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Environmental contours are widely used as a basis for e.g., ship design. The traditional approach to environmental contours
is based on the well-known Rosenblatt transformation. However, due to the effects of this transformation the probabilistic
properties of the resulting environmental contour can be difficult to interpret. An alternative approach to environmental
contours uses Monte Carlo simulations on the joint environmental model, and thus obtain a contour without the need
for the Rosenblatt transformation. This contour have well-defined probabilistic properties, but may sometimes be overly
conservative in certain areas. In this paper we give a precise definition of the concept of exceedence probability which is
valid for all types of environmental contours. Moreover, we show how to estimate the exceedence probability of a given
environmental contour, and use this to compare different approaches to contour construction. The methods are illustrated

by numerical examples based on real-life data.

1 INTRODUCTION

Environmental contours are widely used as a basis for e.g.,
ship design. Such contours allow the designer to verify that
a given mechanical structure is safe, i.e, that the failure
probability is below a certain value. A realistic model of
the environmental loads and the resulting response is cru-
cial for structural reliability analysis of mechanical con-
structions exposed to environmental forces. See (Winter-
stein et al. 1993) and (Haver & Winterstein 2009). For ap-
plications of environmental contours in marine structural
design, see e.g., (Baarholm et al. 2010), (Fontaine et al.
2013), (Jonathan et al. 2011), (Moan 2009) and (Ditlevsen
2002).

The traditional approach to environmental contours is
based on the well-known Rosenblatt transformation intro-
duced in (Rosenblatt 1952). This transformation maps the
the environmental variables into independent standard nor-
mal variables. Using the transformed environmental vari-
ables a contour with the desired properties can easily be
constructed by identifying a sphere centered in the origin
and with a suitable radius. More specifically, the sphere
can be chosen so that any non-overlapping convex fail-
ure region has a probability less than or equal to a desired
exceedence probability. The corresponding environmental
contour in the original space can then be found by trans-
forming the sphere back into the original space.

However, a convex region in the transformed space does
not necessarily correspond to a convex region in the origi-
nal space. Thus, the properties of the resulting environmen-
tal contour are difficult to interpret. To avoid such prob-

lems, contours in the original space can be constructed by
using Monte Carlo simulations on the joint environmen-
tal model. See (Huseby et al. 2013), (Huseby et al. 2015a)
and (Huseby et al. 2015b). By using this methodology, ev-
ery calculation is carried out in the original environmental
space, and thus the use of the Rosenblatt transformation is
avoided. Contours constructed using the suggested Monte
Carlo simulation approach will always be convex sets. This
yields a more straightforward interpretation of the con-
tours. Another advantage of this approach is a more flex-
ible framework for establishing environmental contours,
which for example simplifies the inclusion of effects such
as future projections of the wave climate related to climatic
change. See (Vanem & Bitner-Gregersen 2012). It should
be noted, however, that convex contours may not fit the
joint distribution of the environmental variables well. Thus,
this limitation may sometimes be too restrictive.

In this paper we give a precise definition of the concept
of exceedence probability which is valid for all types of
environmental contours. Moreover, we show how to esti-
mate the exceedence probability of a given environmental
contour, and use this to compare different approaches to
contour construction. The methods are illustrated using the
examples introduced in (Vanem & Bitner-Gregersen 2015).

2 BASIC CONCEPTS AND RESULTS

In this paper we consider cases where the environmental
conditions can be described by a vector (T, H) € R2. An
environmental contour is then defined as the boundary of a
set B C R2, and denoted OB.



A given mechanical structure can withstand environ-
mental stress up to a certain level. The failure region of
the structure is the set of states of the environmental vari-
ables that imply that the structure fails. The exact shape of
the failure region of a structure may be unknown. Still it
may be possible to argue that the failure region belongs to
a certain family which we denote by £. A given environ-
mental contour 0B will be evaluated with respect to this
family. The family £ is chosen relative to B in such a way
that 7 N B C 0B for all F € £. Thus, a failure region F
may intersect with the boundary of B but not the interior
of B. The exceedence probability of B with respect to £ is
defined as:

P.(B,E) =sup{P[(T,H) e F|]: F€&}.

We observe that the exceedence probability defined
above represents an upper bound on the failure probabil-
ity of the structure assuming that the true failure region is
a member of the family £. Of particular interest are cases
where one can argue that the failure region of a structure is
convex. That is, cases where £ is the class of all convex sets
which do not intersect with the interior of 5. We denote the
interior of B by B,.

2.1  Maximal failure regions
A failure region F € & is said to be maximal if there does
not exist a region F’ € £ such that 7 C F’. The family of
maximal regions in £ is denoted by £*. If F1, Fo € £ and
F1 C Fs, we obviously have:

P[(TvH) 6]:1] < P[(T7H> EFQ]‘
From this it follows that:
P.(B,E) =sup{P[(T,H) € F]: F e &*}.

This simple observation sometimes simplifies the calcula-
tion of P.(B,€).

In order to explain this in further detail, we need the con-
cept of a supporting hyperplane of a set. If II is a hyper-
plane in R, we let II~ and IT™ denote the two half-spaces
bounded by the hyperplane II. In general a supporting hy-
perplane of a set S € R”, is a hyperplane II such that we
either have S C II~ or S C II'", and such that S N II # 0.
In particular, if S C II~, we say that II" is a supporting
half-space of S. We observe that if I is a supporting half-
space of S, we have that II* N .S C 9S.

We then consider a case where the set 3 is convex, where
all sets in the family £ are convex as well, and let F €
£. Then it follows by standard convexity theory, that there
exists a supporting hyperplane IT of B such that B C II~
and F C ITI*. Moreover, since II" N B C 9B, and since
every half-space is convex, it follows by the definition of £
that IT* € €£.

Assume then that F € £*. If this is the case, we cannot
have F C II™. Hence, the only possibility is that F = IIT.
Thus, we have shown that every maximal failure region F
is a supporting half-space of B. Conversely, we have that
if IT"™ is a supporting halfspace of B, then we cannot find
another supporting half-space II'" such that [T C II'T.

Hence, if IT" is a supporting half-space of B, then IIT €
E*.

We let P(B) denote the family of supporting half-spaces
of B. Then we may summarize the above discussion as fol-
lows:

Proposition 2.1 Assume that B is convex and that £ is a
family of convex sets such that F "B C OB for all F € £.
Then £* = P(B). Moreover, we have:

P.(B,E) =sup{P[(T,H) e IT"] : I € P(B)}.

2.2 Transformed contours

In this subsection we review the traditional aproach to en-
vironmental contours based on the well-known Rosenblatt
transformation in the context of an exceedence probability
defined relative to a family of failure regions. The Rosen-
blatt transformation, denoted W, is such that if (7", H') =
U(T,H), then T" and H' are independent standard nor-
mally distributed. See (Winterstein et al. 1993).

The contour for the transformed vector (7”7, H') is con-
structed as follows: Let P. < 0.5 be the desired exceedence
probability, and let » > 0 denote the (1 — P,)-percentile in
the standard normal distribution. We then introduce the set
B, a circle centered at the origin and with radius 7, and let
&' be the family of all convex sets F’ such that 7/ N B’ C
OB'. By Proposition 2.1, we then have that £ = P(B').
We then choose an arbitrary half-space I € P(B'). By
the rotational symmetry property of the bivariate normal
distribution of (7", H') it follows that:

P[(T",H") e TI"] = P[T" > r] = P..
Since this is true for all ITT € P(B’), we then get:
P.(B,&)=sup{P|(T",H") eII'"]: I € P(B')} = P..
We then let B = ¥ ~1(5), and let £ be given by:

E={F=V"YF):Fe&},
where U1 denotes the inverse Rosenblatt transformation,
and the inverse mapping ¥ ~! (M) of an arbitrary set M is
defined by
M) ={(t,h) =V (W) (' ,h) € M}.

We then get that:

P.(B,E) =sup{P[(T,H) € F]: Fe€&}
=sup{P[(T,H) ¢ U Y(F)]: F € &'}
=sup{P[(T",H') e F|: F € &'}

=sup{P[(T',H')el"]: Ut € P(B)} = P..

Thus, the contour 0B has the desired exceedence probabil-
ity with respect to the family £ of failure regions.



The problem with this approach is that since £ consists
of transformed convex sets, where the transformation de-
pends on the joint distribution of (7', H), it may be difficult
to argue that a given mechanical construction should have
a failure region which belongs to this particular family. In
order to do so we must argue that if F is the true failure
region for the given mechanical construction, then W (F)
must be convex. It is typically much easier to argue that
the true failure region JF itself is convex, and hence avoid
an argument involving the joint distribution of the envi-
ronmental variables. In order to accomplish this, however,
the family £ must be redefined, and hence the exceedence
probability may change.

2.3 Convex contours

In (Huseby et al. 2013), (Huseby et al. 2015a) and (Huseby
et al. 2015b) the focus was restricted to contours where the
set B itself was convex. Moreover, the family £ was cho-
sen relative to B3 as the family of all convex failure regions
F C R? such that F N B C dB. By Proposition 2.1 this
makes the calculation of the exceedence probability rela-
tively simple.

In order to briefly explain the approach we let P, < 0.5
be the desired exceedence probability of 5 with resepect
to £. In order to determine B such that P.(B,£) = P., we
start out by introducing the function C(#) defined for 6 €
[0,27) as:

C(0) =inf{C : P[T cos(f) + Hsin(0) > C] = P.}.

This means that C'(0) is the (1 — P,)-percentile of the dis-
tribution of Y (0) = T cos(6) + H sin(#). Furthermore, we
introduce for 6 € [0, 27):

I1(0) = {(t,h) : tcos(@) + hsin(f) = C(0)}
I (9) = {(t,h) : tcos(h) + hsin(0) > C(6)},

II7(0) = {(t,h) : tcos(f) + hsin() < C(0)}.

By the definition of C'(0) it follows that for all 6 € [0, 27)
we have:

P[(T,H) € TI*(0)] = P[T cos(0) + H sin() > C(#)] = P.
In (Huseby et al. 2015a) it was shown that B may be ex-

pressed as:
B= () 1T (¥),
0€[0,2m)

assuming that I1(6) intersects the boundary of B for all § €
[0, 27). Under this assumption it also follows that:

P(B) = {II7(0): 6 € [0,27)}.

We may then use Proposition 2.1 to compute the excee-
dence probability of B with respect to £, and get:

P.(B,&) =sup{P[(T,H) € I"] : 1" € P(B)}
=sup{P[(T,H) e I (9)]: 0 € [0,2m)}

= sup P[Tcos(f)+ Hsin(0) > C(0)] = P.
0€[0,27)

We then conclude that the contour 083 has the correct ex-
ceedence probability with respect to £.

Contours constructed this way have the advantage, com-
pared to transformed contours, that it is much easier to ar-
gue that the true failure region of a given mechanical con-
struction belongs to the family £. The disadvantage, how-
ever, is that one is limited to convex contours. In cases
where the joint distribution of (7', H) is concentrated on
a non-convex area, a convex contour would typically in-
clude significant areas with very little probability mass. In
such cases convex contours may lead to overly conserva-
tive designs. See (Vanem & Bitner-Gregersen 2015).

3 UPPER BOUND ON THE EXCEEDENCE PROBA-
BILITY

In Subsection 2.1 we explained how to compute the excee-
dence probability of a convex set by using Proposition 2.1.
In this section we approach the problem of computing the
exceedence probability of a general environmental contour.
More specifically we assume that B C R? is a simply con-
nected, but not necessarily convex set. Intuitively a simply
connected set is a connected set with no holes.

As in the previous section we let £ be the family of all
convex sets F C R? such that F N B C 9B. In order to
verify that OB has the correct exceedence probability with
respect to £, we have to compute P.(B,£). Since B does
not need to be convex, we cannot assume that £* is equal to
P(B). This problem is illustrated in Figure 1. In this figure
the set B is not convex. Then it is possible to find a set
F € &€ which is not contained in any supporting half-space
of B. In fact any half-space containing F will overlap with
the interior of B and hence cannot be a supporting half-
space of B5.

Figure 1: The convex set F € &£ is not contained in any
supporting half-space of B.

In order to compute P, (B, &) for a general simply con-
nected set we need an efficient way of identifying the fam-
ily £*. The fact that £* typically is an infinite family makes
this difficult

Instead of identifying the family £* directly, it can some-
times be easier to introduce an alternative family of failure
regions. We denote this family by &, and assume that this
family is such that for each F € &, there exists a set F € £
such that F C F. By this assumption we immediately get:

P.(B,E) < P.(B,E).



This means that by introducing the alternative family £ and
base the calculations on this, we get an upper bound on the
exceedence probability.

The point here is that by choosing £ in a clever way, it
may be much easier to compute the upper bound on the
exceedence probability.

In order to explain this in more detail, we consider a
specific family £. We assume that B is given, and as be-
fore we let £ be the family of all convex sets 7 C R? such
that 7 N B C 0B. We then choose an arbitrary convex set
F € £. Then there exists a maximal set /* € £ such that
F C F* having at least point zy in common with the con-
tour 0B, i.e., zo € F* N OB. We then let II(x() be a hyper-
plane supporting F* at o, such that 7* C II* (), where
I (x) is the half-space bounded by II(x() and containing
F*. Finally, we introduce the set F(zo) = IIT(z0) \ Bo.
See Figure 2. It is then clear that F C F* C F(zg). The
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Figure 2: The construction of the set F (o).

same construction can be carried out along the entire bor-
der of B. Thus, for any = € OB we define F(z) to be the
corresponding set constructed as above by identifying a
maximal set in £ containing the point z. Moreover, we de-
fine £ = {F(z) : z € DB}. We then have that for each
F € &, there exists a set F € € such that F - F. We ob-
serve that the family £ is indexed by the points in 015. Thus,
we may estimate P[(T,H) € F(x)] for all z € OB and
plot the result. An upper bound on the exceedence proba-
bility, P.(B, &) can then be found by identifying the maxi-
mum value of this function, which by definition is equal to
P.(B,€&).

We also observe that if B is itself convex, we get that
&* = £. Thus, in this case the upper bound is equal to
the exceedence probability of 5 with respect to &, i.e.,
P.(B,&) = P.(B,E). On the other hand, if parts of the set
B is strongly non-convex, as in Figure 2 the upper bound
can be rather crude.

3.1 Numerical examples

In this subsection we illustrate the proposed method by
considering two numerical examples introduced in (Vanem
& Bitner-Gregersen 2015). More sepcifically, we consider
joint long-term models for significant wave height, denoted
by H, and wave period denoted by T". A marginal distribu-
tion is fitted to the data for significant wave height and a

conditional model, conditioned on the value of significant
wave height, is subsequently fitted to the wave period. The
joint model is the product of these distribution functions:

fra(th) = fu(h) fria(th)

Simultaneous distributions have been fitted to data assum-
ing a three-parameter Weibull distribution for the signifi-
cant wave height, [, and a lognormal conditional distribu-
tion for the wave period, T'. The three-parameter Weibull
distribution is parameterized by a location parameter, v, a
scale parameter «, and a shape parameter [ as follows:

_ A\ A1
fr(h) = é (M> e*[(h*“f)/a]ﬁj h> .

[0 [0

The lognormal distribution has two parameters, the log-

mean g and the log-standard deviation o and is expressed
as:

1 2 2

tlh) = ——e n®=w*/Qe5)] 4 >

where the dependence between H and 7' is modelled by
letting the parameters ;. and o be expressed in terms of H
as follows:

n= E[ln(T”H = h] = a1 + agh®,

o = SD[In(T)|H = h] = by + bye™h.

The parameters aj,ag,as,bi,be,bs are estimated using
available data from the relevant geographical location. In
the examples considered here the parameters are fitted
based on a data set from West Shetland. We consider data
for three different cases: fotal sea, wind sea and swell. The
parameters for the three-parameter Weibull distribution are
listed in Table 1, while the parameters for the conditional
log-normal distribution are listed in Table 2. In all the ex-
amples we use a return period of 25 years. The models are
fitted using sea states representing periods of 3 hours. Thus,
we get 8 data points per 24 hours. Thus, the desired excee-
dence probability is given by:

R T
25-365.25- 8

For more details about these examples we refer to (Vanem
& Bitner-Gregersen 2015).

=1.3689-107°.

Table 1: Fitted parameter for the three-parameter Weibull
distribution for signifcant wave heights

o B Y
Total sea 2.259 1.285 0.701
Windsea 2.139 1.176 0.318
Swell 2.527 1.460 0.337

Environmental contours for all three cases are con-
structed using both the traditional approach based on the
Rosenblatt transformation, and the alternative approach
based on Monte Carlo simulation. In the plots of the envi-
ronmental contours the x-axis represents the wave period



Table 2: Fitted parameter for the conditional log-normal
distribution for wave periods

i=1 1=2 =3

Totalsea a; 1.069 0.898 0.243
b; 0.025 0.263 -0.148

Windsea a; 0.005 1.694 0.186
b; 0.050 0.191 -1.074

Swell a; 1.069 0.898 0.243
b; 0.025 0.263 -0.148

measured in seconds (i.e., T"), while the y-axis represents
the significant wave heights measured in meter (i.e., H).

In the plots of P[(T,H) € F(x)] as a function of the
point x € 9B, we let the point « run counterclockwise
along the Rosenblatt contour. The starting point is marked
by a small blue circle in the contour plots. A total of 360
points are used in each of these plots. The z-axis in these
plots represents the index of these points.
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Figure 3: Environmental contours for total sea constructed
using the Rosenblatt transformation (red curve) and using
Monte Carlo simulation (green curve). The small blue cir-
cle marks the starting point of the Rosenblatt contour.

The environmental contours for the fotal sea case are
shown in Figure 3. The corresponding plot of the up-
per bound on the exceedence probability, P[(T,H) €
F(z)] as a function of the point 2 € B for the Rosen-
blatt contour is shown in Figure 4. The largest value of
P[(T,H) € F(x)] is 5.1498 - 10~5 which occurs when
x = (20.4169,4.3679). Thus, the upper bound on the ex-
ceedence probability is almost four times greater than the
desired value. By examining the plot, we observe that there
are points where the curve is below the desired value value
as well. However, even the average value of the curve is
obviously greater than the desired exceedence probability.
Typically, the points where curve is above the desired value
corresponds to points on the Rosenblatt contour which are
inside the Monte Carlo contour, while the points where
curve is below the desired value corresponds to points on
the Rosenblatt contour which are outside the Monte Carlo
contour.

5.25E-5

4.30E-5

3.35E-5

2.40E-5

1.45E-5

5.00E-6
0 60 120 180 240 300 360

Figure 4: P[(T,H) € F(x)] as a function of the point
x € 0B for total sea for the Rosenblatt contour (green
curve). The red curve represents the desired exceedence
probability P, = 1.3689 - 105,
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Figure 5: Environmental contours for wind sea constructed
using the Rosenblatt transformation (red curve) and using
Monte Carlo simulation (green curve). The small blue cir-
cle marks the starting point of the Rosenblatt contour.

The environmental contours for the wind sea case are
shown in Figure 5. The corresponding plot of the upper
bound on the exceedence probability, P[(T, H) € F(z)] as
a function of the point x € 9B for the Rosenblatt contour is
shown in Figure 6. The largest value of P[(T, H) € F ()]
is 8.6864 - 10~° which occurs when x = (5.7685,2.5097).
Thus, the upper bound on the exceedence probability is
more than six times greater than the desired value.

Finally, the environmental contours for the swell case
are shown in Figure 7. The corresponding plot of the
upper bound on the exceedence probability, P[(T, H) €
F(z)] as a function of the point 2z € B for the Rosen-
blatt contour is shown in Figure 8. The largest value of
P[(T,H) € F(z)] is 4.7114 - 10~> which occurs when
x = (20.3569,4.3639). Thus, the upper bound on the ex-
ceedence probability is about three and half times greater
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Figure 6: P[(T,H) € F(x)] as a function of the point
x € 0B for wind sea for the Rosenblatt contour (green
curve). The red curve represents the desired exceedence
probability P, = 1.3689 - 10°.
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Figure 7: Environmental contours for swell constructed us-
ing the Rosenblatt transformation (red curve) and using
Monte Carlo simulation (green curve). The small blue cir-
cle marks the starting point of the Rosenblatt contour.

than the desired value.

Summarizing all the results from these three examples
we see that the true value of the exceedence probability of
the environmental contour obtained using the Rosenblatt
transformation appears to be much larger than the desired
value. We also observe that the value of P[(T, H) € F(x)]
varies a lot as the point x is moved along the contour. This
indicates that a design based on this contour may not have
the desired failure probability. In fact, depending on the
chosen design point, the failure probability may be con-
siderably greater than the desired value, but it may also be
lower than this value. In contrast an environmental con-
tour obtained using the Monte Carlo simulation approach
will always have the desired exceedence probability. Thus,
in cases where the true failure region is convex, a design
based on this contour will have a failure probability which
is less than or equal to the desired exceedence probability.
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Figure 8: P[(T,H) € F(x)] as a function of the point
x € OB for swell for the Rosenblatt contour (green curve).
The red curve represents the desired exceedence probabil-
ity P, = 1.3689 - 1075,

While the results for the environmental contours ob-
tained using the Rosenblatt transformation are unsatisfac-
tory, we should keep in mind that since these contours are
clearly not convex, the upper bound can be crude. In the
next section we shall investigate this further.

4 LOCALLY CONCAVE SEGMENTS

We recall from the examples considered in the previous
section, that the probability P[(T, H) € F(x)] typically
had its highest values whenever the point = was located
in a part of the contour which was strongly non-convex. In
this section we would like to derive a method for identi-
fying a maximal convex failure region which covers such
a part. In order to do so, we parametrize the contour 0B.
That is, we assume that we have found functions g; og g,
and an interval 2 C R such that:

OB = {(t,h) = (9:(s),9n(s)) : s € Q}.

Intuitively, this means that when the parameter s runs
through the interval €, then the point (g:(s), gn(s)) runs
through OB. As a convention we always choose the
parametrization so that each of the points in 9B occurs ex-
actly once as s runs through €2, and such that the point
(9¢(s), gn(s)) runs through OB counterclockwise as s runs
through €2 from the lowest to the highest value.

We now define the concepts of local convexity and local
concavity for the contour 9B as follows. We say that 5
is locally convex at the point (¢, h) = (g¢(s), gn(s)), where
s € €, if there exists an open interval 25 C {2 where s € €,
such that for all s1, so € {2 the line segment between the
points (g:(s1),gn(s1)) and (g¢(s2), grn(s2)) is entirely con-
tained in B. Similarly, we say that 9B is locally concave
in the point (¢,h) = (g¢(s), gn(s)), where s € €, if there
exists an open interval 23 C {2 where s € {2, such that
for all s1,s9 € 25 the line segment between the points
(9¢(s1),9n(s1)) and (g¢(s2), gn(s2)) is entirely (except for
the end points) contained in the complement of B. Note
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Figure 9: Identifying intervals of points where 08 is locally
concave

that if B3 is locally convex at a point (¢, k), then the comple-
ment of B is locally concave at the same point. Similarly, if
B is locally concave at a point (¢, k), then the complement
of B is locally convex at the same point.

If we travel along the set OB counterclockwise, local
convexity corresponds to left turns, while local concavity
corresponds to right turns. By using this interpretation it is
easy to construct an algorithm for identifying intervals of
points where 0B is locally concave. See Figure 9.
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Figure 10: Maximal convex failure regions constructed
from locally concave intervals.

Having identified these intervals we use the fact that the
complement of B is locally convex in the same intervals.
Thus, we can construct maximal convex failure regions by
extending these intervals of 9B by straight lines, and let
these maximal failure regions be the area separated from B
by the resulting lines. See Figure 10. Since B typically has
a smooth boundary, there will only be a finite number of
such maximal convex failure regions. It is then easy to es-
timate the failure probabilities associated with these maxi-
mal failure regions using Monte Carlo simulation. The ex-
ceedence probability can then be estimated by taking the
maximum of these estimated probabilities.

4.1 Numerical examples

In this subsection we proceed with the three examples in-
troduced in Subsection 3.1, and compute the exceedence
probability by identifying the intervals of points where 98
is locally concave. We then construct maximal convex fail-
ure regions by extending these parts of 98 by straight lines
as shown in Figure 10. The resulting estimated exceedence
probabilities are listed in Table 3.

Table 3: Estimated exceedence probabilities for the envi-
ronmental contours obtained using the Rosenblatt transfor-
mation

P.(B,&)
Total sea 3.7327-1077°
Wind sea 3.8988-107°
Swell 3.6190-10~°

We observe that these probabilities are much smaller
than the crude upper bounds obtained by considering the
maximum of P[(T,H) € F(z)]. Still for all three cases
the estimated exceedence probabilities are more than twice
the desired value, 1.3689 - 10~°. Thus, while the environ-
mental contours obtained using the Rosenblatt transforma-
tion typically fits the joint distribution of the environmental
variable better than the contours obtained using the Monte
Carlo simulation approach, the resulting exceedence prob-
ability, as defined in this paper, may be considerably larger
than desired.

5 CONCLUSIONS

In the present paper we have introduced a precise defini-
tion of the exceedence probability of a given environmen-
tal contour with respect to a family of failure regions. We
believe that this concept is needed in order to evaluate the
probabilistic properties of a given contour. Throughout the
numerical examples we have seen that the traditional ap-
proach based on the Rosenblatt transformation can produce
a contour with an exceedence probability which is higher
than desired. The alternative approach based on Monte
Carlo simulation, however, is constructed so that the ex-
ceedence probability is always correct. On the other hand
the contour based on Monte Carlo simulation can some-
times be too conservative and include areas with very low
probability when the joint distribution of the environmen-
tal variables are concentrated in a non-convex region. In an
upcoming paper we will show how to modify the contour
based on Rosenblatt transformation so that the exceedence
probability becomes correct. This makes it possible to ob-
tain contours that fit the main parts of the joint distribution
better while keeping the exceedence probability under con-
trol. It should be mentioned though that the resulting con-
tour can sometimes be overly conservative in some areas.
Still, by comparing different contours with the same excee-
dence probability makes it easier to choose the best one for
the given application.
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