Does high proportion of old and large spawners buffer a fish stock against environmental fluctuations? Leif Chr. Stige^{a,1}, Natalia A. Yaragina^b, Øystein Langangen^a, Bjarte Bogstad^c, Nils Chr. Stenseth^{a,d,e,1}, Geir Ottersen^{a,f} ^aCentre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway. ^bPolar Research Institute of Marine Fisheries and Oceanography (PINRO), 6 Knipovich Street, Murmansk 183038, Russia. ^cInstitute of Marine Research (IMR), P.O. Box 1870, N-5817 Bergen, Norway. ^dFlødevigen Marine Research Station, Institute of Marine Research, N-4817 His, Norway. ^eUniversity of Agder, PO Box 422, NO-4604 Kristiansand, Norway. ^fInstitute of Marine Research and Hjort Centre for Marine Ecosystem Dynamics, P.O. Box 1870, N-5817 Bergen, Norway. ¹Corresponding authors: Leif Christian Stige, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway. Tel. +47 2285 4608. E-mail: l.c.stige@ibv.uio.no. Nils Chr. Stenseth, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway. Tel. +47 2285 4584. E-mail: n.c.stenseth@ibv.uio.no. **Short title**: Effects of age structure on recruitment. Classification: BIOLOGICAL SCIENCES: Environmental sciences. **Author contributions**: L.C.S., N.A.Y., B.B., N.C.S. and G.O. designed research, L.C.S. analysed data, all authors contributed in interpreting results and writing the paper. **ABSTRACT** Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location and egg buoyancy. This is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment- temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared to other impacts. **Keywords:** fisheries; age and size truncation; population dynamics; climate effects; cod Gadus morhua Significance statement: It is feared that loss of old and large spawners impairs heavily fished fish stocks' reproductive capacity and increases their sensitivity to environmental fluctuations. The Barents Sea cod is the world's largest cod stock and has been reported to show increased temperature-recruitment associations in periods with predominantly young and small spawners. We here investigate the possible causal basis for the link between demographic structure and recruitment by analysing long-term egg survey data. Results support a link between demographic structure and abundance and distributional extent of eggs but not between egg distribution and recruitment. These results question whether the benefits of a wide spatiotemporal distribution of spawning are of quantitative importance for recruitment. ## \body ## INTRODUCTION Many exploited fish stocks have shown large changes in their demographic structure over the last decades, towards a reduced age range of the spawners with fewer old and large fish (1-4). It is feared that these changes impair the reproductive potential of the stocks and make them more susceptible to effects of climate variability and change; hence, a goal of the common fisheries policy of the European Union is to reverse these changes to obtain "a population age and size distribution that is indicative of a healthy stock" (5). In some harvested stocks age and size truncation has indeed been associated with lower recruitment (i.e., population renewal, often measured as the abundance of the youngest year-class captured in the fisheries) per biomass of spawners (6-8), larger interannual variability in recruitment (9) and higher sensitivity of recruitment to environmental fluctuations (10, 11). In other stocks, however, no such links between age or size structure and recruitment have been found (9, 12, 13). There is therefore disagreement whether the value of maintaining a wide age and size distribution in managed fisheries is overemphasised (14) or underappreciated (15). A causal basis for lower recruitment in age-truncated stocks is supported by field and experimental studies on Atlantic cod (*Gadus morhua*), a broadcast multiple batch spawner of high economic and ecological importance. These studies have shown that older and larger fish produce more eggs per biomass of spawner, as well as larger and more viable eggs compared with younger and smaller conspecifics (16, 17). A cod stock with many old and large spawners may also have a wide distribution of offspring in space and time by having an extended spawning season (16), an extended geographic range of spawning (18, 19) and/or a wide buoyancy range and hence horizontal spreading of eggs (20). This is thought to buffer effects of environmental fluctuations on recruitment (21, 22) and increase the mean and reduce the variance in recruitment (23). The mechanism proposed for this is that environmental influences on different patches of eggs and larvae may cancel out, which reduces the variance. Reduced variance may lead to increased mean if, for example, subsequent survival is density dependent so that abundant year-classes are reduced proportionally more than poor year-classes. We here assess whether the presumed links between the age and size distribution of the spawning stock and recruitment (1, 21-23) are supported by observations of realized egg distributions. To examine this, we utilize a unique spatially resolved egg data set that originates from 35 years (1959–1993) of dedicated Russian ichthyoplankton surveys (24). Our analyses are for the Barents Sea stock of Atlantic cod (alternatively referred to as Northeast Arctic or Arcto-Norwegian cod). Our findings are expected to be relevant also for other exploited stocks of broadcast spawners, most of which lack data to investigate such links. While the Barents Sea cod stock currently is the world's largest, it had during 1959–1993 a period with increasing fishing mortality and relatively low spawning stock biomass (25). The mean age and weight in the spawning stock was declining (4, 11), a trend which appears to have been reversed in recent years (26). The cod spawn along the west and north coasts of Norway from mid-February to early May (27). The eggs and larvae drift north-and eastwards into the Barents Sea, the nursery area of the juveniles and the feeding area of the adult cod (Fig. 1). Offspring recruit to the fisheries at age 3. High recruitment is associated with a number of abiotic and biotic factors recently reviewed by (27), such as high temperature (e.g., 28) and good condition of the spawners (e.g., 29). Despite several studies linking spawner age, size and/or spawning experience with egg production and egg viability for this stock (27), there are no clear effects of spawning stock structure on recruitment (4). Furthermore, while the recruitment-temperature correlation for this stock has been found to be stronger during periods with low mean age and length in the spawning stock (11), multi-stock analyses have shown that such a link is not generally present and the causal basis for it remains unclear (9, 13). We wish to answer three questions (Q1-Q3). Q1: Which factors influence the total abundance of cod eggs? We hypothesize that high abundance of eggs is associated with a high proportion of old and large individuals in the spawning stock (16, 17). *Q2:* Which factors influence the distributional extent of the eggs? We hypothesize that large distributional extent of eggs is associated with a high proportion of old and large individuals in the spawning stock (18-20). Q3: How does the distributional extent of eggs affect survival to later stages? We hypothesize that a wide spatial distribution of eggs is associated with high subsequent survival and a weak response of survival to temperature fluctuations (21-23). ## **RESULTS** Q1: Which factors influence the total abundance of cod eggs? Analysing time-series of log-scale total cod egg abundance in April–May (*EGG_{TOTAL}*, Fig. S1) and alternative predictor variables (Table 1, Fig. S2) statistically, we found that egg abundance was best explained (lowest AIC_C (30)) as a function of spawning stock biomass (*SSB*), liver condition index (*COND*) and mean weight in the spawning stock (*MW*) (Table S1a, Fig. 2a). For a change in *MW* from 3.2 kg to 7.0 kg (which are, respectively, the 5% and 95% of *MW* in the study period) and mean values of *SSB* and *COND*, we estimate *EGG_{TOTAL}* to change from 1.2 to 2.5, corresponding to a 3.7-fold increase in total egg abundance. Model diagnostics (e.g., of residual
autocorrelation and correlation among predictors) suggested that findings were robust to key assumptions of the model (SI Results in SI Text file). An alternative model with mean age (MA) instead of MW as predictor was similarly supported by the data (i.e., it provided similar AIC_C) and showed a significant effect of MA (Table S1a, Fig. S3a). Q2: Which factors influence the distributional extent of the eggs? We then analysed associations between the same potential predictor variables and an index of the areal distributional extent of cod eggs (*EGG*_{EXTENT}, Fig. S1). Perhaps not surprisingly given the tight connection between abundance and distribution, the same variables that explained total egg abundance were selected as predictor variables for distributional extent (Table S1b). However, the strengths of the associations differed, with *MW* (Fig. 2b), or alternatively *MA* (Fig. S3b), being more strongly correlated with *EGG*_{EXTENT} than with *EGG*_{TOTAL}. For a change in *MW* from 3.2 kg to 7.0 kg and mean values of *SSB* and *COND*, we estimated *EGG*_{EXTENT} to change from 0.28 to 0.54, corresponding to a doubling in areal extent. As high abundance of eggs usually implies a large distributional extent, predictor effects on EGG_{EXTENT} might reflect associations with total abundance, rather than with distributional extent $per\ se$. To assess possible independent associations between predictor variables and distributional extent, we added EGG_{TOTAL} as covariate in the analysis of EGG_{EXTENT} . SSB and COND then had no significant effect, but MW, or alternatively MA, did (Table S1c). This finding suggests that the associations of SSB and COND with distributional extent are fully explainable through total egg abundance. On the other hand, the result shows that a given amount of eggs has larger distributional extent with high than with low mean weight or age in the spawning stock. Using spatiotemporal statistical analysis we found that at high MW, the spatial distribution of cod eggs expands in most directions, perhaps most strongly into offshore areas in the Norwegian Sea (Fig. 3). Q3: How does the distributional extent of eggs affect survival to later stages? Finally we analysed associations between EGG_{TOTAL} , EGG_{EXTENT} and time-series of year-class abundance at three later stages, i.e., as larvae/post-larvae in June–July, as age-0 juveniles in August–September and as age-3 recruits (Eq. 1 in Methods). None of the estimated coefficients for the effect of EGG_{EXTENT} (γ , Table 2) on log-abundances of later stages were significant. The coefficients for the effects of EGG_{TOTAL} and EGG_{EXTENT} (β and γ , Table 2) are correlated (r = -0.91) in all three models, corresponding to a variance inflation factor (31) of 5.8. This means that effects of distributional extent and density dependence cannot be fully separated with this analysis. Models with both EGG_{TOTAL} and EGG_{EXTENT} as predictors were not significantly better than models with only EGG_{TOTAL} (P > 0.05, F-tests; temperature was also included as covariate, see below). Hence, the results fail to show associations between survival and egg distribution that are independent of total egg abundance. As a rough estimate of the potential survival value of a high distributional extent at the egg stage, we used the results in Table 2 to calculate how much predicted year-class abundance at later stages changes if EGG_{EXTENT} increases by 0.26. This change in EGG_{EXTENT} is the predicted effect of an increase in MW from 3.2 kg to 7.0 kg (see Results, Q2). The predicted proportional change in cohort abundance of larvae/post-larvae in June–July was 0.04 (95 % confidence interval, c.i.: -0.65, 2.23), of age-0 cod in August–September -0.75 (c.i.:-0.97, 0.88) and of age-3 cod -0.40 (c.i.: -0.69, 0.18). We interpret the upper limits of these confidence intervals as upper limits for the potential survival effect of a high MW giving a wide distributional extent of eggs. While temperature was generally positively associated with the abundances of later life stages (coefficient δ , Table 2), we found no evidence for stronger temperature effects when MW was low: We found no significant interaction effect between EGG_{EXTENT} and temperature (coefficient θ , Table 2; see also Fig. S4). For example, the estimated effect of a one-degree temperature increase on age-3 log-abundance at EGG_{EXTENT} values of 0.28, 0.43 and 0.54, respectively, were 0.64 (c.i.: 0.08, 1.20), 0.64 (c.i.: 0.15, 1.13) and 0.64 (c.i.: 0.11, 1.17). ## **DISCUSSION** Our results add to previous studies on effects of demographic structure on recruitment dynamics by presenting thorough statistical analyses of spatially explicit egg data. These results generally support the hypothesised links between age and size structure and the abundance and distribution of eggs, but not those between egg distribution and recruitment. Q1: Which factors influence the total abundance of cod eggs? In accordance with our *a priori* predictions, we found that total egg abundance is significantly higher in years with more old and large individuals in the spawning stock. Several non-exclusive mechanisms may explain these associations. Firstly, older and larger cod are reported to have higher relative fecundity (16, 17). This mechanism is supported by (32), who found that potential fecundity of Barents Sea cod was best explained as a function of body weight, with no significant additional contribution of age – which parallels our findings for realized egg abundance. Secondly, inexperienced, young and small cod produce smaller than average eggs, which seem to have lower than average fertilization and survival rates [(17) and references therein]. Thirdly, young and small females are more likely to skip spawning than older and larger conspecifics (33). Hence, with low mean age and weight in the presumed spawning stock, the proportion that actually spawns in a given year may be lower than with high mean age or weight. In the field, the frequency of skipped spawning appears to range from almost zero in Baltic cod (34) to 30–40 % reported for other cod populations, including Barents Sea cod (33, 35). Finally, the proportion of females and hence the egg production rate may be reduced in years when the mean age and weight in the spawning stock is low, as females mature at a higher age and larger size than males do (36). The proportion of females in the spawning stock biomass of Barents Sea cod has been found to vary between 24 % and 68 %, and that spawning stock biomass became more female-biased and total egg production per biomass of spawners became higher as mean length of spawners increased (37). The condition of cod is believed to influence fecundity as do size, age, feeding regime and prey availability (38). Poor recruitment to the Barents Sea cod stock occurs when the liver condition index is lower than 6 % (29), which is consistent with our findings for total egg abundance (Fig. 2a). Our results thus support a causal basis for the previously reported association between the liver condition index and recruitment (29). Cod in poor condition produce fewer eggs (39, 40), and both fecundity and condition of Barents Sea cod are reduced in years with low biomass of their key prey, capelin (*Mallotus villosus*) (32, 38). Moreover, low condition might induce mature fish to skip spawning (33, 35) and potential first-time spawners to postpone maturation (36, 41). Our results show no significant association between abiotic environmental variables and egg abundance. The lack of significant association of temperature with egg abundance is in apparent contrast to a reported positive correlation between temperature in the pre-spawning period and potential fecundity (32). The lack of a significant association with temperature in our study could have several explanations, such as, hypothetically, high fecundity in warm years being counter-balanced by high egg mortality. ## Q2: Which factors influence the distributional extent of the eggs? As predicted, we found that a given amount of eggs is distributed over an increased area when the mean weight and age in the spawning stock is high. This is consistent with analyses of the 50-years long CalCOFI larval fish time-series off southern California, which suggest reduced area of occupancy and spatial heterogeneity of exploited populations (42). Spatiotemporal statistical analysis might give some clues to the possible mechanisms behind this association. Such analysis showed that low mean weight in the spawning stock was associated with a contraction of the egg distribution in most directions (Fig. 3). We did not see particularly strong effects towards the southern margin of the survey area, as might be expected from the disputed hypothesis that a decrease in the average size and age in the stock leads to reduced spawning at the southern spawning grounds (see 18, 19, 43). Several other mechanisms might be at play. For example, a wide buoyancy range of eggs from repeat spawners could contribute to wide dispersal (20) and increased survival of eggs from experienced, old and large females (17) could contribute to increased probability of finding eggs far from the spawning grounds. Q3: How does the distributional extent of eggs affect survival to later stages? Our results provide no support for the hypotheses that a wide spatial distribution of cod eggs, as found in years with high mean weight in the spawning stock, is associated with increased cohort survival to later stages or reduced response of cohort survival to temperature fluctuations. The lack of significant result is likely not due to low statistical power, although the close connection between egg abundance and distribution (illustrated by the high correlation between EGG_{TOTAL} and EGG_{EXTENT}) does make it difficult to separate the unique
contribution of each factor. Even the upper bounds of the confidence intervals, which account for uncertainty and correlation in egg indices, suggest low effects, especially on recruitment at age 3. While we estimate that an increase in MW from 3.2 to 7.0 kg leads to a doubling of the areal extent of cod eggs (from 28 % to 54 % of the study area), this maximally leads to 18 % higher recruitment; most likely lower. This is trivial compared to other influences on recruitment (e.g., 44) and suggests that the spatial extent of the eggs per se is on average of little importance for year class strength. Similarly, population modelling suggests that maternal size effects on recruit production likely have a much smaller impact on population growth than environmental conditions during early life in long-lived and highly fecund (45) and harvested (46) fish stocks such as the Barents Sea cod. A possible explanation for a weak association between distributional extent and survival is that the survival is quite homogeneous across the distribution range of the offspring. The natural mortality of Barents Sea cod larvae appears to show large-scale spatial patterns (47) and to correlate with local temperature and food conditions in spring (48). However, the spatial patterns in larval mortality are partly offset by temperature-dependent differences in survival to later life-stages (49). It is therefore uncertain which areas of the egg distribution contribute most to recruitment as well as how the level of heterogeneity compares with other fish stocks. Hypothetically, variable levels of spatial heterogeneity in environmental conditions could explain some of the reported among-stock differences (9) in the associations between demographic structure and recruitment, as well as cause temporal differences in such associations. Some caveats should be mentioned. It is possible that other egg distribution indices than EGG_{EXTENT} would have shown associations with recruitment if they captured possible spatial differences in mean offspring survival better. We also note that our study does not investigate whether a wide seasonal distribution of spawning provides benefits for mean offspring survival (23). Finally, the statistical inference from this study should be further corroborated and tested, e.g., using coupled biophysical modelling to assess the mechanistic links between egg distribution and recruitment under different climate conditions and assumptions about spatial patterns in growth and survival (49). ## *Implications* Hixon et al. (15) recently reviewed the value of big old fat fecund female fish [BOFFFFs, a concept introduced by (1) and (3)] in fostering stock productivity and stability. This value can be divided into three main components (15), (i) the storage effect: BOFFFFs outlive periods unfavourable for larvae, (ii) the fecundity effect: BOFFFFs have higher relative (weight-specific) fecundity than younger females, and (iii) maternal effects: the presence of BOFFFFs provide variation in reproductive strategies because BOFFFF offspring grow faster and survive better in some environments and because BOFFFFs likely spawn at different times and places than younger females. In support of the first mechanism, results of (50) show that population growth of Barents Sea cod and the Norwegian Spring-Spawning stock of herring Clupea harengus are indeed more dependent on recruitment, and hence pre-recruitment environmental conditions, in periods with an age-truncated spawning stock compared with periods with intact age-structure. Our study supports a possible role of the second mechanism by showing a statistically significant association between age and size structure and egg abundance. These results support a causal basis for findings by (8), who, in contrast to an earlier correlational study (4), estimated a positive effect of age on recruitment at age 3 for this stock. Finally, our study suggests that the benefits of a wide spatial distribution of eggs may be of low quantitative importance for the recruitment of Barents Sea cod. We hence question whether this mechanism can explain the association between age and size structure and the strength of recruitmentenvironment correlations reported for this stock (11), an association which has been widely used in the literature to exemplify age-truncation effects on fish stocks. Finally, we propose that future studies should investigate whether the inconsistent association between demographic structure and recruitment among stocks (e.g., 9) is related to stock differences in the benefits of a wide offspring distribution, which can be approximated by the level of spatial environmental heterogeneity in spawning, larval drift and nursery areas. #### **METHODS** ## Outline of analyses We used spatiotemporal egg data to construct annual indices of total abundance (EGG_{TOTAL}) and distributional extent (EGG_{EXTENT}) of Barents Sea cod eggs for the period 1959–1993 (except 1964 and 1967, when survey coverage was insufficient to calculate the indices). Survey coverage in a representative year is shown in Fig. 1 and the data and the construction of the indices are described in SI Methods. These indices served as response variables in time-series analyses to assess which factors explain year-to-year differences in egg abundance (QI) and egg distribution (Q2). The same egg indices served as predictors in time-series analyses to assess if the distributional extent of the eggs influences survival to later stages (Q3). These analyses using annual indices allowed us to quantify the dynamics using well established timeseries analysis methods for model selection, residual diagnostics etc. In addition we used spatiotemporal statistical analysis to visualize how the egg distribution changed depending on spawning stock structure (as part of Q2). ## Statistical analyses ## Q1. Which factors influence the total abundance of cod eggs? We conducted a multiple linear regression analysis to explore which combination of biotic and abiotic variables best explained total egg abundance, EGG_{TOTAL} . Several potential explanatory variables were considered (Table 1), in order to account for factors that may be confounded with the variables of main interest. The potential predictor variables and the rationale for considering these are described in SI Methods. Variables were selected in a stepwise search, by adding variables one by one based on the Akaike Information Criterion corrected for small sample size, AIC_C (30). Non-significant terms (P > 0.05) were, however, not added even if such inclusion led to slight reduction in AIC_C. The residuals of the final model were checked for outliers and strong deviations from normality by inspecting their quantile-quantile normal plot and for positive serial autocorrelation by plotting the autocorrelation function. If residuals were significantly positively correlated, we re-estimated the parameters using a generalized least squares model with the same predictor variables and an order-1 autocorrelation structure [using the gls and corAR1 functions in the nlme library of the programming language R (51)]. Strong correlations between some potential predictor variables (Table S2) could complicate interpretation of results as their effects may be confounded. We therefore report if alternative predictors provided similar AIC_C (<2 difference in AIC_C). Q2: Which factors influence the distributional extent of the eggs? We then explored to which degree the age and size distribution of the spawners influenced the spatial distributional extent of their offspring. To do so, we conducted a multiple linear regression analysis with EGG_{EXTENT} as response variable and predictor variables from Table 1 selected based on AIC_C. To visualize the change in the spatial distribution of cod eggs under contrasting age or size structure in the spawning stock, we fitted a spatial variable-coefficient GAM (52, 53) to presence-absence data. This binomial model quantified the probability p of catching at least one egg of a given stage at a station as function of sampling day-of-year, sampling location, SSB, COND and MW. The modelled effect of MW varied as a smooth function of location. See SI Methods for details. Q3: How does the distributional extent of eggs affect survival to later stages? We explored effects of distributional extent on survival from eggs in April—May to three later life stages: - i. Larvae / post-larvae in June–July. An annual index of log-abundance for 1959–1993 was constructed from spatiotemporal survey data from June–July (24), analogously to the construction of *EGG_{TOTAL}* for April–May survey data (48). - ii. Age-0 juveniles in August-September. An annual index of log-abundance for 1966–1993 was constructed by combining two survey-based age-0 indices with partly overlapping year coverage [(54), using data from ICES working group reports]. - iii. Age-3 recruits. We used estimates of annual log-abundance at age 3 years from extended survivors analysis based mainly on fisheries data (55). We assumed a log-linear relationship between past and present cohort size [the 'Gompertz' model (56)]. In order to test if a wide spatial and temporal distribution of cod eggs was significantly associated with high survival to later stages, the model was modified by adding the distributional extent of the eggs as predictor variable. In order to test if a wide distributional extent was significantly associated with a weak response to climate variations, we further added interaction effects of distributional extent and annual temperature (standardized to zero mean to facilitate interpretation of coefficients for other terms). The modified Gompertz model thus was: (1) $$log_e(n_t) = \alpha + \beta \ EGG_{TOTAL, t-\Delta t} + \gamma \ EGG_{EXTENT, t-\Delta t} + \delta \ TEMP_{ANN, t-\Delta t} + \theta \ EGG_{EXTENT, t-\Delta t} \ TEMP_{ANN, t-\Delta t} + \varepsilon_t$$ Here, n_t
represents the observed cohort size of the given later life stage (i, ii or iii), $n_{t-\Delta t}$ represents the observed cohort size of eggs in April-May (note that $log_e(n_{t-\Delta t}) = EGG_{TOTAL,t-\Delta t}$), $-\alpha$ represents density-independent mortality and unknown scaling of the indices with real abundance, $1-\beta$ is density-dependent mortality and ε_t is an independent and normal distributed environmental error term with mean zero and variance σ^2 . We expected that a positive relationship between distributional extent and survival would lead to γ larger than zero. Based on previous studies (e.g. 57) we expected positive coefficients for the temperature effect, δ . If a wide distributional extent buffered the temperature effect, we expected negative coefficients for the interaction term, θ . The models were fitted by ordinary least-squares regression. An assumption of regression models is that predictor variables are measured without errors. To quantify possible bias and additional uncertainty in model coefficients caused by errors in egg indices, we refitted the model for each of the 1000 samples from the joint bootstrap distribution (SI Methods) of EGG_{TOTAL} and EGG_{EXTENT} . The additional uncertainty was quantified as the variance of the bootstrap distribution of the coefficients. This variance component was added to the squared standard errors from the model to obtain standard errors corrected for uncertainty in egg indices. All statistical analyses were performed with R version 3.2.4 (58). The mgcv package version 1.8-12 (53) was used for GAM analyses. ## Acknowledgements This work was funded by the Research Council of Norway through the SVIM (Project No. 196685/S40) and ADMAR (Project. No. 200497/I30) projects and by the Nordforsk-funded project Green Growth Based on Marine Resources: Ecological and Socio-Economic Constraints (GreenMAR). We thank the crew of the research vessels and the scientists at PINRO, Murmansk, who collected and processed the ichthyoplankton data that form the basis for this work. ## References - 1. Berkeley SA, Hixon MA, Larson R, Love MS (2004) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. *Fisheries* 29(8):23-32. - 2. Law R (2000) Fishing, selection, and phenotypic evolution. *ICES J Mar Sci* 57(3):659-668. - 3. Longhurst A (2002) Murphy's law revisited: longevity as a factor in recruitment to fish populations. *Fish Res* 56(2):125-131. - 4. Ottersen G (2008) Pronounced long-term juvenation in the spawning stock of Arcto-Norwegian cod (*Gadus morhua*) and possible consequences for recruitment. *Can J Fish Aquat Sci* 65(3):523-534. - 5. EC (2008) Establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). (Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008). - 6. Lambert TC (1990) The effect of population structure on recruitment in herring. *J Cons int Explor Mer* 47(2):249-255. - 7. Marteinsdottir G, Thorarinsson K (1998) Improving the stock-recruitment relationship in Icelandic cod (*Gadus morhua*) by including age diversity of spawners. *Can J Fish Aquat Sci* 55(6):1372-1377. - 8. Shelton AO et al. (2015) Maternal age effects on Atlantic cod recruitment and implications for future population trajectories. *ICES J Mar Sci* 72(6):1769-1778. - 9. Brunel T (2010) Age-structure-dependent recruitment: a meta-analysis applied to Northeast Atlantic fish stocks. *ICES J Mar Sci* 67(9):1921-1930. - 10. Brander K (2005) Cod recruitment is strongly affected by climate when stock biomass is low. *ICES J Mar Sci* 62(3):339-343. - 11. Ottersen G, Hjermann DØ, Stenseth NC (2006) Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod stock. *Fish Oceanogr* 15(3):230-243. - 12. Morgan MJ, Shelton PA, Brattey J (2007) Age composition of the spawning stock does not always influence recruitment. *J Northw Atl Fish Sci* 38:1-12. - 13. Ottersen G et al. (2013) Temporal shifts in recruitment dynamics of North Atlantic fish stocks: effects of spawning stock and temperature. *Mar Ecol Prog Ser* 480:205-225. - 14. Brunel T, Piet GJ (2013) Is age structure a relevant criterion for the health of fish stocks? *ICES J Mar Sci* 70(2):270-283. - 15. Hixon MA, Johnson DW, Sogard SM (2014) BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. *ICES J Mar Sci* 71(8):2171-2185. - 16. Kjesbu OS, Solemdal P, Bratland P, Fonn M (1996) Variation in annual egg production in individual captive Atlantic cod (*Gadus morhua*). *Can J Fish Aquat Sci* 53(3):610-620. - 17. Marteinsdottir G, Begg GA (2002) Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod *Gadus morhua*. *Mar Ecol Prog Ser* 235:235-256. - 18. Opdal AF (2010) Fisheries change spawning ground distribution of northeast Arctic cod. *Biol Lett* 6(2):261-264. - 19. Opdal AF, Jørgensen C (2015) Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod. *Global Change Biol* 21(4):1521-1530. - 20. Kjesbu OS, Kryvi H, Sundby S, Solemdal P (1992) Buoyancy variations in eggs of Atlantic cod (*Gadus morhua* L.) in relation to chorion thickness and egg size: theory and observations. *J Fish Biol* 41(4):581-599. - 21. Murphy GI (1967) Vital statistics of the Pacific sardine (*Sardinops caerulea*) and the population consequences. *Ecology* 48(5):731–736. - 22. Solemdal P (1997) Maternal effects a link between the past and the future. *J Sea Res* 37(3-4):213-227. - 23. Wright PJ, Trippel E (2009) Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success. *Fish Fisheries* 10(3):283-304. - 24. Mukhina NV, Marshall CT, Yaragina NA (2003) Tracking the signal in year-class strength of Northeast Arctic cod through multiple survey estimates of egg, larval and juvenile abundance. *J Sea Res* 50(1):57-75. - 25. Hylen A (2002) Fluctuations in abundance of Northeast Arctic cod during the 20th century. *ICES Mar Sci Symp* 215:543-550. - 26. Kjesbu OS et al. (2014) Synergies between climate and management for Atlantic cod fisheries at high latitudes. *Proc Natl Acad Sci USA* 111(9):3478-3483. - 27. Ottersen G et al. (2014) A review of early life history dynamics of Barents Sea cod (*Gadus morhua*). *ICES J Mar Sci* 71(8):2064-2087. - 28. Bogstad B, Dingsør GE, Ingvaldsen RB, Gjøsæter H (2013) Changes in the relationship between sea temperature and recruitment of cod, haddock and herring in the Barents Sea. *Mar Biol Res* 9(9):895-907. - 29. Marshall CT, Yaragina NA, Lambert Y, Kjesbu OS (1999) Total lipid energy as a proxy for total egg production by fish stocks. *Nature* 402(6759):288-290. - 30. Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. *Biometrika* 76(2):297-307. - 31. O'Brien R (2007) A caution regarding rules of thumb for variance inflation factors. *Qual Quant* 41(5):673-690. - 32. Kjesbu OS, Witthames PR, Solemdal P, Greer Walker M (1998) Temporal variations in the fecundity of Arcto-Norwegian cod (*Gadus morhua*) in response to natural changes in food and temperature. *J Sea Res* 40(3-4):303-321. - 33. Skjæraasen JE et al. (2012) Frequent skipped spawning in the world's largest cod population. *Proc Natl Acad Sci USA* 109(23):8995-8999. - 34. Kraus G, Tomkiewicz J, Köster FW (2002) Egg production of Baltic cod (*Gadus morhua*) in relation to variable sex ratio, maturity, and fecundity. *Can J Fish Aquat Sci* 59(12):1908-1920. - 35. Rideout RM, Morgan MJ, Lilly GR (2006) Variation in the frequency of skipped spawning in Atlantic cod (*Gadus morhua*) off Newfoundland and Labrador. *ICES J Mar Sci* 63(6):1101-1110. - 36. Ajiad A, Jakobsen T, Nakken O (1999) Sexual difference in maturation of Northeast Arctic cod. *J Northw Atl Fish Sci* 25:1-15. - 37. Marshall CT, Needle CL, Thorsen A, Kjesbu OS, Yaragina NA (2006) Systematic bias in estimates of reproductive potential of an Atlantic cod (*Gadus morhua*) stock: implications for stock-recruit theory and management. *Can J Fish Aquat Sci* 63(5):980-994. - 38. Marshall CT et al. (2003) Developing alternative indices of reproductive potential for use in fisheries management: Case studies for stocks spanning an information gradient. *J Northw Atl Fish Sci* 33:161-190. - 39. Kjesbu OS, Klungsøyr J, Kryvi H, Witthames PR, Greer Walker M (1991) Fecundity, atresia, and egg size of captive Atlantic cod (*Gadus morhua*) in relation to proximate body condition. *Can J Fish Aquat Sci* 48(12):2333-2343. - 40. Marshall CT, Kjesbu OS, Yaragina NA, Solemdal P, Ulltang Ø (1998) Is spawner biomass a sensitive measure of the reproductive and recruitment potential of Northeast Arctic cod? *Can J Fish Aquat Sci* 55(7):1766-1783. - 41. Yaragina NA (2010) Biological parameters of immature, ripening, and non-reproductive, mature northeast Arctic cod in 1984–2006. *ICES J Mar Sci* 67(9):2033–2041. - 42. Hsieh C-h, Reiss CS, Hewitt RP, Sugihara G (2008) Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. *Can J Fish Aquat Sci* 65(5):947-961. - 43. Sundby S (2015) Comment to 'Opdal AF, Jørgensen C (2015) Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod. Global Change Biology, 21:4, 1521–1530, doi: 10.1111/gcb.12773'. *Global Change Biol* 21:2465-2466. - 44. Bogstad B, Yaragina NA, Nash RDM (2016) The early life-history dynamics of Northeast Arctic cod: levels of natural mortality and abundance during the first three years of life. *Can J Fish Aquat Sci* 72(2):246-256. - 45. Vindenes Y, Langangen Ø, Winfield IJ, Vøllestad LA (2016) Fitness consequences of early life conditions and maternal size effects
in a freshwater top predator. *J Anim Ecol* 85(3):692-704. - 46. Calduch-Verdiell N, MacKenzie BR, Vaupel JW, Andersen KH (2014) A life-history evaluation of the impact of maternal effects on recruitment and fisheries reference points. *Can J Fish Aguat Sci* 71(7):1113-1120. - 47. Langangen Ø et al. (2014) Spatial variations in mortality in pelagic early life stages of a marine fish (*Gadus morhua*). *Progr Oceanogr* 127:96-107. - 48. Stige LC et al. (2015) Combined statistical and mechanistic modelling suggests food and temperature effects on survival of early life stages of Northeast Arctic cod (*Gadus morhua*). *Progr Oceanogr* 134:138-151. - 49. Langangen Ø, Ottersen G, Ciannelli L, Vikebø FB, Stige LC (2016) Reproductive strategy of a migratory fish stock: implications of spatial variations in natural mortality. *Can J Fish Aquat Sci* 73(12):1742-1749. - 50. Rouyer TA et al. (2011) Shifting dynamic forces in fish stock fluctuations triggered by age truncation? *Global Change Biol* 17(10):3046-3057. - 51. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. (Springer, New York). - 52. Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc B 55(4):757-796. - 53. Wood SN (2006) *Generalized additive models: An introduction with R* (Chapman and Hall/CRC, Boca Raton, FL). - 54. Stige LC, Hunsicker ME, Bailey KM, Yaragina NA, Hunt Jr GL (2013) Predicting fish recruitment from juvenile abundance and environmental indices. *Mar Ecol Prog Ser* 480:245-261. - 55. ICES (2009) Report of the Arctic fisheries working group (AFWG), 21 27 April 2009, San-Sebastian, Spain (ICES CM 2009\ACOM:01). - 56. Ives AR, Dennis B, Cottingham KL, Carpenter SR (2003) Estimating community stability and ecological interactions from time-series data. *Ecol Monogr* 73(2):301-330. - 57. Ottersen G, Stenseth NC (2001) Atlantic climate governs oceanographic and ecological variability in the Barents Sea. *Limnol Oceanogr* 46(7):1774-1780. - 58. R Core Team (2016) *R: A language and environment for statistical computing.* (R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). - 59. Shannon CE (1948) A mathematical theory of communication. *Bell Syst Tech J* 27(3):379-423, 623-656. - 60. Yaragina NA, Marshall CT (2000) Trophic influences on interannual and seasonal variation in the liver condition index of Northeast Arctic cod (*Gadus morhua*). *ICES J Mar Sci* 57(1):42-55. - 61. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. *Science* 269(5224):676-679. - 62. Ellertsen B, Fossum P, Solemdal P, Sundby S (1989) Relation between temperature and survival of eggs and first-feeding larvae of northeast Arctic cod (*Gadus morhua* L.). *Rapp P-v Réun Cons Int Explor Mer* 191:209-219. - 63. Langangen Ø et al. (2014) Egg mortality of Northeast Arctic cod (*Gadus morhua*) and haddock (*Melanogrammus aeglefinus*). *ICES J Mar Sci* 71:1129–1136. - 64. Stefánsson G (1996) Analysis of groundfish survey abundance data: combining the GLM and delta approaches. *ICES J Mar Sci* 53:577-588. - 65. Zuykova NV et al. (2009) Age determination of Northeast Arctic cod otoliths through 50 years of history. *Mar Biol Res* 5(1):66-74. - 66. Kjesbu OS et al. (2010) Thermal dynamics of ovarian maturation in Atlantic cod (*Gadus morhua*). *Can J Fish Aquat Sci* 67(4):605-625. - 67. Woodhead AD, Woodhead PMJ (1965) Seasonal changes in the physiology of the Barents Sea cod, *Gadus morhua* L., in relation to its environment. I. Endocrine changes particularly affecting migration and maturation. *ICNAF Spec Publ* 6:691-715. - 68. Hidalgo M et al. (2012) A combination of hydrodynamical and statistical modelling reveals nonstationary climate effects on fish larvae distributions. *Proc R Soc Lond B* 279(1727):275-283. - 69. Tereschenko VV (1996) Seasonal and year-to-year variations of temperature and salinity along the Kola meridian transect (ICES CM 1996/C:11). - 70. Aure J, Østensen Ø (1993) Hydrographic normals and long-term variations in Norwegian coastal waters. *Fisken og Havet* 6:1-75. ## Figures and Figure Legends. **Figure 1.** Study area. Horizontally hatched orange areas: main spawning grounds of Barents Sea cod. Vertically hatched grey areas: distribution of 5-months old cod juveniles in August–September. Coloured arrows: main features of the mean surface circulation pattern. NAC, North Atlantic Current. NCC, Norwegian Coastal Current. AW, Arctic Waters. Points: ichthyoplankton survey (shown for one representative year, 1988). **Figure 2**. Predictor effects on total egg abundance (a) and egg distributional extent (b). Associations between EGG_{TOTAL} and EGG_{EXTENT} (response variables) and spawning stock biomass (SSB), liver condition index (COND) and mean weight in the spawning stock (MW). Superimposed on the data are regression lines from multiple linear regression analysis for each response variable (with associated P-values shown above each panel). **Figure 3.** Associations between mean weight in the spawning stock and spatial distribution of cod eggs. The maps show estimated probabilities (p) of occurrence of eggs for years with contrasting weight structure in the spawning stock (a, c: the 5% and b, d: the 95% percentiles of MW). Predictions are for mean values of spawning stock biomass and liver condition index for egg stage 1 (a, b) and egg stage 4 (c, d) for May 6^{th} (mean sampling day). Table 1. Variables considered as predictors of abundance and distribution of cod eggs. | Variable name | Description | |---------------------|---| | SSB | Spawning stock biomass (log _e [tonnes]). | | MA | Mean biomass-weighted age in the spawning stock (years). | | MW | Mean biomass-weighted weight in the spawning stock (kg). | | AWIDTH | Biomass-weighted age width (years): the difference in age between the 5 % and 95 % quantile of mature biomass-at-age. | | ADIV | Biomass-weighted age diversity in the spawning stock, calculated as Shannon's diversity index (59) for non-zero frequencies of mature biomass-at-age. | | REPEAT | Proportion of repeat spawners in spawning stock biomass. | | COND | Liver condition index (%): liver wet weight as percentage of total wet weight for cod of lengths 41–70 cm for January–December the year before spawning (60). | | $TEMP_{WIN}$ | Winter (October–March, preceding spawning) sea temperature (°C) in the Barents Sea (0–200 m depth at the Kola section, 70.5–72.5 °N, 33.5 °E). | | TEMP _{SPR} | Spring (April) sea temperature (°C) at the spawning grounds in the Lofoten Islands (10 m depth at Skrova, 68.1 °N, 14.7 °E). | | TEMP _{SUM} | Summer (April–September) sea temperature (°C) in the Barents Sea. | | $TEMP_{ANN}$ | Annual (January–December) sea temperature (°C) in the Barents Sea. | | $N\!AO_{W\!I\!N}$ | The North Atlantic Oscillation winter index: the principal component based NAO index (61) for December–March preceding spawning. | | NAO_{SPR} | The North Atlantic Oscillation index for March-May. | **Table 2.** Analysis of survival of cod eggs to later stages (Eq. 1, Methods). α , intercept, β , effect of total abundance of cod eggs, γ , effect of distributional extent of cod eggs, δ , effect of temperature, θ , interaction effect between distributional extent of cod eggs and temperature. To reduce correlation between main and interaction effect estimates, the distributional extent and temperature variables were standardized to zero mean. | Parameter | estimate | \pm | standard | error | |-----------|----------|-------|----------|-------| | | | | | | | Survival to stage | α | β | γ | δ | heta | \mathbb{R}^2 | |------------------------------------|-------------|------------|------------|------------|------------|----------------| | Larvae / post-
larvae June-July | -2.92±0.69* | 0.61±0.33 | 0.16±2.16 | 0.39±0.42 | 0.15±1.73 | 0.56 | | Age-0 AugSep. | 19.9±1.26* | 1.36±0.61* | -5.32±3.95 | 1.57±0.74* | -0.33±2.89 | 0.57 | | Age-3 | 19.1±0.42* | 0.37±0.20 | -1.94±1.31 | 0.64±0.25* | 0.00±1.04 | 0.43 | | Age-3 AR(1) [†] | 19.0±0.42* | 0.41±0.19* | -2.21±1.33 | 0.53±0.25* | 0.02±0.93 | | ^{*} P < 0.05 autocorrelation. $^{^{\}dagger}$ Generalized least squares model which accounts for order-1 residual ## 1 SI TEXT | 2 | This online appendix accompanies the paper: | | |----|---|----------| | 3 | Stige LC, Yaragina NA, Langangen Ø, Bogstad B, Stenseth NC, Ottersen G (2016) D | oes high | | 4 | proportion of old and large spawners buffer a fish stock against environmental | | | 5 | fluctuations? Proc. Natl. Acad. Sci. USA, 00(00):00-00. | | | 6 | | | | 7 | Contents | SI page | | 8 | SI Results | | | 9 | Model diagnostics. | 2 | | 10 | SI Methods | | | 11 | Ichthyoplankton data. | 3 | | 12 | Construction of indices of abundance and distributional extent of cod eggs | 3 | | 13 | Variables that potentially influence cod egg abundance and distribution | 6 | | 14 | Spatiotemporal statistical analysis of association between spatial distribution | | | 15 | of cod eggs and mean weight in the spawning stock. | . 8 | #### SI RESULTS 16 | Mod | lel d | liagı | nosti | ics | |-------|-------|-------|-------|-----| | 11100 | | | | | - 18 *Q1:* Which factors influence the total abundance of cod eggs? - 19 The selected model (Table S1a) included MW, SSB and COND as predictors of EGG_{TOTAL}. - The inclusion of MW as predictor improved AIC_C by 3.4 and increased R^2 from 0.50 to 0.58 - 21 compared to a model with only *SSB* and *COND*. - There was no significant (P > 0.05) positive autocorrelation in the residuals in the - selected model, which could otherwise bias uncertainty estimates. Because of positive - 24 correlation between SSB and COND (Table S2) the
coefficients for these effects were - negatively correlated ($R^2 = 0.18$). The magnitude of the confounding between SSB and COND - 26 effects was estimated by the variance inflation factor [VIF (31)], which measures how much - 27 the variance of the coefficients (i.e., the standard errors squared) is increased because of - collinearity. The correlation between SSB and COND caused a VIF of 1.2, which we - 29 considered acceptably low to include both variables in the model. - To assess the possible influence of misclassification of eggs of cod and haddock - 31 *Melanogrammus aeglefinus* (see SI Methods), we added haddock spawning stock biomass to - 32 the final models of cod egg abundance (QI) and distributional extent (Q2). No significant - 33 effects of haddock were found. - 34 *Q2*: Which factors influence the distributional extent of the eggs? - Residuals from the selected models of predictor effects on distributional extent (Table S1b-c) - showed no significant positive autocorrelation and besides SSB and COND, predictors were not - 37 significantly correlated. - The spatiotemporal model (Fig. 3) did not attempt to account for all correlations in the - data, hence we do not present uncertainty estimates from this model. - 40 *Q3*: How does the distributional extent of eggs affect survival to later stages? - 41 Residuals from the analyses of the two earliest stage intervals in Table 2 showed no significant - 42 positive autocorrelation, while the lag-1 autocorrelation function for age-3 was 0.39 and - 43 statistically significantly (P < 0.05). Explicitly modelling this autocorrelation structure using a - 44 generalized least squares model had little effect on parameter estimates and standard errors - 45 (Table 2). ## SI METHODS 46 ## 47 Ichthyoplankton data - 48 Eggs of Barents Sea cod were sampled during dedicated ichthyoplankton surveys by the Polar - 49 Research Institute of Marine Fisheries and Oceanography (PINRO), Murmansk (24). The - survey covered main drift areas of eggs and larvae of Barents Sea cod between 67°30'N and - 51 74°30'N from about 7 km (4 nautical miles) to 500 km from the coast (Fig. 1). From around - 52 10 % to 25 % of the landings from the spawning fisheries in years 1959–1969 were from south - of the survey area (18), with the long-term trends in the proportion apparently covarying with - the mean age of the spawners [(19) but see (43)]. The survey was conducted in April–May [i.e. - 55 0–2 months after the peak spawning of the cod (62)] each year from 1959 to 1993, except 1967, - when there was no survey. On average 156 stations were sampled each year, but with - 57 considerable variability among years in the extent and timing of the survey (24, 48). Cod eggs - were classified into four developmental stages based on morphology. Stage-1 eggs could not - be reliably differentiated from the eggs of haddock. Stage-1 eggs were therefore classified to - species according to the fraction of cod compared to haddock eggs of stages 2–4 in the sample. - For further details on the ichthyoplankton data we refer the reader to (24) and (48). ## 62 Construction of indices of abundance and distributional extent of cod eggs. - 63 Two different indices were calculated. - We used a statistical approach to construct annual indices for the abundance and distributional - extent of cod eggs. One index measured the total abundance of eggs (EGG_{TOTAL}). The other - measured the spatial distributional extent of the eggs (EGG_{EXTENT}). - 67 *Sampling variation was corrected for statistically.* - To construct these indices we used a Generalized Additive Model (GAM, 53) regression - 69 method in order to correct for variability in sampling date, sampling location and slight - variability in the number of samples per station (48). The models used to construct the egg - 71 indices were estimated by maximum-likelihood methods with mixed-effects GAMs, using the - 72 gam function in the mgcv package (version 1.7-9) in R (version 2.14.0) (53). - 73 A hurdle model separated the variation into binomial and lognormal parts. - As the survey data contained many stations with no eggs, the data were considered to - originate from two different processes: one process determining the probability of a positive tow (i.e., non-zero abundance of eggs of a given stage at a station) and another determining the abundance conditional on a positive tow (see 63). To account for the two processes we used a hurdle model approach (64), whereby a binomial model quantified the probability of a positive tow and a lognormal model quantified abundance in positive tows. The binomial model quantified the probability p of catching at least one egg of a given stage at a station. Each data point represents presence (coded as 1) or absence (coded as 0) of one out of four egg developmental stages at one station in one year. Each station is thus represented by four data points in the analysis, one for each egg stage. As covariates we included sampling day-of-year (Day) and sampling location (Lon, longitude and Lat, latitude, standardised to zero mean). The probability p_{sij} was modelled as 86 (S1) $$logit(p_{sij}) = \alpha_s + f_s(Day_i) + g_s(Lon_i, Lat_i) + a_j + b_j Lon_i + c_j Lat_i$$ - where the subscripts s, i and j represent stage, station and year, respectively, α_s is a stage- - specific intercept and f_s and g_s are stage-specific smooth functions correcting for sampling - date and location (g_s being a two-dimensional anisotropic smooth modelled as a tensor- - product of two smooth basis functions with maximally 5 knots each). The random term ai - captures year-to-year variation in the intercept, that is, in the overall probability of sampling - cod eggs. The random terms b_i and c_i capture year-to-year variation in the location of the - eggs, b_i in the longitudinal direction and c_i in the latitudinal. By considering year as random - 94 effect, values for data-poor years are pulled towards the overall mean. Random effects were - modelled as smooth terms by using the flag "bs=re" when specifying the smooth. Stage- - 96 specific smooths were modelled by using the flag "by=Stage" when specifying the smooth. - 97 The number of samples taken at the station was included as offset. This model thus quantified - 98 interannual differences in the spatial occurrence of cod eggs. - 99 Similarly, we modelled the natural logarithm of cod egg abundance in positive tows, - $\log_{e}(N)$, but using only non-zero counts and assuming a normal error distribution (ϵ). This - 101 model can be summarized as 76 77 78 79 80 81 82 83 84 102 (S2) $$\log_e(N_{sij}) = \beta_s + h_s(Day_i) + i_s(Lon_i, Lat_i) + d_j + e_j Lon_i + f_j Lat_i + \epsilon_{sij}$$ - The notation is analogous to Eq. S1. For this analysis, the natural logarithm of the number of samples taken at the station was offset. - An index of total egg abundance was calculated from the hurdle model. - To combine this information into one index for cod egg abundance in all tows, EGG_{TOTAL} , we - calculated predictions for a grid at fixed 1° longitude and 1/3° latitude intervals over the - study area for April 20th for each year. This date was shortly after the abundance peak of cod - eggs and within the survey period most years. For each grid cell the predicted abundance of - each stage in all tows was calculated as the predicted probability of a positive tow (p_{sij}) from - Eq. S1 multiplied with the predicted abundance in positive tows (N_{sij}) from Eq. S2. - EGG_{TOTAL} was calculated as the natural logarithm of the weighted mean number of predicted - eggs (summed across stages) per grid cell for each year: $EGG_{TOTAL,i}$ = - $\ln(\frac{1}{N}\sum_{i}^{N}\sum_{s}^{4}p_{sij}N_{sij}w_{i})$. Here, the subscript *j* refers to year, *i* to geographic grid location and *s* - to stage. The weights were the area (km²) represented by each grid cell divided by their - average area ($w_i = 20 \cdot 1.852 \cdot 60 \cdot 1.852 \cdot \cos(\pi \cdot Lat_i/180) / 1275$). The weights were included - to account for the fact that northern grid cells represent smaller areas than southern. To assess - if results might be sensitive to choice of date for standardisation, we also calculated EGG_{TOTAL} - and EGG_{EXTENT} (defined below) for 20 days earlier or later than April 20th. These alternative - indices correlated highly with those used in the analyses (EGG_{TOTAL} : r > 0.999, EGG_{EXTENT} : - 121 r > 0.98), suggesting that this was not the case. - An index of distributional extent was calculated from the binomial part of the model. - The index of distributional extent of cod eggs was calculated from the binomial model (Eq. - S1) alone. Specifically, EGG_{EXTENT} was defined as the fraction of the study area with - predicted probability $p_{ij} > 0.2$ of egg occurrence at April 20th. Here, p_{ij} refers to the - probability of sampling eggs of any stage $(p_{ij} = 1 \prod_{s=1}^{s=4} (1 p_{sij}))$. This index thus - measures the areal extent of cod egg occurrence at a scale from 0 to 1 (the whole study area). - 128 How well do the modelled distributions represent the observation data? - The survey data are shown in Fig. S5. The binomial model (Eq. S1) explained 42.4 % of the - deviance in the data and the lognormal model (Eq. S2) explained 52.8%. The occurrence of - cod eggs predicted from Eq. S1 is shown in Fig. S6 and total abundance predicted from the - hurdle model (Eqs. S1 and S2) is shown in Fig. S7. For most years the model predictions - appear to represent the data reasonably well. For 1964 it is clear that survey coverage is - insufficient to determine egg distribution. This year was therefore excluded from all time- - series analyses. - 136 *Uncertainty was estimated by bootstrap.* The uncertainty in the two egg indices was estimated by nonparametric bootstrap, whereby 1000 bootstrap data sets of the same sample size as the
original data were generated by sampling (with replacement) stations within years, and for each bootstrap data set refit the models (Eqs. S1–S2) and calculate EGG_{TOTAL} and EGG_{EXTENT} . These uncertainty estimates account for the pseudo-replication caused by entering the same station four times (one for each stage) in the regression, but not for possible residual spatial autocorrelation or modelling errors. Residual diagnostics for model S2 suggested no strong spatial autocorrelation: A semivariogram estimated for within-year patterns in residuals showed only about 7 % increase in variance of pairs of residuals from 33 km (the smallest scale estimated) to 68 km apart (the second smallest scale) and no further increase at larger distances. Note that violation of model assumptions, for example caused by differences among years in (logit-scale, Eq. S1, or log-scale, Eq. S2) seasonal patterns, might cause additional uncertainty not captured by the bootstrap. ## Variables that potentially influence cod egg abundance and distribution Potential predictor variables for analyses of year-to-year variation in cod egg abundance (Q1) and distribution (Q2) are listed in Table 1 and shown in Fig. S2. Spawning stock biomass (SSB) was included as a rough index of the potential egg production. SSB data were obtained from ICES (55). SSB is computed using values for stock number at age from extended survivors analysis (XSA) based mainly on fisheries data, weight-at-age in the stock and maturity-at-age, calculated as weighted averages from Russian and Norwegian surveys during the winter season (37, 55). As five alternative measures of age and size structure in the spawning stock we considered mean biomass-weighted age (MA), weight (MW), age width (AWIDTH), age diversity (ADIV) and proportion of repeat spawners (REPEAT). This choice of indices largely follows previous studies on effects of age and size structure on recruitment (4, 9, 11). By weighting by biomass and not abundance of each age class, these indices represent the ages or sizes that dominate the spawning stock in terms of potential egg production. Indices of spawning stock structure were calculated from abundance-at-age estimated by XSA, weight-atage and maturity-at-age, all from ICES (55). These estimates are, in addition to the data from the fisheries, dependent on age reading from otoliths and number of mature fish per length group (maturity ogives). Systematic errors in age reading, which might in particular bias estimates of MA, appear to be relatively small (65). The MA and MW indices are strongly coarser index than used in some earlier studies (e.g., 16), as it is calculated mainly based on changes in maturity-at-age between years. We used the following formula to calculate *MA*, *MW*, *ADIV* and *REPEAT*: 173 (S3) $$MA_j = \frac{\sum_{a=3}^{a=13} + (a SSB_{aj})}{\sum_{a=3}^{a=13} + SSB_{aj}}$$ 174 (S4) $$MW_j = \frac{\sum_{a=3}^{a=13} + (W_{aj} SSB_{aj})}{\sum_{a=3}^{a=13} + SSB_{aj}}$$ 175 (S5) $$ADIV_j = -\sum_{a=Min(f_{aj})}^{a=Max(f_{aj})} (f_{aj} \log_e(f_{aj})) \text{ for } f_{aj} > 0$$ 176 (S6) $$REPEAT_j = \frac{\sum_{a=3}^{a=13} + (M_{a-1j-1}/M_{aj})SSB_{aj}}{\sum_{a=3}^{a=13} + SSB_{aj}}$$ where j is year, a is age (years) and SSB_{aj} is mature biomass-at-age: 178 (S7) $$SSB_{aj} = N_{aj}W_{aj}M_{aj}$$, and 179 N number, W weight (kg), M proportion mature. We further considered a liver condition index (*COND*), which correlates positively with the recruitment of Barents Sea cod (29), presumably through effects on egg production or viability. We considered the liver condition index calculated for cod of lengths 41–70 cm sampled by PINRO January–December the year before spawning. This size range includes first-time spawners, age 6–7 years (around 65–70 cm). The index for this size range had best data coverage and represents the spawners reasonably well: The product-moment correlation between this index and a corresponding index for 61–70 cm only was 0.93 and for 71–100 cm (available for 1968 onwards) was 0.79 (N.A. Yaragina, unpublished results). The index was lagged to the year before spawning because gonad growth is thought to start already around the time of autumnal equinox (66, 67) and a physiological "decision" to ripen or not dependent on energy acquisition might be taken even earlier. The index was calculated for January–December because liver condition data were only available as annual averages prior to 1967. As abiotic variables we considered sea temperature before, during or after spawning and the North Atlantic Oscillation index (NAO, 61). High temperature has been associated with early spawning and high potential fecundity (32, 66) and also acts as proxy for various factors that may potentially influence transport, development and survival of Barents Sea cod eggs (57). We considered sea temperature before, during or after spawning. High temperature during vitellogenesis (i.e., yolk deposition) is associated with high oocyte growth, early spawning and high potential fecundity (32, 66). The temperature in the Barents Sea further acts as a proxy for various factors that may potentially influence growth and survival of early life stages of Barents Sea cod (57). The NAO correlates positively with west wind stress and water transport in the study region (57) and with a north easterly distribution of Barents Sea cod larvae (68). Barents Sea temperature was measured by PINRO (69) and temperature at spawning grounds by IMR (70). NAO data were obtained from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based. ## Spatiotemporal statistical analysis of association between spatial distribution of cod eggs and mean weight in the spawning stock. To visualize the change in the spatial distribution of cod eggs under contrasting age or size structure in the spawning stock, we fit a spatial variable-coefficient GAM (52, 53) to presence-absence data. This binomial model quantified the probability p of catching at least one egg of a given stage at a station. Each data point represents presence (coded as 1) or absence (coded as 0) of one out of four egg developmental stages at one station in one year. Each station is thus represented by four data points in the analysis, one for each egg stage. As covariates we included sampling day-of-year (Day) and sampling location (Lon, longitude and Lat, latitude) and predictor variables selected in time-series analysis of EGG_{EXTENT} (i.e., SSB, COND and MW; Results). Specifically, the probability p_{Sij} was modelled as: 218 (S8) $$logit(p_{sij}) = \alpha_s + f_s(Day_i) + g_s(Lon_i, Lat_i) + \beta SSB_j + \gamma COND_j + h(Lon_i, Lat_i) MW_j$$ where subscripts s, i and j represent stage, station and year, respectively. α_s is a stage-specific intercept. f_s and g_s are stage-specific smooth functions correcting for sampling date and location (g_s being a two-dimensional anisotropic smooth modelled as a tensor-product of two smooth basis functions with maximally 5 knots each). Stage-specific smooths were modelled by using the flag "by=Stage" when specifying the smooth. β is the coefficient for the effect of SSB and γ the coefficient for the effect of COND. The coefficient for the effect of age or size structure (MW) is allowed to vary smoothly as a function of location. The smooth function h(Lon, Lat) thus gives a location-dependent coefficient that MW is multiplied with. The - number of samples taken at the station was included as offset. This model was used to map - the probability of sampling eggs of different stages for years with low MW or high MW. ## 230 SI Figures and Figure Legends. 231 232 233 **Figure S1.** Annual indices of egg abundance and distribution. EGG_{TOTAL} , total abundance of cod eggs in April–May. EGG_{EXTENT} , distributional extent. Shaded areas: 95% bootstrap confidence intervals. **Figure S2.** Main variables considered as predictors of abundance and distributional extent of cod eggs. See Table 1 and SI Methods for explanation of variables. **Figure S3**. Estimated effects of *SSB*, *COND* and *MA* on total egg abundance (a) and egg distributional extent (b). Superimposed on the data are regression lines from a multiple linear regression for each response variable (with associated P-values shown above each panel). **Figure S4**. Estimated interaction effects of temperature and distributional extent on survival of cod eggs to later life stages. Panels a–c and d–f, respectively, show temperature-survival associations for years with below-average and above-average distributional extent (EGG_{EXTENT}). Panels g–i and j–l, respectively, show distributional extent–survival associations for years with below-average and above-average temperature ($TEMP_{ANN}$). Lines: predicted partial effects of the x-axis variable for the 25th percentile and 75th percentile of the grouping variable in the given panel (from continuous interaction model, Eq. 1). Points: partial residuals, accounting for initial cohort abundance. The interaction effects and the main effects of EGG_{EXTENT} were non-significant in all models (P > 0.05, Table 2). **Figure S5**. Cod egg surveys. *N*, total number of cod eggs sampled at a station. 260 261 Figure S6. Cod egg occurrence predicted from a binomial model (Eq. S1) fitted to the observation data. p, predicted probability of sampling one or more cod egg at April 20th for each year. Black: p > 0.2. Red: p < 0.2. The egg distribution index (EGG_{EXTENT}) is the annual fraction of the area having p > 0.2. The index is undefined for 1964 due to poor survey coverage that year (Fig. S5). **Figure S7**. Cod egg abundance predicted from a hurdle model (Eqs. S1 and S2) fitted to the observation data. N, predicted abundance of cod eggs at April 20th for each year. The egg abundance index (EGG_{TOTAL}) is the natural logarithm of the annual sum of N across grid points. The index is
undefined for 1964 due to poor survey coverage that year (Fig. S5). 266 # Table S1. Regression results. Model coefficients \pm standard errors for the models providing lowest AIC_C. Δ AIC_C, difference in AIC_C compared to the best model. | | | | | \mathbb{R}^2 | ΔAIC_C | | | | | | | |--|-----------------------------|---------------------------|---------------------------|----------------|----------------|--|--|--|--|--|--| | (a) Total egg abundance | | | | | | | | | | | | | $EGG_{TOTAL} = -21.0$ | $+\ 1.42 \pm 0.37\ SSB$ | $+~0.59 \pm 0.25~COND$ | $+~0.34\pm0.14~MW$ | 0.58 | 0 | | | | | | | | $EGG_{TOTAL} = -23.4$ | $+ 1.46 \pm 0.37 \ SSB$ | $+ 0.59 \pm 0.26 \ COND$ | $+ 0.46 \pm 0.20 \ MA$ | 0.57 | 0.7 | | | | | | | | (b) Distributional extens | i. | | | | | | | | | | | | $EGG_{EXTENT} = -2.27$ | $+~0.14\pm0.053~SSB$ | $+~0.11~\pm 0.036~COND$ | $+~0.070\pm0.020~MW$ | 0.57 | 0 | | | | | | | | $EGG_{EXTENT} = -2.79$ | $+ 0.15 \pm 0.054$ SSB | $+ 0.11 \pm 0.037 \ COND$ | $+ 0.095 \pm 0.029 \ MA$ | 0.56 | 0.8 | | | | | | | | (c) Distributional extent correcting for effect of total egg abundance | | | | | | | | | | | | | $EGG_{EXTENT} = -0.15$ | $+ 0.12 \pm 0.010 EGG_{T}$ | FOTAL | $+~0.041\pm0.017~MA$ | 0.85 | 0 | | | | | | | | $EGG_{EXTENT} = 0.04$ | $+ 0.12 \pm 0.010 EGG_{T}$ | TOTAL | $+ 0.029 \pm 0.012 \; MW$ | 0.85 | 0.3 | | | | | | | 268 **Table S2**. Pearson's product-moment correlation (r) among variables. |r| > 0.45 are shown in bold. |r| > 0.35 and 0.45, respectively, are statistically significant at the 5% and 1% level. N = 33 years. | | NAOspr | NAOwin | $\mathit{TEMP}_{\scriptscriptstyle ANN}$ | $TEMP_{SUM}$ | $TEMP_{SPR}$ | $\it TEMP_{\it WIN}$ | COND | REPEAT | ADIV | AWIDTH | MW | MA | SSB | EGGEXTENT | |----------------|--------|--------|--|--------------|--------------|----------------------|-------|--------|-------|--------|-------|-------|------|-----------| | EGG_{TOT} | 0.18 | 0.34 | 0.44 | 0.41 | 0.28 | 0.27 | 0.54 | 0.07 | -0.19 | -0.16 | 0.29 | 0.24 | 0.64 | 0.91 | | EGG_{EXTENT} | 0.08 | 0.28 | 0.31 | 0.29 | 0.16 | 0.17 | 0.56 | 0.00 | -0.20 | -0.20 | 0.42 | 0.38 | 0.51 | | | SSB | 0.24 | 0.42 | 0.53 | 0.53 | 0.44 | 0.46 | 0.44 | -0.13 | -0.29 | -0.23 | -0.04 | -0.09 | | | | MA | -0.42 | -0.32 | -0.03 | -0.06 | 0.05 | 0.04 | -0.02 | 0.24 | 0.22 | 0.21 | 0.92 | | | | | MW | -0.43 | -0.25 | -0.04 | -0.06 | 0.01 | 0.08 | -0.01 | 0.36 | 0.32 | 0.33 | | | | | | AWIDTH | -0.24 | -0.34 | -0.25 | -0.31 | -0.29 | 0.00 | -0.30 | 0.29 | 0.88 | | | | | | | ADIV | -0.33 | -0.34 | -0.19 | -0.23 | -0.32 | 0.06 | -0.16 | 0.17 | | | | | | | | REPEAT | -0.16 | -0.06 | 0.00 | -0.08 | 0.11 | 0.15 | -0.01 | | | | | | | | | COND | 0.16 | 0.26 | 0.28 | 0.26 | 0.06 | 0.25 | | | | | | | | | | $TEMP_{WIN}$ | 0.01 | 0.41 | 0.74 | 0.70 | 0.65 | | | | | | | | | | | $TEMP_{SPR}$ | 0.26 | 0.47 | 0.85 | 0.84 | | | | | | | | | | | | $TEMP_{SUM}$ | 0.28 | 0.67 | 0.98 | | | | | | | | | | | | | $TEMP_{ANN}$ | 0.24 | 0.61 | | | | | | | | | | | | | | NAO_{WIN} | 0.51 | | | | | | | | | | | | | |