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Abstract

Influential points can cause severe problems when deriving a multivariable re-
gression model. A novel approach to check for such points is proposed, based
on the variable inclusion matrix, a simple way to summarize results from
resampling-based variable selection procedures. These procedures rely on the
variable inclusion matrix, which reports whether a variable (column) is in-
cluded in a regression model fitted on a pseudo-sample (row) generated from
the original data (e.g., bootstrap sample or subsample). The variable inclu-
sion matrix is used to study the variable selection stability, to derive weights
for model averaged predictors and in others investigations. Concentrating
on variable selection, it also allows understanding whether the presence of
a specific observation has an influence on the selection of a variable. From
the variable inclusion matrix, indeed, the inclusion frequency (I-frequency) of
each variable can be computed only in the pseudo-samples (i.e., rows) which
contain the specific observation. When the procedure is repeated for each
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observation, it is possible to check for influential points through the distribu-
tion of the I-frequencies, visualized in a boxplot, or through a Grubbs’ test.
Outlying values in the former case and significant results in the latter point
to observations having an influence on the selection of a specific variable and
therefore on the finally selected model. This novel approach is illustrated in
two real data examples.

Keywords: bootstrap; Grubbs’ test; inclusion frequency; model averaging;
outliers; subsampling.

1. Introduction

In the construction of a statistical model, an important aspect to take into
consideration is its stability. It is well known, indeed, that small perturba-
tions in the data may lead to the selection of different models. For example,
several papers show that variable selection procedures, such as backward
elimination or forward selection, may provide very different sets of relevant
variables, and consequently very different models, when applied to different
bootstrap samples generated from the same dataset (Sauerbrei et al., 2015).

In the literature, different approaches have been proposed to handle this
issue. From a variable point of view, resampling-based variable selection
techniques can handle the instability issue by investigating the inclusion fre-
quencies of the single variables (Gong, 1982; Chen & George, 1985). The
idea is rather simple. Several pseudo-samples are generated via a resampling
technique and a variable selection procedure is applied to select the best
model in each of them. The proportion of models which contain the specific
variable (inclusion frequency) is used as an indicator of the importance of
the variable itself, and those variables with higher inclusion frequencies are
used in the final model.

From a model point of view, model averaging is a technique which aims to
deal with model uncertainty by fitting different models on the data and then
summarizing their results. For example, in linear regression, a regression
coefficient is estimated as a weighted mean of the corresponding estimates
computed in each model. In particular, in the resampling-based approaches

Supplementary Material and the R-code to reproduce the results are available in a
Web Appendix.
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the weights are obtained by generating several pseudo-samples via a resam-
pling technique and evaluating for how many of these pseudo-samples the
different models are selected by a variable selection procedure. Other kinds
of weights are based on information criteria, Mallows’ criterion, etc. For a
review on model averaging and on the different alternatives for the computa-
tion of the weights, we refer the reader to Wang et al. (2009). That paper, in
particular, considers the frequentist approach. For a review about Bayesian
model averaging, a classical reference is Hoeting et al. (1999).

Both resampling-based variable selection and resampling-based weights
for model averaging require the application of a variable selection technique
to several pseudo-samples. The goal of this paper is to show that the informa-
tion collected in this part of the analysis can be used to check for influential
points, such as outliers or single observations that have a high impact on the
results. It is well known that influential points can cause problems when se-
lecting a statistical model. For example, the inclusion or exclusion of a single
or a few observations can have a dramatic effect on variables selected and on
the issue of selecting linear or nonlinear function for a continuous variable
(Royston & Sauerbrei, 2007). The literature on influential point detection is
vast, and countless approaches have been proposed. For a simple and concise
overview we refer the reader to Su & Tsai (2011) and references therein.

The detection of influential points as a byproduct of model-building pro-
cedures is not new. Tsao & Ling (2012), for example, exclude from the final
model fitting procedure those observations that are not included in any of
the pseudo-samples that lead to good models in terms of goodness-of-fit. A
similar approach is used by Sauerbrei et al. (2015), who consider the selection
probabilities of some “best models” and identify as influential points those
observations which are able to modify these selection probabilities. Both
approaches handle the influential point detection issue from a model point
of view, ignoring the effect of these observations on the single variables. In
this paper we consider the problem from a variable point of view, though
maintaining a multivariable approach.

Finally, we mention Atkinson & Riani (2002), who also studied the effect
of influential points from a model building point of view, using a forward
search procedure (Atkinson & Riani, 2000, Ch. 2). We contrast our and
their approaches in Section 4.1.5.

The paper is structured as follows. Section 2 presents two datasets
later used as real examples. A brief introduction to model averaging and
resampling-based variable selection is presented in Section 3, together with
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the description of our approach. The application of the method to the data
is reported in Section 4. Finally, Section 5 contains a short discussion.

2. Data

2.1. Body fat data

The estimate of the percentage of body fat is considered a good indi-
cator to assess the health of patients (see, e.g., Myint et al., 2014). John-
son (1996) presents a dataset in which the percentage of body fat (PBF)
is collected from 252 men, together with the information about 13 further
quantities, namely age, weight, height and 10 continuous body circumference
measurements that are considered variables with potential influence on PBF.
The data are publicly available at http://portal.uni-freiburg.de/imbi/
Royston-Sauerbrei-book/Multivariable_Model-building/downloads/datasets/

edu_bodyfat_both.zip.

BIC α = 0.05 AIC
variable in out in out in out
age 3 3 3 3

weight 3 3 3

height 3 3 3

neck 3 3

chest 3

ab 3 3 3 3 3 3

hip 3

thigh 3

knee
ankle
biceps
forearm 3 3 3 3

wrist 3 3 3 3 3 3

Table 1: Body fat data: result of a backward elimination procedure using three different
selection criteria (BIC, significance level 0.05, AIC), with (in) and without (out) observa-
tion 39.

It is important to note that this dataset contains at least one influential
point. Royston & Sauerbrei (2007), in particular, show that observation
39 highly influences the choice of the fractional polynomial function used
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to model the relationship between outcome and variables. Although some
variables seem to have a non-linear effects on the outcome, we re-analyse
this dataset under the assumption of linear effects. Non-linear effects are not
that strong and this simplifying assumption seems acceptable for the main
purpose of this paper.

To show the effect of observation 39 in a classical model-building proce-
dure, we report in Table 1 the models obtained with backward elimination
when this observation is included/excluded from the sample. Three com-
mon inclusion criteria are used. In this example, results are identical for
BIC and α = 0.05. As commonly seen in the literature (see, e.g., Sauer-
brei et al., 2015), more variables are selected with AIC. We note that the
presence/absence of observation 39 in the sample leads to substantially dif-
ferent models. The selections of variables age, weight, height and forearm
are clearly affected.

2.2. Myeloma data

As an application of our method to a different kind of outcome, we also
use a dataset with a time-to-event outcome. In particular, we consider a
study on patients with multiple myeloma presented by Krall et al. (1975), in
which the outcome is the survival time of the patients. The 16 variables are
either binary or continuous. We consider the proportional hazard assumption
acceptable, being this dataset analyzed several times in the literature by
using the Cox model (see, e.g., Kuk, 1984; Chen & Wang, 1991). The sample
size is small, consisting of 65 patients with 48 events. As for the body
fat data, we use the simplifying assumption that the effect of continuous
variables is linear. This dataset is also publicly available on the same website
(http://.../myeloma.zip).

3. Methods

3.1. Resampling-based variable selection

One aim of a resampling-based variable selection is to select the relevant
variables to include into a statistical model in a robust way, with the idea
that the same model should be identified despite small perturbations in the
data. In practice, a resampling technique, such as bootstrap or subsam-
pling, is applied to the original dataset to generate several pseudo-samples,
in order to mimic small perturbations in the data. As a sample with (boot-
strap) or without (resampling) replacement from the original dataset, indeed,
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these pseudo-samples can be considered new instances of the data-generating
mechanism, similar but not identical to the observed one. A variable selec-
tion technique, for example backward elimination, is then applied to each
pseudo-sample. The proportion of pseudo-samples in which each variable is
selected is called “inclusion frequency” and it is used to discriminate between
relevant and irrelevant variables. The variables with higher inclusion frequen-
cies are included in the final model, while the others are discarded. Table
2 reports an example of the computation of the inclusion frequencies. For
further details and approaches to handle issues related to the dependence of
inclusion frequencies among pairs of variables, see Sauerbrei & Schumacher
(1992).

variable
pseudo-sample V1 V2 V3 . . . Vq−1 Vq model

1 1 0 1 . . . 0 1 → M1

2 0 1 1 . . . 0 0 → M2

3 1 0 1 . . . 0 1 → M1
...

...
...

...
. . .

...
... → ...

B 1 0 1 . . . 0 0 → Mk

inclusion frequency 0.961 0.243 1.000 . . . 0.000 0.693

Table 2: Illustration of a variable inclusion matrix. It can be used to compute the
resampling-based weights in a model averaging procedure (last column) or to compute
the variable inclusion frequencies in a resampling-based variable selection procedure (last
row).

3.2. Model averaging with resampling-based weights

The idea of model averaging consists in making inference on a parameter
of interest by using several models instead of a single one. Consider K models
M1, . . . ,MK . The parameter estimate θ̂ is defined as the weighted average
of the estimates computed across the K model (θ̂Mk

), in formula

θ̂ =
K∑
k=1

wkθ̂Mk
. (1)

A highly relevant point is the choice of the weights wk. In the literature
several procedures have been proposed, for example based on information
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criteria (e.g. Buckland et al., 1997; Hjort & Claeskens, 2003) or Mallows’ cri-
terion (e.g. Hansen, 2007; Wan et al., 2010). Here we focus on weights based
on a resampling approach, such as in, among others, Buckland et al. (1997);
Augustin et al. (2005). As for resampling-based variable selection, a large
number B of pseudo-samples are generated through a resampling technique
and, to each pseudo-sample, a variable selection procedure is applied. In
contrast to the previous approach, here the focus is not on the variables but
on the resulting models. The proportion of time in which the model Mk is
selected gives, for k = 1, . . . , K, the weight wk,

wk =
#Mk

B
.

These weights are then used in formula (1). Although the inclusion matrix
is the same as before (see Table 2), now the information is extracted on the
direction of the rows (models).

Note that Hansen & Racine (2012) also used a resampling technique (in
their case, jackknife) to derive the weights. Nevertheless, their approach
relies on the estimate of the mean square error and therefore is theoretically
different from the procedure described above.

3.3. Detection of possible influential points

3.3.1. From the inclusion matrix to the frequency matrix

We saw that both resampling-based variable selection and model averag-
ing with resampling-based weights rely on an inclusion matrix. In each row,
this matrix provides the information about which variables are included in
the best model fitted on that particular pseudo-sample. For example, in a
study with q variables, each row of the inclusion matrix is a q-dimensional
vector containing 0 (variable not included) and 1 (variable included). The
number of rows is arbitrary, and corresponds to the number of iterations
performed. Table 2 reports an illustration of an inclusion matrix. As we saw
above, in a resampling-based variable selection procedure this matrix is used
to compute the inclusion frequencies for the variables (column averages), in
a model averaging procedure to compute the weights (each row corresponds
to a model).

Since each row corresponds to a pseudo-sample, the inclusion matrix also
provides us with important information about the relationship between vari-
ables and observations. In addition to the inclusion/exclusion of the variables

8



in the selected model, indeed, for each row we know which observations be-
long to the particular pseudo-sample and which do not. Combining these two
aspects, we can evaluate the effect of a specific observation on the inclusion
frequencies of the variables. For each observation i, we can estimate inclusion
frequencies of all variables separately for samples including or excluding i.
For a variable Vj, the two frequencies should be similar if the observation i
has no effect on its inclusion and different if i has an influence on the inclusion
of Vj.

Let us focus on the inclusion frequencies obtained by considering only
the pseudo-samples in which a specific observation is included. For each
observation i = 1, . . . , n, we compute these inclusion frequencies (hereafter,
“I-frequencies”, where “I” stands for “in”) for all variables, obtaining a q-
dimensional vector in which each entry corresponds to one variable (q is the
number of variables). By merging these vectors, we obtain a n× q matrix of
I-frequencies (hereafter, “I-frequency matrix”), as that reported in Table 3.
In this example, in the pseudo-samples in which observation x1 is included
(first row), the variable V1 is selected 0.969 of the times, V2 0.015, and so on.

observation variable
included V1 V2 V3 . . . Vq−1 Vq

1 0.969 0.015 0.553 . . . 0.000 0.292
2 1.000 0.030 0.492 . . . 0.000 0.376
...

...
...

...
. . .

...
...

n− 1 1.000 0.015 0.603 . . . 0.000 0.361
n 0.984 0.092 0.569 . . . 0.000 0.276

Table 3: Illustration of a I-frequency matrix. For each variable (column), it reports its
I-frequencies, i.e. the inclusion frequency computed only on pseudo-samples in which a
specific observation (row) is included.

3.3.2. I-frequency matrix and detection of influential points

If there is no influential point in the sample, we expect the values in the
column of the I-frequency matrix to be very similar to each other. Conversely,
the effect of an influential point would be visible in values that are strongly
separated from the rest. Let us consider, as an example, an influential point,
let say xi, which strongly influences the significance of a variable Vj, in the
sense that it forces Vj to enter into the model. Focusing on the column
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related to Vj, we would expect in the i-th row of the I-frequency-matrix a
value much larger than all other values present in the same column.

Visualization. The easiest way to identify possible influential points is to plot
the column values of the I-frequency matrix in boxplots, and take advantage
of what Friedman and Tukey call “the human gift for pattern recognition”
(Friedman & Tukey, 1974). The boxplot is a simple and effective tool to
display the I-frequencies of a variable and to identify those that are far from
the median value. In particular, in the standard way of drawing a boxplot,
the extreme observations are not included in the whiskers and are plotted
as separated points. Usually, this is done for points farther than 1.5 times
the interquartile range from the first/third quartile. The farthest points are
the values we are interested in, because they represent the most anomalous
inclusion frequencies. One can then easily go back to the frequency matrix
and identify the rows which correspond to these values, and, consequently,
which are the possible influential points. In the case of no influential points,
instead, we would expect no strongly separated points, i.e. a plot in which
all values would be included or would be close to the boxplot’s whiskers.
Note, however, that identifying possible outliers among the points outside
the whiskers is a delicate task, and more objective criteria may be necessary
(see also Section 3.3.3).

Remark. The column variance of the I-frequency matrix can also be seen
as an indicator of the “trustworthiness” of the variable inclusion frequency.
Smaller variance, indeed, means an inclusion frequency that does not change
too much in the case of small perturbations in the data. If for any reason we
are in doubt whether a variable should or should not be included in the model,
the variance may be a further argument to support our choice. For example,
in the case of two correlated variables with similar inclusion frequencies, we
may prefer to select that for which we obtain a smaller variance, because less
influenced by small perturbations in the data.

3.3.3. Grubbs’ tests

Although several researchers advocate graphical investigations to detect
influential points, in some extends it may be advantageous to rely on a statis-
tical test. From our point of view, we need to test whether the most extreme
(i.e., farthest from the median frequency) I-frequency is an outlier for each
variable. In the case of a positive answer, it would mean that one single
observation, let us say x(n), is able to change the inclusion or exclusion of a
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variable in the model in a significant way. In other words, that x(n) may be
an influential point. In order to evaluate the influence of each observation
on each variable, we analyze the I-frequency matrix column by column. In
this way, we can simply apply to each column a simple univariate test, such
as the Dixon’s Q (Dixon, 1950) and the Grubbs’ G (Grubbs, 1950). Due to
the dependence of the former to the sample size, here we use the latter. It is
worth stressing, in any case, that our analysis is meant as explorative. Once
the aforementioned x(n) has been selected by our procedure, it is the respon-
sibility of the practitioner to evaluate the exact nature of the observation
(i.e., whether it is actually an influential point).

Given a sample x1, . . . , xn from a Gaussian distribution, the Grubbs’ test
rejects the null hypothesis, defined as the absence of outliers, if

max
i=1,...,n

|xi − x̄|
s

> C(α, n) = (n− 1)

√√√√ t21−α/(2n),n−2
(n− 2 + t2α/(2n),n−2)

,

where x̄ denotes the sample mean, s the estimated standard deviation and
t1−α/(2n),n−2 the quantile 1 − α/(2n) of a t distribution with n − 2 degrees
of freedom. Here α is the significance level on which the test is conducted;
since we repeat the test for each variable, it may be necessary to implement
a correction for the multiplicity of the tests.

Visualization. For an easy identification of the influential points, it may be
convenient to visualize the results in a graphic. Our suggestion is to plot,
for each variable (i.e., for each column of the I-frequency matrix), the stan-
dardized I-frequency. This value is strictly related to the test statistic of
the Grubbs’ test, with the difference that we do not consider the absolute
value but simply the difference between the value and the mean. If one value
is outside the bands ±C(α, n) it means that the I-frequency is an outlier
and the corresponding observation may be an influential point. Please note
that the Grubbs’ test is constructed to identify the presence of one outlier.
In general, a new critical value C(α, n) should be considered in the case of
multiple outliers, namely

C(α, n, k) = (n− k)

√√√√ t21−α/(2(n−k+1)),n−k−1

(n− k − 1 + t2α/(2(n−k+1)),n−k−1)
,

where k indicates the number of outliers whose presence in the sample one
wants to test. Nevertheless, for reasonably large sample size (n > 50), the
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critical value does not change much with k and the original C(α, n) can be
used.

Remark. Note that the I-frequencies do not follow a Gaussian distribution,
which is an assumption of the Grubbs’ test. Their distribution may be better
described by a beta distribution with accumulation points on the boundaries
(0 and 1). Nevertheless, the beta distribution can be approximated by a
Gaussian distribution when its coefficients are sufficiently large, i.e., when
the data points are far from the boundaries. In fact, we are only interested
in these cases. I-frequencies close to 0, indeed, are related to irrelevant
variables, which should not be included into the final model. On the other
extreme, I-frequencies close to 1 are typical of strong variables, which are
almost always included in the model. In these two cases, the possible presence
of an influential point would not change our decision to include or exclude
the variable from the final model. In contrast, the dependence among the
I-frequencies, which are computed on the same pseudo-samples, is not a
problem. It has been shown that Grubbs’ test is robust against deviation
from independence (Srivastava, 1980).

3.4. Effect of the choice of the resampling technique

The construction of the inclusion matrix needs the implementation of a
resampling technique to generate the pseudo-samples. Historically, bootstrap
(Efron, 1979) has been the most used approach. It generates the pseudo-
samples by sampling with replacement n observations (i.e. the original sample
size) from the original sample. Alternatives such as subsampling (Hartigan,
1969) have been also considered (see, e.g. Meinshausen & Bühlmann, 2010).
Subsampling consists of sampling without replacement m < n observations
from the original sample.

The choice of the resampling technique should be driven by considera-
tions on the model-building procedure, both for model averaging and for
resampling-based variable selection (for a recent study in the latter case,
see De Bin et al., 2016). For example, when there are variables with dif-
ferent numbers of categories, the use of the bootstrap may cause misleading
results (Rospleszcz et al., 2016). However, from an influential point detec-
tion point-of-view, the bootstrap gives the possibility to separately consider
pseudo-samples by the number of times (e.g.. 0, 1, more than 1) they include
an observation i (Royston & Sauerbrei, 2008, Section 8.5.1). For this reason,
we consider the bootstrap in our study.
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3.5. Software

The following analysis have been computed using R (R Core Team, 2016)
and the FSDA MATLAB toolbox (Riani et al., 2012). The R-code imple-
menting the analyses is reported in the Web Appendix and the data are
publicly available. That allows reproducibility of our study. Moreover, we
plan to upload soon a specific R-package to the CRAN.

4. Results

4.1. Body fat data

From the original body fat sample, we generate 2000 bootstrap samples.
To these pseudo-samples we applied a backward elimination procedure with
significance level α = 0.05. As a result, we obtain a 2000 × 13 inclusion
matrix. We explained that this matrix can be used to perform variable
selection or to compute the weights for a model averaging procedure. Here,
instead, we use it to generate the I-frequency matrix (as Table 3) and to
check the possible presence of influential points.

4.1.1. I-frequency matrix

The I-frequency matrix is a 252 × 13 matrix whose columns report the
I-frequencies for the 13 variables and whose rows correspond to the observa-
tions as explained above.

Figure 1 shows boxplots of the inclusion frequencies (see Section 3.3.1).
We note some points that are far from the respective median frequencies
and, in general, from all other I-frequencies. This fact is a sign of the possi-
ble presence of influential points in the data. In particular, for the variables
weight, height, chest and forearm we note four points (one for each variable)
with this characteristic. All four points correspond to the inclusion frequen-
cies computed on pseudo-samples which include observation 39. As stated
in Section 2.1, observation 39 is a known outlier, and our method is able to
correctly identify it. Interestingly, there seems to be an observation (obser-
vation 221) which also has an effect on the inclusion of weight, in an opposite
direction than observation 39.

Figure 1 contains further information. First of all, we can see the effect of
the influential point in the model building process. It is clear that observation
39 leads to an overestimation of the importance of weight and forearm, and an
underestimation of height and chest. Secondly, we can visualize the strengths
of the variables. We note, for example, that ab (abdominal circumference) is a
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Figure 1: Body fat data: boxplots that summarize the I-frequencies obtained for the 13
variables. The symbols “X” and “*” denote the I-frequencies obtained in pseudo-samples
(here generated by using bootstrap) which include observation 39 and 221, respectively.

very strong variable, which is always included in the model, while knee, which
is included in only a few models (low inclusion frequency), seems irrelevant.
Moreover, this figure allows us to compare the variances of the inclusion
frequencies. As mentioned before (Section 3.3.2), this information may be
useful in the model building procedure.
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4.1.2. Grubbs’ tests

As described in Section 3.3.3, we can perform univariate tests on the I-
frequencies for each variable. To visualize the results of the tests, we show
boxplots of the standardized I-frequencies (observed test statistics) and draw
the rejection region for the Grubbs’ test with a significance level of 99%
(Figure 2).

It is fairly simple to detect possible outliers. Note that the observed values
for the test statistics for observation 39 are very improbable under the null
hypothesis (no outlier), i.e., the points are deeply inside the rejection region
and very far from its boundaries. This is true in particular when considering
the variables weight, height and forearm. Moreover, observation 221 shows
potential to be an influential point, with effect on the selection of weight.
Although the corresponding point is not so distant from the rejection region
boundary, we should take into consideration that its position is influenced by
that of observation 39, which has opposite effect. Some pseudo-samples which
include observation 221 also contain observation 39, and tend to increase the
value of this point. Despite the masking effect of observation 39, observation
221 is inside the rejection region.

Further points are inside the rejection region, but they are related to the
variables ankle and biceps, which have low inclusion frequencies (see Figure
1). Therefore, the effect of the observations related to these points are not
really interesting from a model building point of view, as ankle and biceps
are not included in any case into the final model. Note that the lack of
information on the strengths of the variables is a drawback of a plot based
on standardized I-frequencies.

4.1.3. O-frequencies and multiple presences

As stated in Section 3.3.1, from the inclusion matrix we can compute, for
each observation, the inclusion frequencies based on pseudo-samples which
contain the specific observation (I-frequencies) or based on those which do
not contain it. The choice of using the former was arbitrary, and potentially
one can prefer the use of the latter (let us call them O-frequencies, where
“O” stands for “out”). We report in the Web Appendix (Figures A.1 and
A.2) the same graphics of Figures 1 and 2 when the O-frequencies are used
instead of the I-frequencies. We note that, in this specific example, we obtain
similar results. By using the O-frequencies, one should only remember that
a smaller O-frequency for an observation xi means an increasing effect on the
inclusion of a variable. Graphically, a lower point means an higher inclusion
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Figure 2: Body fat data: boxplots that summarize the standardized I-frequencies (com-
puted on bootstrap pseudo-samples) obtained for the 13 variables. The symbols “X” and
“*” denote the I-frequencies obtained in pseudo-samples (here generated by using boot-
strap) which include observation 39 and 221, respectively. The dashed lines delimit the
99% rejection region of a Grubbs’ test (including a correction for the multiplicity of the
tests).

frequency. This seems counterintuitive and may generate confusion. For this
reason, we preferred to use I-frequencies.

The O-frequencies, however, may prove useful in a different analysis. As
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stated in Section 3.4, when we use bootstrap as a resampling technique, we
can separate the pseudo-samples in which a specific observation is included
only one time from those in which it is included two or more times. We can
then compute two separate inclusion frequencies, that we call I-frequencies-
1 and I-frequencies-M, respectively. Together with the O-frequencies (i.e.,
frequencies computed on bootstrap samples in which the specific observation
is included 0 times), these inclusion frequencies can provide us with additional
information on the effect of the observation on the inclusion or exclusion of a
variable from the statistical model. Pseudo-samples containing two or more
times the specific observation are grouped together due to the relatively small
amount of cases in which a single observation is repeated three or more times
in a bootstrap sample.
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Figure 3: Body fat data: difference in the inclusion frequencies of the 13 variables when
observation 39 (left graphic) or observation 221 (right graphic) are excluded (square),
included one time (circle) or included more than once (triangle) in the pseudo-samples.

Figure 3 presents the aforementioned frequencies for the 2 possible influ-
ential points detected in the previous analyses, namely observations 39 and
221. We immediately notice the different strengths of their influence. Let us
focus on the variables weight and height. The simple presence of observation
39 drastically changes the inclusion frequencies of the two variables, imme-
diately flipping their ranks (when observation 39 is in the sample, weight
has a higher inclusion frequency than height, when it is out of the sam-
ple, it is the other way around). A multiple presence of this observation
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in the sample does not really change the situation, and the differences be-
tween I-frequencies-1 and I-frequencies-M are minimal in comparison to the
aforementioned differences between I-frequencies-1 and O-frequencies. On
the contrary, observation 221 seems to have a much smaller effect. When it
is included in the sample, the inclusion frequencies do not change so much
(especially for height). To notice a certain effect, we should consider the I-
frequencies-M. Only when observation 221 is included more than once in the
bootstrap sample, indeed, the effect on the inclusion frequencies of weight
and height is strong enough to flip their ranks (and, consequently, their rel-
ative chance to be included in the final model).

Note that this procedure allows us to turn into an advantage a possible
pitfall of the bootstrap approach. The presence of duplicated observations,
indeed, is usually considered a drawback, as pseudo-samples containing du-
plicated influential points may diverge from the original sample. Robust
versions of the bootstrap procedure have been proposed to tackle this issue
(see, e.g., Willems & Van Aelst, 2005). Here, instead, we take advantage
of this characteristic of the bootstrap to highlight the effect of the possible
influential points and to evaluate the strength of their effects. As one may
argue that a fair comparison should involve only pseudo-samples without and
with only one replication of a specific observation, in the following section
we repeat the analyses using subsampling instead of bootrapping as a resam-
pling technique. Pseudo-samples generated by subsampling, indeed, do not
contain duplicated observations, as they are drawn without replacement.

4.1.4. Subsampling

As stated in Section 3.4, any resampling technique can be used to gener-
ate the pseudo-samples and consequently to compute the inclusion matrix.
Figures A.3, A.4 and A.5 in the Web Appendix show the I-frequencies when
using subsampling. As long as the size of the pseudo-samples (subsamples)
is not extremely high, in this specific example we do not see any noticeable
differences with the bootstrap approach (Figures A.3 and A.4). When the
subsample size is too large, instead, the differences among samples got lost.
Figure A.5, in particular, shows this situation in the case of subsamples of
size n− 2. When choosing n− 2 as a subsample size, it may be more useful
to use the O-frequencies instead of the I-frequencies in the analyses. When
this is done, the effects of the single observations are taken to their extremes
(see Figure A.6 in the Web Appendix). For example, in this dataset the
O-frequencies for the variable weight are all equal or close to 1, but that
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related to observation 39, which is 0. For height, it is the other way around.
On the one hand, having extreme differences among O-frequencies may help
to graphically identify the possible influential point in an easier way; on the
other hand, several points are equal to 0 or 1, and it is not possible to con-
sider a Gaussian approximation for the distribution of the frequencies. As
a consequence, the Grubbs’ test cannot be applied. Note that the concept
of O-frequencies computed in subsamples of size n− 2 is very similar to the
idea of delete-2 jackknife, that is sometimes used in the literature related for
outlier detection (see, e.g., Martin et al., 2010).

4.1.5. Comparison with FSDA

Figure 4 reports two diagnostic plots obtained through the forward search
approach to detect the effect of influential points on model selection by Atkin-
son & Riani (2002). Although this procedure mainly focuses on the effect
of specific observations from a model point of view, rather than a variable
point of view, it can be seen as an alternative to our approach, as suggested
by a referee. The idea is rather simple: a model is first fitted on a carefully
selected subsample of observations, and then stepwise re-fitted on the same
subsamples enlarged, at each step, with one of the observation initially ex-
cluded (that closer to the fitted model). For details regarding the choice of
the initial subsample and the ordering of the observations’ inclusion we refer
to the original paper. We just point out that the procedure is built so that
the last observations are those with the highest probability to be influential
points, being the farthest from the fitted model. Note that the method is
robust against the masking effect (see Section 5 for more details), as weaker
influential points are considered before the stronger ones.

The left plot of Figure 4, called “deletion statistics plot”, shows the vari-
ables’ importance depending on the subsamples. Each curve visualizes the
evolution of the t-test for the nullity of a specific variable’s regression coef-
ficient when increasing the number of observations (the farthest observation
from the fitted model is the last to be added). Concerning the strongest vari-
ables and the most influential observations the results are similar to those
obtained with our approach and reported in Figure 1. The variable ab plays
a predominant role, followed by wrist. Moreover, in the last step of the for-
ward search, i.e. when the farthest observation, namely observation 39, enters
in the sample, the curve related to forearm grows drastically, in accordance
with the results reported in Figures 1 and 2 (and Table 1). Note that, in con-
trast to our approach, the deletion statistics plot is based on the full model,
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Figure 4: Body fat data: plots from function FSRaddt contained inside the MATLAB
toolbox FSDA. Left: deletion statistics plot based on the full model; right: Mallow’s C
trajectory for the model including age, height, ab and wrist.

which is the starting point of our procedure but which is not selected in any
replication.

The right plot of Figure 4, instead, focuses on the model which only
includes age, height, ab and wrist, i.e. the model selected by backward elim-
ination when observation 39 is excluded from the sample (see Table 1). In
particular, the Mallow’s C trajectory when increasing the sample size as
described above is reported. As expected, this plot shows that the model
describes very well the data until observation 39 is included. The Mallow’s
C trajectory, indeed, is within the 95% bands (dashed lines) until the very
last step (i.e., inclusion of observation 39). This result is in line with ours, as
we showed that, when observation 39 is in the sample, the selected model is
not longer that including age, height, ab and forearm but that which includes
weight, ab, forearm and wrist (see Table 1).

Summing up, in this example FSDA and our approach provide consis-
tent results, as both identify observation 39 as a possible influential point.
As mentioned above, however, the focus of the two approaches is relatively
different: while the former considers the effect of a specific observation on
the goodness of fit of the whole model, our approach focuses on the effect of
possible influential points on the inclusion/exclusion of the single variables.
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4.2. Myeloma data

In this section we investigate the second dataset. We report only the
results obtained when using bootstrap as a resampling technique. As we can
see in Figure 5, it seems that there are several points separated from the oth-
ers. This is a consequence of the small sample size (there are only 48 events).
In this situation, especially in a survival context, each observation noticeably
influences the model building procedure. To check if these points are influ-
ential points, it may be better to rely on the standardized I-frequencies and
to compare them with the rejection region of the Grubbs’ test.

We report the results in Figure 6. When we consider the rejection region
of the Grubbs’ test, it is clear that there are no strong influential points in
this dataset. The only point that is inside the rejection region and relatively
far from the boundary is the largest I-frequency for variable protein. This
I-frequency is that computed on only pseudo-samples including observation
44. Please note that another point related to this observation is inside the
rejection region, namely, the smallest I-frequency for the variable hemoglob.

As for the other dataset, we can deepen the analysis on the effect of
this observation by comparing the inclusion frequencies computed in pseudo-
samples without it (O-frequencies), in pseudo-samples in which it appears
only once (I-frequencies-1) and in pseudo-samples in which it appears more
than one time (I-frequencies-M). The results are shown in Figure 7. As
expected, the most relevant effect is related to variable protein. The inclusion
of observation 44 in the samples increases the times in which this variable is
included in the model. This effect is stronger when the observation is included
more than once. In contrast, the presence of observation 44 decreases the
inclusion frequency of the variable hemoglob. In this case, there is no strong
difference whether the observation is included once or more than one time.

As we noted above, in this dataset the effective sample size is quite small
and every non-censored observation may have a relatively strong influence
on the model-building process. Observation 44 stands out as the most in-
fluential one, but there is no strong evidence (e.g., large distance from the
99% rejection region boundaries of the Grubbs’ test) that suggests us that it
is an outlier. Its presence in the rejection region for variables hemoglob and
protein may simply be related to the type I error of the Grubbs’ test.

The small sample size also influenced our choice of the bootstrap tech-
nique. In order to include an acceptable number of events (here, in par-
ticular, the same amount of the original sample) in all pseudo-samples, we
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Figure 5: Myeloma data: boxplots that summarize the I-frequencies obtained for the 16
variables, based on boostrap pseudo-samples.

implemented a stratified bootstrap, i.e., we resampled separately censored
and non-censored observations.

5. Discussion

In this paper we showed how the information present in the inclusion
matrix can be used to identify possible influential points. Provided that a
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Figure 6: Myeloma data: boxplots that summarize the standardized I-frequencies (com-
puted on bootstrap pseudo-samples) obtained for the 16 variables. The symbol “X” de-
notes the observed values of the test statistics for observation 44. The dashed lines delimit
the 99% rejection region of a Grubbs’ test (including a correction for the multiplicity of
the tests).

resampling based approach is used to select a model, to assess model stability
or to use model averaging for the derivation of a predictor, the generation of
the inclusion matrix is a step not requiring any further computation. It uses
available information.
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Figure 7: Myeloma data: difference in the inclusion frequencies of the 16 variables when
observation 44 is excluded (square), included one time (circle) or included more than once
(triangle) in the pseudo-samples.

Another advantage of our approach is the possibility of having a clear
graphical visualization of the results, which allows the user to easily spot
possible influential points. As stated in the literature, the identification of
an influential point should be done by the user, and not fully delegated to
an automatic procedure (Billor et al., 2000).

We considered graphical inspections based both on the simple I-frequencies
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and on their standardized version. As mentioned before, both approaches
have advantages and disadvantages. In particular, when using the simple
I-frequencies, we can also have an impression, in the same graphics, of the
importance of the variables whose inclusion frequencies may be influenced
by a specific observation. As we saw in the first example, this allows us to
focus on points of interest, namely influential points which change the se-
lection of the final model, and avoid the investigation of observations that
influence the inclusion frequencies of variables which will not be included
anyhow. Moreover, the plot of the simple I-frequencies also gives an idea on
the variance of their inclusion frequencies, which may be useful in the model
building process.

On the other hand, the use of standardized I-frequencies allows us to
have a better insight into the influence of the single points. The values of the
standardized I-frequencies, indeed, can be contrasted to the rejection region
of an univariate test for outliers, in our paper we use the Grubbs’ test, to
have a more objective estimates of their influence. In studies with very small
sample sizes (see the myeloma data) we may identify several observations
which seem to be critical. A final assessment needs to consider further criteria
from the study.

In this paper we did not consider in detail the problem of the masking
effect (Bendre & Kale, 1985). The presence of a strong influential point,
indeed, may hide the effect of an observation that has a smaller but still
significant influence in the opposite direction. While there are methods, as
that by Atkinson & Riani (2002) shown in Section 4.1.5, constructed with
this in mind, ours is not specifically designed to tackle the masking effect
issue. Nevertheless, we note that in the body fat data example our method
was able to detect observation 221 as a possible influential point despite the
fact that its effect is the opposite to that of observation 39. Observation 221
has never been identified as an influential point, probably because, in the
previous studies, methods that do not take into account the masking effect
have been implemented. Our methods, instead, seems to be less prone to
suffer from this specific issue.
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Influential points can cause severe problems when deriving a multivariable re-
gression model. A novel approach to check for such points is proposed, based
on the variable inclusion matrix, a simple way to summarize results from
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on variable selection, it also allows understanding whether the presence of
a specific observation has an influence on the selection of a variable. From
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observation, it is possible to check for influential points through the distribu-
tion of the I-frequencies, visualized in a boxplot, or through a Grubbs’ test.
Outlying values in the former case and significant results in the latter point
to observations having an influence on the selection of a specific variable and
therefore on the finally selected model. This novel approach is illustrated in
two real data examples.

Keywords: bootstrap; Grubbs’ test; inclusion frequency; model averaging;
outliers; subsampling.

1. Introduction

In the construction of a statistical model, an important aspect to take into
consideration is its stability. It is well known, indeed, that small perturba-
tions in the data may lead to the selection of different models. For example,
several papers show that variable selection procedures, such as backward
elimination or forward selection, may provide very different sets of relevant
variables, and consequently very different models, when applied to different
bootstrap samples generated from the same dataset (Sauerbrei et al., 2015).

In the literature, different approaches have been proposed to handle this
issue. From a variable point of view, resampling-based variable selection
techniques can handle the instability issue by investigating the inclusion fre-
quencies of the single variables (Gong, 1982; Chen & George, 1985). The
idea is rather simple. Several pseudo-samples are generated via a resampling
technique and a variable selection procedure is applied to select the best
model in each of them. The proportion of models which contain the specific
variable (inclusion frequency) is used as an indicator of the importance of
the variable itself, and those variables with higher inclusion frequencies are
used in the final model.

From a model point of view, model averaging is a technique which aims to
deal with model uncertainty by fitting different models on the data and then
summarizing their results. For example, in linear regression, a regression
coefficient is estimated as a weighted mean of the corresponding estimates
computed in each model. In particular, in the resampling-based approaches

Supplementary Material and the R-code to reproduce the results are available in a
Web Appendix.
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the weights are obtained by generating several pseudo-samples via a resam-
pling technique and evaluating for how many of these pseudo-samples the
different models are selected by a variable selection procedure. Other kinds
of weights are based on information criteria, Mallows’ criterion, etc. For a
review on model averaging and on the different alternatives for the computa-
tion of the weights, we refer the reader to Wang et al. (2009). That paper, in
particular, considers the frequentist approach. For a review about Bayesian
model averaging, a classical reference is Hoeting et al. (1999).

Both resampling-based variable selection and resampling-based weights
for model averaging require the application of a variable selection technique
to several pseudo-samples. The goal of this paper is to show that the informa-
tion collected in this part of the analysis can be used to check for influential
points, such as outliers or single observations that have a high impact on the
results. It is well known that influential points can cause problems when se-
lecting a statistical model. For example, the inclusion or exclusion of a single
or a few observations can have a dramatic effect on variables selected and on
the issue of selecting linear or nonlinear function for a continuous variable
(Royston & Sauerbrei, 2007). The literature on influential point detection is
vast, and countless approaches have been proposed. For a simple and concise
overview we refer the reader to Su & Tsai (2011) and references therein.

The detection of influential points as a byproduct of model-building pro-
cedures is not new. Tsao & Ling (2012), for example, exclude from the final
model fitting procedure those observations that are not included in any of
the pseudo-samples that lead to good models in terms of goodness-of-fit. A
similar approach is used by Sauerbrei et al. (2015), who consider the selection
probabilities of some “best models” and identify as influential points those
observations which are able to modify these selection probabilities. Both
approaches handle the influential point detection issue from a model point
of view, ignoring the effect of these observations on the single variables. In
this paper we consider the problem from a variable point of view, though
maintaining a multivariable approach.

Finally, we mention Atkinson & Riani (2002), who also studied the effect
of influential points from a model building point of view, using a forward
search procedure (Atkinson & Riani, 2000, Ch. 2). We contrast our and
their approaches in Section 4.1.5.

The paper is structured as follows. Section 2 presents two datasets
later used as real examples. A brief introduction to model averaging and
resampling-based variable selection is presented in Section 3, together with
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the description of our approach. The application of the method to the data
is reported in Section 4. Finally, Section 5 contains a short discussion.

2. Data

2.1. Body fat data

The estimate of the percentage of body fat is considered a good indi-
cator to assess the health of patients (see, e.g., Myint et al., 2014). John-
son (1996) presents a dataset in which the percentage of body fat (PBF)
is collected from 252 men, together with the information about 13 further
quantities, namely age, weight, height and 10 continuous body circumference
measurements that are considered variables with potential influence on PBF.
The data are publicly available at http://portal.uni-freiburg.de/imbi/
Royston-Sauerbrei-book/Multivariable_Model-building/downloads/datasets/

edu_bodyfat_both.zip.

BIC α = 0.05 AIC
variable in out in out in out
age 3 3 3 3

weight 3 3 3

height 3 3 3

neck 3 3

chest 3

ab 3 3 3 3 3 3

hip 3

thigh 3

knee
ankle
biceps
forearm 3 3 3 3

wrist 3 3 3 3 3 3

Table 1: Body fat data: result of a backward elimination procedure using three different
selection criteria (BIC, significance level 0.05, AIC), with (in) and without (out) observa-
tion 39.

It is important to note that this dataset contains at least one influential
point. Royston & Sauerbrei (2007), in particular, show that observation
39 highly influences the choice of the fractional polynomial function used
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to model the relationship between outcome and variables. Although some
variables seem to have a non-linear effects on the outcome

:
,
:
we re-analyse

this dataset under the assumption of linear effects. Non-linear effects are not
that strong and this simplifying assumption seems acceptable for the main
purpose of this paper.

To show the effect of observation 39 in a classical model-building proce-
dure, we report in Table 1 the models obtained with backward elimination
when this observation is included/excluded from the sample. Three com-
mon inclusion criteria are used. In this example, results are identical for
BIC and α = 0.05. As commonly seen in the literature (see, e.g., Sauer-
brei et al., 2015), more variables are selected with AIC. We note that the
presence/absence of observation 39 in the sample leads to substantially dif-
ferent models. The selections of variables age, weight, height and forearm
are clearly affected.

2.2. Myeloma data

As an application of our method to a different kind of outcome, we also
use a dataset with a time-to-event outcome. In particular, we consider a
study on patients with multiple myeloma presented by Krall et al. (1975), in
which the outcome is the survival time of the patients. The 16 variables are
either binary or continuous. We consider the proportional hazard assumption
acceptable, being this dataset analyzed several times in the literature by
using the Cox model (see, e.g., Kuk, 1984; Chen & Wang, 1991). The sample
size is small, consisting of 65 patients with 48 events. As for the body
fat data, we use the simplifying assumption that the effect of continuous
variables is linear. This dataset is also publicly available on the same website
(http://.../myeloma.zip).

3. Methods

3.1. Resampling-based variable selection

One aim of a resampling-based variable selection is to select the relevant
variables to include into a statistical model in a robust way, with the idea
that the same model should be identified despite small perturbations in the
data. In practice, a resampling technique, such as bootstrap or subsam-
pling, is applied to the original dataset to generate several pseudo-samples,
in order to mimic small perturbations in the data. As a sample with (boot-
strap) or without (resampling) replacement from the original dataset, indeed,
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these pseudo-samples can be considered new instances of the data-generating
mechanism, similar but not identical to the observed one. A variable selec-
tion technique, for example backward elimination, is then applied to each
pseudo-sample. The proportion of pseudo-samples in which each variable is
selected is called “inclusion frequency” and it is used to discriminate between
relevant and irrelevant variables. The variables with higher inclusion frequen-
cies are included in the final model, while the others are discarded. Table
2 reports an example of the computation of the inclusion frequencies. For
further details and approaches to handle issues related to the dependence of
inclusion frequencies among pairs of variables, see Sauerbrei & Schumacher
(1992).

variable
pseudo-sample V1 V2 V3 . . . Vq−1 Vq model

1 1 0 1 . . . 0 1 → M1

2 0 1 1 . . . 0 0 → M2

3 1 0 1 . . . 0 1 → M1
...

...
...

...
. . .

...
... → ...

B 1 0 1 . . . 0 0 → Mk

inclusion frequency 0.961 0.243 1.000 . . . 0.000 0.693

Table 2: Illustration of a variable inclusion matrix. It can be used to compute the
resampling-based weights in a model averaging procedure (last column) or to compute
the variable inclusion frequencies in a resampling-based variable selection procedure (last
row).

3.2. Model averaging with resampling-based weights

The idea of model averaging consists in making inference on a parameter
of interest by using several models instead of a single one. Consider K models
M1, . . . ,MK . The parameter estimate θ̂ is defined as the weighted average
of the estimates computed across the K model (θ̂Mk

), in formula

θ̂ =
K∑
k=1

wkθ̂Mk
. (1)

A highly relevant point is the choice of the weights wk. In the literature
several procedures have been proposed, for example based on information

7



criteria (e.g. Buckland et al., 1997; Hjort & Claeskens, 2003) or Mallows’ cri-
terion (e.g. Hansen, 2007; Wan et al., 2010). Here we focus on weights based
on a resampling approach, such as in, among others, Buckland et al. (1997);
Augustin et al. (2005). As for resampling-based variable selection, a large
number B of pseudo-samples are generated through a resampling technique
and, to each pseudo-sample, a variable selection procedure is applied. In
contrast to the previous approach, here the focus is not on the variables but
on the resulting models. The proportion of time in which the model Mk is
selected gives, for k = 1, . . . , K, the weight wk,

wk =
#Mk

B
.

These weights are then used in formula (1). Although the inclusion matrix
is the same as before (see Table 2), now the information is extracted on the
direction of the rows (models).

Note that Hansen & Racine (2012) also used a resampling technique (in
their case, jackknife) to derive the weights. Nevertheless, their approach
relies on the estimate of the mean square error and therefore is theoretically
different from the procedure described above.

3.3. Detection of possible influential points

3.3.1. From the inclusion matrix to the frequency matrix

We saw that both resampling-based variable selection and model averag-
ing with resampling-based weights rely on an inclusion matrix. In each row,
this matrix provides the information about which variables are included in
the best model fitted on that particular pseudo-sample. For example, in a
study with q variables, each row of the inclusion matrix is a q-dimensional
vector containing 0 (variable not included) and 1 (variable included). The
number of rows is arbitrary, and corresponds to the number of iterations
performed. Table 2 reports an illustration of an inclusion matrix. As we saw
above, in a resampling-based variable selection procedure this matrix is used
to compute the inclusion frequencies for the variables (column averages), in
a model averaging procedure to compute the weights (each row corresponds
to a model).

Since each row corresponds to a pseudo-sample, the inclusion matrix also
provides us with important information about the relationship between vari-
ables and observations. In addition to the inclusion/exclusion of the variables
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in the selected model, indeed, for each row we know which observations be-
long to the particular pseudo-sample and which do not. Combining these two
aspects, we can evaluate the effect of a specific observation on the inclusion
frequencies of the variables. For each observation i, we can estimate inclusion
frequencies of all variables separately for samples including or excluding i.
For a variable Vj, the two frequencies should be similar if the observation i
has no effect on its inclusion and different if i has an influence on the inclusion
of Vj.

Let us focus on the inclusion frequencies obtained by considering only
the pseudo-samples in which a specific observation is included. For each
observation i = 1, . . . , n, we compute these inclusion frequencies (hereafter,
“I-frequencies”, where “I” stands for “in”) for all variables, obtaining a q-
dimensional vector in which each entry corresponds to one variable (q is the
number of variables). By merging these vectors, we obtain a n× q matrix of
I-frequencies (hereafter, “I-frequency matrix”), as that reported in Table 3.
In this example, in the pseudo-samples in which observation x1 is included
(first row), the variable V1 is selected 0.969 of the times, V2 0.015, and so on.

observation variable
included V1 V2 V3 . . . Vq−1 Vq

1 0.969 0.015 0.553 . . . 0.000 0.292
2 1.000 0.030 0.492 . . . 0.000 0.376
...

...
...

...
. . .

...
...

n− 1 1.000 0.015 0.603 . . . 0.000 0.361
n 0.984 0.092 0.569 . . . 0.000 0.276

Table 3: Illustration of a I-frequency matrix. For each variable (column), it reports its
I-frequencies, i.e. the inclusion frequency computed only on pseudo-samples in which a
specific observation (row) is included.

3.3.2. I-frequency matrix and detection of influential points

If there is no influential point in the sample, we expect the values in the
column of the I-frequency matrix to be very similar to each other. Conversely,
the effect of an influential point would be visible in values that are strongly
separated from the rest. Let us consider, as an example, an influential point,
let say xi, which strongly influences the significance of a variable Vj, in the
sense that it forces Vj to enter into the model. Focusing on the column
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related to Vj, we would expect in the i-th row of the I-frequency-matrix a
value much larger than all other values present in the same column.

Visualization. The easiest way to identify possible influential points is to plot
the column values of the I-frequency matrix in boxplots, and take advantage
of what Friedman and Tukey call “the human gift for pattern recognition”
(Friedman & Tukey, 1974). The boxplot is a simple and effective tool to
display the I-frequencies of a variable and to identify those that are far from
the median value. In particular, in the standard way of drawing a boxplot,
the extreme observations are not included in the whiskers and are plotted
as separated points. For example, in R (R Core Team, 2016), this happens

::::::::
Usually,

:::::
this

::
is

::::::
done for points farther than 1.5 times the interquartile range

from the first/third quartile. The farthest points are the values we are inter-
ested in, because they represent the most anomalous inclusion frequencies.
One can then easily go back to the frequency matrix and identify the rows
which correspond to these values, and, consequently, which are the possible
influential points. In the case of no influential points, instead, we would
expect no strongly separated points, i.e. a plot in which all values would be
included or would be close to the boxplot’s whiskers. Note, however, that
identifying possible outliers among the points outside the whiskers is a del-
icate task, and more objective criteria may be necessary (see also Section
3.3.3).

Remark. The column variance of the I-frequency matrix can also be seen
as an indicator of the “trustworthiness” of the variable inclusion frequency.
Smaller variance, indeed, means an inclusion frequency that does not change
too much in the case of small perturbations in the data. If for any reason we
are in doubt whether a variable should or should not be included in the model,
the variance may be a further argument to support our choice. For example,
in the case of two correlated variables with similar inclusion frequencies, we
may prefer to select that for which we obtain a smaller variance, because less
influenced by small perturbations in the data.

3.3.3. Grubbs’ tests

Although several researchers advocate graphical investigations to detect
influential points, in some extends it may be advantageous to rely on a statis-
tical test. From our point of view, we need to test whether the most extreme
(i.e., farthest from the median frequency) I-frequency is an outlier for each
variable. In the case of a positive answer, it would mean that one single
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observation, let us say x(n), is able to change the inclusion or exclusion of a
variable in the model in a significant way. In other words, that x(n) may be
an influential point. In order to evaluate the influence of each observation
on each variable, we analyze the I-frequency matrix column by column. In
this way, we can simply apply to each column a simple univariate test, such
as the Dixon’s Q (Dixon, 1950) and the Grubbs’ G (Grubbs, 1950). Due to
the dependence of the former to the sample size, here we use the latter. It is
worth stressing, in any case, that our analysis is meant as explorative. Once
the aforementioned x(n) has been selected by our procedure, it is the respon-
sibility of the practitioner to evaluate the exact nature of the observation
(i.e., whether it is actually an influential point).

Given a sample x1, . . . , xn from a Gaussian distribution, the Grubbs’ test
rejects the null hypothesis, defined as the absence of outliers, if

max
i=1,...,n

|xi − x̄|
s

> C(α, n) = (n− 1)

√√√√ t21−α/(2n),n−2
(n− 2 + t2α/(2n),n−2)

,

where x̄ denotes the sample mean, s the estimated standard deviation and
t1−α/(2n),n−2 the quantile 1 − α/(2n) of a t distribution with n − 2 degrees
of freedom. Here α is the significance level on which the test is conducted;
since we repeat the test for each variable, it may be necessary to implement
a correction for the multiplicity of the tests.

Visualization. For an easy identification of the influential points, it may be
convenient to visualize the results in a graphic. Our suggestion is to plot,
for each variable (i.e., for each column of the I-frequency matrix), the stan-
dardized I-frequency. This value is strictly related to the test statistic of
the Grubbs’ test, with the difference that we do not consider the absolute
value but simply the difference between the value and the mean. If one value
is outside the bands ±C(α, n) it means that the I-frequency is an outlier
and the corresponding observation may be an influential point. Please note
that the Grubbs’ test is constructed to identify the presence of one outlier.
In general, a new critical value C(α, n) should be considered in the case of
multiple outliers, namely

C(α, n, k) = (n− k)

√√√√ t21−α/(2(n−k+1)),n−k−1

(n− k − 1 + t2α/(2(n−k+1)),n−k−1)
,
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where k indicates the number of outliers whose presence in the sample one
wants to test. Nevertheless, for reasonably large sample size (n > 50), the
critical value does not change much with k and the original C(α, n) can be
used.

Remark. Note that the I-frequencies do not follow a Gaussian distribution,
which is an assumption of the Grubbs’ test. Their distribution may be better
described by a beta distribution with accumulation points on the boundaries
(0 and 1). Nevertheless, the beta distribution can be approximated by a
Gaussian distribution when its coefficients are sufficiently large, i.e., when
the data points are far from the boundaries. In fact, we are only interested
in these cases. I-frequencies close to 0, indeed, are related to irrelevant
variables, which should not be included into the final model. On the other
extreme, I-frequencies close to 1 are typical of strong variables, which are
almost always included in the model. In these two cases, the possible presence
of an influential point would not change our decision to include or exclude
the variable from the final model. In contrast, the dependence among the
I-frequencies, which are computed on the same pseudo-samples, is not a
problem. It has been shown that Grubbs’ test is robust against deviation
from independence (Srivastava, 1980).

3.4. Effect of the choice of the resampling technique

The construction of the inclusion matrix needs the implementation of a
resampling technique to generate the pseudo-samples. Historically, bootstrap
(Efron, 1979) has been the most used approach. It generates the pseudo-
samples by sampling with replacement n observations (i.e. the original sample
size) from the original sample. Alternatives such as subsampling (Hartigan,
1969) have been also considered (see, e.g. Meinshausen & Bühlmann, 2010).
Subsampling consists of sampling without replacement m < n observations
from the original sample.

The choice of the resampling technique should be driven by considera-
tions on the model-building procedure, both for model averaging and for
resampling-based variable selection (for a recent study in the latter case,
see De Bin et al., 2016). For example, when there are variables with dif-
ferent numbers of categories, the use of the bootstrap may cause misleading
results (Rospleszcz et al., 2016). However, from an influential point detec-
tion point-of-view, the bootstrap gives the possibility to separately consider
pseudo-samples by the number of times (e.g.. 0, 1, more than 1) they include
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an observation i (Royston & Sauerbrei, 2008, Section 8.5.1). For this reason,
we consider the bootstrap in our study.

3.5. Software

The following analysis have been computed using R (R Core Team, 2016)
and Matlab

:::
the

::::::::
FSDA

:::::::::::
MATLAB

:::::::::
toolbox

::::::::::::::::::::
(Riani et al., 2012). The R-code

implementing the analyses is reported in the Web Appendix and the data
are publicly available. That allows reproducibility of our study. Moreover,
we plan to upload soon a specific R-package to the CRAN.

4. Results

4.1. Body fat data

From the original body fat sample, we generate 2000 bootstrap samples.
To these pseudo-samples we applied a backward elimination procedure with
significance level α = 0.05. As a result, we obtain a 2000 × 13 inclusion
matrix. We explained that this matrix can be used to perform variable
selection or to compute the weights for a model averaging procedure. Here,
instead, we use it to generate the I-frequency matrix (as Table 3) and to
check the possible presence of influential points.

4.1.1. I-frequency matrix

The I-frequency matrix is a 252 × 13 matrix whose columns report the
I-frequencies for the 13 variables and whose rows correspond to the observa-
tions as explained above.

Figure 1 shows boxplots of the inclusion frequencies (see Section 3.3.1).
We note some points that are far from the respective median frequencies
and, in general, from all other I-frequencies. This fact is a sign of the possi-
ble presence of influential points in the data. In particular, for the variables
weight, height, chest and forearm we note four points (one for each variable)
with this characteristic. All four points correspond to the inclusion frequen-
cies computed on pseudo-samples which include observation 39. As stated
in Section 2.1, observation 39 is a known outlier, and our method is able to
correctly identify it. Interestingly, there seems to be an observation (obser-
vation 221) which also has an effect on the inclusion of weight, in an opposite
direction than observation 39.

Figure 1 contains further information. First of all, we can see the effect of
the influential point in the model building process. It is clear that observation
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Figure 1: Body fat data: boxplots that summarize the I-frequencies obtained for the 13
variables. The symbols “X” and “*” denote the I-frequencies obtained in pseudo-samples
(here generated by using bootstrap) which include observation 39 and 221, respectively.

39 leads to an overestimation of the importance of weight and forearm, and an
underestimation of height and chest. Secondly, we can visualize the strengths
of the variables. We note, for example, that ab (abdominal circumference) is a
very strong variable, which is always included in the model, while knee, which
is included in only a few models (low inclusion frequency), seems irrelevant.
Moreover, this figure allows us to compare the variances of the inclusion
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frequencies. As mentioned before (Section 3.3.2), this information may be
useful in the model building procedure.

4.1.2. Grubbs’ tests

As described in Section 3.3.3, we can perform univariate tests on the I-
frequencies for each variable. To visualize the results of the tests, we show
boxplots of the standardized I-frequencies (observed test statistics) and draw
the rejection region for the Grubbs’ test with a significance level of 99%
(Figure 2).

It is fairly simple to detect possible outliers. Note that the observed values
for the test statistics for observation 39 are very improbable under the null
hypothesis (no outlier), i.e., the points are deeply inside the rejection region
and very far from its boundaries. This is true in particular when considering
the variables weight, height and forearm. Moreover, observation 221 shows
potential to be an influential point, with effect on the selection of weight.
Although the corresponding point is not so distant from the rejection region
boundary, we should take into consideration that its position is influenced by
that of observation 39, which has opposite effect. Some pseudo-samples which
include observation 221 also contain observation 39, and tend to increase the
value of this point. Despite the masking effect of observation 39, observation
221 is inside the rejection region.

Further points are inside the rejection region, but they are related to the
variables ankle and biceps, which have low inclusion frequencies (see Figure
1). Therefore, the effect of the observations related to these points are not
really interesting from a model building point of view, as ankle and biceps are
not included in any case into the final model. Loosing the visual impression
of the single variables importance for the final model may be considered a
drawback of this graphic

::::
Note

::::::
that

::::
the

:::::
lack

::
of

:::::::::::::
information

::::
on

::::
the

::::::::::
strengths

::
of

::::
the

::::::::::
variables

::
is

::
a
:::::::::::
drawback

::
of

::
a
:::::
plot

:::::::
based

:::
on

::::::::::::::
standardized

:::::::::::::
I-frequencies.

4.1.3. O-frequencies and multiple presences

As stated in Section 3.3.1, from the inclusion matrix we can compute, for
each observation, the inclusion frequencies based on pseudo-samples which
contain the specific observation (I-frequencies) or based on those which do
not contain it. The choice of using the former was arbitrary, and potentially
one can prefer the use of the latter (let us call them O-frequencies, where
“O” stands for “out”). We report in the Web Appendix (Figures A.1 and
A.2) the same graphics of Figures 1 and 2 when the O-frequencies are used
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Figure 2: Body fat data: boxplots that summarize the standardized I-frequencies (com-
puted on bootstrap pseudo-samples) obtained for the 13 variables. The symbols “X” and
“*” denote the I-frequencies obtained in pseudo-samples (here generated by using boot-
strap) which include observation 39 and 221, respectively. The dashed lines delimit the
99% rejection region of a Grubbs’ test (including a correction for the multiplicity of the
tests).

instead of the I-frequencies. We note that, in this specific example, we obtain
similar results. By using the O-frequencies, one should only remember that
a smaller O-frequency for an observation xi means an increasing effect on the
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inclusion of a variable. Graphically, a lower point means an higher inclusion
frequency. This seems counterintuitive and may generate confusion. For this
reason, we preferred to use I-frequencies.

The O-frequencies, however, may prove useful in a different analysis. As
stated in Section 3.4, when we use bootstrap as a resampling technique, we
can separate the pseudo-samples in which a specific observation is included
only one time from those in which it is included two or more times. We can
then compute two separate inclusion frequencies, that we call I-frequencies-
1 and I-frequencies-M, respectively. Together with the O-frequencies (i.e.,
frequencies computed on bootstrap samples in which the specific observation
is included 0 times), these inclusion frequencies can provide us with additional
information on the effect of the observation on the inclusion or exclusion of a
variable from the statistical model. Pseudo-samples containing two or more
times the specific observation are grouped together due to the relatively small
amount of cases in which a single observation is repeated three or more times
in a bootstrap sample.
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Figure 3: Body fat data: difference in the inclusion frequencies of the 13 variables when
observation 39 (left graphic) or observation 221 (right graphic) are excluded (square),
included one time (circle) or included more than once (triangle) in the pseudo-samples.

Figure 3 presents the aforementioned frequencies for the 2 possible influ-
ential points detected in the previous analyses, namely observations 39 and
221. We immediately notice the different strengths of their influence. Let us
focus on the variables weight and height. The simple presence of observation
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39 drastically changes the inclusion frequencies of the two variables, imme-
diately flipping their ranks (when observation 39 is in the sample, weight
has a higher inclusion frequency than height, when it is out of the sam-
ple, it is the other way around). A multiple presence of this observation
in the sample does not really change the situation, and the differences be-
tween I-frequencies-1 and I-frequencies-M are minimal in comparison to the
aforementioned differences between I-frequencies-1 and O-frequencies. On
the contrary, observation 221 seems to have a much smaller effect. When it
is included in the sample, the inclusion frequencies do not change so much
(especially for height). To notice a certain effect, we should consider the I-
frequencies-M. Only when observation 221 is included more than once in the
bootstrap sample, indeed, the effect on the inclusion frequencies of weight
and height is strong enough to flip their ranks (and, consequently, their rel-
ative chance to be included in the final model).

Note that this procedure allows us to turn into an advantage a possible
pitfall of the bootstrap approach. The presence of duplicated observations,
indeed, is usually considered a drawback, as pseudo-samples containing du-
plicated influential points may diverge from the original sample. Robust
versions of the bootstrap procedure have been proposed to tackle this issue
(see, e.g., Willems & Van Aelst, 2005). Here, instead, we take advantage
of this characteristic of the bootstrap to highlight the effect of the possible
influential points and to evaluate the strength of their effects. As one may
argue that a fair comparison should involve only pseudo-samples without and
with only one replication of a specific observation, in the following section
we repeat the analyses using subsampling instead of bootrapping as a resam-
pling technique. Pseudo-samples generated by subsampling, indeed, do not
contain duplicated observations, as they are drawn without replacement.

4.1.4. Subsampling

As stated in Section 3.4, any resampling technique can be used to gener-
ate the pseudo-samples and consequently to compute the inclusion matrix.
Figures A.3, A.4 and A.5 in the Web Appendix show the I-frequencies when
using subsampling. As long as the size of the pseudo-samples (subsamples)
is not extremely high, in this specific example we do not see any noticeable
differences with the bootstrap approach (Figures A.3 and A.4). When the
subsample size is too large, instead, the differences among samples got lost.
Figure A.5, in particular, shows this situation in the case of subsamples of
size n− 2. When choosing n− 2 as a subsample size, it may be more useful
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to use the O-frequencies instead of the I-frequencies in the analyses. When
this is done, the effects of the single observations are taken to their extremes
(see Figure A.6 in the Web Appendix). For example, in this dataset the
O-frequencies for the variable weight are all equal or close to 1, but that
related to observation 39, which is 0. For height, it is the other way around.
On the one hand, having extreme differences among O-frequencies may help
to graphically identify the possible influential point in an easier way; on the
other hand, several points are equal to 0 or 1, and it is not possible to con-
sider a Gaussian approximation for the distribution of the frequencies. As
a consequence, the Grubbs’ test cannot be applied. Note that the concept
of O-frequencies computed in subsamples of size n− 2 is very similar to the
idea of delete-2 jackknife, that is sometimes used in the literature related for
outlier detection (see, e.g., Martin et al., 2010).

4.1.5. Comparison with FSDA

Figure 4 reports two diagnostic plots obtained through the forward search
approach to detect the effect of influential points on model selection by Atkin-
son & Riani (2002). Although this procedure mainly focuses on the effect
of specific observations from a model point of view, rather than a variable
point of view, it can be seen as an alternative to our approach, as suggested
by a referee. The idea is rather simple: a model is first fitted on a care-
fully selected subsample of observations, and then stepwise re-fitted on the
same subsamples enlarged, at each step, with one of the observation initially
excluded (that closer to the fitted model). For details regarding the choice
of the initial subsample and the ordering of the observations’ inclusion we
refer to the original paper. We just point out that the procedure is build

:::::
built

:
so that the last observations are those with the highest probability to

be influential points, being the farthest from the fitted model. Note that the
method is robust against the masking effect (see Section 5 for more details),
as weaker influential points are considered before the stronger ones.

The left plot of Figure 4, called “deletion statistics plot”, shows the vari-
ables’ importance depending on the subsamples. Each curve visualizes the
evolution of the p-value related to a t-test for the nullity of a specific vari-
able’s regression coefficient when increasing the number of observations (the
farthest observation from the fitted model is the last to be added). Concern-
ing the strongest variables and the most influential observations the results
are similar to those obtained with our approach and reported in Figure 1.
The variable ab plays a predominant role, followed by wrist. Moreover, in
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Figure 4: Body fat data: plots from
:::::::
function

::::::::
FSRaddt

:::::::::
contained

::::::
inside

:
the

:::::::::
MATLAB

:::::::
toolbox FSDAroutine. Left: deletion statistics plot based on the full model; right: Mal-
low’s C trajectory for the model including age, height, ab and wrist.

the last step of FSDA
:::
the

::::::::
forward

::::::::
search, i.e. when the farthest observation,

namely observation 39, enters in the sample, the curve related to forearm
grows drastically, in accordance with the results reported in Figures 1 and 2
(and Table 1). Note that, in contrast to our approach, the deletion statistics
plot is based on the full model, which is the starting point of our procedure
but which is not selected in any replication.

The right plot of Figure 4, instead, focuses on the model which only
includes age, height, ab and wrist, i.e. the model selected by backward elim-
ination when observation 39 is excluded from the sample (see Table 1). In
particular, the Mallow’s C trajectory when increasing the sample size as
described above is reported. As expected, this plot shows that the model
describes very well the data until observation 39 is included. The Mallow’s
C trajectory, indeed, is within the 95% bands (dashed lines) until the very
last step (i.e., inclusion of observation 39). This result is in line with ours, as
we showed that, when observation 39 is in the sample, the selected model is
not longer that including age, height, ab and forearm but that which includes
weight, ab, forearm and wrist (see Table 1).

Summing up, in this example FSDA and our approach provide consis-
tent results, as both identify observation 39 as a possible influential point.
As mentioned above, however, the focus of the two approaches is relatively
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different: while the former considers the effect of a specific observation on
the goodness of fit of the whole model, our approach focuses on the effect of
possible influential points on the inclusion/exclusion of the single variables.

4.2. Myeloma data

In this section we investigate the second dataset. We report only the
results obtained when using bootstrap as a resampling technique. As we can
see in Figure 5, it seems that there are several points separated from the oth-
ers. This is a consequence of the small sample size (there are only 48 events).
In this situation, especially in a survival context, each observation noticeably
influences the model building procedure. To check if these points are influ-
ential points, it may be better to rely on the standardized I-frequencies and
to compare them with the rejection region of the Grubbs’ test.

We report the results in Figure 6. When we consider the rejection region
of the Grubbs’ test, it is clear that there are no strong influential points in
this dataset. The only point that is inside the rejection region and relatively
far from the boundary is the largest I-frequency for variable protein. This
I-frequency is that computed on only pseudo-samples including observation
44. Please note that another point related to this observation is inside the
rejection region, namely, the smallest I-frequency for the variable hemoglob.

As for the other dataset, we can deepen the analysis on the effect of
this observation by comparing the inclusion frequencies computed in pseudo-
samples without it (O-frequencies), in pseudo-samples in which it appears
only once (I-frequencies-1) and in pseudo-samples in which it appears more
than one time (I-frequencies-M). The results are shown in Figure 7. As
expected, the most relevant effect is related to variable protein. The inclusion
of observation 44 in the samples increases the times in which this variable is
included in the model. This effect is stronger when the observation is included
more than once. In contrast, the presence of observation 44 decreases the
inclusion frequency of the variable hemoglob. In this case, there is no strong
difference whether the observation is included once or more than one time.

As we noted above, in this dataset the effective sample size is quite small
and every non-censored observation may have a relatively strong influence
on the model-building process. Observation 44 stands out as the most in-
fluential one, but there is no strong evidence (e.g., large distance from the
99% rejection region boundaries of the Grubbs’ test) that suggests us that it
is an outlier. Its presence in the rejection region for variables hemoglob and
protein may simply be related to the type I error of the Grubbs’ test.
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Figure 5: Myeloma data: boxplots that summarize the I-frequencies obtained for the 16
variables, based on boostrap pseudo-samples.

The small sample size also influenced our choice of the bootstrap tech-
nique. In order to include an acceptable number of events (here, in par-
ticular, the same amount of the original sample) in all pseudo-samples, we
implemented a stratified bootstrap, i.e., we resampled separately censored
and non-censored observations.
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Figure 6: Myeloma data: boxplots that summarize the standardized I-frequencies (com-
puted on bootstrap pseudo-samples) obtained for the 16 variables. The symbol “X” de-
notes the observed values of the test statistics for observation 44. The dashed lines delimit
the 99% rejection region of a Grubbs’ test (including a correction for the multiplicity of
the tests).

5. Discussion

In this paper we showed how the information present in the inclusion
matrix can be used to identify possible influential points. Provided that a
resampling based approach is used to select a model, to assess model stability
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Figure 7: Myeloma data: difference in the inclusion frequencies of the 16 variables when
observation 44 is excluded (square), included one time (circle) or included more than once
(triangle) in the pseudo-samples.

or to use model averaging for the derivation of a predictor, the generation of
the inclusion matrix is a step not requiring any further computation. It uses
available information.

Another advantage of our approach is the possibility of having a clear
graphical visualization of the results, which allows the user to easily spot
possible influential points. As stated in the literature, the identification of
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an influential point should be done by the user, and not fully delegated to
an automatic procedure (Billor et al., 2000).

We considered graphical inspections based both on the simple I-frequencies
and on their standardized version. As mentioned before, both approaches
have advantages and disadvantages. In particular, when using the simple
I-frequencies, we can also have an impression, in the same graphics, of the
importance of the variables whose inclusion frequencies may be influenced
by a specific observation. As we saw in the first example, this allows us to
focus on points of interest, namely influential points which change the se-
lection of the final model, and avoid the investigation of observations that
influence the inclusion frequencies of variables which will not be included
anyhow. Moreover, the plot of the simple I-frequencies also gives an idea on
the variance of their inclusion frequencies, which may be useful in the model
building process.

On the other hand, the use of standardized I-frequencies allows us to
have a better insight into the influence of the single points. The values of the
standardized I-frequencies, indeed, can be contrasted to the rejection region
of an univariate test for outliers, in our paper we use the Grubbs’ test, to
have a more objective estimates of their influence. In studies with very small
sample sizes (see the myeloma data) we may identify several observations
which seem to be critical. A final assessment needs to consider further criteria
from the study.

In this paper we did not consider in detail the problem of the masking
effect (Bendre & Kale, 1985). The presence of a strong influential point,
indeed, may hide the effect of an observation that has a smaller but still
significant influence in the opposite direction. While there are methods, as
that by Atkinson & Riani (2002) shown in Section 4.1.5, constructed with
this in mind, ours is not specifically designed to tackle the masking effect
issue. Nevertheless, we note that in the body fat data example our method
was able to detect observation 221 as a possible influential point despite the
fact that its effect is the opposite to that of observation 39. Observation 221
has never been identified as an influential point, probably because, in the
previous studies, methods that do not take into account the masking effect
have been implemented. Our methods, instead, seems to be less prone to
suffer from this specific issue.
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