
Joint Pre-Proceedings of the
Workshops Associated with
ESOCC 2017
Kyriakos Kritikos, Zoltán Ádám Mann, Claus Pahl,
Volker Stolz (Eds.)
Research report 471, 27 September, 2017

ISBN 978-82-7368-436-3
ISSN 0806-3036



Joint Pre-Proceedings of the Workshops Associated with ESOCC 2017

1



Joint Pre-Proceedings of the Workshops Associated with ESOCC 2017

Contents

Preface 3

CloudWays Workshop Papers
Engineering Cloud-based Applications: Towards an Application Lifecycle
Vasilios Andrikopoulos 5

A Cloud Computing Workflow for managing Oceanographic Data
Salma Allam, Antonio Galletta, Lorenzo Carnevale, Moulay Ali Bekri, Rachid
El Ouahbi, Massimo Villari 20

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage
Broker
Divyaa Manimaran Elango, Frank Fowley, Claus Pahl 33

Cloud-Native Databases: An Application Perspective
Josef Spillner, Giovanni Toffetti, Manuel Ramírez López 48

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance
Divyaa Manimaran Elango, Frank Fowley, Claus Pahl 63

TOSKER: Orchestrating applications with TOSCA and Docker
Antonio Brogi, Luca Rinaldi, Jacopo Soldani 75

BPM@Cloud Workshop Papers
Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level
Tenant Isolation
Majid Makki, Dimitri Van Landuyt, Wouter Joosen 91

CEP-based SLO Evaluation
Kyriakos Kritikos, Chrysostomos Zeginis, Andreas Paraboliasis, Dimitris Plex-
ousakis 106

Towards Business-to-IT Alignment in the Cloud
Kyriakos Kritikos, Emanuele Laurenzi, Knut Hinkelmann 121

2



Joint Pre-Proceedings of the Workshops Associated with ESOCC 2017

Preface

This volume contains the papers presented at the workshops associated with
the 6th European Conference on Service-Oriented and Cloud Computing, ES-
OCC 2017. The workshops were held in Oslo, Norway, on 27th September
2017. The workshops covered specific topics in service-oriented and cloud
computing-related domains:

• 3rd Intl. Workshop on Cloud Adoption and Migration
(CloudWays 2017)

• 1st Intl. Workshop on Business Process Management in the Cloud
(BPM@Cloud 2017)

All papers presented at the workshops were selected through a rigorous review
process, in which each submission was reviewed by at least three members of
the workshops’ program committees.

We as the workshop chairs would like to thank all authors for their submis-
sions, and the reviewers for their work.

For the organizers,
Volker Stolz (Høgskulen på Vestlandet / Universitetet i Oslo)

3



Joint Pre-Proceedings of the Workshops Associated with ESOCC 2017

CloudWays Workshop Papers

4



Engineering Cloud-based Applications:
Towards an Application Lifecycle

Vasilios Andrikopoulos

Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen, the Netherlands

v.andrikopoulos@rug.nl

Abstract. The adoption of cloud computing by organizations of all sizes
and types in the recent years has created multiple opportunities and
challenges for the development of software to be used in this environment.
In this work-in-progress paper, the focus is on the latter part, providing
a view on the main research challenges that are created for software
engineering by cloud computing. These challenges stem from the inherent
characteristics of the cloud computing paradigm, and require a multi-
dimensional approach to address them. Towards this goal, a lifecycle for
cloud-based applications is presented, as the foundation for further work
in the area.

Keywords: cloud computing, software engineering, cloud-based applications,
software lifecycle

1 Introduction

The adoption of cloud computing has increased dramatically since the introduction
of the term only roughly ten years ago — despite the fact that the technologies
underpinning the paradigm have been around for a while longer. It is not an
exaggeration to claim that in one way or another cloud computing o↵erings and
associated technologies are currently being used by the majority of software-
intensive enterprises. A report of the Thoughtworks Technology Advisory Board
back in May 20151, for example, claims that “Organizations have accepted that
“cloud” is the de-facto platform of the future, and the benefits and flexibility it
brings have ushered in a renaissance in software architecture.” From the thousand
professionals from across sectors participating to RightScale’s annual survey in
early 2017 [31], 95% are reporting that the organization they belong to is already
using or experimenting with the use of cloud computing.

Under the umbrella of the same term, however, there are multiple service
delivery and deployment models on o↵er, succinctly summarized by NIST’s widely
accepted definition of cloud computing [24]. The availability of these options,

1 Thoughtworks Tech Radar, May 2015: https://assets.thoughtworks.com/assets/
technology-radar-may-2015-en.pdf

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

5



2 Vasilios Andrikopoulos

in conjunction with the plethora of o↵erings by cloud providers like Amazon
Web Services (AWS), Microsoft Azure (MSA), and Google Compute Platform
(GCP), and software solutions for the deployment of private clouds such as the
ones from VMWware and OpenStack, create both opportunities and challenges
for software developers [4]. Even the process of selecting an appropriate provider
to run software on is an open research subject, with many of the issues identified
in [34] (e.g. lack of standardization in the QoS descriptions and lack of long term
performance prediction) still valid today. As such, there are still many issues
that need to be resolved with respect to how cloud computing is to be used for
software development.

At the same time, in the recent years the discourse on the best practices and
principles of software development, at least in the industry, has been a↵ected
significantly by the introduction of two movements that have a co-dependence
relation with cloud computing. The first one is the use of DevOps technologies
and processes in order to bridge the gap between development and operations
of software [8] in order to streamline software delivery and maintenance. The
adoption of Continuous Delivery/Integration (CD/CI) techniques with frame-
works like Jenkins2 used together with deployment automation tools like Chef3

or Ansible4 shortens the development cycle dramatically and produces synergy
with agile-oriented software development practices. Allowing for the management
of multiple software stacks running in partially isolated containers inside one
operating system as made popular by Docker5, is the logical extension of this
approach: each architectural component is developed, deployed, managed, and
updated in its own software stack, and therefore it can follow a life cycle that
is loosely coupled with the overall system evolution. This principle is made
even more prominent in the second of the movements relevant to the discussion,
i.e. microservices [27]. While there is an ongoing discussion in the academic
community related to the actual innovation of microservices in comparison to
Software-Oriented Architecture, it is important to notice how the notion of
microservices have integrated into practice the use of design patterns, that so far
have been mostly adopted at a much lower level (e.g. the Gang of Four book).
Entries on microservices in Martin Fowler’s blog6, a popular grey literature source
for practitioners and researchers provides many instances of this phenomenon.

In summary, therefore, the virtualization of resources and their o↵ering as
services, in conjunction with the DevOps movement, the containerization of
software stacks, and the use of microservices, have evolved the way that software
is developed, deployed, and managed over time. The key message of this paper
is that engineering software, and in particular software architecture, should
similarly evolve. For the purposes of scoping, the discussion is focused on how

2 Jenkinks: https://jenkins.io/
3 Chef: https://www.chef.io/
4 Ansible: https://www.ansible.com/
5 Docker: https://www.docker.com/
6 For example: Microservices, by James Lewis and Martin Fowler (March 2014): https:
//martinfowler.com/articles/microservices.html

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

6



Engineering Cloud-based Applications: Towards an Application Lifecycle 3

software engineering can change to incorporate cloud-related concepts by means of
introducing a cloud-based application lifecycle. In the absence of a widely accepted
definition of what constitutes one, and following the definition of service-based
applications discussed in [3], this paper uses a working definition of Cloud-based
applications (CBAs) as applications that rely on one or more cloud services in
order to be able to deliver their functionality to their users. CBAs therefore include
both cloud-enabled through migration [2] and cloud-native applications [21].

The rest of this paper is structured as follows: Section 2 identifies and presents
the most relevant challenges to cloud-based application engineering (definitely
not an exhaustive list). Section 3 transforms these challenges into a set of
requirements on lifecycle methodologies in this context. Consequently, Section 4
discusses a CBA lifecycle that aims to address these requirements as the basis for
future research. Finally, Section 5 compares the proposed lifecycle with related
approaches, and Section 6 concludes with a short summary and future work.

2 Major challenges

Following the NIST definition [24], cloud computing has the following essential
characteristics: (i) On-demand self-service: appropriate interfaces are o↵ered
to consumers to access resources (computational, storage, network, etc.) in
an automated manner. (ii) Broad network access: resources are accessed over
the network by heterogeneous clients. (iii) Resource pooling: service providers
are enforcing a multi-tenant model of sharing the o↵ered resources. (iv) Rapid
elasticity: the volume of accessed resources can be adjusted dynamically, by any
quantity and at any time. (v) Measured service: a metering mechanism is used
to ensure appropriate billing for the used resources in predefined periods of time.

The combinations of these characteristics has severe implications for the
software that is being developed in this environment. In the following we identify
four major challenges that arise due to these characteristics.

2.1 *aaS software model

The first major challenge stems from the fact that resources are o↵ered in the
Everything as a Service (*aaS) model, usually a�liated with the categorization
of delivery models into Infrastructure (IaaS), Platform (PaaS), and Software
as a Service (SaaS), also covered by the NIST definition. The *aaS model is
a natural outcome of the first two characteristics (i.e. on-demand self-service,
and broad network access) and in many cases manifests as sets of RESTful APIs
that are exposing cloud resources through relatively simple CRUD operations.
While there has been lots of work on the subject of engineering service-based
applications in the last 15 or so years, see for example [3], the very nature of
service orientation still poses particular di�culties when used as the model for
accessing resources. These can be attributed to the following:

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

7



4 Vasilios Andrikopoulos

Information hiding behind interfaces: exposing only the amount of information
that is absolutely necessary for clients to use a service is one of the fundamental
premises of service orientation [12]. However, this means that software developers
have to refer to documentation and help desks in order to understand the
boundary conditions and assumptions of consuming each resource.

Lack of control and observability over resource implementation: while the on-
demand self-service characteristic prescribes a degree of control over the consumed
resources by removing the need for administration on the part of the provider,
this control is in practice limited to the operations defined in the service API,
that for all practical purposes act as black box endpoints.

Distributed and heterogeneous environment: distribution transparency [33] is an
essential feature of o↵ered services, creating an impression of homogeneity and
opaqueness to software developers. Nevertheless, the operating environment is
fundamentally distributed, irrespective of the type of software developed on it
(distributed or not).

Evolution driven by 3rd parties: as with many other API publishers in the past,
cloud providers reserve the right to change their supported APIs at any point in
time — and they do so for various reasons. As such, therefore, the evolution of
software developed on these solutions is at least partially driven by the cloud
providers and beyond software developer control.

Lastly, it can also be argued that while it is indeed possible to build all kinds
of systems on top of cloud resources, it is consistent with the model that it is
o↵ered to design and implement them as services themselves. Doing so, however,
imposes its own challenges, as evidenced by the continuous research output of the
SOA community in the last two decades. The most thorny issue to deal with is
probably the design of the system as services itself; indicative of the complexity of
this issue is the fact that service design is identified as a major research question
in both the SOA research roadmap [30], and its revision ten years later [10].
Further work towards this direction is therefore required.

2.2 Multi-tenancy of resources

One of the most di�cult challenges to address, especially for performance-sensitive
systems, is that of the shared nature of cloud resources due to its resource pooling
characteristic. In a sense it is exactly this characteristic which makes rapid
elasticity possible, while allowing for resource prices to be o↵ered at very low
levels, as also discussed by the next challenge. In essence, multiple tenants sharing
the same infrastructure enable economies of scale for service providers and allow
for higher utilization on the provider side through smart scheduling of large
volumes of work load.

This sharing of resources, however, leads at the same time to performance
variability that is external to the application itself, and as such outside of the

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

8



Engineering Cloud-based Applications: Towards an Application Lifecycle 5

control of the system developer. The inherent variance of cloud o↵erings has
been documented in a series of publications: in [22], for example, large deviations
are reported for similar in specification o↵erings across di↵erent providers, while
significant variance can be observed in the same provider and o↵ering within the
same day and week [32] (and even more so across di↵erent availability zones), or
even over the period of a year for the same o↵ering [17]. Benchmarking cloud
applications is faced with multiple challenges, see for example [9], and [14], and
is not readily available as a tool for software developers to incorporate in their
toolset. Cloud monitoring [1] is therefore the most common way to check and
potentially address detrimental performance variation of the consumed resources.

2.3 Utility computing

One of the main reasons for the wide adoption of cloud computing is the transfer
of costs from the capital to operating expenses through its “pay as you go”
model [6], enabled by its measured service characteristic. In this sense, cloud
computing can be seen as an implementation of the utility computing vision [39].
Access to computational resources in this context is enabled in a utility-oriented
model, and results in the illusion of virtually infinite resources being available
— assuming of course a su�ciently large budget [6]. At the same time, the use
of economies of scale on behalf of the service providers, and the environment of
intense competition for a very lucrative market, result into continuously decreasing
prices for the o↵ered resources. This creates the dynamics of a “race to zero”
phenomenon, especially in storage o↵erings7. Even if the provider prices are not
lower in comparison with operating one’s own data center as e.g. in the (already
outdated) analysis of [37], there are boundary conditions that still make the use of
cloud solutions favorable to the alternative [38]. The key is in the rapid elasticity
characteristic which allows for quick scaling to cope with dynamic demand,
resulting in compensation of potentially incurred losses throughout relatively
stable demand periods by means of serving requests that would otherwise be
over capacity and therefore resulting in loss of revenue.

Nevertheless, cheap is not the same as free of charge, and costs for successful
cloud-based companies might run so high that result in their profit margin
shrinking to the point of necessitating the migration to their own data centers
instead, as documented by the case of Dropbox8, a company that was famous
for running all their infrastructure on Amazon Web Services until that point.
Rightscale’s 2017 State of the Cloud survey [31] reports two stark findings that
are relevant to this discussion: first, mature adopters of the technology are more
concerned with cost management in comparison to beginners to it; second, only
a minority of companies actually take measures to minimize unnecessary costs
(e.g. VMs unnecessarily being active). Some notion of costs control is therefore
clearly necessary.

7 See for example: http://www.computerweekly.com/microscope/news/4500271376/
Whatever-the-cost-may-be-Cloud-price-war-continues

8 See https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-

cloud-empire/

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

9



6 Vasilios Andrikopoulos

2.4 Distributed topology

There is no escaping the fact that systems developed in the cloud environment
are essentially distributed, and they need to be designed, implemented, and
operated as such [11]. Distribution in this case is both spatial and logical, but
distribution transparency [33] is partially violated when e.g. availability zones
are used for the deployment of applications. On top of this, there are multiple
o↵erings by service providers that can be used as alternatives to application
components [4] taking advantage of the on-demand self service characteristic.
For example, Database as a Services (DBaaS) o↵erings can replace completely
the data layer of an application, providing native scaling mechanisms to cope
with increasing demand. An illustration of the range of possibilities available to
software architects is the case of Netflix, which combines AWS EC2, S3, EBS
and other o↵erings to run in a cloud-only environment9.

Adding to the size of the design space is the capability to use containers as the
means for enabling portability of application components and work loads across
cloud providers, essentially expanding on the characteristic of resource pooling.
In conjunction with a cloud orchestration layer, containers allow for a series
of benefits like reduced (infrastructure) complexity, automation of portability,
better governance and security management, transparent geographical domain-
aware distribution, and the ability to automate services that o↵er policy-based
optimization and self-configuration [23]. As a result, there are many possible
system configuration options that are optimal under di↵erent dimensions [4], e.g.
cost versus performance, creating exceptional challenges to software architects in
identifying the best solution for their needs.

3 Requirements on the Solution Space

From the discussion above it becomes quickly obvious that addressing these
challenges is a multi-faceted undertaking, and that their nature requires them
to be considered throughout the lifecycle of software systems operating in the
Cloud. The following constraints are, as a result, imposed on possible solutions
for engineering cloud-based applications (CBAs):

1. Irrespective of the purpose and type of software under consideration, cloud-
based application development should understand and incorporate service-
orientation concepts. In practice, this means that resources are accessed
through programmatic interfaces, which in turn favors the Infrastructure
as a Code approach [16] that homogenizes the way that the software itself
and its supporting infrastructure is managed. Across similar lines, cloud
service composition [18], which deals with the selection and aggregation of
cloud services in order to support software, needs to be considered on equal
grounds with (software) service composition [30] which delivers functionality
by combining independent services.

9 Netflix Global Cloud Architecture: https://www.slideshare.net/adrianco/

netflix-global-cloud, slide 26

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

10



Engineering Cloud-based Applications: Towards an Application Lifecycle 7

2. System design should incorporate the notion of dynamic topology. Topology
here refers to the software and infrastructure stack required to operate
the software artifacts under consideration, including e.g. the middleware
associated with them. The system topology is prone to change over time
due to changes a) in the system architecture, and b) refactoring of the
infrastructure that supports the system. This might also include incorporation
of new services by the same cloud provider or migration to another provider
and/or deployment model. In this sense, the resolution of system architecture
into concrete deployment models should rely on the generation of viable
topologies through e.g. graph transformations, as per [4], instead of explicit
modeling of alternatives. This is a consequence of the very large amount
of available alternatives during design when considering all the di↵erent
configurations available for each service type.

3. Self-* characteristics (e.g. self-management, -adaptation, -healing, -configura-
tion, etc.) are necessary to deal with the multi-tenancy induced performance
variability and its impact to the QoS of cloud-based applications. The intro-
duction of a MAPE-K (Monitor, Analyse, Plan, and Execute over a Knowledge
base) feedback loop [20] is a necessary and very common solution at this level
as the means to implement control [29], but the di�culty is in evaluating
the impact of individual cloud services, e.g. a DBaaS solution, to overall
performance. Furthermore, the connection between run-time observations
and design-time predictions is not su�ciently covered by the state of the
art [15], and further work is necessary towards this direction. End-to-end
performance measurement is potentially more important — alternative viable
topologies have to be evaluated after all against their actual e↵ectiveness in
generating revenue — and in case of software delivered as services relatively
easy to implement.

4. An awareness of consumed resources on self-management level during both
development and operation of the system is essential. Cost models that cover
the various deployment models, e.g. an extension of the model for hybrid
clouds discussed in [19], should be used for this purpose. However, such
analysis cannot be only performed o✏ine. Instead, design- and run-time cost
analysis should complement each other [25], resulting in cost models that are
dynamically updated by actual billing data received from the cloud provider.

In the following we introduce a lifecycle model for cloud-based applications
that incorporates the constraints discussed above as the means for defining in
the future a holistic framework for engineering cloud-based applications. For this
purpose the lifecycle model of service-based applications as discussed in [3] is
used as the inspiration for this work.

4 Cloud-based Applications Lifecyle

4.1 The Phases of the Lifecycle

Figure 1 illustrates the proposed lifecycle of CBAs. Before proceeding with
explaining the stages of the lifecycle, it needs to be pointed out that for the

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

11



8 Vasilios Andrikopoulos

SLA & 
Budget

VMaaS

Component Z 
& Middleware DBVMaaS

Component Y 
& Middleware

Service A

Service B
Service D

Service EService C

App

Tier 3Tier 1 Tier 2

VMaaS

Component X

VMaaS

Component Y 
& Middleware

DBaaS

DB 
Node

DB 
Node

DB 
Master

VMaaS

Component Y 
& Middleware

VMaaS

Component X

VMaaS

Component Y 
& Middleware

VMaaS

Component Z 
& Middleware DB

Service 
Portfolio a-

Topology

Viable 
Topology 
Alternative

Viable 
Topology 

Alternative

SLA & 
Budget

Cost & 
Performance 

Model

Cost & 
Performance 

Model

Fig. 1. The Lifecycle of Cloud-based Applications

purposes of this discussion, there is no clear design- and run-time (or development
and operation, respectively) distinction, but more of a spectrum of activities
spanning between them. The everything as a service and dynamic topology
challenges a↵ect more the one end (design), while performance variability and
cost awareness more the other (run time). However it is impractical to attempt
to assign them to specific stages of the lifecycle. The proposed CBA lifecycle
(as shown in the figure) reflects this by intentionally not identifying when the
transitions between stages are to take place, but only the transition relations
between them. In this respect, the presented lifecycle is in accordance with the
main principles of the DevOps movement [8] which unifies the di↵erent stages of
software lifecycle.

Looking now at the figure, and starting from its top left part, the highest
stage of the lifecycle consists of the service portfolio for the application, i.e. the
collection of services that implement the functionalities o↵ered by the application.
Such services could be composed out of other services, belonging either to
the same portfolio, or being external to it, as per the well established SOA
practice [30]. Following the same principles, the service portfolio is the outcome
of a service identification phase that connects higher level requirements and
business operations into functionalities to be exposed by the application as
services. In terms of how these services are mapped into software components and
its supporting middleware, a decomposition into structural tiers can be applied
using one of the methodologies discussed in [3]. In principle, non-application
specific software components should be excluded from this process, resulting into
a system architecture expressed as a set of ↵-topologies [4] (top center of Fig. 1).

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

12



Engineering Cloud-based Applications: Towards an Application Lifecycle 9

The intentional exclusion of the underlying software stack from this stage (except
where it cannot be avoided as e.g. in the case of customized middleware that
needs to be rolled out together with the application) allows for flexibility in the
transition to the next stage, that of viable topology alternatives, each one of which
represent the whole software stack and its relation to the application components
(bottom half of Fig. 1). Viable topology models encapsulate the various types
of cloud services (e.g. VM or DB as a Service in the figure) that are part of the
infrastructure supporting the software stack of the application.

As discussed above, and due to the numerous cloud service o↵erings currently
available, a large number of viable topology alternatives potentially exist for
each application. Selecting between them can be, and usually is interpreted as
an optimization problem for which there are many techniques available (see [4]
for further discussion). However, an alternative approach would be to look
into this situation as an exploratory search problem instead. In this context,
identifying a unique optimal solution in advance would be of not such interest
as in transitioning between di↵erent alternative solutions in order to identify
the optimal for the current conditions. For this purpose, the overall consumer
utility and revenue generated by the viable topology currently used needs to
be evaluated by comparing the continuously updated cost and performance
models for each viable topology against the Service Level Agreements (SLAs)
and budget associated with the service portfolio by the application owners. This
approach requires, of course, that costs for the transition between viable topology
models are negligible in comparison with the overall revenue generated by the
application. Using a microservices-based approach for the decomposition of the
service portfolio into isolated sub-systems before generating viable topologies
would actually minimize such costs, since the finer granularity of each system
tier would mean less components to consider (and potentially migrate) on the
topology level. Alternatively, if this transition is deemed too costly and/or if
the search space of viable topology alternatives has been exhausted then it is
meaningful to revert to the previous stages of the lifecycle and either decompose
the service portfolio as di↵erent ↵-topologies, or even refactor the service portfolio
itself, repeating the cycle as necessary, as discussed in the following.

In order to add the necessary self-* mechanisms that regulate decision making
during system operation a distributed MAPE-K model can be used [20], as
discussed in Section 3. Considering the lifecycle of Fig. 1, however, it becomes
clear that a hierarchical organization of controllers is better fitting. On the bottom
level, it is possible to view the architectural components of each viable topology
as its own autonomic element. However, all such elements need to coordinate
with a controller on the level of the viable topology which is responsible for
changes inside it. Another level of controllers is necessary to be added at the
level of ↵-topologies when more than one viable topologies are active for a given
decomposition. A similar process is repeated to the level of the service portfolio,
and is used in order to trigger the transitions between stages of the lifecycle. Since
the degree of automation that is feasible and available can vary among these
transitions, it might become necessary to involve architects and system designers

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

13



10 Vasilios Andrikopoulos

M

A

P

E K

Identify
Services

Service
Portfolio

Decompose into 
Architecture

a-Topology

Generate 
AlternativeViable TopologyDeploy & 

Operate

M

A

P

E K

M

A

P

E K
M

A

P

E K

Service 
Identification

Service 
Decomposition

Topology 
Generation

Deployment & 
Operation

Fig. 2. The Phases of the CBA Lifecycle, with Activities Implemented as MAPE-K
Loops and Information Flowing Between them

for this purpose. As such, design activities could be triggered by operations, as
much as operational models could be derived during development.

Figure 2 summarizes and illustrates this discussion by identifying the concrete
phases of the proposed lifecycle (Service Identification, Service Decomposition,
Topology Generation, and Deployment & Operation) and the activities that take
place in each phase (Identify Services, Decompose into Architecture, Generate
Alternative, and Deploy & Operate, respectively). Each of the activities in
the figure is implemented by a MAPE-K controller which is responsible for
monitoring the situation at its level (e.g. ↵-topology), analyzing its behavior (is
the application within its SLA and budget constraints?), planning for an action if
necessary (deciding whether to transition into a new viable topology by moving
into the Generate Alternative phase, or into a new alpha-topology by escalating
the decision upwards into the Service Identification controller), and executing the
decided action. Rules for the decision making, and the outcomes of past decisions
are persisted in the knowledge base component of the controller at each level in
order to learn over time about the e↵ectiveness of each decision in a given context.
Figure 2 shows the flow of information between the controllers of each level as

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

14



Engineering Cloud-based Applications: Towards an Application Lifecycle 11

App

DatabaseFront-end Back-end

App Server
App Server

Load 
Balancer

App Server

DB 
Node

DB 
Node

DB 
Master

App Server DB

App Server
App Server

Load 
Balancer

Web Server

App Server

App Server DB

App Server
App Server

BuyProduct
PrepDelivery

RegisterSale

GetInventoryListProducts

App

Back-endFront-end

Database Database

Fig. 3. The Lifecycle of an Example CBA (Web Shop)

dashed arrows between the loops. Bottom-level controllers (i.e. the controllers of
the components in a viable topology in the Deployment & Operation phase) can
only decide to escalate the need for an adaptive action upwards in the hierarchy,
while top-level controllers (i.e. the controller at the level of Service Identification)
can only trigger transitions into a lower level through the next phase.

4.2 An Example Instantiation

Figure 3 shows an example instantiation of the proposed lifecycle in the case
of a Web Shop application. The service portfolio for the Web Shop consists
(among others) of two client-facing services: BuyProduct and ListProducts, the
former of which is composed out of services RegisterSale and PrepDelivery, while
the latter one is using the internal service GetInventory. The BuyProduct service
can be decomposed into a classic three-tier architecture, resulting in the top
↵-topology in the figure; for ListProducts a simpler two-tier architecture with
separate (eventually synchronizing) databases is used. Staying with the first
↵-topology we can see that there are at least two alternative viable topologies to
consider: in the first a DBaaS solution like AWS RDS10 is used for the Database
tier, operating in a cluster mode for scalability purposes. The front- and back-end
are implemented as a web application deployed inside an App Server like JBoss11

10 Amazon Relational Database Service: https://aws.amazon.com/rds/
11 JBoss: http://www.jboss.org/

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

15



12 Vasilios Andrikopoulos

that is scaled horizontally by running inside multiple VMs in a service like AWS
EC212. A Load Balancer solution is deployed inside its own VM for tra�c routing.
An alternative viable topology for the Web Shop consists of deploying the front-
end in its own dedicated VM cluster, decoupling the stateless functionalities of the
back-end and deploying them separately in their own stack, and bundling the rest
of the back-end into VMs combining application servers and database instances
that replace the DBaaS solution (but which still need some logic to synchronize).
Such transformations require of course much more detailed ↵-topologies than the
examples in Fig. 3 that are kept to a minimum for illustration purposes, but are
nevertheless possible to be largely automated given an appropriate knowledge
base of reusable software stacks expressed e.g. as �-topologies [4].

4.3 Evaluation & Discussion

Looking at the requirements identified in Section 3, it can be seen that the
proposed lifecycle satisfies indeed them by: (i) seamlessly integrating service-ori-
entation concepts both at the level of the artifacts that it deals with (applications
as service portfolios), and at the level of cloud services used as the underlying
resources for the deployment and operation of an application; (ii) building around
the dynamic nature of application topologies by decoupling their ↵-topology from
the actual viable topology and relying on the generation of the latter on demand
to cope with changes in the perceived behavior of the application through the
hierarchy of MAPE-K controllers; (iii) implementing the foreseen self-* char-
acteristics by means of the same controllers; and finally, (iv) by introducing
awareness of the consumed resources across the di↵erent phases of the lifecycle.
However, validation of the lifecycle in more complex scenarios than the example
presented in the previous through e.g. field studies, is the subject of future work
since it is related with the development of the necessary tooling to support it
(see Section 6). Furthermore, and in terms of limitations to the presented work
there are two main issues not covered by the discussion: quality assurance for the
developed software, and security and privacy. Both of these issues are in practice
cross-cutting concerns running in parallel to the lifecycle, and while it can be
argued that they could therefore be considered external to it, they nevertheless
need to be examined further in future works.

5 Related Work

There are a number of mature works in the literature focusing on the complete
lifecycle of cloud-based applications that are related to the lifecycle proposed
here. In their majority however they address only parts of the requirements
discussed in Section 3. For example, the Cloud Application Lifecycle Model
(CALM) and its supporting framework is introduced in [35] without a provision
for self-* characteristics or cost awareness. The same holds for [26] that discusses

12 Amazon EC2: https://aws.amazon.com/ec2/

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

16



Engineering Cloud-based Applications: Towards an Application Lifecycle 13

a cloud application lifecycle from a service governance perspective, and for the
lifecycle presented in [28] which builds around the notion of blueprints as abstract
templates for services to be published in application marketplaces. The work
in [36] uses a centralized repository as the means to manage knowledge related
to the phases of the lifecycle, but without the notion of cost awareness.

In further related work, the MODAClouds project relies on a Model-Driven
Development-based approach to support the lifecycle of cloud-based applica-
tions [5]. The project builds on the models@runtime architectural pattern to
connect run-time and design-time [13] and provides an IDE for the development,
provisioning, deployment, and adaptation of CBAs. Nevertheless, the CBA lifecy-
cle itself is only implicitly defined by this approach. The work in [7], part of the
PaaSage project, discusses a service-based application lifecycle that emphasizes
a multi-cloud deployment model. When compared to this work, the approach
discussed in [7] attempts to (dynamically) optimize provider selection considering
also monitoring data without however taking into account the possibility to
re-distribute the application as part of this process.

6 Conclusions & Outlook

In summary, this work is based on the observation that the adoption of cloud
computing, in conjunction with the advancements in software development in
the form of DevOps, container-based software management, and microservices,
requires an evoluationary step in software engineering practices, and especially in
the area of software architecture. The challenges that drive this evolution are the
everything as a service model in which cloud resources are o↵ered, the multi-tenant
environment created by resource pooling, the need to incorporate cost awareness
due to the utility-based cost model for cloud computing, and the abundance of
available o↵erings that can easily and e�ciently replace parts of the software
stack of each application. These challenges transform the lifecycle of cloud-based
applications into a set of loops that transition between the set of application
functionalities encapsulated as services, abstractly defined but application-specific
architectural models, and software stack models that seamlessly incorporate cloud
services. These transitions are triggered by controllers that coordinate within
and across the various stages of the lifecycle.

Future work focuses on developing the methodologies and instrumentation
necessary in order to support the proposed lifecycle, with a refinement of its
various stages as an essential part of this process. A complete IDE in the manner
discussed by the MODAClouds approach [5] is identified as the means to achieve
this. Such an environment would further allow for field study-based validation
of the lifecycle through collaboration with the industry. The development and
integration with the IDE of the MAPE-K controllers as the implementation of
the lifecycle phases-related activities is a critical component towards this e↵ort.

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

17



14 Vasilios Andrikopoulos

References

1. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: A survey.
Computer Networks 57(9), 2093–2115 (2013)

2. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to Adapt Applications
for the Cloud Environment. Computing 95(6), 493–535 (2013)

3. Andrikopoulos, V., Bucchiarone, A., Di Nitto, E., Kazhamiakin, R., et al.: Service
engineering, pp. 271–337. Springer (2010)

4. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal Distribu-
tion of Applications in the Cloud. In: Jarke, M., Mylopoulos, J., Quix, C. (eds.)
Proceedings of the 26th Conference on Advanced Information Systems Engineering
(CAiSE 2014). pp. 75–90. Lecture Notes in Computer Science (LNCS), Springer
(2014)

5. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., et al.: Modaclouds: A model-
driven approach for the design and execution of applications on multiple clouds. In:
Proceedings of the 4th International Workshop on Modeling in Software Engineering.
pp. 50–56. MiSE ’12, IEEE Press, Piscataway, NJ, USA (2012)

6. Armbrust, M., Fox, A., Gri�th, R., Joseph, A.D., et al.: Above the clouds: A berkeley
view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley (Feb 2009), http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2009/EECS-2009-28.html

7. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., et al.: Lifecycle man-
agement of service-based applications on multi-clouds: a research roadmap. In:
Proceedings of the 2013 international workshop on Multi-cloud applications and
federated clouds. pp. 13–20. ACM (2013)

8. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional (2015)

9. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?:
towards a benchmark for the cloud. In: Proceedings of the Second International
Workshop on Testing Database Systems. p. 9. ACM (2009)

10. Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q.Z., et al.: A service computing
manifesto: the next 10 years. Communications of the ACM 60(4), 64–72 (2017)

11. Cavage, M.: There’s just no getting around it: you’re building a distributed system.
Queue 11(4), 30 (2013)

12. Erl, T.: SOA: principles of service design. Prentice Hall Press (2007)
13. Ferry, N., Solberg, A.: Models@ runtime for continuous design and deployment. In:

Model-Driven Development and Operation of Multi-Cloud Applications, pp. 81–94.
Springer (2017)

14. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., et al.: Benchmarking in the cloud:
What it should, can, and cannot be. In: Technology Conference on Performance
Evaluation and Benchmarking. pp. 173–188. Springer (2012)

15. Heinrich, R., Schmieders, E., Jung, R., Rostami, K., et al.: Integrating run-time
observations and design component models for cloud system analysis. In: Proceedings
of the 9th Workshop on Models@run.time. vol. 1270, pp. 41–46. CEUR (2014)

16. Hüttermann, M.: Infrastructure as Code, pp. 135–156. Apress (2012)
17. Iosup, A., Yigitbasi, N., Epema, D.: On the Performance Variability of Production

Cloud Services. In: Cluster, Cloud and Grid Computing (CCGrid), 2011 11th
IEEE/ACM International Symposium on. pp. 104–113. IEEE (2011)

18. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: A
systematic literature review. Expert Systems with Applications 41(8), 3809–3824
(2014)

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

18



Engineering Cloud-based Applications: Towards an Application Lifecycle 15

19. Kashef, M.M., Altmann, J.: A cost model for hybrid clouds. In: International
Workshop on Grid Economics and Business Models. pp. 46–60. Springer (2011)

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

21. Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years
of cloud computing-a systematic mapping study. Journal of Systems and Software
126, 1–16 (2017)

22. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: Comparing Public Cloud
Providers. In: Proceedings of the 10th Annual Conference on Internet Measurement.
pp. 1–14. IMC ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.
1145/1879141.1879143

23. Linthicum, D.S.: Moving to autonomous and self-migrating containers for cloud
applications. IEEE Cloud Computing 3(6), 6–9 (2016)

24. Mell, P., Grance, T., et al.: The NIST definition of cloud computing. NIST Special
Publication 800-145 (2011), http://dx.doi.org/10.6028/NIST.SP.800-145

25. Moldovan, D., Truong, H.L., Dustdar, S.: Cost-aware scalability of applications in
public clouds. In: Cloud Engineering (IC2E), 2016 IEEE International Conference
on. pp. 79–88. IEEE (2016)

26. Munteanu, V.I., Fortis, T.F., Negru, V.: Service lifecycle in the cloud environment.
In: Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2012
14th International Symposium on. pp. 457–464. IEEE (2012)

27. Newman, S.: Building microservices. O’Reilly Media, Inc. (2015)
28. Nguyen, D.K., Lelli, F., Papazoglou, M.P., Van Den Heuvel, W.J.: Blueprinting

approach in support of cloud computing. Future Internet 4(1), 322–346 (2012)
29. Pahl, C., Jamshidi, P.: Software architecture for the cloud–a roadmap towards

control-theoretic, model-based cloud architecture. In: European Conference on
Software Architecture. pp. 212–220. Springer (2015)

30. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. Computer 40(11), 38–45 (2007)

31. RightScale: RightScale 2017 State of the Cloud Report (2017), https://www.

rightscale.com/lp/state-of-the-cloud

32. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements in the cloud:
observing, analyzing, and reducing variance. Proceedings of the VLDB Endowment
3(1-2), 460–471 (2010)

33. van Steen, M., Tanenbaum, A.S.: A brief introduction to distributed systems.
Computing 98(10), 967–1009 (2016)

34. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection:
State-of-the-art and future research directions. Journal of Network and Computer
Applications 45, 134–150 (2014)

35. Tang, K., Zhang, J.M., Feng, C.H.: Application centric lifecycle framework in cloud.
In: e-Business Engineering (ICEBE), 2011 IEEE 8th International Conference on.
pp. 329–334. IEEE (2011)

36. Tran, H.T., Feuerlicht, G.: Service repository for cloud service consumer life cycle
management. In: European Conference on Service-Oriented and Cloud Computing.
pp. 171–180. Springer (2015)

37. Walker, E.: The Real Cost of a CPU Hour. Computer 42(4), 35–41 (2009)
38. Weinman, J.: Cloudonomics: a rigorous approach to cloud benefit quantification. J.

Software Technol 14(4), 10–18 (2011)
39. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research

challenges. Journal of Internet Services and Applications 1(1), 7–18 (2010)

Engineering Cloud-based Applications: Towards an Application Lifecycle — CloudWays

19



A Cloud Computing Workflow for managing
Oceanographic Data

Salma Allam1, Antonino Galletta2, Lorenzo Carnevale2, Moulay Ali Bekri1, Rachid El
Ouahbi1 and Massimo Villari2

(1) Lab MIASH & Lab MACS, Department of Computer Science & Mathematics Faulty of
Sciences, University Moulay Ismail, Meknes, Morocco

allam.salma@gmail.com,ali.bekri@gmail.com,elouahbi@yahoo.fr
(2) Department of Engineering, University of Messina, Messina, Italy -

{angalletta,lcarnevale,mvillari}@unime.it

Abstract. Ocean data management plays an important role in the oceanographic
problems, such as ocean acidification. These data, having different physical, bio-
logical and chemical nature, are collected from all seas and oceans of the world,
generating an international networks for standardizing data formats and facilitat-
ing global databases exchange. Cloud computing is therefore the best candidate
for oceanographic data migration on a distributed and scalable platform, able to
help researchers for performing future predictive analysis. In this paper, we pro-
pose a new Cloud based workflow solution for storing oceanographic data and
ensuring a good user experience about the geographical data visualization. Ex-
periments prove the goodness of the proposed system in terms of performance.

Key words: Oceanography, Cloud Computing, Data Collection, Data Management,
Data Migration, NoSQL, Big Data

1.1 Introduction

Ocean Data management is a current challenge because both of ocean specific terminol-
ogy diversity (physio-chemical parameters, sensor type, units of measures, conditions
of measures, etc.) and of huge volume of ocean data collected from several international
projects. The last aim to control the ocean acidification phenomena, an emerging global
problem related to the seawater CO2 rate [1] that negatively affects the environment.
Therefore, scientific community was thinking about software for calculating inorganic
seawater carbon in order to track the evolution of CO2 in the oceans.

However, traditional desktop or web application can not provide the functionalities
required by similar problem. Indeed, storing and processing a big volumes of data needs
availability, reliability and scalability. For this purpose, the best choice for this kind of
application is Cloud Computing, which delivers the resources for managing efficiently
the collected data.

The goal of this scientific work follows the previous one [2]. More specifically, in
this paper we planned to improve scalability and user experience of the Web Applica-
tion, used for visualizing oceanographic data, already developed. For this purpose, here

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

20



2 Salma Allam et al.

we analyzed the oceanographic data contest in order to design a Cloud workflow for
migrating data from online databases to a distributed system able to enable future pre-
dictive analysis. Thus, we designed a data acquisition and integration workflow through
a Cloud Storage approach which use a more recommended NoSQL solution for success-
fully managing semi-structured data and retrieving them for future seawater’s acidifica-
tion predictive analysis.

The rest of the paper is organized as follows. Related Works are described in the
section 1.2. In Section 1.3, we discussed the material used in this scientific work, from
data source up to main oceanographic data issues. The Section 1.4 explains the Cloud
approach used in order to migrate oceanographic data from sources to Cloud Storage,
whereas in Section 1.5 we discussed the outcomes’ experiments. Finally, the Section
1.6 concludes the paper with the lights for the future.

1.2 Related Work

The most popular oceanographic data visualization software is the Ocean Data View
(ODV). According to R. Schlitzer [3], ODV is a software used for the interactive ex-
ploration, analysis and visualization of oceanographic and other geo-referenced profile,
time-series, and trajectory or sequence data. It displays original data points or gridded
fields based on the original data and supports different data formats. ODV displays data
on different views representing it in a global map that integrates the gridding algorithms
[4] based software, called DIVA [5], in order to grid elements in the map for performing
interpolation. Moreover, it allows to select one data source by entering the outer coor-
dinates, considering the result as a separate small collection. In addition, ODV allows
to select features for drawing one or more specific diagrams in order to compare these.

A software for 3D visualization has been proposed by W. Ware & al. [6]. The rep-
resentation of that requires a user visual stimulation and allows them to compare two or
more locations [7].

On the other hand, in recent time, the scientific community has started an inves-
tigation about atmospheric and oceanographic research using the Cloud Computing
paradigm [8]. In order to proof that, in [9], the author reported a survey for discussing
the progress made by Cloud in the oceanographic challenges. These include effective
discovery, organization, analysis and visualization of large amounts of data. In [10], the
authors reported “the outcomes of an NSF-funded project that developed a geospatial
cyberinfrastructure to support atmospheric research”. Specifically, they provided sev-
eral modules for covering the aforementioned challenges in order to “develop an online,
collaborative scientific analysis system for atmospheric science”. In [11], instead, the
authors described the LiveOcean project, which aims to mitigate “the financial impact
of ocean acidification on the shellfish industry in the Pacific Northwest of the United
States”. The authorts builded this system on Microsoft Azure Cloud Platform high-
lighting the modularity as most importante theme.

Other important aspect is the management of the sensors designated for gathering
row data. Indeed, increasing the number of data also the oceanographic context entries
in the Big Data problem and specific solutions, such as [12] and [13], are useful for be
inspired.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

21



1 Oceanographic Data in Cloud Computing 3

Our approach aims to go over the [3], [4], [5], [6] and [7] solutions, proposing a
Cloud Computing scenario in order to provide for Big Data coming into the oceano-
graphic context.

Cloud Computing is a very hot topic in scientific community, it raises challenges in
research fields as described in [14], [15], [16] and [17]. Most of the works are focused
on the study and realization of innovative models that allows the collaboration among
different Cloud providers focusing on various aspects of the federation. New trends in
scientific work aim to adopt the Federation for new interesting scenarios: IoT, Edge,
Cloud and Osmotic Computing [18].

1.3 Material

The following section describes the material used for this scientific work, highlighting
the data structure and discussing the main challenges and issues.

1.3.1 Data Source

Data used in this scientific work came from the Carbon Dioxide Information Analy-
sis Center (CDIAC), which is considered the first information analysis center for the
oceanic parameters [19]. It provides an important climate-change database center orga-
nized as showed in the Figure 1.1.

In particular, with reference to the figure 1.1, it is possible to notice the ODVServer
zone, that represents the data sources selected in our study. Data are stored into rela-
tional databases, it is possible to export them using the comma separated value (CSV)
format. In particular the ODVServer Data System is composed by three databases:

1. the GLobal Ocean Data Analysis Project (GLODAP) which gathers unified dataset
for determining the ”global distributions of both natural and anthropogenic inor-
ganic carbon, such as radiocarbon” [20];

2. the PACIFic ocean Interior CArbon (PACIFICA) database that gathers ”data syn-
thesis of ocean interior carbon and its related parameters in the Pacific Ocean”
[21];

3. the CARbon dioxide IN the Atlantic Ocean (CARINA) database which gathers
”data set of open ocean subsurface measurements for biogeochemical investiga-
tions” [22].

Other data sources (SOCAT, CORILIOS CORA, JGOFS, eWOCE, LDEO and CLI-
VAR) are out of the scope of this paper and will be treated in future works.

1.3.2 Data Structure

Data collected in the aforementioned databases have a common structure explained in
the following:

– Time data: Month, Day, Year;
– Location data: Longitude, Latitude, Depth;

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

22



4 Salma Allam et al.

Fig. 1.1. CDIAC Data Center

– Physical & Chemical data: Section, Station, Cruise, BottomDepth, BottleNum-
ber, Cast, Salinity, cdtSalinity, Oxygen, Nitrate, Nitrite, Silicate, Phosphate, CFC11,
CFC12, CFC113, TCO2, Alkalinity, pCO2, pHSWS25, pHSWS25 Temp, Anthro-
pogenicCO2, DOC, TOC, DeltaC14, DeltaC13, H3, DeltaH3, He, C14err, H3err,
DeltaH3err, He err, CCl4, SF6, AOU, pCFC11, CFC11Age, pCFC12, pCFC113,
pCCl4, pSF6, CFC12Age, PotentialAlkalinity, ConventionalRadiocarbonAge, Natu-
ralC14, bkgc14e, BombC14, BombC14atom, NaturalC14atom, PotTemperature, Sig-
maTheta, Sigma1, Sigma2, Sigma3, Sigma4, bf, sf, cdtsf, of, no3f, no2f, sif, po4f,
cfc11f, cfc12f, cfc113f, tco2f, alkf, pco2f, phsws25f, aco2f, docf, tocf, c14f, c13f,
h3f, dh3f, hef, ccl4f, sf6f, aouf, palkf, bkgc14f, bombc14f;

– Environmental data: Pressure, Temperature.

Data are collected according to the specific oceanographic region. Specifically, each
region is composed by a set of sections that contain several stations geographically
located. For each of them, there are more than one record depending on the depth
variation. The Figure 1.2 represents a hierarchical overview of the entire dataset just
described.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

23



1 Oceanographic Data in Cloud Computing 5

Fig. 1.2. Hierarchical multivalued attributes. Here P1, P2, ... , P90 denote Physical & chemical
data.

1.3.3 Challenges and Issues of Oceanographic Data

The CDIAC oceanographic data have the ‘Cruise/Section-Station-Depth’ form. Such
data are in relationships with time and space and archive all information about how,
when and where data were stored, as well as type and nature of available data. Thus,
it provides a conceptual overview of ocean data structure that should be useful in data
management.

In ocean data, the dimensions are normally recorded as ‘date/time, latitude, lon-
gitude, and depth’ [23]. By associating latitude and longitude in location, the model
will be ’date/time, location, and depth’. Unfortunately, data provided by the GLODAP,
PACIFICA and CARINA databases do not have the data/time field in the ‘dd/mm/yy
hour:minute:second’ form, but only in the ‘dd/mm/yy’ form. Therefore, the model be-
comes ‘data, location, depth’. For this purpose, it is difficult to treat these data as time
series.

Referring to the TLZ model [23], there are eight possible relationships, as reported
in the table 1.1.

We also noted that the geographical distance and depth gauge is not periodic among
samples, i.e the Figure 1.3 shows that the distance among stations is not the same and
the stations depth is also different. More specifically, the data gauge on different depth
is not uniform throughout the sample collection process.

Thus, the main challenge was to manage these data, in order to facilitate future
predictive analysis and query them in a flexible way.

1.4 Methodology

As mentioned in the Section 1.1, this work aimed to improve the previous one [2]
through the Cloud Computing utilization. Specifically, the Sun/Oracle’s JEE-based

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

24



6 Salma Allam et al.

Table 1.1. DLH space relationship. Noted Date=‘D’, Location=‘L’ and Depth=‘H’.

D L H Relationship
1 1 1 One date, one location, one depth
1 1 n One date, one location, many depth
1 n 1 One date, many location, one depth
1 n n One date, many location, many depth
n 1 1 many date, one location, one depth
n 1 n many date, one location, many depth
n n 1 many date, many location, one depth
n n n many date, many location, many depth

Fig. 1.3. A representation of data characteristic

cross-platform, called ODVServer, used to store data in a traditional SQL database
and to visualize oceanographic data using Google Maps APIs. The figure 1.4 shows
an overview of the previous platform.

Fig. 1.4. Overview of the ODVServer platform. The layout was divided into two side. The first
one (A) provided a geographical representation of the reading. Indeed, the right side (B, C, D, E)
provided the insight view of the selected station.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

25



1 Oceanographic Data in Cloud Computing 7

Unfortunately, the visualization of all sections from one database was not easily dis-
tinguishable. Moreover, we were not able to analyze the oceanographic data on the basis
of different geographical shapes. For this purpose, we propose the Cloud improvement
reported in the following.

1.4.1 Workflow

Driven by the need to improve the viewing system of the different oceanographic sec-
tions, we have planned to replace web data processing, performed with the Google
Maps APIs, with the native storage of a GeoJSON, a human and machine-readable
format for encoding geographic data structures. Therefore, a NoSQL database was re-
quired in order to manage semi-structured and non structured data and for storing all
the oceanographic databases.

Fig. 1.5. The workflow includes the data acquisition and integration phases, considering the CSV
format databases (CARINA; PACIFICA and GLODAP). A NoSQL solution stores all the GeoJ-
SON information and integrates well with data analysis tool, such as Apache Spark, and MEAN
stack web application, such as the Meteor JS framework. The dotted lines indicates guidelines
for future works.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

26



8 Salma Allam et al.

Referring to the Figure 1.5, data move from sources (CARINA, PACIFICA and
GLODAP) to the Cloud Platform through RESTful APIs. Specifically, the listening
microservice receives CSV data in order to implement the transformation into GeoJ-
SON. Thus, this information moves to a sharded and replicated MongoDB distribution,
a native JSON NoSQL database. The choice of MongoDB avoids further data transfor-
mations. Moreover, in order to scale the microservice workload, it is embedded inside
a docker container, ensuring a lightweight and portable service virtualization.

The bottom side of the figure 1.5 shows a HTTP communication between the dis-
tributed storage and the front end, in order to view the query and future analyses results.
At the same time, Apache Spark has been thought for performing future real-time pre-
dictive algorithms on oceanographic data. However, the dotted lines indicate guidelines
for future works.

1.4.2 Oceanographic Data Visualization

Based on the previous description, we looked for two properties: interoperability and
flexibility. The first one is guaranteed by the GeoJSON standard. Its fixed structure
identifies two parts: geometry section contains geospatial information and type of Geo-
JSON element (see section 2 in the Figure 1.6); and properties section contains all pa-
rameters codified as key-value pairs (see section 3 in the Figure 1.6). We remark that
section 1 in the Figure 1.6 represents the MongoDB’s master key.

Fig. 1.6. Difference structure of JSON and GeoJSON

On the other hand, the flexibility is guaranteed by data management and visualiza-
tion dynamism, which allow users to select any representation. Indeed, in our approach,

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

27



1 Oceanographic Data in Cloud Computing 9

we decided to store all samples in a single MongoDB collection. Thus, we can create
virtual representation based on users’ demand. For instance, as showed in the Figure
1.7, by means of our approach users are able to create virtual representations per each
zone of interest, starting from position of samples or other constrains.

Fig. 1.7. User demand

1.5 Performance

In this section we discuss about of the performances of the system from a numerical
point of view. In particular, we conducted two different kind of analysis: for populating
and retrieve data of our system. Our testbed is composed of two different blades server.
More specifically, we have 2 different type of machines one for the computation and
the other one for the storage. Computation workstation, in which is running the data
conversion module, is equipped by the Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz,
RAM 16GB, OS: Ubuntu server 16.04 LTS 64 BIT. Storage workstation, in which our
database system MongoDB is running on single node, is composed by the Intel(R)
Core(TM) i3-6100 CPU @ 3.70GHz, RAM 32GB, and Ubuntu server 16.04 LTS 64
BIT. Unfortunately we did not find any solution to compare performances of our system.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

28



10 Salma Allam et al.

We made scalability tests in different scenarios for both type of analysis. Experiments
were repeated 30 subsequent times in order to consider confidence intervals at 95% and
average values.

1.5.1 Insert data

Fig.1.8 shows the performances for parsing CSV data to GeoJSON and storing them
into MongoDB. Its behavior is linear with the increasing of the dataset size. On the
x-axis we reported the dataset size, whereas on the y-axis, we reported the response
time expressed in msec. How we can observe, the response time for 100.000 samples is
acceptable less than 10 sec.

Fig. 1.8. Data insert performance

1.5.2 Retrieve data

Here we consider times for retrieving data from MongoDB in a specific geographic
shapes, in order to understand if flexibility features are really implementable. More
specifically we considered increasing concentric circles with different radius, starting
from 10 meters up to 100 kilometers.

The behavior, as showed in Fig.1.9, is constant around 30 msec, variations are due
to networks delay.

1.6 Conclusions and Future Work

In this scientific work, we investigated the management of oceanographic data through
the utilization of a Cloud Computing workflow. First of all, three CSV format databases
have been selected as data sources. Therefore, we explained the workflow necessary for
migrating these data up to the Cloud Storage. This scientific work is the first initiative
adopting Cloud for manage Ocean data, for this reason we did not find any solution

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

29



1 Oceanographic Data in Cloud Computing 11

Fig. 1.9. Data retrieve performance

to compare performance of our system. However experiments showed that our system
response time presents a linear trend. The execution time grows up with the increasing
number of considered samples.

On the other hand, the dotted lines in the figure 1.5 shows our idea about the future
perspective. In particular, Meteor JS framework will be the technology we aim to use for
developing the new frontend version. This choice depends on the native MEAN stack
adopted, which includes MongoDB as backend database; whereas Apache Spark will be
useful for performing predictive oceanographic data analysis, such as the acidification
prediction. About that, the figure 1.10 shows a possible future work about the selection
of the features that best describe the reported behavior. Other future works are related
to adopt the new Osmotic Computing paradigm.

Fig. 1.10. A goal of the future work can be the acidification prediction.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

30



12 Salma Allam et al.

ACKNOWLEDGMENT

This work has been supported by Cloud for Europe grant agreement number FP7-
610650 (C4E) Tender: REALIZATION OF A RESEARCH AND DEVELOPMENT PROJECT
(PRE-COMMERCIAL PROCUREMENT) ON “CLOUD FOR EUROPE”, Italy-Rome:
Research and development services and related consultancy services Contract notice:
2014/S 241-424518. Directive: 2004/18/EC. (http://www.cloudforeurope.eu/).

References

1. S. C. Doney, W. M. Balch, V. J. Fabry, and R. A. Feely, “Ocean acidification A critical
emerging problem,” Oceanography, vol. 22, no. 4, pp. 16–25, 2009.

2. R. E. S. ALLAM and M. D. E. O. OUAHBI, “ADVANCES IN INFORMATION TECH-
NOLOGY : THEORY AND APPLICATION ISSN : 2489-1703 February 2016,” vol. 1, no.
February, pp. 163–166, 2016.

3. R. Schlitzer, “Ocean Data View,” pp. 1–11, 2011.
4. W. H. F. Smith and P. Wessel, “Gridding with continuous curvature splines in

tension,” Geophysics, vol. 55, no. 3, pp. 293–305, 1990. [Online]. Available: http:
//library.seg.org/doi/10.1190/1.1442837

5. G. Started, “Ocean Data View,” pp. 1–11, 2011.
6. C. Ware, M. Plumlee, R. Arsenault, L. A. Mayer, S. Smith, and D. House, “GeoZui3D: Data

fusion for interpreting oceanographic data,” Oceans Conference Record (IEEE), vol. 3, pp.
1960–1964, 2001.

7. M. Plumlee and C. Ware, “An evaluation of methods for linking 3D views,” Proceedings of
the Symposium on Interactive 3D Graphics, pp. 193–201, 2003. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-0038642661{\&}partnerID=tZOtx3y1

8. K. Butler and N. Merati, “Analysis patterns for cloud-centric atmospheric and ocean
research,” in Cloud Computing in Ocean and Atmospheric Sciences. Elsevier, 2016, pp.
15–34. [Online]. Available: https://doi.org/10.1016/b978-0-12-803192-6.00002-5

9. R. Wigton, “Forces and patterns in the scientific cloud,” in Cloud Computing in
Ocean and Atmospheric Sciences. Elsevier, 2016, pp. 35–41. [Online]. Available:
https://doi.org/10.1016/b978-0-12-803192-6.00003-7

10. W. Li, H. Shao, S. Wang, X. Zhou, and S. Wu, “A2ci,” in Cloud Computing in
Ocean and Atmospheric Sciences. Elsevier, 2016, pp. 137–161. [Online]. Available:
https://doi.org/10.1016/b978-0-12-803192-6.00009-8

11. R. Fatland, P. MacCready, and N. Oscar, “LiveOcean,” in Cloud Computing in
Ocean and Atmospheric Sciences. Elsevier, 2016, pp. 277–296. [Online]. Available:
https://doi.org/10.1016/b978-0-12-803192-6.00014-1

12. M. Fazio, A. Celesti, M. Villari, and A. Puliafito, “The need of a hybrid storage approach for
iot in paas cloud federation,” in 2014 28th International Conference on Advanced Informa-
tion Networking and Applications Workshops, 2014, pp. 779–784.

13. A. Celesti, N. Peditto, F. Verboso, M. Villari, and A. Puliafito, “Draco paas: A distributed
resilient adaptable cloud oriented platform,” in 2013 IEEE International Symposium on Par-
allel Distributed Processing, Workshops and Phd Forum, 2013, pp. 1490–1497.

14. F. Tusa, A. Celesti, M. Villari, and A. Puliafito, “How to enhance cloud architectures to
enable cross-federation,” in Proceedings of IEEE CLOUD ’10. IEEE, July 2010, pp. 337–
345.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

31



1 Oceanographic Data in Cloud Computing 13

15. G. Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M. Jaeger, E. Kolodner, and M. Villari,
“Data on-boarding in federated storage clouds,” in Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on, June 2013, pp. 244–251.

16. I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation for enhancing providers’
profit,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, july
2010, pp. 123 –130.

17. S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud computing networking: challenges
and opportunities for innovations,” Communications Magazine, IEEE, vol. 51, no. 7, pp.
54–62, July 2013.

18. M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic computing: A new
paradigm for edge/cloud integration,” IEEE Cloud Computing, vol. 3, no. 6, pp. 76–83, Nov
2016.

19. “Catalog of Databases and Reports,” no. May, 1999. [Online]. Available: http:
//cdiac.ornl.gov/oceans/

20. R. Key, A. Olsen, S. van Heuven, S. Lauvset, A. Velo, X. Lin, C. Schirnick, A. Kozyr,
T. Tanhua, M. Hoppema, S. Jutterström, R. Steinfeldt, E. Jeansson, M. Ishi, F. Perez, and
T. Suzuki, “Global Ocean Data Analysis Project, Version 2 (GLODAPv2),” Ornl/Cdiac-162,
Ndp-093, vol. 2, 2015.

21. T. Suzuki, M. Ishii, M. Aoyama, J. R. Christian, K. Enyo, T. Kawano, R. M. Key, N. Kosugi,
A. Kozyr, L. A. Miller, A. Murata, T. Nakano, T. Ono, T. Saino, K.-I. Sasaki, D. Sasano,
Y. Takatani, M. Wakita, and C. L. Sabine, “Pacifica Data Synthesis Project,” Ornl/Cdiac-
159, Ndp-092, 2013.

22. M. Hoppema, A. Velo, S. van Heuven, T. Tanhua, R. M. Key, X. Lin, D. C. E. Bakker,
F. F. Perez, a. F. Rı́os, C. Lo Monaco, C. L. Sabine, M. Álvarez, and R. G. J. Bellerby,
“Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern
Ocean,” Earth System Science Data, vol. 1, pp. 63–75, 2009.

23. C. L. Hubbs, “University of Michigan, U. S. A.” vol. III, pp. 1–6, 1930.

A Cloud Computing Workflow for managing Oceanographic Data — CloudWays

32



Pattern-driven Architecting of an Adaptable
Ontology-driven Cloud Storage Broker

Divyaa Manimaran Elango1, Frank Fowley1, and Claus Pahl2

1 IC4, Dublin City University, Dublin, Ireland
2 Software and Systems Engineering Research Centre, Free University of

Bozen-Bolzano, Bolzano, Italy

Abstract. Cloud service brokerage enables the cloud service ecosytem
to become more interoperable and allows users to migrate between offer-
ings easily. To this end, we developed a multi-cloud storage broker in the
format of an API to allow objects to be stored and retrieved uniformly
across a range of cloud-based storage providers, allowing for portability
and easy migration of software systems. This multi-cloud storage ab-
straction is implemented as a Java-based multi-cloud storage API and
supports GoogleDrive, DropBox, Microsoft Azure and Amazon Web Ser-
vices as sample service providers. The library offers three services, namely
a file service, blob service and table service. A test application was used
to compare storage operations across different providers. The abstraction
is based on a layered ontological framework. While many multi-cloud ap-
plications exist, we will focus on mapping the layered ontology onto a
design pattern-based organisation of the architecture to demonstrate how
this meets often required maintainability and extensibility properties.

Keywords: Cloud Service Brokerage, Cloud Storage, Data Migration,
Ontology, API Performance.

1 Introduction

Cloud service brokerage (CSB) allows the cloud service ecosystem to become
more interoperable, thus allowing for portability and easier migration between
providers [22, 30, 29]. CSB enables this portability and migration through the
integration and adaptation of different provided service into a uniform presen-
tation [14]. Thus, we developed a multi-cloud storage broker in the format of
an API to allow objects to be stored and retrieved uniformly across a range of
storage providers. The abstraction is based on a layered ontological framework,
which is organised around common design patterns to ensure maintainability
and extensibility to adapt to different service providers [20].

We introduce the basic concepts involved in designing the brokerage frame-
work and methodology behind the abstraction library. The multi-cloud storage
abstraction outcome is a Java-based multi-cloud storage API. This is available
as a jar file that supports GoogleDrive, DropBox, Microsoft Azure and Amazon

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

33



Web Services [36, 34, 35, 33]. The library offers three services, namely a file ser-
vice, a blob service and a table service. An application of the library can also be
used to compare storage operations across different providers [15, 26].

In our presentation, we focus in particular on the ontology framework and
how it is mapped onto a layered, design pattern-based library architecture for
the API we developed [27, 28] – an aspect that has not been sufficiently covered
in the presentation of other multi-cloud brokers.

This document is structured as follows. Section 2 gives an outline of cloud
service brokerage. Section 3 describes background and related work. In Section 4,
the ontology-based interoperability framework is explained, and Section 5 looks
at other architectural design aspects. Section 6 discusses the implementation
effort and the learning outcome. Section 7 contains some conclusions.

2 Cloud Service Brokerage Use Cases

A cloud broker is an intermediary application between a client and cloud provider
service [16, 10]. Brokerage reduces the time spent by a client in analyzing dif-
ferent types of services provided by different service providers. In our case, this
enables a single platform to offer the client a common cloud storage service.
This results in cost optimization and reduced level of back-end data manage-
ment requirements, but also enables migration of data and files through the
joint interface [7]. A multi-cloud storage abstraction API can act as the cloud
broker library which facilitates the integration of different types of cloud services
[17]. The abstraction library allows the broker to adapt to a rapidly changing
marketplace [4]. Changeability and extensibility will therefore be requirements
of the broker library [8, 9]. Fig. 1 illustrates the architecture.

Fig. 1. Service brokerage architecture for cloud storage.

In order to illustrate this, we introduce a use case. Disaster recovery is a
sample specific storage use case, used where there is an interruption of an action

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

34



or an event in an unpredictable time that causes the services to be unavailable to
the end user. Cloud back-up storage is a way of protecting the online resources
to make them available in the event of loss of data or any other disaster.

The multi-cloud storage abstraction library best suits this use case in terms
of offering hassle-free back up, best time management in terms of restoring pro-
cesses, increased scalability, security and compliance, redundancy and end to
end recovery [2, 3]. The storage providers supported in this abstraction library,
namely Microsoft Azure, Google, DropBox and Amazon Web Service, offer good
bandwidth and low cost services that can be used for backup and recovery ap-
plications.

More generally, vendor lock-in is a barrier in cloud computing preventing
users from migrating between providers. Vendor lock-in is a critical situation
where the clients are dependent on a single cloud provider. The client is not
given an option to migrate to other cloud providers. Issues can arise, such as
legal constraints, increased cost and technical incompatibilities when choosing
to move between cloud providers. Interoperability and portability are prominent
characteristics of cloud computing, affected by vendor lock-in and the lack of
standardisation [5, 6].

A multi-cloud storage API can play a crucial role in such cases, making it
easier for the client to switch providers. This can be applied across different cloud
type environments, like private or public environments which are more beneficial
from a business perspective. Furthermore, the extensibility of the library to
support new cloud providers gives the client a wide view of portability to many
different new cloud providers.

3 Background and Related Work

3.1 Cloud Service Provider APIs

Several cloud storage provider APIs exist, of which we selected four providers
with different numbers of individual services [36, 34, 35, 33]. We review some key
observations.

– GoogleDrive offers a cloud file storage service. The API is built on OAuth2
authentication and is fairly easy to understand. The structure is clearly
documented and the use of method calls is well explained. The GoogleDrive
service includes access to a Google API client library. Failure to include
http and OAuth client libraries will disable the authentication. The Google
developer portal simplifies the way of implementing the API in a workspace
and provides details for configuring the authentication.

– DropBox is a file hosting service. It uses SSL transfer for synchronization
and AES 256 encryption for security. It also enables synchronised backup
and web sharing. The DropBox API is very light-weight and easy for a new
user to go through quickly. Code samples and method explanations are given
in the developer’s portal.

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

35



Table 1. Storage services and their providers.

Service Azure AWS Google DropBox
File Azure Storage File - GoogleDrive DropBox
Blob Azure Storage Blob AWS S3 - -
Table Azure Storage Table,

Azure DocumentDB
Amazon DynamoDB,
Amazon SimpleDB

- -

– Azure Storage supports blob, file, queue and table services. The API is built
on REST, HTTP and XML, and can be easily integrated with Microsoft
Visual Studio, Eclipse and GIT. Azure is user friendly, and the classic por-
tal interface can be used to set the storage account and document DB ac-
count parameters. The Azure SDK is available for all major development
languages. The Azure SDK provides a separate API package for each service
and has the same code flow across different service APIs.

– The Amazon Web Service S3 is a file storage service which is built on REST
and SOAP. Their SDK is available in all major development languages. The
developer portal includes documentation and a quick guide to get started
with code development. However, it was considered that each service had
too many classes. The library is heavy as it includes many packages for all
services. Understanding the class naming was considered quite challenging
as it has many services listed in the same SDK documentation. We also
experienced the service be inconsistent, as there was an occasional delay in
read and write requests.

This brief study of the main features of the providers resulted in a grouping of
the cloud providers and their services as shown in Table 1.

3.2 Multi-Cloud Libraries

In order to provide a multi-cloud broker, we looked at existing multi-cloud li-
braries. Cloud providers publish specifications of their services, which are dif-
ferent style and which makes it hard to use them as a common joint interface.
Several existing multi-cloud libraries were studied during this project, including
Apache jclouds, DeltaCloud, Kloudless, SecureBlackBox, Temboo and Simple-
Cloud.

In order to achieve the flexibility requirement that would allow our library
to be adapted to changing services or completely different services, we aimed to
build the solution on a combination of proven patterns, adapted to the context
here. It was decided to adopt an approach similar to that used in the Apache
jclouds library for abstraction. Apache jclouds provides cloud-agnostic abstrac-
tion [23]. Use of a single instance context for the mapping of a user request in
jclouds was used in our architecture. The purpose of having each class for each
provider across different levels of service was adopted from a similar design in
the SecureBlackBox library. Our concept of including a manager interface layer
at each component level is adopted from the Apache LibCloud structure.

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

36



4 Ontological Framework

4.1 Abstraction, Interoperability and Extensibility

Abstraction serves to reduce complexity in software. The design of our multi-
cloud storage API is built on multiple layers of abstraction. This provides for
service-neutral functional logic which also realises extensibility, i.e., allows addi-
tional vendors to be supported without changing the underlying core functional
logic of the API design. New multi-cloud services can be added to the API
without any code change [24]. A programmable abstraction layer provides flex-
ibility to connect and configure services, here in a fully secure way [25]. Thus,
interoperability and portability can be achieved. Whilst our jclouds API-based
architecture, that we partially adopted, only supports public cloud providers, in
future this can be extended to include private clouds. Such APIs are used for
developing cloud-based applications like content delivery platforms and back-up
applications, as our earlier use case demonstrates.

The main objective of designing and developing an abstraction API for cloud
storage is to produce an effective cloud delivery model, with a single portable
view that supports enhanced business capabilities such as cloud brokerage [32].
The advantage of bringing these functionalities to an interoperable multi-cloud
application provides 1) an easy way of importing and exporting data, 2) choice
over price, 3) enhanced SLA, and 4) the elimination of vendor lock-in. There are
existing standardisation frameworks being maintained in this area including the
Cloud Infrastructure Management Interface (CIMI) and Open Cloud Computing
Interface (OCCI) that aim at interoperability. Our integration broker provides
interoperability based on a flexible, extensible API.

4.2 Storage Abstraction Ontology

A layered architecture will serve to provide interoperability and extensibility. At
the core is a stroage abstraction ontology that describes the common naming and
meaning of service concepts across the abstraction layers. This ontology model
consists of four main layers, namely Service, Provider, (Level-2) Composite Ob-
ject and (Level-1) Core Object.

– Service: The Service layer is the top layer and is directly integrated into the
user interface layer. This layer basically describes the services that the multi-
cloud storage abstraction API supports. There are three services currently
supported. They are a blob, a table and a file service.

– Provider: The Provider layer is the second layer where the context object
parameters are mapped to the service layer. The multi-cloud storage ab-
straction supports four main providers namely Microsoft Azure, Amazon
Web Services, GoogleDrive and DropBox. The corresponding services sup-
ported by the providers are shown below:

Service Provider
Blob Azure storage Blob; AWS S3.
Table Azure Storage Table; Azure DocumentDB; AWS DynamoDB; AWS

SimpleDB.
File Azure Storage File; DropBox and GoogleDrive.

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

37



Fig. 2. Storage Abstraction Ontology based on 4 Layers.

– Level-2 (Composite Objects): The Composite Objects (object level-2) aspect
is the third layer. This layer represents the first level or higher level of ab-
straction for the objects blob, table and file. This layer is service-neutral and
brings out the common naming across the providers’ specific functionalities.
Each layer is abstracted based on the common operations and aspect of how
the main function is applied in that particular service. Common naming is
represented to easily categorise storage resources and group them to make
the development of the coding easier.

As shown in the Abstraction Ontology diagram (Fig. 2), the blob service has
”Store” which groups ’Container’ from Azure Storage Blob and ’Bucket’ from
AWS S3. The table service has two different sub-layers – where ”Database”
belongs to Azure DocumentDB Database, and where ”Collection” groups
’Table’ from Azure Storage Table, ’collection’ from Azure DocumentDB Col-
lection, ’Table’ from AWS DynamoDB and ’Domain’ from ’AWS SimpleDB’.
The file service has two different sub-layers where ”Share” belongs to Azure
Storage File and ”Directory” groups ’Directory’ from Azure Storage File,
’Folder’ from DropBox and ’Parent’ from GoogleDrive.

– Level-1 (Core Object): The Core Object (object level-1) aspect represents
the lower level of storage object abstraction. This layer contains the core
functionalities of a particular service across different providers. The classes
at this level are extended from an abstract class called AbstractConnector.
The class implements the abstract methods defined in a AbstractConnector
class. The mapping from Level-2 to Level-1 is performed by an interface class
called Manager. This Manager identifies the provider class by its key. Basic
CRUD operations on the storage resources are included as core methods. In
order to implement these functions, each operation ”request” should ”pass

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

38



through” the Level-2 mappings and is then mapped across the service and
providers.

The blob service has ”Blob” which groups ’Blob’ from Azure Storage Blob
and ’Object’ from AWS S3. The table service has two different sub layers.
It has an ”Item” which groups ’Entity’ from Azure Storage Table, ’Docu-
ment’ from Azure DocumentDB Document, ’Item’ from AWS DynamoDB
and ’Item’ from AWS SimpleDB. Also, the second sub layer ”Attachment”
belongs to the Azure DocumentDB Attachment. The file service has ”File”
which groups ’File’ from Azure Storage File, ’File’ from DropBox and ’File’
from GoogleDrive.

4.3 Provider Functionality and Naming Analysis

The API should act as an adapter for accessing different cloud providers’ services
through a common interface. The main concern was having common naming for
mapping the user’s requests. A high degree of commonality existed between dif-
ferent cloud provider operations. However, some operations exists in one provider
and do not exist in other providers. Moreover, the parameters in some of the
methods also differ between providers. In the example below, the common Level-
2 aspect of ”Store” in the Blob service is defined to cater for providers with differ-
ent specific names, namely Azure’s storage blob container and AWS’s S3 bucket.
The table also shows the common createStore() method and the corresponding
Azure-specific and AWS-specific underlying method calls.

The approach is based on identifying synonyms to common object names,
such as container (azure) and bucket (S3) for ’store’ as indicated below:

Common Name (Level-2) Name in Azure Storage Blob Name in AWS S3
STORE CONTAINER BUCKET

The same then applies to function names, as indicated below:

Common Method Name Name in Azure Storage Blob Name in AWS S3
createStore() create() create container createBucket() create bucket

The abstraction ontology maps similar service groupings together across differ-
ent cloud providers. Selected services have similar or the same core functional
logic – grouped into levels in the ontology. Based on this, the framework design
includes the ”service”, ”provider”, ”composite object” and ”core object” for its
implementation.

In the example below, the common level-2 composite ”Collection” is defined
for two providers. There are four corresponding service names, namely Azure
storage table ’table’, AWS document DB ’collection’, AWS dynamo DB ’table’
and AWS simple DB ’domain’. The table below shows the common getCollec-
tionMetadata() method and its corresponding provider API method calls:

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

39



Common On-
tology Name

Azure Stor-
age Table

Azure Docu-
ment DB

AWS Dynamo
DB

AWS Simple DB

Composite:
COLLECTION

TABLE COLLECTION TABLE DOMAIN

Operation:
getCollection-
Metadata()

- - describeTable()
returns infor-
mation about
the table.

domainMetadata()
returns information
about the domain.

Operation: list-
Collection()

listTables()
Lists the ta-
ble names in
the account

readCollection()
Reads a docu-
ment collection
by the collec-
tion link

listTables()
Simplified
method for
invoking List-
Tables

listDomains() Lists
all domains associ-
ated with the Ac-
cess Key ID

The method name to retrieve the metadata of a collection in the Table service is
not supported by Azure. However, the AWS API does support the metadata. So,
a common operation can not be realised across the level-2 composite Collection.
A similar problem exists with the blob and file services. This lack of consistency
in the available provider API operations has led to the omission of valuable API
method calls.

Another example is also in the table above, which shows the common listCol-
lection() method and its corresponding provider API method calls. The method
name to retrieve the list of collections in the table service is supported by both
Azure and AWS. However, the API method names are different, although their
description and logic is the same.

5 Storage API Design

As already indicated, we mapped an ontology-based conceptual framework onto
a layered architecture, which in turn was structured by suitable design patterns.
We also consider the security management of the different service providers in
this context.

5.1 Ontology-Driven Design

Adopting best-practice in software design was important in order to reduce the
development overhead and produce a quality library that could be extensible
with new features. A ”model-driven” software engineering technique was applied
to simplify the process of design from concept modeling to implementation. This
was applied to each level in the abstraction ontology by breaking entities into
single components. There are two main types of modeling approaches that could
have been used for the design. Firstly, there is a provider-specific model, in which
the provisioning and deployment of the abstraction library is defined for each
cloud provider. The second approach is a cloud provider-independent model,
which defines the provisioning and deployment of the abstraction library in a
cloud-agnostic way.

The approach outlined in the CloudML EU-funded research project was
adapted here. It a domain-specific modelling language to reduce the design com-
plexity for cloud systems. CloudML enables the provisioning and deployment

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

40



of an abstraction library. Its design includes level-1 core objects, which are as-
sembled based on the CloudML internal component design. These are mapped
to level-2 components using a model-driven approach. A client using the ser-
vice does not necessarily know about the internal deployment, and there is no
limitation on the design and evolution of the multi-cloud abstraction library.
The storage library has been coded using the Javadoc framework. Thus, there
is extensive commenting and documentation generated, which simplifies the un-
derstanding and purpose of each class, method implementation and relationship
across classes. The library includes sample code to allow for better understanding
of how each service functions.

5.2 Provider Security Analysis – Authentication

Apart from a mapping of concepts for core and composite storage objects used
by the different providers into a common ontology, security is another concern
that needs to be unified across the providers. It is important to note that au-
thentication differs across each provider.

– Amazon Web Service authentication uses a secret key and an access key,
which is common across all the target services supported by our storage ab-
straction API. An AWS user should have the specified role with the required
access permissions to the resource. Identity Access Management allows the
user to set the role and access privileges, and this provides each user with
sufficient credentials. The account can be activated using phone verification
and authentication. Credential auditing and usage reports can be used for
review purposes.

– Microsoft Azure account subscription allows for the accessing of the resources
available within an azure account. The Blob service is provided within an
Azure storage account. The azure storage account name, also known as
namespace, is the first level for processing authentication to the services
within the storage account such as blob, file and table. It uses token-based
authentication. The authentication of the Azure storage blob is done using
a connection string which has the parameters of the storage account name
and primary key. Similarly, the Table service is supported within an Azure
storage account. The authentication of the Azure storage table is done using
a connection string which has the parameters of the storage account name
and primary key. An Azure Document DB account is required for accessing
the Azure Document Db service and requires a master key and URI (also
known as an end-point).

– DropBox authentication uses an access token. An access token is generated
in the App console. An application is created under the app console and its
permission is set to ’FULL’. Later, the authentication is set by linking the
account using the access token when passing the instance of the DropBox
API client.

– GoogleDrive authentication uses a client secret json file. A project is created
in the Google developer’s console. The Drive API and OAuth protocol is en-
abled. The credentials are generated and saved as a client secret json file. In

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

41



the coding, the authentication method should have the permission scope and
drive scope set to ’GRANT’. When the browser opens for the authentication
response, the client is permitted to allow for full read and write access.

All these authentication processes were considered when we developed the
code for authentication method calls from the multi-cloud storage abstraction
API. A credentials object is at the core of the solution:

– Credentials storage: The credentials are stored in a common config file. So,
the user is not shown the authentication part as it happens in the back-end.

– Credentials update: If the credentials need to be changed, they are only
changed in the configuration file, which reduces the difficulty for the user to
set up the authentication process.

5.3 Design pattern

We use design patterns to organise the layered ontology-based architecture fur-
ther in order to help us in achieving the required maintainability and extensibility
requirements, but also in general the efficiency of the implementation.

Mapping using an Object Context for Maintainability. The design pat-
tern in any multi-cloud library should attempt to reduce the need to have an
object instantiation for each provider’s class using the constructor. This was a
problem with the jclouds library where there was a lack of code clarity and high
level of complexity in the framework pattern. To overcome this in our multi-
cloud storage abstraction, and also to provide a stable, maintainable code base,
the context builder class is added to the architecture. This builder class includes
a key and a value parameter pair. This key value pair together is called an item.
This item adds the service, the provider, the aspect key, the operation key and
the input parameters to the context. This context is passed as an object to ex-
ecute the API method call. This mapping is common and is applied for all the
services supported by the multi-cloud storage abstraction API. The table below
explains the mapping of parameters into a single instance called context.

Context context = new Context();
context = addServiceContext(context);
context = addServiceProviderContext(context);
context = BlobService.addParameters(

IConstants.ASPECT\_KEY,
IConstants LEVEL-2\_STORE, context);

context.addItem(new Item(
IConstants.OPERATION\_KEY,
IConstants.OPERATION\_CREATE));

context = BlobService.addParameters(
IConstants.STORE\_NAME,
storeName, context);

A Plug-in Framework for Extensibility. Following API design principles,
a developer should not have visibility of the underlying low-level abstraction
classes, interfaces and methods. This means that a future extension can support

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

42



new features and services, but the framework should not have to be redesigned
or its behavior changed. The framework should act like a plug-in for any new
features, services or providers. This is achieved in the design by applying a strict
coding rule where in Java the abstract class cannot be instantiated, it can only
be inherited.

The design dictates that the level-1 layer, which implements the lower-level
API methods, is extended from the AbstractConnector class. This abstract class
must implement the interface IConnector and all of its associated methods. This
is because if a class is abstract, then, by definition, it is required to create
subclasses of its instance. The subclasses will be required by the compiler to
implement any interface methods that the abstract class has left out. Less effort
is required to extend the API because the framework remains unchanged.

Manager Interface Layer for Multi-Service Support. The limitation at
the level-2 layer is the separation of the user level request to specifically distin-
guish between different API methods provided by the same provider. For ex-
ample, Azure provides storage table and DocumentDB services. Similarly, AWS
provides DynamoDB and SimpleDB. To overcome this, an interface component
called manager has been implemented. The manager is responsible for identi-
fying the corresponding ”aspect-key” that is encapsulated within the context
parameter.

There are two types of managers, namely, the store manager and the table
manager. The composite object Level-2 aspect is the higher level of abstraction.
Since Level-2 helps to identify the differences between the services, the store
manager interface is added in this layer, which splits the request to either blob
or file or table service at core object level-1. Table manager is used in a similar
way. For example, the table service at Level-1 has two APIs, the DynamoDB and
SimpleDB, supported by one provider, AWS. In order to differentiate between
the services, an interface component called manager was added to identify the
common method name.

The design dictates the relationship between the abstract class and the core
logic of the level-2 aspect using the context parameter.

5.4 Apache jclouds and Design Patterns

Apache jclouds is an open source library available in Java and Clojure, which
supports several major cloud providers. The jclouds library offers both a portable
abstraction framework as well as cloud-specific features. The main aim of jclouds
is to deal with errors, concurrency and cloud complexity. Our multi-cloud storage
abstraction layer was designed using some of the design concepts and patterns
of jclouds.

The jclouds Architecture. The jclouds framework consists of a portable ab-
straction layer called ’View’, which is responsible for splitting the service type
and cloud provider. A ‘View’ is connected to a provider-specific API or library

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

43



driven API. The Context Builder class maps the context object along with its
parameters. The parameters include provider class object, view, API metadata
and provider metadata. This object will be bound as a singleton object called
Context and it is passed to the context builder. The API Metadata class popu-
lates friendly names for the key, which has two values – the type and the view
information. The Service Registry acts like a manager, which is responsible for
holding the key to connect to a provider’s class. The framework implements a
builder pattern for request and response, which connects to a backend API, along
with authentication.

The jclouds library caters for blob services and compute services. An analysis
was carried out to understand the features and purposes of each class in the
jclouds storage functionality. The method calls were investigated to compare
them across other multi-cloud libraries. The following code block outlines the
jclouds library code for calling a context for an Azure blob. It uses the context
builder class. The basic concept of abstraction used in the jclouds library is based
on the builder pattern of software design. A context with service provider Azure
that offers the portable BlobStore API:

BlobStoreContext context =
ContextBuilder.newBuilder("azureblob")
.credentials(storageAccountName, storageAccountKey)
.buildView(BlobStoreContext.class);

6 Discussion

Maintainability and extensibility are objectives that need to be evaluated here.
We actually have discussed these throughout the architecture discussion in the
previous section. In a summarising discussion, we return here to a few important
concerns such as establishing testability and maintainability through suitable
design patterns, e.g., the dependency injection pattern, to point out benefits.
Other aspects have already been discussed throughout Section 5.

6.1 Patterns and their Quality Implication.

From the above code in the previous section, it can be clearly seen that jclouds
gets a separate instance for each provider’s class and, in some cases, it makes
direct REST calls to the underlying provider API. The programming style in the
jclouds library follows the dependency injection software design pattern. It uses
two programming styles: 1) Google Guice (a Google library alternative to Spring)
and 2) Guava (which supports transformation, concatenation and aggregation
for storage services).

Dependency Injection avoids code duplication, is unit-testable and modular.
It essentially allows injecting of the service class instead of calling the API service
method, by writing custom code and connecting them at run time, which avoids
recompiling. Custom code instantiates an object for each service and provider.

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

44



6.2 Testability and Extensibility.

The jclouds framework uses dependency injection which makes reference to an
object before it will proceed for execution. Implementing dependencies by con-
structors, using the ’new’ constructor may result in difficulties for unit testing.
Performing dependency injection using a factory method is a traditional solution
to the testing problem. This process is also known as indirect dependency, where
the factory method is realised by having an interaction class between the client
class and the service class. It was considered that the use of too many inter-
action classes would make the code more complex and result in tight coupling
between the abstraction layers. This would hide the definition of abstraction and
furthermore, it would not facilitate the future extension of the library.

According to the principles of API design, there should be a small number
of functionalities shared across the entire cloud provider API. This has been
achieved in the abstraction design used.

7 Conclusions

Cloud service brokerage aims at customising or integrating existing services or
making them interoperable. We have developed an integration broker following
the classification schemes in [11, 12]:

– the main purpose is intermediation between cloud consumers and providers
to provide advanced capabilities (interoperability and portability),

– it builds up on an intermediary/broker platform to provide a marketplace
to bring providers and customers together,

– the broker system type is a multi-cloud API library.

We have focussed here on a broker solution for cloud storage service providers
[1] to implement a joint interface to allow

– easy portability and migration for the user,
– easy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for a
cloud storage user to easily migrate between

While many multi-cloud APIs do exist, we have focussed here on the con-
struction of a broker API. Again, ontologies have been used before, but we
demonstrate here how a layered ontology and a corresponding layered archi-
tecture together with the use of appropriate design patterns can better help
to achieve extensibility and efficiency of the implementation. The selection of
design patterns has a significant impact on the testability, maintainability and
extensibility of the layered architecture we have developed here.

We plan to extend the broker by adding further services by other providers
to empirically verify the extensibility of the library. A more long-term usage be-
yond some performance testing on the provider services that we have conducted,
should also help to better judge the maintainability in addition to the expected
positive affect from the pattern application. More work could also go into more
uniform specification of cloud services towards more standardisation [31, 21].

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

45



Acknowledgements

This work was partly supported by IC4 (Irish Centre for Cloud Computing and
Commerce), funded by EI and the IDA.

References

1. S. Ried: Cloud Broker – A New Business Model Paradigm. Forrester. 2011.

2. D. Benslimane, S. Dustdar, A. Sheth: Services Mashups - The New Generation of
Web Applications. Internet Computing, vol.12, no.5, pp.13-15, 2008.

3. D. Bernstein, E. Ludvigson, K.Sankar, S. Diamond, M. Morrow: Blueprint for the
Inter-cloud: Protocols and Formats for Cloud Computing Interoperability. Intl Conf
Internet and Web Appl and Services. 2009.

4. R. Buyya, R. Ranjan, R.N. Calheiros: Intercloud: Utility-Oriented Federation of
Cloud Computing Environments For Scaling of Application Services. Intl Conf on
Algorithms and Architectures for Parallel Processing , LNCS 6081. 2010.

5. Cloud Standards. http://cloud-standards.org/. 2017.

6. ETSI Cloud Standards. http://www.etsi.org/newsevents/ news/734-2013-12-press-
release-report-on-cloudcomputing-standards. 2017.

7. C. Fehling, R. Mietzner: Composite as a Service: Cloud Application Structures,
Provisioning, and Management. Information Technology 53:4, pp. 188-194. 2011.

8. C. Pahl, P. Jamshidi, D. Weyns: Cloud architecture continuity: Change models
and change rules for sustainable cloud software architectures. Journal of Software:
Evolution and Process 29(2). 2017.

9. C. Pahl. P. Jamshidi, O. Zimmermann: Architectural Principles for Cloud Software.
ACM Transactions on Internet Technology. 2017.

10. Forrester Research: Cloud Brokers Will Reshape The Cloud. 2012.
http://www.cordys.com/ufc/file2/cordyscms sites/download/09b57cd3eb6474f1fda
1cfd62ddf094d/pu/

11. F. Fowley, C. Pahl, L. Zhang: A Comparison Framework and Review of Service
Brokerage Solutions for Cloud Architectures. 1st International Workshop on Cloud
Service Brokerage. 2013.

12. F. Fowley, C. Pahl, P. Jamshidi, D. Fang, X. Liu: A Classification and Comparison
Framework for Cloud Service Brokerage Architectures. IEEE Transactions on Cloud
Computing. 2017.

13. M. Javed, Y.M. Abgaz, C. Pahl: Ontology change management and identification
of change patterns. Journal on Data Semantics, 2(2-3): 119-143. 2013

14. S. Garcia-Gomez et al.: Challenges for the comprehensive management of Cloud
Services in a PaaS framework. Scalable Computing: Practice and Experience 13(3).
2012.

15. D.M. Elango, F. Fowley, C. Pahl: Using a Cloud Broker API to Evaluate Cloud
Service Provider Performance. Proceedings CloudWays’2017 Workshop. 2017.

16. Gartner - Cloud Services Brokerage. Gartner Research, 2013.
http://www.gartner.com/it-glossary/cloud-servicesbrokerage- csb

17. N. Grozev, R. Buyya: InterCloud architectures and application brokering: taxon-
omy and survey. Software: Practice and Experience. 2012.

18. C. Pahl, P. Jamshidi: Microservices: A Systematic Mapping Study. Proceedings
CLOSER Conference, Pages 137-146. 2016.

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

46



19. D. Taibi, V. Lenarduzzi, C. Pahl: Processes, Motivations and Issues for Migrating
to Microservices Architectures: An Empirical Investigation. IEEE Cloud Comput-
ing. 2017 (accepted for publication).

20. C.N. Hofer, G. Karagiannis. Cloud computing services: taxonomy and comparison.
Journal of Internet Services and Applications, 2(2), 81-94. 2011.

21. IEEE Cloud Standards. http://cloudcomputing.ieee.org/standards. 2015.
22. P. Jamshidi, A. Ahmad, C. Pahl: Cloud Migration Research: A Systematic Review.

IEEE Transactions Cloud Computing. 2013.
23. jclouds. jclouds Java and Clojure Cloud API. http://www.jclouds.org/. 2015.
24. A. Juan Ferrer et al.: OPTIMIS: A holistic approach to cloud service provisioning.

Future Gen Comp Syst, 28(1):66-77. 2012.
25. A.V. Konstantinou, T. Eilam, M. Kalantar, A.A. Totok, W. Arnold, E. Sniblel: An

Architecture for Virtual Solution Composition and Deployment in Infrastructure
Clouds. Intl Workshop on Virtualization Technologies in Distr Computing. 2009.

26. R. Mietzner, F. Leymann, M. Papazoglou: Defining Composite Configurable SaaS
Application Packages Using SCA, Variability Descriptors and Multi-tenancy Pat-
terns. Intl Conf on Internet and Web Applications and Services. 2008.

27. C. Pahl: Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. European Conf on Model-Driven Architecture ECMDA’05. 2005.

28. C. Pahl, S. Giesecke and W. Hasselbring: Ontology-based Modelling of Architec-
tural Styles. Information and Software Technology (IST). 51(12): 1739-1749. 2009.

29. C. Pahl, H. Xiong: Migration to PaaS Clouds - Migration Process and Architectural
Concerns. IEEE 7th International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems MESOCA. 2013.

30. C. Pahl, H. Xiong, R. Walshe: A Comparison of On-premise to Cloud Migration
Approaches. Europ Conf on Service-Oriented and Cloud Computing ESOCC. 2013.

31. M.P. Papazoglou, W.J. van den Heuvel: Blueprinting the Cloud. IEEE Internet
Computing, November 2011.

32. D. Petcu et al.: Portable cloud applications - from theory to practice. Fut. Gen.
Computer Systems 29(6):1417-1430. 2013.

33. Amazon Simple Storage Service (S3) Cloud Storage AWS
https://aws.amazon.com/s3/

34. Dropbox https://www.dropbox.com/
35. Azure Storage - Secure cloud storage https://azure.microsoft.com/en-

us/services/storage/
36. Google Drive - Cloud Storage & File Backup https://www.google.com/drive/
37. P. Jamshidi, C. Pahl, N.C. Mendonca: Pattern-based multi-cloud architecture mi-

gration. Software: Practice and Experience 47 (9), 1159-1184. 2017.
38. C. Pahl, A. Brogi, J. Soldani, P. Jamshidi: Cloud Container Technologies: a State-

of-the-Art Review. IEEE Transactions on Cloud Computing. 2017.
39. C.M. Aderaldo, N.C. Mendonca, C. Pahl, P. Jamshidi: Benchmark requirements

for microservices architecture research 1st International Workshop on Establishing
the Community-Wide Infrastructure for Architecture-Based Software Engineering.
IEEE. 2017.

40. R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L.E. Lwakatare, C. Pahl, S. Schulte,
J. Wettinger: Performance Engineering for Microservices: Research Challenges and
Directions. Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering Companion. 2017.

Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker — CloudWays

47



Cloud-Native Databases: An Application
Perspective

Josef Spillner, Giovanni Toffetti, Manuel Ramírez López

Zurich University of Applied Sciences, School of Engineering
Service Prototyping Lab (blog.zhaw.ch/icclab/)

8401 Winterthur, Switzerland
{josef.spillner,toff,ramz}@zhaw.ch

Abstract. As cloud computing technologies evolve to better support
hosted software applications, software development businesses are faced
with a multitude of options to migrate to the cloud. A key concern
is the management of data. Research on cloud-native applications has
guided the construction of highly elastically scalable and resilient state-
less applications, while there is no corresponding concept for cloud-
native databases yet. In particular, it is not clear what the trade-offs
between using self-managed database services as part of the application
and provider-managed database services are. We contribute an overview
about the available options, a testbed to compare the options in a system-
atic way, and an analysis of selected benchmark results produced during
the cloud migration of a commercial document management application.

1 State Management in Cloud-Native Applications

Cloud-native applications (CNA) are software applications which pass down ben-
efitial cloud computing characteristics. They use cloud platform and infrastruc-
ture services to become executable, offer their own functionality as software ser-
vice interfaces, are resilient against dependency service unavailability and other
incidents, scale elastically with user requests, are always available on demand
and are billed with a pay-per-use utility scheme without upfront cost [2]. The
inherent service orientation required for CNA favours a microservices model with
explicitly stateful and stateless services. The handling of data is confined to the
stateful services. These must in turn be highly available and resilient to pre-
vent loss, corruption or delay of data operations. Databases, message queues,
key-value stores, filesystems and other data access models have been analysed
in prior works concerning these requirements [7, 13, 14]. The desired characteris-
tics depend on near-instant service replication [10] which implies consistent data
replication and sharding mechanisms.

Fig. 1 shows a typical topology of stateful and stateless microservices orches-
trated to offer a single application as a service in a highly available and resilient
manner on top of plain cloud infrastructure services. Almost all approaches rely
on coordinated replication which brings self-awareness about its role (e.g., master
or slave) to each microservice. Furthermore, they rely on fast-spawning service

Cloud-Native Databases: An Application Perspective — CloudWays

48



implementations (e.g., containers or light-weight hypervisors) to achieve rapid
elasticity upon request spikes and instance recovery after crashes.

Fig. 1: Cloud-native application with internal and external data management

It is however not clear under which circumstances applications should man-
age data by themselves. The range of commercially offered platform-integrated
stateful services is increasing. Their common value proposition can be expressed
in a simplified way by paying more to manage less. But for a business decision,
the value needs to be quantified. Due to the multitude of possible options, busi-
nesses need to obtain metrics on which such decisions can be performed. Apart
from the pricing, such decisions need to account for risks and for end-to-end
service provisioning quality and effort which from a software engineering per-
spective always includes the consideration of client-side bindings to the services.

To reduce the problem scope, we limit the research to applications which
handle large structured documents in database systems. Hence, through this
paper, empirical studies of how databases operated in a cloud-native context
behave in commercial cloud environments are made possible. The main contri-
bution is a testbed to measure and compare different database options from a
vendor-neutral perspective. The resulting distinction between self-managed and
provider-managed databases covered by the testbed is expressed in Fig. 2.

Fig. 2: Scopes of cloud-native database management

The paper is structured as follows: First, it presents the possible options for
cloud-native databases, differentiating between fully managed and application-

Cloud-Native Databases: An Application Perspective — CloudWays

49



controlled offers. Then, it defines a method to compare and rate cloud database
services both on the technical and on the pricing level. The method translates
into a design of a testbed whose architecture and implementation we present.
Experiments we have conducted based on this method are then explained to-
gether with the obtained results. The findings from the experiments need to be
interpreted in alignment with business strategies. For this reason the paper con-
cludes with an open discussion about the strategic impact of using the testbed
in a systematic way during the application engineering process.

2 Cloud-Native Database Options

Apart from conventional relational or document-centric databases, the migration
of applications into the cloud and the associated new operational requirements
have led to novel design choices and along with them new research challenges.
Recent database models thus include encrypted, privacy-preserving and stealth
databases, energy-efficient database operators and adaptive query systems over
dynamically provisioned resources [8, 4]. Few of these designs have progressed
beyond prototypical systems, but from an applied science perspective, we are in-
terested in what recommendations can be given to application developers today.
Hence, only conventional (relational and document-centric) database systems
and services which are widely available on cloud platforms are considered along
with systems commonly described as cloud-enabled or cloud-ready.

We distinguish between the choices of database hosting primarily by the
responsibility. Database management systems can be managed by the application
provider as part of the application (e.g. as application-controlled container),
outside of the application scope itself (e.g. as a separate virtual machine whose
autoscaling is determined by cloud facilities), and as fully cloud-managed service,
typically named Database-as-a-Service (DBaaS). Our focus is on cloud-native
database (CNDB) options which adhere to expectations from cloud application
developers such as elastic scaling, resilience against unexpected issues, flexible
multi-tenancy isolation and high performance at low price.

2.1 Self-Managed Database Systems and Microservices

The widespread proliferation of open source database management systems has
led to the inclusion of these systems into software applications. The application
logic then controls the lifecycle of the database, launches and terminates it as
needed, and directly accesses it, often without authentication or through a single
user account. Tenants in the application are in this case mapped to the database
through identifiers or unprivileged separation such as tables or columns.

Cloud-native applications are often decomposed into horizontally scalable mi-
croservices where all instances are of equal importance in a peer structure. Only
few database systems are currently mirroring this ability. Many still require a
master-slave setup where the master instance needs to be launched before the

Cloud-Native Databases: An Application Perspective — CloudWays

50



slave instances and must never fail, or variants thereof with multi-master repli-
cation. We analyse selected database systems concerning their use as disposable
microservices in Table 1. Of these, only Crate fully conforms to this model,
although a technology preview also exists for MongoDB (for master-slave repli-
cation).

Table 1: Available self-managed database microservices
Name Relation of instances
CouchDB master-slave and master-master replication, manual sharding
MongoDB replica sets with master-slave replication, keyed sharding
Crate set of peers with automated sharding upon scaling
PostgreSQL master-slave replication, sharding through Citus
MySQL master-slave replication, sharding through Fabric

2.2 Provider-Managed Database Services

From a cloud application perspective, it is desirable to maximise the flexibility
by freely choosing among application-controllable software and managed services
for the assumed database interface. Despite efforts to standardise the interfaces
for database-as-a-service (DBaaS), the implementation differences are signifi-
cant enough to warrant the propagation of information about the underlying
database system. For instance, a developer may know how to write SQL state-
ments but can optimise them and avoid pitfalls when knowing that the engine
behind the SQL interface is in fact a MariaDB 10.2 with the XtraDB storage
engine. This knowledge should be conveyed and flexibly interpreted using dis-
coverable service descriptions, but in practice, it is often tightly coupled to the
application. Furthermore, database interface and implementation options pro-
vided in the commercial cloud space vary significantly. Table 2 compares the
availability of database interfaces at six public cloud (platform) providers from
two countries, USA and Switzerland. Implementations marked with asterisk are
available as open source and thus allocatable for local testing by application
developers prior to paying for the cloud deployment.

Despite multi-database service offers by most providers, the table is sparse.
This means that vendor lock-in risks need to be assessed. Furthermore, the pric-
ing of DBaaS differs for offers with the same interface. For instance, MongoDB
services are offered by Microsoft (as interface adapter to CosmosDB) and by the
Swisscom Application Cloud (AC). The Swisscom offer excluding high availabil-
ity starts at CHF 12 per month including 1 GB storage and 256 MB RAM. The
equivalent Azure offer (hosted in Europe-West) starts at CHF 134 but includes
10 GB storage and 5 DTUs, a custom unit expressing the processing power. For
an application engineer who wants to process a data volume of 1 GB, it is not
clear if the cheaper offer would be performance-wise on par without further ex-

Cloud-Native Databases: An Application Perspective — CloudWays

51



Table 2: Available provider-managed database services

A
m
az
on

W
eb

Se
rv
ic
es

G
oo

gl
e
C
lo
ud

M
ic
ro
so
ft

A
zu
re

IB
M

B
lu
em

ix

A
P
P
U
iO

Sw
is
sc
om

A
C

Application Interface Implementation

X1

X2

SQL

MySQL *
X X MariaDB *

X X PostgreSQL *
Aurora
Oracle DB

X3 SQL Server
X DB2

(X)4 X X

JSON QL or similar (Mango etc.)

MongoDB *
X5 CouchDB *

X DynamoDB
X CosmosDB
X

other

TableStorage
X Datastore
X BigTable (*)

X6 X7 X X Redis *
Notes: 1: RDS, 2: Cloud SQL, 3: Database Service, 4: CosmosDB adapter, 5:
as Cloudant NoSQL, 6: as ElastiCache; 7: via external RedisLabs service

periments. There are detailed studies on cloud database services in general [11].
In contrast, our focus is on their suitability for cloud-native applications.

3 Comparison Method and Testbed

The automatable comparison of databases is rooted in two main characteristics:
performance and resilience. Other metrics such as price and isolation can be de-
rived from trace data in conjunction with external information. Several queries
and transactions are run to measure the performance through an application-
specific benchmark. It includes the preparation of structures (tables, collections),
individual inserts, bulk inserts, queries and deletions. Furthermore, the avail-
ability is measured and in the case of self-managed database services actively
impeded by controlled interference and termination, leading to data about the
resilience.

As our chosen approach is to provide a testbed to compare database options,
its functional and non-functional requirements need to be defined first. The
functional requirements are:

Cloud-Native Databases: An Application Perspective — CloudWays

52



1. The testbed must run itself in the target environment of the cloud-native
application to yield realistic metrics with simple queries and complex trans-
actions.

2. Both self-managed and provider-managed database services need to be sup-
ported.

3. The testbed operator must be able to choose the dataset under test, either
an existing one or a synthetic one which is generated as part of the operation.

The non-functional requirements are:

1. The scale of testing needs to be configurable to balance representative and
timely results. Therefore, the runtime needs to be chosen to range from mere
minutes to multi-day sampling.

2. All tests need to be idempotent to allow for repetitions and statistical de-
tection of anomalies.

3.1 Testbed Architecture and Implementation

The testbed architecture is derived from the requirements. To correlate with
cloud-native applications, a containerised approach is taken. Both the testbed
itself, with its performance benchmark and resilience calculation parts, and all
self-managed database services are launched as container compositions. Fig. 3
visualises the technique of how the experiments are conducted by using Docker
Compose as orchestrator of containers. One container contains a performance
benchmark application, another one a fault provocation application, two stateful
containers serve as persistent input and output volumes for the reference dataset
and the results respectively, and additional containers spawn the database sys-
tems. The testbed containers allow for parameterisation through environment
variables to override any values in the internal configuration file. The most im-
portant properties include binding metadata and credentials. Furthermore, the
testbed supports five configurable multi-tenancy isolation levels.

Fig. 3: Orchestrated containers and services as part of the experiment setup

Our implementation of this architecture is called CNDBbench, focusing on
the benchmarking part while also containing the resilience part. It is consisting
of Python classes for all supported database interfaces and the Docker image
generation scripts, and is made available as open source software for use in other
migration cases (see Repeatability).

Cloud-Native Databases: An Application Perspective — CloudWays

53



3.2 Testbed Preparation: Document Management Scenario

Each instance of the testbed needs to be prepared according to application-
specific needs. The guiding objective of our research has been to analyse database
options for the class of cloud-native document management applications. Their
requirement is storing millions of documents (e.g. scanned PDFs of dozens of MB
in size) along with document metadata such as ownership, permissions, audit
trails and searchable full text determined by OCR prior to insertion. From the
application perspective, the design then involves stateful (database) components
which are realised as bindings to database services or instances of application-
controlled database microservices. Fig. 4 demonstrates a document management
scenario and the possible realisation options.

Fig. 4: Document management scenario

The reference dataset to evaluate the database choices consists of 100,000
generated entries which correspond to an actual domain-specific dataset with
scanned newspaper articles. With associated metadata such as origin and access
control lists, there are 1.4 million entries in total. The medium-sized data with
large blob documents and structured metadata is representative for the domain
of document management in the cloud through databases; alternative hybrid
designs using blob storage are not considered in the present scenario. The fol-
lowing operations are performed to get both performance and deviation metrics:
insertion of data, search and retrieval of partial data. This selection matches
transactions in typical document management applications where updates and
deletions happen rather sporadically.

3.3 Testbed Operation

Once the testbed is prepared, it needs to be operated in a way which most closely
corresponds to the eventual operation of the application. Specifically, network
delays and latencies as well as microservice execution technologies need to be
properly reflected. Fig. 5 shows seven testbed configurations which correspond to
all possible combinations of how to manage application data in the cloud. More
variability is added by defining for the cases of application-managed databases
where to physically store the data. Our research assumes attaching volume con-
tainers whereas provider-managed storage areas would be another option.

Cloud-Native Databases: An Application Perspective — CloudWays

54



Fig. 5: Combinations of local, application-managed and provider-managed con-
tainers with application-managed and provider-managed databases

4 Selected Results

This section reports on results we have obtained from running the testbed in
some of the explained operational combinations using the document management
dataset. The research on the figurative cloud-nativeness of databases have been
conducted with experiments targeting the desired technical properties of the spe-
cific application domain of document management. In total, 28 experiments have
been performed and recorded, showing the versatility of CNDBbench. Selected
results concerning performance, multi-tenancy flexibility and pricing will be re-
ported. Apart from the results described here due to interesting observations,
all experiments and results are analysed and described in a technical appendix
to this paper (see Repeatability).

Five relational and document database systems from Table 2 have been se-
lected for the study of the first group. They are briefly summarised in Table 3.
Among those, PostgreSQL and MySQL are relational database systems (albeit
with recently added JSON document processing capabilities) and have been
available in early versions since the mid-1990s. CouchDB and MongoDB are
often-cited representatives for document-centric systems which appeared in the
late 2000s. Crate is the most recent system, created in 2014, whose focus on cloud
deployments is stressed by masterless distributed operation and automatic node
recovery in combination with a standard SQL-over-HTTP interface. It offers a
mixed document/column store. All five systems have subtle differences in how
they shard (and replicate) data.

For the second group, summarised in the bottom half of the table, three
database service providers have been chosen: Amazon Web Service’s Relational
Database Service (RDS) with the Aurora implementation, which is a custom
storage engine, in addition to the stock MySQL with its InnoDB, MyISAM and
other default engines, IBM’s Cloudant NoSQL and PostgreSQL service on its
Bluemix platforms, which as the name suggests are a document store and a re-
lational database, respectively, and Azure’s CosmosDB née DocumentDB. An
interesting observation is that even more sharding options are present which af-
fect how well data can be managed by cloud-native applications. Interestingly,
Aurora despite being a cloud service does not offer sharding for horizontal scal-

Cloud-Native Databases: An Application Perspective — CloudWays

55



Table 3: Evaluated database system software and cloud services
Software/Service Data model Runtime Distribution
CouchDB document Erlang create-sharding
MongoDB document C++ config-sharding
Crate mixed-model Java auto-sharding
PostgreSQL relational C master-sharding
MySQL relational C, C++ fabric-sharding
AWS RDS Aurora relational MySQL read-replicas
AWS RDS MySQL relational MySQL read-replicas
Azure CosmosDB document DocumentDB key-sharding
Bluemix PostgreSQL relational PostgreSQL failover-replicas
Bluemix Cloudant document CouchDB none

ability. More variety is available at other providers, for instance Azure offering
key-sharded data in CosmosDB which would otherwise resemble Cloudant.

4.1 Database Performance

The first experiment compares the deviation of response times as measure of
instability between a local database system and a database system or service in
the cloud, represented by AWS. A complex document management transaction
consisting of six individual queries was performed with MySQL first as this
system is reflected in the largest variety of cloud hosting options. The benchmark
itself ran both on the local machine and as close as possible to the database, i.e.
with high affinity in the cloud. Fig. 6a shows that the local queries are much faster
and their response time more predictable than those of the cloud counterpart
when the benchmark runs locally and thus all queries need to traverse the wide-
area network. Fig. 6b contrasts the results with the affine benchmark. All such
measurements are suffixed with /in-cloud. The trivial comparison shows that a
local benchmark with a local MySQL system performs equal to a Kubernetes-
hosted benchmark and MySQL container pair, as both communicate via local
link. As soon as the provider’s services are involved, this translates into a local-
area network transmission within one hosting region.

In Fig. 7a, a different set of queries was tested with MongoDB, hence the dif-
ferent absolute times and network delay effects. Nevertheless, the cloud-hosted
database container shows a higher stability in response times with both local
and cloud benchmark, while the latter also has a lower response time as ex-
pected from the observation of MySQL. The interesting difference is that the
response time deviations are high for local MongoDB queries but low for local
MySQL queries which suggests that not only the network influences the vari-
ation in response times. In contrast, Fig. 7b reports on the same experiments
using the MongoDB adapter for CosmosDB which was conducted over two non-
consecutive days. In both the local and cloud-hosted benchmark cases, the latter
using an Azure VM, the performance is relatively stable within one day, vary-

Cloud-Native Databases: An Application Perspective — CloudWays

56



 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90  100

ti
m

e
 (

s)

attempt

Database system response times deviation

mysql-local
mysql-amazon-rds

mysql-amazon-kubernetes
aurora-amazon-rds

(a) Local benchmark

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90  100

ti
m

e
 (

s)

attempt

Database system response times deviation

mysql-local (baseline)
mysql-amazon-rds/in-cloud

mysql-amazon-kubernetes/in-cloud
aurora-amazon-rds/in-cloud

(b) Cloud benchmark

Fig. 6: Query times for MySQL

ing a lot between the days (about 33%), and extremely low compared to the
native MongoDB counterparts. Additionally, Fig. 8 compares two database ser-
vices from Bluemix to complete the variations in engines, providers, services and
benchmark locations. The interesting observation is that not only are the abso-
lute response times of PostgreSQL strictly below the ones of MySQL (r̄t = 0.92
vs. 6.23), their deviation is also a lot smaller (σ = 2.60 vs. 28.32).

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35  40  45  50

ti
m

e
 (

s)

attempt

Database system response times deviation

mongo-local
mongo-azure

mongo-azure/in-cloud

(a) MongoDB self-managed instances

 66

 68

 70

 72

 74

 76

 78

 80

 82

 0  5  10  15  20  25  30  35  40  45  50

ti
m

e
 (

s)

attempt

Database system response times deviation

documentdb(mongo)-azure
documentdb(mongo)-azure/in-cloud

(b) CosmosDB with MongoDB interface

Fig. 7: Query times for MongoDB/CosmosDB, both local and cloud benchmarks

4.2 Database Multi-Tenancy

Data management is affected by the level of isolation between the tenants in a
multi-tenant database service setup. Fig. 9 represents the model of matching iso-
lation level to estimated performance and cost. For three out of the five different
levels, we have measured the actual behaviour with three different implementa-
tions each.

Fig. 10 contains the corresponding results. The multi-threaded implementa-
tion (MT) takes longer per thread to return the results but all threads return
close to each other, leading to a speedup of 22.5%, 41.9% and 59.6% over the

Cloud-Native Databases: An Application Perspective — CloudWays

57



 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90  100

ti
m

e
 (

s)

attempt

Database system response times deviation

postgresql-bluemix
mysql-bluemix

Fig. 8: Query times for MySQL and PostgreSQL, local benchmark

Fig. 9: Model of flexible multi-tenancy configurations for database services, with
MongoDB

single-threaded implementation of A, B and C, respectively. Option C is the
fastest and most isolated option, but does not represent an unconditional overall
sweetspot due to also being the most expensive one.

4.3 Database Pricing

Of interest to the application provider is the total cost of provisioning in relation
to a quality of experience which allows for a surplus-generating revenue. Our
findings indicate that there is no clear price advantage of self-managed containers
on the SaaS level versus a comparable DBaaS option, or vice-versa, when taking
replicated containers for higher resilience into account. From a methodic point
of view, we derive an unquantified graphical representation of pricing in relation
to performance, availability/resilience, reliability, multi-tenancy and scalability
as shown in Fig. 11 and propose to derive a comparison tool for application
engineers.

5 Findings and Recommendations

As the selected results have shown, a general statement about a single best
database option will not be possible, and a sharp definition of CNDB remains im-

Cloud-Native Databases: An Application Perspective — CloudWays

58



 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90  100

ti
m

e
 (

s)

attempt

Multi-tenancy isolation vs. performance

A
B
C

A/MT
B/MT
C/MT

Fig. 10: Results for multi-tenancy options A, B and C with and without multi-
threading

Fig. 11: Spider graph for pricing trade-offs, sampled for MySQL at Google; out-
side = best

possible. Our general recommendation is therefore that tools such as CNDBbench
should be used in cloud application migration projects to produce metrics upon
which selection decisions can be based.

Several systems and services have undocumented or undiscoverable limita-
tions which can be revealed by systematic testing as is the case with CNDBbench.
For instance, Crate only returns up to 10,000 rows by default and requires a
LIMIT clause to return more. Azure CosmosDB limits the maximum requests to
1000 per second, which can be increased to 10,000, and requires the activation
of further instances to grow beyond, despite low load on the database. Several
protocols and client-side libraries are setting up timeouts. Some are merely dif-
ficult to deactivate, others even impossible, like the 20 second query timeout
when inserting many records through PyMongo.

For the mentioned limitations, we recommend a discoverable description of
these properties in addition to more complete documentation [6]. For the con-
struction of future applications, assuming more maturity and choice in container-
ised database systems, we recommend auto-clustering microservices as currently
implemented for Crate. In any case, the economics of self-managed instances de-
pends to a large degree on the business background, including the skills and qual-
ifications of the application engineers. In tech-savvy companies, self-managed

Cloud-Native Databases: An Application Perspective — CloudWays

59



database containers running on top of virtual machines using container manage-
ment frameworks are recommended.

6 Discussion and Conclusion

We discuss our findings in the context of recent publications about both cloud-
native databases and database characteristics in the cloud in general.

Szczyrbowski and Myszor present a behaviour comparison between the Ora-
cle Database Schema Service which offers an HTTP interface [13] and the local
11g equivalent. Their main focus is on performance stability, minimising devi-
ations in query times for three operations: INSERT, UPDATE and SELECT.
Their approach is comparable to ours apart from updates and technological
choices. The findings suggest that the cloud service has a much lower deviation
apart from also being (presumably due to opaque hardware differences) faster
in the worst, average and best case. We were able to reproduce this for Mon-
goDB but not for MySQL, and therefore assume that their findings cannot be
generalised.

Another performance comparison is authored by Seriatos et al. [12]. The
focus is on three database systems – MongoDB, Cassandra and HBase – in
the BONFIRE cloud testbed. Cost and scaling are not discussed. The YCSB
benchmark is used. The findings tell that each of the system performs differently
depending on the workload which implies two future work directions: The first,
mentioned by the authors, is the tuning of parameters; the second, added by us,
is the design of adaptive multi-database connectivity as the next evolutionary
step for CNDBs.

The focus on cost is set by Mian et al. in an analysis of resource configuration
using the TPC-C/E/H benchmarks in three application scenarios [9]. While the
authors focus on AWS EC2, the DBaaS services of the same provider are not
considered. A similar aim is conveyed in the work by Floratou et al. albeit with
a critical look at unpleasant surprises in terms of financial risks when using
DBaaS [5]. The findings are that more expensive hourly services may turn out
more cost-effective overall, which is substantiated with observations of MySQL
and SQL Server running on local hardware. The authors propose a benchmark-
as-a-service for application developers (as database users). To cover the scaling
and resilience characteristics which are important in a cloud setting, Bagui et
al. look at sharding techniques and propose an implementation [1]. The work is
demonstrated with MySQL and extends to other engines. Costa et al. examined
partial database migration to the cloud [3]. The migration path in this work is
from local PostgreSQL to AWS DynamoDB without giving up the former by
adding a transparent adapter to the application. The finding is that scalability
bottlenecks can be circumvented by offloading data to DynamoDB. While we
have not analysed the same system, our results with non-ACID confirm this
observation.

Table 4 summarises which of the cloud database properties were covered by
related works and whether our findings agree (�) or disagree(ë) with them.

Cloud-Native Databases: An Application Perspective — CloudWays

60



When the results are not clear, the need for future experimental research (3) is
shown instead. The lack of a reusable testbed from the related work is evident.

Table 4: Related work comparison

Study P
er
fo
rm

an
ce

Sc
al
ab

ili
ty

R
es
ili
en

ce

T
en

an
cy

P
ri
ce

T
es
tb
ed

Szczyrbowski et al. [13] ë

Seriatos et al. [12] 3

Mian et al. [9] 3

Floratou et al. [5] 3

Bagui et al. [1] 3 3

Costa et al. [3] �

We conclude that cloud-native databases are a challenging topic in need of
more formal expressions concerning their configuration and characteristics and of
more experiments. We suggest that future research should be directed towards a
holistic approach of assessing flexible database options in the cloud which involve
self-hosted data containers, blob storage services and DBaaS.

Repeatability

Our benchmark implementation, CNDBbench, is publicly available to repeat
our experiments. For reference and reproducibility of the results, the experiment
setup including hardware specifications and instructions is given in detail in a
raw open science notebook which is made available together with a technical ap-
pendix due to the page number limitation. The notebook also contains reference
results, additional experiments and findings concerning resilience, scalability and
pricing1,2. We encourage the critical examination and re-use of the datasets.

Acknowledgements

This research has been funded by the Swiss Commission for Technology and
Innovation (CTI) in project ARKIS/18992.1. It has also been supported by an
AWS in Education Research Grant, an IBM Academic Initiative for Cloud offer,
a Microsoft Azure Research Award and a Google Cloud credit, all of which helped
us to conduct our experiments on public commercial cloud environments.

1 CNDBbench: https://github.com/serviceprototypinglab/cndbbench
2 CNDBresults: https://github.com/serviceprototypinglab/cndbresults

Cloud-Native Databases: An Application Perspective — CloudWays

61



References

1. Bagui, S., Nguyen, L.T.: Database Sharding: To Provide Fault Tolerance and Scal-
ability of Big Data on the Cloud. International Journal of Cloud Applications and
Computing (IJCAC) 5(2), 36–52 (2015)

2. Brunner, S., Blöchlinger, M., Toffetti, G., Spillner, J., Bohnert, T.M.: Experimental
Evaluation of the Cloud-Native Application Design. In: 4th International Workshop
on Clouds and (eScience) Applications Management (CloudAM). Limassol, Cyprus
(December 2015)

3. Costa, C.H., Maia, P.H., Mendonça, N.C., Rocha, L.S.: Supporting Partial
Database Migration to the Cloud Using Non-intrusive Software Adaptations: An
Experience Report. In: 4th ESOCC. CCIS, vol. 567. Taormina, Italy (September
2015)

4. Costa, C.M., Leite, C.R.M., Sousa, A.L.: Efficient SQL adaptive query processing
in cloud databases systems. In: IEEE EAIS. pp. 114–121. Natal, Brazil (May 2016)

5. Floratou, A., Patel, J.M., Lang, W., Halverson, A.: When Free Is Not Really Free:
What Does It Cost to Run a Database Workload in the Cloud? In: Topics in Per-
formance Evaluation, Measurement and Characterization – Third TPC Technology
Conference (TPCTC). LNCS, vol. 7144. Seattle, Washington, USA (August 2011)

6. Frey, S., Hasselbring, W., Schnoor, B.: Automatic Conformance Checking for Mi-
grating Software Systems to Cloud Infrastructures and Platforms. J. Softw. Evol.
and Proc. 25(10), 1089–1115 (October 2013)

7. Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., Breivold, H.P.: Scal-
ability and Robustness of Time-Series Databases for Cloud-Native Monitoring of
Industrial Processes. In: 7th IEEE International Conference on Cloud Computing
(CLOUD). pp. 602–609. Anchorage, Alaska, USA (July 2014)

8. Götz, S., Ilsche, T., Cardoso, J., Spillner, J., Kissinger, T., Aßmann, U., Lehner,
W., Nagel, W.E., Schill, A.: Energy-Efficient Databases using Sweet Spot Fre-
quencies. In: 1st International Workshop on Green Cloud Computing (GCC). pp.
871–876. London, UK (December 2014)

9. Mian, R., Martin, P., Zulkernine, F.H., Vázquez-Poletti, J.L.: Cost-Effective Re-
source Configurations for Multi-Tenant Database Systems in Public Clouds. Inter-
national Journal of Cloud Applications and Computing (IJCAC) 5(2), 1–22 (2015)

10. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: AGILE: Elastic Distributed
Resource Scaling for Infrastructure-as-a-Service. In: 10th International Conference
on Autonomic Computing (ICAC). pp. 69–82. San Jose, California, USA (June
2013)

11. Sakr, S.: Cloud-hosted databases: technologies, challenges and opportunities. Clus-
ter Computing 17(2), 487–502 (2014)

12. Seriatos, G., Kousiouris, G., Menychtas, A., Kyriazis, D., Varvarigou, T.A.: Com-
parison of Database and Workload Types Performance in Cloud Environments. In:
First International Workshop on Algorithmic Aspects of Cloud Computing (AL-
GOCLOUD). LNCS, vol. 9511, pp. 138–150. Patras, Greece (September 2015)

13. Szczyrbowski, M., Myszor, D.: Comparison of the Behaviour of Local Databases
and Databases Located in the Cloud. In: 12th International Conference on Beyond
Databases, Architectures and Structures. Advanced Technologies for Data Mining
and Knowledge Discovery. CCIS, vol. 613, pp. 253–261. Ustroń, Poland (May 2016)

14. Wiese, L.: Advanced Data Management for SQL, NoSQL, Cloud and Distributed
Databases. DeGruyter/Oldenbourg (2015)

Cloud-Native Databases: An Application Perspective — CloudWays

62



Using a Cloud Broker API to Evaluate Cloud
Service Provider Performance

Divyaa Manimaran Elango1, Frank Fowley1, and Claus Pahl2

1 IC4, Dublin City University, Dublin, Ireland
2 SwSE, Free University of Bozen-Bolzano, Bolzano, Italy

Abstract. We introduce here a cloud service broker that implements
a multi-cloud abstraction API – with the aim to use it for performance
comparisons between different services. Our broker is a multi-cloud stor-
age API that supports a number of provided storage services. The API
library offers three services, namely File service, Blob service and Ta-
ble service. While a broker normally addresses interoperability concerns,
based on this architecture, a performance test application was developed
here to compare between the different providers. This test configuration
was used to compare a range storage operations of different services.

1 Introduction

A Cloud Broker is an intermediary application between a client and cloud
provider service [10, 15]. This concept of brokerage reduces the time spent by
a client in analyzing different types of services provided by different service
providers [1]. This enables a single platform to offer the client a common cloud
storage service. This results in cost optimization and reduced level of back-end
data management requirements. We introduce here a cloud service broker that
implements a multi-cloud abstraction API. Our broker is a multi-cloud stor-
age API that supports GoogleDrive, DropBox, Microsoft Azure and Amazon
Web Services as provided storage services. The API library offers three services,
namely File service, Blob service and Table service. A multi-cloud storage ab-
straction API can facilitates the distribution of different types of cloud provider
services [16]. The abstraction library allows the cloud broker to adapt to a rapidly
changing marketplace. Vendor Lock-in is a major barrier in cloud computing. In
order to avoid lock-in, a broker can help. A multi-cloud abstraction library can
play a crucial role in such cases, where it makes it easier for the client to switch
between cloud providers with different services available.

Switching or migrating between providers should be driven by quality [28,
29]. We use a broker implementation to compare the supported services [7, 13,
23] from a performance perspective [39] . While a broker normally addresses
interoperability [3, 2, 4, 9], based on this architecture, a performance test appli-
cation was developed here to compare between services [19]. The test app was
used to compare a range storage operations across different providers.

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

63



Fig. 1. Architecture of a Multi-cloud Storage Broker.

2 Selected Services and Architecture

GoogleDrive offers a cloud file storage service. The GoogleDrive service includes
access to a Google API client library. DropBox is a file hosting service. It also
enables synchronised backup and web sharing. The DropBox API is very light-
weight and easy for a new user. Azure Storage supports blob, file, queue and table
services. The API is built on REST, HTTP and xml, and can be integrated with
Microsoft visual studio, eclipse and GIT. The Azure SDK provides a separate
API package for each service and has the same code flow across different service
APIs. Amazon Web Service S3 is a file storage service which is built on REST
and SOAP. Their SDK is available in all major development languages.

This study of providers resulted in a grouping of the cloud providers and
their services as shown in the table below3:

Service Azure AWS Google DropBox
File Storage File - GoogleDrive DropBox
Blob Storage Blob AWS S3 - -
Table Storage Table, DocumentDB DynamoDB, SimpleDB - -

Cloud services are generally provided with specifications which make it hard
to use them as a common interface. Several existing multi-cloud libraries were
studied during this project, including Apache Jclouds, DeltaCloud, Kloudless,
SecureBlackBox, and SimpleCloud in order to adopt a successful solution tem-
plate. It was decided to adopt an approach similar to the Apache Jclouds library
for abstraction. Jclouds (http://www.jclouds.org/) provides cloud-agnostic ab-
straction. A single instance context approach for the mapping of a user request
in jclouds was used in our implementation. The purpose of having each class for
each provider across different levels of service was adopted from a similar design

3
https://www.google.com/drive/; https://www.dropbox.com/; https://aws.amazon.com/s3/;
https://azure.microsoft.com/en-us/services/storage/;

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

64



Fig. 2. Ontology-based layered broker architecture.

in the SecureBlackBox library. Our concept of including a manager interface
layer at each component level is gleaned from LibCloud.

3 Broker Architecture

The main objective of designing and developing an abstraction API is to produce
an effective cloud delivery model, enabling portability and interoperability as
part of a cloud brokerage solution [14].

A Storage Abstraction Ontology describes the common naming and meaning
approach of the abstraction API [26, 27]. The model consists of four main layers,
namely Service, Provider, Level-2 (composite storage objects) and Level-1 (core
storage objects).

Service: The Service layer is the top layer and is directly integrated to the user
interface layer. This layer basically describes the services that the multi-cloud
storage abstraction API supports. There are three services currently supported.
They are Blob, Table and File service.

Provider: The Provider layer is the second layer, which is one of the context
object parameters mapped to the service layer. The multi-cloud storage ab-
straction supports four main providers, namely Microsoft Azure, Amazon Web
Services, GoogleDrive and DropBox. The corresponding services supported by
the providers are shown below:

Service Provider
Blob Azure storage Blob; AWS S3.
Table Azure Storage Table; Azure DocumentDB; AWS DynamoDB; AWS Sim-

pleDB.
File Azure Storage File; DropBox and GoogleDrive.

Level-2 Composite: Level-2 is the third layer. This layer represents the first level
or higher level of composite object abstraction. This layer is service-neutral and

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

65



brings out the common naming across the providers specific functionalities. Each
layer is abstracted based on the common operations and aspect of how the main
function is applied in that particular service. Common naming is represented to
easily categorise storage resources and group them to make the development of
the coding easier.

As it is shown in the Abstraction Ontology Fig. 2, the Blob service has
Store which groups Container from Azure Storage Blob and Bucket from AWS
S3. The Table service has two different sub-layers - where Database belongs to
Azure DocumentDB Database, and where Collection groups Table from Azure
Storage Table, collection from Azure DocumentDB Collection, Table from AWS
DynamoDB and Domain from AWS SimpleDB. The File service has two differ-
ent sub-layers where Share belongs to Azure Storage File and Directory groups
Directory from Azure Storage File, Folder from DropBox and Parent from the
GoogleDrive service.

Level-1 Core: Level-1 represents the lower level of core object abstraction.
This layer contains the core functionalities of a particular service across different
providers. The classes in this level are extended from an abstract class called
AbstractConnector. The class implements the abstract methods defined in the
AbstractConnector class. The mapping from Level-2 to Level-1 is performed by
an interface class called Manager. This Manager identifies the provider class
by its key. Basic CRUD operations on the storage resources are included as
core methods. In order to achieve these functions, each operation request should
pass through the Level-2 mappings and are then mapped across the service and
providers.

The Blob service has Blob which groups Blob from Azure Storage Blob and
Object from AWS S3. The Table service has two different sub layers. It has Item
which groups Entity from Azure Storage Table, Document from Azure Doc-
umentDB Document, Item from AWS DynamoDB and Item from AWS Sim-
pleDB. Also, the second sub layer Attachment belongs to Azure DocumentDB.
The File service has File which groups File from Azure Storage File, File from
DropBox and File from GoogleDrive.

4 Testing and Evaluation

We now desribe the test set-up and the results for the three service types blob,
file and table.

The Blob Service test was performed on Azure Storage Blob and AWS S3.
The test includes two object levels. The Level-2 represents Store (which includes
container and Bucket). The Level-1 represents Blob (which includes Blob and
Object). The total number of tests performed was 27. The performance test
compares the operations across the service providers. Each operation was run 10
times, and the corresponding process time for each request from T1 to T10 was
calculated. Each request was processed with the same blob size of 10.2MB. The
result includes start time, end time, average time and total duration – Figs. 3
and 4.

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

66



Fig. 3. Blob Service Level-2 Composite Object.

Fig. 4. Blob Service Level-1 Core Object.

The File Service tests were performed on Azure Storage File, GoogleDrive
and DropBox. The tests include two object levels. The Level-2 represents Share
and Directory. The Level-1 represents File. The total number of tests per-
formed was 26. The performance tests compare the operations across the service
providers. Each operation was run 10 times, and the corresponding process time
for each request from T1 to T10 was calculated. Each request was processed
with same file size of 10.2MB. The results include start time, end time, average
time and total duration – Figs. 5 and 6.

The Table Service tests were performed on Azure Storage Table, Azure
DocumentDB, AWS DynamoDB and AWS SimpleDB. The Tests include two
object levels. The Level-2 represents Database and Collections (which includes
Table, Collections, Table and Domain). The Level-1 represents Item (which in-

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

67



Fig. 5. File Service Level-2 Composite Object.

Fig. 6. File Service Level-1 Core Object.

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

68



cludes Entity, Document, Table Item and Domain Item) and Attachment. The
total number of tests was 45. The performance tests compare the operations
across the service providers. Each operation was run 10 times, and the corre-
sponding process time for each request from T1 to T10 was calculated. Each
request was processed with a single data record of approximately four columns.
The results include start time, end time, average time and total duration – Figs.
7 and 8.

Fig. 7. Table Service Level-2 Composite Object.

5 Discussion of Results and Conclusions

Cloud service brokerage aims at customising or integrating existing services or
making them interoperable. We have developed an integration broker follow-
ing the classification schemes in [12, 11, 36]. The main purpose is intermediation
between consumers and providers to provide advanced capabilities (interoper-
ability and portability [30]) that builds up on an intermediary/broker platform
to provide a marketplace to bring providers and customers together

We have focussed here on a broker solution for cloud storage service providers
to implement a joint interface to allow

– easy portability for the user and

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

69



Fig. 8. Table Service Level-1 Core Object.

– easy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for
a cloud storage user to easily migrate between service providers and evolve the
systems [21, 8], without having sufficient standards [20, 5, 6]. We looked here into
using the broker to carry out performance tests across the providers in order to
aid the decision which provider to choose.

The main results from the tests detailed in the paper are as follows:

– a) The performance of core object storage operations varies significantly
across Cloud providers. Azure outperforms AWS S3 by a factor of between
4 and 5. For individual object operations, Azure is also up to 5 times faster
in terms of access speed. For example, the common function of UploadBlob
takes approximately 4 seconds on Azure and 10 seconds on AWS S3 for a
10.2 MB file.

– b) The tests of composite operations [25] that relate to collections show
that Azure has significantly more access performance than other providers.
In particular, AWS DynamoDB has a unusually long access time for its
CollectionCreate operation. The tests on individual table entity operations
show Azure to be the fastest by a considerable margin with over 5 to 6 times
lesser access speeds on average.

– c) The average of the combined file upload and download speeds do not vary
considerably across the 3 providers tested.

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

70



In the future, we plan to consider more storage services. Furthermore, the
impact of different architectures in terms on IaaS or PaaS with and without the
use of container technologies [37] shall be explored.

Acknowledgements

This work was partly supported by IC4 (Irish Centre for Cloud Computing and
Commerce), funded by EI and the IDA.

References

1. S. Ried: Cloud Broker – A New Business Model Paradigm. Forrester. 2011.
2. D. Benslimane, S. Dustdar, A. Sheth: Services Mashups: The New Generation of

Web Applications. Internet Computing, vol.12, no.5, pp.13-15, 2008.
3. D. Bernstein, E. Ludvigson, K.Sankar, S. Diamond, M. Morrow: Blueprint for the

Inter-cloud: Protocols and Formats for Cloud Computing Interoperability. Intl Conf
Internet and Web Appl and Services. 2009.

4. R. Buyya, R. Ranjan, R.N. Calheiros: Intercloud: Utility-Oriented Federation of
Cloud Computing Environments For Scaling of Application Services. Intl Conf on
Algorithms and Architectures for Parallel Processing , LNCS 6081. 2010.

5. Cloud Standards. http://cloud-standards.org/. 2017.
6. ETSI Cloud Standards. http://www.etsi.org/newsevents/ news/734-2013-12-press-

release-report-on-cloudcomputing- standards. 2017.
7. C. Fehling, R. Mietzner: Composite as a Service: Cloud Application Structures,

Provisioning, and Management. Information Technology 53:4, pp. 188-194. 2011.
8. C. Pahl, P. Jamshidi, D. Weyns: Cloud architecture continuity: Change models

and change rules for sustainable cloud software architectures. Journal of Software:
Evolution and Process 29(2). 2017.

9. C. Pahl. P. Jamshidi, O. Zimmermann: Architectural Principles for Cloud Software.
ACM Transactions on Internet Technology. 2017.

10. Forrester Research: Cloud Brokers Will Reshape The Cloud.
2012. http://www.cordys.com/ufc/file2/cordyscms sites/download/
09b57cd3eb6474f1fda 1cfd62ddf094d/pu/

11. F. Fowley, C. Pahl, L. Zhang: A Comparison Framework and Review of Service
Brokerage Solutions for Cloud Architectures. 1st International Workshop on Cloud
Service Brokerage. 2013.

12. F. Fowley, C. Pahl, P. Jamshidi, D. Fang, X. Liu: A Classification and Comparison
Framework for Cloud Service Brokerage Architectures. IEEE Transactions on Cloud
Computing. 2017.

13. S. Garcia-Gomez et al.: Challenges for the comprehensive management of Cloud
Services in a PaaS framework. Scalable Computing: Practice and Experience 13(3).
2012.

14. D.M. Elango, F. Fowley, C. Pahl: Pattern-driven Architecting of an Adaptable
Ontology-driven Cloud Storage Broker. Proceedings CloudWays’2017 Workshop.
2017.

15. Gartner - Cloud Services Brokerage. Gartner Research, 2013.
http://www.gartner.com/it-glossary/cloud-servicesbrokerage- csb

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

71



16. N. Grozev, R. Buyya: InterCloud architectures and application brokering: taxon-
omy and survey. Software: Practice and Experience. 2012.

17. D. Taibi, V. Lenarduzzi, C. Pahl: Processes, Motivations and Issues for Migrating
to Microservices Architectures: An Empirical Investigation. IEEE Cloud Comput-
ing. 2017 (accepted for publication).

18. C. Pahl, P. Jamshidi: Microservices: A Systematic Mapping Study. Proceedings
CLOSER Conference, Pages 137-146. 2016.

19. C.N. Hofer, G. Karagiannis: Cloud computing services: taxonomy and comparison.
Journal of Internet Services and Applications, 2(2), 81-94. 2011.

20. IEEE Cloud Standards. http://cloudcomputing.ieee.org/standards. 2015.
21. P. Jamshidi, A. Ahmad, C. Pahl: Cloud Migration Research: A Systematic Review.

IEEE Transactions Cloud Computing. 2013.
22. jclouds. jclouds Java and Clojure Cloud API. http://www.jclouds.org/. 2015.
23. A. Juan Ferrer et al. OPTIMIS: A holistic approach to cloud service provisioning.

Future Generation Computer Systems, 28(1):66-77. 2012.
24. A.V. Konstantinou, T. Eilam, M. Kalantar, A.A. Totok, W. Arnold, E. Sniblel: An

Architecture for Virtual Solution Composition and Deployment in Infrastructure
Clouds. Intl Workshop on Virtualization Technologies in Distr Computing. 2009.

25. R. Mietzner, F. Leymann, M. Papazoglou: Defining Composite Configurable SaaS
Application Packages Using SCA, Variability Descriptors and Multi-tenancy Pat-
terns. Intl Conf on Internet and Web Applications and Services. 2008.

26. C. Pahl: Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. European Conf on Model-Driven Architecture ECMDA’05. 2005.

27. C. Pahl, S. Giesecke, W. Hasselbring: Ontology-based Modelling of Architectural
Styles. Information and Software Technology (IST). 51(12): 1739-1749. 2009.

28. C. Pahl, H. Xiong: Migration to PaaS Clouds - Migration Process and Architectural
Concerns. IEEE 7th International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems MESOCA. 2013.

29. C. Pahl, H. Xiong, R. Walshe: A Comparison of On-premise to Cloud Migration
Approaches. Europ Conf on Service-Oriented and Cloud Computing ESOCC. 2013.

30. D. Petcu et al.: Portable cloud applications - from theory to practice. Fut. Gen.
Computer Systems 29(6):1417-1430. 2013.

31. M. Javed, Y.M. Abgaz, C. Pahl: Ontology change management and identification
of change patterns. Journal on Data Semantics, 2(2-3): 119-143. 2013

32. Amazon Simple Storage Service (S3) Cloud Storage AWS
https://aws.amazon.com/s3/

33. Dropbox https://www.dropbox.com/
34. Azure Storage - Secure cloud storage https://azure.microsoft.com/en-

us/services/storage/
35. Google Drive - Cloud Storage & File Backup https://www.google.com/drive/
36. P. Jamshidi, C. Pahl, N.C. Mendonca: Pattern-based multi-cloud architecture mi-

gration. Software: Practice and Experience 47 (9), 1159-1184. 2017.
37. C. Pahl, A. Brogi, J. Soldani, P. Jamshidi: Cloud Container Technologies: a State-

of-the-Art Review. IEEE Transactions on Cloud Computing. 2017.
38. C.M. Aderaldo, N.C. Mendonca, C. Pahl, P. Jamshidi: Benchmark requirements

for microservices architecture research Proceedings of the 1st International Work-
shop on Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering. IEEE. 2017.

39. R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L.E. Lwakatare, C. Pahl, S. Schulte,
J. Wettinger: Performance Engineering for Microservices: Research Challenges and

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

72



Directions. Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering Companion. 2017.

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

73



Fig. 9. Detailed Performance Measurements.

Using a Cloud Broker API to Evaluate Cloud Service Provider Performance — CloudWays

74



TosKer: Orchestrating applications
with TOSCA and Docker

Antonio Brogi, Luca Rinaldi, and Jacopo Soldani

Department of Computer Science, University of Pisa, Italy

Abstract. Docker is emerging as a simple yet effective solution for de-
ploying and managing multi-component applications in virtualised cloud
platforms. Application components can be shipped within portable and
lightweight Docker containers, which can then be interconnected to allow
components to interact each other. At the same time, the need for an
enhanced support for orchestrating the management of the application
components shipped within Docker containers is emerging.

In this paper we show how TOSCA can be exploited to provide such
an enhanced support, by proposing a representation for describing the
components forming an application, as well as the Docker containers
used to ship such components. We also present TosKer, an engine for
orchestrating the management of multi-component applications based on
the proposed TOSCA representation and on Docker.

1 Introduction

Cloud computing has revolutionised IT, by allowing to run on-demand dis-
tributed applications at a fraction of the cost which was necessary just a few
years ago [3]. This is possible as cloud providers exploit virtualisation techniques
to achieve elasticity of large-scale shared resources [22]. Container-based virtu-
alisation (where the operating system kernel permits running multiple isolated
guest instances, called containers) can thus play an important role for cloud
platforms, especially because it provides a lightweight virtualisation framework
for PaaS/edge clouds [19,30] Applications can be packaged, along with all soft-
ware dependencies they need to run, into portable and lightweight containers,
which can then be managed on cloud platforms [28].

Containers are also an ideal solution for SOA-based architectural patterns
(e.g., microservices [24]) that are emerging in the cloud community to decompose
monolithic applications into suites of independently deployable, lightweight com-
ponents. Application components can indeed be packaged in independently de-
ployable, lightweight containers, which can then be interconnected to allow com-
ponents to interact with each other (forming multi-container applications [31]).

Docker [14] is considered the de-facto standard for container-based virtuali-
sation [29]. Docker permits packaging software components in Docker images,
which are then exploited as read-only templates to create and run Docker con-
tainers. Docker containers can also mount external volumes, which ensure data
persistence independently of the lifecycle of containers [23].

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

75



Docker permits orchestrating containers, by allowing to define multi-container
Docker applications [31]. Given (the images of) the containers forming a multi-
container application, the volumes they must mount, and the connections to set
up among containers, Docker compose [15] is indeed capable of automatically
deploying the corresponding application.

Docker containers are however treated as “black-boxes”, and they constitute
the minimum orchestration entity considered by currently existing approaches for
orchestrating multi-component applications with Docker (e.g., [2,15,16,32]). Ap-
plication components must be manually packaged, along with all their software
dependencies, in (images of) Docker containers. Components are then strictly
bound to their hosting containers, as it is not possible to orchestrate the man-
agement of the components forming an application independently of the Docker
containers hosting them. For instance, it is not possible to run only some of the
components hosted on a container, as whenever a container is started, all com-
ponents it hosts are also started. Also, if we wish to change the container used
to host a component, new Docker images must be manually developed (e.g., if
a maven container is hosting the front-end and back-end of an application, and
we wish to move the front-end to a java container, we must develop two new
Docker images, one for hosting the front-end on a java container and one for
hosting only the back-end on a maven container).

To fully exploit the potential of SOA, the current support for orchestrating
multi-component applications with Docker should be enhanced. A concrete so-
lution is to still rely on Docker containers as a portable and lightweight mean
to deploy application components on cloud platforms, by also allowing to inde-
pendently manage the components and containers forming a multi-component
application [28]. In this paper we propose a solution precisely following this idea,
which relies on the OASIS standard TOSCA [27] as the mean for orchestrating
multi-component applications on top of Docker containers.

– We propose a TOSCA-based representation for multi-component applica-
tions, which permits modularly specifying the components forming an appli-
cation, the Docker containers and Docker volumes needed to run them, as
well as the relationships occurring among them (e.g., a component is hosted
on a container, a component connects to another).

– We also present TosKer, an engine for orchestrating the management of
multi-component applications based on the proposed TOSCA representation
and on Docker.

Our approach enhances the current support for orchestrating the manage-
ment of multi-component applications in Docker, as it considers application
components as orchestration entities, which are independent from the Docker
containers and Docker volumes used to build their runtime infrastructure. For
instance, TosKer allows to independently manage the application components
hosted on a Docker container, hence allowing to run only some of them (if
needed). Our approach also eases the change of Docker containers used to host
the components of an application, as this only requires to update the corre-

2

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

76



sponding TOSCA specification1 (which will then be processed by TosKer to
automatically deploy and manage the specified application).

The rest of the paper is organised as follows. Sect. 2 provides some background
on TOSCA. Sect. 3 illustrates our proposal for specifying multi-container Docker
applications in TOSCA, and Sect. 4 presents the TosKer engine for actually
orchestrating such applications. Finally, Sects. 5 and 6 discuss related work and
draw some concluding remarks, respectively.

2 Background

TOSCA (Topology and Orchestration Specification for Cloud Applications [27])
is an OASIS standard whose main goals are to enable (i) the specification of
portable cloud applications and (ii) the automation of their deployment and
management. TOSCA provides a YAML-based and machine-readable modelling
language that permits describing cloud applications. Obtained specifications can
then be processed to automate the deployment and management of the specified
applications. We hereby report only those features of the TOSCA modelling
language that are used in this paper2.

Fig. 1. The TOSCA metamodel [27].

TOSCA permits specifying a cloud application as a service template, that is
in turn composed by a topology template, and by the types needed to build such a
topology template (Fig. 1). The topology template is a typed directed graph that
describes the topological structure of a multi-component application. Its nodes
(called node templates) model the application components, while its edges (called
relationship templates) model the relations occurring among such components.

1 This can also be done automatically by exploiting TosKeriser [10]. Given a TOSCA
application specification, TosKeriser can indeed automatically (discover and) in-
clude the Docker containers offering the software support needed by its components.

2 A more detailed, self-contained introduction to TOSCA can be found in [5,12].

3

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

77



Node templates and relationship templates are typed by means of node types
and relationship types, respectively. A node type defines the observable prop-
erties of a component, its possible requirements, the capabilities it may offer
to satisfy other components’ requirements, and the interfaces through which it
offers its management operations. Requirements and capabilities are also typed,
to permit specifying the properties characterising them. A relationship type in-
stead describes the observable properties of a relationship occurring between
two application components. As the TOSCA type system supports inheritance,
a node/relationship type can be defined by extending another, thus permitting
the former to inherit the latter’s properties, requirements, capabilities, interfaces,
and operations (if any).

Node templates and relationship templates also specify the artifacts needed
to actually realise their deployment or to implement their management opera-
tions. As TOSCA allows artifacts to represent contents of any type (e.g., scripts,
executables, images, configuration files, etc.), the metadata needed to properly
access and process them is described by means of artifact types.

TOSCA applications are then packaged and distributed in CSARs (Cloud Ser-
vice ARchives). A CSAR is essentially a zip archive containing an application
specification along with the concrete artifacts realising the deployment and man-
agement operations of its components.

3 Specifying multi-component applications

Multi-component applications typically integrate various and heterogenous com-
ponents [18]. We hereby define a TOSCA-based representation for such compo-
nents, as well as for the Docker containers and Docker volumes that will be used
to form their runtime infrastructure.

We first define three different TOSCA node types3 to permit distinguishing the
Docker containers, the Docker volumes, and the application components forming
a multi-component application (Fig. 2).

– tosker.nodes.Container permits representing Docker containers, by indicat-
ing whether a container requires a connection (to another Docker container
or to an application component), whether it has a generic dependency on
another node in the topology, or whether it needs some persistent storage
(hence requiring to be attached to a Docker volume). tosker.nodes.Container
also permits indicating whether a container can host an application compo-
nent, whether it offers an endpoint where to connect to, or whether it offers
a generic feature (to satisfy a generic dependency requirement of another
container/application component). To complete the description, tosker.no-
des.Container provides placeholders (through the properties ports, env va-
riables and command, respectively) for specifying the port mappings, the

3 The actual definition of all TOSCA types discussed in this section is publicly avail-
able on GitHub at https://github.com/di-unipi-socc/tosker-types.

4

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

78



Fig. 2. TOSCA node types for multi-component, Docker-based applications, viz., tos-
ker.nodes.Container, tosker.nodes.Software, and tosker.nodes.Volume.

environment variables, and the command to be executed when running the
corresponding Docker container, and it lists the operations to manage a
container (which correspond to the basic operations offered by the Docker
platform [23]).

– tosker.nodes.Volume permits specifying Docker volumes, and it defines a ca-
pability attachment to indicate that a Docker volume can satisfy the storage
requirements of Docker containers. It also lists the operations to manage a
Docker volume (which corresponds to the basic operations offered by the
Docker platform [23]).

– tosker.nodes.Software permits indicating the software components forming a
multi-component application. It permits specifying whether an application
component requires a connection (to a Docker container or to another appli-
cation component), whether it has a generic dependency on another node in
the topology, and that it has to be hosted on a Docker container or on an-
other component4. tosker.nodes.Software also permits indicating whether an
application component can host another application component, whether it
provides an endpoint where to connect to, or whether it offers a generic fea-
ture (to satisfy a generic dependency requirement of a container/application
component). Finally, tosker.nodes.Software indicates the operations to man-
age an application component (viz., create, configure, start, stop, delete).

4 The host requirement is mandatory for nodes of type tosker.nodes.Software, as we
assume that each application component must be installed in another component or
in a Docker container.

5

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

79



Fig. 3. An example of multi-component application specified in TOSCA (where nodes
are typed with tosker.nodes.Container, tosker.nodes.Volume, or tosker.nodes.Software,
while relationships are typed with TOSCA normative types [27]).

The interconnections and interdependencies among the nodes forming a multi-
component application can be indicated by exploiting the TOSCA normative
relationship types [27].

– tosca.relationships.AttachesTo can indeed be used to attach a Docker volume
to a Docker container.

– tosca.relationships.ConnectsTo can indicate the network connections to es-
tablish between Docker containers and/or application components.

– tosca.relationships.HostedOn can be used to indicate that an application
component is hosted on another component or on a Docker container (e.g., to
indicate that a web service is hosted on a web server, which is in turn hosted
on a Docker container).

– tosca.relationships.DependsOn can be used to indicate generic dependencies
between the nodes of a multi-component application (e.g., to indicate that
a component must be deployed before another, as the latter depends on the
availability of the former to properly work).

Example 1. Consider Thinking, an open-source5 web application that allows
users to share their thoughts, so that all other users can read them. Thinking
is composed by three main components, namely (i) a Mongo database storing
the collection of thoughts shared by end-users, (ii) a Java-based REST API to
remotely access the database of shared thoughts, and (iii) a web-based GUI visu-
alising all shared thoughts and allowing to insert new thoughts into the database.
Fig. 3 illustrates a representation of the Thinking application in TOSCA.

5 The source code of Thinking is publicly available on GitHub at https://github.

com/di-unipi-socc/thinking.

6

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

80



(i) The database is obtained by directly instantiating a MongoDB container,
which needs to be attached to a volume where the shared thoughts will be
persistently stored.

(ii) The API is hosted on a Maven Docker container, and it requires to be
connected to the MongoDB container (for remotely accessing the database
of shared thoughts).

(iii) The GUI is hosted on a NodeJS Docker container, and it depends on the
availability of the API to properly work (as it sends GET/POST requests
to the API to retrieve/add shared thoughts). ut

Finally, also artifacts must be typed [27], as they are used to implement de-
ployment and management operations of the nodes forming a multi-component
application and they must specify the metadata needed to properly access and
process them. We hence define tosker.artifacts.Image and tosker.artifacts.Doc-
kerfile to permit indicating that an artifact is an actual image or a Dockerfile,
which will then be used to create a Docker container. We also extend such arti-
fact types by defining tosker.artifacts.Image.Service and tosker.artifacts.Docker-
file.Service, to permit distinguishing images that execute a service when started
from those that “simply package” a runtime environment. We can instead rely
on TOSCA normative artifact types [27] for all other kinds of artifacts linked by
the nodes in a multi-container Docker application.

Example 1 (cont.). Consider again the application in Fig. 3. The image artifact
associated to the MongoDB container is of type tosker.artifacts.Image.Service,
as it links to an image offering a MongoDB server when executed. The image
artifacts associated to the containers Node and Maven are instead of type tos-
ker.artifacts.Image, as they link to images just offering runtime environments (for
NodeJS-based and Maven-based applications, respectively). The management
operations of GUI and API are instead implemented by “.sh” scripts6. ut

4 TosKer

We hereby present TosKer, an orchestrator capable of automatically deploy-
ing and managing multi-component applications specified with the proposed
TOSCA representation. We first illustrate the architecture of TosKer, and we
then discuss its current prototype implementation.

4.1 The architecture of TosKer

Fig. 4 shows the architecture of TosKer, which is designed to be modular and
easily extensible. The architecture of TosKer indeed partitions the functionali-
ties of TosKer into lightweight modules that interact with each other, and new

6 The resulting TOSCA application specification is publicly available at
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/

thoughts-app/thoughts/thoughts.yaml. A CSAR packaging such specification
(together with all artifacts needed to deploy and manage the Thinking application)
is avaialble at https://github.com/di-unipi-socc/TosKer/blob/master/data/

examples/thoughts-app/thoughts.csar.

7

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

81



Fig. 4. The architecture of TosKer.

functionalities can be easily added to TosKer by developing and plugging-in
new modules.

User interface. The UI allows to feed TosKer with the necessary input.
The latter includes a CSAR (packaging the TOSCA specification of a multi-
component application together with all artifacts needed to realise its manage-
ment), a sequence of management operations to be executed, and (optionally)
the subset of the application components on which to perform such a sequence
of management operations.

TOSCA utilities. The TOSCA Parser is an utility module for parsing a CSAR
and generating an internal representation of the application it packages. Such
representation will then be exploited by the other modules in TosKer to deploy
and manage the corresponding application.

Orchestration core. The Orchestrator is the core component of TosKer, as it
is in charge of planning and orchestrating the management of multi-component
applications. It first receives the input from the UI, and it exploits the TOSCA
Parser to generate an internal representation of the multi-component application
contained in the input CSAR.

The Orchestrator automatically determines which management operations
have to be executed on which components, and in which order7. (to permit
executing the input sequence of operations on the indicated subset of applica-
tion components). The result is a (possibly expanded) sequence of management
operations, each to be executed on a certain application component.

The Orchestrator then orchestrates the actual execution the above mentioned
sequence of management operations by coordinating the Container Manager, Vol-
ume Manager and Software Manager. It indeed iterates over the sequence, and it

7 The Orchestrator assumes that components are managed according to the TOSCA
standard management lifecycle [27]. If such lifecycle is not respected (e.g., by requir-
ing to delete a component that has not yet been created), then the Orchestrator will
raise an error and stop orchestrating the application management.

8

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

82



dispatches the actual execution of an operation on a component to the corre-
sponding manager (e.g., to create a component of type tosker.nodes.Container,
the Orchestrator dispatches the actual execution of create on such component to
the Container Manager). dispatched to the

Managers. The Container Manager, Volume Manager, and Software Manager
implement the actual lifecycle for components of type tosker.nodes.Container,
tosker.nodes.Volume, and tosker.nodes.Software, respectively.

– The Container Manager is in charge of implementing the operations to create,
start, stop and delete Docker containers, by also taking into account the
different types of artifacts from which they are generated (viz., Docker images
or Dockerfiles — see Sect. 3).

– The Volume Manager has to implement the operations to create and delete
Docker volumes (as volumes can only be created or deleted [23]).

– The Software Manager is in charge of implementing the operations to create,
configure, start, stop and delete a component of type tosker.nodes.Software.
Notice that, as such a kind of components will be hosted on Docker con-
tainers, the actual execution of a management operation on a component
requires to issue commands to its container. For instance, to create a com-
ponent, the Software Manager has to (i) copy all artifacts of the component
inside a dedicated folder of its container, (ii) start the container by executing
the script implementing the create operation of the component, (iii) commit
the changes applied to the container as a new image, and (iv) re-create the
container by exploiting the newly created image.

Notice that each manager implements management operations by instructing
the Docker Interface on which Docker commands to execute.

Docker interface. The Docker Interface is in charge of interacting with the
Docker engine installed on the host where TosKer is running. It is used by
the managers to manage Docker containers and Docker volumes, and to execute
operations inside running containers.

Notice that the Docker Interface decouples TosKer from the actual Docker
engine used, meaning that it can issue commands to a classic Docker engine (as
in the current implementation of TosKer— see Sect. 4.2), but it could also
be used to issue commands to an engine capable of distributing containers in a
cluster (e.g., Docker swarm [16] or Kubernetes [32]).

4.2 Prototype implementation

We have implemented a prototype of TosKer, which is open-source and publicly
available on GitHub8. The prototype is written in Python9, and it is composed

8 https://github.com/di-unipi-socc/TosKer.
9 The choice of Python was mainly motivated by the availability of two open-source

Python libraries: docker-py (https://github.com/docker/docker-py) and tosca-
parser (https://github.com/openstack/tosca-parser/). docker-py implements a
Python interface for the Docker engine API. tosca-parser is instead a parser for
TOSCA application specifications (developed by the OpenStack community).

9

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

83



by a main package (tosker) containing the set of Python modules implementing
the various components forming the architecture of TosKer (viz., ui.py, to-
sca parser.py, orchestrator.py, container manager.py, volume manager.py,
software manager.py, and docker interface.py).

The current prototype of TosKer is also published on PyPI10 (Python Pack-
age index), which permits installing it on a host by simply executing the com-
mand pip install tosker. It can then be used as a standard Python library,
or as a command line software by executing:

$ tosker FILE [COMPONENTS] COMMANDS [INPUTS]

where FILE is a CSAR archive or a TOSCA YAML file (containing the specifi-
cation of a multi-component application), COMPONENTS is optional and permits
specifying the subset of application components to be managed, COMMANDS is the
sequence of management operations to be executed, and INPUTS is an optional
sequence of input parameters to be passed to the TOSCA application11.

Example 2. Consider again the Thinking application in Example 1. Suppose, for
instance, that we wish to create and start its API and MongoDB. We can instruct
TosKer to do so, by executing:

$ tosker /usr/share/tosker/examples/thougthts.csar \

API MongoDB create start

Notice that this will not only result in creating and starting API and MongoDB,
but also the Maven container and DBVolume they require to properly work. GUI
and Node will instead be ignored by TosKer, as they are not contained in set
of components input to TosKer, nor they are needed by API or MongoDB. ut

To test the current prototype of TosKer, we specified the open-source applica-
tion Thinking in TOSCA, as well as three other existing applications, viz., (i) a
Wordpress instance running on a PHP web server and connecting to a MySQL
back-end, (ii) a NodeJS-based REST API connecting to a MongoDB back-end,
and (iii) an application with three interacting servers written in NodeJS. All
applications were effectively deployed by the current prototype of TosKer, and
they constituted the basis for developing a battery of unit tests12, which covered
96% of the source code of the Python modules we implemented (see Table 1).

5 Related work

We hereby position TosKer with respect to other currently available solutions
for orchestrating the management of multi-component applications with Docker
and/or TOSCA.

10 https://pypi.python.org/pypi/tosKer.
11 Details on how to process inputs for TOSCA applications can be found in [27].
12 The TOSCA application specifications and the battery of unit tests that we imple-

mented are publicly available on GitHub at https://github.com/di-unipi-socc/

TosKer/tree/master/data/examples and https://github.com/di-unipi-socc/

TosKer/tree/master/tests, respectively.

10

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

84



Table 1. Unit test coverage in the current prototype of TosKer (obtained by running
the coverage-py tool — https://coverage.readthedocs.io).

Module Total Statements Missed Statements Coverage
ui.py 75 18 76%

docker interface.py 168 4 98%
tosca parser.py 219 2 99%
orchestrator.py 105 2 98%

container manager.py 26 0 100%
volume manager.py 9 0 100%
software manager.py 67 2 97%

Total 669 28 96%

Docker-based orchestration. Docker natively supports multi-container Docker
applications with Docker compose [15]. Docker compose permits specifying the
(images of) containers forming an application, the links/connections to be set
between such containers, and the volumes to be mounted. Based on that, Docker
compose is capable of deploying the specified application. However, Docker com-
pose treats containers as black-boxes, meaning that there is no information on
which components are hosted by a container, and that it is not possible to or-
chestrate the management of application components separately from that of
their containers (as it is instead possible with TosKer).

Other approaches worth mentioning are Docker swarm [16], Kubernetes [32],
and Mesos [2]. Docker swarm permits creating a cluster of replicas of a Docker
container, and seamlessly managing it on a cluster of hosts. Kubernetes and
Mesos instead permit automating the deployment, scaling, and management of
containerised applications over clusters of hosts. Docker swarm, Kubernetes and
Mesos differ from TosKer as they focus on how to schedule and manage con-
tainers on clusters of hosts, rather than on how to orchestrate the management
of the components and containers forming multi-component applications.

TOSCA-based orchestration. OpenTOSCA [4] is an open-source engine for
deploying and managing TOSCA applications. It is designed to work with a
former, XML-based version of TOSCA [25], and to process applications “imper-
atively” (viz., by executing management plans defined by the application devel-
oper in the form of BPEL or BPMN workflows). TosKer instead works with
the newer, YAML-based version of TOSCA [27], and it is designed to process ap-
plications “declaratively” (viz., by automatically determining the management
plans to be executed from the topology of an application).

Other approaches worth mentioning are SeaClouds [8], Brooklyn [1], Alien-
4Cloud [17], and Cloudify [20]. SeaClouds [8] is a middleware solution for de-
ploying and managing multi-component applications on heterogenous IaaS/PaaS
clouds. SeaClouds fully supports TOSCA, but it lacks a support for Docker con-
tainers. The latter makes SeaClouds not suitable to orchestrate the management
of multi-component applications including Docker containers.

11

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

85



Brooklyn [1], Alien4Cloud [17] and Cloudify [20] instead natively support
Docker containers, and they permit orchestrating the management of the soft-
ware components and Docker containers forming cloud applications. They how-
ever all differ from TosKer because they treat Docker containers as black-boxes
(hence not permitting to orchestrate the management of application components
separately from that of the containers hosting them).

Brooklyn [1] and Cloudify [20] also differ from TosKer as they require
to specify applications in non-standard blueprint languages (inspired to, but
not fully compliant with, the OASIS standards CAMP [26] and TOSCA [26],
respectively). For instance, a relationship is specified in TOSCA by connect-
ing a requirement of one component to a capability of another, and require-
ments/capabilities can be used to express interconnection constraints (which
then permit validating TOSCA application topologies [9]). Cloudify blueprints
instead do not include any notion of requirements or capabilities, as relationships
just connect a source node to a target node.

Summary. To the best of our knowledge, ours is the first solution that per-
mits specifying and orchestrating multi-component, Docker-based applications
in TOSCA, and managing software components independently of the containers
hosting them.

6 Conclusions

Container-based virtualisation is emerging as a simple yet effective solution for
deploying and managing multi-component applications in cloud platforms [28].
Application components can be shipped within portable and lightweight Docker
containers, which can then be interconnected to allow components to interact
with each other. At the same time, the current support for orchestrating the
management of the application components shipped within Docker containers
is limited [29]. For instance, components must be manually packaged in Docker
containers, and it is not possible to manage components independently of the
containers hosting them (e.g., whenever a container is started/stopped, all com-
ponents hosted on such container are also started/stopped).

In this paper we illustrated how TOSCA [27] can enhance the support for or-
chestrating multi-component applications with Docker. We indeed (i) proposed
a TOSCA-based representation for multi-component applications, which per-
mits distinguishing the Docker containers and software components in a multi-
component application, as well as the relationships occurring among them. We
also (ii) presented TosKer, an orchestration engine for automatically deploying
and managing multi-component applications based on TOSCA and Docker.

Our approach enhances the current support for orchestrating the manage-
ment of multi-component applications in Docker. TosKer can indeed automat-
ically install application components within the containers hosting them (instead
of requiring to manually package comoponents in images of Docker containers),
and it permits independently orchestrating the management of components and

12

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

86



containers (instead of binding the management lifecycle of components to that
of the containers hosting them).

We believe that our approach can also facilitate the widespread adoption of
the TOSCA standard. TosKer indeed provides a lightweight, easy-to-use engine
for deploying and managing TOSCA-based applications (exploiting Docker to
host their components).

We tested the current prototype of TosKer by developing a battery of unit
tests based on four existing applications. A more thorough evaluation of Tos-
Ker, based on concrete case studies and/or on datasets of multi-component
applications (e.g., µset [6]), is in the scope of our immediate future work.

Additionally, the current prototype of TosKer permits orchestrating appli-
cations on single hosts and it does not yet support horizontal scaling of contain-
ers. TosKer can be adapted to include such features, for instance, by simply
including a new version of the Docker Interface which interacts with Docker
Swarm [16] or Kubernetes [32] (instead of with the Docker engine installed on a
host). This is also in the scope of our future work.

It is finally worth noting that TosKer permits orchestrating the manage-
ment of multi-component applications, by already offering some basic planning
capabilities. For instance, when required to start a component of an applica-
tion, TosKer automatically determines which other components have to be
started, and it plans the sequence of operations that permits starting all such
components. Such planning is however based on a fixed set of operations, whose
behaviour is fixed by the TOSCA standard management lifecycle [27]. This is be-
cause our approach does not yet include a way to customise the management be-
haviour of application components. A solution can be to integrate our approach
with models designed precisely to permit compositionally describing the manage-
ment behaviour of the components forming an application (e.g., Aeolus [13] or
fault-aware management protocols [7]), which would also permit improving the
planning capabilities of TosKer (e.g, by exploiting the Aeolus-based planning
algorithm in [21]). The integration of our approach with an existing solution for
modelling, analysing and planning the management of multi-component appli-
cations is also in the scope of our future work.

Acknowledgments

The authors would like to thank Claus Pahl for all helpful and stimulating discus-
sions on how to enhance the current support for orchestrating multi-component
applications with Docker, which were reported in [11] and laid the foundations
for the work presented in this paper.

References

1. Apache Software Foundation: Brooklyn. http://brooklyn.apache.org
2. Apache Software Foundation: Mesos. http://mesos.apache.org/

13

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

87



3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

4. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wag-
ner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In: Basu,
S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-Oriented Computing: 11th In-
ternational Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Pro-
ceedings. pp. 692–695. Springer, Berlin, Heidelberg (2013)

5. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. Springer, New
York, NY (2014)

6. Brogi, A., Canciani, A., Neri, D., Rinaldi, L., Soldani, J.: Towards a reference
dataset of microservice-based applications. In: Proceedings of the 1th Workshop on
Microservices: Science and Engineering (MSE 2017). Springer (2017), [To appear]

7. Brogi, A., Canciani, A., Soldani, J.: Fault-aware application management protocols.
In: Aiello, M., Johnsen, B.E., Dustdar, S., Georgievski, I. (eds.) Service-Oriented
and Cloud Computing: 5th IFIP WG 2.14 European Conference, ESOCC 2016,
Vienna, Austria, September 5-7, 2016, Proceedings. pp. 219–234. Springer (2016)

8. Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Ibrahim, A., Pimentel, E., Soldani,
J.: EU Project SeaClouds - adaptive management of service-based applications
across multiple clouds. In: Proceedings of the 4th International Conference on
Cloud Computing and Services Science (CLOSER 2014). pp. 758–763 (2014)

9. Brogi, A., Di Tommaso, A., Soldani, J.: Validating TOSCA application topologies.
In: Proceedings of the 5th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD,. pp. 667–678. SciTePress
(2017)

10. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: From (incomplete) tosca specs to
running apps, with docker. In: Software Engineering and Formal Methods - SEFM
2017 Collocated Workshops, Trento, Italy, September 4-5, 2017, Revised Selected
Papers. Lecture Notes in Computer Science, Springer (2017), [To appear]

11. Brogi, A., Pahl, C., Soldani, J.: Enhancing the orchestration of multi-container
docker applications, 2016. [Submitted for publication]

12. Brogi, A., Soldani, J., Wang, P.: TOSCA in a nutshell: Promises and perspectives.
In: Villari, M., Zimmermann, W., Lau, K.K. (eds.) Service-Oriented and Cloud
Computing: Third European Conference, ESOCC 2014, Manchester, UK, Septem-
ber 2-4, 2014. Proceedings. pp. 171–186. Springer Berlin Heidelberg (2014)

13. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: A component model
for the cloud. Information and Computation 239(0), 100 – 121 (2014)

14. Docker Inc.: Docker. https://www.docker.com/
15. Docker Inc.: Docker compose. https://github.com/docker/compose
16. Docker Inc.: Docker swarm. https://github.com/docker/swarm
17. FastConnect, Bull, Atos: Alien4cloud. https://alien4cloud.github.io/
18. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Comput-

ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer (2014)

19. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). pp. 171–172.
IEEE Computer Society (2015)

20. GigaSpaces Technologies: Cloudify. http://cloudify.co/

14

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

88



21. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deployment
of cloud applications. In: Proceedings of the 2013 IEEE 25th International Confer-
ence on Tools with Artificial Intelligence. pp. 213–220. ICTAI ’13, IEEE Computer
Society (2013)

22. Leymann, F.: Cloud computing. it — Information Technology, Methoden und in-
novative Anwendungen der Informatik und Informationstechnik 53(4), 163–164
(2011)

23. Matthias, K., Kane, S.P.: Docker: Up and Running. O’Reilly Media (2015)
24. Newman, S.: Building Microservices. O’Reilly Media, Inc. (2015)
25. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA), Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/

TOSCA-v1.0.pdf (2013)
26. OASIS: Cloud Application Management for Platforms (CAMP), Version 1.1. http:

//docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf (2016)
27. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Simple Profile in YAML, Version 1.0. http://docs.oasis-open.org/
tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.

pdf (2016)
28. Pahl, C.: Containerization and the paas cloud. IEEE Cloud Computing 2(3), 24–31

(2015)
29. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: A state-

of-the-art review. IEEE Transactions on Cloud Computing https://doi.org/10.

1109/TCC.2017.2702586, [In press]
30. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures – a tech-

nology review. In: Proceedings of the 2015 3rd International Conference on Future
Internet of Things and Cloud. pp. 379–386. FICLOUD ’15, IEEE Computer Society
(2015)

31. Smith, R.: Docker Orchestration. Packt Publishing (2017)
32. The Kubernetes Authors: Kubernetes. http://kubernetes.io/

15

TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

89



TOSKER: Orchestrating applications with TOSCA and Docker — CloudWays

BPM@Cloud Workshop Papers

90



Towards PaaS Offering of BPMN 2.0 Engines: A
Proposal for Service-level Tenant Isolation

Majid Makki, Dimitri Van Landuyt, Wouter Joosen

Abstract Business processes modeling and management solutions provide pow-
erful abstraction mechanisms for the control flow of complex, task-driven applica-
tions, and as such allow for better alignment with business-related concerns. Despite
the existence and wide adoption of standardized business process management lan-
guages such as WS-BPEL and BPMN 2.0, workflow engines in current Platform-
as-a-Service (PaaS) offerings are in practice more restricted, in part for reasons such
as vendor lock-in, but also due to restrictions of multi-tenant environments.

In this paper, we explore the main security-related problems caused by offering
BPMN2-compliant workflow engines in a multi-tenant PaaS environment, particu-
larly focusing on threats caused by misbehaving tenants and the lack of proper tenant
isolation. In addition, we propose a service-level tenant isolation framework that al-
lows PaaS offerings to support workflow engines which comply with the BPMN 2.0
standard, and we discuss the technical feasibility of implementing this framework
using Java technologies such as OSGi and the Resource Consumption Management
API (JSR-284).

1 Introduction

Platform-as-a-Service (PaaS) is a category of cloud computing services where the
execution platform is offered to software teams for facilitating the development,
deployment and maintenance of applications [29, 33]. When optimized resource
utilization is among the main goals, different applications may share a single in-
stallation of the execution platform in a multi-tenant fashion. Workflow engines, in
charge of executing business processes, can be part of a PaaS offering and, thus,
shared among multiple tenant applications.

Majid Makki, Dimitri Van Landuyt, Wouter Joosen
imec-DistriNet, KU Leuven, 3001 Heverlee, Belgium, e-mail: firstname.lastname@cs.kuleuven.be

1

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

91



2 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

Renowned workflow engines in PaaS offerings, such as Amazon SWF [2] and
Fantasm in Google App Engine [4], incur a high degree of vendor lock-in and are
limited in functionality and suboptimal vis-à-vis utilization of resources. Since these
engines have their own custom (i.e. non-standard) workflow modeling languages,
the application will be, de facto, locked-in by the PaaS provider due to high cost
of porting (cf. [24]). In addition, some features, such as human tasks or advanced
event handling mechanisms which are commonly used in state-of-the-art business
process automation (cf. [16]), are not supported out of the box. Supporting such
features requires quite some ad-hoc engineering effort by the application develop-
ers. Furthermore, despite sharing the execution environment of the workflow engine
between multiple tenant applications, these solutions require separate environments
for executing workflow tasks of each distinct tenant application. The latter decreases
resource efficiency whose maximization is a principal goal of cloud computing [11].

These problems can be solved by offering workflow engines that comply with the
Business Process Modeling and Notation 2.0 (BPMN 2.0) [3] specification which,
next to the Business Process Execution Language (BPEL) [8], is the standard in-
creasingly being adopted in practice. The standardized nature of such engines in-
creases the portability of applications developed using them. In addition, thanks to
accumulated experience of decades which is behind BPMN 2.0, these engines do
not lack necessary and mainstream functional features. Furthermore, these engines
are capable of executing workflow tasks in the same execution environment as the
engine itself. Thanks to this capability, resources are utilized more efficiently.

However, PaaS offering of BPMN2-compliant engines causes certain security
threats which necessitates specific protection measures well beforehand. The prin-
cipal source of threats is the untrusted tenant-provided code of workflow tasks that
will be executed in an execution environment shared between the PaaS provider and
multiple, possibly competing, tenants (cf. [30]). For instance, conflicting access to
IO resources is possible. As an alternative example, tenants may exhaustively con-
sume resources such as memory and bring down the service entirely.

The state-of-the-art protection mechanism against such threats is OS-level virtu-
alization, i.e. hypervisors [21] or containers [12], where granularity-level of tenant
isolation is, as shown in Figure 1(a), that of Operating System (OS) processes. This
requires having at least one active OS process for each tenant which implies that
quite some resources are reserved even if the tenant application does not impose
any load. Moreover, OS-level virtualization is not sufficient for all functionalities of
BPMN2-compliant engines because they execute some workflow tasks within the
same OS process as the engine itself1 which requires sharing a single OS process
between the PaaS provider and tenants. For more efficient utilization of resources
and being compatible with the nature of BPMN2-compliant engines, tenant isola-
tion has to take place at a higher level in the computational stack. As depicted by
Figure 1(b), this is the level where the service itself is implemented.

This work-in-progress paper proposes a service-level tenant isolation framework
for enabling PaaS offering of BPMN 2.0 engines based on Java technologies. We

1 This is required by the BPMN 2.0 specification for some types of tasks.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

92



Towards PaaS Offering of BPMN 2.0 Engines 3

Operating System (OS)
OS Process

Application #1 Workflow Engine

OS Process
...

OS Process

Application #n

(a) Example of OS-level Virtualization

Operating System (OS)
OS Process

Application #1 Workflow Engine ... Application #n

(b) Service-level Isolation

Fig. 1 OS-level virtualization requires having separate OS processes for each tenant application
and the workflow engine while service-level isolation allows running all code inside a single OS
process.

formulate a concrete research problem by analyzing the BPMN 2.0 specification
and widely-used BPMN2-compliant engines. Furthermore, given the fact that the
absolute majority of BPMN2-compliant engines are Java-based [6], we present an
initial outline of a solution based on Java-related technologies. The proposed solu-
tion takes threads as units of isolation for executing untrusted code of tenant appli-
cations to overcome the aforementioned insufficiency of the OS-level virtualization
approach and the suboptimal resource utilization thereof. The technical feasibility
of the solution is shown by explaining how existing technologies, such as OSGi [9]
and the Java Resource Consumption Management API (JSR-284 [5]), enable its
implementation.

The rest of this paper is structured as follows. Section 2 analyzes the research
problem. Section 3 presents the solution outline along with remarks on its techni-
cal feasibility. Section 4 briefly contrasts this proposal with related work. Finally,
Section 5 concludes the paper.

2 Problem Statement

This section analyzes the most compelling security threats caused by the PaaS
offering of BPMN 2.0 engines and formulates the research problem as a number of
concrete requirements.

2.1 Security Threat Analysis

We have systematically analyzed and prioritized the security threats using the
STRIDE2 threat model [23, 31]. The most problematic security threats, insofar
as this paper is concerned, are related to two core features of BPMN 2.0 namely
Script Task and Service Task activity types. The former is required by
the standard to be “executed by a business process engine” [3]. This implies that
the same OS process running the engine is responsible for executing the Script

2 The acronym stands for six threat categories namely Spoofing, Tampering with Data,
Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

93



4 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

Task. While the standard does not require Service Task activities to be exe-
cuted by the same Operating System (OS) process running the engine, most well-
known and enterprise-ready BPMN 2.0 engines, such as jBPM [7] and Activiti [1],
allow defining Service Task activities that are executed within the same OS
process running the engine. Retaining this additional feature is essential for avoid-
ing the overhead of remote service invocation, e.g. (de-)serialization and network
delay.

In a multi-tenant context of a PaaS offering, the code of Script Task and
Service Task activities belong to untrusted tenant applications using the en-
gine. Executing untrusted code of tenants in the same OS process running the engine
incurs different types of security threats (cf. [13, 15, 30]). Tampering with Data, In-
formation Disclosure, Denial of Service and Elevation of Privilege are identified as
the most important threat categories in this specific context and are discussed below.

Tampering with Data. Since tenant-provided code may access IO resources, one
tenant application may modify another tenant’s data stored on a shared device. In
addition, a tenant application may modify the value of in-memory object references
belonging to or shared with other tenants.

Information Disclosure. A tenant application may read another tenant’s data
by, e.g., listening on a network port belonging to the other tenant. Similarly, a tenant
application may access in-memory object references belonging to or shared with
other tenants.

Denial of Service. One tenant application may disrupt the PaaS offering entirely
either by using up computational resources or by misusing part of the API shared
among all tenants. The resources of concern are CPU cycles, memory space and IO
bandwidth (both storage and network). Misuse of shared API can be either in form
of killing the OS process hosting the service or in form of locking shared objects
indefinitely.

Elevation of Privilege. By creating a thread which is not under control of the
framework, one tenant application may increase its privileges and act without con-
straints imposed by the framework.

2.2 Requirements

Since these threats are caused by code running within a single OS process, pro-
tection against them has to take place inside that OS process as well. Therefore, a
service-level tenant isolation framework is needed which fulfills the following func-
tional requirements:

• FR1: The framework should guarantee that no tenant application may access
objects or primitive values belonging to other tenants.

• FR2: The framework has to guarantee that shared system objects and references
accessible for tenant applications can neither be locked indefinitely nor be mod-
ified by any of them.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

94



Towards PaaS Offering of BPMN 2.0 Engines 5

• FR3: The creation of threads has to be entirely mediated by the framework.
• FR4: Permission of killing the OS process has to be denied for all tenant appli-

cations.
• FR5: The framework should check tenant permissions before granting access to

any IO resource (e.g. a file on storage device or a network port).
• FR6: An upper limit has to be put on CPU usage, memory consumption and IO

bandwidth (both storage and network) on a per-tenant basis.
• FR7: Upper limit imposition on resource consumption has to be so flexible that

resource utilization maximizes. In other words, if there are unused resources that
can be allocated safely, the framework should let tenant code exceed the limits to
some extent.

In addition, fulfillment of the above functional requirements should respect the
following quality requirements:

• QR1: All tenant isolation measurements should be enforced transparently by the
framework. In other words, code of tenant applications has to be entirely decou-
pled from the tenant isolation framework.3

• QR2: The relative performance overhead of the framework compared to OS-level
virtualization tactics (cf. [21, 12]) is required to be in an acceptable margin.

3 Service-level Tenant Isolation

This section outlines a service-level tenant isolation framework as a solution for
fulfilling the above requirements and shows technical feasibility of the framework.
Section 3.1 presents the framework architecture conceptually. Section 3.2 elabo-
rates on partial fulfillment of FR1 while Section 3.3 supplements it and discusses
static code restriction which is required for fulfillment of FR2 and FR3. Supple-
mentary measures for fulfillment of FR2 and FR3 are presented in Section 3.4 while
Section 3.5 deals with permission checking mechanism which is required for FR2,
FR3, FR4 and FR5. Finally, Section 3.6 explains how the framework realizes FR6
and FR7. The qualitative requirements are taken into account orthogonally through-
out this section.

3.1 Overall Architecture

Figure 2 shows the principal components running within a single OS process in three
layers: (i) the bottom layer is the Java execution platform and the components it
provides, (ii) the middle layer is where the service components of the PaaS offering,

3 This is required for portability of tenant applications to other instances of the same BPMN 2.0
engine where the tenant isolation framework is not used.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

95



6 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

Execution Platform

Resource
Consumption

Management API

IO Access API

Reflection API

Plaform Security
API

PaaS

Resource
Consumption

Controller

Workflow
Execution Service

Tenant Awareness Deployment Service

Restricted
Reflection API

Static Code
Controller

Code
Analysis API

Tenant#1 Container
Application 1

Tenant#2 Container
Application 2 ... Tenant#n Container

Application n

Concurrency
API

Health
Monitoring

Code
Transformer

Fig. 2 Building Blocks of the Framework in Relation to Tenant Applications and Execution Plat-
form

including components of the tenant isolation framework, sit, and (iii) the top layer
consists of code of tenant applications built upon the PaaS offering.

The tenant isolation framework consists of seven main components which are
introduced gradually throughout this section. The two front-end components of
the framework which are directly used by tenants are Deployment Service
and Workflow Execution Service. The former is responsible for deploy-
ing tenant applications into the PaaS environment. The latter is responsible for start-
ing new workflow executions or continue/monitor/abort existing ones by running
the code of tenant applications in isolation from other tenants.

For imposing isolation measures, the Workflow Execution Service, us-
ing an existing BPMN2-compliant engine such as jBPM [7], runs the untrusted code
of tenant applications in separate threads and guarantees that each active thread is
associated with only one tenant application at a time. Once each thread finishes its
job, it can be reused for other tenant applications using a thread pool provided by
the Java Concurrency API. The Workflow Execution Service lever-
ages upon the Concurrency API of the Java execution platform for handling
threads. Furthermore, it uses the Tenant Awareness component of the frame-
work which is responsible for keeping track of associations between threads and
tenants. Thus, the main cornerstone of the proposed solution is taking threads as
units of tenant isolation just as OS-level virtualization tactics take OS processes as
units of tenant isolation.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

96



Towards PaaS Offering of BPMN 2.0 Engines 7

3.2 Tenant Containers

In order to dedicate a separate referencing space for objects of each tenant applica-
tion (cf. FR1), the Deployment Service deploys each application in a distinct
tenant container. As opposed to containers of OS-level virtualization approach, con-
tainers shown in Figure 2 are managed inside a single OS process. OSGi [9] bundles
provide exactly this containerization functionality. OSGi loads each bundle using a
distinct Java classloader and sets the bootstrap classloader, which is responsible for
loading core Java classes, as the parent of each bundle classloader. Hence, the code
of each bundle can access fields of its own classes and static fields of core Java
classes.

By containing the code of each tenant application in a separate OSGi bundle,
the FR1 requirement will be partially fulfilled. For complete fulfillment of FR1,
cross-bundle communication between tenant application bundles has to be forbidden
which is the topic of next section along with realization of FR2 and FR3.

3.3 Static Code Restriction

Access of tenant applications to other classes and interfaces has to be restricted
for fulfillment of FR1, FR2 and FR3. API restriction is required both statically
and dynamically. Static restriction takes place only once at deployment time by
the Static Code Controller (cf. Figure 2). This is done in multiple stages
using code analysis facilities provided by the Java platform and tools built upon it.

Cross-bundle Communication. Each OSGi bundle declares the list of classes
it imports from other bundles. This is used for cross-bundle communication. By
imposing limits on this list, the Static Code Controller guarantees that no
cross-bundle communication is possible between two tenant applications and, thus,
completes the realization of FR1.
Blacklist. One of the main elements of Static Code Controller is
BlacklistService which maintains a list of classes, methods and fields that
tenant applications are not allowed to use.

Given the structure of classloaders in OSGi, security vulnerabilities pertaining to
shared object locks and modifications (cf. FR2) are caused by four Java program-
ming constructs related to classes loaded by the bootstrap classloader: (i) static field
declarations, (ii) reference updates on static fields, (iii) changing state of objects
referenced by static fields, (iv) static synchronized methods, and (v) synchronized
blocks locking static fields [13, 15, 30]. The BlacklistService searches for
occurrences of these constructs in all classes loaded by the bootstrap classloader
using the Java source code querying facilities provided by the Spoon library [28]
as well as call graph construction and reference analysis (a.k.a. points-to analysis)
mechanisms of the Soot framework [20]. A call graph consists of nodes and edges
representing Java methods and invocation relationship between them respectively.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

97



8 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

Reference analysis helps resolving non-static access to objects referenced by static
fields of concern.

In addition, to further comply with FR3, the BlacklistService adds the
java.lang.Thread class to the blacklist. Furthermore, using the Spoon library,
it adds any method in the java.util.concurrency package capable of in-
stantiating new threads or intervening in the life-cycle of an existing thread.
Acceptance Policy. The final stage of Static Code Controller involves ac-
cepting or rejecting the tenant application code. It checks whether the code of a
tenant application directly or indirectly deals with blacklisted constructs. For in-
stance, it checks whether a blacklisted static synchronized is invoked or
the constructor of the Thread class is used. The first step for doing so is creating
a call graph using the Soot framework. Afterwards, the call graph has to be tra-
versed to see if any of the fields, methods or classes in the blacklist is used by the
methods included in the call graph. Furthermore, using the reference analysis mech-
anism provided by Soot, it has to be verified whether objects referenced by static
fields in the blacklist are modified indirectly (e.g. by means of an intermediate local
reference).

3.4 Dynamic Code Restriction

Restricting code of tenant applications statically is not sufficient because all the ma-
licious operations, which can be detected statically, can be done dynamically as well
using the Reflection API. Therefore, Restricted Reflection API
should be used by tenant applications instead of the original Java Reflection
API (cf. Figure 2). This, however, can reintroduce the vendor lock-in problem that
QR1 requires to avoid. Therefore, tenant applications are allowed to use the orig-
inal Reflection API but at deployment-time, the Deployment Service
asks the Code Transformer to transform tenant code such that the original
Reflection API is replaced by Restricted Reflection API. This is
feasible and straightforward because the Restricted Reflection API has
exactly the same package structure and exposes exactly the same API as the original
one but with different behavior in some cases. The Code Transformer compo-
nent employs the transformation utilities provided by the Spoon framework [28].

The behavior difference is summarized by Listing 1 where this either refers
to a Field object whose get method is called, a Constructor object whose
newInstance method is invoked or a Method object whose invoke method is
called. Determining whether the use of these class members are blacklisted for ten-
ant applications, the same BlacklistService, which maintains the blacklist,
is used. Since the blacklist is prepared once in the entire life-time of the applica-
tion and kept in memory for subsequent uses, this does not impose a significant
performance overhead (cf. QR2).

As shown, Java SecurityManager is used to check whether
evadeBlacklist permission is granted to the OSGi bundle requesting the re-

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

98



Towards PaaS Offering of BPMN 2.0 Engines 9

SecurityManager sm = System.getSecurityManager();
if (BlacklistService.isBlacklisted(this)) {

if (sm != null) {
sm.checkPermission(new
ReflectPermission("evadeBlacklist"));

}
}
super.originalMethod(...); // pseudocode

Listing 1 Restricting access of tenant applications to Java Reflection API.

flective operation. This permission has to be granted only to trusted bundles, i.e. not
to bundles containing code of tenant applications. The checkPermission
method throws an AccessControlException if the required permission is
not granted to the bundle requesting the reflective operation.

The next section elaborates on how the permission checking mechanism of the
Java SecurityManager works and on how it is employed by the tenant isolation
framework.

3.5 Permission Checks

In addition to the above permission checking, the tenant isolation framework en-
forces permission checks on invocations of System.exit method (cf. FR4) and
on every IO access (cf. FR5). Permission checks are automatically done by the Java
platform itself once the SecurityManager is enabled. The role of the frame-
work, hence, is limited to enabling the SecurityManager and granting permis-
sions properly.

The SecurityManager relies on a mechanism called stackwalking and as-
sociates a permission set to each protection domain (cf. [25, 14]). In OSGi, there
exists one protection domain for each bundle. The set of permissions of each tenant
application is granted to it by the Deployment Service at deployment time.
Tenant permission sets are, in principle, a combination of FilePermission and
SocketPermission for restricting their access to IO resources which is required
by FR5. By denying the RuntimePermission("exitVM") to tenant bundles,
FR4 is also fulfilled. All other bundles, which do not contain tenant-provided code,
are granted AllPermission.

When permission p is required, the Java platform SecurityManager triggers
stackwalking, i.e. tracing the entire method invocation stack which has led to the
point of permission checking, and verifies that

8pd2PDs p 2 Ppd (1)

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

99



10 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

Fig. 3 The frame-
work extends the
SecurityManager such
that it can be enabled only
when tenant-provided code
is executed. This is done by
means of a ThreadLocal
variable toggled before and
after a tenant workflow exe-
cutes.

TenantWorkflowExecutor
+run()

«interface»
Runnable

+run()

SecurityManager
+checkPermission(p: Permission)

ToggleableSecurityManager
-enabled: ThreadLocal<Boolean>

+enable()
+disable()
+checkPermission(p: Permission)

+toggles

if (enabled.get()) {
super.checkPermission(p);

}

Listing 2 Evading permission check when it is not required.

where PDs is the set of all protection domains involved in the scanned method
invocation stack s and Ppd is the set of permissions granted to the protection domain
pd. This way, the permissions of tenant application for whom permission p has to
be checked are taken into account and retrieved from its corresponding protection
domain.

Permission checks are not required when the running code is trusted, e.g. when
PaaS management and monitoring components are executed. In order to
avoid the performance overhead of the SecurityManager when it is not
needed, the framework enables it only when tenant application code is ex-
ecuted and disables it otherwise. The TenantWorkflowExecutor, which
is responsible for starting/resuming/aborting a tenant workflow, toggles the
ToggleableSecurityManager shown in Figure 3 before and after work-
flow execution using enable and disable methods of the latter. These
methods change the value of a ThreadLocal variable which is used in the
checkPermission method according to Listing 2.

3.6 Resource Consumption Control

Fulfilling FR6 requires associating a service-level agreement (SLA) to each ten-
ant application. Listing 3 shows the structure of a tenant SLA. The framework
uses the Java Resource Consumption Management API (JSR-284) [5] for impos-
ing limits on resource consumption of each tenant application. On a per-tenant ba-
sis, ResourceMeter instances are created for each element of the SLA. Meters
are notified by the Java platform every time their corresponding resources are al-
located or released. The Resource Consumption Controller creates ten-
ant meters only once (the first time they are needed) by consulting the Tenant
Awareness component which has access to SLAs. Once meters are created, they

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

100



Towards PaaS Offering of BPMN 2.0 Engines 11

public class TenantSLA {

private long maxCpuUsage; // CPU nanoseconds per second
private long maxMemoryUsage; // bytes

private int maxOpenFiles;
private long maxReadDiskRate; // bytes per second
private long maxWriteDiskRate; // bytes per second

private int maxOpenSockets; // TCP sockets
private long maxReadSocketRate; // bytes per second
private long maxWriteSocketRate; // bytes per second

private int maxOpenDatagrams; // UDP datagrams
private long maxReadDatagramRate; // bytes per second
private long maxWriteDatagramRate; // bytes per second

// getters and setters

}

Listing 3 Structure of Tenant SLA.

ResourceContextFactory factory = ResourceContextFactory.
getInstance();

ResourceContext rc = factory.lookup(tenantId);
rc.bindThreadContext(); // binds to the current thread
// workflow execution code
rc.unbindThreadContext(); // unbinds from the current thread

Listing 4 Binding tenant ResourceContext to threads before starting workflow execution.

will be associated with a tenant-specific ResourceContext. Each time a work-
flow execution thread starts for a tenant, the TenantWorkflowExecutor en-
forces resource control measures according to Listing 4.

The BoundedMeter, provided by the Java platform, is the meter
type used for maxMemoryUsage, maxOpenFiles, maxOpenSockets and
maxOpenDatagrams. This meter type, which imposes a fixed limit on usage
amount, is used by the framework in a such way that no tenant can go beyond pre-
defined limits of its SLA. This is because once these types of resources are allocated
beyond SLA limits, there is no guarantee that they can be released. For instance, if
a memory leak bug in the tenant application is the cause of reaching the memory
limit, it is possible that the memory usage of that specific tenant application never
falls into a decreasing trend (cf. [13, 15, 30]).

For the remaining SLA elements, the framework imposes a more flexible con-
trol (cf. FR7) by employing the ThrottledMeter of the Java platform. This
meter type first consults a specified ResourceApprover to see if resource al-

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

101



12 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

location is possible before throttling the usage. If resource allocation beyond SLA
limits is not safely possible, the usage rate will be throttled to the predefined rate
in the tenant SLA. For checking whether resource allocation beyond SLA limits
is safely possible, the framework provides a SafeGreedyApprover which ap-
proves any requested amount insofar as the system is in overall healthy condition.
For approving the requested amount, the latter checks the following condition:

totalr +amountr  lr ⇥ capacityr (2)

where r is a resource of concern, totalr is the total consumption amount of all ten-
ants before approving the new request, amountr is the requested amount, capacityr
is the total capacity of the system on r and lr is the leniency factor between 0 and 1.
When leniency factor is set to zero, every tenant will be strictly restricted to its SLA
regardless of resource availability, i.e. unallocated amounts. When it is set to one,
the unallocated amounts will be used for letting more active tenants going beyond
their SLA limits.

The SafeGreedyApprover consults the System Health Monitoring
component for retrieving the total usage. Capacity is a set by system administrators
while total usage is retrieved from the ResourceContextFactory provided by
the Java platform. The latter does not calculate the total usage every time queried.
Instead, it keeps track of total amounts on every resource allocation and release.
Decisions of this approver are safe because they are made about resources measured
on a per-second basis and surpassing their limits will have no effect beyond the
measurement window which is two seconds according to the API. In other words,
it is guaranteed that these resources can be throttled back to the limits defined in
tenant SLAs once the load on the system increases.

4 Related Work

In this section, we briefly compare this paper with related work.

PaaS Offering of Workflow Engines. Pathirage et al. [27] proposes an archi-
tecture for PaaS offering of Apache ODE [10] which is a workflow engine
complying with WS-BPEL. Since all activities involving code execution are
remote web-services, the security threats that we covered in this paper are not
relevant for that work. However, delegating execution of all untrusted activity
code to remote web-services both reduces efficiency of resource utilization and
imposes the overhead of remote invocation (e.g. network delay and serialization).
Yu et al. [34] claims having enabled jBPM [7], a BPMN2-compliant engine, to
be offered as a PaaS. However, the security threats discussed in this paper are
overlooked altogether. Amazon SWF [2] and Fantasm on Google App Engine [4]
are production ready PaaS offerings of workflow engines. However, applications
developed using them highly suffer from vendor lock-in problem in terms of both

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

102



Towards PaaS Offering of BPMN 2.0 Engines 13

code and data. Furthermore, resource utilization is sub-optimal due to adoption of
OS-level virtualization tactics.
OS-level Virtualization. Similar isolation measures can be imposed by means of
containers (cf. [12]) or virtual machines (cf. [21]). However, in case of Java, a
separate instance of the JVM should be started for each tenant which reduces effi-
ciency of resource utilization. Furthermore, these solutions are totally insufficient
for offering BPMN2-compliant engines as the latter runs Script Task and, in
some cases, Service Task activities in the same OS process as the workflow
engine itself.
Java Language Vulnerabilities. Security threats related to running untrusted code
in Java threads are discussed in [13, 15, 30]. These problems are caused by the
shared nature of static fields, blocking effect of static synchronized methods,
reference leaks and shared nature of computational resources. Our threat analysis
is based on these works and we have proposed ideas for solving some of them and
workarounds for some others based on existing technologies.
Service-level Tenant Isolation. As opposed to OS-level virtualization, service-level
tenant isolation for PaaS is rather new and not extensively adopted in practice.
Krebs et al have proposed a framework for constraining resource consumption at
service-level [19]. However, their solution relies on estimation of tenant resource
consumption from external properties of the system such as response-time using
statistical methods such as linear regression. Our solution, on the contrary, is based
on accurate measurements of the execution platform instead of estimated consump-
tion levels from external properties. Rodero et al. [30] has hinted at the possibility
of using the Java Resource Consumption Management API (JSR-284) [5] for
solving the isolation problem vis-á-vis resource consumption but how this API
can be used for the purpose of tenant isolation is left open. Even though they
state reference leaks as an unsolvable problem in Java environments, imposing
strict memory limits for each tenant application can prevent reference leaks of
one tenant application becoming problematic for other tenants. To the best of our
knowledge, Oracle Weblogic Server Multitenant [26] is the only attempt in practice
to enforce tenant isolation measures at service-level of a middleware. However, it
only provides resource access control and limited resource consumption control.
The resource consumption mechanism in this middleware does not support disk
and network bandwidth isolation, meaning that one tenant application may take up
the entire network bandwidth, for instance, and disrupt the service for other tenants.
Furthermore, the static and dynamic code restriction mechanisms presented in this
paper are not supported by this application server which leaves tenants unprotected
against threats related to vulnerabilities of the Java language mentioned in the
previous paragraph.
Application Performance Isolation. There are a number of works dealing with per-
formance isolation for Software-as-a-Service (SaaS) applications [32, 17, 18, 22].
While these works deal with SLAs expressed in external properties of an application
such as response-time and throughput, the SLAs are defined in system-level terms
such as CPU usage. This is because these works do not deal with the issues of
running untrusted code in a shared execution environment.

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

103



14 Majid Makki, Dimitri Van Landuyt, Wouter Joosen

5 Conclusion

Business process automation is a common practice supported by a set of mature
standards (e.g. BPMN 2.0 and WS-BPEL) and numerous workflow engines that im-
plement these standards. Due to the specific deployment model of multi-tenancy
in a Platform-as-a-Service (PaaS) context, full support of these standards requires
additional attention to security threats caused by misbehaving tenants. We have pre-
sented an outline of a framework for tenant isolation in the context of co-existing
business processes of different tenants, and we have discussed its practical feasibil-
ity for the Java environment.

Advancing this work fits into our ongoing research on the key trade-offs related to
multi-tenancy between resource optimization, customization support (e.g. by means
of tenant-provided tasks), security (tenant isolation) and portability of business pro-
cesses across different cloud providers. We have implemented the permission check-
ing and resource consumption mechanisms of the framework. In follow-up work, we
will further implement the code restriction part and evaluate the proposed frame-
work vis-à-vis performance overhead compared to the OS-level virtualization ap-
proach and dimension of tenant code restrictions (i.e. determining how limited ten-
ant applications will be in using the Java API given the restrictions imposed by the
framework).

References

1. Activiti User Guide. https://www.activiti.org/userguide/. Accessed: 2017-05-24
2. Amazon Simple Workflow Service (Amazon SWF).

https://aws.amazon.com/documentation/swf/. Accessed: 2017-06-12
3. Business Process Model and Notation 2.0. http://www.omg.org/spec/BPMN/2.0/PDF/. Ac-

cessed: 2015-08-04
4. Google App Engine Fantasm. https://cloud.google.com/appengine/articles/fantasm. Ac-

cessed: 2017-06-12
5. JSR 284: Resource Consumption Management API. https://jcp.org/en/jsr/detail?id=284. Ac-

cessed: 2017-06-12
6. List of BPMN Engines. https://en.wikipedia.org/wiki/List of BPMN 2.0 engines. Accessed:

2017-07-05
7. RedHat JBoss jBPM. http://www.jbpm.org/. Accessed: 2017-06-04
8. Web Services Business Process Execution Language. http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. Accessed: 2016-06-04
9. Alliance, O.: OSGi specification. https://osgi.org/download/r4v43/osgi.core-4.3.0.pdf (2012).

Accessed: 2017-04-19
10. Apache: Apache ode. http://ode.apache.org/. Accessed: 2017-07-09
11. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the ACM
53(4), 50–58 (2010)

12. Bernstein, D.: Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Comput-
ing 1(3), 81–84 (2014)

13. Czajkowski, G., Daynés, L.: Multitasking without comprimise: a virtual machine evolution.
In: ACM SIGPLAN Notices, vol. 36, pp. 125–138. ACM (2001)

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

104



Towards PaaS Offering of BPMN 2.0 Engines 15

14. Gong, L., Ellison, G.: Inside Java (TM) 2 Platform Security: Architecture, API Design, and
Implementation. Pearson Education (2003)

15. Herzog, A., Shahmehri, N.: Problems running untrusted services as java threads. Certification
and Security in Inter-Organizational E-Services 177, 19–32 (2004)

16. Ko, R.K., Lee, S.S., Wah Lee, E.: Business process management (bpm) standards: a survey.
Business Process Management Journal 15(5), 744–791 (2009)

17. Krebs, R., Loesch, M., Kounev, S.: Platform-as-a-service architecture for performance iso-
lated multi-tenant applications. In: Cloud Computing (CLOUD), 2014 IEEE 7th International
Conference on, pp. 914–921. IEEE (2014)

18. Krebs, R., Momm, C., Kounev, S.: Metrics and techniques for quantifying performance isola-
tion in cloud environments. Science of Computer Programming 90, 116–134 (2014)

19. Krebs, R., Spinner, S., Ahmed, N., Kounev, S.: Resource usage control in multi-tenant applica-
tions. In: Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on, pp. 122–131. IEEE (2014)

20. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java program analysis:
a retrospective. In: Cetus Users and Compiler Infastructure Workshop (CETUS 2011), vol. 15,
p. 35 (2011)

21. Li, Y., Li, W., Jiang, C.: A survey of virtual machine system: Current technology and future
trends. In: Electronic Commerce and Security (ISECS), 2010 Third International Symposium
on, pp. 332–336. IEEE (2010)

22. Lin, H., Sun, K., Zhao, S., Han, Y.: Feedback-control-based performance regulation for multi-
tenant applications. In: Parallel and Distributed Systems (ICPADS), 2009 15th International
Conference on, pp. 134–141. IEEE (2009)

23. Microsoft: The stride threat model. https://msdn.microsoft.com/en-
us/library/ee823878(v=cs.20).aspx (2015). Accessed: 2017-04-19

24. Opara-Martins, J., Sahandi, R., Tian, F.: Critical review of vendor lock-in and its impact on
adoption of cloud computing. In: Information Society (i-Society), 2014 International Confer-
ence on, pp. 92–97. IEEE (2014)

25. Oracle: Java 8 SE platform security.
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html.
Accessed: 2017-04-19

26. Oracle: Oracle weblogic server multitenant.
https://docs.oracle.com/middleware/1221/wls/WLSMT/. Accessed: 2017-07-09

27. Pathirage, M., Perera, S., Kumara, I., Weerawarana, S.: A multi-tenant architecture for busi-
ness process executions. In: Web services (icws), 2011 ieee international conference on, pp.
121–128. IEEE (2011)

28. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: A library for
implementing analyses and transformations of java source code. Software: Practice and Ex-
perience 46(9), 1155–1179 (2016)

29. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. INC,
IMS and IDC pp. 44–51 (2009)

30. Rodero-Merino, L., Vaquero, L.M., Caron, E., Muresan, A., Desprez, F.: Building safe paas
clouds: A survey on security in multitenant software platforms. computers & security 31(1),
96–108 (2012)

31. Shostack, A.: Threat Modeling: Designing for Security. Wiley (2014)
32. Walraven, S., De Borger, W., Vanbrabant, B., Lagaisse, B., Van Landuyt, D., Joosen, W.: Adap-

tive performance isolation middleware for multi-tenant saas. In: Utility and Cloud Computing
(UCC), 2015 IEEE/ACM 8th International Conference on, pp. 112–121. IEEE (2015)

33. Walraven, S., Truyen, E., Joosen, W.: Comparing paas offerings in light of saas development.
Computing 96(8), 669–724 (2014)

34. Yu, D., Zhu, Q., Guo, D., Huang, B., Su, J.: jbpm4s: A multi-tenant extension of jbpm to
support bpaas. In: Asia-Pacific Conference on Business Process Management, pp. 43–56.
Springer (2015)

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation — BPM@Cloud

105



CEP-based SLO Evaluation

Kyriakos Kritikos1, Chrysostomos Zeginis1

Andreas Paraboliasis2, and Dimitris Plexousakis1

1 Institute of Computer Science - FORTH, Greece
{kritikos,zegchris,dp}@ics.forth.gr

2 Computer Science Department, University of Crete, Greece
csd3031@csd.uoc.gr

Abstract. Modern service-based applications (SBAs) operate in highly
dynamic environments where both underlying resources and the appli-
cation demand can be constantly changing which external SBA com-
ponents might fail. Thus, they need to be rapidly modified to address
such changes. Such a rapid updating should be performed across multiple
levels to better deal, in an orchestrated and globally-consistent manner,
with the current problematic situation. First of all, this means that a fast
and scalable event generation and detection mechanism should exist to
rapidly trigger the adaptation workflow to be performed. Such a mecha-
nism needs to handle all kinds of events occurring at different abstraction
levels and to compose them so as to detect more advanced situations. To
this end, this paper introduces a new complex event processing frame-
work able to realise the respective features mentioned (processing speed,
scalability) and have the flexibility to capture and sense any kind of event
or event combination occurring in the SBA system. Such a framework
is wrapped in the form of a REST service enabling to manage the event
patterns that need to be rapidly detected. It is also well connected to
other main components of the SBA management system, via a publish-
subscribe mechanism, including monitoring and the adaptation engines.

Keywords: complex event processing, event pattern, detection, service

1 Introduction

Due to tough competition, organisations can survive if they can improve their
services to exhibit better service levels with less cost. Such organisations need to
also possess a smart infrastructure and a dedicated devops team to appropriately
re-configure the services offered as well as manually intervene in unanticipated,
problematic situations. As such, a lot of effort is spent in maintaining such an
infrastructure while an increasing management and operational cost also incurs.

Fortunately, the advent of cloud computing has revolutionarised the way re-
source management is performed. Nowadays, organisations can outsource their
infrastructure management to cloud providers that promise to offer infinite,
cheap commodity resources on an on-demand basis. Due to flexible resource
management and the capability to scale a cloud-based system, organisations

CEP-based SLO Evaluation — BPM@Cloud

106



can now optimise their services at the infrastructure level. However, still effort is
needed at higher-levels of abstractions. In particular, external SaaS services need
to be dynamically selected to realise part of the required functionality while the
whole system needs to be adapted.

In the literature, it has been advocated [8] that dynamic SBA adaptation
should be performed in a cross-layer manner by also putting in place, as a pre-
requisite, a suitable monitoring framework. Cross-layer adaptation is needed for
various reasons. First, as the service system itself includes multiple levels that
must be appropriately controlled. Second, as the individual adaptation at one
level can influence, impact or even negate the adaptation results at adjucent
levels, leading to a vicious re-adaptation cycle. Cross-layer monitoring is also
needed to propagate and aggregate up to higher-levels measurements produced
in lower levels so as to cover measurability gaps.

As the glue between monitoring and adaptation, there is a need for a rapid
and scalable Service Level Objective (SLO) evaluation framework able to trans-
form measurements to events and subsequently detect event patterns that can
lead to performing adaptation actions in the context of adaptation rules. Such
a framework should also exhibit suitable accuracy levels by correctly correlating
the events occurring based on their metrics and measured objects. It should also
be able to detect and correlate events which should map to both the type and
instance level in the managed SBA system.

In this work, such a framework has been carefully designed and realised, by
conforming to all the aforementioned requirements. In particular, the framework
architecture was initially designed by considering principles, such as service-
orientation, and by carefully decoupling framework parts subject to scaling.
Based on this architecture and the appropriate selection of the right, existing
components and tools, a respective framework was then implemented and in-
tegrated in our existing SBA monitoring and adaptation framework []. Such
an integration is loosely coupled as our SLO evaluation framework can be in
principle connected to any monitoring and adaptation engine.

The developed framework relies on the CAMEL domain-specific language
(DSL), able to capture various aspects in the cloud-based application lifecycle
management, including the monitoring and adaptation ones. In particular, this
DSL is expressive enough to specify complex event patterns, where each event
maps to a metric condition, and associate them with respective sets of adapta-
tion actions that must be triggered to adapt the SBA in a cross-layer manner.
CAMEL also covers well the monitoring aspect via its capability to specify how
composite metrics are aggregated and to associate metrics with the (e.g., service)
component that they measure. As it will be shown, such information is essential
to have the ability to correlate events in the context of event pattern detection.

The proposed framework relies on the Esper Complex Event Processing
(CEP) engine. This engine is quite scalable with the capability to process thou-
sands or even millions of events. Due to the way our architecture has been de-
signed, this engine can be scaled when its processing limits are reached, enabling
our framework to really scale at those parts where most of the load is directed.

CEP-based SLO Evaluation — BPM@Cloud

107



To evaluate the proposed framework scalability, a series of synthetic exper-
iments have been performed. Such experiments show some limitations of the
currently centralised framework deployment and thus the exact points where
such a framework should scale.

The rest of the paper is structured as follows. The next section reviews the
related work. Section 3 provides background information necessary for the com-
prehension of this paper contribution. Section 4 analyses the proposed framework
architecture and supplies some implementation details. Section 5 explains the
way the event pattern specification is generated by accounting also on how the
events of the pattern should be correlated. Section 6 supplies and discusses the
experimental framework evaluation results. Finally, the last section concludes
the paper and draws directions for further research.

2 Related Work

Various approaches have been proposed in complex event processing and event
pattern detection. Most rely on CEP engines that detect complex events contin-
uously and build correlations and relationships between them, such as causality
and timing ones. The detection of complex patterns is based on various tech-
niques applied either over event streams [16][15] or in an offline [10][7] manner.

Statistical event detection approaches mainly exploit a user-defined minimum
frequency or support (minsup). The springboard of all these approaches is the
Apriori algorithm [1]. This algorithm produces the set of all significant associa-
tion rules (rules relating a set of variables) between items in a large transactions
database with a minsup. In [13], the authors introduce a method for discovering
frequent event patterns, as well as their spatial and temporal properties in sen-
sor networks, exploiting data mining techniques. Provided that events are put
into a spatial and temporal context, the authors correlate certain event types
on a sensor node with context events in a confined neighborhood in the recent
past. Thus, a pattern of events is discovered whenever this pattern’s frequency
surpasses a minsup. In [11], the authors propose the Lossy Counting widely used
algorithm. This is an one-pass algorithm that computes approximate frequency
counts of elements in a data stream and involves grouping the row items into
blocks or chunks and counting within each chunk.

Temporal event processing approaches exploit the temporal relations among
an input stream’s events. Such approaches can be very useful for deriving implicit
information for the temporal ordering of raw data and predicting the future
behavior of the monitored application. In [3] the authors introduce a formal
framework for expressing data mining tasks involving time granularities, as well
as algorithms for performing these tasks. Time constraints are injected into the
system to bound the distance between an event pair in terms of time granularity.
For instance, event e2 must happen within two minutes after the occurrence of
event e1 so as to consider e1, e2 an event pattern. In [12] a temporal data mining
approach is presented for data that cannot fit in memory or are processed at a

CEP-based SLO Evaluation — BPM@Cloud

108



faster rate than the generation one. The proposed sliding window model slides
forward in hops of batches, while only a single batch is available for processing.

Finally, logic-based approaches exploit inferencing to discover patterns defin-
ing respective association rules. In [14] a pattern discovery approach is proposed
mapping logical equivalences based on propositional logic. In particular, a rule
mining framework is introduced, generating coherent application domain inde-
pendent rules for a given dataset that do not require setting an arbitrary minsup.
The logic-based approach in [2] proposes an event calculus (EC) dialect, called
RTEC, for efficient run-time recognition that is scalable to large data streams
and exploits main EC predicates to discover specific activities. Finally, our previ-
ous work [17] has introduced a logic-based algorithm for discovering valid event
patterns causing specific SLO violations that can be further exploited to enrich
the adaptation rules defined by experts.

3 Background

3.1 Esper

Esper3 is a stream-oriented CEP engine that provides the SQL-like and rich
Event Processing Language (EPL). EPL enables expressing complex (event)
matching conditions that include temporal windows, joining of different event
streams, as well as filtering, aggregation, sorting and pattern detection. The
proposed framework exploits it for the event pattern detection.

3.2 CAMEL

CAMEL is a multi-DSL, developed in the context of the PaaSage4 project to
deal with the specification of multiple aspects in the multi-cloud applications
lifecycle. It integrates already existing languages, like CloudML[6], as well of
new languages developed with that project, like the Scalability Rule Language
(SRL)[9]. The aspects covered by CAMEL mainly include: deployment, require-
ment, metric, scalability, provider and organisation aspects.

This paper focuses mainly on the metric and scalability aspects covered by
the SRL sub-DSL of CAMEL. The metric package attempts to cover all measure-
ment details that need to be specified for a non-functional metric, like formulas,
functions, units of measurement plus measurement schedules and windows. This
package is also able to specify conditions on metrics that can be exploited to
specify SLOs as well as non-functional events in scalability rules.

The scalability aspect is covered via specifying scalability rules that map
single events or event patterns to one or more scaling actions. Scaling actions
can be either horizontal or vertical. Horizontal scaling actions include scale-out
and scale-in actions while vertical actions include scale-up and scale-down.

3 http://www.espertech.com/esper/
4 https://paasage.ercim.eu/

CEP-based SLO Evaluation — BPM@Cloud

109



BinaryEventPattern
lowerOccurrenceBound : EInt
upperOccurrenceBound : EInt
operator : BinaryPatternOperatorType

<<enumeration>>
BinaryPatternOperatorType
AND
OR
XOR
PRECEDES
REPEAT_UNTIL

<<enumeration>>
ComparisonOperatorType
GREATER_THAN
GREATER_EQUAL_THAN
LESS_THAN
LESS_EQUAL_THAN
EQUAL
NOT_EQUAL

Event
name : EString

EventInstance
status : StatusType
layer : LayerType

EventPattern

FunctionalEvent
functionalType : EString

<<enumeration>>
LayerType

SaaS
PaaS
IaaS
BPM
SCC

MetricCondition

NonFunctionalEvent
isViolation : EBoolean

SimpleEvent

<<enumeration>>
StatusType

FATAL
CRITICAL
WARNING
SUCCESS

camel:TimeIntervalUnit

Timer
type : TimerType

<<enumeration>>
TimerType

WITHIN
WITHIN_MAX
INTERVAL

UnaryEventPattern
occurrenceNum : EInt
operator : UnaryPatternOperatorType

<<enumeration>>
UnaryPatternOperatorType
EVERY
NOT
REPEAT
WHEN

camel:Unit
unit : UnitType

<<enumeration>>
UnitType

BYTES
KILOBYTES
GIGABYTES
MEGABYTES
EUROS
DOLLARS
POUNDS
MILLISECONDS
SECONDS
MINUTES
HOURS
DAYS
WEEKS
MONTHS
REQUESTS
REQUESTS_PER_SECOND
BYTES_PER_SECOND
PERCENTAGE

left
0..1

right
0..1

condition1

event
1

unit1

timer

0..1

event 1

Fig. 1: The event pattern part of the SRL meta-model.

The conceptualisation of events and event patterns is depicted in Figure 1.
Events can be single or composite. Single events can be further distinguished
in functional and non-functional. Functional events map to a certain functional
fault, like an application component failure. Non-functional events are associated
to a metric condition violation. A composite event maps to a logical or time-based
combination of one or more events in the form of an event pattern. As such, such a
combination is associated with respective logical and time-based operators. Both
binary and unary operators can be defined which leads to producing unary and
binary event patterns, respectively. Logical operators include AND, OR, NOT
and XOR. Time-based operators have been inspired by Esper’s EPL and include
many of the operators defined in that language (e.g., REPEAT).

As an event pattern is also a kind of event, patterns can be recursively defined.
This means that, for example, when applying a binary logical operator (e.g.,
AND) over a certain binary event pattern, the first event could be single and
the second could be another event pattern. For instance, suppose that the event
pattern EP1: A ∧ (B ∨ C) must be defined. To specify EP1, we need to define
that the first event is A, the second event maps to the event pattern EP2 and
that the logical operator applied is ∧. The second event pattern EP2 would then
be specified as the application of the ∨ operator over two events, B and C.

CEP-based SLO Evaluation — BPM@Cloud

110



Via the recursive definition of events, more complex and advanced situations
can be captured in respective rules. This should not stop to the case of scalabil-
ity rules, but could cover any adaptation rule kind. This has been performed by
the CloudSocket project5 [5] via an SRL extension. This extension can specify
any adaptation rule kind at different abstraction levels. The event part of the
rule specification was left as is, but the action part was extended to specify a
workflow of adaptation actions that can be performed at the levels of infrastruc-
ture, platform, service and business process. As such, this extension fits well to
the latest research trends in service computing that require specifying, executing
and managing cross-layer rules to more effectively deal with the adaptation of
cross-level SBAs in both simple and more advanced problematic situations.

In the context of this work, only the event part of an adaptation rule is
considered due to intended functionality to be delivered. The CEP engine devel-
oped just detects the need to trigger a rule and then informs the rule execution
component, e.g., an Adaptation Engine, to enact that execution of that rule.

4 SLO Evaluation Framework

4.1 Framework Analysis

The proposed SLO Evaluation Framework relies on the modular architecture
depicted in Figure 2. This architecture comprises three main levels: (a) interface;
(b) core logic; (c) database (DB). At the interface level, the main actions (add,
update, delete) that can be performed over an event pattern (EP) have been
wrapped into the form of a REST service, called, EP Service, able to parse
CAMEL/SRL fragments mapping to the specification of these patterns. Each
action, when called, then has an impact over the core logic level of the framework.

At this second level, there is a main component, called EP Parser, which
is responsible for processing the EPs obtained from the EP Service. Depending
then on the action requested, different interactions take place at this level.

EP Addition. In case of adding a new EP, the EP Parser transforms it into
an EP, specified in the EP language of the CEP framework, which is then reg-
istered in the server of that CEP framework, called CEP Server, so that it can
be immediately detected. The names of metrics referenced by the EP, i.e., di-
rectly involved in the conditions of the EP’s events, are also sent to the Metric
Subscriber which not only informs its local metric list but also registers for sub-
scribing to such metrics, when they are new, in the Metric Publisher. In parallel
to this registration, the updated metric list of the Metric Subscriber is stored in
the EP DB for fault-tolerance and rapid recovery reasons. The Metric Publisher
is responsible for publishing the values of metrics monitored to potential sub-
scribers. As such, it can well map to a Monitoring Engine of a SBA management
system. Once both the new EP and its respective metrics are registered in the
corresponding system parts, the EP addition has been successful. So, the EP
Parser stores the new EP in the EP DB not only for recovery reasons but also

5 www.cloudsocket.eu

CEP-based SLO Evaluation — BPM@Cloud

111



Fig. 2: The architecture of the SLO Evaluation Framework.

to gather statistics about EPs, while being detected by the Esper Server. The
EP DB has been realised in the form of a model repository able to store, query
and manipulate models of CAMEL, especially EPs, along with their statistics.

EP Deletion. In case of EP deletion, the EP is first fetched from the EP DB.
Then, in parallel, the EP Parser informs both the CEP Server and the Metric
Subscriber to update their structures and take further actions. The CEP Server
just deregisters the EP’s EPL specification. On the other hand, after checking
that the EP metrics to be removed are not exploited in other EPs, the Metric
Subscriber is informed to unsubscribe to these metrics to reduce the system load.

EP Update. In case of EP update, the produced EPL statement by the EP
Processor is used to update the previous one. In addition, the Metric Subscriber
is informed for adding or removing metrics which are or not needed any more
(by any EP), respectively.

While the above actions can take place through the interaction of an exter-
nal agent / user with the proposed Framework, we highlight that, in principle,
the same interactions could be differently achieved, e.g., via a publish-subscribe
mechanism. As the respective functionality has been realised, we could easily
switch from one to another mechanism or have both available at the same time.

As there are internally performed actions inside the framework, while it is
running, these are now explicated in detail below.

As the Metric Subscriber subscribes to metrics, it can asynchronously receive
measurements for such metrics from the Metric Publisher. Such measurements
are then transformed into events which are fed into the CEP Server. Once all

CEP-based SLO Evaluation — BPM@Cloud

112



suitable events are received by the latter component, it can detect one or more
EPs. When this occurs, this component will inform the Event Publisher.

The EP Publisher is responsible for publishing events to interested sub-
scribers, named as EP Subscribers. Such subscribers could be adaptation engines
responsible for executng the respective adaptation rule triggered, as, e.g., speci-
fied in CAMEL. Apart from this publication, the EP Publisher also updates the
entries in the EP DB to modify the respective statistics of the EP(s) concerned.

The proposed architecture exploits publish-subscribe mechanisms to both
receive some events/measurements and publish other kinds of events (e.g., EPs
). In this respect, it can actually interact with multiple components that might
be willing to obtain information from or feed information to this framework. For
instance, adaptation responsibility for an SBA management system could be
split into multiple instances of an Adaptation Engine to balance the respective
load. All these instances could then subscribe to the EP Publisher to manage
their own part of the adaptation space, i.e., only those EPs that concern them.

The presented architecture is logical. This means that it can be flexibly dis-
tributed at the physical level. For instance, we could have multiple instances of
the framework part that involves the CEP Server and the Event Publisher to
load balance the event workload entering the framework. Alternatively, we could
scale out the whole framework into parts that focus on different EP partitions.
For example, the SBA management system could be split similarly into different
parts, where each part could be devoted to a subset of all SBAs managed. Each
system part could be then associated to one instance of the SLO Evaluation
Framework, thus mapping only to the EPs of the SBAs that need to be handled.

4.2 Implementation

All framework components have been implemented in Java. The CEP engine
exploited is Esper, version 5.3.0. For the publish-subscribe mechanism, the 0-
MQ6 messaging middleware has been exploited that incurs less overhead with
respect to other messaging middleware realisations. The EP DB has been realised
as a model repository implemented via the CDO technology7 which provides
suitable and robust mechanisms for model persistence and lazy loading as well
as the HQL language to enable posing queries at a higher abstraction level than
pure SQL. The EP Service has been implemented via the Jersey8 java library.

5 Event Pattern Generation & Detection

While it could be considered as straightforward to transform an event pattern in
CAMEL into an EPL statement in Esper, this is by far not trivial as the events
in an EP need to be correctly correlated. Correlation means that the events
should be associated with either the same measured objects or with objects that

6 zeromq.org
7 https://eclipse.org/cdo/
8 http://jersey.github.io/

CEP-based SLO Evaluation — BPM@Cloud

113



are connected in the SBA dependency hierarchy. This also has an impact on the
way measurements are represented as the information concerning the measured
object should be already present and be then copied accordingly in the internal
representation of the event in Esper.

Concerning the metric measurements, we have actually assumed the follow-
ing: (a) the Metric Subscriber subscribes only to metrics based on their name;
(b) the Metric Publisher publishes measurements for metrics that might be
named equivalently. The latter means that the measurement information pub-
lished should include sufficient information to enable the framework to identify
exactly what object is being measured.

To decouple the proposed framework from the dependency knowledge it
should possess, we assume that such dependency information is provided within
the measurement information published. While this leads to some published in-
formation duplication, it translates to a loose integration of this framework with
the SBA management system. Otherwise, the framework would need to connect
to a models@runtime component [4] in that system to be informed constantly
about both the type and instance level in the SBA dependency hierarchy.

The measurement information published includes: (a) the metric’s name (e.g.,
MeanResponseTime); (b) the metric value; (c) the measurement timestamp; (d)
the name of the application/service concerned; (e) the name of the component
measured; (f) the name of the instance of the component measured; (g) the name
of the VM measured; (h) the name of the instance of the VM measured.

Values for fields (a)-(d) are always present. Depending on the level and kind
of component measured, only some of the values of the other fields need to be
supplied. For instance, when a measurement at the type level has been produced
(i.e., mapping to an aggregation), then, if it concerns a certain component, we
also need to specify the VM in which that component should have been deployed.
This is required to distinguish for which deployment of a component, the mea-
surement should hold. If the VM is being measured at the type level, then we
just need the name of the VM without referring to any application component
name. Similar logic applies to the instance level with the sole exception that we
also need to cover the type level as the framework does not have the knowledge
about which is the type of a particular instance. For example, if a measurement
for an instance of an application component is obtained, then we need to indi-
cate also the name of that component. In this case, we also need to specify the
instance of the VM on which the component instance has been deployed as well
as that instance’s type. This is the case where all fields should be filled in.

Now, we are going to explain the way EPs in CAMEL are transformed to
EPL statements. We distinguish between two cases: (a) all events in the EP refer
to the instance level; (b) all events in the EP refer to the type level. We do not
consider a mixture of events from different levels as this does not make sense.

In case that the instance level is covered, there are actually two cases: (i) all
events refer to the same component; (ii) all events refer to different but related
components. In sub-case (i), suppose that we need to correlate two events that
refer to the same VM instance. Further suppose that event E1 highlights that

CEP-based SLO Evaluation — BPM@Cloud

114



the raw CPU utilisation of this VM instance is above 80%, and the other, E2

indicates that the raw memory utilisation for the same VM instance is above
90%. Finally, suppose that an EP EP1 needs to be detected which requires
the logical conjunction of these two events, i.e., E1 ∧ E2. The respective EPL
statement to be created would be the following:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 80 and ap-
plication=’APP1’ and vm=’VM1’) and Event(metric=’MemoryUtilisation’
and value >= 90 and application=’APP1’ and vmInstance=ev1.vmInstance
and vm=’VM1’))

In this statement, we join these two events as streams based on their appli-
cation, VM and VM instance fields. Via this join, we impose that the EP should
hold for a specific application and VM but we do not care about which matched
vm instance is concerned (as any instance needs to be matched here). More-
over, the presence of EVERY indicates that the pattern should be repeatedly
inspected and not just once.

In sub-case (ii), we need to correlate the different kinds of components to-
gether. As such, suppose that a slighly different EP EP2 needs to be detected
mapping to the logical conjunction of the first event E1 (see above) and a new
event E3 signifying that the raw response time of any instance of component C1
is greater than 20 seconds. The EPL to be constructed will be as follows:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 80 and ap-
plication=’APP1’ and vm=’VM1’) and Event(metric=’ResponseTime’ and
value > 20 and vmInstance=ev1.vmInstance and application=’APP1’ and
vm=’VM1’ and component=’C1’))

This EPL statement is more complicated as it needs to join two events for
which we need to guarantee that they refer to the same application, VM and
VM instance, where the first two fields are mapped to specific values. We also
need to guarantee that the second event refers to component C1 and we do not
care about the instance of that component.

For the type level, we have two similar kinds of cases: (i) simple and (ii) com-
plex. However, as we do not care about the instance level, the EPL statements
to be constructed are simpler.

Suppose that in the (i) sub-case, we need to detect an EP EP3 mapping to
the logical conjunction of two events: E4 associated with a mean response time of
above 20 seconds for component C1 and E5 associated with a mean availability
of less than 99.99 for C1. The EPL statement produced will be the following:

CEP-based SLO Evaluation — BPM@Cloud

115



every(ev1=Event(metric=’MeanResponseTime’ and value >
20 and application=’APP1’ and component=’C1’) and
Event(metric=’MeanAvailability’ and value < 99.99 and applica-
tion=’APP1’ and component=’C1’))

In this statement we just join two event streams based on their application
and component which are clearly identified.

For the (ii) sub-case, suppose that we need to detect an EP EP4 mapping
to the logical conjunction of two events: E4 as above and E6 highlighting that
the average CPU utilisation is greater than 80% for the VM1 hosting the C1
component. The EPL statement produced will be the following:

every(ev1=Event(metric=’MeanResponseTime’ and value > 20
and application=’APP1’ and component=’C1’ and vm=’V1’) and
Event(metric=’MeanCPUUtilisation’ and value > 80 and component=’C1’
and application=’APP1’ and vm=’VM1’))

So, we actually join again the two events but now the fields concerned are
the application, component and VM ones with specific values provided to them.

The above 2 cases with their 2 sub-cases have been exemplified with certain
examples. In reality, our framework is able to go beyond the capabilities shown
in these examples. It can process any kind of complex EP with an arbritrary
nesting and any kind of operator from those captured by CAMEL. However,
showing such a complex case needs substantial space and thus, it has been left
out from the analysis in this paper.

6 Evaluation

This section describes an experimental evaluation of our proposed framework’s
performance based on two main experiments. The setup of the machine where the
experiments were conducted was a PC with quad-core Intel(R) CPU at 2,7GHz
and 8GB RAM running the Microsoft Windows 10 (64-bit) operating system.

The input of the experiments relies on an Event (Pattern) Generator compo-
nent which, based on a certain simplified deployment model of an SBA, attempts
to generate both a set of EPs as well as events. The number of these two sets is
configurable via respective control parameters. The EPs are created in different
levels of complexity by exploiting all the event composition operators offered by
SRL/CAMEL. The events (actual measurements) are generated such that they
map to the leaf part of the EP (trees) constructed.

6.1 First Experiment

The first experiment (See Figs. 3 and 4) evaluates the proposed framework’s
performance, memory usage and CPU load, while increasing the total amount

CEP-based SLO Evaluation — BPM@Cloud

116



of events (with a 10000 step) produced by the Event (Pattern) Generator. The
number of EPs in Esper is predefined (1000). Each measurement is calculated by
the average value of 10 iterations while the events are sent in 10-second intervals.

Fig. 3: Performance of the CEP System while increasing the no of events

(a) Memory consumption (b) CPU usage

Fig. 4: Overall resource utilisation while increasing the no of events

Fig. 3 shows that the processing time increases linearly with the number of
events and reaches the bound of almost 13 seconds. The latter seems to be a
point for further improvement, possibly by considering the configuration of the
Esper CEP. It also indicates that possibly Esper needs to be load-balanced by
physically distributing it in two or more nodes.

Concerning memory consumption, see Fig. 4a, the behaviour is also linear.
The memory consumption reaches the bound of 1.5 GB, which looks normal and
acceptable if we consider the final load imposed to the framework.

CPU utilisation, see Fig. 4b seems to not exhibit a linear behaviour. On the
other hand, it reaches only 30% which means that there is still a great potential
for processing additional events.

CEP-based SLO Evaluation — BPM@Cloud

117



In overall, this experiment signifies that Esper scales well, especially with
respect to resource usage, but the event processing time needs to be improved.

6.2 Second Experiment

The second experiment (See Figures 5 and 6) similarly evaluates the event pro-
cessing time, the memory usage and the CPU load of the proposed framework,
while increasing the total amount of EPs stored in the Esper engine to stress its
detection functionality. The number of events produced is predefined (100.000).
Each measurement is again calculated by the average value of 10 iterations while
the events are sent in 10-second intervals.

Fig. 5: Performance of the CEP System while increasing the no of stored patterns

(a) Memory Consumption (b) CPU usage

Fig. 6: Overall resource utilisation while increasing the no of patterns

The experiment results are quite similar to those of the previous experiment.
The event processing time, see Fig. 5, is again linearly increasing but it is now
larger than the corresponding last processing time value in the first experiment,

CEP-based SLO Evaluation — BPM@Cloud

118



where the overall number of events is the same. This is quite normal due to the
fact that the amount of EPs to be detected is far greater (x10), which maps to
10 times greater detection load. However, the final processing time value is not
10 times greater than the last value in the previous experiment, which signifies
that Esper seems to scale better in this aspect.

With respect to memory consumption, see Fig. 6a, the behaviour is again
linear and we just reach a slighly higher final value (around 1.8 GB) than in
the first experiment. This again means that Esper is able to handle better event
patterns with respect to normal events.

Finally, Fig. 6b depicts that now CPU has reached around a 70% utilisation
compared to the final value of 30% in previous experiment. This shows that
Esper is stressed and starts to reach its limits with respect to event detection
and processing. We need to further investigate what should be the final limit
over which Esper will have to be distributed to better handle the incoming load.

In overall, we can see that Esper scales well and could be exploited in a system
able to handle the monitoring and evaluation of multiple SBAs. Especially, we
need to highlight its nice behaviour with respect to detecting a huge amount of
EPs. However, it seems that Esper needs some improvement with respect to the
pure event processing time, especially as events seem to increase in a different
scale when the number of SBAs grows (in contrast to the number of EPs).

7 Conclusions and Future Work

This paper has proposed a new SLO evaluation framework for SBAs that relies on
a rich EP expression language, namely SRL, and on the well-known Esper CEP
engine. This system has been designed based on a modular architecture where
many of its parts can scale on demand. This system is also loosely coupled with
the respective monitoring and adaptation engines that might be employed in a
SBA management system. The management of EPs is wrapped into the form of
a REST service enabling a respective SBA management system to be decoupled
from underlying implementation peculiarities and manage the generation and
handling of adaptation rules that contain such EPs.

The proposed framework was evaluated according to its processing time and
resource usage. The results show that the framework scales linearly when the
number of events or the number of EPs that need to be detected increases. This
holds mainly for the processing time and memory consumption. However, CPU
utilisation seems to start reaching its limits when both the number of events and
EPs become too high which actually represents a point for CEP distribution.

Concerning future work, we plan to further evaluate the SLO evaluation
framework and especially investigate its exact distribution points. We also plan
to compare Esper with other CEP engines in order to reach an informed decision
about which CEP engine is more suitable in our context. In fact, it can be
interesting to create a system which can be configured to exploit different CEP
engines by incorporating the appropriate abstraction mechanisms.

CEP-based SLO Evaluation — BPM@Cloud

119



8 Acknowledgments

This work is supported by CloudSocket project that has been funded within the
European Commissions H2020 Program under contract number 644690.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB, pages 487–499, 1994.

2. Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. Run-time composite
event recognition. In DEBS, pages 69–80. ACM, 2012.

3. Claudio Bettini, Xiaoyang Sean Wang, Sushil Jajodia, and Jia-Ling Lin. Discov-
ering frequent event patterns with multiple granularities in time sequences. IEEE
Trans. Knowl. Data Eng., 10(2):222–237, 1998.

4. Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ Run.Time. Com-
puter, 42(10):22–27, October 2009.

5. Daniel Seybold, Frank Griesinger, Kyriakos Kritikos, Antonio Gallo, Simone Cac-
ciatore, Andreea Popovici, Joaquin Iranzo, Roman Sosa, Wilfrid Utz, and Damiano
Falcioni. Explanatory Notes: Final BPaaS Prototype. CloudSocket Project Deliv-
erable D4.6-D4.8, June 2017.

6. Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin, and Arnor Sol-
berg. Managing multi-cloud systems with CloudMF. In NordiCloud, pages 38–45.
ACM, 2013.

7. Joseph L. Hellerstein, Sheng Ma, and Chang-Shing Perng. Discovering actionable
patterns in event data. 41(3):475–493, 2002.

8. Raman Kazhamiakin, Marco Pistore, and Asli Zengin. Cross-layer adaptation
and monitoring of service-based applications. volume 6275 of Lecture Notes in
Computer Science, pages 325–334, 2009.

9. Kyriakos Kritikos, J́:org Domaschka, and Alessandro Rossini. SRL: A Scalability
Rule Language for Multi-cloud Environments. In CloudCom. IEEE, 2014.

10. Magnus S. Magnusson. Discovering hidden time patterns in behavior: T-patterns
and their detection. Behavior Research Methods, Instruments, & Computers,
32(1):93–110, Mar 2000.

11. Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over
data streams. pages 346–357, 2002.

12. Debprakash Patnaik, Naren Ramakrishnan, Srivatsan Laxman, and Badrish Chan-
dramouli. Streaming algorithms for pattern discovery over dynamically changing
event sequences. CoRR, abs/1205.4477, 2012.

13. Kay Römer. Distributed mining of spatio-temporal event patterns in sensor net-
works. In EAWMS Workshop at DCOSS, pages 103–116, 2006.

14. Alex Tze Hiang Sim, Maria Indrawan, Samar Zutshi, and Bala Srinivasan. Logic-
based pattern discovery. IEEE Trans. Knowl. Data Eng., 22(6):798–811, 2010.

15. Di Wang, Elke A. Rundensteiner, and Richard T. Ellison. Active complex event
processing over event streams. PVLDB, 4(10):634–645, 2011.

16. Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event pro-
cessing over streams. In SIGMOD Conference, pages 407–418. ACM, 2006.

17. Chrysostomos Zeginis, Kyriakos Kritikos, and Dimitris Plexousakis. Event pattern
discovery for cross-layer adaptation of multi-cloud applications. In ESOCC, 2014.

CEP-based SLO Evaluation — BPM@Cloud

120



Towards Business-to-IT Alignment in the Cloud

Kyriakos Kritikos1, Emanuele Laurenzi2, and Knut Hinkelmann2

1 ICS-FORTH, Heraklion, Greece
kritikos@ics.forth.gr

2 FHNW University of Applied Sciences and Arts Northwestern Switzerland
{emanuele.laurenzi, knut.hinkelmann}@fhnw.ch

Abstract. Cloud computing o↵ers a great opportunity for business pro-
cess (BP) flexibility, adaptability and reduced costs. This leads to realis-
ing the notion of business process as a service (BPaaS), i.e., BPs o↵ered
on-demand in the cloud. This paper introduces a novel architecture fo-
cusing on the design of BPaaS that includes the integration of existing
state-of-the-art components as well as new ones taking the form of a busi-
ness and a syntactic matchmaker. The end result is an environment en-
abling to transform domain-specific BPs into executable workflows which
can then be made deployable in the cloud so as to become real BPaaSes.

Keywords: BPaaS, service, design, discovery, selection, alignment, mediation

1 Introduction

Due to intense market competition, organisations can survive only if they o↵er
services that are either innovative or exhibit a better quality than their competi-
tors. However, by owning a limited infrastructure and continuously requiring to
improve the existing business processes (BPs) leads to reaching certain impass-
able limits. Moreover, the infrastructure maintenance, operation and manage-
ment costs can be quite prohibiting, especially for small or medium enterprises.

Fortunately, nowadays, cloud computing can become the medium via which
organisations can acquire cheap, commodity resources on-demand while also be-
ing able to achieve certain benefits, including: outsourcing infrastructure man-
agement with reduced cost, flexible resource management, and elasticity. Such
benefits can certainly enable improving BP performance.

However, as cloud computing deals only with the infrastructure level, an
organisation now faces the problem of how to align the business with the IT
level. This is a widely known and hard to solve problem for which no complete
solution exists. Moreover, many organisations do not have the expertise to use
and combine the cloud services o↵ered.

The above problems can be solved by combining BP management with cloud
computing to realise the BP as a service (BPaaS) paradigm to enable migrating
BPs in the cloud. However, such a combination is by far not trivial as: (a) there
are multiple levels involved from a BP down to IaaS services incorporating many

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

121



2 Kritikos et al.

entities that need to be properly managed; (b) there are multiple realisation
opportunities; (c) it is di�cult to map business to technical requirements and
match both requirement kinds to respective cloud service capabilities; (d) the use
of di↵erent services at di↵erent abstraction levels requires employing a cross-level
BP adaptation approach to handle the various issues that might be involved.

Such generic challenges also map to specific ones in the BP lifecycle. In BP
design, the latter challenges are translated to: (a) how to map a BP to a tech-
nical workflow with a suitable automation level; (b) how to map business terms
and requirements into technical ones to drive the selection of the most suitable
services to be then integrated into the workflow; (c) how to deal with the service
incompatibility problem e↵ectively to guarantee the correct execution of the de-
signed workflow. Such a problem relates to checking the syntactic compatibility
of messages exchanged between two or more selected workflow services.

To realise the vision of BPaaS, the CloudSocket project 3 is delivering a
platform that unifies together environments that support di↵erent BP lifecycle
activities. This paper focuses on our contribution towards enabling the BPaaS
Design Environment to deal successfully with the 3 aforementioned issues. This
translates to introducing an innovative architecture including suitable compo-
nents that support smart and semantic service discovery at both the business and
technical levels, the optimal service selection, the mapping between business and
technical requirements and the capability to mediate between the execution of
two or more services to achieve message-level compatibility. In result, the devel-
oped environment enables the BPaaS provider to transform the initial business
functional and non-functional requirements that match the necessities of po-
tential BPaaS customers into an executable workflow that can then be made
deployable into the cloud by exploiting other CloudSocket environments.

The BPaaS Design Environment comprises two new components that con-
stitute another contribution of this paper. The business matchmaker enables to
find services that support the user functional and non-functional requirements at
the business level via following a novel questionnaire-based approach. Such ser-
vices are then filtered and selected by state-of-the-art technical matchmaker and
service selection components. The latter component relies on a novel syntactic
matchmaking component able to infer the message-based compatibility between
two or more selected services and produce a respective mapping specification.
Such a specification can then be exploited by a service mediation service to sup-
port the compatible message transformation between services and guarantee the
smooth operation of the BPaaS workflow in which this service is integrated.

This paper is structured as follows. Section 2 shortly analyses some existing
research results, exploited in the production of the BPaaS Design Environment.
Section 3 analyses the main architecture of this environment by also explaining
the main functionality and role of each component involved. Sections 4 and 5
detail the two main novel components involved in the architecture, the business
and syntactic matchmakers. Section 6 introduces a use case to showcase the main

3 www.cloudsocket.eu

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

122



Towards Business-to-IT Alignment in the Cloud 3

benefits of the proposed environment as well as to validate it. Finally, the last
section concludes the paper and draws directions for further research.

2 Background

2.1 Business-to-IT Alignment

The Business-to-IT alignment issue in the Cloud typically refers to the gap
between business requirements and technical solutions. Cloud o↵erings are de-
scribed technically making it hard for business people, usually understanding a
higher-level business language, to properly assess the best fitting cloud solution.
Achieving to identify suitable cloud solutions in this context requires specifying
requirements for and capabilities of a service in both a business and IT language.
To ensure understanding and transparency of knowledge, it is a common practice
to represent it in models [5] [20]. Models abstract away from complex realities
and become fit to their purpose, i.e., to precisely model the respective intended
domain. In [6] we already adopted a model-driven approach where an exten-
sion of the BPMN language allows modelling business process requirements (in
a business language) and workflows/cloud services descriptions (in a technical
language). The approach includes the translation of the business language into
the technical one enabling the comparison between cloud service requirements
and technical specifications. In result, the matching cloud services are identified.
The translation and the comparison are performed by semantically enriching
models with ontologies. Hence, models become also machine-interpretable. In
modeling research, this practice is well-known as Semantic Lifting. [1] defines
it as “the process of associating content items with suitable semantic objects
as metadata to turn unstructured content items into semantic knowledge re-
sources”. Semantic Lifting shifts the purpose of modelling beyond transparency
and communication [7]. The interpretable knowledge base (i.e., ontology) allows
for model processing operations, realised in modelling mechanisms and algo-
rithms [6].

In this work, we build on the findings in [6] but adopt a di↵erent perspective
of Business-to-IT alignment in the Cloud. Namely, we shift from the language
translation to the mapping of values between requirements and specifications on
both the business and IT levels, separately. Hence, the Business-IT alignment
paradigm is applied sequentially by further refining the results from the business
layer in the IT layer. Namely, we propose three matchmaking components: (a)
the business and (b) technical matchmakers enhanced with formal semantics
for the machine-interpretation plus (c) the syntactic matchmaking component.
The combination of these three components allows identifying the most suitable
cloud services that will eventually form a workflow.

2.2 Technical Service Matchmaking

Technical service matchmaking involves functional and QoS matching. Func-
tional matchmaking has been traditionally focused on I/O-based matching [10,

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

123



4 Kritikos et al.

17] while QoS matching takes the view of QoS as conformance [12] and em-
ploys di↵erent kinds of techniques (semantic reasoning, constraint solving &
mixed) [13] to infer if the solution space of the service is included in the solu-
tion space of the request. While most of the proposed work focus on one aspect
individually, some approaches have attempted to consider both aspects simul-
taneously [2, 9]. However, they usually consider only the sequential pattern to
combine the matching in both aspects and do not employ semantic techniques,
thus not exhibiting the right performance and leading to results of medium or
low accuracy.

As such, our previous work [15] has explored di↵erent ways the 2 match-
making types can be jointly performed: (a) sequential combination (with two
di↵erent variations); (b) parallel combination; (c) subsumes combination (con-
struction of an hierarchy of service advertisements that are connected with the
subsumes relation to exploit the fact that if a parent is matched by a request,
then also its descendants will be matched). After an experimental evaluation
of these combinations, it was shown that the parallel combination of aspect-
specific matching approaches leads to the best possible results with respect to
performance, as matchmaking accuracy is exactly the same in both approaches.

Our approach exploits two aspect-specific matchmakers, a functional and a
non-functional. The functional matchmaker relies on the combination of I/O-
based and IR-based matching and has been developed in the Alive project [3].
This matchmaker exploits a smart graph-based structure able to dynamically
tolerate changes in domain ontologies (i.e., the ontologies via service I/O is an-
notated) while supplies almost constant-in-time query operations over the graph
(e.g., to discover all ancestors in the ontology for a specific service input / output
parameter). I/O based matching is performed in a two-step manner. First, the
output of the service and its request are considered for the matching which re-
sults in di↵erent kinds of match categories that rely on the relations between the
semantic concepts of the the service and the request output parameters. Then,
input-based matching is performed on the fly to produce the final matchmaking
results which can then be ranked according to di↵erent criteria.

The unary matchmaker [13] follows a hybrid approach in QoS service match-
making. First, it considers ontological-based specifications of services to align
them based on their QoS terms (their QoS metrics in particular). Then, it per-
forms the respective filtering in a step-wise manner by considering each QoS term
individually each time. As unary constraints are assumed to be involved in the
service o↵er and demand, the matchmaker employs smart structures to support
parameter-based filtering which results in ultra fast matching time. In fact, by
being compared with other QoS matchmakers, this matchmaker was shown to be
the fastest in both service matchmaking and registration and the most scalable
without a↵ecting in any case the accuracy of the produced matchmaking results.

2.3 Service Selection

Various service selection algorithms have been already proposed. However, they
usually consider only one abstraction level by also neglecting semantics, thus

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

124



Towards Business-to-IT Alignment in the Cloud 5

producing results of imperfect accuracy. The accuracy is further reduced by con-
sidering that some algorithms employ smart but non-optimal solving techniques,
like Genetic Algorithms or heuristics to accelerate the service selection time.

By considering now that the service selection for a BPaaS includes di↵erent
abstraction levels along with design choices (e.g., either to select an external SaaS
or deploy an internal software component in an IaaS to realise the functionality
of a BPaaS workflow task), we have developed an constraint-satisfaction-based
algorithm [14] which resolves these two issues while also catering for other impor-
tant features including: (a) the consideration of multiple optimisation objectives
by employing the Analytic Hierarchy Process (AHP) [18] and Simple Additive
Weighting (SAW) [8] techniques; (b) the addressing of non-linear constraints;
(c) the capability to bridge the gap between the two levels (SaaS and IaaS) via
the insertion of functions that derive the QoS at the SaaS level based on the
respective capabilities selected at the IaaS level; (d) the ability to deal with
overconstrained user requirements by employing smart utility functions that al-
low the slight violation of the user requirements so as to produce at least one
solution; (e) the capability to consider all possible execution paths in the BPaaS
workflow and not just one (e.g., the critical one); (f) the capability to consider
ranges of possible values for the service o↵erings (suitable when not a single
value can be guaranteed for a certain QoS parameter); (g) the capability to con-
sider dependencies between QoS parameters at the same level which will enable
a more accurate evaluation of the respective solutions; (h) the capability [11] to
accelerate the solving time by fixing parts of the problem to particular partial
solutions by relying on the BPaaS execution history.

3 Architecture

The BPaaS Design Environment follows a model-driven and semantics-aware
approach to support the business-to-IT alignment in the cloud. Such a approach
comprises 3 main transformation steps: (a) BP-to-business-services; (b) business-
services-to-technical-services; (c) BP&technical-services-to-executable-workflow.
As such, the approach guarantees the technical feasability of the solution pro-
duced by employing a two-step service matchmaking process at both the busi-
ness and technical level as well as a service selection approach that is syntactic-
compatibility-aware at the technical level.

To achieve its main goal, the environment exhibits an architecture, depicted
in Figure 1, comprising 8 main components that are now analysed in detail. Some
of the components correspond directly to some of the aforementioned steps while
others play a supporting or an orchestration role. The architecture also spans
the well-known 3 levels of user interface (UI), business logic and persistence.

BPaaS Designer (BD). It represents the main point of interaction with the
user in the context of BPaaS design. It enables specifying both domain-specific
BPs and respective executable workflows. It also guides users in providing suit-
able input to support the alignment and transformation of BPs into workflows.

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

125



6 Kritikos et al.

Fig. 1: The architecture of the BPaaS Design Environment

Orchestrator (Orch). It is responsible for orchestrating its underlying com-
ponents to handle the requests issued by the BPaaS Designer.

Business Matchmaker (BM). It is responsible for matchmaking the cloud
services registered in the Knowledge Base based on business requirements derived
from a questionnaire-based approach which is explained in the next section.

Technical Matchmaker (TM). A technical, functional and non-functional ser-
vice matchmaker. It exploits state-of-the-art aspect-specific matchmakers in a
parallelised fashion according to the approach in [15].

Service Selector (SS). It [14] attempts to produce a concrete optimal solution
for the service-based workflow at hand by considering the users technical non-
functional requirements while also attempting to maximise the message compat-
ibility between services. The latter is derived through using the next component.

Syntactic Matchmaker (SM). It is called dynamically by the SS while solving
the service selection problem for the BPaaS workflow to find the compatibility
between the next and all previously selected services in each execution path
where such a service participates. Such a compatibility maps to the message
compatibility [16] between the output parameters of the already selected services
and the input parameters of the next service. When an incompatible solution is
constructed, SS can backtrack and check another solution. To smartly deal with
cases where the same call is issued, e.g., due to deep backtracking, SM stores the
call results so as to immediately answer it. The mapping of the output parameters
to the input ones of the next service is also recorded to enable updating the
BPaaS workflow via a mediation service, as performed by the next component.

Workflow Updater (WU). It is responsible for updating the BPaaS workflow
by performing the following actions for each workflows execution path: (a) we
replay the solution construction in each path to obtain the respective mapping
of the current service in the path from the SM; (b) we introduce a mediation
service within the workflow, immediately before the current service, which takes
as input the current output parameter set and the mapping specification and
produces as output the input parameters of the current service.

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

126



Towards Business-to-IT Alignment in the Cloud 7

Knowledge Base (KB). It includes all necessary and su�cient information to
support all reasoning tasks executed in the system, including the business and
technical service matching and selection for the BPaaS workflow at hand.

4 Business Matchmaking

The Business Matchmaker allows specifying requirements in a more user cen-
tric approach than the one in [6]. It relies on a context-adaptive questionnaire
that guides the user via a set of questions that reflect BP functional and non-
functional requirements. Follow-up questions are displayed based on the result of
the context-adaptive algorithm that considers: (a) the user preferences in terms
of categories (e.g., Performance rather than Data Security)); (b) the information
value of semantic attributes reflecting cloud service specifications at the business
level, e.g., 10 minutes of monthly downtime. Questions are prioritised such that
the relevant ones are displayed first to discover services as quickly as possible.

The idea is that the questionnaire can be applied on the whole BP first. If
no service can be found, we can then move down to groups of activities, until
the level of single activities.

4.1 The Context-Adaptive Questionnaire

The Context-Adaptive Questionnaire relies on the BPaaS ontology in [5]. Ques-
tions focus first on functional requirements and then on non-functional ones.
The questionnaire enables to specify functional requirements in two ways:

– by asking the user to insert an action and an object from a predefined tax-
onomy in the BPaaS ontology. This corresponds to the convention of BPMN
to name activities by a verb (i.e. action) and a noun (object) [19] whose
combination provides the “what-is-about” knowledge.

– by asking the user to insert the most suitable category from the APQC
Process Classification Framework.

Next, the user can choose one of the 5 non-functional (NF) categories: Data
Security, Payment, Performance, Service support, and Target Market .

The NF categories were derived from the Cloud Service Agreement Stan-
dardisation Guidelines [4], an outcome of the European 2020 initiative “Digital
Agenda for Europe” published to standardize and streamline the terminologies
and understanding of cloud services. The NF categories were subsequently dis-
cussed and validated within the CloudSocket consortium. In result, a respective
set of questions and sub-questions were derived out of them. For instance, the
Performance category contains the following questions:

– Whats your preferred monthly downtime in minutes?
Possible answer : 30 minutes

– What would you like to upload?
Possible answers: Audio MP3, Video MP4, PDF and/or Microsoft O�ce
documents

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

127



8 Kritikos et al.

Fig. 2: The object selection for the functional requirements posing

– Should the process be executed on a daily, weekly, monthly or yearly basis?
Possible answer : On a weekly basis

• Sub-Question: How many times should the process be executed?
Possible answer : at least 10 times

– What is your favorite response time level?
Possible answer : High, Medium or Low

– How many simultaneous users should the cloud service support?
Possible answers: at most 10

For each question, we distinguished among four types of answers as: (1)
single-answer selection; (2) multi-answer selection; (3) search-insert; (4) value-
insert. Value- and search-insert require input from the user. While the former
enables the user to insert values (e.g., the aforementioned downtime in minutes),
the latter provides the possibility to crawl predefined values from the ontology
and select the suitable one. For instance, answers related to the first 3 functional
requirement questions (i.e., Action, Object and APQC category) are of search-
insert type. Namely, users can insert keywords for the BP they are looking for,
and the ontology returns the concepts matching these keywords. Fig. 2 shows
the implementation result of this functionality.

Each time a question is answered, semantic rules are applied to convert im-
plicit knowledge reflecting the business requirements into an explicit one. This
prepares the ground to identify matching cloud services by applying a semantic
query. For example, assume we have the following:
Specifications from the KB as follows :

– A cloud service with the execution constraint of 20 times per day.

Requirements from the questionnaire as follows :

– Should the process be executed on a daily, weekly, monthly or yearly basis?
Answer : At least on a weekly basis.

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

128



Towards Business-to-IT Alignment in the Cloud 9

• How many times should the process be executed?
Answer : At least 10 times

Running a process at least on a weekly basis implies that can also run on a daily
basis. The semantic rule, therefore, would infer the answer “On a daily basis”
and insert it in the KB. The semantic query then compares the derived fact with
the cloud service fact related to the execution constraint. In result, the cloud
service specification matches with the requirement.

4.2 Question Prioritisation Algorithm

The NFR questions follow a question prioritisation algorithm. This enables to
identify the matching cloud services by asking as few questions as possible. An-
swers to the questions, along with previous ones, are used to display the follow-up
question. The algorithm considers the following:

– Grouping among non-functional attributes. For instance, assuming that a
cloud service has the availability and response time attributes of the Perfor-
mance category. If the user selects to answer one of the two, the follow-up
question will be on the remaining attribute in the same category.

– Entropy expressing the variation degree in the values of each non-functional
attribute (e.g., availability). Entropy of an attribute is “0” when every cloud
service stored in the KB contains the same attribute value, while “1” in
the opposite case. For example, if all cloud services in the KB have their
data location in Switzerland, the entropy of this attribute is 0. As such, the
question related to the preferred data location will not be asked as it will
not filter out any services from the matching set.

The entropy formula is expressed as follows:

Entropy (attri) = �
JX

j=1

(pij · log2 (pij))

where J is the total number of attribute values and pij is the probability that
a certain attribute value valij of attribute attri appears in a specific cloud ser-
vice. By considering that this probability is independent and uniform across all

attribute values, then pij can be expressed as: pij =
[CS]csvalik=valij

[CS] where the

nominator denotes the number of cloud services that exhibit the respective at-
tribute value (csvalik denotes the value of attri for cloud service k) and the
denominator the number of all cloud services.

The prioritisation algorithm’s signature and main logic is as follows.
Input.

– already stated variables: attr, CS, val, csval.
– The set of non-functional categories C =Data Security, Payment, Perfor-

mance, Service support, Target Market .

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

129



10 Kritikos et al.

– Set of tuples < attri, Ql > where Q is the set of questions and Ql is a certain
question where 1  l  [Q]. So, each tuple maps 1 attribute to 1 question.

Output. The filtered set of cloud services CS that match with the content of the
questionnaire, i.e., questions and answers.
Business Logic.

1. IF the number of categories left is positive ([C] > 0), select a category cn,
ELSE exit.

2. IF cn has a positive number of semantic attributes left, i.e., [attr|]attri.cat=cn >
0, THEN calculate the entropy of all the selected category’s attributes, ELSE
remove the current category cn from C and go to (1).

3. Select attribute attri with highest entropy.
4. Display question Ql that is mapped with the attri.
5. Get user answer mapping to a value valij of attribute attri

6. Filter services in CS which do not satisfy the condition: csvalik = valij .
7. Remove the semantic attribute attri from the category cn and go to (2).
8. Exit.

5 Syntactic Matchmaking

Business and technical matchmakers cannot guarantee the message compatibility
between selected services in a BPaaS workflow. Such a compatibility is thus an
obligatory, hard constraint in service selection for producing optimal, message-
compatible solutions that can be safely executed. So, a component is needed able
to derive such compatibility and supply it as a function to the Service Selector.

The main idea is that this component should first find which output messages
of previously selected services match to which input messages of the currently
selected service (based on the Service selector ’s solution generation process)
for each execution path in the BPaaS workflow. Then, it should check for each
message-to-message match if the first message conveys less information than that
required by the second message. If this checking succeeds, there is no compati-
bility between the execution path’s considered services. When all message pair
matches are compatible, the considered services are message-compatible.

Message Matching. The first message compatibility step can rely on existing
semantic service annotations to easily and rapidly discover matching message
pairs, as the messages involved in these pairs should correspond to semantically
compatible concepts. However, even in the presence of such knowledge, message
matching is by far trivial and follows a two-step process: (a) semantic message
matching; (b) syntactic message matching. This process is exemplified via the
example of a certain service pair which involves service S1 with 2 output parame-
ters mapped to ontology concepts A & B and service S2 with 2 input parameters
mapped to ontology concepts C & D.

At the semantic level, we follow a bipartite matching approach which checks
whether every parameter of the current service has a respective mapping to

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

130



Towards Business-to-IT Alignment in the Cloud 11

one parameter of the previously selected services (or the initial user input) in
a certain execution path and attempts to discover a solution with the highest
overall match degree. As such, we first define a local match degree between two
parameters to be the distance between the parameters’ annotation concepts in
the ontology subsumption hierarchy, provided that the second parameter’s con-
cept subsumes the first parameter’s one. If the latter does not hold, the distance
is infinite. This guarantees that no information loss occurs as in the opposite
case, the more concrete concept in the S2 input will require the specification of
additional pieces of information than those exhibited in the concept in the S1

output. A mapping solution’s overall distance is then the sum of the distances
of the matches found. As such, the matching problem can be defined as follows:

min

8
>>>><
>>>>:

1
[J] ·

⇣Pj2J
i2I

⇣
dist(Mi,Nj)
maxPSize · xij

⌘
+

P
j2J

�
1 �P

i2I xij

�⌘

P
j2J xij  1P
i2I xij  1

i = [1, . . . , [I]], j = [1, . . . , [J ]]

9
>>>>=
>>>>;

where I and J are the sets of input and output parameters, respectively, xij

is a decision variable whether the output parameter i matches the input one j,
dist (Mi, Nj) is the distance between annotation concepts Mi and Nj of the two
parameters pair while maxPSize represents the maximum subsumption path
length in the respective domain ontology used.

Suppose that the following relations hold in the running example: A sub-
sumes B, C & B, C subsume D. In this respect, the best possible matching
is {A ! C, B ! D} with overall distance of 2. The other matching solution
{A ! D, B ! C} is not selected as the local distance between B & C is infinite
so the overall distance is also infinite.

The algorithm then proceeds at the syntactic level by considering only those
message pairs with a finite local degree of match. For each message pair filtered,
we note the information items for the output parameter and the information
items of the input parameter and then we see whether the former include the
latter. As the matching of information items to the matching ontology concept
has been already identified, we perform this checking by replacing the infor-
mation items with the attributes of the ontology concept. Even if the concepts
matched are not identical, as they are related with a subsumption relation, they
will certainly have common attributes. So, the problem then is mapped to check-
ing whether the concept attributes of the output parameter are a superset of the
attributes of the input parameter.

Message types might also convey information not included in an ontology re-
quiring to perform a di↵erent matching kind for them. The logic of this matching
is similar to that for the semantic level. In particular, bipartite matching is per-
formed with a sole di↵erence in the way the distance is calculated at the local
level. At that level, we need to consider both how similar the field names are
and how close are their types. Name similarity can rely on well-known string dis-
tance measures (e.g., Levenshtein) while type similarity can rely on the approach

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

131



12 Kritikos et al.

Fig. 3: The Send Invoice business process in BPMN 2.0

in [16] mapping to the compatibility level between types. The overall distance
at the local level would equal the weighted sum of the two di↵erent distances.

When there is no match for an input parameter part, this means that the
compared services are semantically incompatible. Otherwise, if all input parame-
ter parts are matched, then the compared messages are semantically compatible.

Let us now continue the running example to explain syntactic matchmaking.
Suppose that A & C have been found equivalent. A maps to message type
MT1 containing 4 information pieces MT11, MT12, MT13 and MT14. C maps
to message type MT2 which contains 3 information pieces MT21, MT22, and
MT23. Based on matching message types to ontology concepts, we have that
MT11 and MT21 map to A.A1 while MT12 and MT22 map to A.A2. As such,
the information pieces are transformed into {A.A1, A.A2, MT13, MT14} for first
message type and {A.A1, A.A2, MT23} for the second. For those pieces that do
not map to ontology attributes, we need to solve a bipartite matching problem
again. Suppose that dist (MT13, MT23) = 0.8 and dist (MT14, MT23) = 0.2.
Then, obviously the sole mapping to be selected will be {MT13 ! MT23}. If we
replace MT23 with MT13, we then need to check whether {A.A1, A.A2, MT13}
is subset of {A.A1, A.A2, MT13, MT14} which holds.

6 Validation

Our approach was validated based on a use case developed within the Cloud-
Socket consortium by the industrial partners. We focused on one of the most
common BPs among SMEs - the Send Invoice one. This BP is modelled in
BPMN, see Fig. 3, via our integrated BPaaS Design environment. It starts with
the “Manage Customer Relationship” activity; next an exclusive gateway splits
the BP flow between either creating a new invoice or updating an existing one.
Then, the invoice completeness is checked, and finally the invoice is sent.

The next services were inserted in the KB as instances of CloudService class:

– YMENS, Zoho and Sugar CRM were inserted as CRM systems which were
annotated with the action Manage, the object Customer and the APQC
category 3.5.2.4 Manage Customer Relationship

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

132



Towards Business-to-IT Alignment in the Cloud 13

– Mathema Document Generator, Open Source Billing, Simple Invoice and
InvoiceNinja as invoicing systems annotated with the action Generate, the
object Invoice and the APQC category 9.2.2.2 Generate Customer Billing
Data

– Gmail, Ninja email and Mailjet were inserted as e-mail systems which were
annotated with the action Manage, the object Invoice and the APQC cate-
gory 9.2.2.3 Transmitting Billing Data to Customers

Table 1 shows a part of the non-functional profiles of the considered services.

Service Montly Response File Type No of Execution
Downtime Time Level Simul. Users Constraint

YMENS CRM 4 min High O�ce doc, PDF, 500 none
audio, Video

Zoho CRM 4 min High O�ce doc, PDF, 500 none
audio, Video

Sugar CRM 10 min Medium O�ce doc, PDF, 200 500
audio, Video (monthly basis)

InvoiceNinja 4 min High O�ce doc, PDF, 600 none
audio, Video

Ninja Email 4 min High O�ce doc, PDF, 400 none
audio, Video

Simple Invoices 10 min Medium O�ce doc, PDF, 300 none
audio, Video

Mailjet 4 min High O�ce doc, PDF, 100 1K
audio, Video (monthly basis)

Open Source Billing 4 min Medium O�ce doc, PDF, 200 none
audio, Video

Gmail 4 min High O�ce doc, PDF, 100 None
audio, Video

Table 1: Functional requirements for each group and single activity

6.1 Business Matchmaking

The Business Matchmaker was used to identify the most suitable cloud services.
In particular, as a first step, we applied the questionnaire on the whole BP. Fig.
4 shows the notebook from which the questionnaire was started.

We specified functional requirements in the first 3 questions - object Send,
action Invoice and APQC category 9.2.2 Invoice Customer - and none of the
cloud services matched; Fig. 5 shows the empty list at the right-hand side.

Next, the questionnaire was applied on two single activities (i.e., Manage
Customer Relationship and Send Invoice) as well as on a group of activities (i.e.,
Create Invoice, Update Invoice and Check Invoice Completeness).

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

133



14 Kritikos et al.

Fig. 4: The starting notebook for the whole process

Fig. 5: Functional requirements failure and NFR category selection

Table 2 shows the functional requirements for each activity/group. In the
first case, after specifying action, object and APQC category, the questionnaire
showed the three matching cloud services: YMENS, Zoho and SugarCRM. In the
4th question, we chose the Performance category, and the question prioritisation
algorithm kicked in. The question regarding the number of simultaneous users
was asked (attribute with highest entropy) and a value of 500 was entered. This
filtered out SugarCRM as it has the capability of max 200 simultaneous users.

BPMN Activity Action Object APQC Category

Manage Customer Relationship Manage Customer Relationship 3.5.2.4 Manage Customer
(Single activity) Relationship

Send Invoice Send Invoice 9.2.2.3 Transmit Billing Data
(Single activity) to Customers

Create New Invoice, Update Invoice, Generate Invoice 9.2.2.2 Generate Customer
Check Invoice Completeness Billing Data

(Group of activities)

Table 2: Functional requirements for each group and single activity

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

134



Towards Business-to-IT Alignment in the Cloud 15

Similarly, we applied the questionnaire on the designated group of activities.
The matching services were InvoiceNinja and Open Source Billing, see Fig. 6a.

(a) The selected invoice management
services

(b) The selected email services

Fig. 6: The selected services for last two activity groups

Finally, we applied the questionnaire on the last activity of the BP: Send
Invoice. The matching cloud services were Ninja e-mail and Mailjet (see Fig.
6b).

6.2 Technical Matchmaking & Selection

As the final result maps to two services per each activity (group), we now proceed
with the technical matchmaking and selection. Suppose that the user provides
the following global requirements for the whole process: cost < 100 euros per
month, cycletime < 1 minute and V PM < 16 (#vulnerabilities per month).
Further, suppose that the user imposes that for the Manage Customer Relation-
ship activity, the following constraints should hold: responsetime < 30 seconds
and V PM < 10. Finally, Table 3 depicts the non-functional profiles of the re-
maining services.

Service Cost Response Time VPM

ZOHO CRM 30 euros 35 seconds 10

YMENS CRM 35 euros 20 seconds 05

Mailjet 25 euros 10 seconds 02

Ninja Email 10 euros 15 seconds 03

Open Source Billing 35 euros 25 seconds 08

Invoice Ninja 45 euros 10 seconds 05

Table 3: The technical non-functional o↵erings of the 6 services

Technical non-functional matchmaking would then filter Zoho CRM as it does
not conform to the local constraints posed for the CRM-based activity. This leads
to performing the selection over 4 solutions as we have one candidate for the first
(group) of activities and 2 candidates for the rest two activity groups. However,
while running service selection, it is detected that the Ninja Email and Open
Source Billing are incompatible, which leaves us with 3 solutions. Moreover, the

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

135



16 Kritikos et al.

solution mapping to selecting YMENS, Open Source Billing and Ninja Email
has an MTBF equal to 1 hour which violates the respective global constraint.
So, in the end, we need to select only between two solutions.

The combinations to be checked for selecting the best one are depicted in Ta-
ble 4. As the broker requires to optimise all non-functional terms (cost, cycle time
and MTBF), it gives equal preference over them. By also considering that the ac-
tivities are sequentially executed in the BPaaS workflow, the final result would
map to selecting the services YMENS, InvoiceNinja, and Ninja Email. While
there is perfect syntactic compatibility between InvoiceNinja and Ninja Email
as they are o↵ered by the same organisation, in the case of YMENS CRM and
InvoiceNinja the respective message types are compatible but still need to be
aligned (e.g., attributes accountid and id number which map to the same at-
tribute id of concept Client). As such, the MS service was included between
these 2 services resulting in a workflow with 4 services sequentially executed
(YMENS CRM ! MS ! InvoiceNinja ! Ninja Email).

Solution Cost Cycle Time VPM Utility

YMENS + InvoiceNinja + Ninja Email 90 euros 45 seconds 13 0.144

YMENS + Open Source Billing + Mailjet 95 euros 50 seconds 15 0.099

Table 4: The final ordered solutions produced

7 Conclusions and Future Work

This paper has introduced a novel architecture for the design of business process
as a service products which is able to e↵ectively deal with the business-to-IT
alignment problem in order to map an initial domain-specific BP into an exe-
cutable BPaaS workflow. Such an architecture has been carefully designed and
implemented to include suitable components which focus on di↵erent parts of the
business-to-IT alignment problem, including business and technical matchmak-
ers, a service selection as well as an automatic workflow update component to
enable the e↵ective addressing of the message compatibility problem in service-
based workflow execution.

Our future work will focus on more advanced research challenges which in-
clude: (a) the automatic production of a more complete and more close to pro-
duction workflow; (b) the automatic population of the KB; (c) the coverage of
additional cases in business-to-technical-requirement alignment.

Acknowledgments This research has received funding from the European
Community’s Framework Programme for Research and Innovation HORIZON
2020 (ICT-07-2014) under grant agreement number 644690 (CloudSocket).

References

1. Azzini, A., Braghin, C., Damiani, E., Zavatarelli, F.: Using Semantic Lifting for
improving Process Mining: a Data Loss Prevention System case study

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

136



Towards Business-to-IT Alignment in the Cloud 17

2. Benaboud, R., Maamri, R., Sahnoun, Z.: Agents and owl-s based semantic web
service discovery with user preference support. International Journal of Web &
Semantic Technology 4(2), 57–75 (2013)

3. Cli↵e, O., Andreou, D.: Service Matchmaking Framework. Public Deliv-
erable D5.2a, Alive EU Project Consortium (10 September 2009), avail-
able at: http://www.ist-alive.eu/index.php?option=com_docman&task=doc_

download&gid=28&Itemid=49

4. Cloud Select Industry Group (C-SIG): Cloud Service Level Agree-
ment Standardization Guidelines. Technical Report, EC (2014), http:

//ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?

action=display&doc_id=6138

5. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der Merwe, A.,
Woitsch, R.: A new paradigm for the continuous alignment of business and IT:
Combining enterprise architecture modelling and enterprise ontology. Computers
in Industry 79, 77–86 (2016)

6. Hinkelmann, K., Kurjakovic, S., Lammel, B., Laurenzi, E., Woitsch, R.: A
Semantically-Enhanced Modelling Environment for Business Process as a Service.
In: ES. Melbourne, Australia (2016)

7. Hrgovcic, V., Karagiannis, D., Woitsch, R.: Conceptual Modeling of the Organisa-
tional Aspects for Distributed Applications: The Semantic Lifting Approach. In:
Compsac Workshops. pp. 145–150. IEEE (jul 2013)

8. Hwang, C., Yoon, K.: Multiple Criteria Decision Making. Lecture Notes in Eco-
nomics and Mathematical Systems (1981)

9. Jiang, S., Aagesen, F.A.: An Approach to Integrated Semantic Service Discovery.
In: First International IFIP TC6 Conference. pp. 159–171. Springer (2006)

10. Klusch, M.: Semantic Web Service Coordination. In: CASCOM: Intelligent Service
Coordination in the Semantic Web. pp. 59–104. Springer (2008)

11. Kritikos, K., Magoutis, K., Plexousakis, D.: Towards knowledge-based assisted
iaas selection. In: CloudCom. pp. 431–439. IEEE Computer Society, Luxembourg
(2016)

12. Kritikos, K., Plexousakis, D.: Requirements for QoS-Based Web Service Descrip-
tion and Discovery. IEEE Transactions on Services Computing 2(4), 320–337 (2009)

13. Kritikos, K., Plexousakis, D.: Novel Optimal and Scalable Nonfunctional Service
Matchmaking Techniques. IEEE T. Services Computing 7(4), 614–627 (2014)

14. Kritikos, K., Plexousakis, D.: Multi-cloud Application Design through Cloud Ser-
vice Composition. In: CLOUD. pp. 686–693. IEEE, New, NY, USA (2015)

15. Kritikos, K., Plexousakis, D.: Towards Combined Functional and Non-functional
Semantic Service Discovery. In: ESOCC. pp. 102–117. Springer, Vienna, Austria
(2016)

16. Kritikos, K., Plexousakis, D., Paternò, F.: Task model-driven realization of inter-
active application functionality through services. TiiS 3(4), 25 (2014)

17. Plebani, P., Pernici, B.: URBE: Web Service Retrieval Based on Similarity Evalu-
ation. IEEE Transactions on Knowledge and Data Engineering 21(11), 1629–1642
(2009)

18. Saati, T.: The Analytic Hierarchy Process. McGraw-Hill (1980)
19. Silver, B.: BPMN Method and Style, Second Edition. Cody-Cassidy Press, Aptos,

second edi edn. (2011)
20. Uschold, M., King, M., Morale, S., Zorgios, Y.: The Enterprise Ontology. The

Knowledge Engineering Review 13(01), 31–89 (1998)

Towards Business-to-IT Alignment in the Cloud — BPM@Cloud

137


	Preface
	[2ex] Engineering Cloud-based Applications: Towards an Application Lifecycle Vasilios Andrikopoulos
	[2ex] A Cloud Computing Workflow for managing Oceanographic Data Salma Allam, Antonio Galletta, Lorenzo Carnevale, Moulay Ali Bekri, Rachid El Ouahbi, Massimo Villari
	[2ex] Pattern-driven Architecting of an Adaptable Ontology-driven Cloud Storage Broker Divyaa Manimaran Elango, Frank Fowley, Claus Pahl
	[2ex] Cloud-Native Databases: An Application Perspective Josef Spillner, Giovanni Toffetti, Manuel Ramírez López
	[2ex] Using a Cloud Broker API to Evaluate Cloud Service Provider Performance Divyaa Manimaran Elango, Frank Fowley, Claus Pahl
	[2ex] TosKer: Orchestrating applications with TOSCA and Docker Antonio Brogi, Luca Rinaldi, Jacopo Soldani
	[2ex] Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-level Tenant Isolation Majid Makki, Dimitri Van Landuyt, Wouter Joosen
	[2ex] CEP-based SLO Evaluation Kyriakos Kritikos, Chrysostomos Zeginis, Andreas Paraboliasis, Dimitris Plexousakis
	[2ex] Towards Business-to-IT Alignment in the Cloud Kyriakos Kritikos, Emanuele Laurenzi, Knut Hinkelmann

