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The space-time evolution of an initial step-like plasma density variation is studied. We give

particular attention to formulate the problem in a way that opens for the possibility of realizing

the conditions experimentally. After a short transient time interval of the order of the electron

plasma period, the solution is self-similar as illustrated by a video where the space-time evolution

is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems

without characteristic length and time scales, in our case the quasi-neutral limit. By introducing

ion collisions with neutrals into the numerical analysis, we introduce a length scale, the

collisional mean free path. We study the breakdown of the self-similarity of the solution as the

mean free path is made shorter than the system length. Analytical results are presented for charge

exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time

diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the

limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient

defined as the square of the ion sound speed divided by the (constant) ion collision frequency.

The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be

obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit

of large collision frequencies. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816953]

I. INTRODUCTION

A classic dynamic problem in studies of plasma phe-

nomena concerns the space-time evolution of an initial step-

like discontinuity of the plasma density. A special limiting

case is where plasma expands into vacuum.1–3 The problem

is interesting also for practical reasons: analytical and nu-

merical studies often assume an initial condition to be given,

while many laboratory experimental conditions assume some

given boundary conditions. A comparison between analytical

and experimental results is not always simple in such cases.4

The step-like initial condition is one that can be realized by

an absorbing grid in a streaming plasma, as found in, for

instance, a single ended Q-machine.5–7 Two time scales can

be distinguished: first, an initial expansion of the electron

component, where the electric field develops due to the

charge imbalance caused by the electron pressure. Inertia

makes the ion motion negligible on this time scale. Later, we

find a slow expansion of the entire bulk plasma density,

where also the ions are set into motion by the collective elec-

tric fields. The basic elements of the problem can be under-

stood even in a spatially one dimensional analysis, and only

this case will be considered here: physically it corresponds

to the low frequency dynamics in a strongly magnetized Q-

machine plasma, for instance.

A complete understanding of the ion dynamics

requires information of the velocity distribution f ðx; u; tÞ
for ions with velocities u, at positions x at times t, as

described by the ion Vlasov equation for ions with mass M
and charge e

@

@t
f þ u

@

@x
f � e

M

@/
@x

@

@u
f ¼ 0; (1)

where E � �@/=@x is the electric field and / is the electro-

static potential. The ion density is ni ¼
Ð1
�1 f du. For the rel-

evant low-frequency dynamics, we can safely assume the

electrons to be Boltzmann distributes at all times, so that the

electron dynamics are accounted for by the relation

ne ¼ n0expðe/=TeÞ, where Te is the electron temperature.

For times exceeding the ion plasma period, t� 2p=xpi,

with xpi being the ion plasma frequency, and at large scale

lengths, we can assume that the plasma dynamics are quasi-

neutral, ne � ni � n. In this limit, the Debye length no longer

enters the problem, and we have neither constant characteristic

length nor time scales in the dynamic equations. (All we have

is a velocity, the ion sound speed Cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
Te=M

p
derived from

the electron temperature.) For such cases, the characteristic

scales are determined solely by initial or boundary conditions.

Under these conditions, we can expect the plasma dynamics to

evolve self-similarly, in depending functionally on the ratio

f � x=t rather than on x and t independently,8–12 giving

@=@t!�t�2x@=@f ¼ �t�1f@=@f and @=@x! t�1@=@f.

Heaviside’s step function or the d-function are examples of

functions without length scales. We thus assume an initial

step-like density perturbation. By introducing the variable

f � x=t, we can then reduce Eq. (1) to

ðu� fÞ @
@f

f � Te

M

1

n

@n

@f
@

@u
f ¼ 0; (2)
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after a little algebra, where we now have f ¼ f ðf; uÞ and

n ¼ nðfÞ �
Ð1
�1 f ðf; uÞdu. The collective electric field was

determined by the assumption of Boltzmann distributed elec-

trons, giving n ¼ n0expðe/=TeÞ. From Eq. (2), we have the

relation

f ðu;x; tÞ ¼
G�ðuÞ þC2

s

ðx=t

�1

1

n

@n

@f
@f=@u

u� f
df for x=t< u ;

GþðuÞ �C2
s

ð1
x=t

1

n

@n

@f
@f=@u

u� f
df for x=t> u ;

8>>>>><
>>>>>:

(3)

where G�ðuÞ� f ðx!�1;uÞ, GþðuÞ� f ðx!þ1;uÞ. With

the present assumptions, we have G�ðuÞ¼ðn0þDnÞf0ðuÞ
and GþðuÞ¼n0f0ðuÞ, where we for simplicity introduced the

unperturbed velocity distribution in the form n0f0ðuÞ with the

normalization
Ð1
�1 f0ðuÞdu¼1. This form turns out to be con-

venient when we linearize the equations. The self-similarity

of the solutions can also be understood by identifying a

dynamic length-scale ‘�Cst. The self-similar variable is

then recovered by the normalized length x=‘�x=t.
The assumption of Boltzmann distributed isothermal

electrons is standard for low frequency, long wave-length

perturbations and is obtained analytically by ignoring the

electron inertia. In this limit, the electron thermal conductiv-

ity in effect becomes infinite, and a constant Te can be argued

by a constant electron temperature reservoir present at jxj !
1 In the model assumed here, the energy for accelerating

the ions originates from the ambipolar electric field build-up

by the electron pressure. The constant electron temperature

reservoir thus serves as a constant energy source. The argu-

ment assumes implicitly that no local potential maxima

develops, where electrons can be trapped13 with a velocity

distribution deviating from the assumed Maxwellian. We

find that for our problem the ion Landau damping is smooth-

ing out small scale potential variations (the “Airy function

ripples”) so we have a monotonically varying plasma density

as long as Te=Ti � 5, and with this temperature restriction,

the analysis is self-consistent.

In the present paper, we study the space-time evolution

of a step-like initial condition for the plasma density, with

particular attention to the self-similarity of the evolution. We

study (both analytically and numerically) the problem under

conditions that can be realized in a laboratory experiment,

such as a single ended Q-machine.14 The electron tempera-

ture is here determined by the hot end-plate of the device.

.The first part of the analysis considers collisionless plas-

mas. If a neutral gas is introduced, we will have ion-neutral and

electron-neutral collisions modifying the dynamics. Since the ba-

sic analysis assumes the electrons to be isothermally Boltzmann

distributed at all times, we do not expect electron collisions to

give significant modifications of the results. Inclusion of ion-

neutral collisions on the other hand introduces a new length

scale, the mean free collision length, ‘c, and we want to analyze

how this new feature modifies the self-similar evolution.

If we take the temperature of the neutral gas at rest to be

very low, we find that the ion component can develop two

distinct populations:15 one being the part of the ions

accelerated through the potential drop at the boundary and

having not yet collided, and a part formed by the charge

exchange collisions and appearing as a cold component with

no drift velocity. In this case, we can have an ion velocity

distribution developing that is unstable to kinetic ion-ion

instabilities.16 This result has interest only for very low neu-

tral temperatures and is not elaborated further here.

The paper is organized as follows: in Sec. II, we present

results from an exact solution of the linearized version of Eq.

(3) and compare it with numerical results in Sec. III. In Sec.

IV, we extend the analysis to include collisions, using a model

best suited for charge exchange collisions although we use a

constant collision frequency, independent of velocity, to sim-

plify the analysis. Corresponding numerical results are shown

in Sec. V. Sections III and V present results from numerical

Particle in Cell (PIC) simulations of the problem. The theoret-

ical analysis uses a Maxwellian velocity distribution as a ref-

erence since many integrals can be expressed by the plasma

dispersion function. The numerical simulations address a

physically realizable situation where the velocity distribution

evolves by a simulated plasma production at the boundary.

Section VI contains our discussions and conclusions.

II. LINEARIZED MODEL

In many cases, an initial value problem can be formu-

lated only in a formal way; it is rather difficult to imagine

how to set up an initially prescribed density variation over all

space. There are of course several realizable and nontrivial

examples, which are interesting for experimental tests of the

results. Here, we consider the one dimensional case, where

the initial perturbation consists of a step in the ion velocity

distribution at t¼ 0 giving ðn0f0ðuÞ þ DngðuÞÞ for x < 0 and

n0f0ðuÞ for x > 0, with Dn� n0 and
Ð1
�1 f0ðuÞdu ¼ 1. The

analysis allows in principle for having a perturbation of the

ion velocity distribution function Dn gðuÞ 6¼ Dnf0ðuÞ, but we

do not make use of this additional freedom of choice here.5,17

The space-time variation of the perturbation of the ion

velocity distribution function can be obtained by linearizing

Eq. (3) to give

f1ðu; x; tÞ
Dn

¼
f0ðuÞ � C2

s f 00ðuÞ
ðx=t

�1

h0ðcÞ
u� c

dc ; for x=t < u ;

C2
s f 00ðuÞ

ð1
x=t

h0ðcÞ
u� c

dc ; for x=t > u ;

8>>>>><
>>>>>:

(4)

with C2
s � Te=M and n1ðx; tÞ �

Ð1
�1 f1ðu; x; tÞdu. The distri-

bution function f1ðu; x; tÞ has an integrable singularity for

x=t ¼ u. There are no singularities for the integrations in Eq.

(4). We introduced h0ðfÞ � �dðn1ðfÞ=DnÞ=df for simplicity.

After some algebra5,18 (see also Sec. IV A), we find for line-

arly stable plasmas

h0ðcÞ �
1

p
= P

ð1
�1

f0ðuÞ
u� c

duþ ipf0ðcÞ
� ��

	 1� C2
s P

ð1
�1

f 00ðuÞ
u� c

du� ipC2
s f 00ðcÞ

� ��1
)
; (5)
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where =fg denotes the imaginary part of the expression in

the brackets fg, and P
Ð

denotes the principal value of the in-

tegral. We illustrate h0ðcÞ in Fig. 1 for the reference case of

f0ðuÞ being a Maxwellian. Here, we can introduce the plasma

dispersion function19 and obtain h0ðcÞ analytically. In partic-

ular, for Te ¼ 0 we find h0ðcÞ ¼ f0ðcÞ, giving the free stream-

ing results as for a Knudsen gas. In the present quasi-neutral

limit, charge separations are completely shielded by cold

electrons, and the entire plasma dynamics is then controlled

by the ion pressure.

The analytically obtained velocity distribution function

f1ðu; x; tÞ has to be added to the background distribution

f0ðuÞ, so it is not unphysical to have f1ðu; x; tÞ < 0. The sin-

gularity at u ¼ x=t is an artifact resulting from the lineariza-

tion together with the idealized initial condition consisting of

a Heaviside step-function.

The space-time evolution of the perturbation in ion den-

sity is obtained as

n1ðx; tÞ ¼ Dn

ð1
x=t

h0ðcÞdc; (6)

while the corresponding perturbation of the ion flux F1ðx; tÞ
is obtained from the ion continuity equation in the general

self-similar form

�f
@n

@f
þ @F

@f
¼ 0: (7)

Inserting Eq. (6), we find

F1ðx; tÞ ¼ Dn

ð1
x=t

ch0ðcÞdc: (8)

The density as well as the ion flux evolves self-similarly

in the present limit for any velocity distribution f0ðuÞ, just as

the perturbation of the ion velocity distribution function.3,5,8,9

We presented linear analytical results for the density,

ion flux, and average ion velocity. More generally, the line-

arized version of Eq. (2) gives

ðu� fÞ @
@f

f1 � C2
s

@n1

@f
f 00ðuÞ ¼ 0: (9)

Inserting Eq. (6), we can also obtain more complicated

expressions, such asð1
�1

u2f1ðu; x; tÞdu ¼ Dn

�ð1
�1

u2f0ðuÞdu

þ
ðx=t

�1
ðC2

s � c2Þh0ðcÞdc

�
; (10)

found by multiplying Eq. (9) with u and integrating. A term

containing
Ð1
�1 uf1du is rewritten by use of Eq. (8). An

integration constant is given by
Ð1
�1 u2f1ðu; x; tÞdu!

Dn
Ð1
�1 u2f0ðuÞdu for x=t! �1. Recall that f1ðu; x; tÞ repre-

sents a deviation from f0ðuÞ and can take negative values

also.

The analytical form (6) is shown in Fig. 2(a) for two

temperature ratios Te=Ti ¼ 3 and Te=Ti ¼ 6, for a reference

Maxwellian ion distribution with no drift velocity. In the

density evolution, we can distinguish the forward propagat-

ing signal and the backward moving rarefaction wave. At the

origin, we have at all times n1 ¼ 1
2
Dn for symmetry reasons.

Note that the rarefaction wave prevails also in the limit of

FIG. 1. Illustration of the function h0ðc=uTiÞ as given by Eq. (5), here shown

for the reference case where f0ðuÞ is a Maxwellian with no drift velocity.

The normalizing velocity is defined as uTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=M

p
. Results are shown

for two temperature ratios, Te=Ti ¼ 6 (full line) and Te=Ti ¼ 3 (dotted-

dashed line). For reference, we show also the result for Te ¼ 0 with a dashed

line. The area covered by the three curves is the same.

FIG. 2. Illustration in (a): The analytical expression for the evolution of the

self-similar normalized density n1=Dn for two temperature ratios, Te=Ti ¼ 6

(full line) and Te=Ti ¼ 3 (dotted-dashed line). The corresponding normal-

ized average ion velocities U1 are shown in (b). The results are obtained by

integrations involving the h0-function shown in Fig. 1. The ion velocity dis-

tribution is here taken to be a Maxwellian with no average drift velocity. For

reference, we show also the free streaming Knudsen gas results with dashed

lines.
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freely streaming ions, i.e., for Te ¼ 0 for instance with a

Maxwellian f0ðuÞ. As the electron-ion temperature ratio

increases, we note a steepening of the density variation. For

the free streaming solution, we find a constant sign for the

curvature for x=t > 0 and x=t < 0, respectively. For the two

temperature ratios shown, we note a change in curvature in

the two ranges mentioned. The separating case is Te=Ti ¼ 1.

For Te=Ti !1, the forward and backward propagating sig-

nals will approach the step-functions found by the corre-

sponding fluid analysis. Due to the assumption of Boltzmann

distributed electrons, the density perturbation is directly pro-

portional to the electrostatic potential in the present small

amplitude, quasi-neutral limit. The electric field is given as

E ¼ �@/=@x ¼ �ðTe=en0Þ@n=@x. According to Eq. (6), we

then have Eðx=tÞ � h0ðx=tÞ as shown in Fig. 1.

The space-time varying local average ion velocity is

given as the ratio of the ion flux and the ion density, which

by use of Eqs. (6) and (8) gives

U1ðx; tÞ �
F1ðx; tÞ
n1ðx; tÞ

¼

ð1
x=t

ch0ðcÞdcð1
x=t

h0ðcÞdc
; (11)

independent of Dn. For illustration of U1, see Fig. 2(b). For

x=t!1, we find that this velocity increases without limit,

although the density of these fast particles becomes small

since n1ðx; tÞ ¼ Dn
Ð1

x=t h0ðcÞdc! 0 here. We find it interest-

ing to note that the asymptotic limit of U1ðf!1Þ is the

same for all Te=Ti, even in the absence of collective interac-

tion (i.e., Te ¼ 0). The few particles experiencing the large

initial electric fields are accelerated to high velocities, i.e.,

velocities exceeding the ion thermal velocity uth. The present

result is thus consistent with other studies,1 where it is

argued that a small number of ions get accelerated to very

high velocities in front of an expanding plasma pulse. The

results in Fig. 2 include also the free streaming result: we

note that the fastest particles (i.e., the largest U1 found at

large n) in the present model are freely streaming, corre-

sponding to a ballistic motion. One limitation of the analysis

is found in the assumption of Boltzmann distributed elec-

trons: for large local ion velocities this assumption brakes

down, but as said, this limitation affects only a small number

of ions. For very large average ion velocities, the present

simplified self-similar model breaks down, but we find the

trend shown in Fig. 2(b) interesting.

The phase space variation of the ion velocity distribution

is illustrated in Figs. 3 and 4 for the two temperature ratios

Te=Ti ¼ 3 and Te=Ti ¼ 6 analyzed before. The analysis

assumes as in Fig. 2 that the unperturbed ion velocity distri-

bution f0ðuÞ is a Maxwellian. If we integrate the distributions

in Figs. 3 and 4 with respect to velocity u, we obtain the den-

sity variations shown in Fig. 2. The figures illustrate how

particles are accelerated by the collective electric fields, giv-

ing a surplus for positive velocities and a corresponding defi-

cit for negative velocity regions. The collective electric

fields are stronger for larger temperature ratios: if we take

Te=Ti ¼ 1, we see very little difference as compared to the

case with Te ¼ 0, indicating that dispersion by free stream-

ing ions dominates the space-time plasma evolution for

Te=Ti � 1.

We show results for the illustrative reference case where

f0ðuÞ is a Maxwellian with vanishing average velocity.

Results for a drifting Maxwellian are easily obtained by a

change in the origin of the x/t-axis and the velocity axis in

Figs. 3 and 4.

Concerning normalization of these and following results

we note that with a Maxwellian velocity distribution an ion

thermal velocity enters as a natural unit for velocity normal-

ization. In the present self-similar limit, there are no natural

length or time scales, so we can normalize position and time

with the ion Debye length ki and the ion plasma period

1=xpi, respectively, but we can choose the combination aki

and a=xpi as well, with arbitrary values of a. In the follow-

ing, we choose a ¼ 1 also when normalizing collision fre-

quencies. We thus have normalized relative positions

n � ðx� xgÞ=ki and s � ðt� t0Þ=xpi in terms of a reference

position xg and a reference time t0, so that the ratio n=s is

normalized by Cs.

III. NUMERICAL SIMULATIONS

The numerical studies are carried out by a PIC simula-

tion using a code described elsewhere.20 We formulate the

FIG. 3. Color coded ion velocity distribution for Te=Ti ¼ 3, obtained for the

reference case with f0ðuÞ being a Maxwellian ion velocity distribution, see

also Figs. 1 and 2. FIG. 4. Color coded ion velocity distribution for Te=Ti ¼ 6. See also Fig. 3.
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problem and its boundary conditions so that it applies for the

operation of a single ended Q-machine,14,21 where electrons

are emitted thermally, while ions are produced by surface

ionization at a hot cathode. Under steady state conditions,

the ion velocity distribution in the main plasma (outside the

end-sheaths) is a truncated Maxwellian.14 In the basic ver-

sion of the Q-machine, the ions are produced by contact ioni-

zation22 of hot alkali metals with suitable work functions.23

The metal plate also supplies electrons by Richardson emis-

sion. We will in the following assume that a confining homo-

geneous axial magnetic field is sufficiently strong to justify a

description in one spatial dimension.

Assuming standard operating conditions for a Q-

machine in our simulations, we use electron rich conditions,

where the hot plate at x¼ 0 can supply electrons in abun-

dance. The electrons are emitted with a velocity distribution

n0e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2pT0

p
expð� 1

2
mu2=T0Þ for u > 0, where T0 is the hot

plate temperature in energy units, and similarly for the ions

we have n0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2pT0

p
expð� 1

2
Mu2=T0Þ for u 
 0. Our refer-

ence case corresponds to n0e=n0i ¼ 1=3. For such cases, the

plasma assumes a negative potential in front of the cathode

in order to reflect the surplus of electrons, while ions on the

other hand are accelerated by the potential drop to give a net

ion flow through the device. A step-like initial condition is

obtained by absorbing a part of the ions passing through a

grid at a reference position at x ¼ xg. At a time when a

steady state condition is achieved, we have a step-like condi-

tion with an ion density n0 þ Dn for x < xg and n0 for

x > xg, where Dn depends on the absorption rate. At a refer-

ence time t0, the ion absorption is cancelled and the initial

density discontinuity is allowed to evolve freely. This condi-

tion can be realized in a Q-machine by immersing a fine

meshed grid at x ¼ xg. The ion absorption can be controlled

by an externally applied potential.5,18 The physical condi-

tions summarized here are those being simulated by use of

our PIC code.20

In Video 1, with corresponding still-figure or “snap-

shot” in Fig. 5, we show an illustrative case with 50% ion

absorption at the reference positions xg ¼ 0. We initialize the

analysis by an empty plasma column. First, we see the

filling-up of the plasma, and when a steady state condition

has been obtained, we stop the ion absorption at t ¼ t0 and

the entire ion-population is allowed to expand into the region

x > 0. The code is general, and does not make use of quasi-

neutral assumptions, so we observe the Debye shielding with

the electron density extending a distance of the order of kDe

into the region x > xg at times t < t0. The electron-rich

sheaths at the two ends of the plasma column are noticeable.

The self-similar nature of the space-time evolution is

shown best by a video. In this case, we use the video as a

diagnostic tool and not merely for illustration. After the ref-

erence time t0 where the ion absorption is stopped, we con-

tinuously rescale the x-axis to show the figure as a function

ðx� xgÞ=ðt� t0Þ, see Video 2. See also still-figure or snap-

shot in Fig. 6. The code allows also the electron time-scale

to be resolved. We note that after a short transient time inter-

val of the order of 1=xpe, the space-time evolution becomes

nearly self-similar: this is evidenced by the velocity distribu-

tion as well as the potential becoming stationary when repre-

sented as functions of ðn=sÞ=Cs ¼ ðx� xgÞ=ðt� t0Þ. For

small Dn=n0, we find that the self-similar variation is nearly

perfect for t > 1=xpe. For the nonlinear case in Video 2 (see

also Fig. 6), we note at late times a “detachment” of the dis-

tribution function from the line u ¼ x=t for velocities

u � uth, the ion thermal velocity, resulting in a “void” in

phase space. For large velocities, where the phase space

FIG. 5. We show here the space-time evolution of ion phase-space, the elec-

tric field, and the ion density for a case where Dn=n0 ¼ 0:50. The dashed

line gives u ¼ x=t for reference. The code does not assume quasi-neutrality

and Poisson’s equation is retained for generality. We can consequently

observe the Debye shielding of the charge surrounding the absorbing grid up

to a distance of the order of kDe (enhanced online) [URL: http://dx.doi.org/

10.1063/1.4816953.1].

FIG. 6. We show here a restricted part of the space-time evolution in Video

1 (see Fig. 5), now in terms of the normalized self-similar variable n=s. We

have Dn=n0 ¼ 0:5. Only a part of the axis is shown, since the two electron

rich sheaths at the ends of the plasma column are not accounted for in the

present analysis (enhanced online) [URL: http://dx.doi.org/10.1063/1.4816953.2].
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density is small, we find that the self-similarity remains to a

good approximation. This nonlinear effect was anticipated

by analytical studies.9

In Fig. 7, we show “snap-shots” or still-figures of ion

phase-space, electric field, and ion density all obtained at

t� t0 ¼ 112x�1
pi . Note that for the conditions relevant, for

instance, for Q-machines, there is no symmetry in the distribu-

tion of particles faster and slower than the average velocity,

respectively. The symmetry found in, for instance, Fig. 2 for

the forward and backward propagating density variations will

be lost. The self-similarity of the solution is, however, inde-

pendent of any symmetry conditions (see Sec. II) and will

remain. We can give a simple illustration of the loss of symme-

try by considering the freely streaming ions, which is included

in Eq. (4) for Te ¼ 0. Taking f0ðuÞ ¼ ð1=aÞexpð� 1
2

Mu2=TiÞ
for u > umin and f0ðuÞ ¼ 0 for u < umin for some minimum

velocity umin (as in our simulations and in most Q-machine

experiments14), we have the normalization constant a ¼
ffiffiffiffiffiffiffiffi
p=2

p
ffiffiffiffiffiffiffiffiffiffiffi
Ti=M

p �
1� erf ðumin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2Ti

p
Þ
�
, and nðx; tÞ ¼ Dn

ffiffiffiffiffiffiffiffi
p=2

p
ffiffiffiffiffiffiffiffiffiffiffi
Ti=M

p �
1� erf ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2Ti

p
x=tÞ

�
=a for x=t 
 umin and nðx; tÞ

¼ Dn for x=t < umin.

A. Nonlinear effects

The analysis in Sec. II applies for small perturbations

only. By the numerical simulations, we can study the devia-

tions from these results as the amplitude Dn of the perturba-

tion is increased. For illustration, we show in Fig. 7 results

from four simulations with different values of Dn. For the

smallest perturbation level Dn ¼ 0:1, we improve the signal-

to-noise ratio by taking the average of four runs with differ-

ent initializations of the random number generators injecting

the particles. The singular line u ¼ x=t remains in the veloc-

ity distribution also for nonlinear perturbations as anticipated

by expression (3) derived from first principles with the given

approximations. For moderate temperature ratios, Te=Ti � 6,

the results for Dn=n0 � 0:25 are in good agreement with

what we expect from a linearized analysis, as also found in

related laboratory experiments.5

In Fig. 8, we illustrate the space-time evolution of a con-

dition with a relatively large initial perturbation, here

Dn=n0 ¼ 0:5. The figure illustrates the most conspicuous

nonlinear effect found in the density evolution, namely ions

reflected by the propagating density step. The velocity of

these reflected particles is close to twice the step velocity,

FIG. 7. Illustrations of results for the ion velocity distributions, variations of electric fields, and density for varying perturbation amplitudes, as functions of

n=s � x=t=Cs, here with Dn=n0 ¼ 0:10; 0:25 (top left and right) 0:5, and 0.75 (bottom left and right). A dashed line in the phase-space representation gives

u ¼ x=t, with the origin being at the reference grid position. The figures are all obtained at a time 112 x�1
pi .
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i.e., approximately 2Cs. In order to improve the signal-to-

noise ratio in Fig. 8, we averaged 30 runs with identical macro-

scopic conditions but different initializations of the random

number generators. Otherwise, the reflected particles would be

masked by the fluctuation due to discrete particle effects.

IV. THE EFFECTS OF NEUTRAL COLLISIONS

To account for collisional interactions, the ion Vlasov

equation is often modified by a simple collision term as

��
�
f ðu; x; tÞ � n0f0ðuÞ

�
, or its generalizations. In the present

study, we distinguish elastic ion collisions with neutrals, and

charge exchange collisions. Both cases are studied numeri-

cally. For the latter processes, we can obtain a closed analyti-

cal solution by introducing a physically realistic collision

model in the ion Vlasov equation.

Analytical results using a general energy conserving

Bhatnagar–Gross–Krook (BGK)-model in a kinetic descrip-

tion can be found in the literature,24,25 but these results refer

to discontinuities initiated by a moving piston. Here, we out-

line analytical results directly applicable for the present ini-

tial value problem. For some special cases, the results

become remarkably simple.

A. Analytical models for charge-exchange collisions

Consider a model for charge exchange collisions based

on a simple collisional term of the form ��ðf1 � n1f0ðuÞÞ,
where again n1 �

Ð
f1du and

Ð
f0ðuÞdu ¼ 1. In linearized

form, the collision term becomes ��ðf1 � f0ðuÞn1Þ to be

added to the right hand side of the linearized ion Vlasov equa-

tion. It turns out to be relatively easy to retain a velocity de-

pendence of the collision frequency � ¼ �ðuÞ within the

following analysis. The integral transforms found in the fol-

lowing can, however, no longer be expressed in terms of

known functions, and the practical value of the results will be

limited. We, therefore, here take � to be constant, and make

the transformation f� � f1expð�tÞ, giving n� � n1expð�tÞ, to

find

@

@t
f� þ u

@

@x
f� �

Te

M

@n�
@x

@

@u
f0ðuÞ � �f0ðuÞn� ¼ 0: (12)

A constant value for � implies that the collisional cross sec-

tions vary as r � 1=u with varying velocity, and serves only

as a solvable convenient model for charge exchange colli-

sions. More generally, we have, however, that polarization

forces (“Maxwellian molecules”) give constant � for a wide

range of velocities26 so the model as such is not unphysical.

After a temporal Laplace transform (with complex s)

and spatial Fourier transform (with real k) of Eq. (12), we

have

ðsþ ikuÞf�ðk; u; sÞ � n�ðk; sÞ ik
Te

M
f 00ðuÞ þ �f0ðuÞ

� �

¼ f�ðk; u; t ¼ 0Þ ¼ i
Dn

k
gðuÞ; (13)

or

f�ðk; u; sÞ ¼ i
Dn

k

gðuÞ
sþ iku

þ n�ðk; sÞ
ikC2

s f 00ðuÞ þ �f0ðuÞ
sþ iku

; (14)

giving

n�ðk; sÞ ¼
i
Dn

k

ð
gðuÞ

sþ iku
du

1�
ð

ikC2
s f 00ðuÞ þ �f0ðuÞ

sþ iku
du

; (15)

where g(u) is the velocity distribution in the perturbation for

x < 0. Integration limits are omitted for simplicity: they areÐ1
�1 du in all cases shown. The ensuing method of solution

can be used for this general case, but a remarkable simplifica-

tion results by taking gðuÞ ¼ f0ðuÞ. In this case, the analysis

contains only one nontrivial complex function, which can then

be related to the plasma dispersion function for a Maxwellian

choice of f0ðuÞ. The solution of the problem is then obtained

by methods outlined in the literature.27 We have

n�ðk; sÞ ¼
Dn

k2

h�ðis=kÞ
1þ ið�=kÞh�ðis=kÞ �

Dn

k2
N�ðk; sÞ; (16)

where we introduced the complex function

h�ðis=kÞ �

ð
f0ðuÞ

u� is=k
du

1� C2
s

ð
f 00ðuÞ

u� is=k
du

:

For the ensuing inverse transforms, we note that for k < 0

the singularity at is=k ¼ u is below the u-axis for the velocity

integration, while it is above for k > 0. To distinguish the

two cases, we introduce the notation n
ð1Þ
� ðk; sÞ for k < 0 and

n
ð2Þ
� ðk; sÞ for k > 0.

We have

n�ðx;sÞ¼
1

2p

ð0

�1

Dn

k2
Nð1Þ� ðk;sÞeikxdkþ 1

2p

ð1
0

Dn

k2
Nð2Þ� ðk;sÞeikxdk

and

FIG. 8. Space-time evolution of the ion density in the numerical simulations

of a collisionless plasma. The figure shows the initial filling-in of the system,

with a step discontinuity with Dn=n0 ¼ 0:5, which is released at t¼ 0. Note

the small amplitude precursor that propagates with approximately twice the

speed of sound. The figure is obtained by average of 30 realizations with dif-

ferent initializations of the random number generators.
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n�ðx; tÞ ¼
1

i2p

ðs0þi1

s0�i1
n�ðx; sÞestds;

where s0 > 0. The inverse Fourier transform is separated

into two parts, �1 < k � 0 and 0 � k <1 as shown. We

introduce the variable c � is=k with c real, giving

dc ¼ �is dk=k2. With this choice, we have h� to be a func-

tion of a real variable, i.e., h� ¼ h�ðcÞ, and we also have

N�ðk; sÞ ! N�ðc; sÞ ¼ h�ðcÞ=ð1þ ð�=sÞch�ðcÞÞ. Deforming

the integration contour as shown in Fig. 9, we find

n�ðx; sÞ ¼
Dn

2p

ð1
0

N
ð1Þ
� ðc; sÞ � N

ð2Þ
� ðc; sÞ

is
e�sx=cdc: (17)

The integrals along the circular contours in Fig. 9 vanish

when R!1. The integrations along the two closed con-

tours shown (containing I and III, and II and IV, respec-

tively) are vanishing. We note that we have a zero for the

denominator of n�ðc; sÞ for s ¼ ��ch�ðcÞ, recalling that, in

general, h�ðcÞ is a complex function of real c.

For linearly stable plasmas, the inverse Laplace trans-

form of

h�ðcÞ
1þ ð�=sÞch�ðcÞ

e�sx=c

is

is determined to give the final result in the form

n�ðx; tÞ ¼
Dn

2p
i

ð1
x=t

½hð2Þ� ðcÞexp
�
t�ðc� x=tÞhð2Þ� ðcÞ

�
�hð1Þ� ðcÞexp

�
t�ðc� x=tÞhð1Þ� ðcÞ

�
� dc

¼ Dn

p

ð1
x=t

½=fhð2Þ� ðcÞgcosð=fhð2Þ� ðcÞgt�ðc� x=tÞÞ

�<fhð2Þ� ðcÞgsinð=fhð2Þ� ðcÞgt�ðc� x=tÞÞ�

	 exp
�
�<fhð2Þ� ðcÞgt�ðc� x=tÞ

�
dc;

(18)

where the two functions h
ð2Þ
� ðcÞ and h

ð1Þ
� ðcÞ are complex con-

jugates and =fhð2Þ� ðcÞg=p � h0ðcÞ. By <fg, we understand

the real part of the function in the brackets. Expression (18)

is strongly simplified in the limit � ! 0, and we recover here

the special case (6) where we use definition (5). The self-

similar x/t-dependence is lost when � 6¼ 0, see Fig. 10. For

short times, t� 1=� we have solutions close to the previous

FIG. 9. Integration contours in the complex k-plane.

FIG. 10. The space-time evolution of the normalized plasma density n=Dn
for a step-like initial perturbation with Te=Ti ¼ 3, including collisional

effects with �=xpi ¼ 2 is shown in (b). For reference, we show the collision-

less case with � ¼ 0 in (a) and the corresponding solution for the diffusion

equation in (c), where the normalized diffusion coefficient is here

D � ðCs=utiÞ2=ð�=xpiÞ. For large times, we find that the density variations

shown in (b) and (c) are almost identical, while for short times the density

variations in (a) and (b) are almost identical.
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self-similar result, but for later times deviations develop, and

the solution approaches the form characterizing diffusion

equations.

The result (18) may at first sight appear complicated. In

reality, it contains only elementary functions in addition to

h0ðcÞ which, in turn, can here be expressed by the Z-func-

tion19 for Maxwellian velocity distributions or sums of such.

The integral in Eq. (18) is readily carried out numerically,

the only complication being the oscillatory integrand.

For the velocity distribution function we find by Eq.

(12), where now n�ðx; tÞ is known

f�ðx; u; tÞ=Dn ¼ gðuÞHðu� x=tÞ

þC2
s

@f0ðuÞ
@u

ðt

0

@n�ðx� uðt� t0Þ; t0Þ
@x

dt0

þ �f0ðuÞ
ðt

0

n�ðx� uðt� t0Þ; t0Þ dt0;

(19)

where the first term (containing Heaviside’s step function H)

corresponds to the free streaming contribution from the ini-

tial perturbation, here taken as gðuÞ ¼ f0ðuÞ. The final results

are obtained as n1 ¼ n�e
��t and f1 ¼ f�e

��t. Since the self-

similarity of the solution is lost for large times when � 6¼ 0,

we no longer have any singularity at x=t ¼ u: it is smoothed

over by the collisions. The time-integrations in Eq. (19) are

not easily carried out analytically due to the
Ð1

x=t dc-integral

entering the expression for the density. For large times, the

most significant contribution to f�ðx; u; tÞ comes from the last

term in Eq. (19).

Results based on Eq. (19) are shown as ion phase-space

diagrams in Fig. 11 for 2 different times for a normalized

spatial variable. For t < 1=�, the results are almost indistin-

guishable from that shown in Fig. 3 in agreement also with

experimental results5 where the space-time evolution of ion

velocity distributions was measured. For late times, on the

other hand, we find a collision-dominated evolution of the

velocity distribution function. The case with high collision

frequency is illustrated in Fig. 12, to be compared to Fig. 11.

The two figures are obtained at the same time in units of

x�1
pi , but the collision frequency is doubled in Fig. 12.

Result (19) together with (18) offers a theoretical result

which, albeit somewhat complicated, allows for illustrating a

continuous transition from a collisionless to a collision-

dominated space-time evolution of the ion velocity distribu-

tion for the given step-like initial condition.

B. Strongly collisional regime

Using n1 ¼ n�e
��t and f1 ¼ f�e

��t and integrating Eq.

(12) with respect to u, we obtain the continuity equation for

n1. Multiplying the expressions with u and integrating as

before, we have the momentum equation. Assuming Te � Ti

and large �, this expression contains Fick’s first law in the

form nU � �ðC2
s=�Þ@n=@x, where U is the average ion ve-

locity for the perturbation. Using this expression in the conti-

nuity equation, we obtain a diffusion equation for the plasma

density with diffusion coefficient D � C2
s=�. When the

collisional mean free path is the shortest length scale in the

system (i.e., shorter than the length-scale for the density gra-

dient), we can approximate the dynamics by a simple diffu-

sion equation having the relevant solution in the form

n1ðx; tÞ ¼
Dn

2
1� erf

xffiffiffiffiffiffiffiffi
4Dt
p
� �� �

; (20)

FIG. 11. Analytical results for the ion velocity distribution in normalized

phase-space, as obtained from Eq. (19) with � 6¼ 0 and Te=Ti ¼ 3. We show

the phase-space for two times, t ¼ 0:5=� and 0:85=�. The dotted line shows

u ¼ x=t, for reference. Note that the evolution is no longer self-similar. The

figures are to be compared to the collisionless case shown in Fig. 3 obtained

with the same temperature ratio.

FIG. 12. Analytical results for the ion velocity distribution in normalized

phase-space with doubled collision frequency as compared to Fig. 11. Other

parameters are the same as in Fig. 11.
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in terms of the error function, erfðxÞ � ð2=
ffiffiffi
p
p
Þ
Ð x

0
e�y2

dy. In

this limit, we have a dynamic length scale
ffiffiffiffiffiffi
Dt
p

characteris-

ing the time evolution of the initial condition, and the self-

similar variable x/t from the analysis in Sec. II is lost. In the

diffusion limit, the ion velocity distribution remains close to

f0ðuÞ, which for realistic conditions is a Maxwellian with

constant temperature Ti. Result (20) is shown for reference

in Fig. 10(c).

We note that Eq. (19) with f1 ¼ f�e
��t offers a general

relation between the plasma density and the ion velocity dis-

tribution function as described by the ion Vlasov equation

with collisional effects included. We analyzed also the ion

velocity distribution for late times obtained by using the ana-

lytical form (20) in Eq. (19). The result obtained for

f1ðx; u; tÞ by this procedure is almost identical to the late

time expression obtained analytically with collisional effects

retained in Eq. (12). We confirmed also here that for large

times the most significant contribution to f1ðx; u; tÞ comes

from the last term in Eq. (19).

V. NUMERICAL RESULTS FOR PLASMAS WITH
CHARGE EXCHANGE COLLISIONS

We analyze the effects of ion neutral collisions numeri-

cally, and consider two cases: elastic and charge exchange

collisions between the plasma ions and a neutral background.

Also other types of collisions can be important, but we

expect these two to be representative for collisional interac-

tions in general.

Charge exchange collisions often have the largest cross

section, this type of interaction being resonant,28 and will be

particularly important for many realistic cases.

In Fig. 13, we show the space-time evolution of the

plasma density for two cases, where ‘c ¼ 1000 and 500 kDe,

respectively. The absorbing grid is placed at x¼ 0. The fill-

ing in of the plasma column (including the effect of the

charge exchange collisions) begins at t ¼ �2 as in Fig. 8,

and the step-like density perturbation is released at t¼ 0. We

find that the signal has an enhanced noise level due to the

collisions, although 30 realizations are averaged as in Fig. 8.

Note that the step-like front found in Fig. 8 is no longer pres-

ent, as expected from the analytical results. Rather we find

(for both mean free paths shown) a monotonically decreasing

plasma density as in Fig. 10(c). Due to the charge exchange

collisions, the average ion flow velocity is reduced along the

axis. Flux conservation of the ion flow from the origin (the

hot plate in a Q-machine) along the x-axis will give rise to

an enhancement of the plasma density as compared to the

case without collisions.

In Fig. 14, we show numerical results (to be compared

with the phase-space results for the collisionless simulations

in Fig. 7 and density variations in Fig. 8) with charge

exchange effects included. We show results for two colli-

sional mean free paths, in both cases with Dn=n0 ¼ 1=2. The

most conspicuous effect of the collisions is that the step-like

front seen in, for instance, Fig. 10 disappears, and is replaced

by a variation closer to the one given by Eq. (20). The neu-

tral component is taken to be at rest, and we see the forma-

tion of a slow ion component composed by particles that has

undergone a charge exchange collision. This is seen best for

the smallest mean free path, ‘c ¼ 500 kDe. The average ve-

locity of these particles is positive, since they are also accel-

erated by the collective electric fields. In Video 3 (see also

corresponding “snap-shot” in Fig. 15), we show the space-

time evolutions for density, electric field, and ion phase-

space. Note how the self-similarity disappears as time

increases.

One basic conclusion from the collisional simulations is

that a laboratory experiment for realizing a step-like initial

condition is best performed for a collisionless case: we find

that the charge exchange collisions induce an inhomogene-

ous plasma density along the axis of the device and the ideal

unperturbed state is not obtained. We find, however, a quali-

tative agreement with the analytical results.

Our code also allows for inclusion of elastic ion colli-

sions. Also, these processes have been studied numerically,

and some differences can be noted, but need not be presented

here, since our analytical model applies best for the charge

exchange collisions.

FIG. 13. Space-time variation of the plasma density with charge exchange

collisions included, with mean free path ‘c ¼ 1000 (top) and 500 kDe (bot-

tom). Both cases have Dn=n0 ¼ 0:5. As compared to Fig. 8, the signal has

an enhanced noise level due to the collisions, although 30 realizations are

averaged also here as in Fig. 8. The absorbing grid is placed at x¼ 0. The

filling in of the plasma column (including the effect of the charge exchange

collisions) begins at t ¼ �2 as in Fig. 8, while the step-function is released

at t¼ 0.

072117-10 Rekaa, P�ecseli, and Trulsen Phys. Plasmas 20, 072117 (2013)



VI. DISCUSSIONS

The results in the present work are formally obtained

without assumptions on the ratio Ti=Te. In principle, they

apply to Q-machine conditions as well as those met in, for

instance, Double Plasma (DP) devices. With the assumption

of quasi-neutrality, we do not have the Debye length in the

basic equations and we do not recover the dispersive ripples

associated with the time evolution of an initial discontinu-

ity.29 For Q-machine experiments, we have typically an

effective temperature ratio in the range 1 < Te=Ti � 3, so

the dispersive ripples are heavily ion Landau damped in

those cases. The restriction by the assumed quasi-neutrality

is of minor importance in these cases and we find that the

results in the present paper are in excellent agreement with

the experimental results obtained in a Q-machine5 also con-

cerning experimentally obtained ion velocity distributions.

For larger temperature ratios, it might be an advantage to

retain Poisson’s equation. Also, this analysis has been carried

out in one spatial dimension.27,30 In this case, the self-

similarity of the solution is lost: self-similarity is a property

of problems without any characteristic length and time

scales. In the quasi-neutral limit of kinetic ion-acoustic

waves, we have neither the ion plasma frequency nor the

Debye lengths as characteristic quantities; all we have is a

characteristic velocity, Cs.

Our numerical results confirmed the analytically

obtained self-similar space-time evolution. The theoretical

results were illustrated for the special reference case where

the unperturbed ion velocity distribution is a full

Maxwellian. This case is facilitated by allowing the plasma

dispersion function19 to be introduced. The actual unper-

turbed ion velocity distribution is a truncated Maxwellian.

The symmetry of the forward propagating density pulse and

the backward propagating rarefaction wave found in the ref-

erence case is lost in our simulations, but the forward propa-

gating density enhancement, and the potential and electric

field derived from it, follow the analytical results well.

The time evolution of an initially step-like perturbation in

plasmas with large electron-to-ion temperature ratios was

investigated by a very elegant method in a DP-device.31 In this

case, the initial perturbation was introduced by a collimated

“flash” of light from a vacuum spark between Molybdenum

electrodes. The intense light ionizes a fraction of the neutral

background gas in the device, and thus produces a “slab” of

additional plasma to the pre-existing uniform background

plasma produced by the standard DP-operation. Because of the

large temperature ratio, the dispersive ripples were clearly

observable in this experiment. By a quasi-neutral approxima-

tion, such ripples are in effect smoothed out in the analytical

results presented in our analysis.

We extended our analysis by introducing ion collisions.

Analytical results were obtained by a linearized model with

charge exchange collisions. We can follow the transition

from the short time collisionless limit to the long time

FIG. 14. Numerical simulations with charge exchange collisions, with

mean-free collision paths ‘c ¼ 1000 and 500 kDe.

FIG. 15. Numerical simulations where charge exchange collisions are

included. We show the space-time evolution of the ion density (bottom

frame) electric field (middle frame) and the phase-space for the ion velocity

distribution (top frame) for a case where Dn=n0 ¼ 0:50, with mean-free col-

lision paths ‘c ¼ 1000 (enhanced online) [URL: http://dx.doi.org/10.1063/

1.4816953.3].
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collisional case, with some basic results shown in Fig. 10. We

find it interesting that with a Maxwellian plasma the collisional

term contributes with an expression given via the plasma dis-

persion function, even in the case where collective interactions

are turned off by setting Te ¼ 0. Formally, it is a simple matter

to retain a velocity dependence of the collision frequency by

having a � ¼ �ðuÞ factor entering the integrands, but then the

Hilbert transforms can no longer be easily expressed in terms

of the plasma dispersion function, and the practical value of

the results is limited. The analytical result (18) contains the

collisionless self-similar linearized kinetic result by setting

� ¼ 0, while it for large times, �t� 1, contains the results for

a diffusion equation that also has an exact solution (20). These

three results are summarized in Fig. 10.

The linearized analysis was carried out for a step-like

initial condition. By differentiating this result with respect to

the spatial variable x, we can obtain the results for the space-

time evolution of an initial dðxÞ-perturbation. From this

result, arbitrary spatially distributed initial perturbations can

be constructed. In this sense, our linear analytical results

have general applicability for collisionless as well as colli-

sional plasmas for cases where charge exchange is dominant.

When comparing our results to numerical or laboratory

experimental observations, we note that the presentation

based on figures such as Figs. 2–4 or Fig. 10 is easy when

shown as a function of position for fixed times. For most lab-

oratory studies, it is easier to visualize a temporal variation

for fixed position,5 and in such cases the figures can be re-

drawn with advantage.

The present analytical results are exact for a linearized

model equation, derived from the Vlasov equation including

a collision term. The results are thus not obtained by use of

some first or least damped pole approximation for the entire

plasma dispersion relation. Since we used a linearized analy-

sis, the results are not directly applicable, for instance, for

plasma expanding into vacuum,1 but we believe the results

to have value as qualitative indications also for this case.

This latter problem has received attention for experimental

conditions with imposed initial conditions6 but it can also be

relevant for plasma flowing into the wake forming behind

macroscopic solid objects immersed in plasmas at large rela-

tive flow velocities.11,12,32,33

ACKNOWLEDGMENTS

This work was supported in part by a grant from the

Norwegian National Science Foundation. We thank Dr.

Wojciech Miloch for his interest and for many valuable dis-

cussions on numerical problems.

1J. E. Crow, P. L. Auer, and J. E. Allen, “Expansion of a plasma into a vac-

uum,” J. Plasma Phys. 14, 65–76 (1975).
2Yu. V. Medvedev, “Ion front in an expanding collisionless plasma,”

Plasma Phys. Controlled Fusion 53, 125007 (2011).
3Y. Huang, Y. Bi, X. Duan, X. Lan, N. Wang, X. Tang, and Y. He, “Self-

similar neutral-plasma isothermal expansion into a vacuum,” Appl. Phys.

Lett. 92, 031501 (2008).
4R. W. Gould, “Excitation of ion–acoustic waves,” Phys. Rev. 136,

A991–A997 (1964).

5P. Michelsen and H. L. P�ecseli, “Propagation of density perturbations

in a collisionless Q-machine plasma,” Phys. Fluids 16, 221–225

(1973).
6V. Vanek and T. C. Marshall, “Ion-acoustic collisionless shocks in a Q-

machine,” Plasma Phys. 14, 925–934 (1972).
7H. K. Andersen, N. D’Angelo, P. Michelsen, and P. Nielsen,

“Investigation of Landau-damping effects on shock formation,” Phys.

Rev. Lett. 19, 149–151 (1967).
8A. L. Gurevich, L. I. Pari K%skaya, and L. P. Pitaevski K%, “Self similar motion

of rarefied plasma,” J. Exp. Theor. Fiz. (U.S.S.R.) 49, 647–654 (1965) [see

also Sov. Phys. JETP 22, 449–454 (1966)].
9A. L. Gurevich, L. I. Pari K%skaya, and L. P. Pitaevski K%, “Self similar motion

of a low-density plasma. II,” Zh. Eksp. Teor. Fiz. 54, 891–904 (1968) [see

also Sov. Phys. JETP 27, 476–482 (1968)].
10J. Denavit, “Collisionless plasma expansion into a vacuum,” Phys. Fluids

22, 1384 (1979).
11T. Nakagawa, “Ion entry into the wake behind a nonmagnetized obstacle

in the solar wind: Two-dimensional particle-in-cell simulations,”

J. Geophys. Res., [Space Phys.] 118, 1849–1860, doi: 10.1002/jgra.50129

(2013).
12N. Singh and R. W. Schunk, “Numerical calculations relevant to the initial

expansion of the polar wind,” J. Geophys. Res. 87, 9154–9170,

doi:10.1029/JA087iA11p09154 (1982).
13D. Gr�esillon and P. L. Galison, “Instantaneous electron energy distribution

function in ion waves,” Phys. Fluids 16, 2180–2183 (1973).
14R. W. Motley, Q Machines (Academic Press, New York, 1975).
15S. Børve, H. L. P�ecseli, J. Trulsen, and S. Longo, “Kinetic instabilities

associated with injection of a plasma beam into a neutral background,”

Phys. Scr. T122, 125–128 (2006).
16B. D. Fried and A. Y. Wong, “Stability limits for longitudinal waves in ion

beam-plasma interaction,” Phys. Fluids 9, 1084–1089 (1966).
17H. L. P�ecseli, Waves and Oscillations in Plasmas (Taylor & Francis,

London, 2012).
18S. A. Andersen, G. B. Christoffersen, V. O. Jensen, P. Michelsen, and P.

Nielsen, “Measurements of wave-particle interaction in a single ended Q-

machine,” Phys. Fluids 14, 990–998 (1971).
19B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic

Press, New York, 1961).
20V. L. Rekaa, H. L. P�ecseli, and J. K. Trulsen, “Numerical studies of

a plasma diode with external forcing,” Phys. Plasmas 19, 082115

(2012).
21T. Klinger, F. Greiner, A. Rohde, and A. Piel, “Nonlinear dynamical

behavior of thermionic low-pressure discharges. 2. Experimental,” Phys.

Plasmas 2, 1822–1836 (1995).
22I. Langmuir and K. H. Kingdon, “Thermionic effects caused by vapors of

alkali metals,” Proc. R. Phys. Soc., Ser. A 107, 61–79 (1925).
23H. B. Michaelson, “The work function of the elements and its periodicity,”

J. Appl. Phys. 48, 4729–4733 (1977).
24R. J. Mason, “Weak shock generation according to the energy-conserving

Bhatnagar-Gross-Krook kinetic equation,” Phys. Fluids 13, 1467–1472

(1970).
25R. J. Mason, “Electric field penetration into a plasma with a fractionally

accommodating boundary,” J. Math. Phys. 9, 868–874 (1968).
26B. A. Trubnikov, “Particle interactions in fully ionized plasmas,” in

Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants

Bureau, New York, 1965), Vol. 1, pp. 105–204.
27R. J. Mason, “Structure of evolving ion-acoustic fronts in collisionless

plasmas,” Phys. Fluids 13, 1042–1048 (1970).
28S. A. Andersen, V. O. Jensen, and P. Michelsen, “Charge-exchange cross-

sections measured at low energies in Q machines,” Rev. Sci. Instrum. 43,

945–947 (1972).
29G. B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, New

York, 1974).
30R. J. Mason, “Computer simulation of ion-acoustic shocks. The diaphragm

problem,” Phys. Fluids 14, 1943–1958 (1971).
31D. B. Cohn and K. R. MacKenzie, “Electrostatic ion-acoustic shocks pro-

duced by density steps,” Phys. Rev. Lett. 28, 656–658 (1972).
32W. J. Miloch, H. L. P�ecseli, and J. Trulsen, “Numerical studies of ion fo-

cusing behind macroscopic obstacles in a supersonic plasma flow,” Phys.

Rev. E 77, 056408 (2008).
33S. Kimura and T. Nakagawa, “Electromagnetic full particle simulation of

the electric field structure around the moon and the lunar wake,” Earth,

Planets Space 60, 591–599 (2008).

072117-12 Rekaa, P�ecseli, and Trulsen Phys. Plasmas 20, 072117 (2013)

http://dx.doi.org/10.1017/S0022377800025538
http://dx.doi.org/10.1088/0741-3335/53/12/125007
http://dx.doi.org/10.1063/1.2837455
http://dx.doi.org/10.1063/1.2837455
http://dx.doi.org/10.1103/PhysRev.136.A991
http://dx.doi.org/10.1063/1.1694322
http://dx.doi.org/10.1088/0032-1028/14/10/003
http://dx.doi.org/10.1103/PhysRevLett.19.149
http://dx.doi.org/10.1103/PhysRevLett.19.149
http://dx.doi.org/10.1063/1.862751
http://dx.doi.org/10.1002/jgra.50129
http://dx.doi.org/10.1029/JA087iA11p09154
http://dx.doi.org/10.1063/1.1694284
http://dx.doi.org/10.1088/0031-8949/2006/T122/015
http://dx.doi.org/10.1063/1.1761806
http://dx.doi.org/10.1063/1.1693560
http://dx.doi.org/10.1063/1.4747620
http://dx.doi.org/10.1063/1.871336
http://dx.doi.org/10.1063/1.871336
http://dx.doi.org/10.1098/rspa.1925.0005
http://dx.doi.org/10.1063/1.323539
http://dx.doi.org/10.1063/1.1693103
http://dx.doi.org/10.1063/1.1664653
http://dx.doi.org/10.1063/1.1693006
http://dx.doi.org/10.1063/1.1685817
http://dx.doi.org/10.1063/1.1693704
http://dx.doi.org/10.1103/PhysRevLett.28.656
http://dx.doi.org/10.1103/PhysRevE.77.056408
http://dx.doi.org/10.1103/PhysRevE.77.056408

	s1
	d1
	d2
	n1
	n2
	n3
	d3
	s2
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	f1
	f2a
	f2b
	f2
	d11
	s3
	f3
	f4
	f5
	f6
	s3A
	f7
	s4
	d12
	d13
	d14
	d15
	d16
	s4A
	f8
	d17
	s4A
	d18
	f9
	f10c
	f10
	d19
	s4B
	d20
	f11
	f12
	s5
	f13
	s6
	f14
	f15
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33

