
Teaching NLTK Norwegian

Bo Bjerke-Lindstrøm
Master’s Thesis Autumn 2017

Abstract
In this thesis I will present an investigation of Natural Language Toolkit

(NLTK) and its support for Norwegian Natural Language Processing
(NLP). I display what NLTK has to offer for Norwegian NLP, then move on
to evaluate and improving some of the offers NLTK has for Norwegian. I
will evaluate and improve NLTK’s sentences tokenizer and word tokenizer,
I will also compare the tokenizers to other available options for Norwegian
tokenization. The improvements will be committed to NLTK for possible
integration. Then I will integrate a Norwegian corpus with a corpus reader
to NLTK.

3

Acknowledgements
I want to thank my supervisor Jan Tore Lønning, your help has been

invaluable.

I want to thank the University of Oslo and the Norwegian education
system for giving me the possibility to achieve knowledge.

I want to thank the individuals behind the tools and data I have used.

I also want to thank my family for never ending support in my
education.

And last but not least I want to thank the lights of my life, my significant
other and daughter.

5

Contents

1 Introduction 9
1.1 NLTK for Norwegian . 10
1.2 Overview . 11

2 NLTK and tools for NLP 13
2.1 Tokenizers . 13

2.1.1 Sentence tokenizer . 14
2.1.2 Word tokenizer . 14

2.2 Stemmer . 15
2.3 Lemmatizer . 16
2.4 POS Tagger . 17
2.5 Corpus . 18
2.6 Stop word list . 20

3 Sentence tokenizer 22
3.1 How to evaluate the tokenizer 23
3.2 Failure analysis and patch creation 26
3.3 Detailed failure analysis of patch 29
3.4 Comparison . 31
3.5 Extra . 33
3.6 Conclusion . 34

4 Word tokenizer 36
4.1 How to evaluate the tokenizer 37
4.2 Failure analysis . 37
4.3 Norwegian version . 38
4.4 Comparison . 40
4.5 Conclusion . 41

5 Integration of tokenizer patches 44
5.1 Alternative ways of integrating 44
5.2 Integrating sentence tokenizer patch 45
5.3 Integrating word tokenizer patch 48

6 Norwegian text resources 51
6.1 Norwegian Corpus . 53
6.2 Corpus Reader . 56
6.3 Lexicon . 62

7 Conclusion and resources 65
7.1 Resources made and their availability 65

7

Chapter 1

1 Introduction

When learning Norwegian NLP, where would you turn? What book do
you pick up, what site do you browse? What kind of tools are available?

The most obvious and natural starting point for me would be at the
Department of Computer Science at the University of Oslo (UiO). Here all
the information is open for the public and there are a few NLP courses.
Most of them have a focus on pure NLP, which of course is key to
Norwegian NLP. However some of the courses also has some focus on tasks
revolving around Norwegian language.

The best place to start would be ”INF1820 - Introduksjon til språk- og
kommunikasjonsteknologi”, this is the first NLP course a language technol-
ogy major should take at UiO. It has slides and pod-casts from the lectures,
exercises and solutions, every thing one would need to begin to learn ’Nor-
wegian NLP’. After 1820 I would recommend ”INF2820 - Datalingvistikk”,
this course is also represented by slides, pod-casts, exercises and solutions.
Then you could just continue to pick classes/subjects that peak your inter-
est.

Since I mention what book to pick up, I’ll mention two books, ’Speech
and Language Processing’ (SLP) by Daniel Jurafsky and James H. Martin
and ’Natural Language Processing with Python’ (NLPP) by Steven Bird,
Ewan Klein, and Edward Loper. SLP touches on almost every subject
of NLP, while NLPP will get you started on the right path of being able
executing these NLP subjects. NLPP is actually a book for a core tool that
we use in some of the NLP courses at UIO, this tool is called NLTK [2001].

NLTK is a collection of tools for research, learning and teaching in
symbolic and statistical NLP that is available and in my opinion easy to
use! NLTK includes an interface to many corpora and lexical resources
such as WordNet. NLTK also includes a suite of text processing libraries
for tokenization, stemming, tagging, parsing, classification and semantic
reasoning. It even has some Norwegian NLP support! NLTK contains
a variety of tools (e.g. classifiers) that can be used for universally any
language, it also has specialized tools (e.g. tagger) and data (e.g. corpora)
for specific languages. NLTK should provide you with all the basic
tools you need to begin your NLP adventure. There is also an active
community, where one can discuss, learn and improve currently used tools
and methods for NLP. Now that we have the tools to begin I guess we
already have some text we want to processes? If not we are in luck! NLTK
also contains many corpora to pick from!

9

1.1 NLTK for Norwegian

Since NLTK is a core tool for some of the courses it merits that we should
look into the tools and data for Norwegian included in NLTK. NLTK has
a good substructure/support for English language, but how good is the
support for Norwegian? I will investigate this and compare the English
support against the Norwegian support. I will compare to see what exists
and what does not exist for Norwegian in NLTK. For the existing tools and
data I will look for apparent errors and try to evaluate how well they really
perform for Norwegian. I will then try to see if I can modify some of these
tools and data to provide better support for Norwegian NLP.

NLTK is even an open source project, meaning we could try to integrate
these improvements. This means we could also try to integrate support for
Norwegian NLP that does not already exist in NLTK. The specialized tools
and data for Norwegian included in NLTK is a stop-word list, stemmer
and a sentence tokenizer. They also have a word tokenizer that we may
apply for Norwegian. The stop-word list and stemmer does not have
any real competitors to compare with, but there exists several word and
sentence tokenizer for Norwegian. I will compare and evaluate some of
these existing tokenizers vs the Norwegian tokenizers in NLTK.

As mentioned NLTK contains many corpora, but sadly no Norwegian
corpus. However we are still in luck, as we can receive our Norwegian
corpora elsewhere! The National Library of Norway’s (NB) on-line
repository contains a lot of open and available lexicon and corpora of
Norwegian text. Since a body of text is needed, this is perfect for us. I will
also try to integrate a Norwegian corpus into NLTK, to make Norwegian
NLP more accessible to users.

The focus for this thesis will be to learn NLTK Norwegian. To try to
elevate the support given for Norwegian NLP to a higher level closer to the
support given for English NLP.

10

1.2 Overview

Chapter 2 An overview of the most common tools for NLP contained
in NLTK, I try to map what exists and don’t exist for Norwegian NLP in
NLTK. And see if we have other alternatives for the parts that don’t exist
for Norwegian NLP in NLTK

Chapter 3 Revolves around NLTK’s sentence tokenizer. It continues
with an evaluation of this tokenizer from NLTK and improvements that
can be done to it. There is also a comparison to other tokenizers.

Chapter 4 Revolves around NLTK’s word tokenizer. It continues with
an evaluation of this tokenizer from NLTK and improvements that can be
done to it. There is also a comparison to other tokenizers.

Chapter 5 Integration of tokenizer patches. Here I investigate how
we can integrate the improvements for the tokenizers into NLTK.

Chapter 6 In this chapter I discuss Norwegian lexical resources.
Where can we obtain them, and what can be done to integrate a corpus
into NLTK.

Chapter 7 Conclusive chapter, what have I done, what have I
achieved? Also resources made and their availability.

11

Chapter 2

2 NLTK and tools for NLP

As I mentioned NLTK stands for Natural Language Toolkit. It is a collection
of tools for research, learning and teaching in symbolic and statistical NLP.
Some of the more useful tools and data to notice are sentence tokenizer,
word tokenizer, lemmatizer, stemmer, tagger, classifier, and corpora. Most
of these tools will be a part of the core to almost every NLP pipeline. And
using only NLTK we could use all these tools and data, however not for
Norwegian. NLTK has full support for English, but Norwegian is missing
some important parts. We might find these parts elsewhere or have to
create them ourself.

2.1 Tokenizers

For a computer a text is treated as a linear sequence of symbols, for a human
a text is not treated as a linear sequence of symbols, but rather as segments
of sentences, words and other meaningful elements. Tokenization is
the process of splitting up this linear sequence into these segments of
sentences, words and other meaningful elements.

Tokenization might be one of the more basic and easy to comprehend
tasks of NLP. However, errors done in the tokenization process will
propagate into downstream tasks, therefore correct tokenization is critical
for achieving wanted results later on.

I will mainly look at tokenization of ’running well formed text’. By
this I mean that I will look at tokenization of a body of text, distinct from
headings, footnotes and such. And that it’s well formed, constructed
according to grammatical rules, such as a sentence should start with a
capital letter (expect in some really rare cases). The reason for choosing
this part of the natural language is that it is the most ”serious” part of
our language, books, articles, etc. However text comes in many forms, for
instance chat text, HTML text, etc. this is why one would usually create
a tokenizer customized for the specific data set, and wanted results from
that set. For me the data set will be ’running well formed text’ and wanted
results are the sentences and tokens from this text.

13

2.1.1 Sentence tokenizer

Sentence segmentation or sentence tokenization is the task of identifying
sentences in running text. In other words it’s the task of trying to isolate
each ’correct’ set of words that is complete in itself. Defining ’correct’ in the
sense that one wants to find the natural sentence boundaries in the given
text, rather than finding every possible sentence within a sentence.

When we want to solve this task the first thing that comes to mind
(as a Norwegian), is to split the text at every period we find, ’.’. And
lets not forget the other sentence delimiters such as question mark and
exclamation mark, ’?’, ’!’. However as any NLP task it’s not that easy,
the most common error to this approach of ’splitting at delimiters’ is the
ambiguity that arise from abbreviations e.g. ’i.e.’. There are other issues as
well, such as interposed sentences and how to handle colon, ’:’. Is it more
often correct to split a sentence at ’:’ or not?

If we want to do sentence tokenization of Norwegian language there
exist some sentence tokenizers that we could use, an available and easy to
use tokenizer is NLTK’s [NLTK, 2001, web] sentence tokenizer. However
there there might exist better options out there, I will compare and
evaluate NLTK’s tokenizer to a couple of the other sentence tokenizers for
Norwegian. I will also do a failure analysis of NLTK’s implementation and
see if we can fix some of the most common errors that arise.

Sentence tokenization is arguably the first processes one should
perform when wanting to analyze text.

2.1.2 Word tokenizer

Word tokenization or possibly token tokenization is the task of identifying
all individual tokens in running text. In other words it is the task of
trying to isolate each correct single distinct meaningful element of writing.
However we define ’correct’ in the sense that one wants to find the natural
token boundaries in the given text, rather than finding every possible token
(e.g. not every morpheme).

But what does it mean for a token to be complete? For the most part
it means splitting on white-space to create word like unites, but what
happens for instance with punctuation? Some would want to keep the
punctuation attached to the word for a specific downstream task. However
the most standard school of thought is to separate the punctuation, except
’infix punctuation’ such as hyphens, from the word creating two tokens.

14

A word tokenizer can be language specific, or have language specific
processes. For instance English has some word tokenizers that can also
split on word contraction. In Norwegian we do not use contraction in
written language, however we do have at least one language dependent
structure to consider, large numbers. Large numbers are written with
white space before every three digits, ’10 000’, instead of the more English
version ’10,000’. Should it be ’10’ and ’000’ as two tokens or ’10 000’ as
one token? To answerer this question we have to consider what a token
should represents. It should represent the complete meaning as intended
in the given text. The meaningful parts of each element extracted in the
tokenization process should not be altered or lost. The answer to the
question should now be obvious, we want ’10 000’ as one token, as the
meaning of ’10’ and ’000’ differ quite from the meaning of ’10 000’. And
there is also a question, what about collocations, such as ’i dag’?

If we want to do word tokenization of Norwegian language there exist
some word tokenizers that we could use, there is one in NLTK that we will
take a closer look at. We will also compare it to other options.

Word tokenization is arguably the second process one would perform
when analyzing text, since we have the sentences, we now want to have
the contents of each sentence.

2.2 Stemmer

Stemming is the raw heuristic process of removing the end of words, in the
hope to remove common morphological and inflectional endings from the
words. This can for instance be useful when we want to conflate words to
increase the number of possible query matches.

In NLTK there are a couple of stemmers. One stemmer is called ’Porter
stemmer’ a stemmer developed by Martin Porter. Porter stemmer is set
as ’frozen’, this means that it’s not being further developed and used as a
frozen standard for comparing new stemmers against. Even though Porter
stemmer is set to frozen we can create modifications of it, like ’Snowball
stemmer’. Snowball is a modification/port of the Porter stemmer, and also
included in NLTK. Snowball supports 13 languages, including Norwegian
and English. When reading the documentation for Snowball we can see
that for stemming Norwegian words Snowball use a list of suffixes for
Norwegian language, and it applies one main rule called R1:

R1 is the region after the first non-vowel following a vowel, or is
the null region at the end of the word if there is no such non-vowel.

But then R1 is adjusted so that the region
before it contains at least three letters.

Stahl and Ljunglof [2001]

15

This rule is meant to identify the region that defines the end of a
word, where the common morphological and inflectional endings would
be located. Then if the ’R1 region’ ends with one of the suffixes in the suffix
list, it will cut away the identified suffix from our word, giving us hopefully
the correct stem. Other than this main function there are other functions for
catching special cases. One special case that is not included is when a word
ends with ’mm’ an illegal word ending in Norwegian. This special case can
be added with ease, however further improvement is tedious and slow. For
instance adding more suffixes to the suffix-lexicon like ’ing’, will result in
the need for more specialized cases, that can be added. We can continue to
make specialized rules until we are satisfied, but we will never be satisfied.
As it’s an impossible task to try to cover all special cases, as there is no
formal neat way that all the words converge to. We can only make broad
strokes with a stemmer, and thats why one might say that a stemmer is a
bit outdated compared with todays more fine-tuned methods.

2.3 Lemmatizer

Lemmatization is the process of reducing a word to its lemma. A words
lemma is the canonical form, dictionary form, or citation form of a lexeme.
A lexeme is a unit of lexical meaning that exists regardless of the number
of inflectional endings it may have or the number of words it may contain.
The lemmas of a dictionary are all lexemes. As with the stemmer,
lemmatization can for instance be useful when we want to conflate words
to increase the number of possible query matches. A lemmatizer is more
fine-tuned but also slower than a stemmer. NLTK contains a lemmatizer,
however it only works for English. The lemmatizer is based on WordNet’s
lexicon. NLTK’s internal description of the lemmatizer:

Find a possible base form for the given form, with the given part of speech, by
checking WordNet’s list of exceptional forms, and by recursively stripping affixes
for this part of speech until a form in WordNet is found. Bethard and ... [2001]

To create a lemmatizer we need a word list or lexicon containing as
many word forms as possible. We need to group these word forms under
lexemes, and after we have grouped these word forms under lexemes we
can start to find the lemmas. For every word that we want to know the
lemma we search through all the lexeme groups looking for that word. If
we find the word in a lexeme group we return the citation form for this
group. However depending on application, normally a lemmatizer would
also have to disambiguate, for instance by working together with a POS
tagger. If not we will end up with all possible lemmas for the input word
form. Furthermore there exists Norwegian word lists and lexicon sorted by
lexemes, that can be applied for this task, and I will return to where we can

16

find these later.

2.4 POS Tagger

Part-Of-Speech Tagging is the process of assigning parts of speech to
each token, such as ’verb’, ’noun’, ’conjunction’, etc. NLTK has a tagger,
however it’s for English, it uses the Penn Treebank tag-set. Outside
of NLTK we have some options for Norwegian taggers, we have a
tagger called Oslo-Bergen Tagger (OBT). OBT works by taking a string
of characters as input. Then in the first step it tokenizes the string and
multitags the tokens with the help of a lexicon. To multitag a token means
to apply all possible tags to the given token, meaning if we get a match
in the lexicon, then we add the tag to the token. Then in the next step it
applies constraint based rules for disambiguating the tags. In the final step,
if enabled, OBT will further disambiguate the tags utilizing a statistical
module. We can see OBTs work flow in figur 1.

Figure 1: OBT work flow

It is not every day we obtain a totally new addition to the Norwegian
language like the word ’app’, but creating a new word of already existing
words happen daily. For instance if you happen to be in the spotlight,
like we saw with former PR-counselor, Sylvi Listhaug, now a Norwegian

17

politician for the Progress Party and the Minister of Migration and
Integration, when she used the word godhetstyranniet, ”everyone” learned
its meaning. Since the spotlight shines on her, she could make this ”new”
compound a permanent addition to the Norwegian language.

According to Munthe (1972), 10.4 per cent of all words in running text are
compounds [Johannessen and Hauglin, 1996, p. 209]

However a word does not have to become a permanent new word
to carry meaning. And with context most Norwegian speakers would
understand this new word just from it’s compounds. If we are to process
text written by Norwegians, we should be prepared to handle these
compounds. For words not in the lexicon OBT includes a compound
analyzer used for creating tags for these new words. The lexicon is also
used to look for multiword expressions to store these as one token.

There are other options to OBT, such as UDPipe, Straka and Strakova
[2015]. However one problem with all of these are that they require a lot
of setup and this makes them less attractive to use. If we would want to
include a Norwegian tagger in NLTK it should be something easy to setup,
a part of NLTK, instead of a third-party stressful install process.

2.5 Corpus

Corpus - a collection of written texts, especially the entire works of a
particular author or a body of writing on a particular subject. To use many
of the tools mentioned, one would need a body of text. As mentioned
NLTK contains many corpora, next I include a list of the corpora that NLTK
showcase on their site.

18

Corpus Compiler Contents
Brown Corpus Francis, Kucera 15 genres, 1.15M words, tagged, categorized
CESS Treebanks CLiC-UB 1M words, tagged and parsed (Catalan, Spanish)
Chat-80 Data Files Pereira & Warren World Geographic Database
CMU Pronouncing Dictionary CMU 127k entries
CoNLL 2000 Chunking Data CoNLL 270k words, tagged and chunked
CoNLL 2002 Named Entity CoNLL 700k words, pos- and named-entity-tagged
CoNLL 2007 Dependency Treebanks (sel) CoNLL 150k words, dependency parsed (Basque, Catalan)
Dependency Treebank Narad Dependency parsed version of Penn Treebank sample
FrameNet Fillmore, Baker et al 10k word senses, 170k manually annotated sentences
Floresta Treebank Diana Santos et al 9k sentences, tagged and parsed (Portuguese)
Gazetteer Lists Various Lists of cities and countries
Genesis Corpus Misc web sources 6 texts, 200k words, 6 languages
Gutenberg (selections) Hart, Newby, et al 18 texts, 2M words
Indian POS-Tagged Corpus Kumaran et al 60k words, tagged (Bangla, Hindi, Marathi, Telugu)
MacMorpho Corpus NILC, USP, Brazil 1M words, tagged (Brazilian Portuguese)
Names Corpus Kantrowitz, Ross 8k male and female names
NIST 1999 Info Extr (selections) Garofolo 63k words, newswire, named-entity SGML markup
Nombank Meyers 115k propositions, 1400 noun frames
NPS Chat Corpus Forsyth, Martell 10k IM chat posts, POS-tagged, dialogue-act tagged
Open Multilingual WordNet Bond et al 15 languages, aligned to English WordNet
PP Attachment Corpus Ratnaparkhi 28k PP’s, tagged as noun or verb modifiers
Proposition Bank Palmer 113k propositions, 3300 verb frames
Question Classification Li, Roth 6k questions, categorized
Reuters Corpus Reuters 1.3M words, 10k news documents, categorized
Roget’s Thesaurus Project Gutenberg 200k words, formatted text
RTE Textual Entailment Dagan et al 8k sentence pairs, categorized
SEMCOR Rus, Mihalcea 880k words, part-of-speech and sense tagged
Senseval 2 Corpus Pedersen 600k words, part-of-speech and sense tagged
SentiWordNet Esuli, Sebastiani sentiment scores for 145k WordNet synonym sets
Shakespeare texts (selections) Bosak 8 books in XML format
Stopwords Corpus Porter et al 2,400 stopwords for 11 languages
Swadesh Corpus Wiktionary comparative wordlists in 24 languages
Switchboard Corpus (selections) LDC 36 phonecalls, transcribed, parsed
Penn Treebank (selections) LDC 40k words, tagged and parsed
TIMIT Corpus (selections) NIST/LDC audio files and transcripts for 16 speakers
VerbNet 2.1 Palmer et al 5k verbs, hierarchically organized, linked to WordNet
Wordlist Corpus OpenOffice.org et al 960k words and 20k affixes for 8 languages
WordNet 3.0 (English) Miller, Fellbaum 145k synonym sets

Table 1: Selection of NLTK corpora

19

There is no Norwegian corpus in NLTK, not even outside the showcase.
However there is an Norwegian entry in one of the corpora, in the
Stopwords Corpus, there exists a Norwegian stop word list!

2.6 Stop word list

Stop words usually refer to the most common words in a language. The
reason they are called stop words is because in many cases we want to stop
and remove them from the text, or if not remove at least ignore them. The
reason for this is that many classifiers use frequency and/or relationship
between words as a base for the machine learning algorithm. This means
the most common words have the highest frequency and their relationship
to other words might not be as interesting as the less common words
appearing before and after the stop word. However to remove stop words
is not always correct, some tools specifically avoid removing these stop
words to support for instance phrase search.

NLTK contains a corpus called ’Stopwords Corpus’ which has lists
of stopwords for several language, including Norwegian! The stopword
list for Norwegian contains what we would like to find in a stopword
list. High-frequency words with low lexical content like ’jeg’, ’og’, ’deg’.
However, it also contains an issue, the list is a mash-up of ’Nynorsk’ and
’Bokmål’, the two official forms of written Norwegian. This is an issue
as some of the words that are stopwords in one written norm are words
carrying meaning in the other. The words that have no meaning in the
other written norm does not really matter as these word forms will not
occur in the specified text. Examples of stopwords ’dykk’, ’same’, ’skal’:

Stopwords\Written norm Bokmål Nynorsk
dykk dive you
same Indigenous person in Norway same (identical)
skal will shell

Table 2: Stopwords→Meaning

There is also another issue, some of these stopwords are also homonym
words, ambiguous words, ’dykk’ can mean ’you’ or ’dive’ in ’nynorsk’.
However what is clear is that we should split the two stopword lists, into
two, one for ’Bokmål’ and one for ’Nynorsk’.

20

Chapter 3

3 Sentence tokenizer

Sentence segmentation or sentence tokenization is the task of identifying
sentences in running text. In other words it’s the task of trying to isolate
each ’correct’ set of words that is complete in itself. Defining ’correct’ in the
sense that one wants to find the natural sentence boundaries in the given
text, rather than finding every possible sentence within a sentence.

NLTK contains a sentence tokenizer, this sentence tokenizer uses pre-
trained models that NLTK supplies. These models are trained for several
languages, including Norwegian. The models stem from the research
done by Tibor Kiss and Jan Strunk. They developed an algorithm
called ’Unsupervised Multilingual Sentence Boundary Detection’, an
unsupervised classifier, used to train and produce these models.

... a language-independent, unsupervised approach to sentence boundary
detection. It is based on the assumption that a large number of ambiguities in the
determination of sentence boundaries can be eliminated once abbreviations have
been identified. ... Quantitatively, abbreviations are a major source of ambiguities
in sentence boundary detection since they often constitute up to 30% of the possible
candidates for sentence boundaries in running text [Kiss and Strunk, 2006, p.
485-486]

The point being that the end of a sentence does not have a specific
pattern, but abbreviations do follow a specific pattern. And most of the
ambiguities come from the fact that an abbreviation should always end in
a final period, as sentences should also. By characterizing the abbreviations
we can eliminate a lot of possible candidates for sentence boundaries.

Kiss and Strunk assume that abbreviations are collocations of the
truncated word and the following period, by this they derive that we can
use methods for detecting collocations to detect abbreviations. They offer
a characterization of abbreviations in terms of three major properties:

[...] an abbreviation looks like a very tight collocation in that the abbreviated
word preceding the period and the period itself form a close bond. [...]

[...] abbreviations have the tendency to be rather short. [...] the likelihood of
being an abbreviation declines if candidates become longer [...]

[...] the occurrence of word-internal periods contained in many abbreviations.
[Kiss and Strunk, 2006, p. 487]

22

I will not go more into detail, however we get the main idea, first train
over large amounts of text to classify abbreviations, then apply the trained
model to not split sentences on period if it’s a period contained in a found
classified abbreviation. The model used in NLTK, or ’punkt model’ as
it’s called, stems as mentioned from this work by Kiss and Strunk. Each
model must be trained for each language and the material used to train the
Norwegian punkt model is displayed in table 3 below.

Source Contents Size of training corpus(in tokens)
Center for Humanities Bergens Tidende 479,000
Information Technologies,
Bergen

Table 3: The material used to train the Norwegian punkt model

3.1 How to evaluate the tokenizer

To evaluate the sentence tokenizer I am going to find the f-score for two
different measurements, sentence ’segment score’ and ’split score’. The
sentence split score is a measure of how proficient the tokenizer is at finding
the correct positions to cut sentences. Sentence segment score, on the other
hand, is a measure of how proficient the tokenizer is at finding the correct
complete sentences. Simplified in figure 2. I will also compare NLTK to a
couple of other tokenizers.

Figure 2: Two measurements for tokenization

23

For gold I will be using Norwegian Dependency Treebank (NDT). It is
stored in CoNLL format which makes it easy to count and collect all the
sentences. (CoNLL format is a file where each line represents a single word
with a series of tab-separated fields, I’ll return to this later.) However we
do not want to run our tokenizer on CoNLL format, we want to run it on
running text. How to achieve this?

One way would be to detokenize the CoNLL format back to ’running
well formed’ text. That way our gold consist of known running text.
Ideally I would have wanted a gold consisting of pure natural language,
but detokenized CoNLL will suffice, as I am interested in well formed text
anyway.

Since we are also doing failure analysis and later trying to fix the most
common errors, we are going to need to split the material. When choosing
how to split the material in NDT, there exists a split by Petter Hohle:

Our split of the Norwegian Dependency Treebank splits the data into three
data sets, viz., training, development and testing. 80% of the data is used in the
training, 10% in the development and the final 10% resides in the held-out test
data set, which is a commonly used data set split for machine learning in NLP.
[Hohle, 2016a, p. 36]

However this split does not consider that the material consists of
documents, meaning it splits documents in the middle of paragraphs. This
might be insignificant, but when considering for instance the ”split score”,
it would be in my opinion ideal to make a more ”clean” cut by keeping
the documents intact, i.e. not creating any artificial splits. NDT has neatly
sorted all the text in different categories, this could also play a part in the
split. There is no real need for a development set, as there is no ”machine
learning” involved. It could have been useful, but using only the train set
for development will work just fine. Therefore I will only create a 80-20
split, instead of a 80-10-10.

24

Untouched NDT contains 20045 sentences and 311277 tokens divided
unevenly over 59 documents, separated in 232 files:

Table 4: Documents contained in NDT

Source Amout of documents
Aftenposten (ap) 15
Bergens Tidende (bt) 6
Blogs (blogg-bm) 3
Dagbladet 13
Klassekampen (kk) 8
Government reports (nou) 4
Sunnmørsposten (sp-bm) 3
Parliament transcripts (st) 5
Verdens Gang (vg) 2

If we use the following split (table 5), we will keep the documents
intact and include all categories in test and training while still achieving
something close to 80-20 (table 6):

Table 5: Split of NDT

Source Trainset, doc ID Testset, doc ID
ap 1-13 14-15
blogg-bm 2-3 1
bt 1-4, 6 5
db 1-6,8-13 14
kk 2-8 1
nou 1,3-4 2
sp-bm 1-2 3
st 1-3 5
vg 1 2

Trainset Testset
Sentences 15868 (79.162%) 4177 (20.838%)
Tokens 249786 (80.246%) 61491 (19.754%)

Table 6: NDT split overview

25

Before we examine the baseline score for the tokenizer, there is another
issue I want to address. Whether to remove headlines or not, as headlines
differ from running text (there is no delimiter). I ended up on choosing to
remove headlines, to remove the noise it creates when considering ’running
well formed text’. Removing the headlines shrinks the material from 20045
to 19012 sentences.

To obtain the baseline I will use the NLTK sentence tokenizer on the
defined training material. See table 7.

Table 7: Normal NLTK sentence tokenization, with Norwegian settings -
Baseline

Sentence split score Sentence segment score
TP 14217 13374
FP 94 938
FN 839 1683
recall 0.94427 0.88822
precision 0.99343 0.93446
fscore 0.96823 0.91076

3.2 Failure analysis and patch creation

When doing failure analysis and patch creation for the NLTK sentence
tokenizer I used a simple empirical bootstrapping approach. I simply
looked at a small amount of errors for patterns, then tried to fix the errors.
Then I repeated this process of fixing and looking until I was satisfied
with the patch. Using this approach I discovered five patterns that when
patched should provide us with a better result.

The first and biggest error I discovered was the colon, ’:’. Is it more often
correct to split a sentence at ’:’ or not? Even though the model is trained for
Norwegian, it is trained only to recognize abbreviations. The parts of the
tokenizer that consider what is a valid delimiter, lays outside the model.
Therefore it does not split at colon, as this is possibly the right choice in
some countries. However for Norwegian we might want to split at colon,
and it would seem like that is the right choice from this sample space of
Norwegian language. However we should not split at every colon, but
every colon followed by white-space, as we do not want to split for instance
infix colon, ’13:37’.

26

The second error discovered was interpose sentences, these posed
an issue as how to separate what was a ”real” from a ”fake” sentence
boundary. Such as here, the tokenizer would create two sentences when
there should be one:

Gold: ’Siden Hagen (intil videre?) fortsatt kommer til å [...]’
NLTK: ∗ ’Siden Hagen (intil videre?)’ | ’fortsatt kommer til å [...]’

However thanks to our well defined language we can employ the rule
of ”each real sentence should begin with a capital letter”, meaning if a
sentence is output without a capital letter it should belong to the previous
sentence.

The third error discovered stem from when ’a certain non-alphabetic
symbol following the delimiter’ makes it so that the sentence is not split.
The symbol causing the flow of errors in this case is guillemets, �. Such as
this sentence:

Gold: ’[...] regninger og sånn?�’ | ’Det var liksom ikke [...]’
NLTK: ∗’[...] regninger og sånn?� Det var liksom ikke [...]’

Guillemets are language specific for Norwegian and should be patched.
This means we should split sentences ending with a delimiter followed by
�, to make this safe one should also make sure it’s followed by white-space
and upper case.

The tokenizer also seems to have a problem with understanding when
to split sentences at multiple delimiters such as ’...’, by default it does not
split. If we split on sentences that have multiple delimiters followed by
upper case we remove some of the errors.

Gold: ’[...] meg ned i bilen i går kveld ...’ | ’Hvordan resten [...]’
NLTK: ∗’[...] meg ned i bilen i går kveld ... Hvordan resten [...]’

The last error-pattern is that sometimes a sentence output contains only
non-alphabetic characters. Then it should be part of the next sentence or
previous sentence output, however as there is no real pattern to define
where it belongs we will say it belongs to the next sentence. Since we use
”itemization” in running text, it’s more likely to belong to the next sentence.

Gold: ’3. Alternativ til statskirkeordningen og [...]’
NLTK: ∗’3.’ | ’Alternativ til statskirkeordningen og [...]’

Itemized the error patterns found are:

• Split at colon
• Split after delimiter and guillemet
• Split after multiple delimiters
• Stitch interpose sentences
• Stitch non-alphabetic sentences to a sentence

27

If we apply these changes to our baseline output from NLTK we get
these scores:

Table 8: Sentence split score, Baseline vs Patch

NLTK NLTK+patch
TP 14217 15008
FP 94 77
FN 839 48
recall 0.94427 0.99681
precision 0.99343 0.9949
fscore 0.96823 0.99585

NLTK NLTK+patch
TP 13374 14893
FP 938 193
FN 1683 164
recall 0.88822 0.98911
precision 0.93446 0.98721
fscore 0.91076 0.98816

Table 9: Sentence segment score, NLTK vs Patch

As we can see in table 23 & 24, the resulting sentence tokenized material
is a lot closer to the gold text. We can check the failure rate to see how much
it has improved, to obtain the failure rate I will look at the relationship
between the difference in the f-score.

Split failure rate:

(1− 0.99585)/(1− 0.96823) = 0.13063

Segment failure rate:

(1− 0.98816)/(1− 0.91076) = 0.13268

We can see that the failure rate has decreased significantly for both
segment and split score, which is the preferred outcome! With more words,
what we observe is that before the patch the tokenizer got 0.96823 of the
splits correct, while after the patch it got 0.99585. We invert the numbers to
obtain the rate of failure instead of the success rate of the f-score. Giving us

28

a failure rate of 0.03177 before and 0.00415 after patch. Looking at the these
numbers we can see that the tokenizer fail almost 8 times less after patch.
By doing the same with the segment score we can notice that to is almost 8
times less likely to fail!

3.3 Detailed failure analysis of patch

When doing this detailed failure analysis I will look at the remaining errors
and classify them. I will classify if I created the error with the patch or if it
remains from the original tokenizer. Then I will classify what type of errors
they are. There are 77 false positive in the split score. Out of these errors I
created 51 of them while 26 are left from the original tokenizer. There are
48 sentences that should not have been split at colon, that I split e.g:

Output: ∗’Til eneste mulige destinasjon:’ | ’Djibouti.’
Gold: ’Til eneste mulige destinasjon: Djibouti.’

There are 3 sentences that should not have been split at ’...’, that I split
due to it beeing followed by a capital letter:

Output: ∗’Min lillesøster ...’ | ’Aktivisten, sangeren, mammaen [...]’
Gold: ’Min lillesøster ... Aktivisten, sangeren, mammaen [...]’

The errors still left are the errors I did not create. There are 18 errors
that stems from abbreviations unknown to the model such as:

Output: ∗’[...] under ledelse av dr. juris.’ | ’Carsten Smith ble [...]’
Gold: ’[...] under ledelse av dr. juris. Carsten Smith ble [...]’

There are 6 interposed sentence errors that are not fixed, sometimes
due to that the first charactar following the interposed sentences is not a
lowercase character:

Output: ∗’[...] og i alle fall ikke onepiece (!’ | ’), (motstanderne [...]’
Gold: ’[...] og i alle fall ikke onepiece (!), (motstanderne [...]’

Last there are 2 special errors, where two sentences are combined to one
sentence:

Output: ∗’[...] banner yet wave.’ | ’O’er the land of the free [...]’
Gold: ’[...] banner yet wave. O’er the land of the free [...]’

It is not written correctly, as it’s poetry, it should not be a delimiter, there
is usually a newline. The tokenizer can certainly not understand that this
should be one sentence. The 48 false negative are of course sentences that
are not split where they should have been split.

29

There are 18 errors that I created, 2 are non-alphabetic stitch errors such
as:

Output: ∗’1991. Det er såre profetisk:’
Gold: ’1991.’ | ’Det er såre profetisk:’

The remaining 16 are sentences I stitched together that should not have
been stitched due to the fact that the sentence began with a small letter:

Output: ∗’Justin, hvor går du når du vil ha brød? spør Clough.’
Gold: ’Justin, hvor går du når du vil ha brød?’ | ’spør Clough.’

The rest are errors created by the tokenizer, there are still 10 sentences
that end with delimiter and guillemets that are not split. Mainly due to
not being followed by a capital letter. There are 7 errors where the line is
not split at multiple delimiters such as ’...’, also mainly due to not being
followed by capital letter:

Output: ∗’kan dere jo bare tenke dere til ... #tragikomisk’
Gold: ’kan dere jo bare tenke dere til ...’ | ’#tragikomisk’

There are 3 times a sentence ends with an abbreviation and the
tokenizer does not split:

Output: ∗’[...] med fokus på vegdata etc. Tenk Cappelens [...]’
Gold: ’[...] med fokus på vegdata etc.’ | ’Tenk Cappelens [...]’

I found one sentence missing delimiter, meaning it will always fail here:

Output: ∗’[...] det er lærer man skulle vært;) Bønna har hatt [...]’
Gold: ’[...] det er lærer man skulle vært;)’ | ’Bønna har hatt [...]’

For the errors left created by the tokenizer, there are some special cases.
For instance since the tokenizer is trained for abbreviations, it does not split
a sentence if it ends with a single letter followed by period, as this is treated
as an abbreviation. In this material a sentences ends with a single letter 7
times, 5 of those is due to the sentences ending with ’i’:

Output: ∗’[...] vi kunne gå inn i. Tonje Gjevjon, styreleder [...]’
Gold: ’[...] vi kunne gå inn i.’ | ’Tonje Gjevjon, styreleder [...]’

The tokenizer will not split a sentence if it ends with the word ’bås.’
or ’fenomen.’ followed by most words. However it does not happen with
all words, if followed by for instance ’Det’ it will split the sentence. This
happend with 2 sentences in the material.

Output: ∗’[...] tilgivelse som fenomen. Kirken prediker [...]’
Gold: ’[...] tilgivelse som fenomen.’ | ’Kirken prediker [...]’

30

This might have something to do with the model being over trained. I
ran a list with 700 000 words in it to see how many words where affected, I
found 6 words acting in the described way:

’hi’, ’bås’, ’fenomen’, ’sifre’, ’pol’, ’startstreken’

3.4 Comparison

Now that we have looked at all the errors left, let us compare how NLTK
holds up compared to other sentence tokenizers. The University of Oslo
has a site called ”Language Analysis Portal” - lap.clarino.uio.no, this site
allows us to upload sentences and tokenize them. A description of the site
from the site:

The UiO Language Analysis Portal (LAP) enables non-technical end users to
employ state-of-the-art tools for natural language processing (NLP) at the click
of a few buttons; ... The work is carried out at the University of Oslo (UiO)
as a joint effort by the Language Technology Group (LTG) at the Department
of Informatics and of the Department of Research Computing at the University
Center for Information Technology. [UiO, 2016, web]

This site has the same NLTK sentence tokenizer, but it also has a couple
of others. ’Rule-Based Sentence Segmenter’ (CIS) [Nagel, 2010, web] and
’Oslo Bergen Tagger’ (OBT) [UiO, 1998, web]. I will not go into detail about
how these work, we will simply use them as something to compare to our
baseline. But I will however explain how to receive the wanted results from
LAP.

First I will upload the detokenized training material to the site, then run
the different sentence tokenizers on it. Then we have to word tokenize and
export the material to CoNLL format, before we are allowed to download
the result of the sentence tokenizer. To word tokenize the documents LAP
offers two options, ’NLTK’ and ’REPP’. I used ’NLTK’ word tokenizer as
the other option ’REPP’ changes the number of characters in the output
material vs the input material, for instance converting ’...’ to a single triple
dot character i.e converting three characters to one. The only thing left to
do is export to CoNLL format and analyse the output.

31

Table 10: Sentence split score, baseline vs online options vs patch

NLTK LAP-NLTK Rule-Based OBT NLTK+patch
TP 14217 14181 12847 14623 15008
FP 94 130 35 171 74
FN 839 875 2209 433 48
recall 0.94427 0.94188 0.85328 0.97124 0.99681
precision 0.99343 0.99092 0.99728 0.98844 0.9949
fscore 0.96823 0.96578 0.91968 0.97977 0.99585

NLTK LAP-NLTK Rule-based OBT NLTK+patch
TP 13374 13312 11016 14212 14893
FP 938 1000 1867 583 193
FN 1683 1745 4041 845 164
recall 0.88822 0.88411 0.73162 0.94388 0.98911
precision 0.93446 0.93013 0.85508 0.96059 0.98721
fscore 0.91076 0.90653 0.78854 0.95216 0.98816

Table 11: Sentence segment score, baseline vs online options vs patch

First thing to notice is that the online LAP version of NLTK does not
give the same result as the local NLTK. I can find the new errors, but I do
not know why they appear. When using the online NLTK version it splits
the sentences differently, take for instance this gold sentence:

Utvalget skal legge fram sin utredning innen utgangen av 2005.”

After the online sentence tokenizer is done, the ’ ” ’ is included in the
next sentence, this does not happen when using the local NLTK sentence
tokenizer.

If we look at the scores not considering the patched NLTK. We can see
that the rule-based has the best precision and lowest fscore, while OBT
has the best recall and fscore when only looking at the split score. In the
segment score OBT has the best recall, precision and fscore, while rule-
based has the lowest recall, precision and fscore.

Something worth to mention is that OBT was used as a helping tool
when creating NDT, however they are not equal as we can see from the
scores. For instance OBT uses multi-word expressions something that is
not included in NDT. But there is a problem with OBT, when extracting the
results from LAP, OBT contains extra character.

32

For instance in OBT, ’&’ is written as ’&’, and not just ’&’ like in
gold. I had to deal with this problem before I could acquire a relevant score,
by aligning OBT to gold, as we score by strict character measurements and
any extra characters will skew everything. To fix the problem we have to
find the excess information and deal with it, align the output from OBT
with the gold. After we have aligned them we will be able to measure OBT
against gold.

3.5 Extra

It might be fun to see how the same patch works if applied to the other
sentence tokenizer, I will include tables for it here.

Table 12: Extra sentence split score, online options vs online options + patch

Rule-Based Rule-Based+patch OBT OBT+patch
TP 12847 13560 14623 14745
FP 35 94 171 183
FN 2209 1496 433 311
recall 0.85328 0.90064 0.97124 0.97934
precision 0.99728 0.99312 0.98844 0.98774
fscore 0.91968 0.94462 0.97976 0.98352

Rule-based Rule-Based+patch OBT OBT+patch
TP 11016 12288 14212 14415
FP 1867 1367 583 1134
FN 4041 2769 845 642
recall 0.73162 0.8161 0.94388 0.95736
precision 0.85508 0.89989 0.96059 0.92707
fscore 0.78855 0.85595 0.95216 0.94197

Table 13: Extra sentence segment score, online options vs online options +
patch

We can see that the patch overall seem to reduce the FN in both split
and segment score. The patch also seems to help the Rule-Based achieve
a better result, however OBT does not agree with the patch, we obtain a
slightly better fscore in the split score, however a slightly worse fscore in
the segments. That being said, NLTK+patch still has the best score.

33

3.6 Conclusion

To finish it off we still have to look at the results from running it on the
held-out test set. First I’ll run our baseline NLTK on the test set and then
compare the results of using the baseline NLTK+patch.

Table 14: Sentence split score, Baseline vs Patch - testset

NLTK NLTK+patch
TP 3786 3943
FP 24 22
FN 168 11
recall 0.95751 0.997218
precision 0.9937 0.99445
fscore 0.97527 0.99583

NLTK NLTK+patch
TP 3609 3914
FP 202 52
FN 346 41
recall 0.91252 0.98963
precision 0.947 0.98689
fscore 0.92944 0.98826

Table 15: Sentence segment score, NLTK vs Patch - testset

As we did earlier we can look at the relationship between the difference
in the f-score to see if we acquire comparable results to earlier.

Split failure rate:

(1− 0.99583)/(1− 0.97527) = 0.16862

Segment failure rate:

(1− 0.98826)/(1− 0.92944) = 0.16638

It is close, not quite as good, but very close to the results we achieved
with the training material!

34

Chapter 4

4 Word tokenizer

Word tokenization or possibly token tokenization is the task of identifying
all individual tokens in running text. In other words it’s the task of trying to
isolate each correct single distinct meaningful element of writing. Defining
’correct’ in the sense that one wants to find the natural token boundaries
in the given text, rather than finding every possible token (e.g. not every
morpheme).

The word tokenizer that is contained in the NLTK package is the ’Penn
Treebank Tokenizer’. It is created for the English language, however the
language dependent part of the tokenizer revolves around contractions and
will not interfere with our output. The Penn Treebank tokenizer use regular
expressions to find tokens of the type seen in the Penn Treebank. For every
token it finds it inserts a white-space in between the tokens and when it has
processed the whole string (sentence) it uses the built in python function
’.split()’, this means that the string is split at every white-space, creating a
list of tokens from the sentences.

And thats it, the tokens does not undergo any form from case folding.
Collocations become multiple tokens. Removes most punctuation, except
’infix punctuation’, from the token. It will not remove ’.’ from a token
unless it’s the last token in the sentence, due to abbreviations.

Det var (svart-hvitt) TV o.l. i New York.
pDetq pvarq p(q psvart-hvitt p)q pTVq po.l.q piq pNewq pYorkq p.q

One thing that is worth to notice is that the tokenizer does some weird
choices when considering quotation marks:

Det var ”mange” ’romvesen’.
pDetq pvarq p“q pmangeq p”q p’romvesenq p’q p.q

We can see that it converts the single character ” to two ‘ characters.
We can also see that it keeps the first ’ attached to the word ’romvesen’ but
separates the other one from the word.

NLTK’s word tokenizer will always try to sentence tokenize first, so
we have to turn on Norwegian settings if we want it to recognize the
abbreviations.

36

4.1 How to evaluate the tokenizer

To evaluate the word tokenizer I am going to find the f-score for the same
two measurements I used on sentence evaluation, word ’segment score’
and ’split score’. The word split score is a measure of how proficient the
tokenizer is at finding the correct positions to cut between tokens. Word
segment score, is then the measure of how proficient the tokenizer is at
finding the correct complete tokens. Simplified in figure 2. I will also
compare NLTK to a couple of other tokenizers.

I will be using the same gold material, NDT. Since it’s stored in CoNLL
format it means every line contains a token, the tokenizers job is then to
match these tokens. I will of-course still detokenize the material such that
we feed the tokenizer ’running well formed’ text. To acquire the baseline I
used the normal NLTK sentences tokenizer + word tokenizer. See table 16.

Table 16: Normal NLTK word tokenization, with Norwegian settings -
Baseline

Word split score Word segment score
TP 243710 242206
FP 159 1664
FN 1682 3201
recall 0.99315 0.98696
precision 0.99935 0.99318
fscore 0.99624 0.99006

4.2 Failure analysis

There are not many errors left after the NLTK word tokenization, however
some notable errors can be fixed. All the errors, both FP and FN, seem to
revolve around punctuation. In the 148 false positive there are 71 errors
where ’.’ has been removed from the word when it should not have been:

NLTK: ∗ pFr.pq p.q ptrapperq poppq [...]
Gold: pFr.p.q ptrapperq poppq [...]

There are 46 errors that spawn due to apostrophe being removed from
the connecting word:

NLTK: ∗ [...] ptroikaenq pogq pHellasq p’q pinternasjonaleq [...]
Gold: [...] ptroikaenq pogq pHellas’q pinternasjonaleq [...]

37

In 16 cases it’s due to the ’at’ sign, the tokenizer splits emails at @:

NLTK: ∗ [...] peilivq p@q pdb.noq pellerq [...]
Gold: [...] peiliv@db.noq pellerq [...]

Twelve of the errors come from splitting words connected with ’:’:

NLTK: ∗ [...] pdetteq p�GHq p:q pWT�q penq [...]
Gold:[... pdetteq p� q pGH:WTq p�q penq [...]

One should note that this does not happen if it’s a number on each side
of the colon. There are 3 special cases when a word start with a punctuation
like ’#’:

NLTK: ∗ [...] ptenkeq pdereq ptilq p...q p#q ptragikomisk�q
Gold:[...] ptenkeq pdereq ptilq p...q p#tragikomisk�q

In the 1697 false negative I will not count every error, however I will do
some machine counting and receive some rough estimates. It would seem
that more than 1400 of the errors stem from guillemets, � and �:

NLTK: ∗ [...] pledq p�opprørerne�q pnederlagq [...]
Gold: [...] pledq p�q popprørerneq p�q pnederlagq [...]

NLTK does not split on ’/’, meaning we receive errors where we should
have split, 71 in this case:

NLTK: ∗ [...] pogq pstatlige/kommunaleq pbevilgningerq p.q
Gold: [...] pogq pstatligeq p/q pkommunaleq pbevilgningerq p.q

Then the remaining errors are errors such as the ones we saw earlier
when introducing the NLTK word tokenizer:

NLTK: ∗ [...] p etq p’jegq p’q pderq [...]
Gold: [...] petq p’q pjegq p’q pderq [...]

i.e. not removing the first apostrophe connected to a word.

4.3 Norwegian version

As for sentences tokenization we also want Norwegian word tokenization.
As I mentioned the NLTK ’Penn Treebank Tokenizer’ is created for English,
but the language dependent parts does not interfere with Norwegian. That
means we can try to create a patch for this tokenizer so that it fits better for
Norwegian, rather that creating a brand new tokenizer.

However to to patch a word tokenizer is harder than patching a
sentences tokenizer. The reason for this is that when we processes the list
with tokens output from the word tokenizer we have lost all information
regarding where white-space used to be. Take for instance the example
above containing pGH:WTq, after the tokenizer is done it leaves the tokens

38

as p�GHq p:q pWT�q. Since the tokens now are separated and we have
lost all information about where white-space used to be, we can not fix this
problem post-hoc.

As white-space is key to word tokenization post-patching will not be as
efficient as for instance making changes to current tokenizer or recreation
of the tokenizer. However as the results from the baseline are quite good,
there is no need to change the original or create a new tokenizer, I will still
just post-patch the errors fixable at this point.

Some possible fixes can be to split at ’/’, remove guillements from
connected word and stitch together emails.

• Split at slash
• Disconnect guillement from connected word
• Stitch emails

I mentioned earlier that we have some Norwegian language dependent
structures for word tokenization such as large number and collocations. In
NDT collocations are written as multiple tokens, this is understandable. As
to recognizing collocations would require third-party help such as a lexicon
over all know Norwegian collocations. However what is harder to agree
upon is that NDT also stores large numbers as multiple tokens, this would
not require any form of outside help, here it would suffice just to keep all
digits following each other as one token. I will therefore also create a patch
that disagrees with gold and keeps all large numbers as one token and list
the score:

Table 17: Word split score, Baseline vs Patch

NLTK NLTK+patch NLTK+largnum-patch
TP 243710 245290 245252
FP 159 173 173
FN 1682 102 140
recall 0.99315 0.99958 0.99943
precision 0.99935 0.9993 0.9993
fscore 0.99624 0.99944 0.99936

39

NLTK NLTK+patch NLTK+largenum-patch
TP 242206 245033 244961
FP 1663 431 465
FN 3201 374 446
recall 0.98696 0.99848 0.99818
precision 0.99318 0.99824 0.99811
fscore 0.99006 0.99836 0.99814

Table 18: Word segment score, NLTK vs Patch

As we can see in table 17 & 18, the resulting word tokenized material is
a lot closer to the gold text. We can check the failure rate to see how much
it has improved, to obtain the failure rate I compare the f-score:

Split failure rate:

(1− 0.99944)/(1− 0.99624) = 0.14894

Segment failure rate:

(1− 0.99836)/(1− 0.99006) = 0.16499

We can see that the failure rate has decreased significantly for both
segment and split score, it’s now between 6-7 times less likely to fail. When
fixing large numbers as one token we can see that we receive a lower score
than just the patch. This is a direct conflict with the gold material so it will
obviously trigger errors.

4.4 Comparison

Now that we have improved NLTK’s word tokenizer, let’s compare how
NLTK holds up compared to other word tokenizers. I will still be using the
LAP site for the other options. The site has the same NLTK word tokenizer,
but it also has a couple of others. ’REPP’ [Dridan and Oepen, 2012] and
’OBT’ [UiO, 1998, web]. I will not go into details about how these work;
we will again simply use them as something to compare with.

To acquire the wanted results from LAP, it’s the same process as earlier:
upload - sentence tokenize - word tokenize - export to CoNLL format. We
have to sentence tokenize to do word tokenization, meaning we have to
choose a sentence tokenizer on the site before word tokenizing, I will use
the NLTK sentence tokenizer from the site, even tough we do not obtain
the exact same sentences splits as the baseline it will be close enough. I also
used the ’Norwegian:NDT’ settings for REPP.

40

Table 19: Word split score, baseline vs online options

NLTK LAP-NLTK REPP OBT NLTK+patch
TP 243710 244497 245236 242919 245290
FP 159 4528 131 46 173
FN 1682 909 170 2473 102
recall 0.99315 0.9963 0.99931 0.98992 0.99958
precision 0.99935 0.98182 0.99947 0.99981 0.9993
fscore 0.99624 0.989 0.99939 0.99484 0.99944

NLTK LAP-NLTK REPP OBT NLTK+patch
TP 242206 241241 244972 241071 245033
FP 1663 7785 396 1895 431
FN 3201 4166 435 4322 374
recall 0.98696 0.98302 0.99823 0.98239 0.99848
precision 0.99318 0.96874 0.99837 0.9922 0.99824
fscore 0.99006 0.97583 0.99831 0.98727 0.99836

Table 20: Word segment score, baseline vs online options

Even though OBT played a helping hand in creating NDT, NDT did not
give it much of a helping hand here. Most of the errors in OBT stems from
the use of multi-word tokens. Not considering the patch we can see that
REPP has the overall best score!

4.5 Conclusion

And of course to finish it off we have to look at the results from running
it on the held-out test set. First I’ll run our baseline NLTK on the test
set and then compare the results of using the baseline NLTK+patch and
NLTK+largnum-patch.

41

Table 21: Word split score, Baseline vs Patch - testset

NLTK NLTK+patch NLTK+largnum-patch
TP 60159 60197 60185
FP 27 29 29
FN 47 9 21
recall 0.99922 0.99985 0.99965
precision 0.99955 0.99952 0.99952
fscore 0.99939 0.99968 0.99958

NLTK NLTK+patch NLTK+largenum-patch
TP 60107 60162 60139
FP 80 65 76
FN 104 49 72
recall 0.99827 0.99919 0.9988
precision 0.99867 0.99892 0.99874
fscore 0.99847 0.99905 0.99877

Table 22: Word segment score, NLTK vs Patch - testset

Like before we can inspect the relationship between the difference in
the f-score to see if we receive comparable results to earlier.

Split failure rate:

(1− 0.99968)/(1− 0.99939) = 0.52459

Segment failure rate:

(1− 0.99905)/(1− 0.99847) = 0.620915

These results are not on the same level when compared to the training
material. I fixed some errors, but there are not enough errors in the test
set to receive the same amount of benefit from the patch as we got in the
training set.

42

Chapter 5

5 Integration of tokenizer patches

As we have seen there are some issues with NLTK. Luckily NLTK is an
open source, community-driven project. This means that it’s possible to
integrate the changes we want into this project. NLTK like many other
open source projects use Git [2005] for the project. Git or GitHub is a
development platform that provides one with the opportunity to contribute
for open source projects alongside millions of other developers. I created
an issue on NLTK’s GitHub to see if they had an interest in the patch.

5.1 Alternative ways of integrating

There are many ways of integrating the patches into NLTK. One way would
be to add a couple of lines to the original code:

Original code:

def sent_tokenize(text, language=’english’):

tokenizer =

load(’tokenizers/punkt/{0}.pickle’.format(language))

return tokenizer.tokenize(text)

def word_tokenize(text, language=’english’):

return [token for sent in sent_tokenize(text, language)

for token in _treebank_word_tokenize(sent)]

44

Edited code:

import patch

def sent_tokenize(text, language=’english’):

if language=’norwegian’:

tokenizer =

load(’tokenizers/punkt/{0}.pickle’.format(language))

return patch.sent_patch(tokenizer.tokenize(text))

else:

tokenizer =

load(’tokenizers/punkt/{0}.pickle’.format(language))

return tokenizer.tokenize(text)

def word_tokenize(text, language=’english’):

if language=’norwegian’:

return [token for sent in sent_tokenize(text, language)

for token in

patch.word_patch(_treebank_word_tokenize(sent))]

else:

return [token for sent in sent_tokenize(text, language)

for token in _treebank_word_tokenize(sent)]

Another approach is to add a single file to the folder containing the
patch and a copy of the original tokenizer code, this however would
result in the users having to use a different function, something like
nltk.nor sent tok(’xyz’) for norwegian tokenization instead of just the
standard nltk.sent tokenize(’xyz’, ’norwegian’). It also seems redundant.
A third option is by changing the main tokenize function. In my opinion
the first option would be the ideal solution, it is simple and easy, work
done.

By this I mean that we have mapped a set of error patterns, created a
patch to see if they improve the results, now we just have to apply it. This
would be the easiest solution if we were the only one to use the patch.
However this might not be the ”correct” way to approach the problem
when we want to integrate it into a project. I learned this after trying to
suggest this approach to the problem for the NLTK community.

5.2 Integrating sentence tokenizer patch

When suggesting my ”easy” way to fix the problem I learned that it’s
not desirable to have a post-hoc string manipulation patch. As such
the community wanted a different approach to solve the problem. They
wanted to find the core of the problem and fix it there, or to retrain the
model on NDT. Lets follow those paths and see where those lead.

45

Retrain the model - if we want to retrain the model, we have to first
remember what we train the model to find. The model is trained to
find abbreviations. Are the errors fixed by the patch, errors related to
abbreviations, no. The path of retraining the model on NDT is a dead end.

Going to the core of the problem and fix it there - this requires us to
study how the tokenizer work inside NLTK. As we can see in the code
above the sentence tokenizer uses a function ’load’ on the specified pickle,
for instance ’norwegian.pickle’. The ’load’ functions comes from the
nltk.data, this function is used to load a variety of different files contained
in NLTK, when ’load’ recognizes that the input is a pickle it will return
’pickle.load(open(x.pickle))’ (a python native function). This means the
variable ’tokenizer’ above is now a python object with the values it
obtained when training on the specified language. When inspecting this
object at runtime we can see that it calls the functions stored in the file
’nltk.punkt’, this means ’tokenize’ in ’tokenizer.tokenize’ from above is a
function stored in ’nltk.punkt’. This means that to fix the problem at it’s
core we have to change ’nltk.punkt’. And this might have some merit to it.
There is a class in the punkt tokenizer called PunktLanguageVars, it says:

"Stores variables, mostly regular expressions, which may be

language-dependent for correct application of the algorithm.

An extension of this class may modify it’s properties to suit

a language other than English; an instance can then be passed

as an argument to PunktSentenceTokenizer and PunktTrainer

constructors."

Kiss and Strunk [2001]

The purpose of this class seems to be, to provide languages the
possibility for language dependent variables. For instance there is
a variable in this class called ’sentence end chars’ this variable stores
information on valid sentence delimiters, by default those are ’.’, ’!’, ’?’,
if we add ’:’ to this variable we fix the biggest error pattern found for
the sentence tokenizer, the colon. However we can not change this part
of the punkt tokenizer as it would affect every language. But what
we can do is to create a subclass of PunktLanguageVars, for instance
NorwegianLanguageVars where we add colon to ’sentence end chars’. We
can just add this to the punkt tokenizer:

class NorwegianLanguageVars(PunktLanguageVars):

sent_end_chars = (’.’, ’?’, ’!’, ’:’)

46

Now as the current Norwegian pickle still calls PunktLanguageVars.
The correct way would be to retrain the model with Norwegian-
LanguageVars listed in the pickle at training time instead of Punkt-
LanguageVars.

However we can just ”hack” the current pickle as we can still use
the same model. We just need to change the pickle to call Nor-
wegianLanguageVars instead of PunktLanguageVars. There are sev-
eral ways to ”hack” the pickle. One way is to unpickle the pickle
and change the variable ’object. lange vars=PunktLanguageVars’ to ’ob-
ject. lange vars=NorwegianLanguageVars’ inside the loaded object and
save it as a new pickle. Another way is just to open the pickle in a text
editor and change the line containing ’PunktLanguageVars’ to ’Norwegian-
LanguageVars’. Now if we add the new pickle to the pickle folder we are
already getting a better result.

Table 23: Sentence split score, Baseline vs Patch vs Hacked pickle

NLTK NLTK+patch NLTK+hack
TP 14217 15008 14931
FP 94 77 143
FN 839 48 125
recall 0.94427 0.99681 0.9917
precision 0.99343 0.9949 0.99051
fscore 0.96823 0.99585 0.99111

NLTK NLTK+patch NLTK+hack
TP 13374 14893 14682
FP 938 193 393
FN 1683 164 375
recall 0.88822 0.98911 0.97509
precision 0.93446 0.98721 0.97393
fscore 0.91076 0.98816 0.97451

Table 24: Sentence segment score, NLTK vs Patch vs Hacked pickle

However it’s still not at the level as the patch and we can not implement
all of the fixes for the error patters this way. For instance when we stitch
interposed sentences, this is nothing we can fix by adding values to the
LanguageVars.

47

5.3 Integrating word tokenizer patch

When wanting to integrate my word patch I discovered a new issue. If we
recall the most prominent error in the word tokenization for Norwegian,
it was the guillemets. However that was in the NLTK version I was
working with, ’NLTK 3.2.2’, these guillemets had been fixed in ’NLTK 3.2.3’
released: May 2017. This was achieved by adding the guillemets to the
PennTreeBank regexs. This was an early idea I had, to add the regexs,
however as we possibly wanted a patch for large numbers I disregarded the
idea of adding the regexes and created a post-hoc patch. (Large numbers
containing white-space, would not be possible to add in the regexes. As
the regexes is for creating white space for splitting at those in the end.) If
we test the new tokenizer on the training set we acquire these results:

Table 25: Word split score, Baseline vs Patch vs New-NLTK

NLTK-3.2.2 3.2.2+patch NLTK-3.2.3
TP 243710 245290 245222
FP 159 173 159
FN 1682 102 170
recall 0.99315 0.99958 0.99931
precision 0.99935 0.9993 0.99935
fscore 0.99624 0.99944 0.99933

NLTK-3.2.2 3.2.2+patch NLTK-3.2.3
TP 242206 245033 244938
FP 1663 431 444
FN 3201 374 469
recall 0.98696 0.99848 0.99809
precision 0.99318 0.99824 0.99819
fscore 0.99006 0.99836 0.99814

Table 26: Word segment score, NLTK vs Patch vs New-NLTK

48

By comparing the patch with the new-NLTK version we receive these
numbers:

Split failure rate:

(1− 0.99944)/(1− 0.99933) = 0.83582

Segment failure rate:

(1− 0.99836)/(1− 0.99814) = 0.88172

The word patch now does next to nothing, and does not have the
numbers to support further support.

49

Chapter 6

6 Norwegian text resources

NB has an on-line repository and this repository contains many open and
available lexicon and corpora of Norwegian text. This is fantastic news for
anyone wanting to get their hands on much needed Norwegian data for
NLP. As there is no Norwegian corpus in NLTK and we wanted to integrate
a Norwegian corpus, we can acquire our Norwegian corpus to integrate
from here. To obtain a more a clearer view on what NB has to offer I will
list some of the available resources in NB:

51

Name Compiler Contents
N-grams - NBdigital NB (n=1-3) from books and newspapers at NB
N-grams for Norwegian Bokmål NB (n=1-6) (based on NST news text)
Tagged texts - NBdigital NB 4808 morphologically tagged texts - Bokmål
Norwegian Wordnet Bokmål Kaldera språkteknologi 50.000 synonym sets (synsets)
Norwegian Wordnet Nynorsk Kaldera språkteknologi 50.000 synonym sets (synsets)
Norwegian parliamentary debates Rosén, Victoria. UiB Treebank of transcriptions of debates
Norwegian Newspaper Corpus Annotated Uni Research AS 35 692 210 tokens, annotated and classified
Norwegian Newspaper Corpus Nynorsk Uni Research AS large monitor corpus of contemporary
Norwegian Newspaper Corpus Bokmål Uni Research AS large monitor corpus of contemporary
Text material from Forskning.no CLARINO Data set containing texts from forskning.no
NorGram NDT, LFG, Norwegian Nynorsk UiB Norwegian Dependency Treebank
NorGram NDT, LFG, Norwegian Bokmål UiB Norwegian Dependency Treebank
NorGramBank Newspaper text from LBK UiB Treebank, syntactically annotated corpus
NorGramBank Non-fiction text (LBK) UiB Treebank, syntactically annotated corpus
NorGramBank television subtitles (LBK) UiB Treebank, syntactically annotated corpus
NorGrambank children’s fiction Rosén, Victoria. UiB 106434 sentences, 1043260 words, 76 docs
Norwegian Dependency Treebank NB Norwegian Dependency Treebank - Bokmål
INESS NorGramBank collection Rosén, Victoria. UiB A parsebank of Norwegian (LFG)
Annotations of non-fiction text Rosén, Victoria. UiB Syntactically annotated from Nynorskkorpuse
Annotations of fiction text Rosén, Victoria. UiB Syntactically annotated from Nynorskkorpuse
Norwegian Acquis Communautaire NB 5414 docs from Acquis Communautaire
Freely available texts from NBDigital NB 26344 books, 10756 different authors
Norsk Ordbank in Norwegian Bokmål UiO & Språkrådet Fullform lexical database, Bokmål
SCARRIE Lexical Resource Rosén, Smedt & Nordgård Fullform lexical resource, Bokmål
NST Lexical database NB Fullform lexical database, Bokmål
Wordlists from Språkrådet Språkrådet various types of word lists
Translation memories NB English to Norwegian Bokmål and Nynorsk
Hyphenations from the NB NB a list of hyphenated words in Norwegian

52

Here there are many corpora that we could integrate into NLTK.
However one stands out, we can see that NB has a corpus called
’Norwegian Dependency Treebank’ (NDT), this has been called the gold
corpus for Norwegian. It is a syntactic treebank for Norwegian, the great
thing about NDT is that it is new (2014) and it is manually syntactically
and morphologically annotated. The annotation process of the treebank
was supported by the OBT and then manually corrected by annotators. It
was developed at NB in collaboration with the UiO. It is the first publicly
available treebank for Norwegian. A treebank is a parsed text corpus that
annotates syntactic or semantic sentence structure.

6.1 Norwegian Corpus

While working with Norwegian NLP we need Norwegian text, and that is
why we want to integrate a Norwegian corpus into NLTK. And the corpus
to add is ’Norwegian Dependency Treebank’ NDT [2014]. The corpus
comes in CoNLL format. There are many different CoNLL formats since
CoNLL is a different shared task each year. However the format used in
dependency parsing comes from CoNLL-X format further revised version
CoNLL-U Format, CoNLL [2009]. The CoNLL-U Format has three types
of lines:

1. Word lines containing the annotation of a word/token in 10 fields
separated by single tab characters; see below.

2. Blank lines marking sentence boundaries.
3. Comment lines starting with hash (#).

Sentences consist of one or more word lines, and word lines contain the
following fields:

53

1. ID: Word index, integer starting at 1 for each new sentence; may be
a range for multiword tokens; may be a decimal number for empty
nodes.

2. FORM: Word form or punctuation symbol.
3. LEMMA: Lemma or stem of word form.
4. UPOSTAG: Universal part-of-speech tag.
5. XPOSTAG: Language-specific part-of-speech tag; underscore if not

available.
6. FEATS: List of morphological features from the universal feature

inventory or from a defined language-specific extension; underscore
if not available.

7. HEAD: Head of the current word, which is either a value of ID or
zero (0).

8. DEPREL: Universal dependency relation to the HEAD (root iff HEAD
= 0) or a defined language-specific subtype of one.

9. DEPS: Enhanced dependency graph in the form of a list of head-
deprel pairs.

10. MISC: Any other annotation.

The fields must additionally meet the following constraints:

• Fields must not be empty.
• Fields other than FORM and LEMMA must not contain space

characters.
• Underscore () is used to denote unspecified values in all fields except

ID. Note that no format-level distinction is made for the rare cases
where the FORM or LEMMA is the literal underscore - processing in
such cases is application-dependent.

NDT follows almost every rule set by the CoNLL-U Format. However
there are some differences. In NDT column 9 and 10 are left as
unspecified/’ ’. Also column 4 and 5 contain identical information in NDT,
this means we do not have to load both these columns when reading the
corpus. Another difference is that NDT does not use the label ’root’ if
HEAD = 0, it has a different DEPREL name for each type of root. From
the corpus documentation:

”The head of the sentence will also have a function called the root function .
For finite verbs, the root function will be FINV.” [Kinn et al., 2014, p. 23]

This is understandable as every root can easily be identified by the head
number. An example of a sentences in NDT, displayed as presented in the
corpus in CoNLL format:

54

1 At at sbu sbu 4 SBU
2 jeg jeg pron pron ent|pers|hum|nom|1 4 SUBJ
3 liksom liksom adv adv 4 ADV
4 er være verb verb pres 0 FINV
5 den den pron pron mask|fem|ent|pers|3 4 SPRED
6 som som sbu sbu 7 SBU
7 tar ta verb verb pres 5 ATR
8 på på prep prep 7 ADV
9 seg seg pron pron akk|refl 8 PUTFYLL
10 ansvaret ansvar subst subst appell|nøyt|be|ent 7 DOBJ
11 med med prep prep 10 ATR
12 å å inf-merke inf-merke 11 PUTFYLL
13 fortelle fortelle verb verb inf 12 INFV
14 de de det det dem|fl 16 DET
15 store stor adj adj fl|pos 16 ATR
16 tingene ting subst subst appell|mask|be|fl 13 DOBJ
17 . $. clb clb <punkt> 4 IP

NDT is licensed under the Creative Commons, this means that we are
free to share and adapt NDT. Under the following terms: ’Attribution’ and
’No additional restrictions’.

The content of the Creative Commons-BY (CC-BY):

You are free to:
Share - copy and redistribute the material in any medium or format
Adapt - remix, transform, and build upon the material
for any purpose, even commercially. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Under the following terms:
Attribution - You must give appropriate credit,
provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

No additional restrictions -
You may not apply legal terms or technological measures that,
legally restrict others from doing anything the license permits.

Figure 3: Creative Commons-BY (CC-BY) License

Commons [2001]

55

If the previous attribution to NB and UiO was not enough let us give
credit to the individuals behind the creation of NDT,

Per Erik Solberg,
Språkbanken, The National Library of Norway

Arne Skjærholt and Lilja Øvrelid,
Department of Informatics, University of Oslo

Kristin Hagen and Janne Bondi Johannessen,
Department of Linguistics and Scandinavian Studies,
University of Oslo

There exists an optimized tag-set for NDT created by Petter Hohle. It
would be optimal to make these optimized tags available with the corpus
in NLTK. When integrating a corpus to NLTK we have to create a corpus
reader or use one of the corpus readers available in NLTK. NLTK has a lot of
corpus readers, they have one for CoNLL format and one for dependency
treebanks. And as NDT is both in CoNLL format and a dependency
treebank one of these might fit our corpus, if not we will have to create
one.

Before we find out if they fit NDT, we have to know what we expect
from a corpus reader. The obvious answer is, we want a reader that gives
all the information available in the corpus to the user of the corpus. After
inspecting the CoNLL and dependency treebank corpus reader I found out
that they do ”work” for the corpus, delivering some information to the
user, such as words and parsed sentences. However they do not provide
the full content of the corpus to the user, as they where designed for slightly
different corpora. This means we should create a corpus reader for NDT in
NLTK that does bring the whole corpus to the user of it.

6.2 Corpus Reader

When creating a corpus reader in NLTK there exists a main CorpusReader
class with an api, we have to make a subclass of the main CorpusReader
class and fill in the parts expected from the api and add any wanted
extra functionality. This makes the corpus with reader callable by; ’from
nltk.corpus import ndt’. When reading the information into the corpus
reader we have to plan how we want to store the information. However
in this case it’s quite easy, as all the information in NDT is contained in 8
columns, we can represent those as 7 ordered lists (as column 4 and 5 are
identical). This means that the first time we use the corpus, it will have a
small load time, less than one second, to load all the data in NDT into 7
lists. There will also be an eight column. This eight column will contain the
optimized tags created by Petter Hohle. The tags are a product of his master

56

thesis, Hohle [2016a] and can be found at his GitHub, Hohle [2016b].
However there is a minor issue we have to solve before adding this

eight column. He has not sorted the files containing the tags alphabetically
when considering the filenames. This because as we can recall he wanted
to split NDT into 3 parts, train, dev and test, but also consider categories
when choosing where to create the split. And all files of the same category
begins with the same letter. Now when reading the 232 files contained in
NDT we choose an order to read it, usually alphabetically. However we
can not do this if we want to match the order of his tags. Hohle’s tags are
sorted in 3 files instead for instance 3 folders, by this I mean he has glued
all files that ended up as train, dev or test together as large files. Instead
of creating a more complex corpus reader to match this invisible order of
files I have extracted the optimized tags from his 3 files and sorted them to
alphabetically match the original 232 files, and added it as an eight column.

To access these columns we can use these functions:

ndt.token_indexes(fileids=None):

ndt.words(fileids=None):

ndt.lemmas(fileids=None):

ndt.pos(fileids=None):

ndt.morp_feats(fileids=None):

ndt.head_indexes(fileids=None):

ndt.dep_rels(fileids=None):

ndt.opt_pos(fileids=None):

These are the 8 columns that creates NDT in NLTK. The rows are
fictional as the lists are ordered, this means that element x in each column
corresponds to each other. All function calls returns all elements from start
to end, or from specified file ids. When integrating a corpus reader into
NLTK one has to create a subclass of NLTK Corpus Reader. This class has
some functions that are standard to every corpus reader in NLTK, these
have to be implemented. This is a list of the standard functions that have
been implemented:

57

ndt.raw()

#returns all the content raw

ndt.readme()

#returns the corpus README

ndt.words(fileids=None)

#returns n number of words from start to end,

or from specified file ids.

ndt.sents(fileids=None)

#returns n number of sentences from start to end,

or from specified file ids.

ndt.tagged_words(tagset=None, fileids=None)

#returns n number of tagged words from start to end,

or from specified file ids.

#If tagset is set to ’opt’ it will return the optimized tags.

ndt.tagged_sents(tagset=None, fileids=None)

#returns n number of tagged words from start to end,

or from specified file ids.

#If tagset is set to ’opt’ it will return the optimized tags.

ndt.parsed_sents(tagset=None, fileids=None)

#returns n number of parsed sentences from start to end,

or from specified file ids.

#If tagset is set to ’opt’ it will use the optimized tags.

The function ’ndt.parsed sents’ gives dependency parsed sentences,
using NLTK’s dependency parse reader. This reader has 3 types of input
it can take 3, 7 or 10 cells of information. And we have all the needed
information to use the 10 cell reader, however there is one thing holding
us back. As mentioned NDT does not use the label ’root’ in the DEPREL
column when HEAD = 0, and this reader needs a defined label for the
root DEPREL, like, ’root’ or ’top’. We could rewrite the corpus to match
this reader, however I will not do this as it would change the information
available in the corpus. We could also create a larger parsed sent method
that would rewrite every time we wanted to read a parsed sentence, but
this also felt inefficient and unnecessary. The 7 cell parser has the same
problem, however we can use the 3 cell parser as it only needs word form,
tag and head. Using the 3 cell parser we receive dependency graph objects
that can for instance present trees like this:

58

>>> from nltk.corpus import ndt

>>> ndt.sents()[111]

[’Kofi’, ’Annan’, ’har’, ’tatt’, ’i’, ’bruk’, ’,’, ’og’,

’fastholder’, ’stadig’, ’,’, ’det’, ’utvidede’, ’fredsbegrep’,

’,’, ’som’, ’inkluderer’, ’alle’, ’dem’, ’som’, ’lider’, ’.’]

>>> ndt.parsed_sents()[111]

<DependencyGraph with 23 nodes>

>>> ndt.parsed_sents()[111].tree().pprint()

(har

(Kofi Annan)

(tatt (i bruk))

,

(fastholder

og

stadig

,

(fredsbegrep

det

utvidede

,

(inkluderer som (dem alle (lider som)))))

.)

From this point on I would say it is really up to the user of the corpus.
However to make the information a tad bit more available I added some
more helper functions. Where the main helper function is a function for
extracting information from the corpus.

59

Next follows a description of this extract function, we can call it with
ndt.extract:

extract(sent=True, word=True, tags=False, lma=False, morph=False,

head=False, dep=False, opt=False, fileids=None)

With this function we can acquire what we want from the corpus:

Returnes n number of words or sentences, from start to end,

sent=

True, get sentences | False, get only words

word=

True, get word form | False, not include word form

tags=

True, get pos tags | False, not include pos tag

lma=

True, get lemmas | False, not include lemmas

morph=

True, get morph feat | False, not include morphological feature

head=

True, get head index | False, not include head index

dep=

True, get dep rel | False, not include dependency relation

opt=

True, get opt tag | False, not include optimized tag

fileids=

None, get all files | Single fileid or list of fileids

60

Example of using the extract method:

>>> from nltk.corpus import ndt

>>> ndt.extract(tags=True, opt=True)

[[(’Lam’, ’subst’, ’subst|appell|ub’), (’og’, ’konj’, ’konj’),

(’piggvar’, ’subst’, ’subst|appell|ub’), (’pa’, ’prep’,

’prep’), (’bryllupsmenyen’, ’subst’, ’subst|appell|be’), (’|’,

’clb’, ’clb’)], [(’Kamskjell’, ’subst’, ’subst|appell|ub’),

(’,’, ’<komma>’, ’<komma>’), (’piggvar’, ’subst’,

’subst|appell|ub’), (’og’, ’konj’, ’konj’), (’lammefilet’,

’subst’, ’subst|appell|ub’), (’sto’, ’verb’, ’verb|fin’),

(’pa’, ’prep’, ’prep’), (’menyen’, ’subst’, ’subst|appell|be’),

(’under’, ’prep’, ’prep’), (’den’, ’det’, ’det’), (’kongelige’,

’adj’, ’adj|pos’), (’gallamiddagen’, ’subst’,

’subst|appell|be’), (’.’, ’clb’, ’clb’)]] ...

>>> ndt.extract(word=False, lma=True, opt=True)

[[(’lam’, ’subst|appell|ub’), (’og’, ’konj’), (’piggvar’,

’subst|appell|ub’), (’pa’, ’prep’), (’bryllupsmeny’,

’subst|appell|be’), (’$|’, ’clb’)], [(’kamskjell’,

’subst|appell|ub’), (’$,’, ’<komma>’), (’piggvar’,

’subst|appell|ub’), (’og’, ’konj’), (’lammefilet’,

’subst|appell|ub’), (’sta’, ’verb|fin’), (’pa’, ’prep’),

(’meny’, ’subst|appell|be’), (’under’, ’prep’), (’den’, ’det’),

(’kongelig’, ’adj|pos’), (’gallamiddag’, ’subst|appell|be’),

(’$.’, ’clb’)]] ...

>>> ndt.extract(word=False, sent=False, morph=True, opt=True)

[(’subst|appell|ub’, ’appell|noyt|ub|ent’), (’konj’, ’<ikke-clb>’),

(’subst|appell|ub’, ’appell|mask|ub|ent’), (’prep’, ’_’),

(’subst|appell|be’, ’appell|mask|be|ent|samset’), (’clb’,

’<overskrift>’), (’subst|appell|ub’, ’appell|noyt|ub|fl’),

(’<komma>’, ’_’), (’subst|appell|ub’, ’appell|mask|ub|ent’),

(’konj’, ’<ikke-clb>’), (’subst|appell|ub’,

’appell|mask|ub|ent’), (’verb|fin’, ’pret’), (’prep’, ’_’),

(’subst|appell|be’, ’appell|mask|be|ent’), (’prep’, ’_’),

(’det’, ’dem|mask|ent’), (’adj|pos’, ’be|ent|pos’),

(’subst|appell|be’, ’appell|mask|be|ent’), (’clb’, ’<punkt>’),

(’konj’, ’clb’)] ...

In the first extract I ask for sentences with word forms,
default pos tags and optimized pos tags.

In the second extract I ask for sentences,
no word forms, only lemma and optmized tags.

In the third extract I ask for words,
no word forms, only morphological features and optimized tags.

61

6.3 Lexicon

From the list of resources at NB we can see that we have several lexicon
to choose from. I’ve looked into two of them ’Norsk OrdBank’ and
’SCARRIE’. ’Norsk OrdBank’ is the same lexicon used to develop the OBT
tagger we talked about earlier. ’SCARRIE’ was originally a lexical resource
developed for automatic proofreading of Norwegian Bokmål.

Table 27: Basic stats of the lexicons

Norsk OrdBank SCARRIE
unique word forms 344139 287682
intersection 285437 285437
difference 58702 2245
words 713299 344806

When trying to identify what type of words the ’difference’ contains I
found that the 2245 words in ’SCARRIE’ not in ’Norsk OrdBank’ contains
mostly written errors and Swedish words. This might be linked to the fact
that ’SCARRIE’ was developed for automatic proofreading. However it
also contains words with hyphens which is somewhat relevant if we where
ever to encounter these hyphenates. See table 28. In the 58702 words in
’Norsk OrdBank’ not in ’SCARRIE’ it’s mainly a lot more inflicted words,
however these words may be over-generated as ’Norsk OrdBank’ include
their own inflectional paradigm. It also contains multiword expressions.
See table 29.

Table 28: Unique to SCARRIE

Written errors ’romm’ ’dettede’ ’unnbedende’
Swedish words ’kysst’ ’pommes’ ’stjernblomer’
-er ’CD-er’ ’pm-er’ ’pH-er’

inflected words ’est’ ’este’ ’ene’
Words with white-space ’old boys-klassen’ ’ad absurdum’ ’i dag’

Table 29: Unique to Norsk OrdBank

Just from the basic looks of it ’Norsk OrdBank’ would be the best pick,
however it’s copyrighted. It is ILN/UiO and Språkrådet that owns the

62

copyright:

Norsk Ordbank - Bokmål
Licence: proprietary

Figure 4: Norsk Ordbank Licence

As these word forms are owned, SCARRIE seems like your best choice,
of these two, as a lexicon. Since SCARRIE uses creative commons, you
must only give appropriate credit.

63

Chapter 7

7 Conclusion and resources

I have investigated what support NLTK has for Norwegian NLP, I have
evaluated, and tried to improve this support. For sentence and word
tokenization I have evaluated and compared NLTK’s tokenizers against
other tokenizers. I have improve NLTK’s sentence and word tokenization
and then tried to integrate the improvements into NLTK’s open source
project. I looked at lexical resources for Norwegian in NB, where we looked
at a couple of lexicon and a corpus. I have tried to integrate a Norwegian
corpus with corpus reader into NLTK.

7.1 Resources made and their availability

I have created patches for NLTK’s sentence and word tokenizer. And I have
created the NLTK corpus reader for NDT including optimized tags. All
of these are available at my github.com Bjerke-Lindstrøm [2017]. I have
of course created many tools for my own use on the way, for instance in
making the evaluation and comparison of the tokenizers possible, such as
the CoNLL detokenizer, OBT aligner, etc. but I see no reason to publish
these.

65

References

NLTK. Natural language toolkit. nltk.org/, (visited 14.08.17), 2001.

Peter Michael Stahl and Peter Ljunglof. Source code for nltk.stem.snowball.
nltk.org/ modules/nltk/stem/snowball.html, (visited 14.08.17), 2001.

Steven Bethard and Steven Bird ... Source code for
nltk.corpus.reader.wordnet. nltk.org/ modules/nltk/corpus/reader/wordnet.html,
(visited 14.08.17), 2001.

Janne Bondi Johannessen and Helge Hauglin. An automatic analysis of
norwegian compounds. Papers from the 16th Scandinavian Conference of
Linguistics, pages 209–220, 1996.

Milan Straka and Jana Strakova. Udpipe. ufal.mff.cuni.cz/udpipe, (visited
14.08.17), 2015.

Tibor Kiss and Jan Strunk. Unsupervised multilingual sentence boundary
detection. Computational Linguistics, 32(4):485–487, 2006.

Petter Hohle. Optimizing a pos tag set for norwegian dependency parsing.
Master’s Thesis, Deparment of informatics, University of Oslo, page 36, 2016a.

UiO. Language analysis portal. lap.clarino.uio.no, (visited 14.08.17), 2016.

Sebastian Nagel. Rule-based sentence segmenter. cis.uni-
muenchen.de/ wastl/misc/, (no longer working), 2010.

UiB UiO. Oslo-bergen-taggern. tekstlab.uio.no/obt-ny/, (visited 14.08.17),
1998.

Rebecca Dridan and Stephan Oepen. Tokenization: returning to a long
solved problem a survey, contrastive experiment, recommendations, and
toolkit. ACL ’12 Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers - Volume 2, pages 378–382, 2012.

Git. Github. github.com/, (visited 14.08.17), 2005.

Tibor Kiss and Jan Strunk. Source code for nltk.tokenize.punkt.
www.nltk.org/ modules/nltk/tokenize/punkt.html, (visited 14.08.17), 2001.

NDT. Norwegian dependency treebank. nb.no/sprakbanken/show?serial=sbr-
10, (visited 14.08.17), 2014.

CoNLL. Conll-u. universaldependencies.org/format.html, (visited 14.08.17),
2009.

67

Kari Kinn, Per Erik Solberg, and Pål Kristian Eriksen. Ndt
guidelines for morphological and syntactic annotation.
nb.no/sbfil/dok/20140314 guidelines ndt english.pdf, (visited 14.08.17),
2014.

Creative Commons. Attribution 2.0 generic (cc by 2.0). creativecom-
mons.org/licenses/by/2.0/, (visited 14.08.17), 2001.

Petter Hohle. ndt-tools. github.com/petterhh/ndt-
tools/tree/master/dataset/bokmaal, (visited 14.08.17), 2016b.

Bo Bjerke-Lindstrøm. Resources made. github.com/toolsNLTK, (visited
14.08.17), 2017.

68

	Introduction
	NLTK for Norwegian
	Overview

	NLTK and tools for NLP
	Tokenizers
	Sentence tokenizer
	Word tokenizer

	Stemmer
	Lemmatizer
	POS Tagger
	Corpus
	Stop word list

	Sentence tokenizer
	How to evaluate the tokenizer
	Failure analysis and patch creation
	Detailed failure analysis of patch
	Comparison
	Extra
	Conclusion

	Word tokenizer
	How to evaluate the tokenizer
	Failure analysis
	Norwegian version
	Comparison
	Conclusion

	Integration of tokenizer patches
	Alternative ways of integrating
	Integrating sentence tokenizer patch
	Integrating word tokenizer patch

	Norwegian text resources
	Norwegian Corpus
	Corpus Reader
	Lexicon

	Conclusion and resources
	Resources made and their availability

