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ABSTRACT

SOFTWARE Product Lines (SPLs) exploit commonalities across a family of
related products in order to increase quality and reduce time to market
and costs. Most SPLs are built from a set of existing products, that needs

to be re-engineered into reusable assets following feature location approaches.
Traditional feature location approaches target program code, but less attention has
been paid in the literature to other software artifacts such as the models.

In this dissertation we present an approach for Feature Location in Models
that relies on an Evolutionary Algorithm (FLiMEA). FLiMEA capitalizes on ex-
perts domain knowledge to boost the feature location process and produce model
fragments that properly capture the reusable units of the domain. The approach
performs a search (guided by a fitness function) over alternative model fragment
realizations of the feature being located (generated through genetic operations).
As a result, variability and commonalities are formalized in the form of reusable
model fragments. We have explored different genetic operations and fitness func-
tions so the approach can be tailored to work under the different conditions present
in industrial scenarios.

In addition, when the features have been located and formalized as reusable
assets, there is a need for evolution of those elements. In this dissertation we focus
on the co-evolution of the model fragments and the language used to create them.
To address this challenge we propose Variable MetaModel (VMM), an approach
that relies on variability modeling ideas applied at metamodel level to enable the
co-evolution. The VMM expresses each evolution of the language in terms of
commonalities and variabilities, to ensure the conformance of model fragments
with the new version of the language.

The approaches have been validated and evaluated in our industrial partners
(BSH, the biggest manufacturer of home appliances in Europe, and CAF, an in-
ternational provider of railway solutions).
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Chapter 1. Introduction

1.1 Motivation of the Dissertation

Software Product Lines (SPLs) aim at reducing development cost and time to
market while improving quality of software systems by exploiting commonali-
ties and managing variabilities across a set of software applications [1]. The SPL
engineering paradigm separates two processes; domain engineering (where the
commonalities are identified and realized as reusable assets) and application en-
gineering (where specific software products are derived by reusing the variability
of the SPL) [2]. Traditionally, a domain analysis is performed to build a feature
model that captures the variability of the system in terms of features [3, 4]. The
domain knowledge from the experts is captured and used to build the library of
reusable assets.

A recent survey [5] reveals that most of the SPLs are built when there are al-
ready products; therefore, the set of existing products is re-engineered into an SPL
[6]. This is known as the extractive approach to SPLs [6]; it capitalizes on existing
systems to initiate a product line, formalizing variability among a set of similar
products into a variability model. The resulting SPL is capable of generating the
products used as input (among others) with the benefit of having the variability
among the products formalized, enabling a systematic reuse.

Feature Location (FL) is known as the process of finding the set of software
artifacts that realize a particular feature, and it has gained attention during recent
years [7, 8]. However, most of the research on FL targets program code [7, 8] as
the software artifacts that realize the feature, neglecting other software artifacts
such as the models. Manually spotting the commonalities and variability among
the set of product models may become cumbersome and error prone [9], especially
as the number of models and its complexity increases.

Therefore, we can apply FL to automate the identification and extraction of
the features existing among a family of product models and re-engineering them
into a model-based SPL (an SPL whose final products are models) by establishing
precisely the variability between the features. However, the challenge of locat-
ing features among a set of product models, while capitalizing on expert domain
knowledge, has not been fully addressed in the literature. In this work, we re-
fer to this challenge as the Feature Location in Models or FLiM (see Figure
1.1). To address this challenge we propose an approach that turns a set of similar
but different product models with no variability specification into a set of product
models with a formal variability definition that specifies the commonalities and
variability among them.
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1.2. Problem Statement

In our work, features located over product models are formalized as model
fragments, the subset of model elements (from a whole product model) that real-
ize a particular feature. Therefore, the outcome of addressing the FLiM challenge
is a model-based SPL (where the features are realized in the form of model frag-
ments). However, those model fragments have to be evolved over time (to cope
with changing requirements, enhancements or other events), which results in the
second challenge addressed by this dissertation, the evolution of the model frag-
ments (see Figure 1.1). To address this challenge we propose an approach that
relies on variability management ideas applied at metamodel level to enable the
co-evolution of the model fragments while at the same time enables the evolution
of the language used to create the model fragments.

Source:
Family of 

product models
(no variability
formalization)

Challenge 1:
Feature Location
in Models (FLiM)

Target:
Family of product 
models (variability 

formalized as 
model fragments)

Challenge 2:
Evolution of

model fragments

Figure 1.1: Motivation of the Dissertation

1.2 Problem Statement

The extractive approach for building SPLs from products is being widely used
in the industry [5]. However, there is a need for approaches that target models
as the feature realization artifacts. In addition, evolving the features extracted in
the form of model fragments is a must in industrial scenarios and needs to be
properly addressed in order to have model-based SPL’s approaches adopted by
the industry. In this dissertation we move towards this direction addressing three
Research Questions related to these challenges:

Research Question 1: How to identify and formalize the variability present among
a set of product models in terms of features realized by model fragments?

Research Question 2: How to capitalize on expert domain knowledge to boost
the process of feature location?

5



Chapter 1. Introduction

Research Question 3: How to co-evolve the model fragments that capture the
features and the language used to create them?

1.3 Contribution

To address the Research Question 1, we present FLiMEA [10, 11, 12, 13, 14] (see
Chapter 11): a software engineering approach for Feature Location in Models
that relies on an Evolutionary Algorithm to locate features in product models and
formalize them as model fragments. The FLiMEA performs a search (guided by
a fitness function based on model fragment occurrences) over alternative model
fragment realizations for the feature being located (generated through genetic op-
erations).

In response to the Research Question 2, FLiMEA can be tailored to work under
different domains [11, 12, 13] (see Chapter 11). Particularly, FLiMEA provides
different ways of embedding the domain knowledge from the engineers depend-
ing on the nature of the family of models and the type of information available.
We added support to describe the feature to be located using natural language.
Specifically, we have augmented FLiMEA with new genetic operations and fit-
ness functions able to work with domain knowledge.

In response to the Research Question 3, we present the Variable MetaModel
(VMM) [15, 16] (see Chapter 12, an approach for co-evolving the model frag-
ments realizing the features and the language of the models. The VMM applies
variability modeling ideas to express each evolution of the language in terms of
commonalities and variabilities, ensuring the conformance of all model fragments
(old fragments and new fragments) with the VMM.

In addition, we have evaluated the presented contributions with our industrial
partners, applying them to industrial product models and using the domain knowl-
edge from their domain experts. The contributions have been developed under
National and International research projects aligned with the research performed
in this dissertation. The contributions have been shared with the community in
the form of conference and journal peer-reviewed publications. Finally, we have
identified some challenges that remain unaddressed in this dissertation and that
constitute our ongoing research.
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1.4. Overview of the Work

1.4 Overview of the Work

Figure 1.2 shows an overview of the work performed as part of this dissertation.
It is structured into size different rows: (row 1) identifies the challenge that is ad-
dressed; (row 2) shows the research questions about the challenge; (row 3) shows
the solution proposed in this dissertation; (row 4) lists the scientific publications
generated; (row 5) lists the research projects where the work has been contributed
to; (row 6) lists the industrial partners where the solutions has been matured and
evaluated.

REVE'15 ICSR'16 MoDELS'16SPLC'15 TEVC'17 COMLAN'17GPCE'15

Model-Driven Variability Extraction for Software Product Line Adoption

Spanish National R+D+i Plan and ERDF funds - TIN2015-64397-RVARIAMOS:

Round-trip Engineering and Variability Management Platform and Process

Information Technology for European Advancement - ITEA 3 Call 2REVaMP2:

BSH:

CAF:

Challenge
Feature Location
in Models (FLiM)

Evolution of
model fragments

Research
Questions

RQ1: Identify and
formalize variability

RQ2: Use expert
domain knowledge to 

boost the process

RQ3: Co-evolution of
model fragments

and language

Solution
proposed

Feature Location in Models through
an Evolutionary Algorithm (FLiMEA)

Co-evolution through 
Variable MetaModel (VMM)

Publications

Funded
research
projects

Industrial
partners

Home Appliances Group
Induction hob firmware variability extraction and management tool

Variability modeling, code generation and evolution for railway systems' software

Figure 1.2: Overview of the work performed as part of the dissertation

For the first challenge (FLiM), two research questions are identified (RQ1 and
RQ2), FLiMEA is proposed as our solution and five publications are presented in
chronological order (REVE’15 [10], SPLC’15 [11], ICSR’16 [12], MoDELS’16
[13] and TEVC’17 [14]).

For the second challenge (Co-Evolution of model fragments and Language),
one research question is identified (RQ3), VMM is proposed as our solution
and two publications are presented in chronological order (GPCE’15[15], COM-
LAN’16 [15]).

There are two projects where the work presented in this dissertation was con-
tributed: (VARIAMOS) a Spanish national research project whose objective is the
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extraction of variability in the form of model fragments to achieve the adoption of
SPL approaches; (REVaMP2) an international ITEA 3 Call 2 project whose main
objective is the creation of a holistic platform and process for variability extraction
and management over time.

There are two industrial partners where the work presented in this dissertation
was evaluated: (BSH) the leading manufacturer of home appliances in Europe, we
have collaborated in the creation of a variability extraction and management tool
for the induction hobs firmware; (CAF) a worldwide provider of railway solutions,
we have collaborated in the creation of a solution for managing the variability of
the software existing in the railway systems.

1.5 Research Methodology
In order to perform the work of this dissertation, we have applied a research
project following the design science research methodology for performing re-
search in information systems as described by [17] and [18]. Design research in-
volves the analysis of the use and performance of designed artifacts to understand,
explain and, very frequently, to improve the behaviour of aspects of Information
Systems [18].

The design science research cycle consists of a five-phase process:

1 - Awareness: An awareness of an interesting research problem may come from
multiple sources including new developments in industry or in a reference
discipline. The output is a proposal for a new research effort.

2 - Suggestion: The suggestion phase follows the proposal and consists of the
suggestion of a solution to the problem, and a comparison of this solution
with already existing solutions. The output is a tentative design.

3 - Development: The tentative design is further developed and implemented in
this phase. The implementation need not to involve novelty beyond the
state-of-practice for the given artifact; the novelty is primarily in the design,
not in the construction of the artifact. The output is the developed artifact.

4 - Evaluation: The artifact is evaluated according to criteria that are implicit.
This phase includes a sub-phase in which hypotheses are made about the
behaviour of the artifact. Then, deviations from expectations are gathered
and the additional information gained in the construction and running of the
artifact is used to another round of suggestions.
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Phase 5:

Conclusion
and

communication

Phase 4:

Evaluation
of the
artifact

Phase 3:

Development
of the
artifact

Phase 1:

Awareness
of the

problem

Phase 2:

State
of the

art

Suggestion
of a

solution

Figure 1.3: Research methodology followed in this Dissertation.

5 - Conclusion: This phase is the end of the research cycle, and is typically the
result of an evaluation phase that is considered “good enough”. The results
of the efforts are consolidated and communicated.

The design cycle is an iterative process; knowledge produced in the process by
developing and evaluating artifacts is used as input for a better suggestion towards
the solution of the problem. In this dissertation we have applied the cycle two
times, one for each of the challenges identified.

Following the cycle defined in the design science research methodology, we
started with the awareness of the problem (see Figure 1.3). In our case the aware-
ness of the problem came from new developments for our industrial partners. We
identified the problem to be resolved and we stated it as a proposal for a new re-
search effort. Then, we performed the second phase, including the suggestion of
a solution to the problem (see Sections 3.3.4 and 3.2.4) and its comparison with
already existing solutions (see Chapter 3).

Next, we performed the third phase, further developing the tentative design
and implementing it (see Chapters 5, 6 and 8). Then, we evaluated the artifacts as
part of the fourth phase and extracted some conclusions as part of phase five (see
Chapters 7, 9 and 10).
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1.6 Quick Reference

Figure 1.4 shows a quick reference about the scope of the work done as part of
this dissertation. It has been divided in order to establish clearly what elements
constitute the background, what elements are part of the dissertation work and
what elements are infrastructure for that work.

Challenge 1:
Feature Location
in Models (FLiM)

Challenge 2:
Evolution of

model fragments

Search Based 
Software 

Engineering
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Common
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Contribution 1:
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Model
fragment

Figure 1.4: Cheat Sheet
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1.7 Structure of the dissertation

This dissertation is structured into five parts:

Part I The first part is the introduction of the dissertation, later it presents some
background and discusses the state of the art.

1 Introduction This section introduces the motivation for the dissertation,
the challenges that are addressed, the contribution, the overview of the
work done, the methodology followed and the structure of the disser-
tation.

2 Background This section presents some background related to the topics
covered in the dissertation. Specifically, it presents Model Driven De-
velopment, SPLs and the Running Example extracted from one of our
industrial partners that is used to illustrate the rest of the dissertation.

3 State of the Art This section discusses the state of the art in relation
to the two challenges addressed by this dissertation (FLiM and Co-
evolution fo model fragments and Language) and motivates the two
solutions presented (FLiMEA and VMM).

Part II The second part of the dissertation focuses on the Feature Location in
Models (FLiM) challenge.

4 Feature Location in Models by an Evolutionary Algorithm (FLiMEA)
This chapter presents the overview of the Feature Location in Models
by an Evolutionary Algorithm (FLiMEA), our approach to address the
FLiM challenge.

5 FLiMEA as Model Fragments This chapter presents the FLiMEA tai-
lored to locate the features in the form of model fragments.

6 FLiMEA as Variation Points This chapter presents the FLiMEA tailored
to locate the features in the form of variation points.

7 Evaluation of FLiMEA This chapter presents the details of the evalu-
ations performed to validate the FLiMEA approach. It introduces
our industrial partners’ models where the features are located, ex-
plains how the results are measured and compared with an oracle and
presents the results of the evaluations performed for each of the differ-
ent configurations of the FLiMEA approach.
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Part III The third part of the dissertation focuses on the challenge of the evolu-
tion of model fragments.

8 Variable MetaModel (VMM) This chapter presents the details of Vari-
able metaModel (VMM), our approach to address the co-evolution of
model fragments and language, including the different operations that
compose it.

9 Evaluation of VMM This section presents the evaluation performed over
the VMM approach, the results obtained and a set of lessons learned
from its application on our industrial partner.

Part IV The fourth part of the dissertation presents the conclusion.

10 Conclusion This chapter includes the conclusion, the recapitulation of
the research questions presented and their answers, the next steps in
the research and the concluding remarks.

Part V The fifth part of the dissertation includes the seven papers selected for the
dissertation.

11 Feature Location in Models Includes the five papers published in rela-
tion to the FLiM challenge.

12 Evolution of Model Fragments Includes the two papers published in
relation to the evolution of model fragments challenge.

12



2
BACKGROUND

Contents
2.1 Overview of the Chapter . . . . . . . . . . . . . . . . . . 14

2.2 Model Driven Development . . . . . . . . . . . . . . . . . 14

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Model Driven Software Development Initiatives . . 15

2.2.3 Domain Specific Languages . . . . . . . . . . . . . 17

2.3 Software Product Lines . . . . . . . . . . . . . . . . . . . 18

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Software Product Line Processes . . . . . . . . . . . 20

2.4 Running Example . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 The Induction Hobs Domain . . . . . . . . . . . . . 21

2.4.2 The Common Variability Language applied to Induc-
tion Hobs . . . . . . . . . . . . . . . . . . . . . . . 23



Chapter 2. Background

2.1 Overview of the Chapter

In this chapter the background of the dissertation is introduced. The background
in this case is conformed by the approaches that are related to the objectives of this
work: (1) locate the features existing among a set of similar but different product
models; (2) enable the co-evolution of the features (realized as model fragments)
and the language used by the model fragments. Therefore, this chapter provides
a basic background for understanding the overall dissertation work. Specifically,
we present Model Driven Development (MDD), Software Product Lines (SPLs)
and the Running Example that will be used to illustrate the approaches included
in the dissertation.

First, we present Model Driven Development, which is a paradigm where
we can construct a model of a software system that we can then transform into
the real thing. The goal of this paradigm is to automatically translate an abstract
specification of the system into a fully functional software product.

Second, we present Software Product Lines engineering, which intends to
produce a set of products that share a common set of assets in an specific domain.
These techniques allow to adapt a product to the needs of the customer while
its production costs and time to market are decreased. SPL promotes the shift
from the development of stand-alone systems to the development of a family of
systems.

Finally, we present our Running Example extracted from one of our industrial
partners, BSH. We introduce the Common Variability Language and how it is
applied to the models from our industrial partner in order to specify and manage
the features as model fragments. Model fragments are central to this dissertation
as it is the means used to formalize the features. Our FLiMEA approach (see Part
II) locates features in the form of model fragments. Our VMM approach (see Part
III) enables the co-evolution of the model fragments and the language used by
them.

2.2 Model Driven Development

Model Driven Development (MDD) is a paradigm where models are central in the
development. Model Driven Architecture (MDA) is a framework for software de-
velopment proposed by the Object Management Group (OMG) in 2001 [19] (i.e.,
MDA is a concrete realization of MDD). The notion of Model Driven Engineering
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(MDE) emerged later as a paradigm generalizing the MDA approach for software
development [20].

2.2.1 Definition

The arrival of the MDD and MDA are changing the way of using models in the
development of software. Model-driven is a paradigm where models are used to
develop software. This process is driven by model specifications and by trans-
formations among models. It is the ability to transform among different model
representations that differentiates the use of models for sketching out a design
from a more extensive model-driven software engineering process where models
yield implementation artifacts. As stated by Agrawal et al. [21]:

“the models are not merely artifacts of documentation, but living doc-
uments that are transformed into implementations. This view radi-
cally extends the current prevailing practice of using UML: UML is
used for capturing some of the relevant aspects of the software, and
some of the code (or its skeleton) is automatically generated, but the
main bulk of the implementation is developed by hand. MDA, on
the other hand, advocates the full application of models, in the entire
life-cycle of the software product.”

The goal of these approaches is to automatically translate an abstract specifi-
cation of the system into a fully functional software product.

2.2.2 Model Driven Software Development Initiatives

Model-Driven Software Development (MDSD) is the notion that we can construct
a model of a software system that can then be transformed into the real thing [22].
Models have been used for a long time in the software development field. From
formal and executable specification languages (e.g., OBLOG [23], TROLL [24]
or OASIS [25]), to the most accepted notations (like UML [26]) and processes
(like RUP [27]) models are present in the software development area.

Stuart Kent [20] defines Model Driven Engineering (MDE) by extending
MDA with the notion of software development process (that is, MDE emerged
later as a generalization of the MDA for software development). MDE refers to
the systematic use of models as primary engineering artifacts throughout the engi-
neering lifecycle. Kurtev provides a discussion on existing MDE processes [28]

15



Chapter 2. Background

(refer to [29, 30] for a specific approach). In general, these approaches introduce
concepts, methods and tools [31]. All of them are based on the concept of model,
meta-model, and model transformation.

Model Driven Architecture (MDA) is a concrete realization of MDD. MDA
classifies models into two classes: Platform Independent Models (PIMs) and Plat-
form Specific Models (PSMs) [19]. A PIM is a view of a system from a platform-
independent viewpoint. Likewise, a PSM is a view of a system from a platform-
dependent viewpoint [19]. Doing so, the definition of platform becomes funda-
mental.

Although the contribution of MDA has been critical, other initiatives under dif-
ferent descriptive terms have pushed in the direction of MDSD. These initiatives
(or specific paradigms) highlight distinct aspects and/or follow specific strategies
for applying MDSD. The following are remarkable examples of these initiatives.

Automatic programming: According to Balzer [32], who is considered the ini-
tiator of the modern automatic programming paradigm, automatic program-
ming is based on the use of methods and tools which support the acquisition
of high level of abstraction specifications, their validation and the gener-
ation of executable code. He was focused on the generation of efficient
implementations, since the hardware resources (CPU power, memory size,
etc.) were limited. Therefore, he proposes a semi-automated (interactive)
translation approach which facilitates the specification of optimizations by
human developers. It is important to note that he considers that the appli-
cation of this paradigm to a narrower area (e.g., expert systems) allows an
“attempt to eliminate the need for interactive translations”.

Generative Programming: This paradigm was proposed by Czarnecki in his
PhD Thesis [33] although the term was coined by Eisenecker in [34]. In
Eisenecker words, Generative Programming “is a comprehensive software
development paradigm to achieving high intentionality, reusability, and adapt-
ability without the need to compromise the run-time performance and com-
puting resources of the produced software”. It is highly based on domain
specific engineering and product line development, using techniques such as
generic programming, domain-specific languages and aspect-oriented pro-
gramming. Unlike other more general paradigms, Generative Programming
suggests very specific techniques and steps for developing methods which
follow this approach.
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In general, MDSD initiatives promote a paradigm of reuse and automation.
This emerges through the extensive use of models and model transformations,
which replaces cumbersome (and usually repetitive) implementation activities. In
this way, model-driven approaches improve development practices by accelerating
them.

2.2.3 Domain Specific Languages

Domain specific languages play a key role in several of the MDSD approaches
that have been presented above. According to [35], a domain specific language
(DSL) is a programming language or executable specification language that offers,
through appropriate notations and abstractions, expressive power, focused on, and
usually restricted to, a particular problem domain.

DSLs are not a new topic, but the current stress on MDSD has focused the
interest of both academy and industry on this kind of languages. Examples of
DSLs abound, including well-known and widely-used languages such as LA-
TEX, YACC, Make, SQL, and HTML. As stated by [35], the older programming
languages (Cobol, Fortran, Lisp) all came into existence as dedicated languages
for solving problems in a certain area (respectively business processing, numeric
computation and symbolic processing).

DSLs are tightly related to the Domain Engineering. In words of Tolvanen
[36], the main focus of Domain Engineering is finding and extracting domain
terminology, architecture and components. It is important to note that two points
of view when dealing with the domain concept can be considered, as highlighted
by Simos [37].

Conceptual domain: From this point of view, a domain is a set of interrelated
real-world concepts. For instance, the health-care domain contains concepts
such as medical center, patient, disease, medicament, etc. As another exam-
ple, the industrial factory domain contains concepts such as stock, supplier,
client, worker, etc.

Systems domain: From this point of view, a domain is characterized by a set
of systems that share some common features [37]. These systems usually
address a common problem area and conceivably share a common solution
structure. In this case, we can talk about the expert systems domain, the
database-based systems domain, the control/monitoring systems domain,
the software games domain, etc.
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Note that a software system can be seen as the combination of both a con-
ceptual domain and a system domain. For instance, we can find expert systems
for health-care and control/monitoring systems for industrial factories, but there
are also expert systems for industrial factories and control/monitoring systems for
health-care. Specific languages exist both for conceptual domains and systems
domains.

Many benefits due to the use of DSLs can be found in the literature. For
instance, according to [35].

• DSLs allow solutions to be expressed in the idiom and at the level of ab-
straction of the problem domain. Consequently, domain experts themselves
can understand, validate, modify, and often even develop DSL programs.

• DSL programs are concise, self-documenting to a large extent, and can be
reused for different purposes.

• DSLs enhance productivity, reliability, maintainability, and portability.

• DSLs can embody domain knowledge, and thus enable the conservation and
reuse of this knowledge.

• DSLs allow validation and optimization at the domain level.

But some drawbacks have been also identified. These drawbacks are related
to the associated costs (for designing, implementing and learning the DSL) and
the specific nature of the language (possible lack of expressiveness and/or loss of
efficiency).

Some researchers suggest that the success of visual notations as commonly
used domain-specific languages is contingent on making similar tools and con-
cepts for visual languages a commodity that can be readily used and understood
by a wide audience, effectively lowering the initial hurdle to adoption [38]. Hope-
fully, the number and quality of tools for implementing DSLs is growing and,
therefore, a wide use of DSLs is very probable.

2.3 Software Product Lines
Mass production was popularized by Henry Ford in the early 20th Century. McIl-
roy coined the term software mass production in 1968 [39]. It was the beginning
of SPLs. In 1976, Parnas introduced the notion of software program families as a
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result of mass production [40]. The use of features (to drive mass production) was
proposed by Kang in the early 1990s [4]. Shortly, the first conferences appeared
turning SPL into a new body of research [41].

2.3.1 Definition

SPLs are defined as “a set of software-intensive systems, sharing a common, man-
aged set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way” [2, 42]. This definition can be redefined into five major issues:

1. Products. SPL shift the focus from single software system development
to SPL development. The development processes are not intended to build
one application, but a number of them (e.g., 10, 100, 10,000, or more). This
forces a change in the engineering processes where a distinction between
domain engineering and application engineering is introduced. Doing so,
the construction of the reusable assets (platform) and their variability is sep-
arated from production of the product-line applications.

2. Features. Features are units (i.e., increments in application functional-
ity) by which different products can be distinguished and defined within
an SPL [43].

3. Domain. An SPL is created within the scope of a domain. A domain is
a specialized body of knowledge, an area of expertise, or a collection of
related functionality [44].

4. Core Assets. A core asset is an artifact or resource that is used in the pro-
duction of more than one product in an SPL [2].

5. Production Plan. It states how each product is produced. The production
plan is a description of how core assets are to be used to develop a product
in a product line and specifies how to use the production plan to build the
end product [45]. The production plan ties together all the reusable assets
to assemble (and build) end products. Synthesis is a part of the production
plan.
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2.3.2 Software Product Line Processes

SPLs (or system families) provide a highly successful approach to strategic reuse
of assets within an organization. A standard SPL consists of a product line archi-
tecture, a set of software components and a set of products. A product consists of
a product architecture, derived from the product line architecture, a set of selected
and configured product line components and product specific code.

Therefore, SPL engineering is about producing families of similar systems
rather than the production of individual systems. SPL engineering consists of
three main processes: domain engineering (also called core asset development),
application engineering (also called product development) and management. These
three processes are complementary and provide feedback to each other.

Domain Engineering is defined as “the activity of collecting, organizing and
storing past experience in building systems or parts of systems in a par-
ticular domain in the form of reusable assets (e.g., architecture, “models,
code, and so on), as well as providing an adequate means for reusing these
assets (...) when building new systems” [3]. That is, Domain engineering is,
among others, concerned with identifying the commonality and variability
for the products in the product line and implementing the shared artefacts
such that the commonality can be exploited while preserving the required
variability.

Using a “design-for-reuse” approach, domain engineering (core asset devel-
opment [2]) is on charge of determining the commonality and the variability
among product family members. In general, domain engineering is divided
into domain analysis, domain design and domain implementation.

Application Engineering is “the process of building a particular system in the
domain” [3]. Application engineering (a.k.a., product Development [2]) is
responsible for deriving a concrete product from the SPL using a “design-
with reuse” approach. To achieve this, it reuses the reusable assets devel-
oped previously.

During application engineering, individual products are developed by se-
lecting and configuring shared artifacts and, where necessary, adding product-
specific extensions. This process is subdivided into application analysis,
application design and application implementation.
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Management is a separated process where organizational issues are handled specif-
ically [2]. This process is responsible for giving resources, coordinating,
and supervising domain and application engineering activities.

See [2, 1] for more details about the above processes. In SPL processes, vari-
ability is made explicit through variation points. A variation point represents a
delayed design decision. When the architect or designer decides to delay the de-
sign decision, he or she has to design a variation point. The design of the variation
point requires several steps: (1) the separation of the stable and variant behaviour,
(2) the definition of an interface between these types of behaviour, (3) the design
of a variant management mechanism and (4) the implementation of one or more
variants. Given a variation point, it can be bound to a particular variant. For each
variation point, the set of variants may be open, i.e. more variants can be added,
or closed, i.e. no more variants can be added. Overall, during domain engineering
new variation points are introduced, whereas during application engineering these
variation points are bound to selected variants

Behind the SPL approach we can find the economies of scope principle. While
economies of scale arise when multiple identical instances of a single design are
produced collectively, economies of scale arise when multiple similar but distinct
designs are produced collectively [46]. In this context, the same practices, pro-
cesses, tools and materials are used to design and build similar unique products.
This methodical reuse is responsible for an increase in productivity and quality.

2.4 Running Example

This section presents the Induction Hobs Domain, including the Domain Specific
Language used by our industrial partner to specify their product models. It also
presents how the Common Variability Language is applied to specify the vari-
ability among those product models. The language and graphical representations
presented in this section will serve as the basis of the running example used to
illustrate the rest of the dissertation.

2.4.1 The Induction Hobs Domain

Traditionally, stoves have a rectangular shape and feature four rounded areas that
become hot when turned on. Therefore, the first Induction Hobs (IHs) created
provided similar capabilities. However, the induction hobs domain is constantly
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evolving and, due to the possibilities provided by the induction phenomena and
the electronic components present in the induction hobs, a new generation of IHs
has emerged 1.

For instance, the newest IHs feature full cooking surfaces, where dynamic
heating areas are automatically calculated and activated or deactivated depending
on the shape, size, and position of the cookware placed on top. There has been
an increase in the type of feedback provided to the user while cooking, such as
the exact temperature of the cookware, the temperature of the food being cooked,
or even real-time measurements of the actual consumption of the IH. All of these
changes are being possible at the cost of increasing the software complexity.

The Domain Specific Language used by our industrial partner to specify the
Induction Hobs (IHDSL) is composed of 46 meta-classes, 74 references among
them and more than 180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this section we use a simplified subset
of the IHDSL (see the top of Figure 2.1).

Inverters are in charge of converting the input electric supply to match the spe-
cific requirements of the induction hob. Specifically, the amplitude and frequency
of the electric supply needs to be precisely modulated in order to improve the ef-
ficiency of the IH and to avoid resonance. Then, the energy is transferred to the
hotplates through the channels. There can be several alternative channels, which
enable different heating strategies depending on the cookware placed on top of the
IH at runtime. The path followed by the energy through the channels is controlled
by the power manager.

Inductors are the elements where energy is transformed into an electromag-
netic field. Inductors are composed of a conductor that is usually wound into a
coil. However, inductors vary in their shape and size, resulting in different power
supply needs in order to achieve performance peaks. Inductors can be organized
into groups in order to heat larger cookware while sharing the user interface con-
trollers. Each group of inductors can have different particularities; for instance,
some of them can be divided into independent zones or others can grow in size
adapting to the size of the cookware being placed on top of them. Some of the
groups of inductors are made at design time, while others can occur at runtime
(depending on the cookware placed on top).

1freeInduction cooktop demo: https://www.youtube.com/watch?v=EZ8UAvt9paI
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2.4.2 The Common Variability Language applied to Induction
Hobs

The Common Variability Language (CVL) [47, 48, 49] was recommended for
adoption as a standard by the Architectural Board of the Object Management
Group and is our industrial partner’s choice for specifying and resolving vari-
ability. CVL defines variants of a base model (conforming to MOF) by replacing
variable parts of the base model by alternative model replacements found in a
library model.
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Figure 2.1: CVL applied to IHDSL

The variability specification through CVL is divided across two different lay-
ers: the feature specification layer (where variability can be specified following
a feature model syntax) and the product realization layer (where variability spec-
ified in terms of features is linked to the actual models in terms of placements,
replacements and substitutions).

The base model is a model described by a given DSL (here, IHDSL) which
serves as a base for different variants defined over it. In CVL the elements of the
base model that are subject to variations are the placement fragments (hereinafter
placements). A placement can be any element or set of elements that is subject
to variation. To define alternatives for a placement we use a replacement library,
which is a model described in the same DSL as the base model that will serve
as basis to define alternatives for a placement. Each one of the alternatives for
a placement is a replacement fragment (hereinafter replacement). Similarly to
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placements, a replacement can be any element or set of elements that can be used
as variation for a replacement.

CVL defines variants of the base model by means of fragment substitutions.
Each substitution references to a placement and a replacement and includes the
information necessary to substitute the placement by the replacement. In other
words, each placement and replacement is defined along with its boundaries,
which indicate what is inside or outside each fragment (placement or replacement)
in terms of references among other elements of the model. Then, the substitution
is defined with the information of how to link the boundaries of the placement
with the boundaries of the replacement. When a substitution is materialized, the
base model (with placements substituted by replacements) continues to conform
to the same metamodel.

Figure 2.1 shows an example of variability specification of IH through CVL.
In the product realization layer, two placements are defined over an IH base model
(P1 and P2). Then, four replacements are defined over an IH library model (R1,
R2, R3, and R4). In the feature specification layer, a Feature Model is defined
that formalizes the variability among the IH based on the placements and replace-
ments previously defined. For instance, P1 can only be substituted by R4 (which
is optional), but P2 can be replaced by R1, R2, or R3. Note that each fragment
has a signature, which is a set of references going from and towards that replace-
ment. A placement can only be replaced by replacements that match the signature.
For instance, the P2 signature has a reference from a power manager (outside the
placement) to an inductor (inside the placement), while the R4 signature is a ref-
erence from a power manager (inside the replacement) to an inductor (outside the
replacement). P2 cannot be substituted by R4 since their signatures do not match.
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Chapter 3. State of the Art

3.1 Overview of the Chapter
This chapter presents the state of the art for the two main challenges addressed
in this dissertation: the Feature Location in Models (FLiM), and the evolution of
model fragments. Both challenges are highly related, as the features located in the
form of model fragments (first challenge) must be evolved and maintained over
time (second challenge). However, the approaches proposed to address each of
the challenges ground on different domains and therefore are presented separately.
Next two sections focus on each of the challenges respectively.

3.2 Feature Location in Models
This section includes works from literature that are related to our Feature Loca-
tion in Models following search based techniques. They are classified in three
categories: (1) Feature Location (FL); (2) Search Based Software Engineering
(SBSE); (3) Model Driven Engineering (MDE). Fig 3.1 shows an overview of the
scope.

FL 
 

SBSE

MDE

our
work

Figure 3.1: Overview of the scope of Feature Location in Models challenge

3.2.1 Feature Location

There are many feature location approaches that have been proposed to find rel-
evant code for different tasks (e.g., maintenance) [8, 7]. The works from Fea-
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ture Location that are related to this work can be divided into five categories: (1)
Textual Similarity; (2) Trace Analysis; (3) Program Dependency Analysis; (4)
Propositional Logic; (5) Type System (see Fig. 3.2).

Feature location techniques have been traditionally applied to the source code.
According to the Extractive SPL Adoption catalog of case studies [50], more than
three quarters of the case studies in the literature on the specific activity of fea-
ture location dealt with source code. In our work, the feature location is applied
directly to the product models. In the mentioned catalog, including our Induction
Hobs case study, the models only represents eight percent of the case studies in
feature location.

Feature Location 

PDA 

Textual Similarity 

Trace Analysis 

Propositional Logic 

Type System 

Figure 3.2: Overview of the scope of Feature Location in relation to FLiM chal-
lenge

Textual Similarity

Textual similarity techniques ground on mathematical and statistical methods to
determine the similarity between different collections of texts. For instance, La-
tent Semantic Analysis (LSA) [51] takes into account the number of occurrences
of a set of keywords (query) in large bodies of texts (documents). As a result,
LSA can be used to determine the similarity between feature names or descrip-
tions and the source code that realizes those features. Then the similarity between
the feature description and the source code files can be represented in the form
of vectors using Singular Value Decomposition (SVD) [52] and the Vector Space
Model (VSM) [53].

For example, Marcus et al. [54] used IR techniques to map descriptions ex-
pressed in natural language (NL) to source code. Other approaches [55] apply
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the VSM to improve the results. Furthermore, some works combine the textual
similarity techniques with dynamic analysis [56, 57, 58, 59]. Cavalcanti et al. [60]
used IR techniques to assign change requests in software maintenance or evolu-
tion tasks based on context information. Kimmig et al. [61] proposed an approach
for translating NL queries to concrete parameters of the Eclipse JDT code query
engine.

Recently, several approaches have been proposed to improve the effective-
ness of feature location. For example, Wang et al. [62] proposed a code search
approach, which incorporates user feedback to refine the query. Hill et al. [63]
proposed automatically extracting NL phrases to categorize them into a hierarchy
in order to help developers to discriminate the relevance of results and to reformu-
late queries. Zou et al.[64] investigated the “answer style” of software questions
with different interrogatives and proposed a re-ranking approach to refine search
results.

Other approaches have been proposed to improve the effectiveness of feature
location by getting information from public repositories [65] or expanding a user
query with semantically similar words from websites [66]. For example, Dietrich
et al. [67] improved the efficacy of future queries using feedback captured from a
validated set of queries and traceability links. Lv et al. [68] enrich each API with
its online documentation to match the query based on text similarity.

Trace Analysis

Trace Analysis is the main technique used at runtime to extract relevant informa-
tion to build the variability model. When the system under study is executed, it
generates traces that indicate which parts of the code have been executed. Usu-
ally, when a feature is exercised, the traces generated are compared with the traces
when the feature is not executed to isolate the lines of code related to the feature.

Some approaches rely solely on trace analysis [69, 70, 71]. Other approaches
combine the trace analysis with static analysis such as LSA [56, 57, 58, 59], PDA
[72, 73] or VSM [74].

Program Dependency Analysis

Program Dependency Analysis (PDA) is a static analysis that takes advantage of
the order of execution of each line of source code to establish restrictions among
them. By doing so, the program can be represented as a Program Dependency
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Graph (PDG) where the nodes are functions or global variables while the edges
are calls to those functions or accesses to those variables.

PDA is central to feature location in source code and is used by multiple ap-
proaches [55, 75, 76, 77, 78, 79, 80]. Some approaches [72, 74, 73] combine PDA
with other static analysis to improve the results.

Type System

Other works apply type systems to extract relevant information from the code.
Typechef provides an infrastructure to analyse the #ifdef variability included in a
C source code [81, 82, 83, 84, 85]. Typechef includes a variability-aware parser
capable of parsing non pre-processed C code without applying heuristics (preserv-
ing the completeness of the results) in a reasonable time. Typechef [82] enables
the extraction of information relevant for the formalization of the variability while
detects compile-time errors. In [83] the authors extend Typechef to support vari-
ability defined across different modules, enabling the application of the approach
to software ecosystems. In [84] the authors compare the application of heuristic-
based strategies and Typechef. The comparison shows that Typechef outperforms
many heuristic-based strategies while preserving the completeness of the results.
In [81] type techniques are combined with textual analysis and PDA to perform
feature location in source code. This work shows that the combination of differ-
ent sources of information in the form of recommendation systems provides better
results than its application separately.

Propositional Logic

Some works focus on building the feature model that represents the variability
existing among a set of products, applying reverse engineering techniques [86, 87,
88]. In the one hand, there are works that propose to synthesise feature models
applying logic formulas describing the dependencies among the features [88]. On
the other hand, some works focus on extracting feature lists and descriptors to
syntethize the feature models [87].

However, the combination of both techniques can produce better results. In
[86] the authors combine the logic formulas and the feature list with descriptors
extracted from the source code to obtain the hierarchy existing among the fea-
tures of the feature model. Particularly, for each analysed feature, the approach
proposes two lists of possible parents of the feature, enabling the user to make a
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decision without the need of analysing the whole list of features (which can grow
over hundreds or thousands).

In [85] the authors propose an approach to extract constraints among the fea-
tures based on the static analyses provided by Typechef [81, 82, 83]. The con-
straints are retrieved from the source code, parsing it with Typechef and analysing
the errors produced and the conditions that raised them. To validate the approach,
constraints retrieved are compared against trusted constraints obtained from the
feature model of the system under study.

3.2.2 Search Based Software Engineering

The works from Search Based Software Engineering that are related to the Fea-
ture Location in Models can be divided into two categories: (1) Feature Model
Configurations’ Synthesis; (2) Feature Constraints Discovery (see Fig. 3.3).

Search Based
Software Engineering

Feature Constraints
Discovery

Feature Model
Configurations Synthesis 

Figure 3.3: Overview of the scope of the Search Based Software Engineering in
relation to FLiM challenge

Harman et al. [89] performed a survey on the topic of search-based software
engineering applied to SPLs. They present an overview of recent articles classified
according to themes such as configuration, testing, or architectural improvement.
Lopez-Herrejon et al. [90] performed a preliminary systematic mapping study at
the connection of search-based software engineering and SPL. They categorized
the articles along a known framework for SPL development. These two surveys
indicate that search-based software engineering techniques are being applied to
SPLs. However, these surveys do not identify works that focus on finding model
fragments that materialize the features of the SPL, as our work does.
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Feature model Configurations’ Synthesis

One common problem addressed by search-based software engineering related
to SPLs is the synthesis of configurations from a feature model. Feature models
can include constraints that must be fullfiled by the configurations of products
obtained from them and search-based techniques can be applied to guarantee this.

White et al. [91] present an approach called Filtered Cartesian Flattening to
create configurations from a feature model. The authors formulate the feature se-
lection problem as a constrained single objective formulation and solve it applying
Branch and Bound with Linear Programming (BBLP). The approach is evaluated
on synthetic feature models of around 5000 features, suffering only a 7% loss of
solution quality.

There are some research efforts that apply genetic algorithms to the SPLs do-
main. For instance, the authors in [92, 93] present GAFES, an approach for opti-
mized feature selection in SPLs. The approach applies a repair operation to trans-
form invalid configurations generated after crossover and then turn them into valid
configurations of the feature model. They use a single objective for the optimiza-
tion and report that their approach outperforms the Filtered Cartesian Flattening
approach [91].

Sayyad et al. [94] provide a study of different metaheuristic algorithms for the
multi-objective feature selection problem. Then the approach is further refined in
[95] with a tuning of the parameters used by the genetic operations.

Wang and Pang [96] apply Ant Colony Optimization to the feature selection
problem. The approach is compared to the Filtered Cartesian Flattening [91] and
the GAFES approach [92, 93]. The authors report results balanced between the
two compared approaches, achieveing a 6% less quality than the work from White
et al. (but taking less time) and 10% better than GAFES (but taking more time).

Feature Constraints Discovery

Another common problem of SPLs that can be addressed by search-based tech-
niques is the discovery of feature constraints among the features. Using these
constraints, a feature model can be synthetized from a set of features and the con-
straints among them.

Chan et al. [97] address this problem applying a genetic programming ap-
proach that generates customer satisfaction models and their relationships. The
application of the approach is illustrated with a digital camera SPL case study.
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In [98, 99] the authors apply evolutionary algorithms to generate feature mod-
els from the sets of features that describe the product variants. They make use
of repair operations to fix the invalid configurations generated by the crossover
operation. The approach is extended in [100] to seek to learn feature models from
instances applying genetic programming. Lopez-Herrejon et al. [101] evaluate
three standard search-based techniques (evolutionary algorithm, hill climbing, and
random search) in order to calculate the relationships of a feature model.

In addition, feature model generators are needed in order to evaluate those ap-
proaches. In the work of Segura et al. [102] they propose ETHOM, an approach
to generate computationally hard feature models using an evolutionary algorithm.
They apply it to search for feature models that fulfill some characteristics as the
size or the number of constraints. The resulting feature models are considered
’hard’ in the sense that analysing and processing them is computationally expen-
sive in terms of time and memory.

3.2.3 Model Driven Engineering

The works from Model Driven Engineering that are related to the Feature Loca-
tion in Models can be divided into three categories: (1) Feature Model Synthesis;
(2) Mechanical Comparisons; (3) Manual guidelines (see Fig. 3.4). Model Driven
Engineering techniques have been applied to locate features among product mod-
els using techniques based on model comparisons. In our work, we also take into
account the domain knowledge and apply techniques based on this information
such as textual based comparisons.

Model Driven
Engineering

Mechanical Comparisons

Feature Model
Synthesis 

Manual Guidelines 

Figure 3.4: Overview of the scope of the Model Driven Engineering in relation to
FLiM challenge
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Feature Model Synthesis

Some research efforts focus on the source code of the products in order to extract
the variability model. For instance, the authors in [86] present a tool-supported
approach for reverse engineering feature models from different sources, such as
makefiles, preprocessor declarations and documentation. They focus on the cru-
cial point of identifying parents and combine logic formulas and descriptions as
complementary sources of information. In addition, the authors in [103] propose
an approach to identify features from the source code of products. They reduce
the noise induced by spurious differences of various implementations of the same
feature. Then, the process produces feature candidates that are manually pruned
(to remove non-relevant candidates). The approach is further extended in [104] to
introduce ExtractorPL, an automated technique that infers a full implementation
of an SPL from the given code.

Manual Guideliness

There are several research efforts in existing literature towards the automation of
the variability formalization among a set of products. However, most of them are
focused on generating Feature Models (FMs) and not address CVL particulari-
ties. For instance, the authors in [9] present an approach to reverse engineering
and evolve architectural FMs. In particular, they focus on plugin-based systems,
projecting variability and technical constraints of plugin dependencies into an ar-
chitectural FM. In [105], the authors present a reverse-engineering tool to extract
variability data from web configurators and transform them into structured data
(for instance, a feature model) in a semi-automated way. The tool incorporates a
component that explores the configuration space simulating users’ configuration
actions in order to generate more variable data to be extracted.

Mechanical Comparisons

In [106], the authors propose the “CVL Compare process” a generic approach to
automatically compare products and extract the variability among them in terms
of a CVL variability model. The approach automatically turns identical elements
into common parts of the product line, similar elements into alternative parts, and
unmatched elements into optional parts. However, fully automating the decision
of what should be reused and how it should be done reduces the flexibility of the
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approach. In [107], the approach is refined to automatically formalize the feature
realizations of new product models that are added to the system.

In [108] the authors present an approach to mine family models from block-
based models. The similarity between models is measured following an exchange-
able metric, taking into account different attributes of the models and can be fine-
tuned depending on the application. Then, the approach is further refined [109] to
reduce the number of comparisons needed to mine the family model.

Martinez et al. [110] propose an extensible approach based on comparisons to
extract the feature formalization over a family of models. In addition, they pro-
vide means to extend the approach to locate features over any kind of asset based
on comparisons. The approach is further refined in [111], where the MoVaPL ap-
proach considers the identification of variability and commonality in model vari-
ants as well as the extraction of a Model-based SPL from the features identified
on these variants. MoVaPL builds on a generic representation of models making
it suitable for any MOF-based models.

Some works focus on transforming legacy products into Product Line assets.
For instance, in [112], the authors present their experience in the Digital Audio &
Video Domain. In [113], the authors explain their experience re-engineering the
Image Memory Handler from Ricoh’s products into an SPL. In [114], the authors
report on their experience applying an extractive approach to a set-top box manu-
facturing company. These approaches extract variability from legacy products in
industrial environments, but they focus on capturing guidelines and techniques for
manual transformations. In contrast, our goal is to introduce automation into the
process while taking advantage of the knowledge of the domain experts through a
human-in-the-loop extractive approach.

In [115, 116], the authors propose the “merge-refactor” framework, a generic
framework for mining legacy product lines and automating their refactor to con-
temporary feature-oriented SPLE approaches. They compare a set of UML vari-
ants with each other using the n-way merging [117], matching those whose sim-
ilarity is above a certain threshold and merging them together. The focus in this
work is the challenge of comparing and merging more than two model fragments
at the same time.

However, all of these approaches are based on mechanical comparisons among
the models, classifying the elements based on their similarity and identifying the
dissimilar elements as the feature realizations. In contrast, our work does not rely
on model comparisons to locate the features. Specifically, in our work, humans are
involved in the search by means of an evolutionary algorithm. Domain experts and
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application engineers become part of the process, contributing their knowledge of
the domain in order to tailor the approach with the feature description. The model
fragments obtained mechanically are less recognizable by software engineers than
those obtained with their participation [11].

3.2.4 Motivation of our Feature Location in Models Approach

Existing approaches for feature location in models presented above rely on me-
chanical comparisons to find model differences. First, several comparisons among
the product models are performed. Then, a set of model fragments is extracted
based on the differences and common parts spotted among the models. Identi-
cal elements are extracted as common parts of the product line, similar elements
are extracted as variable alternative parts, and unmatched elements are extracted
as variable optional parts. As a result, the variability existing among the set of
similar product models is formalized.

However, we have detected an issue when applying this kind of reverse en-
gineering approaches to extract and formalize the variability existing among the
IH product models of our industrial partner. Specifically, the fragments obtained
by these approaches do not represent logical units or concepts and therefore are
difficult to grasp by domain experts [11].

Figure 3.5 illustrates the issue that we have experienced. The top part shows
a representation of three of the IH models used by our industrial partner. To bet-
ter illustrate the example, we only focus on the different inductors used by the
IHs. Induction Hob 1 is the simplest IH; an inverter is connected to a power man-
ager that connects with one standalone inductor (this construction is repeated two
times in the IH). Induction Hob 2 is the next step in the evolution. An inverter
is connected to a power manager that is connected to two inductors (one acts as
the main inductor, and the other acts as a slave of the main; it is only activated
if the main one is not able to heat the cookware placed on top by itself). Finally,
Induction Hob 3 is composed by an inverter connected to a power manager that
is connected to three inductors (they have different sizes and roles; one acts as
main inductor, while the other two are auxiliary and are only activated when the
size of the cookware is too large for the main inductor). It is important to note
that the three IHs share a common point (an inverter connected to a power man-
ager that is connected to the main inductor). However, each IH provides different
functionalities and is driven by different software elements.

The bottom left part of Figure 3.5 represents the results obtained after applying
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Figure 3.5: Motivation of the proposed approach to address FLiM challenge

our own reverse engineering model differencing approach [10] (see 11.1. The
inverter, power manager, and main inductor are identified as common parts to the
three IHs and are therefore placed into the base model. Then a placement to hold
the rest of the inductors (when they exist) is created. The first fragment holds
the slave inductor that is present in the hotplate of the IH2. The second fragment
holds the two auxiliary inductors that are present in the hotplate of the IH3.

The IH1 can be obtained without any substitution. The IH2 can be obtained by
substituting the placement by the first fragment (IH2 = P1→ F1, P2→ F1). The
IH3 can be obtained by substituting the placement by the second fragment (IH3 =
P1→ F2). This division of the IH product models is valid, and the three input IHs
can be derived from them. However, the results differ from the expected results;
the groups of inductors have been divided, resulting in fragments that do not hold
model units that are recognizable by our industrial partner’s engineers.

The bottom right part of Figure 3.5 shows the expected result when dividing
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the IHs models into fragments. The base model is similar, but the placements
are different, holding the power manager and the inductors to avoid the division
of the groups of inductors. As previously, the three IHs can be derived from
the model fragments (IH2 = P1’ → F1’, P2’ → F1’, and IH3 = P1’ → F2’).
Although the main inductor is the same for the three IHs, our industrial partner
expects to have fragment models that hold whole conceptual patterns. Then, a new
placement could be created inside the group of inductors to hold the main inductor.
This is just an example, but the problem enlarges when we take into account real
models (for example, power generating elements mixed with inductors in the same
fragment).

This results in a lack of resemblance between the model fragments produced
and the reusable units handled by our industrial partner. Then, when those model
fragments are used to build product models, engineers have problems when deter-
mining the model fragments to be used in each case (because they do not recognize
them). To address this issue we propose a human-in-the-loop approach where the
domain experts can take part in the feature location process by contributing their
knowledge to tailor the process. As a result the model fragments will match the
reusable units that they have in mind.

3.3 Evolution of Model Fragments

This section includes works from literature that are related to the second challenge
addressed in this dissertation, the evolution of model fragments, with the focus on
the co-evolution of model fragments and language. Works from literature are clas-
sified into three categories: (1) Model & Metamodel Co-evolution; (2) Software
Product Line Evolution; (3) Traditional Software Evolution. Fig 3.6 shows an
overview of the scope.

3.3.1 Model & Metamodel Co-evolution

The main problem when evolving a metamodel is that the conformance between
instance models and the metamodel may be broken (depending on the type of
changes performed in the metamodel). Our located model fragments relies on a
metamodel to define the domain, but the domain needs to be evolved over time (for
different reasons such as improvements in the domain or bug fixes). Therefore,
we must assure that existing model fragments conform to the evolved metamodel.
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Figure 3.6: Overview of the scope of the evolution of model fragments challenge

There are several approaches in the literature to achieve the co-evolution of
model and metamodel while maintaining consistency among them. Those ap-
proaches focus in the migration of the models to conform to the evolved meta-
model. In particular, [118] organizes existing approaches in three different cate-
gories:

Manual specification: a transformation is manually encoded. This is the most
obvious solution, requiring a lot of work by the developer. There are no
specific research efforts towards this topic.

Operator-based co-evolution: a library of co-evolution operators is defined. These
co-operators evolve both, the metamodel and the model (actually, the op-
erator contributes to a M2M transformation that is executed when all the
changes over the metamodel are done) [119, 120, 121, 122].

Metamodel-matching: a migration strategy is inferred by analyzing the evolved
metamodel and the metamodel history. It can be applied in two different
ways:

Differencing approach: both the original and the evolved metamodel are
compared (with a diff tool) to generate a difference model that holds
the changes between the original and the evolved metamodel, then it
is used to create a migration strategy [123, 124, 125, 126, 127].
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Change recording approach changes performed to the metamodel are mon-
itored and “recorded” to be used later to generate a migration strategy
[128, 128, 129].

3.3.2 Traditional Software Evolution

Software evolves, and there are several works towards characterizing mechanisms
of change. SPLs are composed of several artifacts, such as the code assets which
are, essentially, pieces of traditional software. Therefore, the research efforts per-
formed towards software evolution can be useful in model-based SPL evolution.

More than thirty years ago, Lientz and Swanson [130] proposed a mutually
exclusive and exhaustive software maintenance typology that distinguishes be-
tween perfective, adaptive and corrective maintenance activities. This typology
was extended by [131] into a classification of 12 different types of software evo-
lution. Then, in [132] Mens et al. proposed a more wide taxonomy that extended
the previous taxonomies (based solely on the purpose of the change, the “why”).
Therefore, their work presents a taxonomy focused on the technical aspects of
change, the so-called “when”, “where”, “what” and “how” of software changes.

There are different works towards the adaptation of traditional versioning sys-
tems to address SPL evolution. For instance, Thao [133] propose a version con-
trol system, based on product versioning model, to support the evolution, product
derivation and change propagation from core assets to products and vice versa.
In [134], authors create a specific versioning system adapted to SPL in order to
provide more flexibility and reliability when indicating versions of components.

3.3.3 Software Product Line Evolution

There are research efforts in categorization and analysis of changes that can trigger
the need to evolve an SPL. These works combine empirical studies and analysis
in order to obtain a better understanding of the changes that occurs in the software
life cycle. For instance [135] provides a taxonomy of requirements-driven SPL
evolution, [136] presents a case study of the changes of two different SPL during
five years of evolution and [137] presents an exhaustive report on how evolution-
ary changes affect the different types of assets.

Lotufo et al. [138] provide empirical evidence of how a large real-world
variability model evolves. They present their study using 21 versions of the
Linux kernel over five years. Their entire development process is feature driven.
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They analyze how a number of characteristics, such as number of features, height
of the tree and depth of the leaves, using the feature models of those versions.
Based on this research, they identify six categories of reasons for changes in
the Linux variability model (New functionality, Retiring obsolete features, Clean-
up/maintainability, Adherence to changes in C code, Build fix and Change vari-
ability).

Passos et al. [139] developed a vision of software evolution that is based on
a feature-oriented perspective. They provided a feature-oriented project manage-
ment and system development platform that supports traceability and analyses.
There is also some work towards the monitoring, management and planning of
the evolution of an SPL, for instance [140], presents a tool to plan and manage the
evolution of an SPL focusing on goals and requirements.

There are also concerns about maintaining the consistency of the SPL when
changes are performed. For instance in [141] a set of templates that preserve the
integrity of the SPL are presented and in [142, 143] the focus is on maintaining
the consistency among models and the feature mapping. The authors present the
conceptual basis of a system capable of maintaining the consistency between the
variability model (a feature model) and the model-based artifacts used as target of
the feature mapping. In addition they present a set of operators to reestablish the
correct binding between the feature model and the model elements.

Creff et al. [144] propose an incremental evolution by extension of the product
line. They aim to benefit from the investments made during the product derivation
and reinvest them into the SPL models. Specifically, they introduce an assisted
feedback algorithm to extend the SPL to emerging product derivation require-
ments.

Dhungana et al. [145] present an approach that is based on model fragments
that are applied at the model level. The tool support for the automated detection
of changes facilitates metamodel evolution and the propagation of changes in the
domain to pre existing variability models.

In [43], Batory et al. present the AHEAD model, which is based on the step-
wise refinement paradigm and enables the synthesis of multiple complex programs
from a simple program. In AHEAD, the software is expressed as nested sets of
equations that describe feature refinements. The composition function (which is
specific for each kind of asset) is used to stack the refinements applied to the base
program to produce the different variants.

Deng et al. [146] argue that adding new requirements to a model-based Prod-
uct Line Architecture (PLA) often causes invasive modifications to the PLA’s
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component frameworks and DSLs. To address these modifications, they show
how structural-based model transformations help maintain the stability of domain
evolution by automatically transforming domain models.

3.3.4 Motivation of our Model and Language Co-Evolution Ap-
proach

Figure 3.7 shows an example of the co-evolution of models and metamodels prob-
lem. The left part shows a metamodel (metamodel1) and a model (model1) that
conforms to that metamodel. That is, the model is expressed following the el-
ements and rules among elements described in the metamodel. Then, the meta-
model is evolved into metamodel2 (usually evolutions are done to address existing
issues or to extend the expressiveness of the language). Depending on the changes
performed to evolve the metamodel, models that conform to the previous version
of the metamodel will not conform to the new version of the metamodel. In those
cases, the common practice is to perform a migration of the models, needing to
transform them to conform to the new version of the metamodel.

Metamodel1 Metamodel2

Model1

conforms

evolution

conforms?

Model1'

conforms

migration

Figure 3.7: Model and Metamodel Co-evolution problem

Figure 3.8 presents the evolution of a model fragment following a migration
strategy. Each column shows the same fragment (Inductor 15) for each of the
metamodel generations (mm1,mm2 and mm3). Although its functionality re-
mains the same, the model is augmented to conform to each generation meta-
model. In generation 1, the replacement of an inductor of size 15 is represented
by 2 metamodel classes (Inductor and Power Table) and can be connected to a
channel and controlled by a button. In generation 2, the model fragment is mi-
grated to conform to mm2. Hotplate 1 now aggregates the inductor and is the
one controlled by the button. In this generation, we need 3 classes (we add the
Hotplate) to model the same functionality. In generation 3, we need to include
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a cooking zone (enabling groups inside the same hotplate), so the model is now
composed of four model elements. The three versions of the model fragment rep-
resent the same functionality: a heating element of size 15 that is connected with
a channel and controlled from a button. However, there is an increase in model
complexity.
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Power
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controls
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controls

Evolution 1 Evolution 2
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15 to

Button 1

Inductor 1Power
Table 1

controls

Figure 3.8: Evolution of Model Fragment through Migrations

Specifically, the migration of models from our industrial partner involves three
related issues:

Overhead There is an increase in the number of elements used to model the same
element of the induction hob (as in this example).

Automation Since the migration of the models cannot be performed automati-
cally, an engineer needs to generate the M2M transformation and take deci-
sions when applying it.

Trust leak The modification of the model fragments (through the migrations) de-
creases the trust gained by those models during that generation. That is, the
models have acquired some reliability or trust among the engineers that
have used them several times. This trust can be lost when the fragments
need to be modified to be adapted to the new metamodel (not to improve
its functionality), and the modification is regarded as unnecessary and error
prone.

The induction hobs domain is constantly evolving, but the original elements are
still present in new IHs. New types of heating elements or strategies may appear,
but the simplest inductors (e.g., the inductor of size 15) are still an important part
of modern IHs. Therefore, the issues related to the migration increase with each
generation, as old elements are still used.

The approach presented in this dissertation to address the co-evolution chal-
lenge applies variability modeling ideas at the metamodel level. By doing so, the
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particularities of each metamodel and their corresponding models can be formal-
ized into a model fragment and used to avoid the need for migration and its related
issues.
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Chapter 4. Feature Location in Models by an Evolutionary Algorithm (FLiMEA)

4.1 Overview of the Chapter

This chapter presents an overview of FLiMEA, our process for Feature Location
in Models by an Evolutionary Algorithm. The chapter briefly describe the process
and presents how domain experts can provide their domain knowledge in order to
tailor the process.

Gather
Domain Knowledge

Ranking of
Feature

Realizations [stop] [not stop]

Assessment

Genetic
Manipulation

Select Feature
Realization

Feature
Knowledge

EncodingModel 
Artifact

Domain Expert FLiMEA

Figure 4.1: Activity diagram for the Feature Location in Models trough an Evolu-
tionary Algorithm (FLiMEA)

Figure 4.1 shows an activity diagram for our FLiMEA process. The left side
shows the activities performed by the domain expert while the right side shows
the activities automatically performed by the approach. The middle side shows
the objects generated in the process.

First, the domain expert gathers domain knowledge relevant for the feature
that is going to be located. This knowledge is formalized as the model artifact
where the feature is going to be located and the feature knowledge (that holds all
the knowledge that the domain experts can gather and produce about the feature
that is going to be located). Both, the artifact and the knowledge are provided
to our FLiMEA approach and this will result in a ranking of feature realizations.
The ranking will be presented to the domain experts and they will use their domain
knowledge again to decide (with the information provided by the approach) which
of the realization better fits their needs.

4.2 Model Artifact

The model artifact is the artifact where the feature will be located. That is, the
realization of the feature should be part of this model artifact and the aim of the
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feature location process is to find it. In this dissertation we haven been working
mainly with two different model artifacts: single models and families of models.

Single model (or product model): This artifact is a model that represents a sin-
gle product (therefore it is also called product model) from our industrial
partner. The model conforms to a particular modeling language (our indus-
trial partners works with Domain Specific Languages built using the Meta
Object Facility, see Section 2.4.1) and will consist of a set of model ele-
ments containing some properties and references among those model ele-
ments. When the feature to be located is known to be realized by a single
product model, this artifact will be fed to the process.

Family of (product) models: It is also possible to use a family of models as the
artifact where the feature will be located. That is, a set of similar but dif-
ferent models that have some commonalities will be used as the artifact.
In a family of models there will exist some variability among the different
product models but it is not properly formalized and the aim of the feature
location is to shed some light towards this formalization. An example of a
family of models has been presented at the top of Figure 3.5.

The domain experts have to identify and provide the model artifact that real-
izes the feature being located and thus tailor the process when doing so.

4.3 Feature Knowledge

The feature knowledge is the information that will be provided by the domain
expert about the feature that is going to be located. This information will be used
to narrow and guide the search, tailoring the process based on the domain experts’
knowledge. Some of this information will vary depending on the type of model
artifacts where the feature will be located and the information available.

Depending on the information available, the experts will select different
sources of information. In our experience with our industrial partners the infor-
mation can come from several sources such as:

Tacit knowledge: that is shared among the experts but has not been properly for-
malized. This kind of knowledge is usually something taken for granted
among the experts and can be useful in tailoring the process.
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Bug reports: usually contain information about different elements of the model
and include domain terms that can be used to create a textual description of
the feature being located.

Annotations in software sometimes the models or other software artifacts are
annotated or commented. This type of information usually includes domain
knowledge and can be used to create the feature knowledge.

Depending on the artifacts where the feature should be located the search can
be narrowed using different means.

Seed Fragment: A seed fragment of the target feature is an element or set of
elements that the domain expert believes could be part of the feature being
located. In other words, the domain expert applies his knowledge of the
domain and the product models to point to some elements that will be used
as the starting point of the process.

Family subset: When a family of models that has been created following clone-
and-own approaches [147] is used, one of the existing models serves as the
base for the new one. However, the model used as base in each case may
vary. This practice could lead to a situation where there are different groups
of models (which are not explicitly defined) that have a closer relation. If
the humans are aware of the existence of these kinds of groups among the
set of models, they can take advantage of it, scoping the input to just a subset
of the family of models.

Metamodel constraints: As the approach is using model artifacts, the experts
can indicate which meta-elements must be included in or excluded from the
resulting feature realization in order to narrow the search. The process can
be tailored by defining constraints at the metamodel level.

The resulting domain knowledge is fed to the approach and will be used to
guide and narrow the search.

4.4 Evolutionary Algorithm
The approach for feature location in models presented is in this dissertation (FLiMEA
in Figure 4.1) comes in the form of an Evolutionary Algorithm. In Evolutionary
Algorithms, a population of individuals (candidate solutions for the problem) is
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evolved and assessed through several iterations in the search for the best possible
individual. When applied to model artifacts, the population of individuals will be
in the form of model fragments. These individuals need to be properly encoded
(see Encoding in Figure 4.1), enabling the evolutionary algorithm to work effi-
ciently with them. Next, each candidate solution from the population is evaluated
using a fitness function (a formalization of the overall quality goal) to determine
how well it performs as a solution to the problem (see Assessment). As a result,
the population of solutions is ranked depending on their fitness value and, based
on the ranked population, some genetic manipulations are performed over the in-
dividuals (see Genetic Manipulation). This cycle of genetic manipulations and
assessment will be repeated until some stop criteria is met.

4.4.1 Encoding

In Evolutionary Algorithms, each possible solution to the problem (called indi-
vidual) needs to be encoded so the genetic operations can be applied to them.
Traditionally, individuals are encoded as a fixed-size string of binary values, but
other encodings can be used such as tree encodings. In fact, it is suggested [148]
to use an encoding natural for the problem and then devise genetic operations ca-
pable of working for that specific encoding. The individuals of our problem are
model fragments (extracted from some product model); therefore, the encoding
must be able to represent a model fragment extracted from a product model.

As part of this dissertation we have explored two different encodings for the
individuals depending on the type of artifact used as input (see Section 4.2): (1) a
binary encoding designed to work with single models; (2) a CVL-based encoding
designed to work with families of product models.

4.4.2 Assessment

The fitness function is used as an heuristic to guide the search performed by the
evolutionary algorithm. To do so, the function assigns a fitness value to each of the
feature candidates based on their quality as feature realization. This information
can be used in two ways: to determine that the algorithm should terminate as a
desirable level of fitness has been reached and to determine the best candidates to
be used as parents for the next generation.

In this dissertation we propose and evaluate three different fitness functions:
(1) the first one is based on Latent Semantic Analysis [51] and Information Re-
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trieval techniques, to compare textual descriptions with the model fragments; (2)
the second one is based on Formal Concept Analysis [149] and Latent Seman-
tic Analysis, model fragments are grouped intro conceptual groups and then the
textual comparison is performed at conceptual group level; (3) the third one is
based on Conceptual Model Patterns [11], based on pattern repetitions of a model
fragment among the products;

4.4.3 Genetic Manipulation

Different operations are performed to manipulate the individuals, with the hope
that manipulated individuals (offspring) will perform better after manipulation.
Then, to perform the genetic manipulations some parents are selected based on
previous fitness assessment, giving priority to the solutions with higher fitness
values. Then two types of genetic operations can be performed: crossover, that
combines two parents into a new individual; mutation, the individual is evolved
and some of its characteristics are modified (added or removed).

As part of this dissertation we have proposed and evaluated four different oper-
ations: (1) mask crossover, a crossover operator designed to combine individuals
(in the form of model fragments) obtained from the same parent model; (2) parent
and model crossover, a crossover operator designed to combine model fragments
obtained from different parent models; (3) sequential mutation, a mutation oper-
ation designed to perform evolutions of model individuals following a prescribed
order; (4) random mutation, a mutation operations designed to perform random
modifications over model individuals while keeping the consistency of the model.

4.5 Ranking of feature realizations

Our FLiMEA provides a ranking (see bottom part of Figure 4.1) of different possi-
ble realizations for the feature located. The ranking is ordered based on different
search criteria depending on the particular fitness being used to locate the fea-
tures. The domain experts will be in charge of selecting the model fragment from
the ranking, using their knowledge of the domain. At the end, the experts will
be the ones working and manipulating these feature realizations as part of their
everyday work; therefore they should understand and recognize them well to be
able to use them with confidence.

As part of this dissertation we have explored two distinct forms of feature real-
ization: (1) realization of features as model fragments; (2) realization of features
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as variation points. Each of them have an impact on the approach, the next chap-
ters will present the particularities of the presented approach when the features
are located as model fragments (Chapter 5) and when the features are located as
variation points (Chapter 6).
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Chapter 5. FLiMEA as Model Fragments

5.1 Overview of the Chapter

This chapter presents the particularities of FLiMEA when the feature is realized
in the form of a Model Fragment. To accomplish that, we have tailored the ap-
proach to work with model fragments as individuals, we have created a fitness
function to assess those individuals based on the feature knowledge provided and
we have created genetic operations to perform genetic manipulations over those
individuals.
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Figure 5.1: Activity diagram for the Feature Location in Models by an Evolution-
ary Algorithm as Model Fragments

Figure 5.1 shows the instantiation of the generic process for FLiMEA (see
Figure 4.1) designed to locate the features as Model Fragments. The bottom-
left corner of Figure 5.1 shows the model artifact where the feature realization
must be located, a single product model. The bottom-middle part of Figure 5.1
shows the feature knowledge provided by domain experts, in this case a textual
description obtained from any of the sources available and a seed in the form of
a model fragment obtained from the model artifact provided (the seed is depicted
by a dashed line that enclose some elements of the product model).
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Then, individuals are encoded as model fragments and a fitness function de-
signed to assess model fragments is used to perform the assessment of the in-
dividuals. Similarly, the genetic manipulations of the individuals are performed
applying genetic operators capable of manipulating model fragments.

As a result, our FLiMEA approach provides a ranking of alternate feature
realizations in the form of Model Fragments, including the fitness score obtained
by each realization. The bottom-right corner of Figure 5.1 shows an example of
a feature realization ranking when the features are model fragments. Using the
information on the ranking and their domain knowledge, the experts select the
feature that best realizes the feature that was being located. The next sections
provide the details of the encoding, fitness functions and genetic operators that we
have designed to work with model fragments.

5.2 Encoding: Binary
Traditionally, in evolutionary algorithms each individual is encoded as a fixed-
size string of binary values. Each position of the binary string corresponds to a
particular element that may be or not part of the solution and has two possible
values 0 or 1. To encode a model fragment as a string of binary values we need to
decide what information will be encoded in the binary string. For instance, each
position of the string can represent one model element of the parent model; then,
each individual will have that bit at 0 to indicate that the element is not part of the
model fragment or at 1 to indicate that it is part of the model fragment. By doing
so, we can indicate the subset of elements from the parent model that are part of
the model fragment.

Figure 5.2 shows two examples of the binary encoding for model fragments.
The left part shows the encoding for “individual 1”, a model fragment obtained
from “Parent model 1” while the right part shows the encoding for “individual 2”,
a model fragment obtained from “parent model 2”. Each element of the parent
models has been tagged with a letter, to establish the link between the model
element and the position in the string of binary values. For instance, in “Parent
Model 1” the letter A1 corresponds to the upper inverter, and F1 correspond to
the lower inverter. The bottom part shows the individuals encoded, the string of
binary values holds a 0 or 1 value for each of the positions, that represent each of
the elements on the parent model. For each position, if the corresponding model
element is part of the model fragment, the value will be 1; if the corresponding
model element is not part of the model fragment, the value will be 0.
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Parent Model 2

Individual 2 (Binary encoding)
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K2 L2
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Figure 5.2: Binary-based encoding

It is important to note that both individual 1 and individual 2 are the same
model fragment. However, each individual is a model fragment obtained from a
different parent model and, given that the encoding depends on the parent model,
the resulting encoded individual is different. For instance, E1 corresponds to an
inductor of “parent model 1” while in “parent model 2” the corresponding inductor
is tagged as F2 and corresponds to a different position in the binary string.

5.3 Fitness: Text-based similarity

As part of this dissertation we have explored two different fitness functions that
can be used when locating features as model fragments using textual descriptions
as feature knowledge: (1) Latent Semantic Analysis; and (2) Formal Concept
Analysis & Latent Semantic Analysis.

Both approaches rely on Latent Semantic Analysis (LSA) to measure textual
similarities between the individuals and the feature description provided as part
of the feature knowledge. The first fitness function applies LSA to the model
fragments and assesses them based on the similarity with the textual description.
The second fitness function first groups model fragments into formal concepts
and then applies LSA to those formal concepts, spreading the fitness assigned to
the formal concept to the model fragments belonging to it. The next subsections
present the details of both fitness functions.
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5.3.1 Latent Semantic Analysis

To assess the relevance of each individual of the population in relation to the
feature description provided by the user, we apply methods based on Information
Retrieval (IR) techniques. Specifically, we apply Latent Semantic Analysis (LSA)
[51] to analyze the relationships between the description of the feature provided
by the domain expert and the model fragments. Recent studies observed that there
is not a statistically significant difference among different IR techniques [150,
151] when applied to software artifacts [152]. Hence, we choose LSA because it
produces similar results to other IR techniques for software documents.

LSA constructs vector representations of a query and a corpus of text doc-
uments by encoding them as a term-by document co-occurrence matrix (i.e., a
matrix where each row corresponds to terms, each column corresponds to docu-
ments, and the last column correspond to the query). We use the term-frequency
(tf) as the term weighting schema to construct the matrix. That is, each cell holds
the number of occurrences of a term (row) inside either a document or the query
(column).

In our work, all documents are model fragments, i.e., a document of text is
generated from each of the model fragments. The text of the document corre-
sponds to the names and values of the properties and methods of each model
fragment. The query is constructed from the terms that appear in the feature
description. The text from the documents (model fragments) and the text from
the query (feature description) are homogenized by applying well-known Natural
Language Processing techniques:

Tokenize: First, the textual description is tokenized (divided into words). Usu-
ally, a white space tokenizer can be applied (which splits the strings when-
ever it finds a white space), but for some sources of description, more
complex tokenizers need to be applied. For instance, when the description
comes from documents that are close to the implementation of the product,
some words could be using CamelCase naming.

Parts-of-Speech: Second, we apply the Parts-of-Speech (POS) tagging technique.
POS tagging analyzes the words grammatically and infers the role of each
word into the text provided. Recent studies in software engineering have
proved the usefulness of POS-tagging techniques to remove textual noise in
software documents [153]. In addition, the use of word-selection strategies
[154, 155] can improve the results in feature location [156]. After apply-
ing this technique, each word is tagged, which allows the removal of some
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categories that do not provide relevant information. For instance, conjunc-
tions (e.g., or), articles (e.g., a) or prepositions (e.g., at) are words that are
commonly used and do not contribute relevant information that describes
the feature, so they are removed.

Stemming: Third, stemming techniques are applied to unify the language that is
used in the text. This technique consists of reducing each word to its roots,
which allows different words that refer to similar concepts to be grouped to-
gether. For instance, plurals are turned into singulars (inductors to inductor)
or verb tenses are unified (using and used are turned into use).
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Figure 5.3: Term-by-document co-occurrence matrix for Model Fragments

Figure 5.3 shows an example of the co-occurrence matrix. Each column corre-
sponds to one of the individuals from the population. The last column is the query
obtained from the textual description provided as part of the feature knowledge.
Each row is one of the terms extracted from the corpora of text composed by all
of the model fragments and the query itself (to improve readability we show the
terms before the stemming process). Each cell shows the number of occurrences
of each term (row) in each document obtained form the individuals (column). The
union of all the keywords extracted from the documents (model fragments) and
from the query (feature description) are the terms (rows) used by our LSA fitness
operation.

Once the matrix is built, it is normalized and decomposed into a set of vec-
tors using a matrix factorization technique called Singular Value Decomposition
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(SVD) [51]. SVD project the original term-by-document co-occurrence matrix
in a lower dimensional space k. We use the value of k suggested by Kuhn et al.
[157], which provides good results [158]. One vector that represents the latent
semantic of the document is obtained for each model fragment and the query. Fi-
nally, the similarities between the query and each model fragment are calculated
as the cosine between the two vectors. The fitness value that is given to each model
fragment is obtained as the cosine similarity between the two vectors, obtaining
values between -1 and 1.

fitness(p1) = cos(θ) =
A ·B

‖A‖ · ‖B‖ (5.1)

Let p1 be an individual of the population; let A be the vector representing the
latent semantic of p1; let B be the vector representing the latent semantic of the
query where the angle formed by the vectors A and B is θ. The fitness function
can be defined as:

LSA Results Fitness

Q

MF4

MF2

MF3

MF7

MF5

MF4

MF1

MF4 : 0.9

MF2 : 0.5

MF3 : 0.3

MF1 : -0.2

MF5 : -0.4

MF7 : -0.7

MF4 : -0.8

Figure 5.4: LSA Fitness Results

Figure 5.4 (left) shows a three-dimensional graph of the LSA results. The
graph shows the representation of each one of the vectors, which are labeled with
letters that represent the names of the model fragments. Finally, after the cosines
are calculated, we obtain a value for each of the model fragments, indicating its
similarity with the query. As a result of the fitness assessment, each individual of
the population is assigned with a fitness value, that measures the similarity of the
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individual with the textual description (see right part of Figure 5.4).

5.3.2 Formal Concept Analysis

When locating features realized through model fragments, it is important to notice
that a feature can be realized by the combination of more than one model frag-
ment. To address this situation, model fragments can be combined into groups,
hoping to create groups that match with the realization for the feature being lo-
cated. Then, a fitness value will be calculated for each of the groups (using LSA)
instead of applying it to each individual separately. If the stop criteria is met, the
groups of individuals can be transformed into regular model fragments and in-
cluded as feature realizations into the resulting ranking. If the stop criteria is not
met and the process keeps evolving the population, the fitness value of the group
can be spread to the model fragments that belong to that group.

When using grouping strategies, the fitness function can be divided into three
steps: (1) the population of individuals is combined into groups; (2) each of the
groups receive a fitness value obtained using LSA; (3) either the groups are turned
into feature realizations or the fitness value assigned to the group is spread to the
individuals (depending on the fulfilment of the stop criteria).

Grouping of Fragments into Feature Candidates

To perform the grouping of model fragments into feature candidates we rely on
Formal Concept Analysis (FCA) [149], a branch of mathematical lattice theory
that provides means to identify meaningful groups of objects that share common
attributes. Groupings are identified by analysing a binary relationship between the
set of all objects and all attributes. FCA takes as input a formal context (an inci-
dence table indicating which attributes are possessed by each object) and returns a
set of concepts where every concept is a maximal collection of objects that share
some common attributes. Each concept will be considered as a feature candidate.

Therefore, in order to apply FCA we need to define a set of objects (model
fragments), a set of common attributes (the metamodel elements used to build
those model fragments) and a binary relationship between them (the presence or
absence of a particular metamodel element in the model fragment). Then, a formal
context that represents the relationship between the objects and the attributes can
be produced.

Figure 5.5 shows an example of a formal context relating model fragments
and the metamodel elements used to build them. Columns show each of the at-
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Figure 5.5: Formal Context between model fragments and metamodel elements

tributes present in the context, in this case the different metamodel elements used
to build the model fragments. Rows show each of the objects of the context, in
this case the different candidate model fragments present in the population. Each
cell indicates if a particular metamodel element has been used to build each of
the model fragments. For instance, MF1 and MF2 (first and second rows) are
built using three different metamodel elements (power manager, consumer chan-
nel and inductor), while MF4 (fourth row) is built using all the elements from the
metamodel (Inductor, Inverter, Provider Channel, Consumer Channel and Power
Manager).

Using the formal context as input, FCA generates a lattice: a set of interre-
lated concepts where each one is a maximal collection of model fragments that
share common metamodel elements. Figure 5.6 shows the lattice obtained apply-
ing FCA to the formal context presented before. Each of the circles represents one
concept (there are seven in total). The concepts are labeled with the metamodel
elements (grey background labels) and the model fragments (white background
labels) grouped by that concept. The concepts are organized hierarchically, indi-
cating containment relationships between the sets of model fragments and meta-
model elements of the concepts.

63



Chapter 5. FLiMEA as Model Fragments

FC1

FC2 FC3 FC4

FC5 FC6

FC7

Inductor

MF1,MF2,MF4,
MF9,MF7,MF10

Power Manager

MF1,MF2,MF3,
MF4,MF5,MF8,MF9

Ø

MF1,MF2,MF3,MF4,MF5,
MF6,MF7,MF8,MF9,MF10

Inverter

MF3,MF4,
MF5,MF6,MF9

Inverter, Power Manager, 
Provider Channel

MF3,MF4,MF5,MF9

Inverter, Power Manager, 
Inductor, Provider Channel,

Consumer Channel

MF4,MF9

Inductor, Power Manager, 
Consumer Channel

MF1,MF2,MF4,MF9

Figure 5.6: Lattice obtained from the Formal Context

That is, the set of model fragments of a concept is contained by all the con-
nected concepts above it and contains all the model fragments from connected
concepts below it. For instance, the model fragments in FC6 (MF3,MF4,MF5,MF9)
will be also part of all concepts above FC6 (FC4 and FC1). Likewise, the meta-
model elements in FC3 (Power Manager) will be also part of all concepts below
it (FC5, FC6 and FC7).

As a result of the application of the FCA, a set of Feature Candidates (FC1,
FC2, FC3, FC4, FC5, FC6 and FC7) that clusters some of the model fragments
based on their use of the elements of the metamodel is provided.

Feature Candidates assessment through LSA

To assess the relevance of each feature candidate with relation to the query ex-
tracted from the textual description provided by the user, we apply Latent Se-
mantic Analysis (LSA) to analyse the relationships between the description of the
feature provided by the user and the candidate features previously obtained.

We apply LSA to the feature candidates generated by FCA and the query.
A document of text is generated from each of the feature candidates using the
model fragments present in the feature candidate. That is, the names and values
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of properties and methods are processed to extract the terms by applying Natural
Language Processing techniques (as explained before, see Section 5.3.1). As a
result we obtain a list of relevant terms present in the documents and the query.
Finally, after the matrix is turned into vectors and the cosines are calculated, we
obtain a value for each of the feature candidates indicating its similarity with the
query.

Spread the fitness values across the groups

The next step is to spread the similarity values obtained by each feature candidate
to the model fragments present in that feature candidate. However, each model
fragment can be part of more than one feature candidate. Therefore, in order to
obtain the similarity of a model fragment with the query we need to combine
the similarity values obtained by each of the feature candidates where the model
fragment is present. As a result each model fragment is assigned with a value
(fitness value).
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Figure 5.7: Fitness assessment for Feature Candidates and spread to Individuals

Figure 5.7 shows an example of the assessment process. First, the set of model
fragments from the population is used to build a set of feature candidates through
FCA. Then, the set of feature candidates is compared with the query through
the use of LSI, resulting in a set of weighted feature candidates. At this point,
if the stop condition is met, the process will stop returning the rank of feature
candidates. If the stop condition is not yet met, the evolutionary algorithm will
continue its execution for another generation more.

The next time that the genetic operators are applied, it will be necessary to
select the best candidates as parents for the new generation. This will be done
based on the score obtained by each model fragment. As a result, model fragments
with higher similarities will have more chances to be selected as parents of the new
generation. Notice that being part of more feature candidates does not guarantee a

65



Chapter 5. FLiMEA as Model Fragments

higher score for the model fragment, as the similarity between a feature candidate
and the query can be negative.

5.4 Genetic Operations for Model Fragments

This section presents the genetic operations designed to work over model frag-
ments: (1) a selection operator that chooses the best model parents based on the
fitness value previously calculated; (2) a crossover operation that will combine
two model fragments into a new model fragment; (3) a mutation operation that
introduces random variations of the model fragment while keeping consistency
with the parent model.

5.4.1 Parent Selection: Model Fragment selection

The first step when performing genetic manipulations to individuals of the popu-
lation is the selection of parents. That is, a number (the number depends on the
operations that will be performed but typically is two) of individuals are selected
from the population based on their fitness value. These individuals will be manip-
ulated through genetic operations in order to create new individuals with the hope
that they will be fitter than their predecessors.

However, if the individuals with the best fitness are always the only ones se-
lected the genetic algorithm could suffer from premature convergence, neglecting
areas of the search space that could provide better results throughout. There are
some strategies to cope with this issue [159], and one of the most frequent is to
use a selection mechanism that ensures a proper distribution of the selection.

Therefore, the process will use a selection mechanism where fitter individuals
are selected more times than others but that also mitigates the premature conver-
gence issue. The most usual option is to follow the wheel selection mechanism
[160]. That is, each model fragment from the population has a probability of being
selected proportional to its fitness score. Therefore, candidates with high fitness
values will have higher probabilities of being chosen as parents for the next gen-
eration.

Figure 5.8 shows an example of application of the selection operator. The
operator determines which model fragments (from the population of model frag-
ments) will be used as parents. In this case, Model Fragment 1 and Model Frag-
ment 3 are selected as parents of new individuals.
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Figure 5.8: Selection Operator for Model Fragments

5.4.2 Crossover: Mask-based

The crossover operation is used to imitate the sexual reproduction followed by
some living beings in nature to breed new individuals. That is, two individuals
mix their genomic information to give birth to a new individual that holds some
genetic information from one parent and some from the other one. This could
make him adapt better (or worse) to his living environment depending on the ge-
netic information inherited from his parents.

Following this idea, our crossover operation applied to model fragments takes
as input two model fragments and a randomly generated mask (as usual in genetic
algorithms) to combine them into two new individuals. The mask determines how
the combination is done, indicating for each element of the model fragments if the
offspring should inherit from one parent or the other (including the element or not
if the element is present in the parent or not).

A model fragment is a subset of the elements present in a product model.
As both model fragments have been extracted from the same product model the
combination (applying the mask) of them will always return a model fragment
that is part of the product model. As a result, two individuals will be generated,
one by directly applying the mask and another one by applying the inverse of the
mask as usually done in genetic algorithms [148].
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Figure 5.9: Mask-based Crossover for model Fragments

Figure 5.9 shows an example of application of the crossover operation. The
input of the operation is the first parent (MF1), a mask indicating two sets of
elements (one regular and one marked in black) and the second parent (MF3). To
create the first of the new individuals the approach interprets the mask selecting
the blacked out elements from the first parent (MF1) and the regular elements
from the second parent (MF3). That is, the elements on the top part of the product
model that are in black in this mask are selected depending on whether they are
part of MF1 or not, while the rest of the elements that are not blacked out in
the mask are selected depending on whether they are part of MF3 or not. As a
result, the new MF5 contains some elements from the first parent (power group
connected to the inductor) and some others from the second parent (the inverter
that connects with the power group).

In addition, the mask is also interpreted in the opposite way, selecting the
blacked out elements form the second parent and the regular elements from the
first parent. This produces MF6 (see right part of Figure 5.9), where an inverter
connected to a power manager has been inherited from the second parent (MF3)
and nothing has been inherited from parent 1 (MF1) as all the elements not blacked
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out in the mask are not part of MF1.
For the crossover operation to work, it is not necessary to have elements shared

by both parents. It is possible to perform crossovers that return fragments where
not all the elements are connected. Indeed, the feature being located could be
realized by several model elements that are not directly connected in the model.
Therefore, it is necessary to create this kind of fragments as they could be the ones
realizing the feature being located.

5.4.3 Mutation: Random

The mutation operator is used to imitate the mutations that randomly occur in
nature when new individuals are born. That is, a new individual holds a small
difference in regards to its parents that could make him adapt better (or worse) to
their living environment.

Following this idea, the mutation operator applied to model fragments takes as
input a model fragment and mutates it into a new one produced as output. As the
approach is looking for fragments of the product model that realize a particular
feature, the new modified fragment must remain being part of the product model.
Therefore, the modifications that can be done to the model fragment are driven by
the product model. In particular, the mutation operator can perform two kinds of
modifications, addition of elements to the fragment, or removal of elements from
the model fragment.

Removal of elements: This kind of mutation randomly removes one element from
the model fragment. As the resulting model fragment is a subset of the origi-
nal model fragment, it will always be a model fragment present in the parent
model. The right part of Figure 5.10 shows an example of a mutation that
removes elements from the model fragment. MF6 is mutated and results in
MF8; the mutation operator has removed the power manager.

Addition of elements: This kind of mutation randomly adds some elements to
the model fragment. The only constraint is that the new model fragment is in
effect a model fragment of the parent model (that is, a subset of the elements
present in the parent model). This is ensured by the binary encoding used,
as only model elements present in the parent can be part of the individuals
following this encoding. The left part of Figure 5.10 shows an example
of a mutation that adds elements to the model fragment. MF5 is mutated
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Figure 5.10: Random Mutation for model Fragments

and results in M7; the mutation operation has added some elements (a new
inverter connected to the power manager).

5.5 Variability in FLiMEA as Model Fragments
Figure 5.11 shows a recapitulation of the different options presented for the Fea-
ture Location in Models as Model Fragments process. The model artifact used by
this process is the single product model. The feature knowledge provided to the
process consists in a textual description and optionally model fragment seeds. The
encoding presented was the binary encoding, where individuals are represented as
binary strings. For the individual assessment, Latent Semantic Indexing is used
and optionally Formal Concept Analysis can be used. The individual genetic ma-
nipulation presented included a parent selection operation (model fragment), a
crossover operation (mask based) and a mutation operation (Random). Finally,
the resulting ranking of feature realizations will be in the form of model frag-
ments.
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Chapter 6. FLiMEA as Variation Points

6.1 Overview of the chapter
This chapter presents the particularities of our FLiMEA approach when the feature
realization is in the form of Variation Points. Figure 6.1 shows an example of a
variation point compared to a model fragment. The previous chapter showed the
particularities of FLiMEA in locating the features as a single model fragments
(see left part). This chapter shows the particularities of our approach to locate the
features as a variation point, a set of different alternatives found across a set of
product models (see right part).

Model Fragment Variation Point

Model
Artifact

Feature
Realization

1..1

Variation Point

Alternative 1 Alternative 2

Alternative 1

Figure 6.1: Model Fragment and Variation Point

To accomplish this, we augment FLiMEA with an encoding capable of hold-
ing variation points, a fitness function designed to assess the individuals as varia-
tion points and genetic operations capable of evolving individuals in the form of
variation points.

Figure 6.2 shows the instantiation of the generic process for FLiMEA (see
4.1) designed to locate the features as variation points. The top-left corner of
Figure 6.2 shows the model artifact where the feature realization must be located,
a family of product models. This family of product models will be selected by the
experts based on their domain knowledge and taking into account the relationships
between existing product models (see 4.3). The top-right corner of Figure 6.2
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shows the feature knowledge provided by domain experts, in this case: a product
model (selected from the family of product models provided as model artifact); a
model fragment seed (extracted from that product model); and a set of metamodel
constraints that will guide the genetic operations.
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Figure 6.2: Activity diagram for the Feature Location in Models by an Evolution-
ary Algorithm as Variation Points

Then, individuals will be encoded as variation points and assessed by the fit-
ness function designed to work over variation points. Similarly, genetic operators
capable of manipulating the variations points will be applied to evolve the popu-
lation.
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As a result, the FLiMEA approach will provide a ranking of alternate feature
realizations in the form of variation points, including the fitness score obtained
by each variation point. The bottom of Figure 6.2 shows an example of a feature
realization ranking in the form of variation points. Using the information of the
ranking and their domain knowledge, the experts will select the feature realization
that best fits their understanding of the domain. The next section provides the
details of the encoding, fitness and genetic operators designed for this scenario.

6.2 Encoding: Boundary-based

In the previous chapter the encoding used was Binary-based as, the artifact where
the feature needed to be located, was a single product model. Therefore, the indi-
vidual could be encoded as a fixed size binary string where each bit represented the
presence or absence of each model element (with relation to the product model).

However, when locating the features across a family of product models, not all
individuals will be based on the same product model and thus it is not possible to
use a fixed size binary string to encode them. In addition, the fitness function will
be based on model comparisons (to discover different alternatives for a placement)
and binary strings where each index represents different elements are not te best
format to perform this kind of comparisons.

Therefore, to locate features as variation points, FLiMEA needs individuals
encoded in a format that allows comparisons between model fragments extracted
from different parents and capable of representing variation points. To achieve
this, we created a new encoding based on the Common Variability Language
(CVL) [47, 48, 49].

CVL defines variants of a base model (conforming to MOF) by replacing vari-
able parts of the base model (placement) by alternative model fragments (replace-
ments). The variability specification through CVL is divided across two different
layers: the feature specification layer (where variability can be specified follow-
ing a feature model syntax) and the product realization layer (where variability
specified in terms of features is linked to the actual models in terms of model
fragments).

Figure 6.3 shows an example of encoding of an individual using the Boundary-
based encoding. CVL can be used to specify model fragments over any MOF-
based DSL, through the use of pointers to the relevant elements. The middle part,
shows the specification of the model fragment using CVL
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Figure 6.3: Example of a variation point using CVL-based encoding

Parent Model: a reference towards the parent model, the model where the frag-
ment is extracted from. The model fragment is defined over the parent
model, as a subset of it. Any model fragment defined using CVL will be
a subset of a parent model.

Inner Elements: a reference to each of the model elements that are part of the
model fragment. In this example, four elements are part of the model frag-
ment: provider channel 1, Power Manager 1, Consumer Channel 1 and In-
ductor 1.

Boundary 1: the set of boundaries between the model fragment and the rest of
the parent model. Each boundary is composed of two elements, a “from”
and a “to”, each element is a reference to a model element (one of them
present in the model fragment and another one that is not part of the model
fragment). In this example there is only one boundary (Boundary 1):

From: the source of the relationship, in this example is the inverter 1. The
reference points to one of the elements of the parent model that is not
part of the model fragment.

To: The target of the relationship, in this example is the provider channel
1. The reference points to one of the inner elements of the model
fragment, as that element is part of the model fragment.

When using the Boundary-based encoding, each individual will be a model
fragment defined over one of the product models through the expressiveness of
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CVL (as shown in the example above). However, in order to work with this spe-
cific encoding we need genetic operations that can be applied directly to those
CVL model fragments. There are no genetic operations that can be applied to that
encoding in the literature, therefore we need to create them.

6.3 Fitness: Conceptual Model Patterns

We want FLiMEA to locate features in the form of Variation Points, but individu-
als of the population are in the form of Model Fragments extracted from a parent
model. However, the use of Boundary-based encoding enables the manipulation
of the model fragment and eases the transition from a Model Fragment to a Varia-
tion Point. The Conceptual Model Pattern (CMP) fitness function is based on the
identification and matching of conceptual patterns across the family of product
models provided as model artifact.

The CMP fitness consists of three steps that are applied to all individuals of
the population: (1), the process abstracts from each individual to a placement
signature in their parent model; (2), each resultant placement signature is matched
against all the product models from the family of product models used as model
artifact to obtain alternatives that match the placement signature; (3), a fitness
value is computed for each placement signature and then spread to individuals of
the population.

6.3.1 Placement Signature Abstraction

The first step is the Placement Signature Abstraction, that analyses an individual
and extracts a placement signature that can be matched against other product mod-
els. The placement signature formalizes the set of elements that must be present
in a product model in order to connect to the given model fragment. This is done
using the boundary elements present in the individual. The process looks for those
boundary elements that link an element from the model fragment with the rest of
the product model and extracts them as a placement signature.

Fig 6.4 shows an example of the Placement Signature Abstraction. The left
part shows an individual (a model fragment extracted from a product model).
Then, the model fragment is interpreted as a CVL placement, and its boundaries
are extracted into a placement signature. In this example, the model fragment only
has one boundary, a provider channel (outside the model fragment) connects to a
power manager (inside the model fragment). This information will be formalized
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Figure 6.4: Placement Signature Abstraction

into the placement signature. The right part of Figure 6.4 shows the placement
signature extracted. Dotted lines represent the the boundaries of the model frag-
ment. As a result, a placement signature that can be matched against other models
is obtained.

A placement signature is obtained for each of the individuals of the population.
Then, placement signatures are compared and duplicates are grouped together. To
do so, the process compares pairwise the placement signatures. If two placement
signatures have the same elements in the boundaries, they are considered to be
equal. Then, both placement signatures are grouped together. As a result, this
step produces a set of unique placement signatures and each individual is associ-
ated to a single placement signature (a placement signature can represent several
individuals).

6.3.2 Placement Signature Matching

Once the placement Signatures have been extracted, the next step is to match
them against the product models of the family. That is, each placement signature
is matched against the product models from the family used as model artifact. The
product models are traversed in search for the elements present in the placement
signature, if there exists a set of elements as described by the placement signature,
it is considered a match. A match means that the placement could be used in that
product model.

Figure 6.5) shows an example of the placement signature matching. The left
part shows the placement being currently matched while top-right part shows the
family of product models. The bottom-right part shows the different matches
identified for each of the product models. For each match, the corresponding
model fragment that matches is identified, so it can be extracted to build a variation
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Figure 6.5: Placement Signature Matching

point. That is, the placement signature could be applied in several places and those
places would be identified so a variation point could be built from them in case
the genetic algorithm met the stop condition during that generation. As a result,
the Placement Signature Matching provides a set of spots (across all the product
models) where the given placement signature matches.

6.3.3 Fitness computation

Once the Placement Signatures matching occurrences have been computed for
each placement signature, the next step is to build the variation point and assess
each individual. To do so, the placement signature will be used as placement of
the variation point and the matches across the product models will be the different
alternatives for that particular placement. Then, a fitness value can be assigned to
the elements of the variation point, taking into account the number of occurrences
of that element all through the element. Each alternative score is the number of
occurrences for that particular alternative, divided by the number of matches of
the placement signature. For the placement signature, the score is the number of
matches across all the product models divided by the number of product models.

Figure 6.6 shows an example of the fitness assessment. The left part shows the
placement signature being assessed while the top-right part shows the placement
signature matches identified in the last step. The bottom-part shows the resulting
variation point and its fitness score. First, the placement signature is used as
the placement and its score computed (in this case, there are 6 matches of that
placement signature across 3 product models). Then, each of the alternatives are
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Figure 6.6: Fitness Assesment and Variation Point construction

extracted as a model fragment and their scores computed. Alternative 1 has three
occurrences, divided by the total number of 6 matches of the placement signature.
Alternative 2 receives a score of 2 divided by 6 and Alternative 3 a score of 1
divided by 6.

In case the approach meets the stop condition at this point, the variation point
will be presented to the user (along with other variations points obtained from the
rest of individuals of the population). The fitness score for each of the elements of
the variation point will be useful for the domain expert to ponder which alternate
variation point should be used as feature realization. If the approach keeps iter-
ating, the fitness score of the placement signature will be assigned to the original
individual of the population that generated it and the process will continue.

6.4 Genetic Operations for Variation Points

This section presents the genetic operations designed to work over variation points:
(1) a selection operator that chooses the best model parents based on the fitness
previously calculated; (2) a crossover operation that will combine two individuals

81



Chapter 6. FLiMEA as Variation Points

into a new individual; (3) a mutation operator that introduces random variations
of the model fragment while keeping consistency with the parent model.

FLiMEA can locate features in the form of Variation Points, and to do so
performs a search over a family of product models (to locate features as Model
Fragments FLiMEA performs the search over a single product model). Therefore,
the genetic operations must be designed having in mind that individuals are model
fragments extracted from different product models; therefore, the crossover oper-
ation will be designed to combine two individuals with different parents resulting
in a new individual that combines the model fragment from one individual and the
parent model from the other individual.

6.4.1 Parent Selection: Different Parents

The parent selection used by FLiMEA to locate features as Variation Points will
follow a strategy similar to the one used when locating features as Model Frag-
ments. However, this time the operation needs to ensure that the two individuals
do not share the parent model where the model fragments were extracted from. By
doing so, the crossover operation will have the chance of swapping the parent of
the first individual for the parent of the second individual (it is necessary to fulfil
more conditions than having a different parent, but this condition is necessary and
it is ensured at this step of the process).

Therefore, the first parent will be selected freely using the same strategy as
before (roulette wheel selection). Then, to select the second parent an extra con-
straint will be imposed, the model from where the individual was extracted must
be different from the first selected parent. To do so, after selecting the first parent,
individuals extracted from the same parent are removed from the list of selectable
elements, ensuring that a different one is selected next time.

6.4.2 Crossover: Parent change

In genetic algorithms, crossover enables the creation of a new individual gener-
ated by combining the genetic material of both parents. In our encoding there
are two elements that can be mapped across the different individuals: the model
fragment and the parent product model where the model fragment was extracted
from. Therefore, our crossover operation will take the model fragment from the
first parent and the product model from the second parent, generating a new in-
dividual that contains elements from both parents and thus preserving the basic
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mechanics of the crossover operation.

Product Model 1
Model Fragment 1

Parent 1

Product Model 4

Parent 2

Product Model 4
Model Fragment 4

Offspring

Model Fragment 1 (from Parent 1)
+

Product Model 4 (from Parent 2)

Crossover operation

Figure 6.7: Crossover Operation

To achieve the latter, our crossover operation is based on model comparisons.
Fig 6.7 shows an example of the application of the crossover operation over model
fragments. First we select the model fragment from the first parent. Then we
select the product model from the second parent. Then the model fragment (from
first parent) is compared with the product model (from the second parent). If the
comparison finds the model fragment in the product model, the process creates a
new individual with the model fragment taken from the first parent but referencing
the product model from the second parent. In the case that the comparison does
not find a similar element, the crossover will return the first parent unchanged.

This operation enables to broaden the search space to a different product
model. That is, both model fragments (the one from the first parent and the other
from the new individual) will be the same. However, as each of them is referenc-
ing a different product model, they will mutate differently and provide different
individuals in further generations. The feature realization that the approach is
looking for will be in the form of a variation point (combining elements from dif-
ferent product models). Therefore, the same variation point can be reached from
different individuals (during the fitness step, the approach matches and combines
different product models into a single variation point), but some individuals can
yield to the solution faster than others.

6.4.3 Mutation: Sequential mutation

The mutation used by FLiMEA to locate features as Variation Points is similar to
the random mutation presented to locate features as Model Fragments. However,
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this time the encoding is not binary, but Boundary-based and the operation is
much heavier in terms of computation. Therefore, in order to mitigate the amount
of computations done, the mutations are done sequentially instead of randomly.
In addition, some constraints can be provided as part of the feature knowledge in
order to further reduce the number of computations performed, avoiding model
fragments that include model elements that the domain experts know should not
be part of the resulting variation point.

S3 S4 S5

S6 S7 S8

S9 S10 S11

S1

S2

Mutation operation

S6 in 
Product Model 2

Product Model 2 Model 
Fragment 4

Individual 5

Product Model 2 NEW Model 
Fragment

NEW Individual

Metamodel constraints

Induction
HobInverter

Power 
Manager

Inductor

Provider 
channel

Consumer 
channel

Figure 6.8: Sequential Mutation with constraints

The mutations are performed based on the model fragment and the product
model. Taking the model fragment as starting point, some model elements are
added to or removed from the fragment. However, the elements added during
mutations are obtained from the product model, ensuring that the generated model
fragment is part of the product model. In other words, apart from the individual
model fragment, the process proposes other variations of that fragment that are
also part of the product model.

The first step of the process is to build a state machine for the product model,
that includes the different model fragments that can be extracted from that product
model and the transitions from one to another in terms of mutations. This state
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machine will be used to drive the mutations in a sequential way, performing transi-
tions from one state to another and avoiding previously visited states. In addition,
states that do not fulfil the constraints provided as part of the feature knowledge,
will be removed from the state machine.

The left part of Figure 6.8 shows an example of the state machine built for
product model 2. It includes the different model fragments that can be extracted
from that particular product model as different states of the state machine. In addi-
tion, there are transitions from one state to another indicating the valid mutations.
Finally, some states (S5, S7, S8, S10, S11) have been discarded as they include
elements that have been identified as non relevant for the feature being located
(see top-left part of Figure 6.8 that shows the metamodel constraints provided as
part of the feature knowledge).

The second step of the process is to match the model fragment of the individual
being mutated with one of the states of the corresponding state machine (the state
machine of the product model where the fragment was extracted from). Once
it has been matched, the next state will be randomly chosen using the transition
available at the current state.

The right part of Figure 6.8 shows an example of the mutation. Individual 5
is going to mutate and the current model fragment (Model Fragment 4) is com-
pared with the states of the state machine (it corresponds with state 6). Then, the
mutation continues and the transition to follow is randomly selected, in this case
available transitions go to states S3, S4 and S9 (S10 is not valid as it includes an
inverter). In this case the transition followed is to state S3. A new individual is
created using the same product model of the original individual (product model
2) and the model fragment from the chosen state (S3 becomes the new model
fragment).

6.5 Variability in FliMEA as Variation Points
Figure 6.9 shows a recapitulation of the different options presented for the Feature
Location in Models as Variation Points process. The model artifact used by this
process is a family of product models. The feature knowledge provided to the pro-
cess consists of an initial model fragment seed, and optionally a set of constraints
and a subset of the family of product models can be provided. The encoding pre-
sented was the Boundary-based encoding, where individuals are represented as
placements, replacements and model fragments. For the individual assessment,
Conceptual Model Patterns is used, based on the comparison of individuals. The
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Figure 6.9: Variability of the Feature Location in Models as Variation Points pro-
cess

individual genetic manipulation presented included a parent selection operation
(different parents), an optional crossover operation (parent change) and a muta-
tion operation (sequential). Finally, the resulting ranking of feature realizations
will be in the form of Variation Points.
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Chapter 7. Evaluation of FLiMEA

7.1 Overview of the Chapter

This chapter presents the evaluations performed to test out FLiMEA, the approach
proposed in this dissertation to address the problem of Feature Location in Mod-
els. We give an overview of the evaluation framework, describing each of the
elements. First, we describe the two industrial case studies and the oracles ex-
tracted from them. Next, we explain how results are measured. Finally we present
the results of the tree evaluations performed.

Oracle

Product
Models Domain

Knowledge

Feature
Realizations

Test
Cases

Approach
under

evaluation
Results

Compare
and

Measure
Measurements

Figure 7.1: Setup of the evaluation

Figure 7.1 shows an overview of the generic setup of the evaluation, all the
evaluations performed as part of this dissertation follow this scheme. The setup is
composed of: (1) an oracle obtained from our industrial partner; (2) a set of test
cases extracted from the oracle; (3) an approach (or approaches) that is being eval-
uated; (4) the set of results obtained when applying the approach to the test cases;
(5) the measure (or measures) that we want to evaluate; and (6) the measurements
obtained based on the results yielded by the approach and the information avail-
able from the oracle.

7.2 Oracle

The oracle is the mechanism that we will use to evaluate the results provided
by our approach. The oracle will be considered the ground truth and the results
provided by the approach will be compared (when needed) with the oracle in
terms of the measures that we want to obtain. In addition the oracle will be used
to obtain the test cases used for the evaluation.
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The oracle will be mainly composed by a set of product models and a set of
features located over those product models. That is, a set of features whose real-
izations are model fragments and a set of product models built using those model
fragments. Therefore, we have the traceability information between the features,
the model fragments realizing those features, and the features being used by each
product model. In addition, the oracle includes domain knowledge in different
forms, such as descriptions and technical documentations for each product model,
descriptions about the features etc.

The oracle is extracted directly from the family of models of our industrial
partner, that is being used to manage the products that are under production.
Therefore, we consider it to be the best version available. However, when ex-
tracting the oracle we also have access to the domain experts from the company,
who will validate the correctness of the oracle.

We have used two different oracles built from two different industrial domains:
BSH the leading manufacturer of home appliances in Europe; and CAF, a world-
wide provider of railway solutions. The next subsections present both case studies,
providing details about the dimensions and nature of the features.

7.2.1 Induction Hob Domain

The first case study where we applied our approach is BSH (already presented
in section 2.4.1 as the running example). Their induction division has been pro-
ducing Induction Hobs under the brands of Bosch and Siemens for the last 15
years.

The oracle extracted from BSH is composed of 46 induction hob models
where, on average, each product model is composed of more than 500 elements.
The oracle includes 96 different features that can be part of a specific product
model. Those features correspond to products that are currently being sold or will
be released to the market in the near future.

7.2.2 Train Control and Management Domain

The second case study where we applied our approach was CAF, a worldwide
provider of railway solutions. Their trains can be seen all over the world and in dif-
ferent forms (regular trains, subway, light rail, monorail, etc.). A train unit is fur-
nished with multiple pieces of equipment through its vehicles and cabins. These
pieces of equipment are often designed and manufactured by different providers,
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Case Study Number of
elements in DSL

Number of
Features

Number of
Product Models

Size of
Product Models

BSH ∼300 elements 96 46 IHs ∼500 elements
CAF ∼1000 elements 121 23 trains ∼1200 elements

Table 7.1: Overview of the oracles extracted from BSH and CAF

and their aim is to carry out specific tasks for the train. Some examples of these
devices are: the traction equipment, the compressors that feed the brakes, the pan-
tograph that receives power from the overhead wires, or the circuit breaker that
isolates or connects the electrical circuits of the train. The control software of the
train unit is in charge of making all the equipment cooperate in providing the train
with functionality while guaranteeing compliance with the specific regulations of
each country.

The DSL of our industrial partner has the required expressiveness to describe
the interaction between the main pieces of equipment installed in a train unit.
Moreover, this DSL also has the required expressiveness to specify non-functional
aspects related to regulation, such as the quality of signals from the equipment or
the different levels of installed redundancy. This results in a DSL that is composed
of around 1000 different elements.

As an example, the high voltage connection sequence can be described using
the DSL. This high voltage connection sequence is initiated when the train driver
requests its start by using interface devices fitted inside the cabin. The control
software is in charge of raising the pantograph to receive power from the overhead
wire and of closing the circuit breaker so the energy can get to converters that
adapt the voltage to charge batteries which, in turn, power the traction equipment.

Again, we extracted an oracle that is composed of 23 trains where, on average,
each product model is composed of around 1200 elements. The product models
are built using 121 different features that can be part of a specific product model.

Table 7.1 shows a summary of both oracles, providing details about the prod-
uct models that are part of the oracle, the Domain Specific Languages used to
build the product models and the features present in those product models.

7.3 Test Cases

A set of test cases is extracted from the oracle, so the approach under evaluation
can be applied to them. Each test case must fulfill the input requirements of the
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approach, so they will vary mainly depending on the fitness function being used by
the approach. However, each test case will be composed by a Feature Description
and a set of model fragments where the feature should be located.

Fragment Seed

Test Case

Target  Model Textual Description  Solution Model Fragment

Oracle

Figure 7.2: Test Case example

Figure 7.2 shows an example of a test case. It includes a feature description
in the format required by the approach (in this case, a seed fragment and a textual
description of the feature) and the target product model (where the feature will be
located). In addition, the test case has been extracted from the oracle and there is
a corresponding model fragment for that feature description (that will be used to
compare with the output provided by the approach).

7.4 Approach under Evaluation
The presented FLiMEA can be configured depending on the needs of the user and
the nature of the product models that will be used to locate the features. Figure 7.3
shows a feature model that describes the different elements that can be configured
such as genetic operations, the fitness function or the input provided. This feature
model corresponds to the different options explained in previous chapters.

For instance, FLiMEA can be configured to locate features over a single model
(scope), to return the feature located as a single model fragment (output), requiring
a single model and a textual description (input), and using random mutations,
mask crossovers and LSA as fitness.

7.5 Comparison and Measure
Once the results from applying the approach to the test cases are obtained, we
proceed to compare them with the oracle and measure them in terms of some
software quality properties. Figure 7.4 shows an example of a model fragment
from the oracle (left part), and two model fragment candidates obtained from the
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Figure 7.3: Feature Model of FLiMEA approach

application of the approach (middle part and right part). To compare them we are
going to use an error matrix [161], also known as confusion matrix.

A confusion matrix is a table that is often used to describe the performance of
a classification model (in this case our approach under evaluation) on a set of test
data (the resulting model fragments) for which the true values are known (from
the oracle). In this case, each feature realization returned by the approach is a
model fragment composed of a subset of the model elements that are part of the
product model (where the feature is being located). Since the granularity will be
at the level of model elements, each model element presence or absence will be
considered as a classification. Therefore, our confusion matrices will distinguish
between two values (TRUE or presence and FALSE or absence).

Figure 7.4 shows an example of the comparison process performed to compare
a result from one of the evaluated approaches with the ground truth from the oracle
and the resulting confusion matrix. The left part shows the actual realization of
the feature #1 (obtained from the oracle and considered the ground truth) while
the right part shows the predicted realization of the feature #1 outputted by the
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Product Model 2
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Figure 7.4: Example of confusion matrix for two candidate model fragments

FLiMEA approach. The confusion matrix arranges the results of the comparison
into four categories:

True positive (TP): A model element present in the predicted realization that is
also present in the actual realization (e.g.: model element B is a TP).

True Negative (TN): A model element not present in the predicted realization
that is not present in the actual realization (e.g.: model element H is a TN)

False Positive (FP): A model element present in the predicted realization that is
not present in the actual realization (e.g.: model element A is a FP)

False Negative (FN): A model element not present in the predicted realization
that is present in the actual realization (e.g.: model element D is a FN)

The confusion matrix holds the results of the comparison between the pre-
dicted results and the actual results; it is just a specific table layout to help the
visualization of the performance of a classifier. However, in order to evaluate the
performance of the approach it is necessary to derive some measurements from
the values of the confusion matrix. The next subsection presents the four mea-
surements that we use to evaluate the performance of our approach.

7.6 Measurements

In this subsection we present the three measurements (derived from the confusion
matrices) used to evaluate the performance of the presented approach (FLiMEA).
The three measurements are Precision, Recall and F-Measure.

Precision: measures the number of elements from the prediction (result of the
approach) that are correct according to the ground truth (the oracle).
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Precision =
TP

TP + FP

Recall: measures the number of elements of the ground truth (the oracle) that are
correctly retrieved by the prediction (result of the approach).

Recall =
TP

TP + FN

F-measure: combines both recall and precision as the harmonic mean of pre-
cision and recall. The Recall, Precision and F-Measure are calculated as
follows:

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

Recall values can range between 0% (which means that no single model ele-
ment from the realization of the feature obtained from the oracle is present in any
of the model fragments of the feature candidate) to 100% (which means that all
the model elements from the oracle are present in the feature candidate).

Precision values can range between 0% (which means that no single model
fragment from the feature candidate is present in the realization of the feature
obtained from the oracle) to 100% (which means that all the model fragments
from the feature candidate are present in the feature realization from the oracle).
A value of 100% precision and 100% recall implies that both feature realizations
are the same.

Following up with the example of confusion matrix in Figure 7.4, we can
calculate the precision, recall and F-measure for the model fragment (see Table
7.2). The model fragment has a measurement of 66.7% precision (two out of the
three elements included in the candidate model are present in the model fragment
from the oracle) and 50% recall (2 out of the 4 elements that are present in the
oracle are also present in the model fragment). This results in a combined F-
measure of 57%.
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Precision Recall F-Measure

Values 2
3

= 66.7% 2
4

= 50% 4
7

= 57%

Table 7.2: Performance Measurements

7.7 Results
This section presents the results from the different evaluations performed as part
of this dissertation. For each evaluation, it describes the particularities of the
FLiMEA being evaluated and the research questions addressed.

7.7.1 Evaluation 1 (SPLC’15)

The first evaluation is part of the work SPLC’15 [11] (see 11.2). Figure 7.5 shows
the configuration of the FLiM-EA for this evaluation. As input the approach re-
ceives a family of product models, an initial seed and a set of constraints. This
approach relies on a sequential mutation as genetic operation, no crossover opera-
tion is used. The fitness function used is the Conceptual Model Pattern (CMP). As
output, the approach will provide the features realizations in the form of a ranking
of variation points.

The evaluation was designed to address two research questions:

SPLC-RQ1: Is feasible to locate features in industrial domains using the evolu-
tionary algorithm presented so far?

SPLC-RQ2: What is the rationale followed by domain experts to perform the
selection from the ranking of variation points outputted by the approach?

The approach was used to locate patterns with the collaboration of our indus-
trial partner’s engineers. We were able to obtain some patterns that satisfied the
engineers, and therefore we conclude positively the feasibility of the approach to
locate features in industrial domains.

In addition, we conducted a usability test, including a focus group around the
rationale followed when selecting from the ranking. In overall, we obtained three
reasons to select a model pattern different from the one proposed by the approach
(the first on the ranking):

Odd elements: some patterns were automatically discarded when particular el-
ements were found. This situation can be tailored and reduced though the
use of the constraints.
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Figure 7.5: Configuration 1

Deprecated elements: Knowing that some elements would be deprecated in a
near future was another reason for not selecting the option proposed by the
approach.

Future developments: again, the humans selecting from the ranking have more
information than the approach and use the knowledge about future develop-
ments when deciding the best option from the ranking.

7.7.2 Evaluation 2 (ICSR’16)

The second approach evaluated is part of the work ICSR’16 [12] (see 11.3). Fig-
ure 7.6 shows the configuration of the approach for this evaluation. As input
the approach receives a family of product models, and an initial seed. This ap-
proach relies on a random mutation and a product model and fragment crossover
as genetic operations. The fitness function used is the Conceptual Model Pattern
(CMP). As output, the approach will provide the features location in the form of

96



7.7. Results

a ranking of variation points.
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Figure 7.6: Configuration 2

The evaluation was designed to address one research question:

ICSR-RQ1: What is the impact of the accuracy when providing the input for the
approach?

To address the ICSR-RQ1, we created a set of test cases including three dif-
ferent scenarios regarding the accuracy of the input provided:

High accuracy: more than 75% of the product models provided as input contain
the feature being located.

Medium accuracy: between 25% and 75% of the product models provided as
input contain the feature being located.

Low accuracy: less than 25% of the product models provided as input contain
the feature being located.
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Then, the test cases are fed as input to the approach and also to the previ-
ous approach 7.5 and results are compared. It turns out that the inclusion of the
crossover operation helps mitigate the bad results obtained with low accuracy in-
puts. Table 7.7.2 shows a summary of the results from both approaches. Each
cell indicates the percentage of times where the correct (from the oracle) feature
formalization was included into the ranking provided as output.

ICSR’16 SPLC’15

high accuracy 79% 86%
medium accuracy 73% 48%
low accuracy 63% 16%

Table 7.3: Comparison between ICSR’16 and SPLC’15 based on input accuracy

7.7.3 Evaluation 3 (MODELS’16)

The third approach evaluated is part of the work MoDELS’16 [13] (see 11.4).
Figure 7.7 shows the configuration of the approach for this evaluation. As input
the approach receives a single product model, a textual description and an initial
seed. This approach relies on a random mutation and a mask crossover as genetic
operations. The fitness function used is the Latent Semantic Analysis (LSA) com-
bined with Formal Concept Analysis (FCA). As output, the approach will provide
the feature realization in the form of a ranking of model fragments.

The evaluation was designed to address three research questions:

MODELS-RQ1: Does the LSA+FCA fitness help when guiding the process or
tampers it?

MODELS-RQ2: Does the selection of the seed have an impact on the results?

MODELS-RQ3: Does the selection of the textual description have an impact on
the results?

To address the MoDELS-RQ1, a set of test cases was obtained from the oracle
and then fed to the approach. In addition, a baseline fitness function was created
(based on random) and the test cases fed to an approach using this fitness. Then,
results from both fitness functions where compared and analysed. The LSA+FCA
fitness prove to be able to guide the search, and results where not due to mere
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Figure 7.7: Configuration 3

chance. The approach was able to provide mean values of Precision, Recall and
F-measure between 80% and 90%.

Figure 7.8 shows the mean precision and recall values measured for the 96
features located by both executions (FLiMEA and the Baseline). The top chart
shows the results for the execution of FLiMEA while the bottom part shows the
results for the Baseline. The values for the recall measure are in blue, the val-
ues for the precision measure are in red and the values for the F-measure are in
black (in both charts). Each measure includes the standard deviation (shaded in
the same color). The x axis of the charts indicates the number of generations of
the evolutionary algorithm while the y axis measures the % value of the recall,
precision and F-measures.

Each of the lines corresponds to the mean values for the location of the 96 test
cases obtained from the oracle. First, we have calculated the values for each of
the test cases (including all the feature candidates from their rank). Then, mean
values and standard deviations for the 96 test cases have been calculated.

The recall values for the presented approach (top chart blue line) start in a
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Figure 7.8: Mean Precision, Recall and F-measure for FLiMEA and the Baseline

range between 0% and 20% for the first hundreds of generations but then start
raising up to the 90% (around generation 1.400). Beyond generation 1.400, the
recall values keep close to 100%. The precision values for the presented approach
(top chart red line) start in a range between 0% and 60% for the first hundreds
of generations. Then, the precision values raise up to the range between 80%
and 90% (around generation 1.500), beyond that generation there are no further
changes in the tendency.

The recall values for the Baseline (bottom chart blue line) start in a range
between 0% and 20% for the first hundreds of generations. Then, the recall values
reach the range between 30% and 40% (around generation 1.400) and oscillate in
that range for the rest of the generations. The precision values for the Baseline
(bottom chart red line) raise sharply to 20% and then drop slightly to a value
around 15%, remaining steady for the rest of generations.

Overall, results show that the use of IR techniques as the fitness function of the
GA (our approach) guides it to locate the feature better than if a random guide is
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provided (Baseline). The comparison with the oracle enables to obtain the recall
and precision values for both approaches and the IR provides higher mean values
of precision and recall for any number of generations.

To address the MoDELS-RQ2, a set of test cases including different seeds
were created. The seed was varied in terms of accuracy (the elements selected are
part of the feature being located) and size (number of elements in the seed). Then,
test cases were executed and results analysed. When the seed provided contained
about 50% of the elements that are part of the feature being located, the time
needed by the approach was reduced up to 15%.

To address the MoDELS-RQ3, a set of test cases including different textual
descriptions were created. The textual description was varied in terms of size
and the type of terms being used to build it. Then, test cases were executed and
results analysed. When the textual description includes terms that are also names
of meta-classes, the results include several elements that are not relevant. When
avoiding the use of those terms, in favour of more specific terms (such as terms
used as values for the properties of the elements), precision values raised up to
20%.
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Chapter 8. Variable MetaModel (VMM)

8.1 Overview of the Chapter

This chapter focuses on the maintenance and evolution of a variability specifica-
tion based on model fragments and is based on published work [15, 16]. In the
previous part we have explored how to locate the features among a set of product
models in the form of model fragments and variation points. However, that vari-
ability formalization represents the variability of a family of products in a given
point in time. Software evolves and that is also the case of the model fragments
used to realize the features. Therefore, this chapter focuses on the model and
language co-evolution problem.

In Section 3.3.4 we analyzed the existing state-of-the-art solution (model mi-
gration) and identified three issues related to its application. In this chapter we
present a retrospective case study of the variability evolution among the induc-
tion hobs from our industrial partner. Then, we propose an alternative (based
on variability modeling applied at meta-model level) to the model and language
co-evolution that does not involve those issues.

8.2 Retrospective Case Study

This section presents the retrospective case study that was extracted from the evo-
lution of our industrial partner’s (BSH, see 7.2.1) models and metamodels over
the last 13 years. Although the evolution data provided involves all the elements
present in the initial DSL, for simplicity and due to intellectual property rights,
we are going to focus on the evolution related to the inductor concept.

Let MM be the set of all models that conform to the MOF language (i.e., the
set of all metamodels) and let M be the set of all models. Let mi (the index i
will be explained shortly) be in M and let mmi be in MM. Then, we say that a
model (mi) conforms to a metamodel (mmi) if it is expressed by the terms that
are encoded in the metamodel; this conformance is denoted as C(mi,mmi).

Let CV LSPL be the set of all CVL-based product lines. One such product
line, cvlspli, is denoted as follows:

CV LSPL= MM×M×M
cvlspli =<mmi , bi , li >

(8.1)

where mmi is the metamodel of the DSL (conforming to MOF), bi is the base
model (over which placements for the variable parts are defined), li is the li-
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Figure 8.1: Model Generations of the CVLSPL

brary of replacements for those placements, and the conformance between models
C(bi,mmi) and C(li,mmi) is fulfilled. In addition, let i be a consecutive index
that is assigned based on when models and metamodels are created, i.e., we will
refer to the generation i of the base model, the generation i of the metamodel, the
generation i of the library, and the generation i of the CVLSPL. The use of the
index i is only as an annotation to identify the generation. For each generation
there may be several base models and libraries adhering to the same metamodel.

We perform a CV LSPL evolution (a shift from one cvlspli generation to the
next generation, cvlspli+1) whenever there is a breaking and unresolvable change
(from now on breaking change) [124] in the metamodel. Breaking changes break
the conformance of models and the metamodel in a way that cannot be resolved
by automatic means [124] (e.g., the addition of a mandatory meta-class or a re-
striction in the multiplicities). There are other metamodel changes that do not
break the conformance of models and the metamodel (e.g., the addition of an op-
tional class) or metamodel changes that can be resolved automatically by existing
approaches [121, 119, 124, 162, 118] (e.g., eliminating a property). However, in
this dissertation we focus on the evolution triggered by breaking changes.
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Figure 8.1 shows a summary of the CVLSPL generations and the evolutions
performed. Specifically, we present three CVLSPL generations: the first row
shows cvlspl1, which includes the concept of inductor; the second row shows
cvlspl2, which includes the concept of Hotplate; and the third row shows cvlspl3,
which includes the concept of cooking zone. This figure shows the breaking
changes that were overcome by our industrial partner, such as the addition or
removal of meta-elements. The first column shows the metamodel for each gen-
eration, the second column shows the base model, and the third column shows
the replacements library. The full variability specification is not shown, but the
shape of each placement in the base model and the shape of each replacement in
the model fragments library are indicators of which placements can be substituted
by which replacements.

Evolution 1 (from cvlspl1 to cvlspl2) is triggered by a new concept called Hot-
plate (see the first and second rows of Figure 8.1)

MM level : A Hotplate consists of a group of inductors that can work to-
gether. There is a hierarchy (next relationship) among the inductors;
some must be turned on before their subordinates are turned on. Since
we need to control the whole Hotplate (two inductors) with just one
user interface controller, the controller will now act over hotplates in-
stead of inductors. This is reflected in the metamodel mm2 (see the
second row, first column).

Model level : There are also modifications at the model level. A new place-
ment is created over the base model b2 to enable substitutions of the
new hotplate replacements. In addition, new replacements (l2) that
instantiate the hotplate concept are created; for example, the split hot-
plate (formed by two inductors, one main and one auxiliary) or the
double hotplate (formed by two inductors, requiring twice the space
and power as the rest of hotplates).

Evolution 2 (from cvlspl2 to cvlspl3) is triggered by a new concept called cook-
ing zone (see the second and third rows of Figure 8.1).

MM level Cooking zones improve the hotplate by introducing the ability to
heat two different pieces of cookware at the same time and with differ-
ent power levels. Now each hotplate will have cooking zones, which
will be controlled by the user interface controller. Since the number
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of combinations of inductors that are working at the same time in-
creases, the power table is now aggregated by the hotplate, and the
cooking zones use it. By means of this modification, several hotplates
will share the same power tables (when the inductor configurations are
equivalent). Furthermore, the hierarchy that is present among induc-
tors is now controlled by the cooking zone (one cooking zone hav-
ing the main inductor and another cooking zone having both induc-
tors); therefore, the relationship next is removed from the metamodel
(mm3).

Model level A new placement to include hotplates on both sides is created
over the base model b3. Similarly, new replacements that exercise the
new concept of cooking zone are created (l3). For instance, the pool
hotplate has four inductors that are divided into two different cooking
zones, which are controlled by two different buttons.

8.3 The Variable MetaModel (VMM)

As a result of applying the migration strategy three issues arise (Overhead, Au-
tomation and Trust Leak see Section 3.3.4). In this chapter we present our pro-
posal for addressing the co-evolution in model-based SPLs whose variability is
realized through model fragments, the Variable MetaModel (VMM). In order to
eliminate the need for migration when a new generation (metamodel revision) is
created by the engineers, a new metamodel that supports both generations can be
automatically built: the VMM. For instance, models that conform to generation 1
and models that conform to generation 2 will also conform to this VMM. A model
that contains replacements from both generations will conform to the VMM. Since
the VMM will be enhanced each time a new generation is created, a single VMM
that includes all generations of the CVLSPL will exist.

The VMM is the result of applying variability modeling ideas at metamodel
level. In this scenario the mechanism used to specify the variability at metamodel
level will be CVL; we have a base model in a given DSL (in this case, MOF) with
placements defined over it and a library of replacements. VMM is defined as
follows:

VMM= MM ×MM

vmmi=< mmbi , mmli >
(8.2)

where mmbi is the base model at the metamodel level and mmli is the library of
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replacements at the metamodel level.
The vmmi hold all metamodel variations from starting generation (genera-

tion 1) to generation i. Similarly to CVL at the model level, we can materialize
models that conform to the given DSL (in this case, MOF). Let G be the set of
all generations and let P(G) be its power set. We define the VMMmat (VMM
Materialization) operation as follows:

VMMmat: VMM ×P(G)−→MM

VMMmat(< mmbi,mmli > , g) = mmg

whereg 6= ∅
(8.3)

That is, given a vmmi where i generation is included in G and selecting a
non-empty generation set g, VMMmat retrieves the mmg for the cvlsplg of the
given generation set g.

Figure 8.2 (left) shows an example of VMM , the vmm2 for generation 2.
The top-left corner shows the base model (mmb2). It is the metamodel from
cvlspl1, with a placement (P1) defined over the inductor. The bottom-left corner
of Figure 8.2 shows the replacement library (mml2), which contains two different
replacements: R1 (in dashed lines) defined over the cvlspl1 metamodel and R2 (in
dotted lines) defined over the cvlspl2 metamodel.

Figure 8.2 (right) shows the models produced with the vmm2 presented. The
materialization of CVL produces models that conform to the same language that
the base model and replacements conform to; therefore, in this case the mod-
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els produced will conform to MOF. With the library that is available (two re-
placements), we can produce three different models: 1) mm1 (the metamodel of
cvlspl1) with a substitution of P1 by R1; 2) mm2 (the metamodel of cvlspl2) with
a substitution of P1 by R2; and 3) mm1&2 (a new metamodel with the concepts
from the mm1 and the mm2 metamodels) with the substitution of P1 by R1 and
P1 by R2.

The cardinality property of placements in CVL enables the creation ofmm1&2.
In other words, one placement can be substituted more than once (the number of
times can be specified). The first time that a placement is substituted, the existing
references of the placement are replaced. The second time that the same place-
ment is substituted, the same references are used (the multiplicity must be many
to allow this). In Figure 8.2, the aggregation of Inductors in vmm2 is duplicated
into an aggregation of Inductor Gen1 (in dashed lines), and an aggregation of Hot-
plate (in dotted lines) in the mm1&2. We have limited the substitution of the same
replacement several times as the result will be the same as replacing it only once
(mm1&1 produces the same metamodel as mm1).

Themm1&2 metamodel contains concepts from both cvlspl1 and cvlspl2 at the
same time. To achieve this, VMM renames the elements that conflict (e.g., Induc-
tor from mm1 and from mm2). The advantages of this mm1&2 is that any model
that conforms to mm1 also conforms to mm1&2 and any model that conforms to
mm2 also conforms to mm1&2. In other words, mm1&2 is used when materializ-
ing IH models that contain replacements from both libraries (l1 and l2), and the
resulting model conforms to mm1&2. When combining replacements from dif-
ferent generations into the same product, unexpected interactions between them
might arise. However, dealing with feature interactions is not straightforward and
there are several works focusing on this topic (such as [163]); thus, feature inter-
actions will be left out of the scope of this paper.

The vmm2 enables the materialization ofmm1 andmm2 that are used directly
by the engineers to create new replacements. By doing so, the replacements cre-
ated will conform to a specific generation and will not include unnecessary indi-
rection. If the functionality required for a particular replacement can be achieved
with the expressiveness of a previous generation, that metamodel will be used.

Furthermore, if the engineers try to create new replacements using the mm1&2

directly, they could end up creating models that do not conform to either mm1 or
to mm2. Therefore, we need to keep the original metamodels (mm1 and mm2) in
order to restrict the creation of new replacements.
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8.4 VMM operations

There are two main operations in relation to the VMM: the initialization of the
VMM and the addition of new metamodel revisions. Both operations are capa-
ble of spotting the commonalities and variabilities among metamodels and for-
malizing them in terms of CVL. The initialization is executed only one time, to
generate the initial VMM. Then, the addition of new metamodel revisions is per-
formed each time a new revision is created. The following subsections present
both operations in detail.

8.4.1 InitVMM operation

Figure 8.3 shows an example of the initVMM operation. InitVMM receives two
metamodel revisions (e.g., Metamodel A and Metamodel B) as input and produces
a VMM that includes both generations as output. Either of the two metamodels
can be used as the base model and will lead to valid CVL specification of the
metamodels provided. Different base models result in different model fragments,
which are used to specify the variability. This can be highly relevant when there
are users that interact directly with the model fragments [11], but it is not im-
portant for the VMM approach since those model fragments will be managed
automatically. Therefore, one revision is randomly selected as the base model (in
this example, Metamodel A); we will refer to the other metamodel revision as the
new revision (in this example, Metamodel B).

Init
VMM

Metamodel
A

Metamodel
B

Base Model
(Metamodel A)

Variation
Point

Replacement
(Metamodel B)

Base Replacement
(Metamodel A)

Substitution
(Metamodel B)

Configuration
(Metamodel B)

Base Substitution
(Metamodel A)

Base Configuration
(Metamodel A)

Figure 8.3: InitVMM operation

Then, the operation follows a five-step process to generate the VMM. The aim
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of this process is to formalize the commonalities and particularities of each meta-
model revision in terms of CVL (placements, replacements, substitutions, and
configurations). To do this, the operation will perform comparisons between the
Base Model (Metamodel A) and the new revision provided as input (Metamodel
B):

1. Compare: Metamodel B is automatically compared with the base model.
The result is a list of differences between the two revisions. Each difference
is composed of two elements (the differing element from the base model and
the differing element from the new revision (Metamodel B)). Then, each of
the differences is processed and formalized as CVL elements as follows:

(a) Placement: A placement is created over the base model (if that place-
ment does not previously exist). Using the information from the com-
parison, the boundaries of the placement are generated accordingly.

(b) Replacement: A replacement that formalizes the differences between
the base model and the new revision must be created. A replacement
holding the particularities of Metamodel B is created; this replacement
will turn the base model into the Metamodel B. As with the placement,
we use the information from the comparison to determine the bound-
aries of the replacement.

(c) Substitution: Once a placement and a replacement have been created
the process generates a substitution. That is, the boundaries of the
placement and the replacement are mapped accordingly, so the place-
ment can be substituted by the replacement.

2. Configuration: The process is repeated for all of the differences obtained
in Step 1. Finally, a configuration is defined, specifying what substitutions
need to be executed to turn the base model (Metamodel A) into the new
metamodel (Metamodel B).

As a result of this process, the commonalities and variabilities among the new re-
vision (Metamodel B) and the base model (Metamodel A) are formalized in terms
of CVL and thus, there are replacements holding the particularities of the new
revision. However, the VMM also needs to capture the particularities of the meta-
model revision that is used as the base model in separate fragments. Therefore,
each time a new placement is generated over the base model, Steps 1.(b), 1.(c) and
2. will be replicated to generate the CVL specification for the metamodel revision
that is used as the base model:
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(b) Base replacement: The process needs a replacement that formalizes
the particularities of the base model. Therefore, all the elements in-
cluded in the placement will be included in a new replacement. This
replacement holds the particularities of Metamodel A and will be nec-
essary to generate combined metamodels (joining two revisions).

(c) Base substitution: As previously, we need to map the placement and
the replacement boundaries so that the substitution can be properly
executed. The execution of this substitution might seem unnecessary
since the result would be the same base model (in this example, Meta-
model A); however, the replacement and substitutions generated will
be necessary when generating metamodel revisions that make use of
different generations.

2. Base configuration: Finally, a new configuration describing the substitu-
tions needed to generate that revision from the base model is generated.
Again, this may seem redundant, but it is done this way to keep the consis-
tency and explicitly formalize which replacements and substitutions belong
to that particular revision (regardless of whether the revision is being used
as the base model or not).

In summary, the initVMM operation formalizes a metamodel revision in terms
of CVL, generating placements, replacements, substitutions, and configurations as
needed. The first time it is executed, it also formalizes the base model in terms of
CVL, so all of the metamodel revisions are formalized in terms of CVL indepen-
dently of the revision used as base model.

Figure 8.2 (left) shows an example of the result of initVMM applied to the
induction hobs. Two different revisions, mm1 and mm2, were used as input.
Then, mm1 was selected as base model (mmb2), a new placement was created
(P1), and then two replacements (mml2) were generated to formalize the partic-
ularities of each revision (R1 to formalize mm1 and R2 to formalize mm2). In
addition, the cardinality of the placement was updated accordingly as there were
two substitutions using that placement (the configurations do not have a graphical
representation in the figure).

8.4.2 AddGen operation

Once the VMM has been created, following the initVMM operation, it is neces-
sary to have an operation to include new metamodel revisions in this VMM. This
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is accomplished by the addGen operation. The operation receives a VMM and a
new metamodel revision as input and returns an extended VMM that includes the
new revision.

The operation proceeds similarly to the initVMM operation; however, this
time there is only one metamodel that will be compared with the base model (it
is not necessary to capture the base model as separate fragments). Furthermore,
the addition of new metamodel revisions can result in the reutilization of already
existing placements. In other words, when creating a new placement as part of
Step 1.(b) Variation Point, the placement may already exist and there is no need
to create a new one. The same placement will be used and its multiplicity will be
increased. By doing so, we will enable the materialization of models that combine
several generations.

As a result of this operation, new placements, replacements, substitutions, and
configurations are automatically created to formalize the new metamodel revision.
The resulting VMM will now include the new metamodel and it will be possible
to materialize it as a single generation metamodel or as part of a metamodel that
combines several generations.

Both operations (InitVMM and AddGen) are automatic processes and there is
no need for human assistance to run them. The first time that a new metamodel
revision is generated, initVMM will be executed and the following times, addGen
will be executed. The comparisons performed by the operations have been imple-
mented based on the EMF Compare Framework [164]. This framework provides
functionality to compare EMF (the implementation of MOF within the Eclipse
environment) models and can be customized to perform the comparisons based
on different criteria. In our case, we compared models at the finest level of gran-
ularity capturing any change from one revision to the next (e.g., the addition of a
property or even a change in the name of a class).
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Chapter 9. Evaluation of VMM

9.1 Overview of the Chapter
This chapter presents the evaluation performed to test out the Variable Meta-
Model, the approach presented to address the problem of model and language
co-evolution. First we analyze the three issues entailed by the migration and how
the VMM behaves in relation them. Then we present a set of Lesson Learned
from the application of the presented approach to address the co-evolution of our
industrial partners' models and languages.

9.2 Migration Issues in VMM
We have applied both strategies (migration and the VMM) to the retrospective of
13 years of our industrial partner's SPL models. In this dissertation, we only show
a simplification of the evolution related to the inductor concept even though we
have applied it to all of the concepts. This involves about 32 different IH models
composed of approximately 72 different model replacements (each of which is
composed of multiple model elements). The average number of model elements
of a model fragment replacement is 43, while the average number of elements
of an IH model is about 470. Figure 9.1 shows a summary of the comparison
obtained from the collaboration with our industrial partner of both the migration
strategy and the VMM strategy in terms of three dimensions: (a) overhead, (b)
automation, and (c) trust leak.

With this evaluation we aim to address the following research questions:

GPCE-RQ1: What is the level of overhead introduced when applying VMM
compared to traditional migration?

GPCE-RQ2: What is the degree of involvement of the user required by the VMM
when compared to traditional migration?

GPCE-RQ3: Are there differences in the trust of the users towards their model
fragments when applying VMM compared to traditional migration?

9.2.1 Overhead

Overhead refers to an increase in model elements in order to conform to an evolved
metamodel while keeping the same functionality, for instance, the inductor that
migrates into a hotplate and then into a cooking zone (see Section 3.3.4).

118



9.2. Migration Issues in VMM

(b) (c)(a)

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Edit 
Metamodel

Migration VMM

Edit 
Metamodel

Define
M2M

Diff2CVL

Execute
M2M

Copy 
fragments

Adapt
Base Model

Create new
fragments

Adapt
Base Model

Create new
fragments

Manual !Assisted Automatic

!

!

Figure 9.1: Comparison between Migration and VMM Strategy

Figure 9.1 (a) shows the comparison of both strategies in terms of the over-
head that is present in the replacements. The graph shows the number of model
elements (classes and structural properties) used in each generation to represent
an inductor. In the migration strategy (solid lines), the inductor grows from a total
of 11 elements in Gen 1 to a total of 29 elements in Gen 3. This growth trend
is common for all of the concepts studied in this work. Although it is out of the
scope of this paper, there are transformations based on the metamodel to transform
IHDSL models into code, and this overhead requires modifications and produces
an increase in the complexity of the transformations and the code generated. In
contrast, the VMM strategy (dashed lines) avoids the migration of replacements,
and the number of elements needed to represent the inductor concept (11) remains
the same over all of the generations.

9.2.2 Automation

Depending on the degree of involvement of the user, the execution of the steps of
both strategies can be either manual, assisted, or automatic. A step is automatic
when it is done without user intervention; it is assisted when the user must help in
the process; and it is manual when the whole process is performed by the user.

Figure 9.1 (b) shows the comparison of the two strategies in terms of automa-
tion for each of the steps of the strategies. Step 1 (Edit Metamodel) is the same for
both strategies and must be performed manually. Step 2 is different; the migration
strategy requires the definition of a M2M transformation. With the options that
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are available (manual [118], operator-based [121, 119], or metamodel matching
[124, 162]), the process is, at best, assisted [123, 124]. In contrast, in the VMM
Strategy Step 2 (InitVMM and addGen) is fully automatizable, (CVL applied to
the model and the metamodel level enabled us to resolve all kinds of changes
presented by [124] in an automatic way). Step 3 in the migration strategy is the
execution of the M2M transformation. Breaking changes (e.g., the addition of
obligatory properties) are not automatically resolvable ([123, 124]), so the step
needs to be assisted. In contrast, in the VMM strategy replacements are used “as
is” (i.e., no migration is required and only an automatic copy is performed). Fi-
nally Steps 4 (Adapt base model) and 5 (Create new replacements) are performed
manually in both strategies.

9.2.3 Trust Leak

Model fragments are used to produce code; once they have been used repeatedly
on many IHs, the familiarity of our industrial partner’s engineers with the models
increase and the engineers develop trust towards the model fragments. However,
when the replacements are modified, there is a loss of this trust on the part of the
engineers, which has been reported as trust leak.

Figure 9.1 (c) shows the evolution of the replacements being used in each
generation, regarding the generation when they were created. That is, the graph
shows the weight of the replacements originated in each generation in relation to
the total number of products created with the SPL (i.e., the average percentage
of replacements originating from each generation present in the induction hobs
taking into account all of the IHs derived from the SPL for that generation). This
is highly relevant for the trust leak phenomena, as it is related to the number of
migrations that the replacements overcome.

In generation 1, all the fragments used to build the products were originated
in that generation. However, only 22% of the replacements used by products in
generation 2 are originated in that generation. The rest 78% of replacements were
created in generation 1 and if not using the VMM strategy need to be migrated
to conform to generation 2 metamodel (resulting in a decrease in the trust, as the
model elements are modified). In generation 3 the effect is increased, as only a
17% of the replacements are created in that generation. The rest of the fragments
have been created in previous generation but are still being used by products of
generation 3. Therefore, if we apply a migration strategy 83% of the fragments
needed by products of that generation will need to be migrated from previous
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generations (58% of them twice, from Gen1 to Gen2 and then to Gen3).
It turns out that the replacements from generation 1 are the ones that are most

frequently used to build IHs (in all generations), and they are also the ones that
require more migrations when following the migration strategy. Therefore, those
are the replacements that have the highest level of trust leak as the trust is reduced
each time that the replacement needs to be modified.

9.3 Lessons Learned

This section presents three lessons learned from the adoption of the presented
VMM approach as part of the SPL of our industrial partner. After a period of
using the approach by our industrial partner, we reviewed the VMM created to
determine whether it was working properly. As part of this review process, we
learned some lessons that enabled us to improve the approach. The first lesson is
related to the creation of false revisions, the second lesson is related to the folding
of revisions, and the third lesson is related to isolated revisions.

9.3.1 False Revisions

We designed the presented VMM to automatically include new metamodel re-
visions. In other words, each time a new metamodel was created, the addGen
operation was triggered and the new revision was formalized in terms of CVL
(when needed due to a breaking and unresolvable change). However, when re-
viewing the VMM generated by our industrial partner after the period of use, we
realized that some false revisions were being created in the VMM.

Figure 9.2 shows an example of false revisions. The horizontal arrows rep-
resent the VMM before and after addressing the false revision issue. The VMM
before shows 7 different revisions (circles). The number of model fragments gen-
erated for each revision is represented by the size of the circle. In addition, there
are some products that were built based on the model fragments from the revi-
sions. For instance, Product Set 1 is composed of model fragments from three
different revisions (R1, R2, and R5). However, there are some revisions that were
not used to build any of the products (R3, R4, and R6). We discussed this situation
with our industrial partner. It turned out that those revisions where tests that were
discarded and not used to build real products.

Therefore, we decided to remove those revisions from the VMM (as in the
VMM after) and thereby reduce the complexity of the VMM. It turns out that
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Figure 9.2: False Revisions

what defines a new generation is not just the creation of a new metamodel revi-
sion or the creation of new model fragments for that revision. Those tasks (the
creation of a revision and the addition of model fragments) are common for test-
ing purposes. What defines the creation of a new generation is the use of model
fragments (that belong to the new revisions) to build new products. Therefore, we
decided to postpone the addition of new metamodel revisions until they are used
for the creation of new products.

However, the false revisions (R1, R2, and R5) are not deleted as they might be
used to create products in the future. Therefore, we store them into an auxiliary
VMM, a copy of the ’main’ VMM that is used only for storing purposes (not
to build new products). Then, the user can create new replacements using those
metamodel revisions in the auxiliary VMM. When the user includes a replacement
created with one of those revisions to build a product, the revision (that is stored
into an auxiliary VMM) is added to the ’main’ VMM and is no longer considered
a false revision.

9.3.2 Revision Folding

Some situations also suggested the need for removing a particular revision from
the VMM even though they are not false revisions (i.e., being used by some prod-
ucts). In other words, a new metamodel revision that includes a concept is created,
model fragments for that revision are developed, and products using those model
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Figure 9.3: Revision Folding

fragments are created. Then, an issue with the revision is found and a new re-
vision (fix revision) that properly represents the concept and addresses the issue
discovered needs to be created. After the fix revision is created, the old revision is
not used anymore, but it is not possible to remove it directly (as there are products
using it). To manage situations of this kind, we introduced revision folding.

Figure 9.3 shows an example of revision folding. In the VMM before, an issue
is discovered in R2 after some products from Product Set 1 have already been
created. Then, our industrial partner created revision R3 to address the issues
discovered in R2 and started using it. R2 is no longer needed, but some of the
model fragments (which were not affected by the issue discovered) are still in use.
To address this kind of situation, we propose migrating the model fragments from
R2 to R3 and folding both revisions into a single one. The VMM after, shows how
the R2 and R3 revisions have been folded (into R3). The same situation occurs
with R6 and R7.

As a result, the products previously using model fragments from R2 now are
using the migrated fragments from R3. This migration usually only affects a small
set of fragments, and the lifespan of those fragments is short. Therefore, the
disadvantages of migration are outweighed by having a clearer and smaller set of
revisions under the VMM. In other words, when the engineer considers that two
metamodel revisions are mutually exclusive and the later revision is a direct fix
of the previous one, the engineer can fold both revisions, migrating the fragments
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Figure 9.4: Isolated Revisions

that belong to the unused metamodel revision.
When the engineer decides to fold two revisions, the traditional migration

strategy is followed. That is, fragments are migrated from the fault revision to
the fix revision. The engineer is guided through the process that can be fully
automated if there are not breaking changes between the two revisions.

9.3.3 Isolated Revisions

When reviewing the VMM generated by our industrial partner, we also discovered
some isolated revisions (i.e., some revisions are only used to build products that
do not include other revisions). Therefore, the products conform to that particular
metamodel revision and it is not necessary to combine it with other metamodel
revisions. As a result, that revision can be extracted from the VMM, decreasing
the number of revisions managed and its complexity.

Figure 9.4 shows an example of an isolated revision. The VMM before shows
four product sets built with model fragments from six different revisions. How-
ever, Product Set 3 is built only with model fragments from R4. In addition, R4
model fragments are not used to build any other product. As a result, R4 can be
extracted from the VMM since it is not used in combination with any other revi-
sion. Product Set 2 is also built only with model fragments from a single revision
(R3). However, R3 model fragments are also used to build Product Set 1, where
R3 is combined with R1 and R2. Therefore it is not possible to extract R3 from the
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VMM. Only revisions that are not combined with other revisions can be extracted
from the VMM.

When isolated revisions are extracted from the ’main’ VMM, they are stored
into an auxiliary VMM. It is important to consider that, although at that moment
the revision is isolated, it could stop being isolated if the engineer creates a product
that combines replacements from the isolated revision and other revisions. There-
fore, in that event, the isolated revision that is stored into the auxiliary VMM is
moved to the ’main’ VMM.

The VMM strategy eliminates the need for migration and properly manages
different metamodel revisions. However, the inclusion of the VMM strategy also
entails the need to properly manage the generations. As indicated by these lessons,
in order to reduce the complexity of the VMM, the creation of false revisions
must be avoided, the means for folding revisions must be provided, and isolated
revisions must be properly handled.
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Chapter 10. Conclusion

10.1 Overview of the Chapter
This chapter recapitulates the results presented so far and concludes the disserta-
tion. First we connect the particular research questions presented for each of the
evaluations performed with the three research questions proposed in the disserta-
tion. Then, the ongoing research is described. Finally, we conclude the disserta-
tion.

10.2 Research Questions
The three research questions presented as part of the dissertation have been ad-
dressed through the evaluations performed in each of the evaluations presented so
far. Next we present in which way they are connected:

Research Question 1: How to identify and formalize the variability present among
a set of product models in terms of features realized by model fragments?

SPLC-RQ1: Is feasible to locate features in industrial domains using the
evolutionary algorithm presented so far?

MODELS-RQ1: Does the LSA+FCA fitness help when guiding the pro-
cess or tampers it?

Answer to RQ1: To address RQ1, we search for the model fragment that best
represents the feature being located. To do so, we rely on an evolution-
ary algorithm (FLiMEA) that iterates a set of candidate solutions until the
model fragment that best represents the feature being located is found. Re-
sults shows that FLiMEA can be used to identify and formalize the variabil-
ity across product models from industrial domains such as the ones from
our partners. In addition, we have explored different operations and fitness
functions for the approach. As a result, FLiMEA can be tailored to work
under different environments, depending on the models and the type of do-
main knowledge present in the industrial domain.

Research Question 2: How to capitalize on expert domain knowledge to boost
the process of feature location?

SPLC-RQ2: What is the rationale followed by domain experts to perform
the selection from the ranking of variation points outputted by the ap-
proach?
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ICSR-RQ1: What is the impact of the accuracy when providing the input
for the approach?

MODELS-RQ2: Does the selection of the seed have an impact on the re-
sults?

MODELS-RQ3: Does the selection of the textual description have an im-
pact on the results?

Answer to RQ2: To address RQ2, FLiMEA has been designed so the expert do-
main knowledge can be contributed in different ways; Specifically, domain
experts will provide the feature description (based on the information avail-
able) and will choose the best option among the ranking of feature realiza-
tions proposed by FLiMEA. We have researched the impact of the different
inputs provided into the process. Results show a boost on the feature loca-
tion process when domain knowledge is embedded following the different
options available in FLiMEA.

Research Question 3: How to co-evolve the model fragments that capture the
features and the language used to create them?

GPCE-RQ1: What is the level of overhead introduced when applying VMM
compared to traditional migration?

GPCE-RQ2: What is the degree of involvement of the user required by the
VMM when compared to traditional migration?

GPCE-RQ3: Are there differences on the trust of the users towards their
model fragments when applying VMM compared to traditional migra-
tion?

Answer to RQ3: To address RQ3, we analyzed the state-of-the-art solution to
co-evolve models and metamodels and identified three issues when used
to co-evolve model fragments and language. We have presented VMM, a
co-evolution strategy based on variability management at metamodel level
that avoids the issues entailed by migration strategies. We have applied it
to address the co-evolution of a model-based SPL from an industrial do-
main. Results shows that VMM can be applied to address the co-evolution
of model fragments and language, as such is being done by our industrial
partner. We also include a set of lesson learned from the application in that
domain.
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Software Product Line Engineering has proven to be a mature approach to
manage families of products. When combined with Model Driven Engineering, a
model-based SPL can be built to manage a family of product models. However, in
order to shift from a clone-and-own approach to a model-based SPL approach a
great upfront investment is needed. With extractive techniques as those presented
in this dissertation, we contribute to ease the transition to a model-based SPL.

In particular, the techniques for Feature Location in Models presented in Part
II will enable the re-engineering of an existing family of product models into the
features present in the products and realizes them in the form of model fragments
or variation points. The approach helps to embed the domain knowledge into
the resulting variability formalization, producing model fragments that properly
capture the concepts used by the company.

Then, the techniques for co-evolution presented in Part III enable the co-
evolution over time of the model fragments and the language used by the mod-
els. By applying this technique, the burden imposed by the migration can be
avoided and thus the model fragments do not need to be changed when the lan-
guage evolves. Therefore, the trust gathered by the model fragments is not lost
and the engineers can keep working with the feature realizations that they already
understand and trust.

10.3 Ongoing Research

The contributions presented in this dissertation are the results of an ongoing work
that is currently being developed further. Specifically, the FLiM-EA approach is
being currently adapted to work under different conditions and applied to serve
different purposes. This section presents some open research questions and the
ongoing work that is being done to address them.

10.3.1 Parameter values of the Evolutionary algorithm

Evolutionary Algorithms (as the one presented as contribution of this dissertation)
have several different parameters that can be modified and that can determine
whether the search is successful or fails [165].

The problem of setting the parameters of an evolutionary algorithm is usu-
ally divided into two cases, parameter tuning [165] and parameter control [166].
Parameter control implies that the parameter values are changing during the ex-
ecution of the evolutionary algorithm while in parameter tuning, the values are
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determined before running the algorithm and do not change during the execution
of the algorithm.

Literature distinguishes between two types of parameters: (1) qualitative pa-
rameters, those that has a finite domain and no sensible distance or ordering
among the values (e.g. crossover, mutation and parent selection operations); (2)
quantitative parameters, those that have an infinite domain with structure and order
among the values (e.g. size of the population being evolved, number or percentage
of replacements preformed in each generation).

As part of this dissertation we have already presented different qualitative pa-
rameters (see Chapters 5 and 6). However, which quantitative parameters provide
better results for each domain remains as an open question and we are currently
doing research to address it.

10.3.2 Multi-Objective Evolutionary Algorithms

In this dissertation we have presented three types of fitness functions (one based
on Latent Semantic Analysis, another using Formal Concept Analysis and the
last one based on model comparisons). Each fitness function is used to guide
the search towards a single objective and this is the common case for Single-
Objective Evolutionary Algorithms (SOEA). Multi-Objective Evolutionary Algo-
rithms (MOEA) combine different fitness functions and thus guide the search to-
wards multiple objectives.

However, determining how the combination of different fitness functions is
performed is not trivial and must be carefully analyzed in order to obtain good
results. The most common method to combine several fitness functions into the
same search is to use the NSGA-II evolutionary algorithm [167]. This algorithm
relies on nondominated sorting to find the best individuals according to several
fitness dimensions. An individual is considered nondominated when there is no
better individual (in the population) than that one in a specific fitness dimension
without worsening other fitness dimensions.

In addition, selecting which fitness functions are used to guide the search and
what are the implications of its combination also remains as an open research
question. We are currently researching [168] towards the combination of the fit-
ness functions already covered in this dissertation with new ones such as com-
plexity measurements of the model fragments, longevity of the model fragments
and its elements, and size of the model fragments.
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10.3.3 Bug Location

In this dissertation, the presented approach for Feature Location in Models (FLiM-
EA) is applied to locate features based on domain knowledge available about the
feature that needs to be located. The main purpose of performing such an oper-
ation is to identify the variability existing among the products and formalizing it
in the form of features. However, the approach can also be tailored to be applied
with other purposes, such as the location of bugs.

In particular, we are currently working on a modified version of the FLiMEA
for Bug Location in Models (BLiMEA) [169]. To do so, we are currently mod-
ifying the approach to consume domain knowledge provided in different forms,
with a focus on bug reports obtained from issue tracking systems. We are also
working on new fitness functions that help towards the identification of the source
of bugs, taking into account different parameters such as the nature of the modifi-
cations performed to the model fragments (type of modification, time of commit,
developer that commits the changes).

10.3.4 Machine Learning Fitness

Machine Learning is known as the branch of artificial intelligence that gathers sta-
tistical, probabilistic, and optimization algorithms which learn empirically. Ma-
chine Learning has a wide range of applications, including search engines, text
recognition, marketing adv sales diagnosis, etc. and has provided good results
when applied to software engineering tasks that target source code artifacts.

We believe that Machine Learning can also be applied to software engineer-
ing tasks that target model artifacts and we are currently working on adapting
FLiMEA towards this direction. Particularly, to apply Machine Learning tech-
niques in models, the first challenge consists in identifying the set of elements
from a model that are truly relevant for the problem and encoding them into vec-
tors.

We believe that the approach presented in this dissertation can be adapted to
obtain the model fragment that is truly relevant for the particular problem being
addressed and we are currently working towards this [170].

10.3.5 Trust Leak

As part of this dissertation we have identified a major concern among the industrial
scenarios that consider whether to migrate to a model-based Software Product
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Line Engineering approach or not; the trust leak. Owners of the models want to
be in control all through the entire process, from the identification of features and
its extraction as model fragments to its further evolution and maintenance over
time.

Therefore, we are working on new industrial scenarios in order to evaluate the
impact of the proposed approaches (FLIMEA and VMM) on the trust deposited in
the models over the years. In particular, we plan to conduct empirical evaluations
focused on the trust issue in CAF (a worldwide provider of railway solutions). We
want to provide insights on the reasoning followed to choose whether to migrate
the artifacts or to let different generations coexists with the application of the
VMM.

10.4 Concluding Remark
As a concluding remark, although there are some open research questions, the
work presented in this dissertation has provided a step forward in terms of ad-
dressing the issue of re-engineering a family of product models into a model-
based SPL and its further evolution in time. In particular, the work presented in
this dissertation:

Conferences: Our work has been presented at scientific venues (such as the ACM/IEEE
19th International Conference on Model Driven Engineering Languages
and Systems and the 19th International Conference on Software Product
Lines).

Journals: Our work has been published in international journals (specifically in
Computer Languages, Systems and Structures [16] and the IEEE Transac-
tions on Evolutionary Computation [14]).

Research Projects: has been contributed to national and international research
projects such as VARIAMOS (Spanish national research project) and REVaMP2

(an international ITEA 3 Call 2 project).

Industrial Scenarios: has been evaluated in industrial scenarios such as BSH
(the leading manufacturer of home appliances in Europe) and CAF (a world-
wide provider of railway solutions).
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