cancer cells (‘shared’; e) depending on their embryonic cellular 

origins. 

(f) The median age of individuals with evidence of neoplastic expansion in blood is 12 years 

higher than individuals without it. 

(g) 163 early embryonic mutations identified from 241 individuals are represented by dots. 

The 23 human chromosomes are shown in the outer layer (excluding chromosome Y). The 

vertical axis in the inner layer represents the VAF of the mutation. Sharing with cancer cells 

and the substitution types are represented by the shapes and colours of the dots. 

(h) Single cell genome sequencing shows that a fraction of blood cells harbor a mosaic 

mutation (PD7344b, chr3:187,268,541 C>A). 

(i) Early mutations are also found in non-blood normal tissues with VAFs indicative of being 

mosaic and correlating with those found in blood. 
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Figure 2. Early embryonic mutations identified from sequencing of adult blood tissues 

paired with matched tumour tissue sequencing. 

(a) An example of an early embryonic mutation not shared with cancer cells. In the blood of 

patient PD6416, a G>A mutation at chr8:5,161,217 (highlighted in yellow) is present with a 

VAF of ~14% from both whole-genome and high coverage targeted-amplicon sequencing. 

This suggests that ~28% of adult white blood cells harbour the mutation. Consistent with its 

somatic origin, the mutation is present on a subset of reads that include variant alleles of two 

nearby germline SNPs (rs7009390 and rs7009505). This mutation was absent in the breast 

cancer cells from the same patient. The minimal low VAF (2.6%) observed in the targeted 

amplicon sequencing of the tumour is consistent with normal cells contaminating the tumour 

sample. 

(b) An example of an early embryonic mutation shared with cancer cells. In the blood of 

patient PD7211, a G>A mutation at chr6:161,658,557 (highlighted in yellow) is present with a 

VAF of ~20% in blood suggesting that ~40% of blood cells have the mutation in their 

genomes. The mutation is present in the cancer sample with a VAF of 42.1% in targeted 

amplicon sequencing, consistent with its presence in all cancer cells and a contaminating 

population of non-neoplastic cells that lack the mutation. 

(c) The proportion of mutations shared between the blood and the cancer correlates with the 

VAF of mutations in blood (from 1st quartile (low VAF, later mutations) to 4th quartile (high 

VAF, earlier mutations)), consistent with expectations for early embryonic mutations. 

(d) The observed proportion of shared mutations (26%; green horizontal line) indicates that 

the MRCA cell of blood is most-likely to be the same as the MRCA cell of many or all somatic 

tissues or the fertilized egg. The four orange boxes show the expected proportions of 

mutations present in breast cancer when there are 0, 1, 2, or 3 cell generation gaps 

respectively between the MRCA of the bloods and the MRCA of the breast epithelial cells 

(see Supplementary Discussion 2). Empirical P values from simulation tests were shown near 

each box. Values of interquartile range x 2 were used for error bars. 
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Figure 3. Asymmetric average contributions of early embryonic cells to adult somatic 

tissues. 

(a) The distribution of VAFs of 163 early embryonic mutations in blood. Light green bars, VAF 

estimated from targeted ultra-high depth amplicon sequencing; gray bars, VAF estimated 

from whole-genome sequencing when targeted amplicon sequencing was not possible. The 

expected VAF distributions (with adjustment for sensitivity of mutation detection) from 

symmetric (equal contributions) and best-fitting asymmetric cell doubling model (unequal 

contributions) are shown with black and red lines, respectively.  

(b) A contour plot showing the optimization of asymmetries in cell doublings. The horizontal 

axis and vertical axis present the asymmetry levels for the first and the second dominant cell 

doublings (cell doubling of MRCA and I-1 cells, respectively). Compared to the symmetric 

model (black arrow), the maximum likelihood asymmetric model (red arrow) provides a much 

better fit to the data (P=1x10-40, Likelihood Ratio Test).  

(c) Maximum likelihood estimates of the average contribution of different cells to the adult 

blood cell pool. The genealogy of early ancestral cells of adult blood cells is shown. The final 

contributions of each early cell to adult blood cells are presented as pie graphs in which the 

red slices indicate the contributions to adult blood of each embryonic cell. These estimated 

asymmetric rates are population averages and could emerge through deterministic 

developmental plans or through stochastic processes. The asymmetries of each cell doubling 

are shown in blue (significantly asymmetric) or gray (the possibility of symmetric doubling is 

not excluded). 

(d) The relative contributions of the first four cells (cell II-1 (blue), II-2 (light blue), II-3 (orange) 

and II-4 (red)) to adult blood cells under a stochastic bottleneck model, in which a small 

number of cells of the early embryo (x-axis) are randomly selected to form the ICM (see 

Methods). 

 

Figure 4. Rates and mutational signatures of somatic mutations in the early human 

embryo. 

(a) Estimates of early embryonic mutation rates. Mutation rates from 163 early embryonic 

mutations calculated from the best-fitting asymmetric model (top green panel). The overall 
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rate and rate estimates for each cell generation are shown with red and black dots, 

respectively. Broken lines represent 95% confidence intervals obtained by bootstrapping (see 

Methods). Equivalent mutation rates from the symmetric model (middle orange panel). 

Mutation rate estimates from 3 families (bottom blue panel). 

(b) Early embryonic mutations from whole-genome sequencing of 3 large families. Pedigrees 

are shown. Seven de novo, low VAF mosaic mutations were found in 13 children. Each 

mutation is shown with a number (index) inside the white rectangles or circles in the 

pedigrees. The maternal/paternal origins of the chromosomes of the mutations are shown in 

red (maternal) or blue (paternal). One of the mutations (#5) in family 569 is shown in more 

detail with an IGV image (highlighted in blue). Daughter 4 has a de novo subclonal C>T 

mutation (chr9:120,446,887) on the paternally transmitted chromosome 9. 

(c) The mutational spectrum for 163 early embryonic mutations is displayed according to the 

96 substitution classification defined by the substitution class and sequence context 

immediately 5’ and 3’ to the mutated base as described in a previous study7. The observed 

spectrum can be decomposed into just two mutational signatures (#1 and #5) that were 

identified previously7.  
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