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A memory model dictates which values may be returned when reading from memory. In a parallel
computing setting, the memory model affects how processes communicate through shared memory. The
design of a proper memory model is a balancing act. On one hand, memory models must be lax enough
to allow common hardware and compiler optimizations. On the other, the more lax the model, the harder
it is for developers to reason about their programs. In order to alleviate the burden on programmers, a
weak memory model should provide what is called the data-race freedom guarantee, which allows
reasoning in terms of sequential consistency provided a program is data-race free.

In this paper we present a theory for weak memory with channel communication as the sole syn-
chronization primitive. There are few studies on channel communication as a synchronization primitive
for a weak memory model. We formalize the memory model in a small-step operational semantics and
implement it in an executable semantics framework [4] from which we obtain an interpreter. Similar to
Boudol and Petri, we favor an operational semantics because it allows us to prove the DRF guarantee
“at the programming language level.” This yields a more concrete interpretation of the DRF guarantee
as compared to formalisms in which the notion of a program is abstracted away, often in the form of a
graph [1].

The calculus we propose is inspired by the Go programming language developed at Google, which
recently gained traction in networking applications, web servers, distributed software and the like. It
features goroutines (i.e., asynchronous execution of function calls resembling lightweight threads) and
buffered channel communication in the tradition of CSP or Occam.

The Go memory model

The happens-before relation is used in the Go memory model to describe which reads can observe which
writes to the same variable. It says, for example, that within a single goroutine, the happens-before rela-
tion boils down to program order and, between goroutines, events can appear to happen out of program
order. If the effects of a goroutine are to be observed by another, a synchronization primitive must be
used in order to establish a relative ordering between events belonging to the different goroutines. The
Go memory model advocates channel communication as the main method of synchronization [3]. In
particular, it states that a send on a channel happens before the corresponding receive from that channel
completes. Our semantics incorporates channels for message passing, goroutines for asynchronous code
execution, and it allows for out-of-order execution where writes to memory can be arbitrarily delayed.

Abstract syntax

The abstract syntax of the calculus is given in Table 1. Values are written generally as v and include
booleans, integers, and etc (these more obvious values are not explicitly listed on the table). Note that
local variables (or registers) are also counted as values and are denoted r. Names (or references) are also
considered values and are denoted n. Names are used, for example, when referring to different channels
— when presenting the semantics, we will use ¢ for indicating a reference to a channel.

A new channel is created by make (chan T,v), where T represents the type of values carried by
the channel, and the non-negative integer v the channel’s capacity. Sending a value over a channel and
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Table 1: Abstract syntax

receiving a value as input from a channel are written respectively as v{ <— v, and < v. After the operation
close, no further values can be sent on the specified channel. Attempting to send values on a closed
channel leads to a panic. The expression pend v represents the state immediately after sending a value
over a channel. Note that pend is part of the run-time syntax as opposed to the user-level syntax, i.e., it
is used to formulate the operational semantics of the language but is not part of the syntax available to
the programmer.

Starting a new asynchronous activity (i.e., goroutine) is done using the go-keyword. Select-statements,
written using the ) -symbol, consist of a finite set of guarded branches. The 1let-construct let r =e int
combines sequential composition and the use of scopes for local variables r. It becomes sequential com-
position when r does not occur free in . We use semicolon as syntactic sugar in such situations.

Operational semantics with delayed writes

Programs consist of the parallel composition of goroutines (o,7), write events n(z:=v|, and channels
clgy,qp). Write events are 3-tuples from N x X X Val; they record the shared variable being written to
and the written value, together with a unique identifier n. In the current semantics, read accesses to the
main memory cannot be delayed; consequently, there are no read events.

In addition to the code ¢ to be executed, goroutines (0,) contain local information about earlier
memory interaction. Local states & are are tuples of type 2(V*X) x 2N abbreviated as £. We use the
notation (Ej, E;) to refer to the tuples. The first component of the local state, Ej,, contains the identities
of all write events that have happened before the current stage of the computation of the goroutine. The
second component of the local state, E, represents the set of identities of write events that, at the current
point, are shadowed (i.e., no longer visible to the goroutine).

The reduction rules for reads and writes are given on Table 2. From a goroutine’s point of view,
its reads and writes appear in program order. This is guaranteed by the absence of delayed reads and
by disallowing reads from obtaining values of writes that have been shadowed. Writes from other
goroutines, however, may appear out of order: writes are placed on a global pool and subsequent reads
can read any write from the pool as long as the event has not been shadowed from the reader’s point of
view.

Synchronization between goroutines is achieved by communicating via channels, as shown in Ta-
ble 2. A channel is of the form c¢[g¢,qp], where ¢ is a name and (¢y,g,) a pair of queues referred to
as forward and backward queue. For convenience, we use ¢y and ¢, when referring to channel’s ¢
forward and backward queues. When creating a channel (cf. rule R-MAKE), the forward channel is ini-
tially empty but the backward is not: it is initialized by a queue of length |c|, which corresponds to the
capacity of the channel (the channel is synchronous when capacity is 0). In order to account for the syn-
chronization power of channels, in addition to communicating a value, the queues are managed so that
“happened before” and “shadowed” knowledge are also exchanged between communicating partners.

See our technical report for a detailed description of the semantics [2].
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Table 2: Operational semantics: message passing and memory reads/writes

Contributions

e We define a novel semantics for weak memory with channel communication as synchronization
primitive;

e We prove that our proposed weak memory upholds the data-race freedom guarantee;

e We present our implementation in an executable semantics framework, which allows us to derive
an interpreter for programs in the target language.
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