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Abstract

Crop Wild Relatives (CWR) are plants that through their close genetic
relationship to crop plants have the potential to bring new genetic diversity
into crops. Conservation of CWR is therefore an important task both
globally and nationally.

A national recommendation of in situ and ex situ conservation of CWR
in Norway has been made by Phillips et al. (2016), using occurrence
records from the Global Biodiversity Information Facility (GBIF) and
species distribution modelling (SDM) with Maxent to find hotspots of CWR
diversity. The goal of this study is to explore some of the limitations
when using typical GBIF-mediated data, which can be opportunistically
and unsystematically sampled presence-only occurrence data. In order
to investigate this, SDMs were made with GBIF-mediated presence-
only occurrence data from five different CWR plant species from the
CWR priority list for Norway made by Phillips et al. (2016) namely:
Allium ursinum L. (ramsons), Carum carvi L. (caraway), Ribes uva-crispa
L. (gooseberry), Rubus chamaemorus L. (cloudberry) and Rubus idaeus L.
(wild raspberries). For each species, occurrence data was sampled to three
different time periods: all points from before 1950, from 1950 to 2000 and all
after 2000. In addition SDMs were made using smaller and smaller sample
sizes. To test SDMs there is a need to gather independent and unbiased
test data from field work, and a preliminary work has here been done to
investigate possible methods of field validation.

Results indicate that older occurrence data give different models than
newer data, and an approach is suggested for identifying the minimum
number of presence points needed for stable SDMs. This thesis has
highlighted some of the issues with spatial, temporal and species bias
in GBIF-data. Being aware that the biases exist is the first step towards
finding solutions to deal with it, and many solutions have been suggested
by others.
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Chapter 1

Introduction

1.1 Crop Wild Relatives

Crop wild relatives (CWR) are plants that are genetically related to crop
plants (Maxted et al., 2006). But in a sense every life form on earth are
related, so there is a need for a more precise definition. Harlan and Wet
(1971) proposed the Gene Pool classification for cultivated species and their
wild relatives. In this system there is a division into three Gene Pools:

Primary Gene Pool (GP-1) - consisting of the species itself and all its
cultivated (GP-1A) and wild (GP-1B) varieties.

Secondary Gene Pool (GP-2) - different species, but which can still be
crossed with the target species.

Tertiary Gene Pool (GP-3) - species in which gene transfer is
impossible or require sophisticated techniques (Harlan and Wet, 1971;
Maxted et al., 2006).

When it comes to CWR in this system, they could be defined as species
belonging to GP-1B or GP-2 of a crop species, but that requires information
about ease of crossing and genetic relatedness that is often lacking for
wild species (Maxted et al., 2006). In cases where genetic information is
not available, Maxted et al. (2006) recommend the use of the Taxon Group
concept.

Taxon Group 1a – crop

Taxon Group 1b – same species as crop

Taxon Group 2 – same series or section as crop

Taxon Group 3 – same subgenus as crop
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Taxon Group 4 – same genus

Taxon Group 5 – same tribe but different genus to crop

The definition of CWR that is proposed using both the Gene Pool and
Taxon Group concepts is this:

”A crop wild relative is a wild plant taxon that has an indirect
use derived from its relatively close genetic relationship to a crop; this
relationship is defined in terms of the CWR belonging to Gene Pools 1 or 2,
or taxon groups 1 to 4 of the crop.” (Maxted et al., 2006, p. 2680)

Recently, a study by Schröder et al. (2015) on European wild grape
found resistance to downy mildew, powdery mildew, and black rot in
different wild populations. This shows how beneficial traits that are not
present, or only present to a lesser degree in domesticated crop species can
be found in CWR. There are many other examples of how genetic traits in
CWR can be utilized in modern farming other than as a disease prevention
tool. These include responding to climate changes or increasing yields of
crops to accommodate human population growth (Dempewolf et al., 2017;
Redden et al., 2015).

Most nature conservation efforts are constrained by other societal
interests. Conserving areas involve legal earmarking which may end up
with expropriation and local conflicts. Thus, the societies cannot hope to
conserve areas with declared CWR everywhere. An important question
will therefore be; How can CWR be conserved in a way that is effective
from an ecological standpoint while still maintaining socio-economical
viability?

The genetic diversity of CWR are currently inadequately preserved in
gene banks. According to Castañeda-Álvarez et al. (2016) ”over 95 % are
insufficiently represented in regard to the full range of geographic and
ecological variation in their native distributions”. Although many CWR
can be present in protected areas, active management and conservation of
these species is still a rarity (Vincent et al., 2013).

A ten year project started by the Millenium Seed Bank of the Royal
Botanical Gardens, Kew and the Global Crop Diversity Trust (GCDT) aims
to collect, conserve and initiate the use of CWR globally (Dempewolf
et al., 2014). The project is focused on 29 focal crops and the wild
relatives in their gene pools. All of these 29 species can be found in
Annex 1 of the International Treaty on Plant Genetic Resources for Food
and Agriculture (ITPGRFA) (FAO, 2009). The aims of the project are to
identify CWR missing from gene banks, collect those CWR from the wild,
evaluate CWR materials for useful traits and prepare them for use in crop
improvement and make the resulting products and information widely
available (Dempewolf et al., 2014).
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There is currently a plan for a genetic reserve for CWR at Færder
national park in Vestfold Norway. This is an archipelago with an especially
rich flora, and also a hotspot for CWR plants, with at least 45 CWR
taxa (Kell and Maxted, 2015, page 5). Phillips et al. (2016) have made a
prioritized list of 204 CWR that they recommend protection of in Norway.
In this work they have used ecogeographic diversity as a proxy for genetic
diversity, to identify complementary in situ genetic reserves that can
preserve a larger breadth of genetic diversity.

The usefulness of CWR as a resource in agriculture, the increased
interest in the subject within ecological academic societies and the difficulty
of implementing conservation makes further research on CWR an urgent
priority. In order to conserve the genetic diversity of CWR, there is a need
for a holistic conservation approach with both genetic reserves in nature (in
situ) and concentrated collecting efforts into gene banks (ex situ) (Maxted et
al., 2012). These efforts must have a high degree of efficiency due to limited
conservation resources.

1.2 Global Biodiversity Information Facility

A national recommendation of in situ and ex situ conservation of CWR
in Norway has been made by Phillips et al. (2016), using occurrence
records from the Global Biodiversity Information Faciclity (GBIF) and
Species Distribution Modelling (SDM) with Maxent to find hotspots of
CWR diversity. The goal of this study is to explore some of the limitations
when using typical GBIF-mediated data, which can be opportunistically,
unsystematically sampled presence-only occurrence data.

The GBIF platform contains freely available user generated biodiversity
data (Telenius, 2011). One of the challenges with using GBIF data is that
you cannot know whether the presence points are representative (in both
spatial, temporal and ecological terms) for the species you are interested
in. The data is from both amateur collectors and professionals, but you
lack information on what criteria they have used for registering the species,
and most commonly it is only opportunistically collected when convenient,
or in connection with a specific study. In some cases data papers are
published, with more detailed explanations of how the data is gathered,
but this is the exception. Bryn et al. (2015) is an example of such a paper.

Even though GBIF is a global platform, biodiversity data are not equally
distributed across the globe. A study by Yesson et al. (2007) of GBIF data
coverage found that many biodiversity hotspots for legumes in Africa and
Asia were data deficient. This kind of spatial bias also occurs on a more
local scale, with different sampling intensity in different regions and more
data being collected closer to roads.
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Isaac et al. (2014) recognize four principal forms of bias in opportunistic
data: ”(i) uneven recording intensity over time, measured as the number of
visits per year (a visit is defined as unique combination of site and date in
the records data), (ii) uneven spatial coverage, (iii) uneven sampling effort
per visit and (iv) uneven detectability” (Isaac et al., 2014, p. 1052).

In this thesis the focus will be on these four types of biases that are listed
by Isaac et al. (2014), but with (iii) and (iv) as one category (species bias).
All of these biases are assumed to be present in GBIF-data, and they will be
referred to as:

Temporal bias - there is an increase in data being gathered and entered
into GBIF over time, so there is a bias towards newer data and older data
is under-represented. This could lead to misinterpretations, for instance:
an increase in occurrence records of Allium ursinum from 1900 to 2000 does
not imply that the species has become more abundant, but could simply be
because it has been recorded more often.

Spatial bias - there is not random sampling of species in space, meaning
that some locations have higher probability of being visited because they
are conveniently close to roads or are more often visited by humans.
Therefore we can not assume that the full range of species distributions
are represented within GBIF.

Species bias - there is not a direct link between which species are present
in an area and which are being reported to GBIF. Some species are more
noticeable than others, and some require expert knowledge to correctly
identify. This can lead to an over-representation of some species and an
under-representation of others.

1.3 Species Distribution Modelling

In order to select possible conservation areas of CWR, Species Distribution
Modelling (SDM) can be a powerful tool. The study by Phillips et al. (2016)
of CWR conservation in Norway has used SDM in order to find potential
in situ genetic reserves for CWRs.

The goal with SDM is to make a prediction of habitat suitability for
a species in a defined area. SDM methods use species presence and
sometimes absence data together with wall-to-wall maps of environmental
variables for the entire prediction area to make these predictions (Guisan
and Zimmermann, 2000). There are many different names for the same
concept, such as ecological niche models, habitat models and resource
selection functions (Elith and Graham, 2009), but in this thesis i will use
the name SDM. Species Distribution Models will be referred to as SDMs.

There are many different methods to make predictions of species
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distributions. Some are used when there is access to both presence and
absence records, like for instance generalized linear or additive models
(GLMs and GAMs), and boosted regression trees (BRTs). However, when
using GBIF-data there is (normally) only presence records available, and
for presence-only SDM, Maxent (Phillips et al., 2006) is the most widely
used and often best performing method (Elith et al., 2011). A further
description of the Maxent method and software will follow in the materials
and methods section (chapter 2.5). In Phillips et al. (2016) Maxent was used,
and it will also be used in this thesis.

SDMs are being widely used for many different purposes in fields
like conservation planning, ecology and biogeography (Elith et al., 2011).
One example in the field of conservation biology and CWRs is the study
by Parra-Quijano et al. (2012), where they used SDMs together with gap
analysis and ecogeographical maps to find prioritized sites for collecting
Lupinus species into gene banks.

However, the SDM methods have many constraints and uncertainties,
a literature review by Beale and Lennon (2012) found that: ”uncertainty
in SDMs has often been underestimated and a false precision assigned to
predictions of geographical distribution” (Beale and Lennon, 2012, p. 247).
Of specific importance is the source material, and the models depend on
the available species data, as well as the availability of relevant predictor
variables (Beale and Lennon, 2012).

The species that is being modelled will also have an effect on the results
of SDMs, according to Hanspach et al. (2010) the life-history traits of a
species will affect the performance of SDMs. The life-history traits used in
Hanspach et al. (2010) were: dispersal type, lifespan, life form, pollination
type, strategy type, number of vegetation units a species is affiliated to and
hemerobic level (details can be found in Hanspach et al. (2010, table 1)). In
this thesis dispersal, life span and reproduction will be discussed in relation
to differences in SDMs between species.

1.4 Research questions

The main research questions are these:

Is the available GBIF data from Norway, tested with the most com-
monly used presence-only DM method (Maxent), useful for detecting po-
tential CWR conservation areas?

Are GBIF in general providing the needed CWR data for regional
analyses of such challenges in Norway.

How does distribution models respond to different species with
different life-history traits?
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More specifically, this thesis addresses the following hypotheses:

Hypothesis 1:

H0 - The Maxent distribution models will be consistent when using
presence-only points from different time periods if the number
of presence points and all settings are kept the same

H1 - The Maxent distribution models will be inconsistent when using
presence-only points from different time periods if the number
of presence points and all settings are kept the same

Hypothesis 2:

H0 - The Maxent distribution models will be consistent when differ-
ent numbers of random presence-only points are used and all
settings are kept the same

H1 - The Maxent distribution models will be inconsistent when
different numbers of random presence-only points are used and
all settings are kept the same

Hypothesis 3

H0 - There will not be species trait specific differences between
Maxent models

H1 - There will be species trait specific differences between Maxent
models

Hypothesis 4

H0 - There will not be differences between Maxent models made with
random samples of presence only points of the same size

H1 - There will be differences between Maxent models made with
random samples of presence only points of the same size

6



Chapter 2

Materials and methods

2.1 Study design

Presence points of the five species were downloaded from GBIF via the
Species Map Service (NBIC & GBIF, Download date: 2017-02-16).

After data cleaning, the data was treated in two different ways: sampled
into three age classes (before 1950, 1950-2000 and after 2000) with the same
number of presence points in each class and pooling of data points into
classes consisting of gradually fewer points.

In addition a preliminary field study to collect presence and absence
points from the study area was conducted during the summer of 2015.
GBIF-data for this study was downloaded on 2014-11-28.

2.2 Investigated species

Five study species where choosen for this study from the national
CWR priority list for Norway (Phillips et al., 2016). The species were
Allium ursinum L. (ramsons), Carum carvi L. (caraway), Ribes uva-crispa
L. (gooseberry), Rubus chamaemorus L. (cloudberry) and Rubus idaeus L.
(wild raspberry). Criteria used for choosing these species were that they
should have differing life history traits, such as dispersal, life length
and reproduction. Another consideration was that the plants should be
recognizable during field work at the same time period.

Ramsons is a perennial plant that grows in nutritious broadleaf and
sometimes coniferous forests in the nemoral and boreo-nemoral vegetation
zones (Lid and Lid, 2005). Growing season is from spring to early summer.
The distribution of ramsons in Norway is southerly and bound to the coast,
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the northernmost registrations are from Leksvik in Nord-Trøndelag county
(Lid and Lid, 2005). The dispersal modes of ramsons are vegetative growth
by bulbs and seeds that are often dispersed by ants (Korsmo, 1954). A study
by Herden et al. (2012) of genetic diversity in ramsons has shown little
genetic variation between populations. Using sequences of the nuclear
internal transcribed spacer ITS, and the external transcribed spacer ETS,
as well as the plastidic trnL-rpl32 and the trnL-trnF spacer regions, they
found no genetic variation between populations in Germany. Not even
a population from Ireland differed from the German population. Recently,
ramsons has increased in people’s awareness and has become a fashionable
spice plant in Norway. Traditionally it was used as medicine, but not so
much in cooking, and when it is growing in pastures it is considered a
weed since it influences the taste of the milk from gracing goats and cows
(Høeg, 1976).

Caraway is a wild growing native Norwegian plant that is found
mainly in dry places connected to the cultural landscape, like pastures,
roadsides and hay fields (Lid and Lid, 2005). It can be found throughout
most of the country, but it is rarely seen in mountains, along the west-coast
and in Finnmark county (Lid and Lid, 2005). Caraway grows mainly in
the nemoral to north-boreal vegetation zones, but sometimes also in the
low alpine belt (Lid and Lid, 2005). The seeds of caraway can be dispersed
in the fur of animals even though they are smooth with no hooks or other
dispersal equipment (Kiviniemi and Eriksson, 1999). Caraway is a biannual
plant, it flowers and produce seeds the second year of its life cycle (Høeg,
1976). Wild growing caraway has been extensively used as a spice in foods
like cheese, spirits, bread and sausages, but now the spice that you get in
shops is predominantly from cultivated plants (Høeg, 1976).

Gooseberry is an old cultivated species, it has been reported grown
in Aust-Agder county in 1682, and in France it is supposed to have been
grown since the 13th century (Skard, 2007). Even though it is not a native
Norwegian species, it is commonly naturalized in nutritious forests, forest
edges and on shallow soils (Lid and Lid, 2005). Gooseberry grows in the
nemoral to north-boreal vegetation zones, and occasionally in the south-
boreal zone. It is quite common in the lowlands of eastern Norway, and
further north it can be found in valleys all the way up to Nordland county
(Lid and Lid, 2005). In the Species Map Service there are also some
observations from Troms county (NBIC & GBIF, accessed: 2017-06-11).

Cloudberry is a perennial plant that grows in peatlands, nutrient poor
swamp forests and moorland, but avoids alkaline soils (Lid and Lid, 2005).
It is common in all of Norway both in the lowlands and in the mountains.
Mostly the plants are dioecious, that is with male and female parts on
separate plants, but sometimes hermaphroditic plants occur and these have
been used in cloudberry breeding programs (Rapp et al., 1993). Growing
only on peat and in nutrient poor areas, this plant could become an
important crop in areas were little else can be grown (Rapp et al., 1993). Two
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male and two female cloudberry cultivars have been produced in Norway
(Rapp and Martinussen, 2002). Reproduction of cloudberries is mainly by
underground production of rhizomes, so large populations can consist of
only a few clones spread over large areas. A study by Korpelainen et al.
(1999) showed that three populations in Finland consisted of 2-4 clones
each. They used both 10-base RAPD and 16-base SSR primers. Although
sexual reproduction is rare in cloudberries, it is probably important because
the seeds can spread over larger distances and recombination will result in
more genetic variation (Korpelainen et al., 1999).

Wild raspberries occur in most of Norway, but are uncommon in
the northernmost county, Finnmark. It is a perennial berry bush that
grows in broadleaf forests, forest edges, thickets, roadsides and abandoned
fields, usually on nutrient rich soils. Wild raspberries have vegetative
growth by roots, and produce flowers by their second year (Lid and Lid,
2005). A study by Graham et al. (2009) analyzed 12 wild and 5 cultivated
populations of raspberries in Scotland by 10 simple sequence repeats (SSR).
These SSRs showed a much higher diversity in wild raspberries, a total of
80 alleles were found in wild raspberries and only 18 of these alleles were
found in the cultivated berries.

2.3 Study area

An area on the south-east coast of Norway was selected (Fig. 2.1). Since
the resolution of the environmental variables used were 100 m, modelling
on the entire mainland Norway would have been very time consuming
and computer intensive. Also, field validation would have been very
challenging with respect to distances, topography and the short field-
season in Norway. Therefore a smaller area was chosen that still had a
lot of environmental variation, from coast to mountains (highest elevation
is 1250 meters above sea level). This area is also rich in CWR taxa (Phillips
et al., 2016).

2.4 Environmental variables

19 bioclimatic variables were downloaded from worldclim.org (Hijmans et
al., 2005). A list of these variables and the abbreviations that will be used for
them in this text is included in table 2.1. All 19 variables had a resolution
of 30 arc-seconds (approximately 1 km), and were downscaled to 100 m
resolution by the interpolation method kriging in the GIS-software ArcMap
(ESRI, 2014, Kriging tool). Kriging is a statistical interpolation method
that estimates values along a continuous surface based on observed sample
values (O’Sullivan and Unwin, 2014, Chapter 10.4)
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Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri
China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC, © OpenStreetMap contributors,
and the GIS User Community

1:1 200 000
Coordinate System: WGS 1984 UTM Zone 33NProjection: Transverse Mercator

Ü

Figure 2.1: Outline in grey of the study area on the south-east coast of
Norway.
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Table 2.1: An explanation of the bioclimatic variables downloaded from
worldclim.org together with the codes that will be used as abbreviations
for the variables throughout the text.

Code Explanation

bio1 Annual Mean Temperature
bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
bio3 Isothermality (BIO2/BIO7) (* 100)
bio4 Temperature Seasonality (standard deviation *100)
bio5 Max Temperature of Warmest Month
bio6 Min Temperature of Coldest Month
bio7 Temperature Annual Range (BIO5-BIO6)
bio8 Mean Temperature of Wettest Quarter
bio9 Mean Temperature of Driest Quarter
bio10 Mean Temperature of Warmest Quarter
bio11 Mean Temperature of Coldest Quarter
bio12 Annual Precipitation
bio13 Precipitation of Wettest Month
bio14 Precipitation of Driest Month
bio15 Precipitation Seasonality (Coefficient of Variation)
bio16 Precipitation of Wettest Quarter
bio17 Precipitation of Driest Quarter
bio18 Precipitation of Warmest Quarter
bio19 Precipitation of Coldest Quarter

11



4 variables with a resolution of 100 m were donated from Lars Erikstad
at The Norwegian Institute for Nature Research (NINA). These were a
digital elevation model (DEM), land cover and topographic position index
(TPI) with a diameter of 1 km (TPI1) and 6 km (TPI6). The TPI is the
difference between a cell elevation value and the average elevation of the
neighborhood around that cell, so a positive value means that the cell has
higher elevation than its surroundings while a negative value means that it
has lower elevation (Jennes, 2006).

Solar radiation was derived using the Area Solar Radiation tool from
the Spatial Analyst toolbox in ArcMap. This tool uses the DEM raster
to calculate insolation. Aspect, curvature, and slope were also calculated
from the DEM using the corresponding tools in the Spatial Analyst toolbox.
SAGA Wetness index was calculated in the SAGA-GIS software (Boehner
and Conrad, 2001). More detail about the variables can be found in table
2.2.
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Correlation between variables was calculated using the Analysis Tool-
Pak in Excel 2010 (Microsoft, 2010). Strongly correlated variables (both pos-
itively and negatively), with correlation coefficient < 0.7 were removed.
The remaining variables were: Land cover (cover), aspect, BIO1, BIO3,
BIO7, BIO8, BIO15, standard curvature (curv), slope, solar radiation sum-
mer (solar), TPI1, TPI6 and SAGA wetness index (wetind).

2.5 Species Distribution Modelling

For Species Distribution Modelling (SDM) the software Maxent version
3.3.3k (Phillips et al., 2011) was used. Maxent is short for Maximum en-
tropy, a general statistical method for making predictions from incomplete
information (Phillips et al., 2006). In distribution modelling, Maxent is used
as a machine learning method, ”The idea of Maxent is to estimate a tar-
get probability distribution by finding the probability distribution of maxi-
mum entropy (i.e., that is most spread out, or closest to uniform), subject to
a set of constraints that represent our incomplete information about the tar-
get distribution.” (Phillips et al., 2006, p. 234). Maxent has many different
settings to choose from and the ones used in this study are listed in table
2.3.

Table 2.3: Settings used in Maxent software version 3.3.3k for main study.

Setting type Chosen setting

Output raw
Random test percentage 20
Features Linear, quadratic and product
Create response curves true
Do jackknife to measure

variable importance
true

All else Default

2.5.1 Age of presence points

Duplicates were removed using Excel (Microsoft, 2010) and the presence
points were checked in ArcMap (ESRI, 2014) to see if any points were in
the sea. All models of the same species were run with the same number
of presence points. Since availability of presence points from before 1950
was the limiting factor, the total number of presences from before 1950 was
chosen as the number of points that models were run with (see table 2.4).

The subsets from the other age classes were picked at random from
the entire set of presence points in their class. Variables for each species
were selected from the 13 available variables after removal of the strongly
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Table 2.4: The total number of presence points available for SDM in each
year class after data cleaning.

Year class
Allium

ursinum
Carum
carvi

Ribes
uva-crispa

Rubus
chamaemorus

Rubus
idaeus

Pre 1950 49 24 53 66 163
1950-2000 91 122 539 197 1609
Post 2000 88 581 240 124 1168

correlated variables (see end of chapter 2.4.). A model was run for each
species with all the 13 variables and then the ones that had lower than
2 percent contribution were thrown out for the next model run. These
preliminary models were made with the after 2000 dataset. Then new
models were made with only the variables that had contributed more than
2 percent included. Variables used and number of presence points used in
each model is listed in table 2.5.

Table 2.5: The number of presence points used in each year class together
with the variables that were used for SDM. All SDMs of the same species
were assigned the same environmental variables.

Year class
Allium

ursinum
Carum
carvi

Ribes
uva-crispa

Rubus
chamaemorus

Rubus
idaeus

Pre 1950 49 24 66 53 163
1950-2000 49 24 66 53 163
Post 2000 49 24 66 53 163

Variables
cover,
bio1,
tpi1

cover,
bio1,
bio7,
bio8

cover,
bio1,
bio15,
slope,

wetind,
tpi6

cover,
aspect,
bio1,
bio3,
bio7,
bio15,
slope,
tpi6

cover,
bio1,
bio8,
bio15,
solar,
tpi1

2.5.2 Number of presence points

The total number of presence points varied between species, Rubus idaeus
had 2953 points and Allium ursinum had only 236. The dataset was split
in half several times until the number of points was below 10, and Maxent
models were run with each subset of points (table 2.6). The subsets were
always chosen randomly from the full set of points. Variables used for the
different species were the same as in table 2.5.

After all models were run, a sensitivity test was done on some of the
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Table 2.6: Number of presence points used in each model for the five
species.

Allium
ursinum

Carum
carvi

Ribes
uva-crispa

Rubus
chamaemorus

Rubus
idaeus

236 729 434 837 2953
118 365 217 419 1477
59 182 109 209 738
30 91 54 105 369
15 46 27 52 185
7 23 14 26 92

11 7 13 46
6 7 23

12
6

sample sizes. This means that the same number of points were picked at
random from the complete set of points for the species, and models were
run with these new subsets. As an example, in Allium ursinum three models
with 59 points were run and three with 30 points.

2.5.3 Model evaluation

Models were evaluated using the area under the receiver operating
characteristic curve (AUC) for the training sample and the 20 % that was
used as test samples in all Maxent runs (see table 2.3). The receiver
operating characteristic curve (ROC) is created by plotting the fraction of
true positives against the fraction of false positives (Hernandez et al., 2006).
An AUC value of 0.5 indicates a prediction that is no better than a random
prediction. When using presence only data, AUC compares presences with
background points in stead of absences (Merow et al., 2013). So with these
data high AUC-values indicate that the model can distinguish between
presences and background points well (Merow et al., 2013).

In addition the response curves for each variable that Maxent creates
were visually inspected for differences between models. There are two
types of response curves that Maxent makes. The marginal response curves
show how the prediction change as each environmental variable is varied,
keeping all other variables at their average sample value (from the HTML-
file that is included in the Maxent output folder). In the other type of
response curve, each curve represent a different model, a Maxent model
created with only the corresponding value. These will be called variable-
only response curves in this thesis. For the purpose of model comparisons
the marginal response curves were used in this study. An example of a
response curve for a categorical variable (land cover) is included in figure
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Figure 2.2: An example of a marginal response curve created by Maxent for
the categorical variable land cover in a model of Allium ursinum. On the y-
axis is the raw output (relative probabilities of presence), and on the x-axis
are the different land cover categories. Category 7 - snow and glacier is
missing because there were no cells of this category within the study area.

2.2, and one for a continuous variable (bio1) in figure 2.3.
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Figure 2.3: An example of a marginal response curve created by Maxent for
the continuous variable bioclim 1 - annual mean temperature in a model of
Allium ursinum. On the y-axis is the raw output (relative probabilities of
presence), and on the x-axis is temperature in °C * 10.
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2.6 Preliminary field test

A preliminary study to collect presence and absence data from the study
area was conducted during the summer of 2015. Before the field work, five
SDMs were made. A total of 13 sites were visited.

2.6.1 Species Distribution Modelling

Species presence data was downloaded from the Norwegian Species Map
Service (NBIC & GBIF, Download date: 2014-11-28). This was done in
separate files for different coordinate uncertainty, better than 10000 m, 1000
m, 100 m and 25 m. The best uncertainty (25 m) was used for all but two
of the models. Allium ursinum and Ribes uva-crispa had so few points that
coordinate uncertainty better than 100 m was chosen (see table 2.7). Data
points from after year 2000 was used in all models.

A model for each of the study species was chosen based on model
selection. First a full model with all variables was run, and then variables
that had less than 2 percent contribution were removed. The same Maxent
settings were used as in table 2.3, except that logistic output was used in
stead of raw output.

Table 2.7: Number of presence points, variables used and coordinate
precision for the presence points used in the Maxent models.

Species
Allium

ursinum
Carum
carvi

Ribes
uva-crispa

Rubus
chamaemorus

Rubus
idaeus

Number
of points

54 77 85 100 432

Variables

dem,
cover,
bio2,
slope,
tpi6

cover,
dem,
bio12,
tpi1,

aspect

dem,
cover,
bio4

bio12,
cover,
slope,
aspect,

tpi1,
bio15

cover,
bio13,
dem

Coordinate
precision

100 25 100 25 25

The variables used differed from those used in the main study (table
2.5), because strongly correlated variables were left out after model
selection in the preliminary study. In the main study correlated variables
were removed before modelling started.
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2.6.2 Field work

Using the five models, 100 different locations were chosen including
predicted presences from 0 to 1. 10 points from each model representing
10 classes of equal intervals ranging from 0 to 1 in relative prediction
probability.

The prediction map, an ascii-file in the Maxent output folder, was used
to make the selection of locations. Here is the procedure for selecting
locations:

1. In ArcMap: Layer properties - Symbology change from stretched to
classified with equal intervals and 10 classes

2. Use Reclassify tool in spatial analyst toolbox to reclassify into 10
classes (1 to 10).

3. Use conversion tool Raster to Polygon

4. Dissolve tool - use gridcode

5. Create random points from the data management toolbox, 6 per
polygon class

6. To remove points that are in the sea, extract values to point in the
spatial analyst toolbox, input raster is the land cover raster, edit
features, select by attributes and delete rastervalue 4 (which is the
sea)

7. Merge from data management toolbox all datasets of random points
from all 5 species

8. Extract multi values to points in spatial analyst toolbox, using the
merged dataset as input point feauture and the 5 prediction rasters as
input rasters.

9. Delete the superfluous points so there is only two points in each class
for each species creating a dataset of 100 random points.

Cells that were found to be in urban areas or in the middle of large fields
were excluded, using Google Maps (Google, 2015). Due to time shortage,
only 13 of the 100 cells were visited. Figure 2.4 shows a map of the 100
locations that were selected.

For field registrations a field form template was made using ArcMap
(ESRI, 2014). An example of these templates is included in figure 2.5. The
template contains a number for the grid cell (0-99), the date of the visit,
registration form for registering presence or absence of species, area cover
(land cover), elevation and aspect of the grid cell. The midpoint coordinate
was also included, and this was used to find the grid cell by using a GPS.
The map was included in order to find the best driving route to the cell.
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Figure 2.4: Locations of the 100 grid cells (100 X 100 m) selected for field-
validation within the study area.
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            Presence   Absence   Amount
A.urs                                                   
C.car                                                   
R.cha                                                  
R.ida                                                   
R.ucr                                                   

0

Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN,
Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), TomTom,
MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

Grid cell 0
Date:

Midpoint coordinates: 32V 561550 6603020  UTM 

Area cover                                          
Elevation                                            
Aspect                                                 

Figure 2.5: An example of the templates that were used for localization of
the correct grid cells and for making registrations in the field. Each grid cell
in the map represent the 100 X 100 m resolution of the SDM.
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Chapter 3

Results

The results of the SDMs based on GBIF-data of different ages and numbers
will be presented here, together with the results of the preliminary field
work that was conducted during the summer of 2015.

3.1 Age of presence points

The response curves for the variable bioclim 1 - annual mean temperature
changes little between models as seen in table 3.1, whilst the response curve
for land cover changed quite a bit between the age classes. In the model
with presences from before 1950, land cover category 1 - developed land
and 5 - mires are high, while in the 1950 - 2000 model 3 - freshwater and 6
- forest are more important. In the after 2000 model 6 - forest and 8 - open
are highest (see figure 2.2 for a more detailed view of a land cover response
curves and table 2.2 for category names). The topographic position index
has the smallest percent contribution in all three models, and it changes a
lot as well. The curve is completely flipped around when comparing the
before 1950 model with the two others. Both test and training AUC values
are above 0.9 in all models, and test AUC is higher than training AUC in
the before 1950 and 1950-2000 models.
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Table 3.1: Results of Allium ursinum models from three year classes.
Response curves for the variables bioclim 1 - annual mean temperature,
land cover and topographic position index with 1 km diameter. Percent
contribution (pct.) for each variable is to the right of the response curve.
Training AUC and test AUC for the 20 percent random test sample.

Allium ursinum

Year
class

Bioclim 1 pct. land cover pct. TPI1 pct.
Training

AUC
Test

AUC

Before 1950 71.3 28.6 0.1 0.905 0.943

1950 - 2000 73.8 23.6 2.7 0.915 0.929

After 2000 73 23 4 0.927 0.924
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The prediction maps of Allium ursinum in figure 3.1 show that the model
with presences from before 1950 have a coarser distinction between areas
with lower predicted probabilities of presence (light blue and blue). Some
of the high probability areas (red) in the two lower maps are not red in the
top one. Overall the 1950 - 2000 and after 2000 models look more similar
than the before 1950 model.
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Predicted
probability
of presence

0 - 0.0002
0.0002 - 0.001
0.001000001 - 0.003
0.003 - 0.01
0.010000001 - 0.05

Before 1950

1950 - 2000

After 2000

Figure 3.1: Part of the prediction maps for the three age classes in the Allium
ursinum Maxent models, raw output is used.
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In table 3.2 we see that Carum carvi models show the same trend as
Allium ursinum models, but the training AUC-values are much lower. In
addition, the test AUC-values for the before 1950 model is 0.2 lower than
the training AUC. The biggest change takes place between the after 2000
model and the two others, here all the response curves changes direction,
for instance the highest bar in the land cover variable changes from
category 8 - open in the two old models to category 2 - agricultural land
in the youngest model. The temperature annual range (bioclim 7), which
is the difference between the maximum temperature of the warmest month
and the minimum temperature of the coldest month, also changes from
higher predicted probability when it is low to higher predicted probability
when high.

Table 3.2: Results of Carum carvi models from three time periods, including
response curves for three of the variables used: land cover, bioclim 7 -
temperature annual range and bioclim 8 - mean temperature of wettest
quarter. Percent contribution (pct.) for each variable is to the right of the
response curve for the variable. Training AUC and test AUC for the 20
percent random test sample

Carum carvi

Year
class

Land cover pct. Bioclim 7 pct. Bioclim 8 pct.
Training

AUC
Test

AUC

Before 1950 32.3 28.4 3.2 0.862 0.665

1950 - 2000 75.4 9.8 0 0.815 0.848

After 2000 72.8 8.7 17.4 0.799 0.750
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For Ribes uva-crispa as well, variation occurs in the response plot of the
land cover variable (table 3.3). The wetness index variable has 0 percent
contribution in the two older models. Again we see a drop of almost 0.2
from training to test-AUC, this time in the 1950-2000 model.

Table 3.3: Results of Ribes uva-crispa models from three time periods,
including response curves for three of the variables used: bioclim 1 - annual
mean temperature, land cover and wetness index. Percent contribution
(pct.) for each variable is to the right of the response curve for the variable.
Training AUC and test AUC for the 20 percent random test sample

Ribes uva-crispa

Year
class

Bioclim 1 pct. land cover pct.
Wetness

index
pct.

Training
AUC

Test
AUC

Before 1950 63 32.3 0 0.865 0.905

1950 - 2000 55.2 39.8 0 0.819 0.628

After 2000 62.1 30.7 4.2 0.846 0.813
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The Rubus chamaemorus models shows large variation in both response
curves and percent contribution. The percent contribution of Bioclim 15
ranges from 0 to 30.1, whereas land cover ranges from 3.1 to 55.8. (table
3.4). Test AUC in the before 1950 model is especially low, only 0.506 which
is approximately the same as a random prediction.

Table 3.4: Results of Rubus chamaemorus models from three time periods,
including response curves for three of the variables used: bioclim 15 -
precipitation seasonality, land cover and bioclim 7 - temperature annual
range. Percent contribution (pct.) for each variable is to the right of the
response curve for the variable. Training AUC and test AUC for the 20
percent random test sample

Rubus chamaemorus

Year
class

Bioclim 15 pct. land cover pct. Bioclim 7 pct.
Training

AUC
Test

AUC

Before 1950 0.9 55.8 9.7 0.764 0.506

1950 - 2000 0 3.1 11.3 0.737 0.735

After 2000 30.1 27.8 13.8 0.867 0.749
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The general shape of response curves in the Rubus idaeus models are
similar, except for bioclim 1 - annual mean temperature which has the
opposite orientation in the 1950 - 2000 model (table 3.5). However, the
percent contribution varies for all variables, bioclim 1 ranges from 12 to
49.7, bioclim 8 from 1.3 to 11 and land cover from 34.4 to 46.6. The AUC
values decrease from the oldest to the youngest model, and we see high
test AUC-values. Before 1950 and 1950 - 2000 models even have higher test
AUC than training AUC.

Table 3.5: Results of Rubus idaeus models from three time periods, including
response curves for three of the variables used: land cover, bioclim 1 -
annual mean temperature and bioclim 8 - mean temperature of wettest
quarter. Percent contribution (pct.) for each variable is to the right of the
response curve for the variable. Training AUC and test AUC for the 20
percent random test sample

Rubus idaeus

Year
class

land cover pct. Bioclim 1 pct. Bioclim 8 pct.
Training

AUC
Test

AUC

Before 1950 34.4 49.7 1.3 0.805 0.859

1950 - 2000 56.3 12 7.2 0.731 0.757

After 2000 46.6 29.7 11 0.755 0.731
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3.2 Number of presence points

In table 3.6 some of the results of the Allium ursinum Maxent models with
decreasing number of presence points are shown. AUC values range from
0.841 to 0.878 and there are generally small differences between training
and test AUC.

Bioclim 1 - annual mean temperature remain the most contributing
variable in all models, and the shape of the response curve varies little,
except for a less steep curve in the 7 points model. The land cover
variable change little between the 236 and 118 points models, both percent
contribution and shape of response is similar. There is more variation both
in shape and in percent contribution of land cover from 59 points and down
to 7. The topographic position index is the least contributing variable in all
models, and the shape of its response curve starts to change from 30 points.

Regarding sensitivity to different samples of same size, there is more
variation in variables response curves among the three 30 presence points
models than among the three 59 presence points models.
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Table 3.6: Results of Allium ursinum models with different numbers of
presence points. Response curves for the variables bioclim 1 - annual
mean temperature, land cover and topographic position index with 1 km
diameter. Percent contribution (pct.) for each variable is to the right of the
response curve. Training AUC and test AUC for the 20 percent random
test sample. Numbers in [ ] represent different random subsets of the same
number.

Allium ursinum

# of points Bioclim 1 pct. land cover pct. TpI1 pct.
Training

AUC
Test

AUC

236 73.6 24.3 2.1 0.908 0.948

118 74.2 24.2 1.6 0.935 0.949

59 74.8 24.8 0.3 0.923 0.941

59 [2] 71.7 27.7 0.6 0.934 0.874

59 [3] 73.2 25.3 1.5 0.933 0.882

30 67.6 30.5 1.9 0.895 0.888

30 [2] 74.6 25 0.4 0.942 0.962

30 [3] 72.7 27.3 0 0.962 0.891

15 66.7 32.7 0.6 0.969 0.978

7 68.7 31.3 0 0.841 0.961
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Training AUC values become higher with smaller sample sizes in the
Carum carvi models, highest is 0.953 and lowest 0.764 (tabel 3.7). There is
less of a general trend in the test AUC, these range from 0.660 to 0.996. The
biggest gap between test and training AUC occurs at model 46 [2], with a
difference of 0.204.

Land cover has a more or less similar shape down to 91 points, then
it starts to differ more. This is also true for percent contribution, which
ranges between 39 % and 42.2 % above 91 points and from 32.2 % to 100 %
contribution from 91 points and down to 6. Bioclim 7 - temperature annual
range is the most stable in shape of all the response curves, but percent
contribution ranges between 0 % and 30.5 %. Bioclim 8 - mean temperature
of wettest quarter response curves varies a lot and percent contribution lies
between 0 % and 19.1 %.

There is more variation between models at 91 and 46 points than at 182
points.
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Table 3.7: Results of Carum carvi models with different numbers of
presence points. Response curves for the variables land cover, bioclim 7
- temperature annual range and bioclim 8 - mean temperature of wettest
quarter. Percent contribution (pct.) for each variable is to the right of the
response curve. Training AUC and test AUC for the 20 percent random
test sample. Numbers in [ ] represent different random subsets of the same
number.

Carum carvi

# of points land cover pct. Bioclim 7 pct. Bioclim 8 pct.
Training

AUC
Test

AUC

729 42.2 28.9 0.9 0.771 0.742

365 41 26.8 4.2 0.787 0.769

182 41.6 27 5.6 0.805 0.845

182 [2] 40.3 9.3 19.1 0.822 0.768

182 [3] 39 26.1 12 0.792 0.862

91 32.2 4.6 8.2 0.784 0.660

91 [2] 41.6 30.5 0.1 0.764 0.845

91 [3] 39.1 7.1 13.8 0.818 0.777

46 53.6 0.1 6.8 0.813 0.693

46 [2] 37.5 24.4 3.1 0.845 0.660

46 [3] 36.8 31.6 0 0.822 0.811

23 55.2 14.2 0 0.862 0.796

11 58.1 20.9 0 0.949 0.846

6 100 0 0 0.953 0.996
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As seen in table 3.8 the Ribes uva-crispa models have smallest AUC
values at the lowest number of presence points, with the exception of
training AUC in the 14 point model. This is also the largest gap between
training and test AUC, 0.254.

The bioclim 1 response curves keeps the same direction for all models,
but the shape changes from a logaritmic to a linear curve in the 7 points
model (table 3.8). Lowest percent contribution occurs at 27 points (27.4
%) and highest at 14 points (67 %). Land cover starts to act differently at
109 points with a drop in class 1 - developed land, and after this point
there is much variation in most of the classes. Percent contribution range
between 8.4 % (7 points model) and 65.9 % (27 points model). Wetness
index retain its shape until 27 points, at which point it becomes flat and has
0 % contribution to the models.

The models are more stable at 217 points than at 109 points, at least
when it comes to percent contribution of variables.

35



Table 3.8: Results of Ribes uva-crispa models with different number of
presence points. Response curves for the variables bioclim 1 - annual mean
temperature, land cover and wetness index. Percent contribution (pct.) for
each variable is to the right of the response curve. Training AUC and test
AUC for the 20 percent random test sample. Numbers in [ ] represent
different random subsets of the same number.

Ribes uva-crispa

# of points Bioclim 1 pct. land cover pct.
Wetness

index
pct.

Training
AUC

Test
AUC

434 59.6 36.5 1.4 0.822 0.787

217 58.2 36.6 3.3 0.833 0.738

217 [2] 56.2 39.1 2 0.827 0.834

217 [3] 59.4 36.3 0.9 0.799 0.787

109 55.1 40.1 0.2 0.778 0.821

109 [2] 63.7 27.2 1.3 0.831 0.839

109 [3] 59.3 37 1 0.796 0.864

54 43 41.8 0.3 0.832 0.800

54 [2] 60.8 36.8 0 0.826 0.586

54 [3] 51.1 45.8 1.1 0.834 0.753

27 27.4 65.9 0 0.766 0.667

14 67 29.7 0 0.911 0.657

7 45.8 8.4 0 0.662 0.674
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In the Rubus chamaemorus models in table 3.9 training AUC values
become higher with fewer presence points, while test AUC are lower except
at 7 points. The two extreme lows are test AUCs for 26 and 13 points which
are only slightly better than random (0.585) and worse than a random
prediction (0.413). The largest gap between AUCs occur at 13 points with
0.386 in difference between training and test AUC.

The two bioclim variables are quite constant in shape except for bioclim
7 in the 7 points model, which becomes flat and has 0 % contribution. Land
cover vary both in shape and percent contribution, with the biggest change
taking place at 52 points. Here class 5 - mires shrink in size, while class 1 -
developed land becomes one with highest prediction values. Models with
less than 52 points vary even more in this variables response and percent
contribution.

Table 3.9: Results of Rubus chamaemorus models with different number
of presence points. Response curves for the variables bioclim 15 -
precipitation seasonality, land cover and bioclim 7 - temperature annual
range. Percent contribution (pct.) for each variable is to the right of the
response curve. Training AUC and test AUC for the 20 percent random
test sample. Numbers in [ ] represent different random subsets of the same
number.

Rubus chamaemorus

# of points Bioclim 15 pct. land cover pct. Bioclim 7 pct.
Training

AUC
Test

AUC

837 6.1 51.8 18.5 0.746 0.737

419 3.2 54.1 23.7 0.756 0.711

209 4.9 47 22.7 0.759 0.702

105 4.8 35.9 18.7 0.769 0.629

52 1.1 44.9 15.4 0.773 0.684

26 5.3 43.6 12.1 0.847 0.585

13 14 59.6 11.8 0.799 0.413

7 1 93.7 0 0.936 0.859
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Training AUC values for the Rubus idaeus models range from 0.701 in
the 2953 model to 0.867 in the 12 points model (table 3.10). There is one
very low test AUC value, namely 0.145 in the 23 points model. There is
generally larger differences between training and test AUC in the lower
points models. The most radical changes in response curves of variables
take place in the 92 points model, although bioclim 8 changes shape already
at 738 points, from unimodal to one sided. Percent contribution of land
cover range from 37.7 % to 100 %, Bioclim 1 range from 0 % to 40.9 % and
Bioclim 8 range from 0 % to 16.1 % contribution.

Table 3.10: Results of Rubus idaeus models with different numbers of
presence points. Response curves for the variables land cover, bioclim 1
- annual mean temperature and bioclim 8 - mean temperature of wettest
quarter. Percent contribution (pct.) for each variable is to the right of the
response curve. Training AUC and test AUC for the 20 percent random
test sample. Numbers in [ ] represent different random subsets of the same
number.

Rubus idaeus

# of points land cover pct. Bioclim 1 pct. Bioclim 8 pct.
Training

AUC
Test

AUC

2953 49.8 20.5 13.2 0.701 0.692

1477 52.4 25.2 8.9 0.718 0.744

738 42.5 27.5 17 0.729 0.720

369 37.7 30.6 13.3 0.729 0.752

185 46.4 27.9 8.4 0.729 0.718

92 56.2 28.2 12.5 0.777 0.729

46 55.9 27.1 16.1 0.780 0.643

23 46.7 40.9 3.9 0.817 0.145

12 70.3 0 11 0.867 0.785

6 100 0 0 0.732 0.670
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3.3 Preliminary study

There was Rubus idaeus present in 11 of 13 visited sites and Carum carvi
present in 1. Total number of days in the field was 5, and between 2
and 4 sites were visited per day. The original plan was to visit 100 sites,
which would have taken approximately 40 days at the same speed. The
total driving distance for the 5 days was 856 km. When a cell was visited
and the species was not found, this was registered as an absence of the
species. This means that there were 2 absences of Rubus idaeus, 12 absences
of Carum carvi and 13 absences of the three remaining species. Table 3.11
shows the number of presences in all the grid cells that were visited, and
which predicted probability class the cells were in.

Table 3.11: Number of each study species present in grid cells sorted by
prediction value (logistic output) from the Maxent models. Classes are
sorted in ascending order of prediction probability, 1 is between 0 and 0.19,
2 is between 0.2 and 0.39 and so forth. A line means that no cells were
visited within that prediction interval for the species.

Class A. ursinum C. carvi R. uva-crispa R. chamaemorus R. idaeus

1 0 0 0 0 -
2 0 0 0 0 -
3 - 1 0 0 3
4 0 0 - 0 8
5 0 - - 0 -
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Chapter 4

Discussion

Crop Wild Relative (CWR) populations in Norway could be at the northern
extremity of the species range. This means that potentially unique traits
could be present in these populations, making them especially important
to conserve. In this part there will be a discussion of the results of Species
Distribution Modelling (SDM) with presence only GBIF-mediated data
sampled into categories of different age and different numbers of points.
There will also be a discussion of the results from the preliminary field test
to collect presences and absences from the study area.

4.1 Age of presence points

The tests indicate that the age of records have an effect on the resulting
SDMs. Models differ in AUC, response curves and percent contributions
among the three age classes. The hypothesis that is relevant for this part of
the thesis is this:

Hypothesis 1:

H0 - The Maxent distribution models will be consistent when using
presence-only points from different time periods if the number of
presence points and all settings are kept the same.

H1 - The Maxent distribution models will be inconsistent when using
presence-only points from different time periods if the number of
presence points and all settings are kept the same.

The SDMs of ramsons have high AUC values in all year classes (table
3.1). A large number of background points that are easily distinguished
from the presence points will yield high AUC-values (Merow et al., 2013).
Since ramsons is a plant with quite distinct habitat needs (moist, nutritious

41



forests along the coast) the presences will probably be easy for the model
to distinguish from the 10 000 background points since they will have
a large probability of being different from these requirements. Land
cover categories change between year classes, in the before 1950-model
developed land and mires have higher relative predicted probabilities, in
the 1950 - 2000-model it is fresh water and forest and in the after 2000-
model it is forest and open (table 3.1). This might reflect a change in land
use over time, since the land cover variable show recent conditions, what is
now developed land might have been a forest before 1950. A study by Sang
et al. (2014) found that agricultural land in Norway change continuously.
That would explain some of the changes, but the large prediction value for
the open category is a bit surprising. This could simply be a random trend
that comes from the low number of presences used in this model (49).

To illustrate some visual differences among models, figure 3.1 was
included in the results. Here we see that the oldest model yield a less
distinct model, with more areas being lumped together in the same class.

When modelling with presence points from different time periods, the
models with data from after 2000 were used to select which variables that
were used in all models for that species. This could explain why the
same variables are not equally important in the different models, like we
see with caraway in table 3.2. The land cover variable has the largest
percent contribution in the after 2000-model, but not in the before 1950-
model, and it is not the same land cover types that are important. In the
before 1950 and the 1950 - 2000 models, category 8 - open has the highest
relative probabilities of presence (table 3.2). After 2000 the highest category
changes to 2 - agricultural land. There are several possible explanations for
this: the land use might have changed, so that there is more developed and
agricultural land in areas that used to be open. It is also possible that there
is a spatial bias in where the caraway has been gathered, this is highly likely
since the sample size was particularly low for caraway, only 24 points were
used in each model (table 2.5). Bio7 - temperature annual range and bio8
- mean temperature of wettest quarter also change shape between models,
and it is not likely that the caraway changes how it responds to different
temperatures during the last 100 years (Wiens et al., 2010). It is far more
likely that the small data sets used for each model means that different
responses to climate has been picked up by the model as important for
caraway.

The choice of year class will affect the models, and pooling more data
together would perhaps yield different results. For instance in the Carum
carvi models there were only 24 presence points available in the before 1950
model (table 2.5), and this makes it hard to say whether age of points or
the small number of points had most influence on the differences observed
between year classes.

What seems clear is that in most cases the older data tell a different
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story than the newer data, which could mean that the species distribution
has changed over time. However, this could be an example of sampling
bias, that the different data sets had different sampling design. Phillips et al.
(2016) aim to find suitable areas for conservation, so using more recent data
would be advisable. This is further supported by the recent development
in GPS technology and the availability of such equipment, which probably
makes newer data more reliable when it comes to sampling precision.

Based on the results from the SDMs of different age classes I would
reject the H0 in hypothesis 1, and conclude that age of presence points
affect the models. However, there are reasons to be skeptical of these results
regarding some of the species as there were few presence points available.
Also the variables that were used were chosen based on the newest models,
so with relevant variables for the older models results might have been
different.

4.2 Number of presence points

Results of the SDM on decreasing number of presence points clearly show
that all the parameters included differ when presence points decrease.
There are also clear differences between the models made with different
subsets of the same number of presences. The two hypothesis that will be
relevant in this section are these:

Hypothesis 2:

H0 - The Maxent distribution models will be consistent when different
numbers of random presence-only points are used and all settings
are kept the same.

H1 - The Maxent distribution models will be inconsistent when different
numbers of random presence-only points are used and all settings are
kept the same.

Hypothesis 4

H0 - There will not be differences between Maxent models made with
random samples of presence only points of the same size.

H1 - There will be differences between Maxent models made with random
samples of presence only points of the same size.

When sample size is decreased, the models generally become less
similar in regards to the variables response curves.
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Some of the models were tested with different random subsets of the
same number of points, and this could be a useful method to detect when
the models become unstable. Once an ”unstable” number of points is
found, it is possible to check the interval between the last stable point
and the first unstable one to get a more fine tuned result. One could for
instance do several runs with the midpoint between the stable and unstable
numbers. In the case of Allium ursinum (table 3.6) this would be 89 presence
points, which is between 118 (last stable) and 59 (first unstable). An even
better approach would be to do a larger bootstrapping (random sampling
with replacement) study of some of the sample sizes to get a better picture
of the stability within a sample size. This however, was beyond the scope
of this thesis.

In a study by Hernandez et al. (2006), they found that model accuracy
increased with larger sample sizes. Still, Maxent was the method that
performed best at even very small sample sizes (5 and 10). They also
found that species that are more widespread in both in geographical and
environmental space are more difficult to model than more restricted
species (Hernandez et al., 2006). This can also be seen in this study,
where both of the widespread and common species Rubus idaeus and Rubus
chamaemorus generally had lower AUC values than Allium ursinum which
is more restricted to nutritious forests along the coast (Lid and Lid, 2005).

With lower sample sizes there is more variation between models made
with different random subsets of the same number. The number of points
required to make stable models is not the same for all the species. For
ramsons, 59 points can produce quite stable models, while at 30 points
there is clearly more variation in AUC, response curves and percent
contribution of variables (table 3.6). Caraway models are more stable at
182 points than at 91, and even more unstable at 46 points (table 3.7).
Gooseberry can produce quite stable models at 109 points, but at 59 points
AUC, response curves and percent contribution vary a lot, lowest test AUC
is 0.586 (table 3.8).

Based on the results of the SDM on decreasing numbers of presences,
the H0 of hypothesis 2 should be rejected. Models clearly change when
numbers are decreased, and there is more variation among the models the
lower the sample size gets. There is also variation within a sample size, so
H0 of hypothesis 4 should also be rejected.

4.3 Environmental variables

All environmental variables will have uncertainties and errors, that can
affect the the quality of models. The variables used in this study have many
uncertainties connected to them. Firstly, all the Bioclim variables from the
WorldClim database were made by interpolating monthly precipitation,
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and mean, minimum and maximum temperature from a large number of
weather stations globally (Hijmans et al., 2005)1. There was not a high
density of the weather stations they used for the interpolation in Norway,
so we do not know if the data for Norway will be accurate. In addition
another interpolation was made to obtain the 100 m grid size (kriging) so
this adds even more uncertainty to the data.

Another important questions is: Do we have the relevant variables for
the species we want to model?

For Allium ursinum, a variable like soil quality could perhaps give more
accurate models, since it is known to grow in nutritious soils.

Cloudberry SDMs would probably have benefited from a distinction
between different mires in the land cover variable, so that alkaline fens
with little cloudberry could be separated from more cloudberry-rich types
of mires.

The land cover category 8 - open can represent a variety of different land
cover types, like exposed bedrock, outfield pastures and meadows, shrub
land and gravel dominated beaches. This variable should have had more
classes, so that a better distinction of the species niches could be modelled.
Caraway SDMs would probably have been better, since the open category
is important for this species.

Since gooseberry is a naturalized species that has spread from gardens,
a variable connected to where people live could be useful. The land
cover variable includes category 1 - developed land, but this signal is not
apparent in the before 1950 model (table 3.3), only in the 1950 -2000 model
is this the category with the highest predictions.

4.4 Model evaluation

In order to evaluate the models, test and training AUC was used. When
dealing with presence-only data, the AUC value only reflects how well
the models distinguish between presence and background data (Merow et
al., 2013). This may not be a good reflection of model quality, since the
background locations are chosen randomly from the entire study area and
thus contain both presences and absences. In this study, default maximum
number of background points were used, which is 10 000. When the
sample size is low, training AUC will often become higher, because it is
easy for the model to distinguish between the background points and the
few presences. This does not mean that the model is better at making
predictions, instead it is probably over-fitted to the training set (Halvorsen

1WorldClim version2 is now available at http://worldclim.org/version2 , but it was not
used in this thesis because it was not available at the time of variable preparations.
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et al., 2015). When the test AUC is much lower than the training AUC, this
is also an indication of over-fitting.

There are other inbuilt evaluation methods in Maxent that could be
used, like jackknife of variable importance and permutation importance.

Another way to evaluate Maxent models is to set a threshold value
and let everything above it be categorized as a predicted presence and
everything below as an absence. Then you can examine if two models
predict the same grid cells as presences or not. This is another way
to quantify differences between models. Merow et al. (2013) argue
against the use of treshold values, ”Tresholding is problematic because
choosing biologically meaningful thresholds may depend on prevalence
or population density, which is typically unknown” (Merow et al., 2013,
p. 1067). Also Guillera-Arroita et al. (2015) advice against the use of
conversion into predicted presence or absence based on a threshold,
because continuous outputs provide richer information.

Another approach to model evaluation is to do a correlation test, such
as Kendall, between predictions from two models. The problem with
this approach is that equal weight is given to all different predictions,
and there will be many very low prediction values and fewer high values
(R.Halvorsen, personal communication, 2017-05-18).

4.5 Species traits

Species traits can have an effect on SDMs, for instance, Hanspach et al.
(2010) found that species with a short life span and living in human
disturbed habitats had lowest model performance. The relevant hypothesis
in this section will be this:

Hypothesis 3

H0 - There will not be species trait specific differences between Maxent
models.

H1 - There will be species trait specific differences between Maxent
models.

Ramsons has a more narrow distribution than the other species, has
clear ecological requirements like nutrient rich forest floors, and it is
restricted to the coast. Earlier studies have shown that species with small
geographic ranges and narrow environmental tolerance give more accurate
models than generalist species (Hernandez et al., 2006).

Both cloudberry and wild raspberries are widespread and common
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species in Norway, and according to Hernandez et al. (2006) should
therefore be harder to model accurately.

Caraway is a biannual plant, while all the other species are perennial.
This could lead to it being harder to model, since it will move around more
and not necessarily be found in the same place year after year. The study by
(Hanspach et al., 2010) also found that short lived species had lower model
performance.

To test this hypothesis of species traits a more rigorous testing regime
would have to be applied. Since this was outside the scope of this thesis,
there can only be some general observations about species life-history
traits. The most clear trend that is seen, is that the widespread and
common species cloudberry and wild raspberry have lower AUC-values
than ramsons which has more narrow habitat demands. This is in line with
previous studies.

4.6 Field work

The preliminary field test that was conducted during the summer of 2015
show that gathering independent, unbiased evaluation data for SDM on a
regional scale is a challenge.

Modelling species distributions can also be seen as modelling a species
fundamental niche (the set of all conditions that allow for its long term
survival) from its realized niche (the subset of the fundamental niche that it
occupies) (Phillips et al., 2006). In this respect it is important to have enough
variation in environmental conditions in order to capture the breadth of
the species fundamental niche, and thus a diverse and large study area is
advisable. The problem with a large study area is that it is very challenging
to make a good field evaluation of the models. Since Phillips et al. (2016)
has modelled all of Norway with a grain size of 10 X 10 km in their Maxent-
model, ideally we would want to check these models with test data on
this scale, and from the entire range of environmental conditions for all
the 204 priority CWR in all of Norway. This is of course an impossible
task. Therefore it was decided to use a smaller geographical area, that still
contained a lot of environmental variation, and also to use a smaller grain
size of 100 X 100 m.

There were some challenges with gathering randomized data from field
work. First of all the study area was large and there were lots of cells. In
order to not recreate the same biases that the GBIF-dataset probably has,
visited cells should be selected at random. But we also wanted to visit sites
that represented the entire range of environmental variation in the area. A
compromise was made by using the first round of models to select cells
with different predictions from low to high. We then expected to find the
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species in cells with high predictions and not in cells with low. The result
was that all the cells that had Rubus idaeus in them had medium to high
predictions (between 0.40 and 0.79) and the one cell with Carum carvi had a
medium high prediction (0.44) in the Carum carvi model.

Using the models made with GBIF-data to select where to collect a
new sample is of course not optimal since the new data then will be semi-
independent on the GBIF-data, but it was seen as a necessary compromise
because randomly chosen cells from the whole ecological space would
probably yield a lot of absences and very few presences.

Another possible approach to field validation on this scale, could be
some kind of block-design where smaller areas within the region was
sampled more thoroughly, as travel distances were long in this study. If
smaller areas with a representative gradient of natural variation could be
studied you could get a larger test set with less effort.

Based on my experiences, I would say that gathering a good test set
for SDM require careful planning of the study design. When it comes to
modelling all of mainland Norway, it is likely that it is not economically
viable to gather this kind of data. What is important is to take all the
inherent weaknesses of the data and modelling method into account when
making conservation plans, to avoid making overoptimistic assumptions
based on SDM.

4.7 Conclusion

The GBIF-platform is an important factor in addressing the issue of
conservation of plant genetic resources like CWR. Together with different
SDM methods it is possible to make good conservation plans on both the
national and global level. Keeping in mind the inherent biases of GBIF-data
is therefore necessary to make good predictions of species distributions
and thereby ensuring effective conservation of CWR. This thesis has
highlighted some of the issues with spatial, temporal and species bias in
GBIF-data. The age of presence records had an effect on the SDMs, and
number of presences also changed model outputs. A proposed solution
for finding the minimal number of points required to make stable models
was presented. Being aware that the biases exist is the first step towards
finding solutions to deal with it, and many solutions have been suggested
by others (some suggestions for Maxent modelling is here: (Merow et al.,
2013)).
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