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Abstract: The ALICE experiment at the LHC has studied J/ψ production at mid-

rapidity in pp collisions at
√
s = 7TeV through its electron pair decay on a data sample

corresponding to an integrated luminosity Lint = 5.6 nb−1. The fraction of J/ψ from the

decay of long-lived beauty hadrons was determined for J/ψ candidates with transverse

momentum pt > 1.3GeV/c and rapidity |y| < 0.9. The cross section for prompt J/ψ

mesons, i.e. directly produced J/ψ and prompt decays of heavier charmonium states such as

the ψ(2S) and χc resonances, is σprompt J/ψ (pt > 1.3 GeV/c, |y| < 0.9) = 8.3±0.8 (stat.) ±
1.1 (syst.)+1.5

−1.4 (syst. pol.) µb. The cross section for the production of b-hadrons decaying

to J/ψ with pt > 1.3GeV/c and |y| < 0.9 is σJ/ψ←hB (pt > 1.3 GeV/c, |y| < 0.9) = 1.46

± 0.38 (stat.) +0.26
−0.32 (syst.) µb. The results are compared to QCD model predictions. The

shape of the pt and y distributions of b-quarks predicted by perturbative QCD model

calculations are used to extrapolate the measured cross section to derive the bb pair total

cross section and dσ/dy at mid-rapidity.
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1 Introduction

The production of both charmonium mesons and beauty-flavoured hadrons, referred to as

b-hadrons or hB in this paper, in hadronic interactions represents a challenging testing

ground for models based on Quantum ChromoDynamics (QCD).

The mechanisms of J/ψ production operate at the boundary of the perturbative and

non-perturbative regimes of QCD. At hadron colliders, J/ψ production was extensively

studied at the Tevatron [1–4] and RHIC [5]. Measurements in the new energy domain

of the Large Hadron Collider (LHC) can contribute to a deeper understanding of the

physics of the hadroproduction processes. The first LHC experimental results on the J/ψ

transverse momentum (pt) differential cross sections [6–10] are well described by various

theoretical approaches [11–14]. Among those results, the ALICE Collaboration reported

the measurement of the rapidity (y) and transverse momentum dependence of inclusive

J/ψ production in proton–proton (pp) collisions at
√
s = 7TeV [9]. The inclusive J/ψ

yield is composed of three contributions: prompt J/ψ produced directly in the proton-

proton collision, prompt J/ψ produced indirectly (via the decay of heavier charmonium

states such as χc and ψ(2S)), and non-prompt J/ψ from the decay of b-hadrons. Other

LHC experiments have separated the prompt and non-prompt J/ψ component [6–8, 10].

However, at mid-rapidity, only the high-pt part of the differential dσJ/ψ/dpt distribution

was measured (pt > 6.5GeV/c), i.e. a small fraction (few percent) of the pt-integrated cross

section.

The measurement of the production of b-hadrons in pp collisions at the LHC provides

a way to test, in a new energy domain, calculations of QCD processes based on the factor-

ization approach. In this scheme, the cross sections are computed as a convolution of the
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parton distribution functions of the incoming protons, the partonic hard scattering cross

sections, and the fragmentation functions. Measurements of cross sections for beauty quark

production in high-energy hadronic interactions have been done in the past at pp̄ colliders

at center-of-mass energies from 630GeV [15, 16] to 1.96TeV [2, 17–19] and in p-nucleus col-

lisions with beam energies from 800 to 920GeV [20]. The LHC experiments have reported

measurements of b-hadron production in pp collisions at
√
s = 7TeV by studying either

exclusive decays of B mesons [21–23] or semi-inclusive decays of b-hadrons [6–8, 10, 24, 25].

At mid-rapidity, the measurements are available only for pt of the b-hadrons larger than

≈ 5 GeV/c, whereas the low pt region of the differential b-hadron cross sections, where the

bulk of the b-hadrons is produced, has not been studied.

In this paper, the fraction of J/ψ from the decay of b-hadrons in pp collisions at√
s = 7TeV for J/ψ in the ranges 1.3 < pt < 10GeV/c and |y| < 0.9 is determined.

This information is combined with the previous inclusive J/ψ cross section measurement

reported by ALICE [9]. Prompt J/ψ and b-hadron cross sections are thus determined at

mid-rapidity down to the lowest pt reach at the LHC energy.

2 Experiment and data analysis

The ALICE experiment [26] consists of a central barrel, covering the pseudorapidity region

|η| < 0.9, and a muon spectrometer with −4 < η < −2.5 coverage. The results presented in

this paper were obtained with the central barrel tracking detectors, in particular the Inner

Tracking System (ITS) [26, 27] and the Time Projection Chamber (TPC) [28]. The ITS,

which consists of two innermost Silicon Pixel Detector (SPD), two Silicon Drift Detector

(SDD), and two outer Silicon Strip Detector (SSD) layers, provides up to six space points

(hits) for each track. The TPC is a large cylindrical drift detector with an active volume

that extends over the ranges 85 < r < 247 cm and −250 < z < 250 cm in the radial and

longitudinal (beam) directions, respectively. The TPC provides up to 159 space points per

track and charged particle identification via specific energy loss (dE/dx) measurement.

The event sample, corresponding to 3.5× 108 minimum bias events and an integrated

luminosity Lint = 5.6 nb−1, event selection and track quality cuts used for the measurement

of the inclusive J/ψ production at mid-rapidity [9] were also adopted in this analysis. In

particular, an event with a reconstructed vertex position zv was accepted if |zv| < 10 cm.

The tracks were required to have a minimum pt of 1GeV/c, a minimum number of 70 TPC

space points, a χ2 per space point of the momentum fit lower than 4, and to point back

to the interaction vertex within 1 cm in the transverse plane. At least one hit in either

of the two layers of the SPD was required. For tracks passing this selection, the average

number of hits in the six ITS layers was 4.5–4.7, depending on the data taking period. The

electron identification was based on the specific energy loss in the TPC: a ±3σ inclusion cut

around the Bethe-Bloch fit for electrons and ±3.5σ (±3σ) exclusion cut for pions (protons)

were employed [9]. Finally, electron or positron candidates compatible, together with an

opposite charge candidate, with being products of γ conversions (the invariant mass of the

pair being smaller than 100MeV/c2) were removed, in order to reduce the combinatorial

background. It was verified, using a Monte Carlo simulation, that this procedure does
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not affect the J/ψ signal. In this analysis, opposite-sign (OS) electron pairs were divided

in three “types”: type “first-first” (FF ) corresponds to the case when both the electron

and the positron have hits in the first pixel layer, type “first-second” (FS) are those pairs

where one of them has a hit in the first layer and the other does not, while for the type

“second-second” (SS) neither of them has a hit in the first layer. The candidates of type

SS, which correspond to about 10% of the total, were discarded due to the worse spatial

resolution of the associated decay vertex.

A detailed description of the track and vertex reconstruction procedures can be found

in [29]. The primary vertex was determined via an analytic χ2 minimization method in

which tracks are approximated as straight lines after propagation to their common point

of closest approach. The vertex fit was constrained in the transverse plane using the infor-

mation on the position and spread of the luminous region. The latter was determined from

the distribution of primary vertices reconstructed over the run. Typically, the transverse

position of the vertex has a resolution that ranges from 40 µm in low-multiplicity events

with less than 10 charged particles per unit of rapidity to about 10 µm in events with a

multiplicity of about 40. For each J/ψ candidate a specific primary vertex was also cal-

culated by excluding the J/ψ decay tracks, in order to estimate a systematic uncertainty

related to the evaluation of the primary vertex in the case of events with non-prompt J/ψ,

as discussed in section 3. The decay vertex of the J/ψ candidate was computed with the

same analytic χ2 minimization as for the primary vertex, using the two decay tracks only

and without the constraint of the luminous region.

The measurement of the fraction of the J/ψ yield coming from b-hadron decays, fB,

relies on the discrimination of J/ψ mesons produced at a distance from the pp collision

vertex. The signed projection of the J/ψ flight distance onto its transverse momentum

vector, ~p
J/ψ
t , was constructed according to the formula

Lxy = ~L · ~pJ/ψt /p
J/ψ
t , (2.1)

where ~L is the vector from the primary vertex to the J/ψ decay vertex. The variable x,

referred to as “pseudoproper decay length” in the following, was introduced to separate

prompt J/ψ from those produced by the decay of b-hadrons,1

x =
c · Lxy ·mJ/ψ

p
J/ψ
t

, (2.2)

where mJ/ψ is the (world average) J/ψ mass [30].

For events with very low J/ψ pt, the non-negligible amount of J/ψ with large opening

angle between its flight direction and that of the b-hadron impairs the separation ability.

Monte Carlo simulation shows that the detector resolution allows the determination of the

fraction of J/ψ from the decay of b-hadrons for events with J/ψ pt greater than 1.3GeV/c.

An unbinned 2-dimensional likelihood fit was used to determine the ratio of the non-

prompt to inclusive J/ψ production and the ratio of J/ψ signal candidates (the sum of

1The variable x, which was introduced in [1], mimics a similar variable used for b-hadron lifetime

measurements where b-hadrons are reconstructed exclusively and therefore the mass and pt of the b-hadron

can be used in place of those of the J/ψ, to get cτ = L
βγ

=
c·Lxy ·Mb−hadron

pb−hadron
t

.
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both prompt and non-prompt components) to the total number of candidates, fSig, by

maximizing the quantity

lnL =
N
∑

i=1

lnF (x,me+e−), (2.3)

where me+e− is the invariant mass of the electron pair and N is the total number of

candidates in the range 2.4 < me+e− < 4.0GeV/c2. The expression for F (x,me+e−) is

F (x,me+e−) = fSig · FSig(x) ·MSig(me+e−) + (1− fSig) · FBkg(x) ·MBkg(me+e−), (2.4)

where FSig(x) and FBkg(x) are Probability Density Functions (PDFs) describing the pseu-

doproper decay length distribution for signal and background candidates, respectively.

MSig(me+e−) and MBkg(me+e−) are the PDFs describing the dielectron invariant mass dis-

tributions for the signal and background, respectively. A Crystal Ball function [31] is used

for the former and an exponential function for the latter. The signal PDF is given by

FSig(x) = f ′B · FB(x) + (1− f ′B) · Fprompt(x), (2.5)

where Fprompt(x) and FB(x) are the PDFs for prompt and non-prompt J/ψ, respectively,

and f ′B is the fraction of reconstructed non-prompt J/ψ,

f ′B =
NJ/ψ←hB

NJ/ψ←hB +Nprompt J/ψ
, (2.6)

which can differ (see below) from fB due to different acceptance and reconstruction effi-

ciency of prompt and non-prompt J/ψ. The distribution of non-prompt J/ψ is the con-

volution of the x distribution of J/ψ from b-hadron events, χB(x), and the experimental

resolution on x, Rtype(x), which depends on the type of candidate (FF or FS),

FB(x) = χB(x
′)⊗Rtype(x

′ − x). (2.7)

Promptly produced J/ψ mesons decay at the primary vertex, and their pseudoproper decay

length distribution is thus simply described by Rtype(x):

Fprompt(x) = δ(x′)⊗Rtype(x
′ − x) = Rtype(x). (2.8)

The resolution function is described by the sum of two Gaussians and a power law function

reflected about x = 0 and was determined, as a function of the pt of the J/ψ, with a

Monte Carlo simulation study. In this simulation, which utilizes GEANT3 [32] and incor-

porates a detailed description of the detector material, geometry, and response, prompt

J/ψ were generated with a pt distribution extrapolated from CDF measurements [1] and

a y distribution parameterization taken from Color Evaporation Model (CEM) calcula-

tions [33]. These J/ψ were individually injected into proton–proton collisions simulated

using the PYTHIA 6.4.21 event generator [34, 35], and reconstructed as for J/ψ candidates

in data. A data-driven method (discussed in section 3) was also developed and used to

estimate the systematic uncertainty related to this procedure. The Monte Carlo x distri-

bution of J/ψ from the decay of b-hadrons produced in proton-proton collisions simulated
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using the PYTHIA 6.4.21 event generator [34, 35] with Perugia-0 tuning [36] was taken as

the template for the x distribution of b-hadron events in data, χB(x). A second template,

used to estimate the systematic uncertainty, was obtained by decaying the simulated b-

hadrons using the EvtGen package [37], and describing the final state radiation (“internal”

bremsstrahlung) using PHOTOS [38, 39].

For the background x distribution, FBkg(x), the functional form employed by CDF [1]

was used,

FBkg(x) = (1− f+ − f− − fsym)Rtype(x)

+

[

f+
λ+

e−x
′/λ+θ(x′) +

f−
λ−

ex
′/λ−θ(−x′) + fsym

2λsym
e−|x

′|/λsym

]

⊗Rtype(x
′ − x),

(2.9)

where θ(x) is the step function, f+, f− and fsym are the fractions of three components with

positive, negative and symmetric decay length exponential distributions, respectively. The

effective parameters λ+, λ− and λsym, and optionally also the corresponding fractions, were

determined, prior to the likelihood fit maximization, with a fit to the x distribution in the

sidebands of the dielectron invariant mass distribution, defined as the regions 1.8–2.6 and

3.2–5.0GeV/c2. The introduction of these components is needed because the background

consists also of random combinations of electrons from semi-leptonic decays of charm and

beauty hadrons, which tend to produce positive x values, as well as of other secondary or

mis-reconstructed tracks which contribute both to positive and negative x values. The first

term in eq. (2.9), proportional to Rtype(x), describes the residual combinatorics of primary

particles.

In figure 1 the distributions of the invariant mass and the pseudoproper decay length,

the latter restricted to candidates with 2.92 < me+e− < 3.16GeV/c2, for opposite-sign elec-

tron pairs with pt > 1.3GeV/c are shown with superimposed projections of the maximum

likelihood fit result.

The value of the fit parameter f ′B provides the fraction of non-prompt J/ψ which were

reconstructed. In principle prompt and non-prompt J/ψ can have different acceptance

times efficiency (A×ǫ) values. This can happen because of two effects: (i) the A×ǫ depends
on the pt of the J/ψ and prompt and non-prompt J/ψ have different pt distributions

within the considered pt range; (ii) at a given pt, prompt and non-prompt J/ψ can have

different polarization and, therefore, a different acceptance. The fraction of non-prompt

J/ψ, corrected for these effects, was obtained as

fB =

(

1 +
1− f ′B
f ′B

· 〈A× ǫ〉B
〈A× ǫ〉prompt

)−1

, (2.10)

where 〈A × ǫ〉B and 〈A × ǫ〉prompt are the average acceptance times efficiency values, in

the considered pt range and for the assumed polarization state, of non-prompt and prompt

J/ψ, respectively. The acceptance times efficiency (A × ǫ) varies very smoothly with pt
and, for unpolarized J/ψ in the pt range from 1.3 to 10GeV/c, has a minimum of 8% at

2GeV/c and a broad maximum of 12% at 7GeV/c [9]. As a consequence, the 〈A×ǫ〉 values
of prompt and non-prompt J/ψ differ by about 3% only in this integrated pt range.
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Figure 1. Invariant mass (left panel) and pseudoproper decay length (right panel) distributions of

opposite sign electron pairs for |yJ/ψ| < 0.9 and p
J/ψ
t > 1.3GeV/c with superimposed projections

of the maximum likelihood fit. The latter distribution is limited to the J/ψ candidates under the

mass peak, i.e. for 2.92 < me+e− < 3.16GeV/c2, for display purposes only. The χ2 values of these

projections are reported for both distributions.

The central values of the resulting cross sections are quoted assuming both prompt

and non-prompt J/ψ to be unpolarized and the variations due to different assumptions are

estimated as a separate systematic uncertainty. The polarization of J/ψ from b-hadron

decays is expected to be much smaller than for prompt J/ψ due to the averaging effect

caused by the admixture of various exclusive B → J/ψ +X decay channels. In fact, the

sizeable polarization, which is observed when the polarization axis refers to the B-meson

direction [40], is strongly smeared when calculated with respect to the direction of the

daughter J/ψ [7], as indeed observed by CDF [2]. Therefore, these variations will be

calculated in the two cases of prompt J/ψ with fully transverse (λ = 1) or longitudinal

(λ = −1) polarization, in the Collins-Soper (CS) and helicity (HE) reference frames,2 the

non-prompt component being left unpolarized.

Despite the small J/ψ candidate yield, amounting to about 400 counts, the data sample

could be divided into four pt bins (1.3–3, 3–5, 5–7 and 7–10GeV/c), and the fraction fB was

evaluated in each of them with the same technique. At low pt the statistics is higher, but

the resolution is worse and the signal over background, S/B, is smaller (i.e. fSig is smaller).

At high pt the statistics is smaller, but the resolution improves and the background becomes

negligible. In figure 2 the distributions of the invariant mass and of the pseudoproper decay

length are shown in different pt bins with superimposed results of the fits.

3 Systematic uncertainties

The different contributions to the systematic uncertainties affecting the measurement of

the fraction of J/ψ from the decay of b-hadrons are discussed in the following, referring to

the integrated pt range, and summarized in table 1.

2The polar angle distribution of the J/ψ decay leptons is given by dN/d cos θ = 1 + λ cos2 θ.
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Figure 2. Invariant mass (left panels) and pseudoproper decay length (right panels) distributions

of opposite sign electron pairs in different pt bins with superimposed projections of the maximum

likelihood fit. The χ2 values of these projections are also reported for all distributions.

• Resolution function. The resolution function was determined from a Monte Carlo

simulation, as discussed above. The fits were repeated by artificially modifying the

resolution function, according to the formula

R′type(x) =
1

1 + δ
Rtype

(

x

1 + δ

)

,

where δ is a constant representing the desired relative variation of the RMS of the

resolution function. Studies on track distance of closest approach to the primary

interaction vertex in the bending plane (d0) show that the pt dependence of the d0
resolution as measured in the data is reproduced within about 10% by the Monte

Carlo simulation [29], but with a systematically worse resolution in data. For the

x variable a similar direct comparison to data is not straightforward, however, the

residual discrepancy is not expected to be larger than that observed for d0.
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The variations of fB obtained in the likelihood fit results by varying δ from −5% to

+10% are +8% and –15%, respectively, and they were assumed as the systematic

uncertainty due to this contribution.

An alternative, data-driven, approach was also considered. The x distribution of the

signal, composed of prompt and non-prompt J/ψ, was obtained by subtracting the

x distribution of the background, measured in the sidebands of the invariant mass

distribution. This distribution is then fitted by fixing the ratio of prompt to non-

prompt J/ψ to that obtained from the likelihood fit and leaving free the parameters

of the resolution function. The RMS of the fitted resolution function is found to be

8% larger than the one determined using the Monte Carlo simulation, hence within

the range of variation assumed for δ.

• Pseudoproper decay length distribution of background. The shape of the combinatorial

background was determined from a fit to the x distribution of candidates in the

sidebands of the invariant mass distribution. By varying the fit parameters within

their errors an envelope of distributions was obtained, whose extremes were used in

the likelihood fit in place of the most probable distribution. The variations in the

result of the fit were determined and adopted as systematic uncertainties. Also, it was

verified that the x distribution obtained for like-sign (LS) candidates, with invariant

mass in the range from 2.92 to 3.16GeV/c2 complementary to the sidebands, is

best fitted by a distribution which falls within the envelope of the OS distributions.

Finally, the likelihood fit was repeated by relaxing, one at a time, the parameters of

the functional form (eq. (2.9)) and it was found that the values of fB were within the

estimated uncertainties. The estimated systematic uncertainty is 6%.

• Pseudoproper decay length distribution of b-hadrons. The fits were also done using

as template for the x distribution of b-hadrons, χB(x), that obtained by the EvtGen

package [37], and describing the final state radiation using PHOTOS [38, 39]. The

central values of the fits differ by a few percent at most and the resulting systematic

uncertainty is 3%.

• Invariant mass distributions. The likelihood method was used in this analysis to

fit simultaneously the invariant mass distribution, which is sensitive to the ratio of

signal to all candidates (fSig), and the x distribution, which determines the ratio of

non-prompt to signal candidates (fB). The statistical uncertainties on these quanti-

ties were therefore evaluated together, including the effects of correlations. However,

the choice of the function describing the invariant mass distribution, as well as the

procedure, can introduce systematic uncertainties in the evaluation of fB. Different

approaches were therefore considered: (i) the functional form describing the back-

ground was changed into an exponential plus a constant and the fit repeated; (ii)

the background was described using the LS distribution and the signal was obtained

by subtracting the LS from the OS distributions. The signal and the background

shapes were determined with χ2 minimizations. Both functional forms, exponential

and exponential plus a constant, were considered for the background. The likelihood
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fit was then performed again to determine fB (and fSig); (iii) the same procedure as

in (ii) was used, but additionally fSig was estimated a priori using a bin counting

method [9] instead of the integrals of the best fit functions. The maximum likelihood

fit was performed with fSig fixed to this new value; (iv) and (v) the same procedures

as in (ii) and (iii) were used but with the background described by a track rotation

(TR) method [9].

Half of the difference between the maximum and minimum fB values obtained with

the different methods was assumed as systematic uncertainty. It amounts to about 6%.

• Primary vertex. The effect of excluding the decay tracks of the J/ψ candidate in the

computation of the primary vertex was studied with the Monte Carlo simulation: on

the one hand, for the prompt J/ψ, the x resolution function is degraded, due to the

fact that two prompt tracks are not used in the computation of the vertex, which is

thus determined with less accuracy. The effect on the resolution is pt dependent, with

the RMS of the x distribution of prompt J/ψ increasing by 15% at low pt and by 7% at

high pt. On the other hand, for non-prompt J/ψ a bias on the x determination should

be reduced. The bias consists in an average shift of the primary vertex towards the

secondary decay vertex of the b-hadrons, which is reflected in a shift of the mean of the

x distribution by about 4 µm for the pt-integrated distribution. However, the shift is

pt and “type” dependent. In some cases the bias is observed in the opposite direction

and is enhanced by removing the decay tracks of the candidate. This can happen since

b-quarks are always produced in pairs. If a charged track from the fragmentation

of the second b-quark also enters the acceptance, it can pull the primary vertex

position towards the opposite direction. In the end, therefore, the primary vertex

was computed without removing the decay tracks of the candidates. To estimate the

systematic uncertainty, the analysis was repeated by either (i) removing the decay

tracks in the computation of the primary vertex and using the corresponding worse

resolution function in the fit or (ii) keeping those tracks and introducing an ad hoc

shift in the distribution of the χB(x), equal to that observed in the Monte Carlo

simulation for non-prompt J/ψ. The contribution to the systematic uncertainty is

about 5%.

• MC pt spectrum. The ratio 〈A×ǫ〉B
〈A×ǫ〉prompt

in eq. (2.10) was computed using MC simu-

lations: prompt J/ψ were generated with the pt distribution extrapolated from CDF

measurements [1] and the y distribution parameterized from CEM [33]; b-hadrons

were generated using the PYTHIA 6.4.21 [34, 35] event generator with Perugia-0

tuning [36]. By varying the average pt of the J/ψ distributions within a factor 2, a

1.5% variation in the acceptance was obtained both for prompt and non-prompt J/ψ.

Such a small value is a consequence of the weak pt dependence of the acceptance.

For the measurement integrated over pt (pt> 1.3GeV/c), the A× ǫ values of prompt

and non-prompt J/ψ differ by about 3% only. The uncertainty due to Monte Carlo

pt distributions is thus estimated to be 1%. When estimating fB in pt bins, this

uncertainty is negligible.
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Source Systematic uncertainty (%)

pt integrated lowest pt bin highest pt bin

Resolution function +8, –15 +15, –25 +2, –3

x distribution of background ±6 ±13 ±1

x distribution of b-hadrons ±3 ±3 ±2

me+e− distributions ±6 ±11 ±4

Primary vertex +4, –5 ±4 +4, –8

MC pt spectrum ±1 0 0

Total +12, –18 +23, –30 +6, –9

Polarization (prompt J/ψ)

CS (λ = −1) +13 +22 +5

CS (λ = +1) –10 –19 –3

HE (λ = −1) +17 +19 +11

HE (λ = +1) –14 –16 –8

Table 1. Systematic uncertainties (in percent) on the measurement of the fraction of J/ψ from

the decay of b-hadrons, fB. The variations of fB are also reported, with respect to the case of

both prompt and non-prompt J/ψ unpolarized, when assuming the prompt component with given

polarization.

• Polarization. The variations of fB obtained assuming different polarization scenarios

for the prompt component only were evaluated, as discussed in section 2, and are

reported in table 1. The maximum variations are quoted as separate errors.

The study of systematic uncertainties was repeated as a function of pt. In table 1

the results are summarized for the integrated pt range (pt > 1.3GeV/c) and for the lowest

(1.3–3GeV/c) and highest (7–10GeV/c) pt bins. All systematic uncertainties increase with

decreasing pt, except the one related to the primary vertex measurement.

4 Results

4.1 Fraction of J/ψ from the decay of b-hadrons

The fraction of J/ψ from the decay of b-hadrons in the experimentally accessible kinematic

range, pt > 1.3GeV/c and |y| < 0.9, which is referred to as “measured region” in the

following, is

fB = 0.149± 0.037 (stat.)+0.018
−0.027 (syst.)

+0.025 (λHE=1)
−0.021 (λHE=−1)

(syst.pol.).

The fractions measured in the pt bins are reported in table 2 and shown in figure 3. In

the figure, the data symbols are placed at the average value of the pt distribution of each

bin. The average was computed using the above mentioned Monte Carlo distributions: the

one based on the CDF extrapolation [33] and that using PYTHIA [34, 35] with Perugia-0

tuning [36] for prompt and non-prompt J/ψ, respectively, weighted by the measured fB. In

figure 3 the results of the ATLAS [8] and CMS [10] experiments measured at mid-rapidity
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Figure 3. The fraction of J/ψ from the decay of b-hadrons as a function of pt of J/ψ compared

with results from ATLAS [8] and CMS [10] in pp collisions at
√
s =7TeV.

for the same colliding system are also shown. The ALICE results extend the mid-rapidity

measurements down to low pt.

4.2 Prompt J/ψ production

By combining the measurement of the inclusive J/ψ cross section, which was determined

as described in [9], and the fB value, the prompt J/ψ cross section was obtained:

σprompt J/ψ = (1− fB) · σJ/ψ. (4.1)

The numerical values of the inclusive J/ψ cross section in the pt ranges used for this

analysis are summarized in table 2. In the measured region the integrated cross section

is σprompt J/ψ(|y| < 0.9, pt > 1.3GeV/c) = 8.3± 0.8(stat.)± 1.1(syst.)
+1.5(λHE=1)
−1.4(λHE=−1)

µb. The

systematic uncertainties related to the unknown polarization are quoted for the reference

frame where they are the largest.

The differential distribution
d2σprompt J/ψ

dptdy
is shown as a function of pt in figure 4 and

dσprompt J/ψ

dy is plotted in figure 5. The numerical values are summarized in table 2. In

figure 4 the statistical and all systematic errors are added in quadrature for better visibility,

while in figure 5 the error bar shows the quadratic sum of statistical and systematic errors,

except for the 3.5% systematic uncertainty on luminosity and the 1% on the branching

ratio (BR), which are added in quadrature and shown as box. The results shown in

figures 4 and 5 assume unpolarized J/ψ production. Systematic uncertainties due to the

unknown J/ψ polarization are not shown. Results by the CMS [6, 10], LHCb [7] and

ATLAS [8] Collaborations are shown for comparison. Also for these data the uncertainties

due to luminosity and to the BR are shown separately (boxes) in figure 5, while the error
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pt 〈pt〉 Measured Systematic uncertainties

(GeV/c) (GeV/c) quantity Correl. Non-correl. Extrap. Polariz., CS Polariz., HE

fB (%)

1.3–3.0 2.02 9.2± 7.4 0 +2.1, –2.8 0 +2.0, –1.7 +1.7, –1.5

3.0–5.0 3.65 13.8± 3.8 0 +1.5, –2.1 0 +1.3, –1.0 +2.1, –3.0

5.0–7.0 5.75 23.2± 7.2 0 +1.6, –2.1 0 +0.2, –0.2 +3.5, –2.6

7.0–10.0 8.06 30.7± 13.8 0 +1.8, –2.8 0 +1.5, –0.9 +3.4, –2.5

pt > 1.3 2.85 14.9± 3.7 0 +1.8, –2.7 0 +1.9, –1.5 +2.5, –2.1

pt > 0 2.41 14.3± 3.6 0 +1.8, –2.6 +0.2, –0.5 +2.4, –1.6 +2.5, –1.9

d2σJ/ψ/dydpt
(

nb
GeV/c

)

1.3–3.0 2.02 1780± 210 ±65 ±250 0 +400, –320 +330, –280

3.0–5.0 3.65 715± 125 ±25 ±90 0 +50, –60 +170, –90

5.0–7.0 5.74 405± 70 ±15 ±45 0 +1, –3 +50, –50

7.0–10.0 8.06 60± 25 ±2 ±12 0 +2, –3 +5, –6

d2σprompt J/ψ/dydpt
(

nb
GeV/c

)

1.3–3.0 2.02 1600± 230 ±60 ±230 0 +400, –320 +330, –280

3.0–5.0 3.65 620± 110 ±20 ±80 0 +50, –60 +170, –90

5.0–7.0 5.74 310± 60 ±10 ±35 0 +1, –3 +50, –50

7.0–10.0 8.03 40± 18 ±1 ±8 0 +2, –3 +5, –6

σprompt J/ψ(|yJ/ψ| < 0.9) (µb)

pt >1.3 2.81 8.3± 0.8 ±1.1 0 +1.0, –1.2 +1.5, –1.4

pt >0 2.37 10.6± 1.1 ±1.6 +0.06, –0.02 +1.6, –1.7 +1.9, –1.8

σJ/ψ←hB
(|yJ/ψ| < 0.9) (µb)

pt >1.3 3.07 1.46± 0.38 +0.26, –0.32 0 0 0

pt >0 2.62 1.77± 0.46 +0.32, –0.39 +0.02, –0.06 0 0

dσbb̄/dy
∣

∣

|y|<0.9
(µb)

43± 11 +9, –10 +0.6, –1.5 0 0

σbb̄ (µb)

282± 74 +58, –68 +8, –7 0 0

Table 2. The fraction of J/ψ from the decay of b-hadrons and cross sections. Some of the

contributions to the systematic uncertainty do not depend on pt, thus affecting only the overall

normalization, and they are separately quoted (correl.). The contributions which depend on pt,

even when they are correlated bin by bin, were included among the non-correlated systematic

errors. The values of 〈pt〉 were computed using Monte Carlo distributions (see text for details).

bars represent the statistical and the other sources of systematic uncertainties added in

quadrature.

The ALICE
d2σprompt J/ψ

dydpt
measurement at mid-rapidity (left panel of figure 4) is com-

plementary to the data of CMS, available for |y| < 0.9 and pt > 8GeV/c, and ATLAS,

which covers the region |y| < 0.75 and pt > 7GeV/c. In the right panel of figure 4, the AL-

ICE results are compared to next-to-leading order (NLO) non-relativistic QCD (NRQCD)

theoretical calculations by M. Butenschön and B.A. Kniehl [12] and Y.-Q. Ma et al. [13].

Both calculations include color-singlet (CS), color-octet (CO), and heavier charmonium

feed-down contributions. For one of the two models (M. Butenschön and B.A. Kniehl) the
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partial results with only the CS contribution are also shown. The comparison suggests

that the CO processes are indispensable to describe the data also at low pt. The results

are also compared to the model of V.A. Saleev et al. [14], which includes the contribution

of partonic sub-processes involving t-channel parton exchanges and provides a prediction

down to pt = 0.

The ALICE result for
dσprompt J/ψ

dy (figure 5), which equals

dσprompt J/ψ

dy
= 5.89± 0.60(stat.)+0.88

−0.90(syst.)
+0.03
−0.01(extr.)

+1.01(λHE=1)
−0.99(λHE=−1)

µb,

was obtained by subtracting from the inclusive J/ψ cross section measured for pt > 0

that of J/ψ coming from b-hadron decays. The latter was determined, as discussed in

the next section, by extrapolating the cross section from the measured region down to

pt > 0 using an implementation of pQCD calculations at fixed order with next-to leading-

log resummation (FONLL) [41]. The extrapolation uncertainty is negligible with respect

to the other systematic uncertainties. In figure 5 the CMS and LHCb results for the

rapidity bins where the pt coverage extends down to zero were selected. For CMS, the

value for 1.6 < |y| < 2.4 was obtained by integrating the published d2σprompt J/ψ/dptdy

data [6]. The ALICE data point at mid-rapidity complements the other LHC measurements

of prompt J/ψ production cross section as a function of rapidity. It is worth noting that

the uncertainties of the data sets of the three experiments are uncorrelated, except for

that (negligible) of the BR, while within the same experiment most of the systematic

uncertainties are correlated. The prediction of the model by V.A. Saleev et al. [14] at

mid-rapidity provides
dσprompt J/ψ

dy = 7.8+9.7
−4.5 µb, which, within the large band of theoretical

uncertainties, is in agreement with our measurement.

4.3 Beauty hadron production

The production cross section of J/ψ from b-hadron decays was obtained as σJ/ψ←hB =

fB · σJ/ψ. In the measured region it is

σJ/ψ←hB(pt > 1.3GeV/c, |y| < 0.9) = 1.46± 0.38(stat.)+0.26
−0.32(syst.)µb.

This measurement can be compared to theoretical calculations based on the factorization

approach. In particular, the prediction of the FONLL [41], which describes well the beauty

production at Tevatron energy, provides [42] 1.33+0.59
−0.48 µb, in good agreement with the mea-

surement. For this calculation CTEQ6.6 parton distribution functions [43] were used and

the theoretical uncertainty was obtained by varying the factorization and renormalization

scales, µF and µR, independently in the ranges 0.5 < µF/mt < 2, 0.5 < µR/mt < 2, with

the constraint 0.5 < µF/µR < 2, where mt =
√

p2t +m2
b. The beauty quark mass was

varied within 4.5 < mb < 5.0GeV/c2.

The same FONLL calculations were used to extrapolate the cross section of non-prompt

J/ψ down to pt equal to zero. The extrapolation factor, which is equal to 1.212+0.016
−0.038, was

computed as the ratio of the cross section for p
J/ψ
t > 0 and |yJ/ψ| < 0.9 to that in the

measured region (p
J/ψ
t > 1.3GeV/c and |yJ/ψ| < 0.9). Using the PYTHIA event generator

– 13 –
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Figure 4. Double differential production cross section of prompt J/ψ as a function of pt compared

to results from ATLAS [8] and CMS [10] at mid-rapidity (left panel) and to theoretical calcu-

lations [12–14] (right panel). The error bars represent the quadratic sum of the statistical and

systematic uncertainties.

with Perugia-0 tuning instead of FONLL provides an extrapolation factor of 1.156. The

measured cross section corresponds thus to about 80% of the pt-integrated cross section at

mid-rapidity. Dividing by the rapidity range ∆y = 1.8 one obtains

dσJ/ψ←hB

dy
= 0.98± 0.26 (stat.)+0.18

−0.22 (syst.)
+0.01
−0.03 (extr.) µb.

In figure 6 this measurement is plotted together with the LHCb [7] and CMS [6] data at

forward rapidity. For CMS the values for 1.2 < |y| < 1.6 and 1.6 < |y| < 2.4 were obtained

by integrating the published d2σJ/ψ←hB/dptdy data [6]; the value for 1.2 < |y| < 1.6 was

also extrapolated from pmin
t = 2.0GeV/c to pt = 0, with the approach based on the FONLL

calculations as previously described. The extrapolation uncertainties are shown in figure 6

as the slashed areas. The central FONLL prediction and its uncertainty band are also

shown. A good agreement between data and theory is observed.

A similar procedure was used to derive the bb̄ quark-pair production cross section

dσbb̄
dy

=
dσtheory

bb̄

dy
×
σJ/ψ←hB(p

J/ψ
t > 1.3GeV/c, |yJ/ψ| < 0.9)

σtheoryJ/ψ←hB
(p

J/ψ
t > 1.3GeV/c, |yJ/ψ| < 0.9)

, (4.2)

where the average branching fraction of inclusive b-hadron decays to J/ψ measured at

LEP [44–46], BR(hb → J/ψ +X) = (1.16 ± 0.10)%, was used in the computation of

σtheoryJ/ψ←hB
. The extrapolation with the FONLL calculations provides

dσbb̄
dy

= 43± 11 (stat.)+9
−10(syst.)

+0.6
−1.5(extr.) µb.
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Figure 5. Prompt J/ψ production cross section as a function of rapidity. The error bars represent

the quadratic sum of the statistical and systematic errors, while the systematic uncertainties on

luminosity and branching ratio are shown as boxes around the data points. The symbols are

plotted at the center of each bin. The CMS value was obtained by integrating the published

d2σprompt J/ψ/dptdy data measured for 1.6 < |y| < 2.4 [6]. The results obtained by LHCb [7] and

CMS are reflected with respect to y = 0 (open symbols).

Using the PYTHIA event generator with Perugia-0 tuning (with the EvtGen package to

describe the particle decays) instead of FONLL results in a central value of 40.4 (40.9) µb.

A compilation of measurements of dσbb̄/dy at mid-rapidity is plotted in figure 7 as a

function of
√
s, with superimposed FONLL predictions.

Finally, the total bb̄ cross section was obtained as

σ(pp → bb̄ +X) = α4π

σJ/ψ←hB(p
J/ψ
t > 1.3GeV/c, |yJ/ψ| < 0.9)

2 · BR(hb → J/ψ +X)
, (4.3)

where α4π is the ratio between the yield of J/ψ mesons (from the decay of b-hadrons) in the

full phase space and the yield in the measured region |yJ/ψ| < 0.9 and p
J/ψ
t > 1.3GeV/c.

The FONLL calculations provide α4π = 4.49+0.12
−0.10, which produces σ(pp → bb̄ + X) =

282± 74(stat.)+58
−68(syst.)

+8
−7(extr.) µb. The extrapolation factor α4π was also estimated us-

ing PYTHIA with Perugia-0 tuning and found to be αPYTHIA
4π = 4.20. This measurement is

in good agreement with those of the LHCb experiment, namely 288±4(stat.)±48(syst.) µb

and 284 ± 20(stat.) ± 49(syst.) µb, which were based on the measured cross sections de-

termined in the forward rapidity range from b-hadron decays into J/ψX and D0µνX,

respectively [7, 24].
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Figure 6. Cross section for non-prompt J/ψ production as a function of rapidity. The error

bars represent the quadratic sum of the statistical and systematic errors, while the systematic

uncertainties on luminosity and branching ratio are shown as boxes. The systematic uncertainties

on the extrapolation to pt = 0 are indicated by the slashed areas. The CMS values were obtained

by integrating the published d2σJ/ψ fromB/dptdy data measured for 1.2 < |y| < 1.6 and 1.6 <

|y| < 2.4 [6]. The results obtained in the forward region by LHCb [7] are reflected with respect to

y = 0 (open symbols). The FONLL calculation [41, 42] (and its uncertainty) is represented by solid

(dashed) lines.

5 Summary

Results on the production cross section of prompt J/ψ and J/ψ from the decay of b-hadrons

at mid-rapidity in pp collisions at
√
s = 7TeV have been presented. The measured cross

sections have been compared to theoretical predictions based on QCD and results from

other experiments. Prompt J/ψ production is well described by NLO NRQCD models that

include color-octet processes. The cross section of J/ψ from b-hadron decays is in good

agreement with the FONLL prediction, based on perturbative QCD. The ALICE results

at mid-rapidity, covering a lower pt region down to pt = 1.3GeV/c, are complementary to

those of the ATLAS and CMS experiments, which are available for J/ψ pt above 6.5GeV/c.

Using the shape of the pt and y distributions of b-quarks predicted by FONLL calculations,

the mid-rapidity dσ/dy and the total production cross section of bb̄ pairs were determined.
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Gonzalez-Zamora,ag Sergey Gorbunov,bi Ankita Goswami,dc Sven Gotovac,dy Varlen

Grabski,cd Lukasz Kamil Graczykowski,en Robert Grajcarek,dd Alessandro Grelli,bs

Costin Grigoras,bc Alina Gabriela Grigoras,bc Vladislav Grigoriev,cq Ara Grigoryan,eq

Smbat Grigoryan,cg Boris Grinyov,ab Nevio Grion,dn Philippe Gros,bb Jan Fiete

Grosse-Oetringhaus,bc Jean-Yves Grossiord,ee Raffaele Grosso,bc Fedor Guberbr Rachid

Guernane,cl Cesar Guerra Gutierrez,dm Barbara Guerzoni,au Maxime Rene Joseph

Guilbaud,ee Kristjan Herlache Gulbrandsen,cs Taku Gunji,ei Anik Gupta,db Ramni
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Gupta,db Hans Gutbrod,dg Oystein Senneset Haaland,an Cynthia Marie Hadjidakis,bp

Maria Haiduc,bx Hideki Hamagaki,ei Gergoe Hamar,ch Byounghee Han,ap Luke David

Hanratty,dl Alexander Hansen,cs Zuzana Harmanova,bh John William Harris,ep Matthias

Hartig,bz Dumitru Hasegan,bx Despoina Hatzifotiadou,ds Arsen Hayrapetyan,bc,eq Stefan

Thomas Heckel,bz Markus Ansgar Heide,cb Haavard Helstrup,be Andrei Ionut

Herghelegiu,cr Gerardo Antonio Herrera Corral,ah Norbert Herrmann,dd Benjamin

Andreas Hess,ek Kristin Fanebust Hetland,be Bernard Hicks,ep Per Thomas Hille,ep Boris

Hippolyte,cf Takuma Horaguchi,ej Yasuto Hori,ei Peter Zahariev Hristov,bc Ivana

Hrivnacova,bp Meidana Huang,an Thomas Humanic,ao Dae Sung Hwang,ap Raphaelle

Ichou,ck Radiy Ilkaev,di Iryna Ilkiv,dv Motoi Inaba,ej Elisa Incani,ar Gian Michele

Innocenti,ay Pier Giorgio Innocenti,bc Mikhail Ippolitov,dj Muhammad Irfan,am Cristian

George Ivan,dg Vladimir Ivanov,cw Marian Ivanov,dg Andrey Ivanov,em Oleksii

Ivanytskyi,ab Adam Wlodzimierz Jacholkowski,bc Peter Jacobs,co Haeng Jin Jang,cj

Swensy Gwladys Jangal,cf Malgorzata Anna Janik,en Rudolf Janik,bf Sandun

Jayarathna,ef Satyajit Jena,bn Deeptanshu Manu Jha,eo Raul Tonatiuh Jimenez

Bustamante,cc Lennart Jirden,bc Peter Graham Jones,dl Hyung Taik Jung,bj Anton

Jusko,dl Alexei Kaidalov,bt Vanik Kakoyan,eq Sebastian Kalcher,bi Peter Kalinak,bu

Tuomo Esa Aukusti Kalliokoski,bk Alexander Philipp Kalweit,ca Kalliopi Kanaki,an Ju

Hwan Kang,es Vladimir Kaplin,cq Ayben Karasu Uysal,bc,er Oleg Karavichev,br Tatiana

Karavicheva,br Evgeny Karpechev,br Andrey Kazantsev,dj Udo Wolfgang Kebschull,by

Ralf Keidel,et Palash Khan,dk Mohisin Mohammed Khan,am Shuaib Ahmad Khan,el

Alexei Khanzadeev,cw Yury Kharlov,bq Bjarte Kileng,be Do Won Kim,bj Mimae Kim,bj

Minwoo Kim,es Seon Hee Kim,bj Dong Jo Kim,bk Se Yong Kim,ap Jonghyun Kim,ap Jin

Sook Kim,bj Beomkyu Kim,es Taesoo Kim,es Stefan Kirsch,bi Ivan Kisel,bi Sergey

Kiselev,bt Adam Ryszard Kisiel,bc,en Jennifer Lynn Klay,ad Jochen Klein,dd Christian

Klein-Bosing,cb Michael Kliemant,bz Alexander Kluge,bc Michael Linus Knichel,dg Anders

Garritt Knospe,ea Kathrin Koch,dd Markus Kohler,dg Anatoly Kolojvari,em Valery

Kondratiev,em Natalia Kondratyeva,cq Artem Konevskih,br Andrey Korneev,di Ravjeet

Kour,dl Marek Kowalski,dz Serge Kox,cl Greeshma Koyithatta Meethaleveedu,bn Jiri

Kral,bk Ivan Kralik,bu Frederick Kramer,bz Ingrid Christine Kraus,dg Tobias

Krawutschke,dd,bd Michal Krelina,bg Matthias Kretz,bi Marian Krivda,dl,bu Filip Krizek,bk

Miroslav Krus,bg Evgeny Kryshen,cw Mikolaj Krzewicki,dg Yury Kucheriaev,dj Christian

Claude Kuhn,cf Paul Kuijer,ct Igor Kulakov,bz Jitendra Kumar,bn Podist Kurashvili,dv

A.B. Kurepin,br A. Kurepin,br Alexey Kuryakin,di Vasily Kushpil,cu Svetlana Kushpil,cu

Henning Kvaerno,aq Min Jung Kweon,dd Youngil Kwon,es Pedro Ladron de Guevara,cc

Igor Lakomov,bp Rune Langoy,an Sarah Louise La Pointe,bs Camilo Ernesto Lara,by

Antoine Xavier Lardeux,dx Paola La Rocca,aw Cristina Lazzeroni,dl Ramona Lea,at Yves

Le Bornec,bp Mateusz Lechman,bc Sung Chul Lee,bj Ki Sang Lee,bj Graham Richard

Lee,dl Frederic Lefevre,dx Joerg Walter Lehnert,bz Lars Leistam,bc Matthieu Laurent

Lenhardt,dx Vito Lenti,dt Hermes Leon,cd Marco Leoncino,dp Ildefonso Leon Monzon,eb

Hermes Leon Vargas,bz Peter Levai,ch Jorgen Lien,an Roman Lietava,dl Svein Lindal,aq

Volker Lindenstruth,bi Christian Lippmann,dg,bc Michael Annan Lisa,ao Lijiao Liu,an

Per-Ivar Loenne,an Vera Loggins,eo Vitaly Loginov,cq Stefan Bernhard Lohn,bc Daniel
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Lohner,dd Constantinos Loizides,co Kai Krister Loo,bk Xavier Bernard Lopez,ck Ernesto

Lopez Torres,af Gunnar Lovhoiden,aq Xianguo Lu,dd Philipp Luettig,bz Marcello

Lunardon,as Jiebin Luo,bm Grazia Luparello,bs Lionel Luquin,dx Cinzia Luzzi,bc Rongrong

Ma,ep Ke Ma,bm Dilan Minthaka Madagodahettige-Don,ef Alla Maevskaya,br Magnus

Mager,ca,bc Durga Prasad Mahapatra,bv Antonin Maire,dd Mikhail Malaev,cw Ivonne

Alicia Maldonado Cervantes,cc Ludmila Malinina,cg,1 Dmitry Mal’Kevich,bt Peter

Malzacher,dg Alexander Mamonov,di Loic Henri Antoine Manceau,dp Lalit Kumar

Mangotra,db Vladislav Manko,dj Franck Manso,ck Vito Manzari,dt Yaxian Mao,bm

Massimiliano Marchisone,ck,ay Jiri Mares,bw Giacomo Vito Margagliotti,at,dn Anselmo

Margotti,ds Ana Maria Marin,dg Cesar Augusto Marin Tobon,bc Christina Markert,ea

Irakli Martashvili,eh Paolo Martinengo,bc Mario Ivan Martinez,aa Arnulfo Martinez

Davalos,cd Gines Martinez Garcia,dx Yevgen Martynov,ab Alexis Jean-Michel Mas,dx

Silvia Masciocchi,dg Massimo Masera,ay Alberto Masoni,dr Laure Marie Massacrier,ee,dx

Mario Mastromarco,dt Annalisa Mastroserio,ba,bc Zoe Louise Matthews,dl Adam Tomasz

Matyja,dz,dx Daniel Mayani,cc Christoph Mayer,dz Joel Mazer,eh Alessandra Maria

Mazzoni,dq Franco Meddi,av Arturo Alejandro Menchaca-Rocha,cd Jorge Mercado

Perez,dd Michal Meres,bf Yasuo Miake,ej Leonardo Milano,ay Jovan Milosevic,aq,2 Andre

Mischke,bs Aditya Nath Mishra,dc Dariusz Miskowiec,dg,bc Ciprian Mihai Mitu,bx Jocelyn

Mlynarz,eo Bedangadas Mohanty,el Ajit Kumar Mohanty,bc Levente Molnar,bc Luis

Manuel Montano Zetina,ah Marco Monteno,dp Esther Montes,ag Taebong Moon,es

Maurizio Morando,as Denise Aparecida Moreira De Godoy,ec Sandra Moretto,as Andreas

Morsch,bc Valeria Muccifora,cm Eugen Mudnic,dy Sanjib Muhuri,el Maitreyee Mukherjee,el

Hans Muller,bc Marcelo Munhoz,ec Luciano Musa,bc Alfredo Musso,dp Basanta Kumar

Nandi,bn Rosario Nania,ds Eugenio Nappi,dt Christine Nattrass,eh Nikolay Naumov,di

Sparsh Navin,dl Tapan Kumar Nayak,el Sergey Nazarenko,di Gleb Nazarov,di Alexander

Nedosekin,bt Maria Nicassio,ba Mihai Niculescu,bx,bc Borge Svane Nielsen,cs Takafumi

Niida,ej Sergey Nikolaev,dj Vedran Nikolic,dh Sergey Nikulin,dj Vladimir Nikulin,cw Bjorn

Steven Nilsen,cx Mads Stormo Nilsson,aq Francesco Noferini,ds,ai Petr Nomokonov,cg

Gerardus Nooren,bs Norbert Novitzky,bk Alexandre Nyanin,dj Anitha Nyatha,bn Casper

Nygaard,cs Joakim Ingemar Nystrand,an Alexander Ochirov,em Helmut Oskar

Oeschler,ca,bc Saehanseul Oh,ep Sun Kun Oh,bj Janusz Oleniacz,en Chiara Oppedisano,dp

Antonio Ortiz Velasquez,bb,cc Giacomo Ortona,ay Anders Nils Erik Oskarsson,bb Piotr

Krystian Ostrowski,en Jacek Tomasz Otwinowski,dg Ken Oyama,dd Kyoichiro Ozawa,ei

Yvonne Chiara Pachmayer,dd Milos Pachr,bg Fatima Padilla,ay Paola Pagano,ax Guy

Paic,cc Florian Painke,bi Carlos Pajares,al S. Pal,ak Susanta Kumar Pal,el Arvinder Singh

Palaha,dl Armando Palmeri,du Vardanush Papikyan,eq Giuseppe Pappalardo,du Woo Jin

Park,dg Annika Passfeld,cb Blahoslav Pastircak,bu Dmitri Ivanovich Patalakha,bq Vincenzo

Paticchio,dt Alexei Pavlinov,eo Tomasz Jan Pawlak,en Thomas Peitzmann,bs Hugo Denis

Antonio Pereira Da Costa,ak Elienos Pereira De Oliveira Filho,ec Dmitri Peresunko,dj

3Also at M.V.Lomonosov Moscow State University, D.V.Skobeltsyn Institute of Nuclear Physics,

Moscow, Russia.
4Also at University of Belgrade, Faculty of Physics and ”Vinča” Institute of Nuclear Sciences, Belgrade,

Serbia.
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Carlos Eugenio Perez Lara,ct Edgar Perez Lezama,cc Diego Perini,bc Davide Perrino,ba

Wiktor Stanislaw Peryt,en Alessandro Pesci,ds Vladimir Peskov,bc,cc Yury Pestov,ac

Vojtech Petracek,bg Michal Petran,bg Mariana Petris,cr Plamen Rumenov Petrov,dl Mihai

Petrovici,cr Catia Petta,aw Stefano Piano,dn Anna Piccotti,dp Miroslav Pikna,bf Philippe

Pillot,dx Ombretta Pinazza,bc Lawrence Pinsky,ef Nora Pitz,bz Danthasinghe

Piyarathna,ef Mateusz Andrzej Ploskon,co Jan Marian Pluta,en Timur Pocheptsov,cg

Sona Pochybova,ch Pedro Luis Manuel Podesta Lerma,eb Martin Poghosyan,bc,ay Karel

Polak,bw Boris Polichtchouk,bq Amalia Pop,cr Sarah Porteboeuf-Houssais,ck Vladimir

Pospisil,bg Baba Potukuchi,db Sidharth Kumar Prasad,eo Roberto Preghenella,ds,ai

Francesco Prino,dp Claude Andre Pruneau,eo Igor Pshenichnov,br Sergey Puchagin,di

Giovanna Puddu,ar Jordi Pujol Teixido,by Alberto Pulvirenti,aw,bc Valery Punin,di Marian

Putis,bh Jorn Henning Putschke,eo,ep Emanuele Quercigh,bc Henrik Qvigstad,aq Alexandre

Rachevski,dn Alphonse Rademakers,bc Sylwester Radomski,dd Tomi Samuli Raiha,bk Jan

Rak,bk Andry Malala Rakotozafindrabe,ak Luciano Ramello,az Abdiel Ramirez Reyes,ah

Sudhir Raniwala,dc Rashmi Raniwala,dc Sami Sakari Rasanen,bk Bogdan Theodor

Rascanu,bz Deepika Rathee,cy Kenneth Francis Read,eh Jean-Sebastien Real,cl Krzysztof

Redlich,dv,ce Patrick Reichelt,bz Martijn Reicher,bs Rainer Arno Ernst Renfordt,bz Anna

Rita Reolon,cm Andrey Reshetin,br Felix Vincenz Rettig,bi Jean-Pierre Revol,bc Klaus

Johannes Reygers,dd Lodovico Riccati,dp Renato Angelo Ricci,cn Tuva Richert,bb Matthias

Rudolph Richter,aq Petra Riedler,bc Werner Riegler,bc Francesco Riggi,aw,du Bartolomeu

Rodrigues Fernandes Rabacal,bc Mario Rodriguez Cahuantzi,aa Alis Rodriguez Manso,ct

Ketil Roed,an David Rohr,bi Dieter Rohrich,an Rosa Romita,dg Federico Ronchetti,cm

Philippe Rosnet,ck Stefan Rossegger,bc Andrea Rossi,bc,as Christelle Sophie Roy,cf Pradip

Kumar Roy,dk Antonio Juan Rubio Montero,ag Rinaldo Rui,at Evgeny Ryabinkin,dj

Andrzej Rybicki,dz Sergey Sadovsky,bq Karel Safarik,bc Raghunath Sahoo,bo Pradip

Kumar Sahu,bv Jogender Saini,el Hiroaki Sakaguchi,bl Shingo Sakai,co Dosatsu Sakata,ej

Carlos Albert Salgado,al Jai Salzwedel,ao Sanjeev Singh Sambyal,db Vladimir

Samsonov,cw Xitzel Sanchez Castro,cf Ladislav Sandor,bu Andres Sandoval,cd Satoshi

Sano,ei Masato Sano,ej Rainer Santo,cb Romualdo Santoro,dt,bc,ai Juho Jaako Sarkamo,bk

Eugenio Scapparone,ds Fernando Scarlassara,as Rolf Paul Scharenberg,de Claudiu Cornel

Schiaua,cr Rainer Martin Schicker,dd Christian Joachim Schmidt,dg Hans Rudolf

Schmidt,ek Steffen Schreiner,bc Simone Schuchmann,bz Jurgen Schukraft,bc Yves Roland

Schutz,bc,dx Kilian Eberhard Schwarz,dg Kai Oliver Schweda,dg,dd Gilda Scioli,au Enrico

Scomparin,dp Rebecca Scott,eh Patrick Aaron Scott,dl Gianfranco Segato,as Ilya

Selioujenkov,dg Serhiy Senyukov,az,cf Jeewon Seo,df Sergio Serci,ar Eulogio Serradilla,ag,cd

Adrian Sevcenco,bx Alexandre Shabetai,dx Galina Shabratova,cg Ruben Shahoyan,bc

Natasha Sharma,cy Satish Sharma,db Rohini Sharma,db Kenta Shigaki,bl Maya

Shimomura,ej Katherin Shtejer,af Yury Sibiriak,dj Melinda Siciliano,ay Eva Sicking,bc

Sabyasachi Siddhanta,dr Teodor Siemiarczuk,dv David Olle Rickard Silvermyr,cv

Catherine Silvestre,cl Goran Simatovic,cc,dh Giuseppe Simonetti,bc Rama Narayana

Singaraju,el Ranbir Singh,db Subhash Singha,el Vikas Singhal,el Tinku Sinha,dk Bikash

Sinha,el Branislav Sitar,bf Mario Sitta,az Bernhard Skaali,aq Kyrre Skjerdal,an Radek

Smakal,bg Nikolai Smirnov,ep Raimond Snellings,bs Carsten Sogaard,cs Ron Ariel Soltz,cp
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Hyungsuk Son,ap Myunggeun Song,es Jihye Song,df Csaba Soos,bc Francesca Soramel,as

Iwona Sputowska,dz Martha Spyropoulou-Stassinaki,cz Brijesh Kumar Srivastava,de

Johanna Stachel,dd Ionel Stan,bx Ionel Stan,bx Grzegorz Stefanek,dv Timm Morten

Steinbeck,bi Matthew Steinpreis,ao Evert Anders Stenlund,bb Gideon Francois Steyn,da

Johannes Hendrik Stiller,dd Diego Stocco,dx Mikhail Stolpovskiy,bq Kirill Strabykin,di

Peter Strmen,bf Alexandre Alarcon do Passo Suaide,ec Martin Alfonso Subieta Vasquez,ay

Toru Sugitate,bl Christophe Pierre Suire,bp Mikhail Sukhorukov,di Rishat Sultanov,bt

Michal Sumbera,cu Tatjana Susa,dh Alejandro Szanto de Toledo,ec Imrich Szarka,bf Adam

Szczepankiewicz,dz Artur Krzysztof Szostak,an Maciej Szymanski,en Jun Takahashi,ed

Daniel Jesus Tapia Takaki,bp Arturo Tauro,bc Guillermo Tejeda Munoz,aa Adriana

Telesca,bc Cristina Terrevoli,ba Jochen Mathias Thader,dg Deepa Thomas,bs Raphael Noel

Tieulent,ee Anthony Timmins,ef David Tlusty,bg Alberica Toia,bi,bc Hisayuki Torii,ei Luca

Toscano,dp David Christopher Truesdale,ao Wladyslaw Henryk Trzaska,bk Tomoya Tsuji,ei

Alexandr Tumkin,di Rosario Turrisi,do Trine Spedstad Tveter,aq Jason Glyndwr Ulery,bz

Kjetil Ullaland,an Jochen Ulrich,ci,by Antonio Uras,ee Jozef Urban,bh Guido Marie

Urciuoli,dq Gianluca Usai,ar Michal Vajzer,bg,cu Martin Vala,cg,bu Lizardo Valencia

Palomo,bp Sara Vallero,dd Naomi van der Kolk,ct Pierre Vande Vyvre,bc Marco van

Leeuwen,bs Luigi Vannucci,cn Aurora Diozcora Vargas,aa Raghava Varma,bn Maria

Vasileiou,cz Andrey Vasiliev,dj Vladimir Vechernin,em Misha Veldhoen,bs Massimo

Venaruzzo,at Ermanno Vercellin,ay Sergio Vergara,aa Renaud Vernet,ae Marta Verweij,bs

Linda Vickovic,dy Giuseppe Viesti,as Oleg Vikhlyantsev,di Zabulon Vilakazi,da Orlando

Villalobos Baillie,dl Alexander Vinogradov,dj Leonid Vinogradov,em Yury Vinogradov,di

Tiziano Virgili,ax Yogendra Viyogi,el Alexander Vodopianov,cg Kirill Voloshin,bt Sergey

Voloshin,eo Giacomo Volpe,ba,bc Barthelemy von Haller,bc Danilo Vranic,dg Gaute

vrebekk,an Janka Vrlakova,bh Bogdan Vulpescu,ck Alexey Vyushin,di Vladimir Wagner,bg

Boris Wagner,an Renzhuo Wan,cf,bm Mengliang Wang,bm Dong Wang,bm Yifei Wang,dd

Yaping Wang,bm Kengo Watanabe,ej Michael Weber,ef Johannes Wessels,bc,cb Uwe

Westerhoff,cb Jens Wiechula,ek Jon Wikne,aq Martin Rudolf Wilde,cb Grzegorz Andrzej

Wilk,dv Alexander Wilk,cb Crispin Williams,ds Bernd Stefan Windelband,dd Leonidas

Xaplanteris Karampatsos,ea Chris G Yaldo,eo Yorito Yamaguchi,ei Hongyan Yang,ak

Shiming Yang,an Stanislav Yasnopolsky,dj JunGyu Yi,df Zhongbao Yin,bm In-Kwon

Yoo,df Jongik Yoon,es Weilin Yu,bz Xianbao Yuan,bm Igor Yushmanov,dj Cenek Zach,bg

Chiara Zampolli,ds Sergey Zaporozhets,cg Andrey Zarochentsev,em Petr Zavada,bw Nikolai

Zaviyalov,di Hanna Paulina Zbroszczyk,en Pierre Zelnicek,by Sorin Ion Zgura,bx Mikhail

Zhalov,cw Xiaoming Zhang,ck,bm Haitao Zhang,bm Fengchu Zhou,bm Daicui Zhou,bm You

Zhou,bs Jianhui Zhu,bm Jianlin Zhu,bm Xiangrong Zhu,bm Antonino Zichichi,au,ai Alice

Zimmermann,dd Gennady Zinovjev,ab Yannick Denis Zoccarato,ee Mykhaylo Zynovyevab

and Maksym Zyzakbz

aaBenemérita Universidad Autónoma de Puebla, Puebla, Mexico
abBogolyubov Institute for Theoretical Physics, Kiev, Ukraine
acBudker Institute for Nuclear Physics, Novosibirsk, Russia
adCalifornia Polytechnic State University, San Luis Obispo, California, United States
aeCentre de Calcul de l’IN2P3, Villeurbanne, France
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afCentro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
agCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
ahCentro de Investigación y de Estudios Avanzados (CINVESTAV),

Mexico City and Mérida, Mexico
aiCentro Fermi – Centro Studi e Ricerche e Museo Storico della Fisica “Enrico Fermi”,

Rome, Italy
ajChicago State University, Chicago, United States
akCommissariat à l’Energie Atomique, IRFU, Saclay, France
alDepartamento de F́ısica de Part́ıculas and IGFAE, Universidad de Santiago de Compostela, San-

tiago de Compostela, Spain
amDepartment of Physics Aligarh Muslim University, Aligarh, India
anDepartment of Physics and Technology, University of Bergen, Bergen, Norway
aoDepartment of Physics, Ohio State University, Columbus, Ohio, United States
apDepartment of Physics, Sejong University, Seoul, South Korea
aqDepartment of Physics, University of Oslo, Oslo, Norway
arDipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
asDipartimento di Fisica dell’Università and Sezione INFN, Padova, Italy
atDipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
auDipartimento di Fisica dell’Università and Sezione INFN, Bologna, Italy
avDipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
awDipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
axDipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN,

Salerno, Italy
ayDipartimento di Fisica Sperimentale dell’Università and Sezione INFN, Turin, Italy
azDipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and

Gruppo Collegato INFN, Alessandria, Italy
baDipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
bbDivision of Experimental High Energy Physics, University of Lund, Lund, Sweden
bcEuropean Organization for Nuclear Research (CERN), Geneva, Switzerland
bdFachhochschule Köln, Köln, Germany
beFaculty of Engineering, Bergen University College, Bergen, Norway
bfFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
bgFaculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,

Prague, Czech Republic
bhFaculty of Science, P.J. Šafárik University, Košice, Slovakia
biFrankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt,

Frankfurt, Germany
bjGangneung-Wonju National University, Gangneung, South Korea
bkHelsinki Institute of Physics (HIP) and University of Jyväskylä, Jyväskylä, Finland
blHiroshima University, Hiroshima, Japan
bmHua-Zhong Normal University, Wuhan, China
bnIndian Institute of Technology, Mumbai, India
boIndian Institute of Technology Indore (IIT), Indore, India
bpInstitut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3,

Orsay, France
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bqInstitute for High Energy Physics, Protvino, Russia
brInstitute for Nuclear Research, Academy of Sciences, Moscow, Russia
bsNikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht

University, Utrecht, Netherlands
btInstitute for Theoretical and Experimental Physics, Moscow, Russia
buInstitute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
bvInstitute of Physics, Bhubaneswar, India
bwInstitute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
bxInstitute of Space Sciences (ISS), Bucharest, Romania
byInstitut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
bzInstitut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
caInstitut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
cbInstitut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
ccInstituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
cdInstituto de F́ısica, Universidad Nacional Autónoma de México, Mexico City, Mexico
ceInstitut of Theoretical Physics, University of Wroclaw
cf Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3,

Strasbourg, France
cgJoint Institute for Nuclear Research (JINR), Dubna, Russia
chKFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences,

Budapest, Hungary
ciKirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
cjKorea Institute of Science and Technology Information, Daejeon, South Korea
ckLaboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal,

CNRS–IN2P3, Clermont-Ferrand, France
clLaboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier,

CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
cmLaboratori Nazionali di Frascati, INFN, Frascati, Italy
cnLaboratori Nazionali di Legnaro, INFN, Legnaro, Italy
coLawrence Berkeley National Laboratory, Berkeley, California, United States
cpLawrence Livermore National Laboratory, Livermore, California, United States
cqMoscow Engineering Physics Institute, Moscow, Russia
crNational Institute for Physics and Nuclear Engineering, Bucharest, Romania
csNiels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
ctNikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
cuNuclear Physics Institute, Academy of Sciences of the Czech Republic,

Řež u Prahy, Czech Republic
cvOak Ridge National Laboratory, Oak Ridge, Tennessee, United States
cwPetersburg Nuclear Physics Institute, Gatchina, Russia
cxPhysics Department, Creighton University, Omaha, Nebraska, United States
cyPhysics Department, Panjab University, Chandigarh, India
czPhysics Department, University of Athens, Athens, Greece
daPhysics Department, University of Cape Town, iThemba LABS, Cape Town, South Africa
dbPhysics Department, University of Jammu, Jammu, India
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dcPhysics Department, University of Rajasthan, Jaipur, India
ddPhysikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
dePurdue University, West Lafayette, Indiana, United States
dfPusan National University, Pusan, South Korea
dgResearch Division and ExtreMe Matter Institute EMMI,

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
dhRudjer Bošković Institute, Zagreb, Croatia
diRussian Federal Nuclear Center (VNIIEF), Sarov, Russia
djRussian Research Centre Kurchatov Institute, Moscow, Russia
dkSaha Institute of Nuclear Physics, Kolkata, India
dlSchool of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
dmSección F́ısica, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
dnSezione INFN, Trieste, Italy
doSezione INFN, Padova, Italy
dpSezione INFN, Turin, Italy
dqSezione INFN, Rome, Italy
drSezione INFN, Cagliari, Italy
dsSezione INFN, Bologna, Italy
dtSezione INFN, Bari, Italy
duSezione INFN, Catania, Italy
dvSoltan Institute for Nuclear Studies, Warsaw, Poland
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