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ABSTRACT

The directional wave spectra in sea ice are an important aspect of the wave

evolution and can provide insights into the dominant components of wave

dissipation, i.e. dissipation due to scattering or dissipation due to viscous

processes under the ice. In this paper we propose a robust method for the

measurement of directional wave spectra parameters in sea ice from a 3-axis

accelerometer or a heave, pitch and roll sensor. Our method takes advantage

of certain aspects of sea ice and makes use of rotary spectra techniques to

provide model-free estimates for the mean wave direction, directional spread

and reflection coefficient. The method is ideally suited for large ice floes,

i.e. where the ice floe length scale is much greater than the wavelength, but a

framework is provided to expand the parameter space where the method may

be effective.
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1. Introduction20

It has been common practice to use accelerometers, or inertial motion units (IMUs), to detect21

surface wave motion in sea ice (e.g. Wadhams et al. 1986). These have several advantages as they22

are low-cost, relatively easy to deploy, and there exists extensive literature on using such sensors23

for measuring ocean waves (Bender III et al. 2010). While techniques to obtain one-dimensional24

estimates of the wave energy are relatively robust (Bender III et al. 2010), there are several chal-25

lenges associated with calculated directional wave spectra from a single sensor (Benoit 1992;26

Young 1994). One of the largest challenges for measuring waves in ice is due to the multimodal27

nature expected from reflections, scattering from inhomogeneities in the ice cover and changes in28

the dispersion relation (Wadhams et al. 1986; Sutherland and Rabault 2016).29

Understanding the directional spectra is important in order to address the dominant mechanism30

for wave attenuation, which is due to the scattering of wave energy arising from inhomogeneity in31

the ice cover or due to viscous attenuation between the ice cover and the fluid beneath (Squire et al.32

1995; Squire 2007). While both methods are expected to give an exponential amplitude decay as33

a function of distance (Wadhams et al. 1988), distinction between the two dissipative processes is34

expected to be possible if accurate measurements of the directional spread are available (Ardhuin35

et al. 2016). This is true for pack ice as well as the MIZ, as Ardhuin et al. (2016) used observations36

located between 1000-1500 km from the ice edge to infer the dissipation mechanism for waves37

with a period greater than 19 s.38

The only published in situ study of the directional wave spectra in sea ice, to our knowledge39

(and according to Squire and Montiel (2016)), is the study by Wadhams et al. (1986) who used40

several heave, pitch and roll buoys to calculate the spectra inside and outside the marginal ice41

zone. Wadhams et al. (1986) calculated directional spectra using the methodology of Long and42
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Hasselmann (1979), which is an inverse technique that fits the observations to a preferred para-43

metric model for the shape of the directional spectra, as this method has been shown to resolve44

bimodal seas (Lawson and Long 1983). There are other methodologies for calculating the direc-45

tional spectra in bimodal seas, but they all require knowledge of the directional shape function46

and use various techniques to obtain the best fit (see Benoit (1992) for a review of some of the47

techniques). As a first approach we will make no assumptions about the spectral shape and will48

work directly with the Fourier series expansion approach of Longuet-Higgins et al. (1963). This49

approach is used in part to simplify the analysis, but is also justified due to the scarcity of observa-50

tions of directional spectra in ice and the lack of data with regards to a preferred spreading shape.51

Recent advances in the development of low-cost IMUs have allowed for the development of wave52

sensors that can be developed into wave buoys or easily deployed on ice floes (e.g. Doble and53

Wadhams 2006; Kohout et al. 2015; Rabault et al. 2016). This development will make it easier to54

measure waves in ice and, therefore, greatly increase the number of in situ observations available.55

In addition, as these sensors can take advantage of satellite communications, such as Iridium, to56

send data remotely it is advantageous to be able to estimate aspects of the directional spectra in57

a robust manner, similar to the model-independent parameters proposed by Kuik et al. (1988), to58

reduce data transmission volume.59

One of the primary motivations for this paper is to explain why the horizontal acceleration, as60

measured by an IMU on sea ice presented by Sutherland and Rabault (2016) and Rabault et al.61

(2016), is equivalent in magnitude to the vertical acceleration. In previous studies where the hori-62

zontal acceleration was presented (Fox and Haskell 2001; Bender III et al. 2010), the acceleration63

orthogonal to the vertical was shown to be negligible. The studies of Sutherland and Rabault64

(2016) and Rabault et al. (2016) intuitively used this information to infer the direction of propaga-65

tion, but lacked a thorough analysis as to why this should be so. In this paper, a new methodology66
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for estimating information about the directional spectra is presented. This method takes advantage67

of typical IMU measurements in order to obtain robust estimates of mean direction, directional68

spread, and reflection. These directional parameters are estimated using a rotary spectra tech-69

nique (Gonella 1972). This technique is compared with that of Longuet-Higgins et al. (1963) as70

well as model-independent estimates using the Fourier coefficients (Kuik et al. 1988). The outline71

of the paper is as follows. Section 2 outlines the theoretical basis for our methodology and how it72

relates to the original theory as laid out by Longuet-Higgins et al. (1963). The data and method-73

ology is presented in section 3. Details of the wave motion as measured by IMUs are presented in74

section 4. Calculation of directional spectra using an IMU and comparisons with the new rotary75

spectra method, along with estimating model-independent parameters for directional spread and76

reflection, is presented in 5. A summary and discussion of the results, along with limitations of77

the proposed method, can be found in section 6.78

2. Theory79

We begin our analysis with the three orthogonal accelerations in the reference frame of the IMU,80

as shown by Bender III et al. (2010) to be written as81

XS = ax +gx (1)

YS = ay +gy (2)

ZS = az +gz, (3)

where ax, ay and az are the orthogonal accelerations and gx, gy and gz are the components of grav-82

ity in the x, y and z directions of the IMU frame of reference, which we denote by the subscript S.83

There exists some variability in the coordinate system used by various IMU manufacturers (Ben-84

der III et al. 2010), but for our purposes we will use the VN-100 manufactured by VectorNav85
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(2014) and the orientation is shown in Figure 1. The components of gravity in each of the three86

orthogonal components are a function of the pitch θ , defined to be the angle rotated about the y87

axis in a right hand system, and φ , defined to be the angle rotated about the x axis in a right hand88

system, such that89

gx = gsinθ (4)

gy =−gcosθ sinφ (5)

gz =−gcosθ cosφ . (6)

Equations (4)-(6) are identical to Method IV of Bender III et al. (2010).90

Up to this point there has been no assumption made about the nature of the sea ice cover at the91

surface. For waves in sea ice, the ratio of the horizontal dimension of the ice floe to the wavelength92

is an important parameter determining the accelerations and angles of the ice floe relative to the93

ocean surface (Masson and LeBlond 1989; Meylan and Squire 1994). For ice floes much smaller94

than the wavelength, the response amplitude operator (RAO) of an ice floe to surface waves is95

controlled by gravity - i.e. the floe can slide down wave slopes - friction between the floe and96

water and inertia of the floe (Marchenko 1999). For wavelengths comparable to the ice floe length97

scale there can exist complex resonance characteristics strongly affecting the RAO (Masson and98

LeBlond 1989). For wavelengths much smaller than the ice floe, the ice floe will follow the waves99

under the ice and the flexural motion of the ice can change the dispersion relation. In general, the100

accelerations and angles in the three directions are functions of the incident wavelength, the floe101

geometry and to a small extent the water depth (Masson and LeBlond 1989). Below we will make102

some assumptions consistent with the conditions encountered by Sutherland and Rabault (2016),103

but note that the method may still work for smaller floes. This latter point will be elaborated on104

further in Section 6.105
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As one of the primary motivations for this study is to explain the horizontal accelerations ob-106

served by an IMU on a large continuous sheet of ice (Sutherland and Rabault 2016), we will make107

the assumption that the horizontal length scale of the ice floe is much greater than the wavelength.108

This assumption allows us to further assume that the ice is well coupled with the surface waves,109

i.e. that the horizontal motion is negligible ax = ay = 0, and that the angles θ and φ are small110

enough to neglect the second order terms, e.g.. sinθ ≈ θ and cosθ ≈ 1. These assumptions, along111

with (4)-(6), allow (1)-(3) to be written as112

XS = gθ (7)

YS =−gφ (8)

ZS = aZ−g. (9)

Equations (7)-(9) show that a 3-D arrangement of accelerometers on sea ice, to first order, can113

measure the vertical acceleration along with the angles given the above assumptions. This is114

explored further for gravity waves propagating in sea ice.115

The surface elevation can be written as116

η(x, t) = ℜ

[
Aei(k·x−ωt)

]
= ℜ

[
AeiΦ] , (10)

where ℜ denotes the real part, A is the amplitude, k is the wavenumber vector, ω is the angular117

frequency, x is the position vector, t is time and Φ = k ·x−ωt is the phase function. While (10) is118

the elevation for a single frequency, it can easily be written as a linear sum of several frequencies119

with no loss of generality. The angles θ and φ are related to the slopes in the x and y directions120

and can be calculated from (10), i.e.121

θ =
∂η

∂x
= ikxAeiΦ (11)

−φ =
∂η

∂y
= ikyAeiΦ. (12)
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The vertical acceleration in our coordinate system, where z is positive downwards, is calculated as122

az =−
∂ 2η

∂ t2 = ω
2AeiΦ. (13)

The dispersion relation, assuming a Kirchoff-Love thin elastic plate model (Marchenko et al.123

2013), can be written as124

ω
2 = gk tanh(kH)

(
1+

D
ρg

k4
)
, (14)

where k = |k|=
√

k2
x + k2

y , kx and ky are the orthogonal components of the wavenumber vector k,125

D = Eh3/
[
12
(
1−ν2)] is the bending modulus with E being the elastic modulus of ice, H is the126

water depth, h is the ice thickness, ρ is the water density and ν is the Poisson ratio. We define a127

characteristic length scale for the flexural term identical to Fox et al. (2001), i.e.128

`c =

(
D
ρg

)1/4

. (15)

There are other factors which can affect wave dispersion, such as the inertia of the ice and com-129

pressive stress (Liu and Mollo-Christensen 1988). However, ice stresses in an adjacent fjord have130

a maximum of 37.7 kPa away from the hinge zone (Vindegg 2014) , which are much too small131

to affect the dispersion for typical surface wave frequencies. The inertial term may affect the132

higher wavenumbers, but will be limited to a maximum 10% deviation in the dispersion relation133

for wavelengths less than 50 m and ice thicknesses less than 1 m, and is therefore neglected.134

The wavenumber k can be written in terms of one of the orthogonal components kx and ky as135

k = kx

(
1+
(

ky

kx

)2
)1/2

. (16)

In general, at least for lower frequencies which do not quickly attenuate, waves in ice can be136

approximated as long-crested, i.e. (ky/kx)
2� 1 (Sutherland and Rabault 2016). Therefore, from137

(16), kx ≈ k and ky will be a small fraction of k. If we define δk = k− ky, and solving for k such138

that ky = εk and ignoring terms of δk2 gives ε = (2δk/k)1/2. Substituting (11)-(15) into (7)-(9)139
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gives140

XS =
iω2AeiΦ

tanhkH
[
1+(k`c)

4
] (17)

YS =
εiω2AeiΦ

tanhkH
[
1+(k`c)

4
] (18)

ZS = ω
2AeiΦ−g. (19)

Equations (17)-(19) show that the magnitude of XS will be comparable to ZS with a 90◦ phase141

shift for wavenumbers (k`c)
4� 1. For YS, the same 90◦ phase shift is expected but with a much142

reduced amplitude.143

The characteristic length for a range of elastic modulus E of 1−5×109 N m−2 and ice thickness144

h of 0.5 to 1 m, gives a range for `c between 0.58 m and 14.6 m. For ocean swell where (k`c)
4� 1,145

the bending term can be omitted and XS and ZS should have the same magnitude. For thick, stiffer146

ice, the flexural motion will impact higher frequencies of wave motion, but for thin, more pliable147

ice the bending term in the dispersion relation can safely be neglected.148

The finite depth can also lead to an increase in the measured horizontal acceleration XS relative149

to the vertical acceleration ZS for small values of kH. Taking H = 80 m, which is the depth150

for Sutherland and Rabault (2016), gives an increase of XS relative to ZS of 0.5% for wavelengths151

of 168 m, corresponding to waves with periods greater than 10 s, and 3.7% for wavelengths of 251152

m, corresponding to waves with periods greater than 13 s. For H = 160 m, which is the depth for153

the other data which we will present later, the periods of 18 s and 15 s correspond to the 0.5% and154

3.7% errors respectively.155

Equations (17)-(19), bring up an interesting corollary with regards to when the magnitude of XS156

is not equal to ZS (e.g. Fox and Haskell 2001) or when XS and ZS are not 90◦ out of phase (e.g.157

Sutherland and Rabault 2016). Such an inequality could arise from physical horizontal motion158
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(i.e. surge), flexural motion (i.e. (k`c)
4� 1), floe-floe interactions (Yiew et al. 2016) or the waves159

are not sufficiently long-crested (e.g. |XS| ≈ |YS|). Therefore, the accelerations measured in the160

IMU reference frame can give information about wave propagation when |ZS| ≈ |XS| and ZS and161

XS are 90◦ out of phase. The method can also potentially give some information about the ice162

cover when only a subset of the above assumptions hold, and this will be presented for a particular163

example later on in the manuscript.164

3. Data and Methods165

Inertial motion units (IMUs) equipped with a 3-axis accelerometer, a 3-axis gyroscope, and a166

3-axis magnetometer, were used to measure ice motion. The IMUs used are the VN-100 man-167

ufactured by VectorNav (2014). Each IMU is factory calibrated for temperatures ranging from168

-40◦ to 85◦C. The accelerometer has a factory rated resolution of 5× 10−4g and the angular rate169

resolution is 3.5×10−4 rad s−1. Details of the IMUs and the processing can be found in Rabault170

et al. (2016).171

The VN-100 samples internally at a rate of 800 Hz, and the raw signal is then low-pass filtered172

by the embedded processor so that the output rate is reduced to 10 Hz. The use of a low-pass173

filter effectively suppresses aliasing, and reduces the noise level of the instrument. The power174

spectral density (PSD) was calculated for segments of 45 minutes using the Welch method with a175

Hanning window of length 5.5 minutes and a half-width overlap. For overlapping segmented data,176

the degrees of freedom (DoF) can be approximated by (Earle 1996)177

DoF =
2K

1+0.4(1−K−1)
, (20)
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where K is the total number of segments. We have 15 segments which give us nearly 22 DoF. The178

PSD of the acceleration is related to the PSD of the surface elevation by the weighting function179

ω−4 (Tucker and Pitt 2001).180

Several steps are outlined to obtain the orthogonal coordinates, i.e. x, y and z, relative to the181

wave. First, the vertical z axis is obtained by the mean acceleration vector measured by the IMU182

over the duration of the observations. This assumes that gravity is much greater than any mean183

inertial accelerations experienced by the IMU. Second, the x direction is obtained by maximizing184

the variance in the horizontal acceleration, as measured by the IMU, in the orthogonal x-y plane185

about the z axis. The x direction is then verified by ensuring that the gyroscope also has a maximum186

variance in the same direction. If the direction is changing in time, then the coordinates could be187

calculated on time windows comparable to the 45 minute time series used for the PSD estimates.188

In our analysis we use three different test cases from two different field studies. The first two189

cases are from a study performed on fast ice in Tempelfjorden, Svalbard (78◦23′N,16◦54′E) during190

March 2015, as presented in Sutherland and Rabault (2016) and Rabault et al. (2016). The third191

case is from study on an ice floe in the Barents Sea (77◦45′N,25◦15′E) during May 2016. The IMU192

used for observing the wave motion is identical in each case, while the data acquisition system and193

configuration has been updated in case c), identical to that presented in Rabault et al. (2017). The194

ice floe in the Barents sea is approximately 2 km in diameter and 0.3 m thick.195

The three different cases all have similar integrated energy, but differ in their frequency distribu-196

tion. The cases are: a) a mixed sea in Tempelfjorden in fast ice with high frequency energy and an197

observed deviation from the deep water dispersion relation (Sutherland and Rabault 2016), b) also198

in Tempelfjorden but after period a) when there was no longer clear evidence for flexural motion199

and c) a swell dominated regime on a 2km ice floe in the Barents sea. Figure 2 shows the PSD200

for each of the three cases. A summary of the wave parameters such as significant wave height201
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HS, peak period Tp and zero-upcrossing period Tz0 can be found in Table 1. The significant wave202

height and zero-upcrossing periods are calculated from the wave moments, i.e. HS = 4
√

m0 and203

Tz0 =
√

m2/m0, where the ith wave moment is defined as204

mi =
∫ f2

f1
f iS( f )d f , (21)

where S( f ) denotes the PSD and f1 and f2 are the frequency limits, which we select to be f1 = 0.05205

Hz and f2 = 0.25 Hz. The lower frequency limit is determined by the IMU sensitivity and the upper206

limit is selected to limit high frequency motion unrelated to surface waves.207

In our analysis we will take advantage that the vertical and horizontal acceleration, where the208

horizontal acceleration is due to the aliasing of the gravity vector, are 90◦ out of phase and calcu-209

late the wave propagation using a rotary spectrum. This technique is commonly used in calculating210

the rotation of ocean currents (e.g. Gonella 1972), but not so common for surface wave propaga-211

tion (Sutherland and Rabault 2016).212

The vertical and horizontal acceleration measured by the IMU may be written using complex213

notation, i.e.214

ZS(t)+ iXS(t) = a+eiωt +a−e−iωt , (22)

where a+ is the acceleration in the positive orientation in the x− z plane and a− is the acceleration215

in the negative orientation in the x− z plane. Taking the PSD of (22), and scaled by ω−4 to216

convert from acceleration to elevation, gives the energy in the positive (or forward) direction for217

positive frequencies and the negative (or backwards) direction for negative frequencies. Using218

the measured accelerations, the energy calculated from the rotary PSD is twice the true value219

calculated from ZS. The factor of 2 arises from ZS and XS having the same magnitude, which is220

equal to aω2, so the PSD(ZS+ iXS) ∝ a2ω4+a2ω4 = 2a2ω4 where a is the amplitude in equations221

(17)-(19).222
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The rotary spectrum is also used to calculate the predominant direction of wave propagation.223

After the vertical vector is determined from the mean acceleration, which should be equal to g,224

the two orthogonal vectors are rotated around this z axis and the optimal orientation is chosen by225

maximizing the integrated energy for the positive frequencies. Figure 3 shows the rotary spectra226

calculated in the along-wave (blue) and cross-wave (red) direction for the three test cases. Each227

case has a high asymmetry in the along-wave direction (i.e. any reflected energy is significantly228

less than the propagating energy) and a high symmetry in the cross-wave direction (i.e. symmetric229

wave shape).230

4. Wave Motion231

Investigating the relationship between the accelerations and angles measured by the IMU can232

shed some light on some of the assumptions that we have made. For example, if XS ≈ gθ and233

the magnitudes of XS and ZS− g (henceforth the −g is dropped from the notation) are nearly the234

same, then the assumption of negligible horizontal motion of the ice, small wave steepness and a235

dispersion relation of ω2 = gk are validated. Figure 4 shows the vertical acceleration ZS and the236

horizontal acceleration in the direction of wave propagation XS measured by the IMU, in addition237

to g times the pitch angle θ . It is clear that XS ≈ gθ and that any physical horizontal motion in the238

three cases is negligible. The accelerations XS and ZS are similar in magnitude, but not identical.239

Since the horizontal motion of the ice floe is shown to be negligible, differences between XS and240

ZS will arise from the dispersion relation or possibly from the long-crested approximation.241

From (17) and (19), the accelerations ZS and XS are expected to be 90 degrees out of phase with242

one another, which can be tested by looking at the co-spectral density of the two signals. The243

phase angle, α , between the acceleration measured in the z and x axis can be determined from the244
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co-spectral power density Szx245

α = tan−1
[

ℑ(Szx)

ℜ(Szx)

]
, (23)

where ℑ denotes the imaginary part, assuming that the two signals are correlated. The spectral246

coherence between the two signals, γzx, is calculated by247

γ
2
zx =

SzxS∗zx

SzzSxx
, (24)

where ∗ denotes the complex conjugate. A value of γ2 > 0.305 rejects the hypothesis that the two248

signals are not correlated at the 99.9% confidence interval (Amos and Koopmans 1963).249

The coherence (γ2) and phase angle (α) between ZS and XS are shown in Figure 5 for the three250

cases. When α = 90◦, the vertical and horizontal components are in quadrature and the deepwater251

dispersion relation is valid. The three cases show a slightly different relation between the two252

orthogonal accelerations. Figures 5b and 5c show that frequencies with a high correlation (γ2 >253

0.75) correspond with α ≈ 90◦. This is in contrast with Figures 5a and 5b, which both show254

deviations from α = 90◦ when coherence is high (γ2 > 0.75). This deviation may be due to255

flexural motions as it increases with frequency, hence k`c has increased. The deviation is greater256

for case a) than b), which corresponds to a time where there was evidence of flexural motion from257

the observed dispersion relation (Sutherland and Rabault 2016).258

To test the long-crested wave hypothesis, the same analysis was applied to the cross-wave com-259

ponent, YS, and in general YS and ZS are not correlated at the 99.9% confidence level. The details260

of this analysis can be found in the Appendix. This suggests that the phase difference observed261

between XS and ZS is due to the dispersion relation.262
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5. Directional Spectra263

An important aspect of geophysical surface waves is the directional spectrum, which includes264

information about the direction of wave propagation and the directional spread. The directional265

spectrum F of surface waves as a function of frequency f and direction ψ can be written as266

F( f ,ψ) = S( f )D( f ,ψ), (25)

where S( f ) is the PSD and D( f ,ψ) is a spreading function, which is normalized so that267 ∫
π

−π

D( f ,ψ)dψ = 1.

Longuet-Higgins et al. (1963) showed for a heave, pitch, roll buoy that the directional spectrum268

can be approximated from the first five Fourier coefficients such that269

F( f ,ψ) =
1
2

A0 +(A1 cosψ +B1 sinψ)+(A2 cos2ψ +B2 sin2ψ)+ . . . , (26)

where the coefficients are determined from the co- Ci j and quad- Qi j spectra of the i and j quantities270

denoted by 1, 2 and 3 for the vertical acceleration, pitch and roll, i.e.271

A0 =
∫

π

−π

F( f ,ψ)dψ =
1

ω4π
C11

A1 =
∫

π

−π

cos(ψ)F( f ,ψ)dψ =
Q12

ω2π

(
C11

C22 +C33

)1/2

B1 =
∫

π

−π

sin(ψ)F( f ,ψ)dψ =
Q13

ω2π

(
C11

C22 +C33

)1/2

A2 =
∫

π

−π

cos(2ψ)F( f ,ψ)dψ =
C22−C33

π

(
C11

C22 +C33

)
B2 =

∫
π

−π

sin(2ψ)F( f ,ψ)dψ =
C23

π

(
C11

C22 +C33

)
. (27)

Longuet-Higgins et al. (1963) went on to show that omitting the higher order terms in (26) is272

equivalent to applying a weighting function to the true spectrum, i.e.273

F1( f ,ψ) =
1

2π

∫
π

−π

F( f ,ψ ′)W1(ψ
′−ψ)dψ

′, (28)
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where W1 = 1+2cos(ψ ′−ψ)+2cos2(ψ ′−ψ) and F1 is the truncated (26). The weighting func-274

tion W1 can be negative for certain directions, which can make F1( f ,ψ) negative while F( f ,ψ)275

is expected to be strictly positive. To avoid negative energy, Longuet-Higgins et al. (1963) pro-276

posed an alternate weighting function which is positive for all directions, but arbitrarily widens277

the distribution,278

F2( f ,ψ) =
1
2

A0 +
2
3
(A1 cosψ +B1 sinψ)+

1
6
(A2 cos2ψ +B2 sin2ψ) . (29)

Figure 6 shows the directional distribution, where Di( f ,ψ) = Fi( f ,ψ)/S( f ), at the peak frequency279

for each test case. The truncated Fourier series, D1( f ,ψ), gives a narrower peak, negative energy280

around ±90◦ and positive energy at ±180◦ from the direction of propagation. This is quite differ-281

ent than for D2( f ,ψ) which smooths out the spectral energy to angles greater than ±90◦ and does282

not have a second peak at ±180◦. So, while it is true that D1( f ,ψ) is negative at directions that283

are orthogonal to the principal direction of propagation, most of the energy for waves in ice are284

expected to be along one principal direction (Wadhams et al. 1986). Furthermore, since the slope285

is generally very small for waves in ice, the curvature will be significantly smaller allowing for a286

further argument for using the truncated Fourier series as opposed to selecting somewhat arbitrary287

weights.288

In order to compare the directional spectra estimates with the rotary spectra method, the direc-289

tional spectra is integrated over each hemisphere as290

SDi( f ) =
∫

π/2

−π/2
cosψFi ( f ,ψ)dψ

SDi(− f ) =
∫

π/2

−π/2
|cos(ψ−π)|Fi ( f ,ψ−π)dψ, (30)

where i is either 1 or 2 depending on which directional form is used for the wave spectra. The291

cosine term in (30) is used to project the directional spectra on the axis of propagation used for292

the rotary spectra. While cosine weighting has little effect on the positive frequencies as most293
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of the energy is at ψ = 0, it will impact the negative frequencies where energy at ψ = ±90◦294

can be comparable to ψ = ±180◦ depending on the spreading function used. Figure 7 shows295

the comparison of (30) with estimates using the 1-D vertical, 1-D horizontal and rotary spectra.296

Note the lower noise level of case c) compared with the other two cases. This is due to the297

implementation of the onboard low-pass filter for the Lance cruise, which was not done with the298

setup for the Tempelfjorden experiment. The onboard filter is programmed to obtain a boxcar299

average of 80 adjacent samples at the internal IMU sampling rate of 800 Hz and outputs this value300

at 10 Hz.301

There is good qualitative agreement between all estimates of the PSD for the three test cases302

presented. It is somewhat surprising/encouraging that there is such excellent agreement for the303

negative frequencies, i.e. the “reflected” energy portion of the spectra, and that both directional304

spectral shape give similar estimates. This result suggests that the reflection coefficient may be in-305

dependent of the exact shape of the distribution and calculated from integrated parameters, similar306

to directional spread (Kuik et al. 1988).307

a. Comparisons with Rotary Spectra308

The rotary spectra of the counter-clockwise and clockwise rotating components (which we will309

denote by positive and negative frequencies) can be written in terms of the co- and quad-spectra310

of the two components (Gonella 1972), i.e.311

Srot
xz ( f ) =

1
8
(Cxx +Czz +2Qxz) (31)

Srot
xz (− f ) =

1
8
(Cxx +Czz−2Qxz) , (32)

where Ci j and Qi j are the co- and quad-spectra used to define the Fourier coefficients in (27).312

Noting that z is equivalent with 1 in (27) and x is equivalent with g times 2 in (27), and using the313
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deep water dispersion relation (i.e. Czz =Cxx), which assumes that the wavenumber k satisfies both314

(k`c)
4� 1 and tanhkH ≈ 1, we obtain (31) and (32) in terms of the Fourier coefficients, i.e.315

Srot
xz ( f ) =

A0πω4

4

(
1+

A1

A0

)
(33)

Srot
xz (− f ) =

A0πω4

4

(
1− A1

A0

)
. (34)

Similarly, the rotary spectra in the cross-wave direction can be written as316

Srot
yz ( f ) =

A0πω4

4

[(
1
2
+ ε

2
)
+

B1

A0

]
(35)

Srot
yz (− f ) =

A0πω4

4

[(
1
2
+ ε

2
)
− B1

A0

]
. (36)

Equations (33)-(36) will be used to infer calculated values of directional spread and reflection with317

the Fourier coefficients.318

b. Wave Reflection319

Estimating wave reflection in an ice-covered sea is difficult as it requires the ability to resolve320

a bimodal spectrum, with the modes 180◦ apart, which is challenging using traditional tech-321

niques (Benoit 1992). A classic option is to statistically fit a parametric model for spreading322

from the data, a common model is the “cosine-2s model” D(ψ) ∝ cos2s (ψ/2) where s is the323

spreading factor, and is identical to the methodology of Wadhams et al. (1986) in their study of di-324

rectional spectra in sea ice. While such methods have shown to be effective in open water (Benoit325

1992), there is little evidence suggesting that they will be as effective under an ice cover. Instead,326

we propose a simple method using rotary spectra, which can determine wave propagation by the327

clockwise and counter-clockwise components. This method may be particularly well suited to328

measure waves in ice as IMUs follow the surface relatively well with little horizontal acceleration329

(see Figure 4). Furthermore, Wadhams et al. (1986) showed in their analysis that the direction of330

18



the reflected spectral peak is very close to 180◦ from the direction of the incident wave, which is331

an ideal situation for the use of rotary spectra.332

Figure 7 shows that estimates of the reflected energy using the rotary spectra are similar to the333

directional spectra estimates projected onto the negative along-wave axis. It is expected that the334

shape of the directional spectrum D( f ,ψ) would affect the estimate of the reflected energy, but335

Figure 7 shows very similar estimates using the two different directional shapes. In Figure 6,336

D1( f ,ψ) shows two separate peaks at ψ = 0◦ and ψ ≈ ±180◦ while D2( f ,ψ) shows a broad337

peak which extends to angles greater than 90◦ and goes to zero for ψ = ±180◦. While the two338

directional estimates are quite different in the directional distribution of energy, it is striking that339

the integrated values are similar and that the energy propagating from the sea and towards the sea340

are consistent between the two methods.341

The reflection coefficient R2 is calculated from Figure 7 using the definition342

R2 =
S(− f )
S( f )

, (37)

where S(± f ) is the PSD estimated using either of the rotary spectral or directional spectral meth-343

ods, − f denotes the frequency of the reflected energy and f is the frequency of the propagating344

energy. The reflection coefficient can also be written in terms of the Fourier coefficients using (33)345

and (34), which becomes346

R2
F =

1−A1/A0

1+A1/A0
. (38)

Figure 8 shows R2 estimated using the different methods for the three cases. In all three cases,347

R2
D2 is greater than the other estimates, which we interpret to arise from the increased spread due to348

the smoothing function as the weighting function is 0 when ψ =±π . The other estimates produce349

a striking similarity with one another. This similarity suggests that (38) may provide a model-free350

estimate of the reflection coefficient that can be calculated from the first order Fourier coefficients.351
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c. Directional Spread352

Another important aspect is the directional spread of the propagating wave field. This term is353

model independent as it can be calculated from the first order Fourier coefficients (Kuik et al.354

1988), i.e.355

σ1 =

√
2
(

1−C1

A0

)
(39)

σ2 =

√
1
2

(
1−C2

A0

)
, (40)

where Ci =
√

A2
i +B2

i . Equation (40) deviates slightly from the definition of Kuik et al. (1988) by356

using a different definition for C2. Our definition for σ2 is consistent with Ardhuin et al. (2016),357

and is chosen as it is solely dependent on the second order Fourier coefficients. While not shown358

here, the difference between the two definitions of σ2 is minimal.359

We propose that the directional spread may also be estimated from the rotary spectra in the360

along- and cross-wave directions, which we define as361

σr( f ) = tan−1

[
Srot

yz ( f )
Srot

xz ( f )

]
+ tan−1

[
Srot

yz (− f )
Srot

xz ( f )

]
, (41)

where Srot
xz is the along-wave (i.e. x− z plane) rotary spectra and Srot

yz is the cross-wave (i.e. y− z362

plane) rotary spectra. Equation (41) gives a clear geometric relation between the along-wave and363

cross-wave direction for each frequency. The spread calculated by (41) can also be estimated from364

the Fourier coefficients using (33)-(36), i.e.365

σ
∗
r ( f ) = tan−1

[
0.5+B1/A0

1+A1/A0

]
+ tan−1

[
0.5−B1/A0

1+A1/A0

]
, (42)

where ε is neglected and thus σ∗r is expected to provide a lower-bound on the estimated spread.366
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Another method for the determination of the directional spread is to calculate the root-mean-367

square spread (Kuik et al. 1988), i.e.368

σD =

√∫
π

−π

(ψ−ψ0)
2 D( f ,ψ)dψ, (43)

where ψ0 is the mean wave direction defined from the Fourier coefficients as ψ0 = tan−1 B1/A1.369

There are various drawbacks to using (43), such as it requires calculating the directional distribu-370

tion D( f ,ψ) and is not expected to be valid for large spreads (Longuet-Higgins et al. 1963), but it371

is presented here for purely comparative purposes.372

Equation (41) estimates the spread from a purely geometrical reasoning, and thus the isotropic373

limit of σ iso
r = π/2= 90◦ is more intuitive than previous estimates. For example, the isotropic limit374

of (39) is σ iso
1 =

√
2 ≈ 81◦ while for (40) it is σ iso

2 =
√

2/2 ≈ 40.5◦. Furthermore, the isotropic375

limit of (43) is σ iso
D = π/

√
3 ≈ 104◦. It is tempting to normalize each estimate of spread by a376

factor related to the isotropic limits (see Squire and Montiel 2016). However, this is inconsistent377

with the results of Kuik et al. (1988), which showed that σ1, σ2 and σD all give similar results378

using synthetic data with relatively narrow angular distributions. It is hard to know a priori if the379

spread will be small or not so we scale each spread in a similar way as Squire and Montiel (2016),380

but in our case we scale them to all have the isotropic limit of 90◦.381

Figure 9 shows the comparison between the various definitions for the spread for the three test382

cases. Equation (42) assumes ε = 0, which will give a lower estimate to the directional spread.383

For frequencies less than 0.15 Hz, all estimates of the spread, with the exception of σD2, give384

strikingly similar results. It is not too surprising that σD2 is a bit larger as the directional spectrum385

is arbitrarily widened by a smoothing function in order to ensure the energy is positive for all386

angles.387
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There are some subtle differences between the methodologies. For instance, in Figure 9a there is388

a deviation of spread estimates at f = 0.15 Hz, which coincides to the frequency where a change in389

the dispersion relation due to flexural motions was observed (Sutherland and Rabault 2016). After390

this transition frequency the estimates converge for frequencies greater than 0.17 Hz suggesting391

that the effect of flexural motions on the calculated spread is complicated. This complication is392

also present in Figure 9b where spread estimates also deviated for frequencies between 0.17 and393

0.20 Hz. For case c) (Figure 9c) the spread is consistent between the scaled estimates, with the394

exception of σD1 for the same reasons as mentioned in the previous paragraph.395

6. Summary and Discussion396

A new method for calculating aspects of directional wave spectra, such as mean direction,397

spread, and reflection is presented for a single inertial motion unit (IMU) mounted on sea ice.398

This method is based on calculating the rotary spectra of the vertical and horizontal components399

of the acceleration as measured in the IMU reference, where the horizontal acceleration has been400

shown to be equal to g times the slope. This measured horizontal acceleration is predominantly401

due to the projection of the gravity vector on the horizontal axis due to the sloping surface and402

any physical horizontal motion is negligible. While this is the case for our data, where the ice403

floe is much larger than the wavelength, it remains to be seen if the same relation will hold for404

IMUs on much smaller floes. For example, Fox and Haskell (2001) observed negligible horizontal405

acceleration on ice floes of approximately 7 m to 9 m in diameter. As these floes are much smaller406

than their range of observed wavelength of approximately 50 m to several hundred metres, the407

floes are expected to follow the orbital motion of the waves. Therefore, the physical acceleration408

due to the orbital motion may cancel the aliasing of the gravity vector due to the surface slope as409

it is expected to be equal in magnitude and opposite in sign as shown in (17)-(19).410
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Since the horizontal acceleration is shown to be equivalent to the slope, we presented a method411

to estimate the reflection and directional spread using a rotary spectra technique (Gonella 1972).412

The rotary spectra method is compared with directional estimates obtained using the method413

of Longuet-Higgins et al. (1963) using different weighting functions. The first weighting func-414

tion is using the truncated Fourier series, which assumes that the effects from the higher order415

spectra are negligible, but can give negative energy at angles around ±90◦ from the principal di-416

rection of propagation. The second weighting function is the one presented by Longuet-Higgins417

et al. (1963), which arbitrarily widens the spectra but has the advantage of ensuring that the direc-418

tional spectral energy is positive for all directions. Although both methods have different spectral419

shapes, they are both found to be consistent with the rotary spectra when projected onto the axis of420

propagation and integrated over each hemisphere, i.e. −π/2 < ψ < π/2 for the propagating wave421

and −π/2 < ψ − π < π/2 for the reflected component. This result suggests that the difference422

between the two weighting functions are minimal for such a coarse directional resolution.423

Our examples consisted of unimodal or bimodal seas where the modes are about 180◦ apart, and424

the rotary spectrum is naturally suited for such scenarios, but in more complicated multi-modal425

seas then it is likely that the method may not perform as well. For instance, since the principal426

direction is determined from the time series by locating the direction which maximizes the along-427

wave variance, this will find the mean direction associated with the peak of the wave spectra, and428

not for each frequency band. It may be possible to devise a metric of “multi-modalness”, which429

investigates the symmetry in the cross-wave direction and asymmetry in the along-wave direction430

as our observations (Fig. 3) suggest this to be the case for our predominantly unimodal or bimodal431

seas. Our comment on this is primarily speculation as our data does not contain such complicated432

wave fields. Further research is required to investigate the possibility of extending our method to433

multi-modal seas.434
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The reflection coefficient is calculated using both the rotary spectra and the estimated directional435

spectra. The calculated reflection coefficients are similar for the three cases using the two methods,436

with the wider directional distribution D2 giving slightly larger values, presumably from the spread437

of energy to angles greater than 90◦ from the principal direction of propagation. A derivation438

for the reflection coefficient is presented which is model-independent in that it can directly be439

calculated from the Fourier coefficients. This model independent reflection coefficient compares440

favourably with the estimates other than D2, especially when the directional spread is small, i.e.441

near the spectral peak.442

Estimates of the directional spread using rotary spectra compared well with the model-443

independent estimates of Kuik et al. (1988) when proper scaling factors were applied to give444

the same isotropic limit. The isotropic limit using rotary spectra is σr = π/2 = 90◦, while the445

isotropic limits for the other methods are σ1 =
√

2≈ 81◦, σ2 =
√

2/2≈ 41◦, and the rms deviation446

σD = π/
√

3 ≈ 104◦. While it is expected that σ1 = σ2 = σD for small directional spreads (Kuik447

et al. 1988), we found the isotropic scaling to be necessary for the estimates to be consistent in448

our data. This type of scaling, based on the isotropic limit, was also employed by Squire and449

Montiel (2016) in order to relate the spread estimates of the marginal ice zone model of Montiel450

et al. (2016) with the field observations of Wadhams et al. (1986). In addition, our observations451

of wave spreading near the peak frequency were consistently around 30◦, which is similar to the452

spread calculated by Wadhams et al. (1986) in the marginal ice zone. It is not clear to us why453

scaling the directional spread by the isotropic limits gives consistent results between the various454

methods as near the spectral peak the directional spreads are much less than the isotropic limit455

and our previous analysis (section 4) suggests that the wave propagation is predominantly in one456

direction. This is somewhat troubling that different methodologies give such different results and457

care must be taken when using measurements of directional spread.458
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Our observations of surface waves under sea ice suggest that the linear accelerations measured459

in the IMU frame of reference can be related to the angular motion and vice versa in the case of460

long-crested waves travelling through pack ice (Liu and Mollo-Christensen 1988; Ardhuin et al.461

2016). This simplifies the sensors necessary to measure the directional aspects of surface waves,462

which could lead to a further reduction in cost, both in terms of number of sensors and amount of463

data that needs to be recorded and/or transmitted. In situations where the horizontal acceleration464

is not negligible, the rotary method may still be valid as long as additional data is recorded. For465

example, the angle about the three orthogonal axes and the floe response to the incident wave.466

This difficulty suggests that a multi-sensor approach will be necessary to measure the wave field467

in a variety of sizes and shapes of sea ice.468
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APPENDIX476

Cross-wave coherence477

In addition to the along-wave propagation, the propagation in the cross-wave direction is also478

investigated. Figure A1 shows that the acceleration and the cross-wave slope follow each other479
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reasonably well for all three cases, with the best agreement occurring for case c). The vertical480

acceleration is scaled by 0.3 for visualization purposes.481

In the same manner for the along-wave, the coherence and phase difference is calculated for482

the vertical and horizontal motion in the cross-wave direction and is shown in Figure A2. The483

coherence is much smaller than for the along-wave motion with only case a) showing coherence484

at the 99.9% confidence interval. This is in contrast with equations (18) and (19), which suggests485

that physical motions and/or noise are present which are at least similar in magnitude to the aliased486

gravity vector due to the cross-wave slope.487
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TABLE 1. Wave parameters for the three test cases chosen in this study.

Case HS (m) Tp (s) Tz0 (s)

a 0.082 7.7 7.9

b 0.088 8.8 8.9

c 0.083 12.8 10.1
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FIG. 1. Axis orientation for the VN-100 IMU.
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FIG. 3. Rotary spectra in the along (blue) and cross (red) directions for the three cases denoted a), b) and c).

The grey circles on the base represent 0.1 Hz frequency contours.
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FIG. 5. Phase angle and correlation measured in the sensor frame of reference for the three cases denoted

a), b) and c). The blue line shows the phase angle between ZS− g and XS with the blue dashed line showing a

phase difference of 90◦. The red line shows the coherence squared and the red dashed line indicates the 99.9%

probability of rejecting the null hypothesis.
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FIG. 6. Directional spreading function of truncated Fourier series D1 (blue) and weighted function D2 pro-

posed by Longuet-Higgins et al. (1963) (red) at the peak frequency for the three cases denoted a), b) and c).
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FIG. 7. Rotary spectra compared with other spectral energy estimates for the three cases denoted a), b) and

c). The noise level is shown by the dashed black line. Note that c) has a lower noise level than a) and b).
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FIG. 8. Comparison of the reflection coefficient for the three cases, denoted a), b) and c), estimated from the

rotary spectrum (blue) and the directional spectrum for two different directional spreading functions.
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FIG. 9. Directional spread measured in the sensor reference frame for the three cases denoted a), b) and c).

The inverted triangles show local peaks in the 1-D spectrum. Each estimate of the directional spread is multiplied

by a factor to ensure their respective isotropic values are equal to 90◦.
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Fig. A1. Acceleration in the cross-wave direction measured in the sensor frame of reference for the three

cases. The horizontal acceleration measured in the IMU reference frame is predominantly due to the projection

of the gravity vector with ε estimated to be about
√

0.1≈ 0.3 for illustrative purposes.

612

613

614

42



-180

 -90

   0

  90

 180

,
=
/

a)

-180

 -90

   0

  90

 180

,
=
/

b)

0.05 0.1 0.15 0.2 0.25
f =Hz

-180

 -90

   0

  90

 180

,
=
/

c)

0

0.25

0.5

0.75

1

.
2

0

0.25

0.5

0.75

1

.
2

0

0.25

0.5

0.75

1

.
2

Fig. A2. Phase angle and correlation measured in the sensor reference frame for the three cases. The blue

line shows the phase angle between ZS−g and YS with the blue dashed line showing a phase difference of 90◦.

The red line shows the coherence squared and the red dashed line indicates the 99.9% probability of rejecting

the null hypothesis.
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