
Proceedings of the PhD Symposium
at iFM’17 on Formal Methods:
Algorithms, Tools and Applications

(PhD-iFM’17)

Erika Ábrahám and Silvia Lizeth Tapia Tarifa (Eds.)
Research report 470, September 2017

ISBN 978-82-7368-435-6
ISSN 0806-3036

Proceedings of the PhD Symposium
at iFM’17 on Formal Methods:

Algorithms, Tools and Applications

(PhD-iFM’17)

Erika Ábrahám and Silvia Lizeth Tapia Tarifa (Eds.)

September 2017

5

Contents

On the Synthesis of Guaranteed-Quality Plans for Robot Fleets
in Logistics Scenarios via Optimization Modulo Theory.
Francesco Leofante.

On the Community Structure of SAT-BMC Problems.
Xavier Gillard and Charles Pecheur.

Formal Verification of CNL Health Recommendations.
Fahrurrozi Rahman and Juliana Küster Filipe Bowles.

Modular Heap Shape Analysis for Java Programs.
Florian Frohn and Jürgen Giesl.

Abstraction-Based Model Checking of POMDPs in Motion Planning.
Leonore Winterer, Sebastian Junges, Ralf Wimmer, Nils Jansen, Ufuk Topcu,
Jost-Pieter Katoen and Bernd Becker.

Co-Simulation and Formal Verification of Logic-Based Specifications
of Components in CPSs.
Maurizio Palmieri, Cinzia Bernardeschi and Andrea Domenici.

Towards a Contract-Based Unified Design Process.
Cesar Santos, Mike Nicolai and Tom Schrijvers.

An Operational Semantics for a Weak Memory Model
with Buffered Writes, Message Passing, and Goroutines.
Daniel Fava, Martin Steffen, Volker Stolz and Stian Valle.

Virtually Timed Ambients: Formalisation and Analysis.
Johanna Beate Stumpf, Einar Broch Johnsen and Martin Steffen.

Assessing the Coverage of Formal Specifications.
Dominic Steinhöfel.

Versioned Simulation Testing for Concurrent and Distributed Models.
Lars Tveito, Einar Broch Johnsen and Rudolf Schlatte.

Security Functionality of IoT Devices.
Elahe Fazeldehkordi, Olaf Owe and Toktam Ramezanifarkhani.

Using Coloured Petri Nets for Resource-Aware Program Analysis.
Anastasia Gkolfi, Einar Broch Johnsen and Ingrid Chieh Yu.

On the Synthesis of Guaranteed-Quality Plans

for Robot Fleets in Logistics Scenarios

via Optimization Modulo Theory

Francesco Leofante∗†

University of Genoa, Italy
RWTH Aachen University, Germany

leofante@cs.rwth-aachen.de

Abstract

Industries are on the brink of widely accepting a new paradigm for organizing pro-
duction by having autonomous robots manage and optimize the in-factory supply chain.
Successful symbolic reasoning methods exist to solve the underlying scheduling problem,
however they usually offer no guarantees on the quality of the solution. This work proposes
to employ Optimization Modulo Theories (OMT), an extension of SMT solving with opti-
mization capabilities, to synthesize guaranteed-quality schedules for multi-robot systems.
For this purpose, the RoboCup Logistics League (RCLL) is used as a realistic testbed.

1 The project

With the advent of Industry 4.0, factories are moving from static process chains towards more
autonomy, by introducing robots in their production lines. Given this paradigm shift, the
problem of managing and optimizing the in-factory supply chain carried out by (fleets of)
autonomous robots becomes crucial.

The RoboCup Logistics League (RCLL) [4] has been proposed as a realistic testbed to
study the above mentioned problem at a comprehensible and manageable scale. There, groups
of robots need to maintain and optimize the material flow according to dynamic orders in a
simplified factory environment.

Though there exist successful symbolic reasoning methods towards solving the underlying
scheduling problem [3], a disadvantage of these methods is that they provide no guarantees
about the quality of the solution.

A promising solution to this problem is offered by the recently emerging field of Optimization
Modulo Theories (OMT), where Satisfiability Modulo Theories (SMT) solving is extended with
functionalities towards optimization [6, 7, 9].

In this project we study how OMT solving can be employed to compute optimal strategies
for multi-robot systems within the RCLL scope. We frame the underlying scheduling problem
as a linear (mixed-)integer problem involving Boolean combinations of constraints over the
reals. This can be solved and optimized by SMT solvers with optimization functionalities such
as Z3 [1] and OptiMathSAT [8].

Figure 1: The simulation environment used for our experiments

2 The domain

The example domain chosen for evaluating our approach is based on the Planning Competition
for Logistics Robots in Simulation [2] shown in Figure 1. There, the task is to control a team of
three robots to transport workpieces among a number of machines. Each machine performs a
processing step such as mounting a colored ring or a cap. Orders that denote the products which
must be assembled with these operations are posted at run-time and therefore require quick
planning and scheduling. Orders come with a delivery time window introducing a temporal
component into the problem.

A game in the competition is structured in two phases: (i) exploration and, (ii) production.
This work reports on the exploration phase, during which two teams of robots must roam
the environment and determine where the team’s own machines are positioned. For this, the
playing field is divided into 24 virtual zones, 12 of which belong to each of the two teams. Six
of these zones contain machines. Therefore, the task is to efficiently assign the three robots
to the 12 zones, identify the zones which contain a machine, and then precisely determine the
position of the machine and recognize an industrial light signal for verification. Robots are
given 20 minutes to perform exploration (planning time included). This imposes tight timing
constraints on the performances of our OMT-based planning module.

3 OMT-based planning and RCLL

We integrated our OMT-based planning module in the RCLL planning framework [5]. The
overall architecture is depicted in 2. The CLIPS1 executive controls the overall execution. At
a suitable time (when the game enters the appropriate phase), it triggers the OMT solving
process to come up with a plan to explore the machines and encodes the available knowledge
in a message. The solver queries travel times of the position for exploration from a navigation

∗Joint work with E. Ábrahám, G. Lakemeyer, T. Niemueller, A. Tacchella.
†Part of this work is supported by the ICT project house Foundations of a Digitized Industry, Economy, and

Society of RWTH Aachen University.
1CLIPS is a rule-based production system using forward chaining inference [10].

2

CLIPSOMT

travel times

RefBox

Robots

Simulator

TranslationRepresentation

BE

Fawkes

Figure 2: The overall architecture.

graph and uses a domain model phrased suitably for OMT. The result is then represented as a
plan and sent to the CLIPS executive, which must translate it into a native representation for
execution. This plan is then synchronized with all robots, which then execute their respective
partial plans by invoking the appropriate basic behaviors through the behavioral and functional
components of the Fawkes1 software framework.

References

[1] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. of
TACAS’08, pages 337–340, 2008.

[2] Tim Niemueller, Erez Karpas, Tiago Vaquero, and Eric Timmons. Planning competition for
logistics robots in simulation. In Proc. of PlanRob@ICAPS’16, 2016.

[3] Tim Niemueller, Gerhard Lakemeyer, and Alexander Ferrein. Incremental task-level reasoning in
a competitive factory automation scenario. In Proc. of AAAI’13 Spring Symposium, 2013.

[4] Tim Niemueller, Gerhard Lakemeyer, and Alexander Ferrein. The RoboCup Logistics League as
a benchmark for planning in robotics. In Proc. of PlanRob@ICAPS’15, 2015.

[5] Tim Niemueller, Gerhard Lakemeyer, Francesco Leofante, and Erika Ábrahám. Towards CLIPS-
based task execution and monitoring with SMT-based decision optimization. In Proc. of Plan-
Rob@ICAPS’17, to appear.

[6] Robert Nieuwenhuis and Albert Oliveras. On SAT modulo theories and optimization problems.
In Proc. of SAT’06, pages 156–169, 2006.

[7] Roberto Sebastiani and Silvia Tomasi. Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Log., 16(2):12:1–12:43, 2015.

[8] Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A tool for optimization modulo theories.
In Proc. of CAV’15, pages 447–454, 2015.

[9] Roberto Sebastiani and Patrick Trentin. Pushing the envelope of optimization modulo theories
with linear-arithmetic cost functions. In Proc. of TACAS’15, pages 335–349, 2015.

1Fawkes is a component-based software framework for robotic real-time applications.

3

[10] Robert M. Wygant. CLIPS: A powerful development and delivery expert system tool. Computers
& Industrial Engineering, 17(1–4), 1989.

4

On the community structure of SAT-BMC problems
Xavier Gillard and Charles Pecheur

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
{xavier.gillard,charles.pecheur}@uclouvain.be

Abstract

A common belief says that modern SAT solvers are efficient because of their ability
to exploit structural properties of industrial problems. However, we only have a limited
understanding of what is covered by this ‘structure’. A recent hypothesis suggests the
community structure as a candidate definition for that notion. Our paper proposes a tool
helping to understand community structure of SAT instances generated by BMC.

1 Introduction

It is commonly believed in the SAT community that the efficiency of modern SAT solvers
stems from their ability to exploit the structure of the original problem. However, that notion
of structure is often ill defined and very little is known about the reason solvers perform so
well in practice. A recent line of work on SAT suggests that community structure is a good
candidate for that ‘structure’ definition [2, 22, 23]. In that context, community structure is
a property reflecting the possibility to split a SAT instance in almost disjoint subproblems.
Indeed, the modularity measuring that structure was shown to be strongly correlated with the
execution time of CDCL solvers [22]. However, it was proved [21] that some pseudo-industrial
instances with a good community structure [2] require an exponential time for all resolution-
based solvers. Such instances are therefore hard even for the most sophisticated CDCL solvers.
Hence, it is believed that industrial instances exhibit additional features which are not fully
explained by the community structure. In this paper we present a tool we developed to help
understanding the community structure of industrial SAT problems. In particular, we focus
on instances generated by SAT-based Bounded Model Checking (BMC) [9], a well established
formal verification method based on SAT. Our paper is structured as follows: we begin with a
brief introduction to community structure, modern SAT solvers and BMC. Then we present our
tool and discuss some early observations we made. Finally, we propose research perspectives
based on our prospective results.

2 Background

Community structure. Informally, the community structure of a graph is a structural prop-
erty of that graph that decomposes it into almost disjoint sets of nodes. More precisely, these
sets of nodes are called communities and consist of a cluster of nodes that are densely connected
with one another and sparsely with the rest of the graph. There exist efficient algorithms ca-
pable of decomposing a graph into communities (e.g. the Louvain Method [11]).

When it comes to analyzing an instance of SAT problem, the community structure is gen-
erally interpreted over the variable incidence graph (VIG) derived from the boolean formula
encoding the problem. Such a VIG is built from the CNF representation of the formula by hav-
ing one vertex per variable of the problem and one edge between two variables if they appear
together in one same clause (irrespective of their literal polarity).

On the community structure of SAT-BMC problems Gillard, Pecheur

Modern SAT solvers. Modern SAT solvers such as MiniSat [16] or Glucose [7] implement
a Conflict Driven Clause Learning approach. These build upon the traditional DPLL [15]
algorithm to implement a resolution refutation proof system, enhanced with the ability to learn
new (redundant) clauses. All these additional clauses are guaranteed to derive from the original
problem and are learned by the solver upon conflicts [26]. Additionally, CDCL solvers enrich
their resolution algorithm with a set of techniques and heuristics aiming at maximizing the
information gained from the learning process [28, 20, 24, 19, 5, 4, 6, 3, 10], which contributes
to further pushing the limits of the set of tractable SAT instances.

Meanwhile, the question of why CDCL solvers work so well in practice remains largely
unanswered. The traditional approach consists in a proof-complexity-theoretic argument saying
that because of its capability to learn and remember conflict clauses, CDCL implements a
proof system (General Resolution Refutation) that is up to exponentially more efficient than
that of DPLL (Tree Like Resolution Refutation) [8, 18, 24]. However, this argument is of no
use in understanding the rationale behind the good performance of such solvers on industrial
problems1. Thus, it is widely believed that CDCL solvers are able to exploit some kind of
structure of the underlying problem. Hence the recent interest in the community structure of
industrial problems.

Bounded Model Checking (BMC). Model checking consists in verifying that a temporal
formula ϕ expressed in LTL holds for all the traces of a model M . Bounded Model Checking
[9] limits to traces shorter than k (written M |=k ϕ). To do so, a BMC model checker tries
to disprove M |=k ϕ by finding a trace of length k violating the property ϕ. Concretely, the
refutation process is done symbolically by means of a reduction to SAT. In other words, a
boolean formula JM, ¬ϕKk, which is satisfiable iff there exists a violating trace, is fed to some
SAT solver. The solution of that satisfiability test determines whether or not M |=k ϕ and yields
an appropriate counter-example if one exists. For our matter, the key element to understand
about the generation of JM, ¬ϕKk is that it is generated as a sequence of k “blocks of variables”
encoding the possible values of the k states of a bounded trace of M .

3 Experiments
A community analysis tool. The tool we developed2 in order to analyze the community
structure of SAT-BMC problem instances builds upon the PyNuSMV framework which has
recently been extended to expose SAT capabilities of NuSMV [17]. Thanks to that framework,
our tool is able to generate a series of SAT problem instances3 corresponding to the various for-
mulas submitted to a solver when performing a bounded verification of some given SMV model.
Additionally, it uses Igraph [13] to build, manipulate and visualize the VIG associated with
each of the aforementioned SAT problems. More interestingly, our tool combines the features
of the two libraries to compute the graph modularity, detect the community structure of the
VIG and then reconcile the variables with their semantic meaning in the original SMV model.
This permits the use of data mining algorithms to detect patterns of semantic information
frequently associated in the various communities. To that end, we used the algorithms imple-
mented in Pymining [14] to detect frequent patterns (with relim) and frequent sequences. The

1To explain their lack of efficiency on random instances, it has been proved that random k-CNF formulas
have exponential resolution complexity [1, 2, 12]. Obviously, that tells nothing about the efficiency of CDCL on
industrial instances which is our main focus.

2Technical details are found on the project page http://bit.ly/2vWr8bM
3And dump them to DIMACS CNF format for later analysis if necessary.

2

On the community structure of SAT-BMC problems Gillard, Pecheur

information learned that way suggests what the hidden meaning of the communities could be.
Moreover, our tool is also able to collect and plot statistics about the succession of generated
instances. The combination of all the above features provides a fairly complete and efficient
toolkit to analyze the structure of BMC instances. However, our tool slightly suffers from its
inability to associate a semantic meaning to the auxiliary variables introduced by the Tseitin
transformation [27] used to encode the raw SAT-BMC problem in CNF.

Early results. So far, a full scale empirical analysis of the community structure of BMC
instances has not been realized yet. We have analyzed two small models (dining philosophers
and a diagnosability) and one real industrial problem (a railway interlocking). We observed
that communities tend to represent either the evolution of an object (ie philosopher, fork)
over a certain period of time (time frame 1, 2 and 3) or the synchronization of the model at
some point of time (all the forks in the 2nd time frame). Surprisingly though, we observed
that often the communities tend to group variables from three consecutive time blocks while
we would have expected no more than two to reflect the application of the Kripke Structure’s
transition relation. We haven’t yet found any convincing reason explaining that observation,
which remains to be confirmed by further experiments.

We also observed that the modularity of the SAT instances generated for known hard prob-
lems increases for small values of k and diminishes for higher bounds, which corroborates the
results of [22]. Besides that, we also noted that the modularity of SAT instances generated for
problems comprising a model only (formula ϕ is vacuously true) seems to saturate. We believe
that this phenomenon might be related to the diameter4 of the model.

4 Related work
Analyzing the community structure of industrial SAT instances has only gained interest very
recently and is still actively investigated. Therefore, a tool called SatGraf [23] has been devel-
oped to analyze the impact of that structure on the CDCL runtime. Even though it shares
some of its feature with the tool presented here, SatGraf does not consider the semantic level
of the problem. A reflection somewhat similar in its essence to the one presented here has been
held by Shishmarev et al. in [25]; although it took place in a completely different setup than the
current one. Indeed, their focus wasn’t set on the community structure but solely on getting
an understanding of the meaning of learned clauses in the context of constraint programming.
Hence, their results cannot be lifted to BMC.

5 Perspectives and conclusion
Encouraged by the above early results, we believe that our tool might greatly help in gaining a
better understanding of the community structure that arises from SAT-BMC problems. This
objective is a necessary step that could help designing BMC variants that best exploit the
capabilities of current SAT solvers. Indeed, having a proper understanding of model features
that give rise to the communities might serve the point of designing a preprocessor exploiting
these features to generate redundant clauses, thereby easing the resolution without having to
go through the lengthy conflict-learning process. Additionally, this kind of knowledge might
help to scale SAT-BMC horizontally with the design of a semantically grounded heuristic to
split the problem before passing it on to a parallel SAT solver.

4The smallest k to to ensure that M |=k ϕ ⇐⇒ M |= ϕ.

3

On the community structure of SAT-BMC problems Gillard, Pecheur

References

[1] Dimitris Achlioptas. Random satisfiability. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of satisfiability, chapter 8, pages 245–270. IOS press, 2009.

[2] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of SAT formulas.
In International Conference on Theory and Applications of Satisfiability Testing, pages 410–423.
Springer, 2012.

[3] Gilles Audemard, Benoît Hoessen, Said Jabbour, Jean-Marie Lagniez, and Cédric Piette. Penelope,
a parallel clause-freezer solver. In SAT Challenge 2012: Solver and Benchmarks Descriptions,
pages 43–44, 2012.

[4] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Saïs. On freezing and
reactivating learnt clauses. In International Conference on Theory and Applications of Satisfiability
Testing, pages 188–200. Springer, 2011.

[5] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In
IJCAI, volume 9, pages 399–404, 2009.

[6] Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UNSAT. In Prin-
ciples and Practice of Constraint Programming, pages 118–126. Springer, 2012.

[7] Gilles Audemard and Laurent Simon. Glucose and syrup in the SAT race 2015. SAT Race, 2015.
[8] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the

potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351, 2004.
[9] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu. Bounded

model checking. Advances in computers, 58:117–148, 2003.
[10] Armin Biere and Andreas Fröhlich. Evaluating CDCL restart schemes. In Proceedings POS-15.

Sixth Pragmatics of SAT workshop, 2015.
[11] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfold-

ing of communities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[12] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM
(JACM), 35(4):759–768, 1988.

[13] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1–9, 2006.

[14] Barthelemy Dagenais. Pymining, a few data mining algorithms in pure python. https://github.
com/bartdag/pymining, 2015.

[15] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

[16] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In International conference on theory
and applications of satisfiability testing, pages 502–518. Springer, 2003.

[17] Xavier Gillard. Adding SAT-based model checking to the pynusmv framework. Master’s thesis,
M.Sc. Thesis, Université Catholique de Louvain, 2016.

[18] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. Foun-
dations of Artificial Intelligence, 3:89–134, 2008.

[19] Jinbo Huang et al. The effect of restarts on the efficiency of clause learning. In IJCAI, volume 7,
pages 2318–2323, 2007.

[20] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation Con-
ference, pages 530–535. ACM, 2001.

[21] Nathan Mull, Daniel J Fremont, and Sanjit A Seshia. On the hardness of SAT with community
structure. In International Conference on Theory and Applications of Satisfiability Testing, pages
141–159. Springer, 2016.

4

On the community structure of SAT-BMC problems Gillard, Pecheur

[22] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent Simon.
Impact of community structure on SAT solver performance. In International Conference on Theory
and Applications of Satisfiability Testing, pages 252–268. Springer, 2014.

[23] Zack Newsham, William Lindsay, Vijay Ganesh, Jia Hui Liang, Sebastian Fischmeister, and
Krzysztof Czarnecki. Satgraf: Visualizing the evolution of SAT formula structure in solvers.
In International Conference on Theory and Applications of Satisfiability Testing, pages 62–70.
Springer, 2015.

[24] Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. PhD thesis, Citeseer, 2004.
[25] Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda. Learn-

ing from learning solvers. In International Conference on Principles and Practice of Constraint
Programming, pages 455–472. Springer, 2016.

[26] João P Marques Silva and Karem A Sakallah. GRASP – a new search algorithm for satisfiability.
In Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design, pages
220–227. IEEE Computer Society, 1997.

[27] Grigori Samuilovich Tseitin. On the complexity of derivation in propositional calculus. Studies in
Constrained Mathematics and Mathematical Logic, 1968.

[28] Hantao Zhang and Mark Stickel. Implementing the davis–putnam method. Journal of Automated
Reasoning, 24(1-2):277–296, 2000.

5

Formal Verification of CNL Health Recommendations

Fahrurrozi Rahman and Juliana Bowles

School of Computer Science, North Haugh, St Andrews KY16 9SX, UK
{fr27,jkfb}@st-andrews.ac.uk

1 Introduction

Clinical texts, such as therapy algorithms, are often described in natural language and may
include hidden inconsistencies, gaps and potential deadlocks. We propose an approach to
identify such problems with formal verification. From each sentence in a therapy algorithm
written in controlled natural language (CNL), we automatically generate a parse tree and
derive case frames. From the case frames we construct a state-based representation and use the
model checker UPPAAL to verify the model. The choice of timed automata and UPPAAL is
motivated by the fact that clinical texts sometimes make reference to timed and periodic events
and we want the added flexibility of probabilistic extensions available in the wide range of tools
that the UPPAAL family has. We will explore the use of different formal techniques including
constraint solvers at later stages of the work.

Our overall aim is to use formal methods to detect gaps and case omissions in clinical
pathways, and help to further clarify treatment steps. In the long term, we would like to
develop solutions that make it possible for patients to gain a better understanding of the
therapy underlying their disease and the options available to them. Our current focus is on the
algorithm for blood glucose lowering therapy in adults with type 2 diabetes from the National
Institute for Health and Care Excellence (NICE)1. This extended abstract is based on [6].

2 Background

Demner-Fushman et al. [2] reports the adaptation of NLP strategies to develop clinical decision
support (CDS) systems that may help in decision making—e.g. monitoring of clinical events,
processing radiology/pathology text-based reports, or processing a mixture of clinical note—
for health care providers as well as the public. Aiming to improve the (cost) effectiveness
of colorectal cancer (CRC) screening and surveillance, Imler et al. [4] conducted a study by
annotating pathology reports which can give high accuracies to detect CRC, advanced adenoma,
conventional adenoma, etc.

In software engineering, Carvalho [1] has shown how to combine NLP and formal methods
to automatically generate test cases from the software requirements. The requirements written
in CNL are parsed and followed by the construction of case frames which are then transformed
into the data flow reactive system formalism and then translated into different target formal
methods for verification to generate candidates for test cases. Motivated to detect problems
at an early stage of development process, Diamantopoulos et al. [3] created a mechanism to
automatically map requirements to formal representation using semantic role labelling. Using
a model that has been trained from annotated software requirements, several ontology concepts
are inferred and then can be used to trace the connection and relationship between them.

1https://goo.gl/YDDtQY

Formal Verification of CNL Health Recommendations Rahman and Bowles

Figure 1: Model with Branch Points

3 The Problem, Model Generation and Verification

In our work, we process specific clinical texts related to handling a particular disease. Instead
of generating output in terms of steps for testing as done in [1] or annotating texts as done in
[3], we look for and verify discrepancies that are inherently hidden inside the therapy algorithm.

To process the sentences in the therapy algorithm, we create a CNL (in terms of lexical
and grammar rules) to standardise the structure of the sentences. After defining the rules
as context free grammar (CFG), the original sentences taken from the therapy algorithm are
manually rewritten so they conform to the rules. These sentences are then parsed with the help
of modgrammar2, a library in Python for building parsers using CFG definitions. From the
generated parse tree, we construct the case frames following the eight thematic roles defined by
Carvalho [1] with two additional roles: one for handling the nested condition in our sentences
and another one to mark the sequence of the sentence in the therapy algorithm.

From the constructed case frames, we generate the diabetes automaton by automaticallly
traversing the case frames for each sentence. The generated model must agree with UPPAAL’s
notation: a timed automaton with clocks, locations, location invariants, transitions, and guards.
Fig. 1 shows the final (partial) model generated after adding some branch points that takes the
system back to the initial state (to model when a patient’s condition turns back to normal after
a period of time under treatment which was not covered by the original therapy algorithm).

The generated model is verified against several predefined properties some of which can be
seen in Table 1. The properties selected are used primarily to evaluate our approach. For

2https://bitbucket.org/modgrammar/modgrammar

2

Formal Verification of CNL Health Recommendations Rahman and Bowles

example,
A[] !deadlock

is not satisfied because the model at present and as generated from the therapy algorithm
contains no further steps after second intensificiation and hence deadlocks at that point. This
suggests that further discussions with clinicians are required to understand available options
from that point and what is realistic.

Table 1: Verification Result

UPPAAL queries Verification
Result

Remark

A[] !deadlock not satisfied There is a path that leads to a deadlock.

E<> !diab.FirstIntensification1 &&

!diab.FirstIntensification2

satisfied There exists a path where first intensi-
fication is never reached.

diab.FirstIntensification2 -->

diab.SecondIntensification2

not satisfied There is a path in which a second in-
tensification will never be reached from
a first intensification.

4 Conclusion

We have presented an approach to analyse therapy algorithms published by NICE automatically.
Therapy algorithms contain instructions which we treat as CNL statements and from which
we ultimately build a state-based representation, in our case a timed automaton, that can
be analysed by a model checker such as UPPAAL. A particular problem that we wanted to
investigate was how to detect inconsistencies and gaps in the treatment options. In particular,
it was noted that the algorithm did not consider a possible recovery in the different treatment
stages that a patient with type 2 diabetes may go through nor what happens after a second
intensification. In future collaborations with a general practitioner, we will analyse EHRs for
patients with diabetes in Scotland, in order to detect cases or treatments that are not currently
captured in the guidelines, and extend the algorithm accordingly. More broadly, we also want
to see if one algorithm may have conflicts with another from a different disease for patients
with multiple ongoing chronic conditions (cf. [5]).

References

[1] G. Carvalho. NAT2TEST: Generating Test Cases from Natural Language Requirements based on
CSP. PhD thesis, Universidade Federal de Pernambuco, 2016.

[2] D. Demner-Fushman et al. What can natural language processing do for clinical decision support?
Journal of Biomedical Informatics, 42(5):760–772, 2009.

[3] T. Diamantopoulos et al. Software requirements as an application domain for natural language
processing. Language Resources and Evaluation, 51(2):495–524, 2017.

[4] T. D. Imler et al. Multi-center colonoscopy quality measurement utilizing natural language pro-
cessing. The American Journal of Gastroenterology, 110(4):543–552, 2015.

[5] A. Kovalov and J.K.F. Bowles. Avoiding medication conflicts for patients with multimorbidities.
In International Conference on Integrated Formal Methods, pages 376–390, 2016.

[6] F. Rahman and J.K.F. Bowles. Formal Verification of CNL Health Recommendations. In Inter-
national Conference on Integrated Formal Methods, 2017. To appear in Lecture Notes in Computer
Science 10510

3

Modular Heap Shape Analysis for Java Programs∗

Florian Frohn and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract

We report on our ongoing work towards an automatic heap shape analysis for Java programs
in order to approximate the possible forms of sharing and cycles on the heap. Our analysis
is completely modular, i.e., Java methods are analyzed independently and each method is
analyzed only once. Moreover, in contrast to similar analyses, our technique does not only
analyze cyclicity and reachability, but also sharing, i.e., it checks whether two objects may
have a common successor. Finally, our analysis is path-sensitive, i.e., if two objects o and
o′ share, then our analysis approximates which paths of object fields lead from o and o′ to
their common successor. Use-cases for such an analysis include (but are not limited to) the
modularization of termination analysis, complexity analysis, and data-flow analysis.

1 Introduction

Our tool AProVE [3] has been the most powerful fully automatic termination analyzer for Java
programs for many years, as witnessed by the annual termination competition.1 Its outstanding
feature is its precise handling of the heap, which is analyzed via symbolic execution using
a rather complex abstract domain [1, 4]. To solve the arising search problems, AProVE uses
standard SMT solvers. Recently, AProVE’s termination analysis has been adapted for complexity
analysis of Java programs [2]. This adaption was driven by our project CAGE 2 with Draper
Inc. and the University of Innsbruck where AProVE analyzes programs with tens of thousands
lines of code. Unsurprisingly, this project revealed bottlenecks w.r.t. the scalability of AProVE’s
current heap shape analysis (HSA). While we can bypass these restrictions by providing method
summaries as additional input [2], a more scalable automatic HSA is desirable.

In Sect. 2, we sketch such an analysis after discussing AProVE’s current heap shape analysis
(which we call HSAProVE from now on) and its limitations w.r.t. scalability. Like HSAProVE, our
new analysis HSreg can be used to analyze sharing as well as cyclicity, but in this paper we
focus on sharing for reasons of space. Sect. 3 briefly discusses related work and concludes.

2 An Alternative to AProVE’s Heap Shape Analysis

Like many other HSAs, AProVE represents sets of program states using a symbolic heap and a
mapping from local variables to symbolic references (i.e., pointers to memory locations). To
express information about the heap, it uses predicates over symbolic references [4]:3 The points-to

predicate o
f−→ o′ expresses that the field f of the object referenced by o stores the reference o′,

the may-alias predicate o =? o′ means that o and o′ may be equal, and the may-share predicate
o %$ o′ states that o and o′ may have a common successor, i.e., some o′′ may be reachable from
o as well as o′ by dereferencing (possibly empty) sequences of fields. The semantics of the empty
set of predicates is that all objects are in disjoint parts of the heap, i.e., sharing and aliasing

∗Supported by the DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).
1http://termination-portal.org/wiki/Termination_Competition
2http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks
3Here, we omit some predicates for reasons of space.

Modular Heap Shape Analysis for Java Programs F. Frohn and J. Giesl

has to be allowed explicitly using predicates. Note that the points-to predicate means that
some connection must exist, whereas the may-alias and the may-share predicate express that
references may share or alias, i.e., HSAProVE simultaneously performs may- and must-analyses.
Consequently, the semantics of HSAProVE is rather complicated.

Example 1. Consider a class for lists with the fields value and next. To represent a list

o1 with at least two elements whose last value is o3, the predicates {o1 next−−−→ o2, o2 %$ o3} can
be used. Note that the connection from o2 to o3 of the form next∗.value cannot be expressed
precisely since the may-share predicate is not path-sensitive. In particular, o2 %$ o3 also allows
paths from o3 to o2, i.e., it over-approximates the connection between o2 and o3 rather coarsely.

The main drawback of HSAProVE for scalability is its dependence on the context in which methods
are called (context-sensitivity). So the same method often has to be analyzed several times to
take differences in the calling states into account. This need for context-sensitivity is closely
related to HSAProVE’s restricted expressivity. As shown in Ex. 1, HSAProVE cannot describe the
effect of many common heap manipulating methods like appending to the end of a list precisely.
Context-sensitivity often allows us to focus on specific cases instead. For example, the result of
appending to the end of a list of known length can be expressed using the points-to predicate.

Hence, the goal of our new analysis HSreg is to improve expressivity such that context-
sensitivity can be sacrificed without major regressions w.r.t. precision. To this end, HSreg uses

a single path-sensitive predicate o
π−→ τ←− o′. Here, π and τ are regular languages over the set F

of all fields in the program (i.e., π, τ ⊆ F∗). The semantics of o
π−→ τ←− o′ is that o and o′ may

only share if o reaches their common successor via a path from π and o′ reaches this successor
via a path from τ . (More precisely, if o.v = o′.w and o.v′ 6= o′.w′ holds for every prefix v′ of
v and every prefix w′ of w where v′ 6= v or w′ 6= w, then we have v ∈ π and w ∈ τ). Hence,

o
F∗
−−→ F∗
←−− o′ and o

ε−→ ε←− o′ correspond to HSAProVE’s may-share and may-alias predicates.
Since HSreg does not provide a points-to predicate, it is a pure may-analysis and hence

avoids the complexity that arises from combining may- and must-analyses.

Example 2. With HSreg , the situation in Ex. 1 can be expressed by the predicates {o1 next−−−→ ε←− o2,
o2

next∗.value−−−−−−−→ ε←− o3}. The path from o2 to o3 is described more precisely than in Ex. 1, since
these predicates do not allow paths from o3 to o2 anymore. However, they only express that o1’s
field next may store o2, whereas the predicates from Ex. 1 express that it must store o2.

Ex. 2 shows that HSAProVE and HSreg are orthogonal in general, but HSreg can describe possible
(as opposed to definite) sharing more precisely than HSAProVE, i.e., HSreg fits our needs w.r.t.
expressivity. This is also true for more complex data structures (e.g., binary trees with the fields

value, left, and right, where o
(left|right)∗.value−−−−−−−−−−−−→ ε←− o′ expresses that o′ may be an element of

the tree o). However, applying HSreg in an interprocedural, context-insensitive setting with
reasonable precision is non-trivial. The reason is that interprocedural program analyses usually
summarize methods using pre- and postconditions. Hence, to ensure that every method is
analyzed at most once, each method has to be analyzed with the most general precondition. For

HSreg , this means that we have to add the predicate o
F∗
−−→ F∗
←−− o′ for each pair o, o′ of arguments

of the analyzed method to the initial state. Clearly, this would diminish the precision of HSreg .
Our solution is to analyze a slightly different property than HSAProVE and many other similar

analyses. HSAProVE analyzes the property “which references may share” for every program
position of the analyzed method m. Clearly, this property is highly context-sensitive, i.e., it
can differ significantly depending on the program state in which m is invoked. Instead, HSreg
analyzes the property “which references may share due to side-effects of m”, i.e., it just considers

2

Modular Heap Shape Analysis for Java Programs F. Frohn and J. Giesl

sharing that has been introduced by the currently analyzed method itself. While this property
is clearly context-insensitive, it coincides with the property analyzed by HSAProVE if there is no
sharing in the initial state, as it is the case for the main method of Java programs.

Example 3. Consider a method add that appends a value o′ to the end of a list o. Independently
from the states in which add is called, the property “which references may share when add returns

due to side-effects of add” can be approximated by the predicate o
next∗.value−−−−−−−→ ε←− o′.

As a consequence, whenever HSreg encounters an invocation of a previously analyzed method m,
it has to incorporate the connections that might be introduced by m into the calling state.

Example 3 (continued). Assume that add is called in a state whose heap is described by

o
next∗−−−→ ε←− o′′. To construct the state after the invocation of add, HSreg has to incorporate the

new connection o
next∗.value−−−−−−−→ ε←− o′ into the predicate o

next∗−−−→ ε←− o′′ of the calling state. Since o′′

may be reachable from o via next-pointers, o′ may be inserted behind o′′, i.e., o′ and o′′ may

share. Hence, the resulting state is {o next∗−−−→ ε←− o′′, o next∗.value−−−−−−−→ ε←− o′, o′′ next∗.value−−−−−−−→ ε←− o′}.
To infer predicates that approximate the side-effects introduced by methods (with loops or
recursion), HSreg requires techniques for generalization and symbolic reasoning with regular
languages. We developed a library which accomplishes this task and yields promising results.

3 Conclusion

In this paper, we discussed some shortcomings of AProVE’s current heap shape analysis and
sketched an alternative analysis to overcome them. The key idea is to use a path-sensitive
abstract domain to improve expressivity, which in turn allows us to sacrifice context-sensitivity
without major regressions w.r.t. precision. As a result, we obtain a high degree of modularity.
First results with a prototypical implementation are promising.

Apart from AProVE’s previous approach to HSA, the most closely related techniques are [5,6].
However, these approaches are just field-sensitive, i.e., in contrast to our technique they do not
take the order of fields on paths into account. Moreover, they just analyze reachability and
cyclicity, and they rely on a field-insensitive sharing analysis, whereas our sharing analysis is
also field- (and even path-) sensitive. Finally, our approach is orthogonal to separation logic,
which is the base for many pure must-analyses, whereas our analysis is a pure may-analysis.

References

[1] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs for Java programs
with cyclic data. In Proc. CAV ’12, LNCS 7358, pages 105–122, 2012.

[2] F. Frohn and J. Giesl. Complexity Analysis for Java with AProVE. In Proc. iFM ’17, LNCS, 2017.

[3] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing program
termination and complexity automatically with AProVE. JAR, 58(1):3–31, 2017.

[4] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis of Java
Bytecode by term rewriting. In Proc. RTA ’10, LIPIcs 6, pages 259–276, 2010.

[5] E. Scapin and F. Spoto. Field-sensitive unreachability and non-cyclicity analysis. Sci. Comput.
Program., 95:359–375, 2014.

[6] D. Zanardini and S. Genaim. Inference of field-sensitive reachability and cyclicity. ACM Transactions
on Computational Logic, 15(4):33:1–33:41, 2014.

3

Abstraction-based Model Checking of POMDPs

in Motion Planning∗

Leonore Winterer1, Sebastian Junges2, Ralf Wimmer1, Nils Jansen4,
Ufuk Topcu3, Joost-Pieter Katoen2, and Bernd Becker1

1 BrainLinks-BrainTools Cluster of Excellence
Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany

{winterel | wimmer | becker}@informatik.uni-freiburg.de
2 RWTH Aachen University, Aachen, Germany

{sebastian.junges | katoen}@informatik.rwth-aachen.de
3 The University of Texas at Austin, Austin, Texas, USA

utopcu@utexas.edu
4 Radboud University, Nijmegen, The Netherlands

n.jansen@science.ru.nl

Abstract

Partially observable Markov decision processes (POMDPs) are a natural model for many
applications where one has to deal with incomplete knowledge and random phenomena,
including, but not limited to, robotics and motion planning. However, many interesting
properties of POMDPs are undecidable or otherwise very expensive to decide in terms of
both runtime and memory usage. In our work, we develop abstraction-based methods that
can deliver safe bounds and good approximations for certain classes of properties.

1 Challenge

In offline motion planning, we aim to find a strategy for an agent that ensures certain desired
behavior, even in the presence of dynamical obstacles and uncertainties [2]. If random phenomena
like uncertainty in the outcome of an action or in the movement of dynamic obstacles need
to be taken into account, the natural model for such scenarios are Markov decision processes
(MDPs). MDPs are are non-deterministic models which allow the agent to perform actions
under full knowledge of the current state of the agent and the surrounding environment. In
many applications, though, full knowledge cannot be assumed, and we have to deal with partial
observability [3]. For such scenarios, MDPs are generalized to partially observable Markov
decision processes (POMDPs). In a POMDP, the agent does not know the exact state of the
environment, but only an observation that can be shared between multiple states. Additional
information about the likelihood of being in a certain state can be gained by tracking the
observations over time. This likelihood is called the belief state. Using an update function
mapping a belief state and an action as well as the newly obtained observation to a new belief
state, one can construct a (typically infinite) MDP, commonly known as the belief MDP.

While model checking and strategy synthesis for MDPs are, in general, well-manageable
problems, POMDPs are much harder to handle and, due to the potentially infinite belief space,
many problems are actually undecidable [1]. Our aim is to apply different abstraction and
abstraction refinement techniques to POMDPs in order to get good and safe approximative
results for different types of properties.

∗This work was (partly) supported by BrainLinks-BrainTools, Cluster of Excellence funded by the German
Research Foundation (DFG, grant number EXC 1086) and by the awards ONR # N000141612051, NASA #
NNX17AD04G and DARPA # W911NF-16-1-0001.

Abstraction-based Model Checking for POMDPs in Motion Planning L. Winterer et al.

2 Approach

As a case study, we work with a scenario featuring a controllable agent. Within a certain area,
the agent needs to traverse a room while avoiding both static obstacles and randomly moving
opponents. Only the positions of the opponents cannot always be observed. The area is modeled
as a grid, the static obstacles as grid cells that may not be entered. Our detailed assumption for
this scenario is that the agent always knows its own position, but the positions of an opponent
is only known if its distance from the agent is below a given threshold and if the opponent is
not hidden behind a static obstacle. We assume that the opponents move probabilistically. This
directly leads to a POMDP model for our case study. For simplification purposes, we are only
dealing with one opponent right now, although the same approach would work with an arbitrary
number of opponents as well.

The goal is to find a strategy which maximizes the probability to navigate through the grid
from an initial to a target location without collision. For a grid size of n × n cells and one
opponent, the number of states in the POMDP is in O(n4), i. e., the state space grows rapidly
with increasing grid size. In order to handle non-trivial grids, we propose an approach using
game-based abstraction [4].

Intuitively, we lump together all states that induce the same observation; so we can still
distinguish between all states in which the opponent’s position is known, but states in which the
position is not known are merged into one far away state [6]. In order to get a safe approximation
of the possible behavior of the opponent, for all of these lumped states we add a non-deterministic
choice over the potential positions of the opponent. We formalize this as a 2-player probabilistic
game [4], in which one player controls the actions of the agent, and the other player controls the
non-determinism added by the abstraction. This allows both players to optimize according to
different goals. The abstraction player can create a worst-case scenario to over-approximate the
realistic behavior, thus ensuring that the obtained bounds are safe and the resulting strategy
cannot perform worse when mapped back to the original scenario.

A comparison with the state-of-the-art POMDP model checker PRISM-pomdp [5] indicates
that we can handle grids that are considerably larger than what PRISM-pomdp can handle,
while still getting schedulers that induce values which are close to the optimum. Table 1 shows
a few of our results for verifying a reach-avoid property on a grid without obstacles. As one
can see, the abstraction approach is faster by orders of magnitude than solving the POMDP
directly, and the game model also is much smaller for large grids while still getting very good
approximations for the actual probabilities. The strategies induce even better values when they
are mapped back to the original POMDP. Note that this lifting of strategies can currently only
be performed for small benchmarks due to technical limitations of the PRISM tool we use.

While being sound, our approach is still targeting an undecidable problem and as such not
complete in the sense that in general no strategy with maximum probability for success can
be deduced. In particular for cases with few paths to the goal location, the gap between the
obtained bounds and the actual maximum can become large. For those cases, we define a
scheme to refine the abstraction, which leads to larger games and accordingly longer computation
times, but also to better results. In Table 2 we have demonstrated a first, very coarse step of
this refinement. We use a benchmark representing a long, narrow tunnel, in which the agent
has to pass the opponent once, but, due to the nature of the abstraction, can actually run
into him several times. With longer tunnels, the probability to safely arrive in a goal state
diminishes. Adding a refinement which remembers the last known position of the opponent
and thus restricting the non-deterministic movement keeps the probability steady for arbitrary
tunnel length.

2

Abstraction-based Model Checking for POMDPs in Motion Planning L. Winterer et al.

Table 1: Comparing the POMDP solution using PRISM-pomdp with the solution of the PG abstraction
using PRISM-games on different sized grids without obstacles for a reach-avoid property. The MDP
result is the hard upper limit for the probability. All times are given in seconds.

POMDP solution PG solution Lifting MDP
Grid size States Result Model Time Sol. Time States Result Model Time Sol. Time Result

3× 3 299 0.8323 0.063 0.26 400 0.8323 0.142 0.036 0.8323 0.8323

4× 4 983 0.9556 0.099 1.81 1348 0.9556 0.353 0.080 0.9556 0.9556

5× 5 2835 0.9882 0.144 175.94 6124 0.9740 0.188 0.649 0.9825 0.9882

5× 6 4390 0.9945 0.228 4215.056 8058 0.9785 0.242 0.518 0.9893 0.9945

6× 6 6705 ?? 0.377 – MO – 10592 0.9830 0.322 1.872 0.9933 0.9970

8× 8 24893 ?? 1.735 – MO – 23128 0.9897 0.527 6.349 0.9992 0.9998

10× 10 66297 ?? 9.086 – MO – 40464 0.9914 0.904 6.882 0.9999 0.9999

20× 20 – Time out during model construction – 199144 0.9921 8.580 122.835 0.9999 0.9999

30× 30 – Time out during model construction – 477824 0.9921 41.766 303.250 ?? 0.9999

40× 40 – Time out during model construction – 876504 0.9921 125.737 1480.907 ?? 0.9999

50× 50 – Time out during model construction – 1395184 0.9921 280.079 3129.577 ?? – MO –

Table 2: Results of the game-based abstraction for benchmarks describing a long, narrow corridor, with
and without rudimentary refinement. All times are given in seconds.

Grid States Choices Trans. Result Time

n
o

re
f.

4× 40 50880 93734 170974 0.9228 19

4× 60 77560 143254 261534 0.8923 67

4× 80 104240 192774 352094 0.8628 115

4× 100 130920 242294 442654 0.8343 164

w
it

h
re

f. 4× 40 55300 120848 198088 0.9799 63

4× 60 83820 182368 300648 0.9799 220

4× 80 112340 243888 403208 0.9799 265

4× 100 140860 305408 505768 0.9799 746

3 Conclusion and Further Research

Game-based abstraction has turned out to be a viable way to obtain safe – and in many cases
rather tight – bounds on maximal reach-avoid probabilities in our motion planning scenario.
It scales much better than the standard analysis algorithms for POMDPs, which are typically
based on discretizing the corresponding belief MDP [5].

Currently, our approach is limited to a restricted class of POMDPs based on an agent and
its opponents moving inside a connected graph, but we have reason to believe that game-based
abstraction is also beneficial for arbitrary POMDPs. We are also going to investigate other
classes of properties involving costs and the long-term behavior of agents.

References

[1] Krishnendu Chatterjee, Martin Chmeĺık, and Mathieu Tracol. “What is decidable about
partially observable Markov decision processes with ω-regular objectives”. In: J. Comput.
Syst. Sci. 82.5 (2016), pp. 878–911. doi: 10.1016/j.jcss.2016.02.009.

3

Abstraction-based Model Checking for POMDPs in Motion Planning L. Winterer et al.

[2] Ronald A. Howard. Dynamic Programming and Markov Processes. 1st edition. The MIT
Press, 1960.

[3] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning and
acting in partially observable stochastic domains”. In: Artif. Intell. 101.1 (1998), pp. 99–134.
doi: 10.1016/S0004-3702(98)00023-X.

[4] Mark Kattenbelt and Michael Huth. “Verification and Refutation of Probabilistic Specifica-
tions via Games”. In: FSTTCS. Vol. 4. LIPIcs. Schloss Dagstuhl, 2009, pp. 251–262. doi:
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2323.

[5] G. Norman, D. Parker, and Xueyi Zou. “Verification and Control of Partially Observable
Probabilistic Systems”. In: Real-Time Systems 53.3 (2017), pp. 354–402. doi: 10.1007/
s11241-017-9269-4.

[6] Leonore Winterer et al. “Motion Planning under Partial Observability using Game-Based
Abstraction”. In: IEEE Conf. on Decision and Control (CDC). Melbourne, Australia: IEEE,
Dec. 2017.

4

Co-simulation and formal verification of logic-based

specifications of components in CPSs

Maurizio Palmieri12, Cinzia Bernardeschi2, and Andrea Domenici2

1 Dipartimento di Ingegneria dell’Informazione, University of Florence, Florence, Italy
2 Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
{maurizio.palmieri,cinzia.bernardeschi,andrea.domenici}@ing.unipi.it

Abstract

Our work aims at the development of a methodology for formal modeling, simula-
tion, and verification of logic-based specifications of components in cyber-physical systems
(CPSs). The methodology is supported by automated tools: the logic specification of
the CPS controllers is given in the logic of the Prototype Verification System (PVS) tool;
logic theories are co-simulated with sub-systems modelled with continuous formalisms in
the INTO-CPS co-simulation framework. Co-simulation, besides being a prototyping tool
supporting the exploration of user interaction, provides checks at early stages of develop-
ment. The interactive theorem prover of the PVS framework can be applied for generating
formal proofs of the correctness of the proposed controllers. In the work carried out so far,
the methodology is applied to simple autonomous vehicles.

1 Introduction

Cyber-Physical Systems (CPS) are complex physical systems operated by digital controllers.
From the computational point of view, the existence of digital and physical components re-
quires the use of different kinds of mathematical formalisms, i.e., discrete, logic-based models
for controllers and continuous models based on differential equations for plants. In addition,
the physical parts of a CPS may have to be modeled with different languages and tools, since a
variety of modeling tools has been produced to address different physical aspects of the systems.
Simulation in CPS often takes the form of co-simulation, i.e., integrated simulation of different
subsystems, each modeled with a specific formalism and simulated by a specific simulation en-
gine. The Functional Mockup Interface (FMI) [1] is a standard for co-simulation: sub-models
implemented as functional mockup units (FMUs), are orchestrated by a master that communi-
cates with them through proxy modules (FMI wrappers) whose interfaces are FMI-compliant.
Recently, the INTO-CPS project [3] created an integrated co-simulation framework based on
FMI. A complementary approch to co-simulation is formal verification. For example, KeY-
maera [2] is a theorem prover, recently developed and applied successfully for the verification of
CPSs. Its language includes conditions, non-determinism, loops, composition, and continuous
dynamics, i.e., behaviours defined by differential equations.

The work we present provides the possibility of co-simulate logic theories given in the higher-
order logic of the Prototype Verification System PVS [5] with sub-systems modelled with con-
tinuous formalisms in the INTO-CPS co-simulation framework. PVS has been used to verify
systems from many fields of application, including, e.g., microprocessor design and air traffic
control. Moreover, the interactive theorem prover of the PVS framework can be applied for
generating formal proofs of the correctness of the proposed controllors. We show the application
of our methodology to a simple example: a unicycle that has the task of reaching an assigned
straight path and then follow it, and it can be controlled by varying its turning speed.

Co-simulation and formal verification of CPS Palmieri et al.

2 FMU generation for PVS

The PVS specification provides basic types, such as Booleans, naturals, integers, reals, and
others, and type constructors to define more complex types. The mathematical properties of
each type are defined axiomatically in a set of fundamental theories, called the prelude. Among
the complex types, the ones used in this work are record types and predicate subtypes.

A way to use a PVS theory is to use it as an executable model for simulation. This is made
possible by the PVSio extension. PVSio [4] is a ground evaluator that computes the value of
ground (variablefree) expressions. The evaluator can also compute functions with side effects,
such as producing outputs. It should be noted that functions with side effects are logically
equivalent to normal (i.e., purely logical) functions of the PVS language, so that they do not
interfere with theorem proving. The PVSio evaluator acts as an interpreter for PVS logic
language.

The FMU has been extended with a Graphical User Interface (GUI) that, in addition to
visualizing the simulation, can forward input from the user to the system controller at run-time.

Introducing user inputs from a GUI requires the controller to work in two alternative modes,
automatic or manual. Accordingly, a new variable is added to the state of the controller to
keep track of the current mode. The switch between different control modes can be performed
in different ways, depending on the specific case. For example, a specific input from the user
could trigger the automatic control mode.

3 Case study: a unicycle vehicle

A unicycle is a possible representation of a terrestrial vehicle with a pair of wheels connected
through an axle; it is represented by three state variables: x, y, ψ. The pair (x, y) indicates
the midpoint position of the axle and ψ indicates the orientation angle from the x-axis and
the orthogonal to the axle itself, as shown in Figure 1(left). The linear speed v is commonly
given by a preassigned function of time, for simplicity we can assume it to be constant, so the
only free variable we can use to achieve our goal is the angular speed ω. In order to deal with
the problem of driving the vehicle to follow a pre-defined straight line we can use the following
equation:

ω = − d v sinc(ψ − θ)− k (ψ − θ) (1)

where d is the distance between the vehicle and the desired line and θ is the angular coefficient
of the desired line, k is a parameter of the control law and sinc(α) = sin(α)/α, if α 6= 0; 1,
otherwise . The unicycle kinematics is modeled in Simulink, and exported as an FMU. The
controller is defined by the unicycle controller theory:

unicycle_controller : THEORY

BEGIN

IMPORTING stdmath

State : TYPE = [#

y: real, x: real, psi: real, % inputs

y_0: real, psi_c: real, % target line

k: real, v: real, % parameters

w: real #] % output

END

The state record type contains the unicycle coordinates and yaw angle coming from the
Simulink side, the parameters of the target line, the control law parameters, and the turning

2

Co-simulation and formal verification of CPS Palmieri et al.

Figure 1: Representation of a unicycle (left); an example of co-simulation (right).

speed to be sent to the Simulink side. The function step(s:State):State uses the input and
parameter fields of the state record to compute the new value of w and replace the previous one
in a new copy of the record.

The co-simulation model has been exercised by varying the parameters of the target line
and of the control law, and the initial position and orientation of the unicycle. For example,
Figure 1(right) shows the path of the unicycle starting at (−14,−14), headed parallel to the
ordinate axis, and approaching a straight line shown in the figure. The control law parameters
are k = 0.05 and v = 0.2; the resulting trajectory has an oscillating transient.

Using the interactive theorem prover of PVS, we proved the correctness of the control law
in reaching the assigned straight path and then follow it. Eq. 1 can easily be implemented in a
PVS theory. We applied a common practice in control theory: the system is linearized at the
desired state, the systems Jacobian is formulated, and the asymptotic stability of the state is
verified by showing that the eigenvalues are real and negative.

References

[1] Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, Christoph Clauß, Hilding
Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauß, Dietmar Neumerkel, Hans Olsson,
and Antoine Viel. Functional Mockup Interface 2.0: The Standard for Tool independent Exchange
of Simulation Models. In Proceedings of the 9th International Modelica Conference, pages 173–184.
The Modelica Association, 2012.

[2] F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phaosawasdi, D. Padua, S. Kar,
J. M. F. Moura, M. Franusich, J. Johnson, A. Platzer, and M. M. Veloso. High-assurance spiral:
End-to-end guarantees for robot and car control. IEEE Control Systems, 37(2):82–103, April 2017.

[3] Integrated Tool Chain for Model-based Design of Cyber-Physical SystemsR© project, Horizon 2020,
grant number 644047.

[4] C. Muñoz. Rapid prototyping in PVS. Technical Report NIA 2003-03, NASA/CR-2003-212418,
National Institute of Aerospace, Hampton, VA, USA, 2003.

[5] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: combining specification, proof
checking, and model checking. In R. Alur and T.A. Henzinger, editors, Computer-Aided Verification,
CAV ’96, number 1102 in LNCS, pages 411–414. Springer-Verlag, 1996.

3

Towards a Contract-Based Unified Design Process

Cesar A. R. Santos1,2, Mike Nicolai1, and Tom Schrijvers2

1 Siemens Industry Software N.V., Leuven, Belgium
2 KU Leuven, Belgium

Abstract

Mechatronic systems engineering is a complex multidisciplinary activity that presents
many challenges. Design decisions from one engineering domain affect the other domains,
making it difficult to develop systems in a modular way. The different tools and method-
ologies used by each domain complicate the problem, as multiple incompatible models must
be kept consistent throughout the design process. Effectively coordinating and integrating
multiple engineering domains, at all levels of abstraction in the design cycle, is still an
open problem.

Contract-Based Design offers a solution to the integration problem. Contracts allow
component-wise specification of requirements, at different levels of abstraction, and the for-
mal verification of their composition and refinement. However, contracts can only validate
fully connected architectures, limiting them to later phases of the design.

Computational Design Synthesis offers a promising solution to the consistency problem,
by generating multiple architectural and simulation models from a single abstract system
model, such that they are consistent by construction. Existing synthesis approaches are
limited by the integration capabilities of the simulation tools for which they generate
models. This relegates integration to near the end of the design phase.

We believe that a combination of Contract-Based Design and Computational Design
Synthesis is a better approach. This text argues that this combination enables a large
portion of the design cycle to be kept consistent by construction, and also allows for early
separation of concerns and safe integration of independently developed parts.

In the presentation examples of the challenges involved in the design of different mecha-
tronic use cases will be presented. Examples will be given based on the standard ap-
proaches, showing their limitations, and how this unified methodology could improve upon
the state of the art.

1 Introduction

Mechatronic systems engineering is a multidisciplinary field, combining mechanical engineering,
electrical engineering, computer science and more. Engineers from different fields work on
different parts of the system at different levels of abstraction. Because mechatronic systems are
integrated systems, the entire system must be viewed as a whole. [1]

A change in the mechanical parts of a system may have direct consequences on the design
of the electrical wiring, for example, or the thermal dissipation, which might require changes
to sensors and the software monitoring them. All domains must be taken into account simulta-
neously, as much as possible, to achieve optimal designs. Each engineering domain has its own
tools and methodologies, making coordination and integration difficult. [2]

The design process for a mechatronic system can be subdivided following the RFLP [3]
design process. In traditional document-based systems engineering all the artifacts produced
during this process had to be manually kept consistent. If a simulation gave unexpected results,
the cause had to (potentially) be traced back to a faulty requirement, and then all of the design
documents updated to reflect the necessary change.

Towards a Unified Design Process C. Santos

Model-based systems engineering (MBSE) [4] is a methodology designed to deal with the
consistency and integration issues of the typical document-based approach to system engi-
neering, through the centering the design cycle around a single integrated and coherent system
model. Ideally this model is a formal and computationally tractable specification of the system,
from which all other artifacts can be automatically generated.

In the next section we look the state of the art in MBSE. Specifically, we look at how
the combination of Computational Design Synthesis [5] and Contract-Based Design [6], better
unifies the design process.

2 State of the Art

The two major challenges facing MBSE are consistency and integration. One approach to
maintaining consistency is Computational Design Synthesis. One approach for safer integration
is Contract-Based Design.

In Computational Design Synthesis the system is modeled at the logical architecture
or even functional level [7]. The system is subdivided into abstract components with some
interface (a set of input and output ports), and the synthesis tool can generate all possible
logical architectures from that specification. If the components are annotated with realizations
to different simulation and analyses tools, then those detailed models can also be automatically
generated.

Any change to the abstract model is automatically reflected in all the generated models,
and as such they are kept consistent by construction. Only documents that do not follow the
component model must be handled separately, like requirements.

Contract-Based Design has been proposed in the literature as a way to tackle the problem
of integrating independent designs. In the Contract-Based Design paradigm each component
is associated with a formal contract, i.e., a clear description of its expected behavior. The
contracts specify the assumptions a component makes about its environment, and what that
component guarantees under those conditions.

This modular structuring of requirements allows for compositional reasoning, stepwise re-
finement, and a principled reuse of components that are designed independently.

Particularly, component connections and refinements of abstract models can be computa-
tionally checked without requiring detailed simulation.

3 A Unified Process

Because both contracts and design synthesis work on the level of systems, components and their
interfaces, the two can be combined. Computational Design Synthesis uses solvers (like SAT [8]
solvers) to generate all the possible architectures from a system specification. Contract Based
Design uses solvers to verify that contract composition and refinement is valid.

These two solving processes can be merged, such that the synthesis tool only generates
logical architectures that result in valid contract compositions or refinements. This means
that any implementation of an abstract component that follows its contract will fit any of the
generated logical architectures.

With the combination of Computational Design Synthesis and Contract-Based Design, the
chances of a project needing to be restarted are much lower. Each separate team can iterate and
computationally validate their part independently from the system model. The requirements,
being formally verifiable, are far less likely to be inconsistent or incomplete. Finally, all possible

2

Towards a Unified Design Process C. Santos

architectural solutions can be explored simultaneously. While it is not possible to guarantee
that all generated architectures will work, the number of iterations on the complete system are
greatly reduced, thus reducing development costs.

4 Conclusions

The MBSE approach aims to solve the integration and consistency problems being faced by
mechatronic systems engineering. The MBSE ideal, with a single system model from which
everything is derived, does not exist in practice.

Computational Design Synthesis offers excellent support for consistency, while Contract-
Based Design offers excellent support for integration. The combination of the two is superior
to the sum of their parts, as they also complement each other in other ways, enabling better
architectural synthesis, and contracts to be distributed earlier in the process.

The presentation will show examples of the challenges involved in the design of different
mechatronic use cases, following a standard MBSE approach, and how this unified methodology
could improve the design process.

References

[1] Herman Van der Auweraer et al. “Virtual engineering at work: the challenges for designing
mechatronic products”. In: Engineering with Computers 29.3 (Sept. 2012), pp. 389–408.
issn: 0177-0667, 1435-5663.

[2] VDC Research. Volume 1: Automotive/Transportation; Volume 3: Industrial Automation;
and Volume 4: Medical Devices. Tech. rep. 2008.

[3] Sven Kleiner and Christoph Kramer. “Model Based Design with Systems Engineering
Based on RFLP Using V6”. In: Smart Product Engineering: Proceedings of the 23rd
CIRP Design Conference, Bochum, Germany, March 11th - 13th, 2013. Ed. by Michael
Abramovici and Rainer Stark. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 93–
102. isbn: 978-3-642-30817-8.

[4] Jeff A. Estefan. “Survey of model-based systems engineering (MBSE) methodologies”. In:
Incose MBSE Focus Group 25 (2007).

[5] Clemens Muenzer and Kristina Shea. “Simulation-Based Computational Design Synthesis
Using Automated Generation of Simulation Models From Concept Model Graphs”. In:
Journal of Mechanical Design 139.7 (2017), p. 071101.

[6] Albert Benveniste et al. Contracts for System Design. Research 8147. INRIA, 2012.

[7] Mike Nicolai et al. “Generating conceptual designs with an architecture-centric design
space exploration method”. In: (in preparation) ().

[8] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solving SAT and SAT Modulo
Theories: From an abstract procedure to DPLL (T)”. In: Journal of the ACM (JACM)
53.6 (2006), pp. 937–977.

3

An operational semantics for a weak memory model with
buffered writes, message passing, and goroutines

Daniel S. Fava,1 Martin Steffen,1 Volker Stolz1,2 and Stian Valle1

1 Dept. of Informatics, University of Oslo
2 Western Norway University of Applied Sciences

A memory model dictates the order in which memory operations appear to execute; it also affects
how processes communicate through shared memory in a parallel computing setting. The design of a
proper memory model is a balancing act. On one hand, memory models must be lax enough to allow
common hardware and compiler optimizations. On the other hand, the more lax the model, the harder
it is for developers to reason about their programs. Though the right balance between relaxation and
intelligibility is up for debate, models should, in principle, preclude definitely unwanted behavior. One
class of unwanted behavior is called the out-of-thin-air. These are counter intuitive results that can be
justified through circular reasoning. In this work we propose a memory model that precludes out-of-
thin-air behavior, is fairly relaxed (allows writes to different memory location to appear out of order),
and is based on a calculus with processes and buffered channels.

The calculus we propose is inspired by the Go programming language developed at Google. Go
recently gained traction in networking applications, web servers, distributed software and the like. It
features goroutines (i.e., asynchronous execution of function calls resembling lightweight threads) and
buffered channel communication in the tradition of CSP or Occam. The happens-before relation is used
in the Go memory model to describe which reads can observe which writes to the same variable. It
says, for example, that within a single goroutine, the happens-before relation boils down to program
order. The language is particularly suited for concurrent programs. If the effects of a goroutine are to be
observed by another, a synchronization mechanism must be used in order to establish a relative ordering
between events belonging to the different goroutines. The Go memory model advocates channel com-
munication as the main method of synchronization [2], where a send on a channel happens before the
corresponding receive from that channel completes. Synchronization is also imposed by the bounded-
ness of channels: The kth receive on a channel with capacity C happens before the (k +C)th send from
that channel completes.

Abstract syntax

The abstract syntax of the calculus is given in Table 1. Values are written generally as v and include
booleans, integers, and etc (these more obvious values are not explicitly listed on the table). Less obvi-
ously, local variables (or registers) are also counted as values and are denoted r. Names (or references)
are also considered values and are denoted n. Names are used, for example, when referring to different
channels – when presenting the semantics, we will use c for indicating a reference to a channel.

Expressions are written as e. A load z represents the reading the shared variable z into the thread.
The syntax for reading global variables makes the shared memory access explicit in this representation:
Global variables z, unlike local variables r, are not expressions on their own; they can be used only in
connection with loading from or storing to shared memory. Therefore, expressions like x←load z or
x← z are disallowed.

A new channel is created by make (chan T,v), where T represents the type of values carried by
the channel, and the non-negative integer v the channel’s capacity. Sending a value over a channel
and receiving a value as input from a channel are written respectively as v1 ← v2 and ← v. After the
operation close, no further values can be sent on the specified channel. Attempting to send values on a

v ::= r | n
e ::= t | v | load z | z := v

| make (chan T,v) | ← v | v← v | close v | pend v
| if v then t else t | go t

g ::= v← v | ← v | default
t ::= let r = e in t | ∑i let ri = gi in ti

Table 1: Abstract syntax

closed channel leads to a panic. The expression pend v represents the state immediately after sending a
value over a channel. Note that pend is part of the run-time syntax as opposed to the user-level syntax,
i.e., it is used to formulate the operational semantics of the language. On Table 1, run-time syntaxes are
underlined.

Starting a new asynchronous activity, called goroutine in Go, is done using the go-keyword.
Select-statements, written using the ∑-symbol, consist of a finite set of guarded branches. Only

communication statements, i.e., channel sending and receiving, or the default-keyword are allowed
as guards (with at most one default per select). A channel can be mentioned in more than one guard;
sending and receiving guards can also be used in the same select-statement.

The let-construct let r = e in t combines sequential composition and the use of scopes for local
variables r: after evaluating e, the rest t is evaluated where the resulting value of e is handed over using
r. The let-construct is seen as a binder for variable r in t. It becomes sequential composition when r
does not occur free in t. We use semicolon as syntactic sugar in such situations.

Operational semantics with write buffering

Programs consist of the parallel composition of goroutines 〈σ , t〉, write events n(|z:=v|), and channels
c[q f ,qb]. In the current semantics, read accesses to the main memory cannot be delayed; consequently,
there are no read events.

Write events are 3-tuples from N×X×Val; they record the shared variable being written to and the
written value, together with a unique identifier n. A write n(|z:=v|) to variable z is said to be shadowed
if another write event n′ to variable z happened after n but before the current point in time.

In addition to the code t to be executed, goroutines 〈σ , t〉 contain local information about earlier
memory interaction. In first approximation, the local state contains information about events which
occurred earlier. Local states σ are are tuples of type 2(N×X)×2N abbreviated as Σ. We use the notation
(Ehb,Es) to refer to the tuples. The first component of the local state Ehb contains the identities of
all write events that have happened before the current stage of the computation of the goroutine. The
second component Es of the local state represents the set of identities of write events that, at the current
point, are shadowed.

From a goroutine’s point of view, its reads and writes appear in program order. This is guaranteed
by the absence of delayed reads and by disallowing reads from obtaining values of writes that have
been shadowed. Also, from a goroutine’s point of view, writes from other goroutines may appear out
of order. This is because writes are placed on a global pool and because subsequent reads can read any
write currently in the pool. The reduction rules for reads and writes are on our technical report [1].

Synchronization between goroutines is achieved by communicating via channels as shown in Ta-
ble 2. A channel is of the form c[q f ,qb], where c is a name and (q f ,qb) a pair of queues referred to as
forward and backward queue respectively. For convenience, we use c f and cb when referring to chan-
nel’s c forward and backward queues respectively. In addition to communicating a value, the queues are

fresh(c)
R-MAKE

〈σ ,let r = make (chan T,v) in t〉 −→ 〈σ ,let r = c in t〉 ‖ c f [] ‖ cb[]

|q| ≤ cap(c) ¬closed(c f [q])
R-SEND

〈σ ,c← v; t〉 ‖ c f [q]−→ 〈σ ,pend c; t〉 ‖ c f [(v,σ) :: q]

|q1|< cap(c) σ ′ = σ +σ ′′
R-PEND

cb[q2 :: σ ′′] ‖ 〈σ ,pend c; t〉 ‖ c f [q1]−→ cb[q2] ‖ 〈σ ′, t〉 ‖ c f [q1]

σ ′ = σ +σ ′′ v 6=⊥
R-RECEIVE

c f [q1 :: (v,σ ′′)] ‖ 〈σ ,let r =← c in t〉 ‖ cb[q2]−→ c f [q1] ‖ 〈σ ′,let r = v in t〉 ‖ cb[σ :: q2]

¬closed(c f [q])
R-CLOSE

c f [q] ‖ 〈σ ,close (c); t〉 −→ c f [(⊥,σ) :: q] ‖ 〈σ , t〉

Table 2: Operational semantics: message passing

managed so that sends and receives trigger exchanges of happened-before and shadowing knowledge
between the communicating partners.

Contributions

We propose an operational semantics for a memory model that precludes out-of-thin-air behavior, is
fairly relaxed, and is based on a calculus with processes and buffered channels [1]. We have imple-
mented of the calculus in the K framework [3], an executable semantics framework based on rewriting
logic, and we are currently working on a proof that the model exhibits the so called data-race free
guarantee. The DRF guarantee says that data-race free programs (i.e. programs that are properly syn-
chronized) have sequentially consistent behavior. Our goal is to further relax the model by introducing
delayed reads, yet, at the same time, keeping out-of-thin-air behavior at bay.

References
[1] Daniel Fava, Martin Steffen, Volker Stolz, and Stian Valle. An operational semantics for a weak

memory model with buffered writes, message passing, and goroutines. Technical Report 466, 2017.

[2] Go memory model. The Go memory model. https://golang.org/ref/mem, 2016.

[3] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework. Journal of
Logic and Algebraic Programming, 79(6):397–434, 2010. doi: 10.1016/j.jlap.2010.03.012.

Virtually Timed Ambients: Formalisation and Analysis

Johanna B. Stumpf, Einar Broch Johnsen, and Martin Steffen

University of Oslo, Oslo, Norway
{johanbst, einarj, msteffen}@ifi.uio.no

1 Motivation

The ambient calculus is the process algebra of locations and domains, originally developed by
Cardelli and Gordon [2] for distributed systems such as the Internet. We extend the ambient
calculus with a notion of virtual time as a resource. The resulting calculus can be used for
instance to model aspects of virtualization in cloud computing, where different locations, bar-
riers between locations, and barrier crossing are important features, as well as elasticity which
allows to provision virtual resources on-demand.

2 Previous work on timed process algebras

Algebraic concurrency theories such as ACP, CCS and CSP have been extended to deal with
time-dependent behaviour in various ways (e.g., [1, 7, 4]). All these approaches describe speed as
the absolute duration of processes, while in our approach speed describes the relative processing
power of an ambient.

3 Preliminaries on mobile ambients

An ambient represents the location or domain where a process is running. Ambients can
be nested, such that a surrounding parental ambient contains subambients, and the nesting
structure can change dynamically. This is specified by three basic capabilities. The input
capability in n indicates the willingness of a process, respectivly its containing ambient, to
enter an ambient named n, running in parallel outside, e.g., k[in n.P] | n[Q] → n[k[P] |
Q]. The output capability out n enables an ambient to leave its surrounding ambient n, e.g.,
n[k[out n.P] | Q] → k[P] | n[Q]. The third basic capability open n allows to open an ambient
named n which is on the same level as the capability, e.g., k[open n.P | n[Q]]→ k[P | Q]. This
syntax, as well as the semantics we consider, is based on [6] and largely unchanged compared
to [2].

4 Virtually timed mobile ambients

We extend mobile ambients with notions of virtual time and resource consumption. Virtual
time is a resource, which is made available to a location by its parental location, similar to
time slices that an operating system provisions to its processes. Interpreting the locations of
ambients as a place of deployment, each timed ambient is modelled to have a certain computing
power, determined by its deployment. Thus, our model of timed ambients uses a local notion of
time, which, however, is relative to the computing power of the embedding, parental ambients.
The basic model of virtually timed ambients is described in [5].

Virtually Timed Ambients: Formalisation and Analysis J. B. Stumpf, E. B. Johnsen and M. Steffen

Timed systems A timed ambient contains one local clock and possibly other timed ambients
or classic untimed ambients and processes. A computing environment is a timed ambient which
contains resources, as explained below.

Local clocks To represent the outlined time model, each timed ambient is equipped with one
local clock responsible for triggering timed behaviour and local resource consumption. Clocks
have a speed, interpreted relative to the speed of the surrounding timed ambient. The speed
s of a clock is given by the tuple (p, q), where p is the number of local time slices emitted
for a number q of time slices received from the surrounding ambient. Time slices propagate
from parental clocks to clocks in the subambients. Thus, the time in a nested ambient is
relative to the global time, depending on the speeds of the clocks of the ambients it is nested
in. We assume one universal outermost ambient with a global clock triggering the clocks of the
local subambients recursively. When moving timed ambients, we must update the clocks to
guarantee a correct propagation of time slices. As virtual time is made available to an ambient
by its surroundings we have to ensure that a clock distributes time slices to all of its current
subambients. Thus, we use an update function and define timed capabilities in n,out n, and
open n for timed systems, corresponding to the similar untimed capabilites.

Figure 1: Figurative representation of a virtually timed ambient with a local clock.

Computing resources An ambient’s processing power is defined by a resource process which
transforms the time slices of the local clock into locally consumable resources. Processes expend
the processing power of the ambient they are contained in by consuming resources. An ambient
with a higher local clock speed produces more resources per parental time slice which in turn
allows more work to be done for each parental time slice.

5 Weak bisimulation for timed ambients

We define weak timed bisimulation for virtually timed ambients in [5] as a conservative extension
of weak bisimulation for mobile ambients as defined by Merro and Zappa Nardelli [6]. We then
define a bisimulation for specific classes of processes which relaxes the condition on timing. This
way we can determine if a system is faster than another and give a worst case approximation for
this timing difference. We finally show that weak timed bisimulation for ambients completely
characterises reduction barbed congruence for virtually timed ambients, extending a result
from [6].

6 A Type System with Assumptions and Commitments

Type systems are a common technique to describe the important features of a calculus and
provide a way to have the implementation of those features mechanically checked. A basic type
system for mobile ambients was first defined in [3] and was mainly concerned with controlling

2

Virtually Timed Ambients: Formalisation and Analysis J. B. Stumpf, E. B. Johnsen and M. Steffen

communication and mobility. We are currently working on an assumption and commitment
type system with coeffects [8] for virtually timed ambients, concerning time and resources.
The type system enables the checking of constraints regarding the capacity of ambients as well
as providing an upper bound for the resource usage. Additionally, we aim to obtain a subject
reduction result for the type system for virtually timed ambients, showing that the upper bounds
on resources and the number of subambients are preserved under reduction.

7 Concluding Remarks

Virtualization opens for new and interesting foundational models of computation by explicitly
emphasizing deployment and resource management. We introduce virtually timed ambients,
a formal model of hierarchical locations of execution with explicit resource provisioning. Re-
source provisioning for virtually timed ambients is based on virtual time, a local notion of time
reminiscent of time slices for virtual machines in the context of nested virtualization. This way,
the computing power of a virtually timed ambient depends on its location in the deployment
hierarchy. To reason about timed behavior in this setting, we define weak timed bisimulation
for virtually timed ambients as a conservative extension of bisimulation for mobile ambients,
and show that the equivalence of bisimulation and reduction barbed congruence is preserved by
this extension. Introducing an assumption and commitment type system with coeffects allows
for the checking of timing and resource constraints on ambients and gives an upper bound on
the resources used by a process.

References

[1] J. C. M. Baeten and J. A. Bergstra. Real Time Process Algebra . Technical Report CS-R 9053,
Centrum voor Wiskunde en Informatica (CWI), 1990.

[2] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Theor. Comput. Sci.,, 240(1): 177–213,
2000.

[3] Luca Cardelli and Andrew D. Gordon. Types for the Ambient Calculus. In Information and
Computation, 177(2:)160–194,2002.

[4] Matthew Hennessy and Tim Regan. A process algebra for timed systems. In Information and
Computation, 117(2):221–239, 1995.

[5] E. B. Johnsen, M. Steffen, and J. B. Stumpf. A calculus of virtually timed ambients. In Postpro-
ceedings of selected contributiions to the 23rd International Workshop on Algebraic Development
Techniques (WADT 2016), 2017.

[6] Massimo Merro and Francesco Zappa Nardelli. Behavioral theory for mobile ambients. J. ACM,
52(6):961–1023, November 2005.

[7] Faron Moller and Chris Tofts. A temporal calculus of communicating systems. In J. C. M. Baeten
and J. W. Klop, editors, Proc. CONCUR’90, volume 458 of Lecture Notes in Computer Science,
pages 401–415. Springer, 1990.

[8] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: unified static analysis of context-dependence.
In Proceedings of International Conference on Automata, Languages, and Programming — Volume
Part II, ICALP 2013.

3

Assessing the Coverage of Formal Specifications
(Extended Abstract)

Dominic Steinhöfel

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
steinhoefel@cs.tu-darmstadt.de

Abstract. Deductive program verification is an intricate and time-con-
suming task, in spite of significant advances in state-of-the-art program
provers. While proving the correctness of programs with respect to exist-
ing specifications can already be difficult, it can be even more demand-
ing to come up with sensible specifications for methods and especially for
loops. Another issue is related to programs heavily making use of software
libraries: Their verification can be considered almost infeasible due to the
lack of formal specifications of the libraries. We propose a method for
assessing the coverage/strength of formal specifications based on “facts”
extracted using heavyweight symbolic execution. We envision that this
method can be employed for (1) assisting verification engineers in the
incremental specification of programs, (2) comparing different specifica-
tions for the same program, and (3) obtaining information for specifica-
tion generation tools. Our approach has been implemented as a prototype
for Java which uses the heavyweight symbolic execution system KeY as
a backend. We studied its practicability with several small examples and
plan to conduct a more extensive case study in the near future.

1 Introduction and Preliminaries

In the past decades, deductive software verification techniques evolved from the-
oretical approaches reasoning about simple while languages to systems such as
Spec#, Frama-C, OpenJML and KeY [1] which are capable of proving complex
properties about programs in industrial programming languages such as C, C#
and Java [2]. Still, one major challenges remains: The creation of suitable formal
specifications for the software that should be proven correct. In [2], a sorting
routine of the Java standard library, TimSort, is formally specified and the cor-
rectness of the routine w.r.t. the specification is shown using the KeY verifier.
Although the specification does not even cover the main aspects of sortedness
and permutation, a substantial effort was required for their construction. Cur-
rent approaches to automatic specification generation are not yet capable of
creating specifications that can be used for functional verification in the general
case. We propose an approach using Symbolic Execution (SE) to extract “facts”
about Java methods specified with the Java Modelling Language (JML) and to
check the coverage of provided method and loop specifications w.r.t. those facts.
One of the main applications of our method is aiding verification engineers in
incrementally increasing the strength of their specifications; also, the facts might

2 Dominic Steinhöfel

({arr := arr0 || n := n0}, true, 〈find(arr,n)〉)

({arr := arr0 || n := n0}, true, 〈int i = 0; int result = -1;〉)

({arr := arr0 || n := n0 || i := 0 || result := −1}, true, 〈while (result == -1 && i < arr.length)〉) (loop invariant rule)

({. . . || result := result0}, result0 6= −1, 〈return result;〉)

post1

({. . . || result := −1}, i0 ≥ arr0.length, 〈return result;〉)

post2

({. . . || i := i0 || result := result0}, result0 = −1 ∧ i0 < arr0.length, 〈if (arr[i] == n)〉)({. . .}, i0 < 0, 〈〉)
exc

({. . . || result := −1}, arr0[i0] 6= n0, 〈i++;〉)

({. . . || i := 1 + i0 || result := −1}, arr0[i0] 6= n0, 〈〉)loop1

({. . . || result := −1}, arr0[i0] = n0, 〈result = i; i++;〉)

({. . . || i := 1 + i0 || result := i0}, arr0[i0] = n0, 〈〉)loop2

result 6= −1 result0 = −1∧
i0 ≥ arr0.length

result0 = −1∧
i0 < arr0.length

i0 < 0

arr0[i0] 6= n0 arr0[i0] = n0

Fig. 1: Simplified SET for the find method in Listing 1

be used by specification generation tools to successively create stronger method
contracts and loop invariants. One of our visions is that the approach could help
comparing different specifications of software libraries submitted to a “collabo-
rative specification” platform, which could be based on an imaginary rewards
system in the fashion of StackOverflow.

We introduce some preliminaries, and refer the reader to [1,3] for more details.
SE results in an Symbolic Execution Tree (SET) consisting of SE states. An SE
state is a triple of a symbolic state {x := t ‖ . . .}, a path condition (a closed
first-order formula determining a path) and a program counter. The latter is a
dynamic logic formula with a program, determining the following subtree; in the
presentation in this paper, we abbreviate it to the next statement to execute.

2 Extracting Facts by Symbolic Execution

public int find(int[] arr, int n) {
int i = 0, result = -1;
while (result == -1 &&

i < arr.length) {
if (arr[i] == n)

result = i;
i++;

}
return result;

}

Listing 1: find method

Listing 1 depicts a simple method for finding
an integer in an array. Fig. 1 shows the cor-
responding SET. The tree contains five (sym-
bolically) feasible final states: The states post1
and post2 represent return states after loop
termination, while loop1 and loop2 arise from
the execution of the loop body. The excep-
tional state exc, in which i is negative, is
practically infeasible, but still contained in the
SET if the loop invariant does not exclude that case. From those states, we ex-
tract the following facts: (1) Two post condition facts result

.
= result0 (where

result0 6= −1) and result
.
= −1 (if n was not found) from the states post1 and

post2, (2) two loop body facts i .
= 1+i0 and result

.
= −1 from loop1, (3) another

two loop body facts i .
= 1+ i0 and result

.
= i0 from loop2. In addition, we can

Coverage of Formal Specifications 3

obtain two special fact categories depending on the method post condition and
loop invariant: (4) A set of use case facts from all post nodes, containing one fact
for each conjunctive element in the specified post condition of the method. An
unsatisfied use case fact means that either the post condition cannot be satisfied
by the method, or that the loop invariant is too weak. (5) A set of exception facts
if the method precondition or loop invariant are not excluding potential runtime
exceptions to be thrown. Uncovered exception facts are reported by our tool.

For each fact, we distinguish three cases: Whether the fact is covered, i.e.,
implied by the results of SE and the specification elements; whether it is “triv-
ially” covered, i.e., without the specification elements and can thus be ignored
in strength estimation, or whether it is overapproximated, that is, the fact (e.g.,
n
.
= 3) implies the specification (e.g., n ≥ 0).

3 Applications

For effectively using facts analysis in incremental specification development, we
suggest to begin with an initial, intuitive method post condition. Afterward, the
loop invariant (and method precondition) should be strengthened until no more
exception or use case facts are uncovered. Finally, post condition and loop body
facts can successively be taken into account until the specification reaches a sat-
isfactory state. One result of our analysis is a percentage number of covered facts
(the strength), where overapproximated facts are weighted by a factor smaller
than 1. These numbers can be employed to compare different existing specifica-
tions, or to guide the search in an automatic approach for specification genera-
tion. In the latter case, also the feedback about facts of the program can be help-
ful. At our companion website key-project.org/papers/coverage-formspec,
we provide a Java executable of our tool and an evaluation for the find method.

4 Future Work and Conclusion

We presented an approach for estimating the strength of formal specifications
written in JML for Java programs. To the best of our knowledge, there is no
other approach analyzing the strength, or comparing different versions, of formal
specifications. We envision that our technique can be useful for both manually
and automatically creating method and loop specifications. In the future, we
plan to perform an extensive case study to assess the utility of the approach.

References

1. Ahrendt, W., Beckert, B., et al. (eds.): Deductive Software Verification – The KeY
Book, LNCS, vol. 10001. Springer International Publishing (2016)

2. Gouw, S.d., Rot, J., et al.: OpenJDK’s java.utils.Collection.sort() is broken: The
good, the bad and the worst case. In: Kroening, D., Pasareanu, C.S. (eds.) Proc. of
the 27th Intl. Conf. on Computer Aided Verification. Springer (2015)

3. Scheurer, D., Hähnle, R., et al.: A General Lattice Model for Merging Symbolic Exe-
cution Branches. In: Ogata, K., Lawford, M., et al. (eds.) ICFEM 2016, Proceedings.
pp. 57–73. Springer International Publishing (2016)

Versioned Simulation Testing for Concurrent and
Distributed Models

Lars Tveito, Einar Broch Johnsen, and Rudolf Schlatte

Department of Informatics, University of Oslo, Oslo, Norway
{larstvei,einarj,rudi}@ifi.uio.no

1 Introduction
We address the problem of validating models of concurrent and distributed systems using tech-
niques for systematic path exploration. It is often not enough to validate that a system performs
functionally correct; one also wants to know what level of throughput the system can provide,
and if the system can maintain a quality of service (QoS) that respects a given service level
agreement (SLA) [6]. Our goal is to provide efficient and reliable testing techniques for con-
current models, addressing both functional correctness and whether resource consumption of a
system is in accordance with a given SLA.

2 Context
For our purposes, we leverage Real-Time ABS [5], a timed, object-oriented modeling language,
featuring distributed concurrent object groups that communicate via asynchronous method
calls and futures [3]. This expressive language is suitable for modeling distributed systems
at a high level of abstraction, and in particular, it captures deployment decisions in terms of
timing properties and the cost of operations in the system. Real-Time ABS has an associated
simulation tool to help analyze these models, which scales to real-world industrial use cases [4,
2]. However, a single simulation cannot describe all possible executions of a concurrent system
and provides no guarantees for detecting issues that only occur in certain execution paths. In
the following section, we show how we have extended the Real-Time ABS simulator to address
this problem.

3 Path Exploration for Real-Time ABS
To explore many execution paths by means of the Real-Time ABS simulator, we have developed
a system which controls the systematic exploration of different simulations runs. Running many
simulations can be computationally expensive, but is highly parallelizable, so the system has
been designed to allow them to run simultaneously on different computers to lower the overall
execution time of the path exploration.

We have created a naming scheme, which provides stable ABS process identities which
persist between runs. A scheduling trace is a sequence of such stable ABS process identities
and is used to obtain reproducible simulations. If a simulator is given a trace, then it runs
deterministically until the end of the trace, after which it runs non-deterministically until
termination.

When a simulator runs non-deterministically and makes a scheduling decision, it communi-
cates which processes were and were not scheduled to the system; scheduling the unexplored
processes will lead to unexplored paths. The system keeps track of paths that are unexplored

Versioned Systematic Simulation Testing Tveito, Johnsen and Schlatte

and dynamically spawns new simulator instances to cover them. The process terminates if there
are no more unexplored paths, at which point we have achieved full path exploration.

In addition, the simulators report their current state to the system at each scheduling point,
and a state space is constructed which shows how the scheduling decisions affect the state over
time. A visual representation is provided, which for small examples is much simpler to analyze
than the outputs from the simulators. However, manual inspection is both tedious and error-
prone. We plan to address the issue of expressing SLA requirements as formal properties and
enable verification of such properties against the results of the simulations.

Currently, we make no effort to prune the number of paths explored. Implementing advanced
partial order reduction (POR) techniques, as found in [1, 7], could allow this solution to scale
to real-world use cases.

4 Simulation Testing
To improve performance we want to minimize the number of simulations needed, without re-
stricting the number of tests that can be executed. To this end, we want to extend our current
system to simulation testing. Simulation testing is the decomposition of simulation and testing,
where the results of a simulation are stored in a database and tests are written as queries to
the database, rather than embedding the tests in the model directly. The idea is central in a
testing library called Simulant1, but has, to the best of our knowledge, not been discussed in
scientific literature.

In contrast to traditional testing, simulation testing does not require the model (or program)
to be executed for each test. Most systems should, ideally, be equipped with an extensive test
suite (of hundreds or thousands of tests); not having to produce the data that is subject to
testing for each test can be a huge performance gain, and can enable systems to embody sizable
test suits. When testing concurrent systems, each test must be run against exponentially many
different executions, which emphasizes the need to avoid running the executions for each test
in our problem domain.

5 Towards Versioned Simulation Testing
We propose a notion of versioned simulation testing, which is based on using knowledge of
past simulations to avoid rerunning simulations that will not provide new results, even when
the model is changed. Our motivation for migrating towards versioned simulation testing is to
facilitate incremental simulation testing for models under rapid development.

Pruning the number of paths to explore has the highest potential for significant performance
gains in our system. With versioned simulation testing, we want to prune the number of paths
based on what simulations have already been executed. To realize this idea, we must be able
to detect if a prefix of a trace from an earlier version of the model is compatible with the
current model. This is the case if the executed code is unaltered between the two versions of
the model. For example, if the only change is in the else-branch of an if-statement, then it is
not necessary to do path exploration before the execution reaches that else-branch.

The planned system architecture is outlined in Figure 1. The user is responsible for develop-
ing the model, initiating path exploration, and writing queries to the database for analysis. The
system automatically runs the appropriate simulations and stores information in the database.
To detect the simulations that do not need to be executed, the system relies on a normalized

1https://github.com/Datomic/simulant

2

Versioned Systematic Simulation Testing Tveito, Johnsen and Schlatte

Normalizer

git

DB

Analysis

ABS model v0

Simulator

ABS model v1

Simulator

Iterate on v0

Check trace-
compatibility

Query visited traces
Report visited states

Check trace-
compatibility

Query visited traces
Report visited states

Figure 1: The planned system architecture for versioned simulation testing

version of the model which is under version control. The normalization phase generates a ver-
sion of the model which makes it easy to check whether the code between two points in the
code has been altered by performing a line-by-line comparison.

References
[1] E. Albert, P. Arenas, and M. Gómez-Zamalloa. “Actor- and Task-Selection Strategies for Pruning

Redundant State-Exploration in Testing”. In: Formal Techniques for Distributed Objects, Com-
ponents, and Systems. Vol. 8461. Lecture Notes in Computer Science. Springer, 2014, pp. 49–
65.

[2] E. Albert et al. “Formal modeling and analysis of resource management for cloud architectures:
an industrial case study using Real-Time ABS”. In: Service Oriented Computing and Applications
8.4 (2014), pp. 323–339.

[3] F. S. de Boer, D. Clarke, and E. B. Johnsen. “A Complete Guide to the Future”. In: Programming
Languages and Systems, 16th European Symposium on Programming, ESOP 2007. Vol. 4421.
Lecture Notes in Computer Science. Springer, 2007, pp. 316–330.

[4] F. S. de Boer et al. “Formal Modeling of Resource Management for Cloud Architectures: An
Industrial Case Study”. In: Service-Oriented and Cloud Computing - First European Conference,
ESOCC 2012. Vol. 7592. Lecture Notes in Computer Science. Springer, 2012, pp. 91–106.

[5] E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. “Integrating deployment architectures and resource
consumption in timed object-oriented models”. In: Journal of Logical and Algebraic Methods in
Programming 84.1 (2015), pp. 67–91.

[6] B. Nobakht, S. de Gouw, and F. S. de Boer. “Formal Verification of Service Level Agreements
Through Distributed Monitoring”. In: Service Oriented and Cloud Computing - 4th European
Conference, ESOCC 2015. Vol. 9306. Lecture Notes in Computer Science. Springer, 2015, pp. 125–
140.

[7] S. Tasharofi et al. “TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs”. In: Formal Techniques for Distributed Systems - Joint 14th IFIP WG 6.1 Inter-
national Conference, FMOODS 2012 and 32nd IFIP WG 6.1 International Conference, FORTE
2012. Vol. 7273. Lecture Notes in Computer Science. Springer, 2012, pp. 219–234.

3

Security Functionality of IoT Devices
Elahe Fazeldehkordi1, Olaf Owe2 and Toktam Ramezanifarkhani1

1 Department of Informatics/Department of Technological Systems, University of Oslo, Oslo,
Norway.

2 Department of Informatics, University of Oslo, Oslo, Norway.
elahefa@ifi.uio.no, olaf@ifi.uio.no, toktamr@ifi.uio.no

Abstract
Internet of Things (IoT) devices offer different technologies connected to the

Internet to provide several applications to connect worldwide physical objects into a
unified system. Privacy has been frequently identified as a main concern for IoT
devices, when dealing with/managing personal information. Despite this, most existing
works on privacy requirements deal with privacy requirements as a special case of
security requirements, and there seems to be no established ontology for IoT systems
and their privacy. Ontologies are known to be rich sources of knowledge, and, being
structured and equipped with reasoning features, they form a powerful tool to handle
requirements. Therefore, key aspects of privacy are, usually, overlooked. In this
context, wrong design decisions might be made due to insufficient understanding of
privacy concerns.

In order to have a good understanding of privacy and its concepts, firstly we need to

know the actual difference between privacy and security. In this work, we address IoT
security concepts, functionalities and requirements. In the second step, we will address
IoT privacy, in particular privacy concepts whose major purpose is to identify the main
concepts and relations for capturing privacy requirements and functionalities. We
further identify and analyze the main privacy-related functionalities, requirements, and
concepts, as well as the corresponding relations, in order to propose an ontology that
can be used to capture privacy requirements for IoT devices.

1 Introduction
 With the aim of providing an advanced mode of communication between various systems and

devices, as well as facilitating the interaction of humans with the virtual environment, Internet of
Things (IoT) finds its application in almost any field [17,18,19]. Based on the large number of low-
cost sensors and wireless communication abilities, the sensor network technology puts forward new
demands to the Internet technology. It will bring huge changes to the future society, change our way

of life and business models [1]. Apart from the benefits of IoT devices, as with all things using the
Internet infrastructure for information exchange, IoT too is susceptible to various security issues and
has some major privacy concerns for the end users. As such IoT, even with all of its advanced
capabilities in the information exchange area, is a flawed concept from the security viewpoint and
proper steps has to be taken in the initial phase before going for further development of IoT for an
effective and widely accepted adoption.

Privacy has been frequently identified as a main concern for IoT devices while dealing with or

managing personal information. Privacy breaches might lead to lack of appropriate security policies,
bad security practices, attacks, data thefts, etc. [2,12]. Despite this, few works focus on considering
privacy during the system design. More specifically, most existing works on privacy requirements
often deal with them either as non-functional requirements with no specific criteria on how such
requirements can be met, or as a part of security [11,13], i.e., focusing mainly on confidentiality and
overlooking important privacy aspects. Therefore, key aspects of privacy are, usually, overlooked.
Efforts that have been made to clarify the privacy concept have been linked to more refined concepts
such as secrecy, person-hood, control of personal information, etc., but there is no consensus on the
definition of these concepts or which of them should be used to analyze privacy [9]. This has resulted
in a lot of confusion among designers and stakeholders, which has turned to wrong design decisions.
In this context, wrong design decisions might be made due to insufficient understanding of privacy
concerns. In other words, dealing with privacy-related concerns is very crucial these days because
privacy breaches in IoT devices may result in huge costs as well as other negative consequences in the
long term [2,5,6,7,8]. However, most of these breaches can be avoided if privacy requirements of the
system-to-be were captured properly during system design, where privacy requirements aim to
capture the types and levels of protection necessary to meet the privacy needs of the users. In this
context, a well-defined privacy ontology that captures privacy-related concepts along with their
interrelations would constitute a great step forward in designing privacy-aware systems.

As used in the knowledge representation domain, the term “ontology” stands for an explicit,

formal, machine-readable semantic model that defines the classes, instances of the classes, inter-class
relations and data properties relevant to a problem domain [20]. Ontologies have been proven to be a
key success factor for eliciting high quality requirements. They can facilitate and improve the job of
requirements engineers [4,10,14], since they can reduce the conceptual vagueness and terminological
confusion by providing a shared understanding of the related concepts between designers and
stakeholders [16]. In addition, the ontology should capture privacy requirements in their social and
organizational context. Most complex systems these days (e.g., healthcare systems, smart cities, etc.)
are socio-technical systems [3], which consist not only of technical components but also human
interfaces along with their interrelations. Focusing on the technical aspects and leaving the social and
organizational aspects outside the system’s boundary leaves the system open to different kinds of
vulnerabilities that might manifest themselves in the social interactions and/or the organizational
structure of the system [15].

In order to come up with a more precise and accurate privacy ontology for IoT, it is essential to

have a good understanding of privacy, privacy concepts and requirements, and to know the actual
difference between privacy and security. First of all, we need to have a clear view of security,
including the following questions: What is security? What are security functionalities and their
requirements? What is the relationship between security and privacy? What is special for IoT devices?
As a possible answer to these questions, we have started our work with clarifying security concepts,
functionalities and requirements. For this matter, the terminology and definitions of necessary security
concepts have been collected from text books based on the National Institute of Standards and
Technology (NIST) and the ISOs 27k family. In a second step we will address privacy, in particular

privacy concepts whose major purpose is to identify the main concepts/relations for capturing privacy
requirements/functionalities. We will further analyze the selected privacy-related
functionalities/requirements/concepts and the corresponding relations, and identify the main ones, in
order to propose an ontology that can be used to capture and to deal with privacy requirements. This
work is therefore intended to be a starting point to address the problem of identifying a core privacy
ontology for IoT devices. Security functionality is the security-related features, functions,
mechanisms, services, procedures, and architectures implemented within organizational information
systems or the environments in which those systems operate [21]. Security functionality can be
obtained by employing within the information systems and supporting infrastructure of the
organization, a combination of management, operational, and technical security controls.

 Figure 1 presents part of a diagram representing the top-level view of the security functionality to

the relevant security controls and requirements based on National Institute of Standards and
Technology (NIST) Special Publication 800-53 and International Organization for
Standardization/International Electrotechnical Commission (ISO/IEC). This diagram represents our
initial work so far and is a first step in the design of an ontology, since the structure of the figure
defines concepts and relations that are central in the ontology. Organizations that have implemented
or plan to implement the Framework for Improving Critical Infrastructure Cybersecurity can use the
mapping of the security functionality. The security functionality mapping information can also be
useful to organizations that wish to demonstrate compliance to the security requirements in the
context of their established information security programs, when such programs have been built
around the NIST or ISO/IEC security controls.

References
[1] Kumar, J. S., & Patel, D. R. (2014). A survey on internet of things: Security and privacy issues.
International Journal of Computer Applications, 90(11).
[2] Acquisti, A., Friedman, A., & Telang, R. (2006). Is there a cost to privacy breaches? An event
study. ICIS 2006 Proceedings, 94.

Figure 1: A top-level view of the security functionality
diagram

[3] Churchman, C. W., & Verhulst, M. (Eds.). (1960). Management Sciences, models and techniques
(Vol. 2). Pergamon.
[4] Dzung, D. V., & Ohnishi, A. (2009, November). Ontology-based reasoning in requirements
elicitation. In Software Engineering and Formal Methods, 2009 Seventh IEEE International
Conference on (pp. 263-272). IEEE.
[5] Gellman, R. (2002). Privacy, consumers, and costs-how the lack of privacy costs consumers and
why business studies of privacy costs are biased and incomplete. In Digital Media Forum, Ford
Foundation.
[6] Camp, L. J. (2002, July). Designing for trust. In Workshop on Deception, Fraud and Trust in
Agent Societies (pp. 15-29). Springer Berlin Heidelberg.
[7] Campbell, K., Gordon, L. A., Loeb, M. P., & Zhou, L. (2003). The economic cost of publicly
announced information security breaches: empirical evidence from the stock market. Journal of
Computer Security, 11(3), 431-448.
[8] Hong, J. I., Ng, J. D., Lederer, S., & Landay, J. A. (2004, August). Privacy risk models for
designing privacy-sensitive ubiquitous computing systems. In Proceedings of the 5th conference on
Designing interactive systems: processes, practices, methods, and techniques (pp. 91-100). ACM.
[9] Solove, D. J. (2005). A taxonomy of privacy. U. Pa. L. Rev., 154, 477.
[10] Souag, A. (2012, June). Towards a new generation of security requirements definition
methodology using ontologies. In 24th International Conference on Advanced Information Systems
Engineering (CAiSE'12) Gdańsk, Poland, 25-29 June 2012 (pp. 1-8).
[11] Kalloniatis, C., Kavakli, E., & Gritzalis, S. (2008). Addressing privacy requirements in system
design: the PriS method. Requirements Engineering, 13(3), 241-255.
[12] Labda, W., Mehandjiev, N., & Sampaio, P. (2014, March). Modeling of privacy-aware business
processes in bpmn to protect personal data. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing (pp. 1399-1405). ACM.
[13] Zannone, N. (2006). A requirements engineering methodology for trust, security, and privacy
(Doctoral dissertation, PhD thesis, University of Trento).
[14] Kaiya, H., & Saeki, M. (2006, September). Using domain ontology as domain knowledge for
requirements elicitation. In Requirements Engineering, 14th IEEE International Conference (pp. 189-
198). IEEE.
[15] Liu, L., Yu, E., & Mylopoulos, J. (2003, September). Security and privacy requirements analysis
within a social setting. In Requirements Engineering Conference, 2003. Proceedings. 11th IEEE
International (pp. 151-161). IEEE.
[16] Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications. The
knowledge engineering review, 11(2), 93-136.
[17] Pontin, J. (2005). ETC: Bill Joy's Six Webs. MITTechnology Review, 29.
[18] Shen, G., & Liu, B. (2011, May). The visions, technologies, applications and security issues of
Internet of Things. In E-Business and E-Government (ICEE), 2011 International Conference on (pp.
1-4). IEEE.
[19] Borgohain, T., Kumar, U., & Sanyal, S. (2015). Survey of security and privacy issues of Internet
of Things. arXiv preprint arXiv:1501.02211.
[20] Ulicny, B. E., Moskal, J. J., Kokar, M. M., Abe, K., & Smith, J. K. (2014). Inference and
ontologies. In Cyber Defense and Situational Awareness (pp. 167-199). Springer International
Publishing.
[21] Ross, R., VISCUSO, P., GUISSANIE, G., DEMPSEY, K., & RIDDLE, M. (2015). Protecting
controlled unclassified information in nonfederal information systems and organizations. NIST
Special Publication, 800, 171.

Using Coloured Petri Nets for
Resource-Aware Program Analysis

Anastasia Gkolfi, Einar Broch Johnsen, and Ingrid Chieh Yu

Department of Informatics, University of Oslo, Norway
{natasa, einarj, ingridcy}@ifi.uio.no

1 Introduction

The research described here, funded by the NFR project CUMULUS, is ded-
icated to establish semantic foundations for cloud aware computing. The goal
is to integrate resource management in static analysis for verification of cloud
aware programs.

The starting point for our work is the Abstract Behavioural Specification lan-
guage (ABS) [6], a modelling language with a formal semantics which combines
the actor model of concurrency with object orientation to target distributed
systems. It supports resource awareness, which make it suitable for cloud ap-
plications. In particular, ABS has features like deployment components, cost
annotations, time, move of objects, and transfer of resources (see [7]), which
allow implementation of deployment scenarios at the programming level.

These novel features of ABS make analysis very challenging. At this time,
there are no tools for ABS beyond simulation which support resource man-
agement. Our approach is based on a high level of abstraction, achieved by
combining Abstract Interpretation [2, 3] with Model Checking [1].

2 The Approach

As mentioned above, the lack of tools supporting resource analysis for ABS
programs and the need for automation led to model-driven approach through a
higher level of abstraction.

The type of model that has been chosen was coloured Petri nets [5], since they
form a mathematically founded formalism that is well known for its suitability to
model concurrency, synchronization and resources. In addition, choosing high-
level Petri nets (here, coloured Petri nets) was crucial for reducing the size
of the model and advantaging of the automation that existing tools can offer
(CPN Tools), while hierarchies allow structural separation of the features under
consideration.

3 Outline of the Petri Net Model

The model should be able to faithfully over-approximate the cost, hence the com-
munication history of ABS programs. As a consequence, in addition to the in-

2 Anastasia Gkolfi, Einar Broch Johnsen, and Ingrid Chieh Yu

Fig. 1. ABS semantics implemented as a coloured Petri net with CPN Tools

formation about the resources, it should also simulate the communication mech-
anism of ABS. This led to the construction of the model in two layers:

Imperative Layer

Deployment Layer

I/O

I/O

The imperative layer [4] can over-approximate the communication topology of
ABS programs (see Fig. 1) , so static deadlock cycles can be easily detected by
using the model checker of CPN Tools. The deployment layer (ongoing work, see
Fig. 2) can check resource availability and handle resource management. The
two layers exchange information such that object execution (imperative layer)
is related to resource availability (deployment layer). Notice here that, since
the model is based on the semantics, the markings are in simulation relation
with ABS program configurations, so we keep a single and fixed size model for
any ABS program. In addition to that, a soundness proof supports fully the
implementation.

4 Conclusions and Future Work

The idea behind our approach was to construct a sound model based on the
semantics of ABS language to abstractly simulate program configurations and
use the model checker of CPN Tools as an abstract interpreter. As a first step,

Using Coloured Petri Nets for Resource-Aware Program Analysis 3

Fig. 2. ABS deployment semantics implemented as a colored Petri net with CPN Tools

we constructed a model of the imperative layer of the language which can de-
tect static deadlocks. Afterwards, we implemented the deployment layer which
adds the resource awareness to the imperative layer. Work in progress concerns
resource management and optimization at the level of the model as well as a con-
cretization function which over-approximates program states for the optimized
resource distribution.

References

1. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 1999.
2. P. Cousot. Semantic foundations of program analysis. In Program Flow Analysis:

Theory and Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., 1981.
3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Fourth An-
nual Symposium on Principles of Programming Languages, pages 238–252. ACM
Press, 1977.

4. A. Gkolfi, C. C. Din, E. B. Johnsen, I.C. Yu. Translating Active Objects into Colored
Petri Nets for Communication Analysis. To appear in LNCS, Springer, 2017.

5. K. Jensen and L. M. Kristensen. Coloured Petri Nets – Modelling and Validation
of Concurrent Systems. Springer, 2009.

6. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Proc. Formal Methods for Com-
ponents and Objects (FMCO 2010), volume 6957 of Lecture Notes in Computer
Science, pages 142–164. Springer, 2011.

7. E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. Integrating deployment architec-
tures and resource consumption in timed object-oriented models. Journal of Logical
and Algebraic Methods in Programming, 84(1):67—91, 2015.

