
Will You Carry Me?
Distributed Load Balancing in Cloud Data Centre with
Stable Marriage

Disha Sangar
Master’s Thesis Spring 2017

Will You Carry Me?

Disha Sangar

23rd May 2017

ii

Abstract

With an increasing number of computers and virtually driven technology,
the desire to find performance- and cost efficient solutions has risen in the
world of research. In search of better solutions, we have started to look
outside the field of computer science for inspiration.

Cloud computing, virtualization and load balancing are emerging
terms that come with the power to run a modern data centre with better
conditions than ever before. Running a sheer virtualized data centre with
the help of Virtual Machines (VM) enables the possibility to save resources.
The unique method of reallocating VMs between physical hosts with Live
Migration has started a new movement for System administrators.

Stable Marriage is a new concept presented in this thesis. Inspired from
Nobel Peace Prize winners Alvin Roth and Lloyd Shapley’s work on Stable
Matching [17], a similar approach to present load balancing in a cloud
based data centre is introduced.

iii

iv

Contents

1 1
1.1 Introduction . 1

1.1.1 Problem Statement . 3
1.1.2 Definitions . 3
1.1.3 Chapter Summaries 4

2 Background 7
2.1 Virtualization . 7

2.1.1 Virtualization types . 9
2.2 QEMU & KVM . 11

2.2.1 Libvirt . 11
2.3 Cloud Computing . 12

2.3.1 Distributed Load Balancing for Cloud Computing . . 13
2.4 Live Migration . 14

2.4.1 Process of Live Migration 14
2.4.2 Pre-Copy Migration 15
2.4.3 Post-Copy . 15

2.5 Load Balancing vs. Consolidation 16
2.5.1 Load Balancing strategies 17

2.6 Centralized, Decentralized, Distributed & Swarm Intelligence 18
2.6.1 Self-organizing Algorithms 18

2.7 Bin Packing . 19
2.7.1 Bin Packing algorithms 20

2.8 Stable Matching . 20
2.9 Tools . 22
2.10 Relevant Research . 25

2.10.1 Load Balancing in Cloud computing through Nature
inspired Algorithms 25

2.10.2 Extended scheduler for efcient frequency scaling in
virtualized . 26

2.10.3 Consolidation through peer-to-peer algorithms . . . 27

I The project 31

3 Approach 33
3.1 Objectives . 33

v

3.2 Mapping the load balancing problem to Stable marriage . . 34
3.3 Design . 35

3.3.1 Modelling . 35
3.3.2 Load balancing Schemes 36

3.4 Implementation . 37
3.4.1 Environment . 37
3.4.2 Framework . 37
3.4.3 Data Collection & Comparison 37

3.5 Result & Analysis . 38
3.5.1 Configuration Experiments 38
3.5.2 Scheme experiments 39

3.6 Expected Results . 39
3.7 Appraising Properties . 39
3.8 Discussion & Conclusion . 40
3.9 Challenge Prediction . 40

4 Result I - Design 41
4.1 Model . 41
4.2 Overview of a functioning framework 41
4.3 Formal Notations . 43
4.4 Bin Packing with Stable Marriage 44

4.4.1 Stable Marriage Animation 44
4.4.2 Libvirt Live Migration 47
4.4.3 VMs . 47
4.4.4 Node communication 48

4.5 Schemes . 48
4.5.1 Scaling the percentile 49
4.5.2 Stable Marriage Algorithm - Migrate Large & Mi-

grate Small . 49
4.5.3 Distance Vector . 50

5 Result II – Implementation 51
5.1 Model Overview . 52
5.2 Environment Configuration 52
5.3 Virtual Configuration . 53

5.3.1 Network of VMs . 54
5.3.2 VM Communication & Message Exchange 56
5.3.3 Deployment of a VM 57

5.4 Stable Marriage . 59
5.5 Schemes . 63

5.5.1 Migrate Large First . 63
5.5.2 Migrate Small First . 63

5.6 Summary . 64

6 Result III – Experiment & Analysis 65
6.1 Testing . 65
6.2 Simulation Experiments . 65
6.3 Simulation . 67

vi

6.3.1 Summary . 67
6.3.2 Small scale migration - I 68
6.3.3 Analysis . 69
6.3.4 Small scale migration - II 70
6.3.5 Analysis . 71
6.3.6 Workaround . 71
6.3.7 Medium Scale migration - I 72
6.3.8 Analysis . 73
6.3.9 Medium Scale Migration - II 74
6.3.10 Analysis . 75
6.3.11 Large Scale Migration - I 76
6.3.12 Analysis . 77
6.3.13 Large Scale Migration - II 78
6.3.14 Analysis . 79

6.4 Real Experiment . 80
6.4.1 Migrating Small Scale 80
6.4.2 Analysis . 81
6.4.3 Migrating Large Scale 81
6.4.4 Analysis . 82

6.5 En route Proposal Acceptance 82
6.5.1 Five Rejected Proposals - Large 83
6.5.2 Three Rejected Proposals 84
6.5.3 Thirty three Rejected Proposals 84
6.5.4 Twelve Rejected Proposal 85
6.5.5 Analysis - Scheme Large 85
6.5.6 Three Rejected Proposals - Small 85
6.5.7 Ten Rejected Proposals 86
6.5.8 Eleven Rejected Proposals 86
6.5.9 Eleven Rejected Proposals 87
6.5.10 Analysis - Scheme Small 88

7 Discussion 89
7.1 Background . 89
7.2 Design & Implementation . 90

7.2.1 Proposals . 90
7.2.2 Schemes & Live migration 91
7.2.3 Migrate Large Vs. Migrate Small 92

7.3 Results & Analysis . 92
7.3.1 Dedicated vs. Non-dedicated links 93
7.3.2 Managing Scaling in cloud computing 93

7.4 Future Work . 94

8 Conclusion 95

Appendices 101

vii

A Working Environment 103
A.1 create isc hosts dhcp.py . 103
A.2 vm-net . 104
A.3 deploy_large.py . 105
A.4 deploy_small.py . 110

B Artificial Simulation 115
B.1 Many to Many Move Smallest.py 115
B.2 Many to Many Move Largest.py 120

viii

List of Figures

2.1 Non-virtualized vs. Virtualized system 8
2.2 Full -vs. Paravirtualization . 9
2.3 Full virtualization . 10
2.4 Paravirtualization . 11
2.5 Cloud services . 13
2.6 Simulation of Live migration 14
2.7 Difference between Centralized, Decentralized and Dis-

tributed [9] . 18
2.8 Stable Matching . 22
2.9 Python Logo . 22
2.10 Eclipse Logo . 23

4.1 Proposal accepted . 42
4.2 Proposal Rejected . 42
4.3 Set of over/under utilized servers 45
4.4 PM1 proposes to PM3 . 45
4.5 PM3 rejects PM1 seeing no benefit to this marriage. 46
4.6 PM4 accepts PM1’s proposal 46
4.7 Migration successful . 46
4.8 PM with various flavours . 47
4.9 VM Chart . 49
4.10 VMs with their allocated values 50

5.1 Chapter overview . 51
5.2 Design . 52
5.3 Overview of the Physical lab structure 53
5.4 Physical attributes . 53
5.5 Physical Lab details . 54
5.6 Flow Diagram of the Stable Marriage Implementation 59

6.1 Mean of CI for Small Migration scheme 66
6.2 Mean of CI for Large Migration scheme 66
6.3 Table of Experiment details 67
6.4 Migration of 60 Large VMs . 68
6.5 Migration of 60 Small VMs . 68
6.6 Imbalance example . 69
6.7 Migration of 125 Large VMs 70
6.8 Migration of 125 Small VMs 70

ix

6.9 Migration of 2500 Large VMs 72
6.10 Migration of 2500 Small VMs 72
6.11 Flavours of VMs . 73
6.12 Migration of 5000 Large VMs 74
6.13 Migration of 5000 Small VMs 74
6.14 Flavours of VMs . 75
6.15 Migration of 10.000 Large VMs 76
6.16 Migration of 10.000 Small VMs 76
6.17 Flavours of VMs . 77
6.18 Migration of 20.000 Large VMs 78
6.19 Migration of 20.000 Small VMs 78
6.20 Flavours of VMs . 79
6.21 Small Imbalance Before vs. After 80
6.22 Large Imbalance Before vs. After 82
6.23 Descending Imbalance . 83
6.24 Descending Imbalance . 84
6.25 Descending Imbalance . 84
6.26 Descending Imbalance . 85
6.27 Rounds of Proposal . 86
6.28 Rounds of Proposal . 86
6.29 Rounds of Proposal . 87
6.30 Rounds of proposal . 87

x

Acknowledgments

My deepest gratitude goes first to my Professor and supervisor Anis Yazidi,
who has been my mentor and guide throughout my education. Thank you
for dedicating your time and knowledge with great excitement to work on
this project. The door to your office was always open whenever I ran into
trouble or had any questions about my research, you constantly steered me
in the right direction whenever I needed it.

I would also like to extend my gratitude to Kyrre Begnum and Hårek
Haugerud for their essential input and support. Thanks to Oslo and
Akershus University College and the University of Oslo for giving me a
chance to take part in this master program.

This thesis has been a journey on which I have learned so much more
than different aspects of computer science. I have met people whom have
shared their immense knowledge to help pave my path towards the finish
line. I could never have done it without their love, support and motivation.

Finally, I must express my profound gratitude to my parents, my sib-
lings and family. With unfailing support and continuous encouragement
and love throughout my years of study. To my lovely bouquet of friends
who never stopped believing in me and always kept encouraging me with
their love and support, you all know who you are. Thank you.

- Disha

xi

xii

Chapter 1

1.1 Introduction

IT services have grown rapidly over the past 10 years and we have become
dependent on them. Major systems and Internet based services have grown
to such a scale that we now use the term “hyper scale” to describe them.
Furthermore, hyper scale architectures are often deployed in cloud based
environments, which offer a flexible pay-as-you-go model.

From a system administrator’s perspective, optimizing a hyper scale
solution implies introducing system behaviour that can yield automated
reactions to changes in configurations and fault occurrences. For instance,
auto scaling is a proposed behaviour model for websites to optimize cost
and performance relative to usage patterns.

There are two different perspectives on how an automated behaviour
can be implemented. One of the perspectives is to implement the behaviour
in the infrastructure, which is the paradigm embraced by the industry. The
other alternative is to introduce behaviour as a part of the virtual machine,
which opens a possibility for cloud independent models. This means that
its behaviour would work in any cloud based environment.

This space is still largely unexplored from system administrator’s per-
spective. We need more knowledge on algorithms and more understanding
of their potential to be able to introduce them in a real working environ-
ment. Such understanding of algorithms system administrator’s perspec-
tive would pave the way towards larger scale co-ordination and swarm
intelligence based solutions.

Cloud computing refers to services or solutions that are delivered in real
time over the internet. A cloud provider is a company or an institution,
which provides these services [32]. More companies are now abiding to
cloud computing, instead of having to spend fortunes on building and
creating a physical computer infrastructure [22]. This is an effective way
of allowing companies to focus on having flexible and accessible machines
at all times, which does not necessarily consume massive amount of
resources. High power consumption by hardware facilities and cooling
system is today one of the biggest challenges companies face, as well as
storage of massive data in physical form.

1

With today’s data centres being mostly overutilized, trying to sustain
the service during periods of peak has become the foremost goal. It was
estimated that in 2006, the energy consumed by IT infrastructures in USA
was about 61 billion kWh, which corresponded to 1.5 % of the total amount
of electricity produced in total [21].

Several approaches exist to counter the issues of energy consumption
where virtualization can be seen as enabler. The term virtualization refers
to the abstraction of computer resources. Virtualization helps minimize
the number of active Physical machines (PM) in data centres by creating
Virtual Machines (VM) and storing these on a cloud platform. There are
now several open-source projects (Openstack, Apache, OpenNebula, etc.),
which offer good virtualization solutions, just as good as any other reputed
companies’ solutions (Amazon, Microsoft, etc). These services often offer
a web based front-end interface for managing VMs, such as creating,
initiating, stopping and terminating these.

Virtualization technologies allow less physical infrastructure, however
the underlying physical infrastructure is needed, as the virtualized envi-
ronment runs on top of this. The foremost goal is to find a solution that
minimizes the amount of active nodes in an infrastructure to gain the bene-
fit of virtualization. The two most common methods of achieving this goal
is Consolidation and Load Balancing, with the help of Live Migration.

Live Migration offers the possibility to re-allocate VMs in their current
state to another server based on need. When the amount of VMs utilizing
a server is low, the VM can either be migrated to another server to
balance both servers load, or shut down the old server completely after
the migration saving energy and resources. Migration can also be very
useful for maintenance of a server. The whole purpose of a migration is
to pack VMs on the least number of PMs in a well-known dimension, NP
hard problem, bin-packing, and minimizing the amount of physical nodes
[8].

Virtual Machine Monitors (VMM) or hypervisors offer the possibility
to monitor and manipulate VMs in any desired state, through several
different software. Nowadays, Live migration is a common practice among
System administrators who can run several updates at one time and avoid
down time, which is a large benefit for companies which can not afford
down time.

To be able to respond to the large and emerging demand of cloud
and virtually driven technology, research is lead to seek solutions that
can handle the large amount of data. Various studies on self-organizing
approaches have been emerging in the recent years. These studies mainly
focus on finding algorithms that can optimize the system in an efficient
order and at the same time reduce the energy consumption made due to
the high performance of the compute node.

Today there is an extensive research on consolidation and very little
on load balancing. Ideally, companies want to be cost-effective and

2

address performance issues at the same time. The industry has chosen
consolidation, because this reduces the amount of active servers. The
problem is however, that servers are now more prone exhaustion. Load
balancing is a distributed solution it is computationally faster, but not
always optimal.

Having a disseminated system makes the system much faster and very
scalable as well as less expensive. The aim of this paper is to provide an
answer through the definitions and implementation of the Stable Marriage
algorithm along with two schemes to experiment migration and see how
different scales can affect the results of a data centre. To be able to test this
some constraints will be necessary and a way to monitor these results in
action.

The potential gain with this research is to find an efficient and less
complex way of operating a data centre. Stable Marriage is a new
contribution and holds many promises due to its distributed nature, which
can be a positive contribution to research as it can solve many practical
problems. The algorithm is an inspiration from the Nobel Peace Prize
holders for their contribution in the field of economics for Stable Matching,
by Lloyd Shapley and Alvin Roth.

1.1.1 Problem Statement

Can we achieve load balancing in a data centre using simple message exchange
between physical machines in a distributed manner?

Along with:

How can we borrow the principals of Stable Marriage to gain load balance in a
distributed data centre?

1.1.2 Definitions

Distributed is defined as a system or cluster which does not have one single
point of management. The opposite of Distributed is Centralized. The
purpose of a distributed system is to disassemble one central manager,
as mentioned above, in a centralized solution if one point fails the entire
system fails. To avoid this there are several distributed approaches, for
instance the very renowned peer-to-peer structure.

To optimize something means to make the best effective use of a system
or a resource. Things have been ever evolving in the field of computer
science and usually newer technologies are a better and optimized version
of an old technology. The term is often used to describe to take advantage
of improving systems, to optimize performance or cut energy consumption
for instance.

3

1.1.3 Chapter Summaries

A short introduction to each chapter is presented as a guide. This will help
provide an insight to what the

1.1.3.1 Background

The background chapter gives an insight to all the theories and underlying
research of concepts which are later introduced in the various chapters of
the project.

1.1.3.2 Approach

This section describes the manner of the approaches which the project
requires in order to get a complete framework. Here the design, models
and basic introduction to the different objectives of the forth coming
chapters are presented.

1.1.3.3 Result I - Design

This is the chapter where the overview of the framework is presented. The
ideas behind the structure in form of drawings and models, which should
describe the wanted end-result for the framework. Some of the studies and
terminologies from the background chapter may provide a deeper insight
with the design chapter.

1.1.3.4 Result II - Implementation

This is probably the heaviest chapter in terms of technicality. The approach
and design chapter introduced the wishful goal, however, this is the
chapter where all the implementation takes place and is discussed. The
details will be provided in form of pseudocode and models to accompany
some analysis for the sake of readability.

1.1.3.5 Result III - Results Analysis

This chapter highlights the results gathered from the experiments con-
ducted throughout the project. Since the project is very large, the data gath-
ered will be equally large in volume. Graphs, tables and analysis for each
experiment will accompany to provide a guide for the readers sake.

1.1.3.6 Discussion & Conclusion

There are always some unforeseen circumstances, what did not work out?
What did work out? How was the results compared to the expectations?
Has any prior research prepared this outcome? These are some of the
questions which are discussed and concluded in this particular chapter.

4

1.1.3.7 Appendices

The code of the framework is divided into two categories; A and B. In the
first section the code for the working environment is provided. Whereas in
the second sections the code for the simulations is provided.

5

6

Chapter 2

Background

This chapter presents all the underlying concepts on which this project is
built. Research, terminologies and introductions to tools and methods used
will be presented. Instead of inventing the wheel all over again, earlier
research can contribute to avoid such problems even though the concepts
introduced in this chapter are new.

2.1 Virtualization

The concept of virtualization was introduced in early 1960’s by Interna-
tional Business Machines (IBM), which made it possible to have multiple
hosts sharing the same hardware at the same time. In the 80’s however,
the decrease in hardware cost made it impossible for virtualization to gain
its stardom. In modern times the networked environments presented diffi-
culties such as security, reliability, cost inefficiency and complexity, which
welcomed virtualization, back to address these difficulties.

According to Amza et al. "A virtual machine abstracts the computing
resources of a physical machine into a virtual resource" [3]. The processing
capacity of servers have consistently increased the later years allowing
virtualization to enhance data centre abilities by abstracting the OS and
applications from the hardware and assign them to VMs. This has
presented an endless of possibilities a hardware could not handle alone
and made servers more tolerant than ever [34].

Figure 2.1 demonstrates how a non-virtualized system is built com-
pared to a virtualized system. In a non-virtualized environment the OS
controls the access to the hardware resources, in a virtualized system how-
ever, the VMM controls the access to the hardware resources [6, 34].

7

Figure 2.1: Non-virtualized vs. Virtualized system

The instruction set is separated in two categories; privileged and
non-privileged, under two modes called user and supervisor [34]. The
instructions given by a non-privileged user can only be executed in user
mode, on the other hand if an OS or application environment issues
any non-privileged instruction; the machine directly executes it. This is
known as full virtualization. In the x86 architecture there are four levels of
privileges. Rings 0-3, in a non-virtualized environment the OS executes in
ring 0 and the applications in ring 3. In a paravirtualized environment the
VMM runs at ring 0, the guest OS at ring 1 and the applications in ring 3 [6,
34].

8

2.1.1 Virtualization types

There are several types of virtualization; full virtualization, paravirtualiza-
tion, Hardware assisted virtualization, I/O virtualization, memory virtual-
ization etc. There is a range of different strategies to pursue virtualization,
however to set the focus on the two more common technique the next sec-
tion cover full virtualization and paravirtualization.

Figure 2.2 explains the difference of the architecture of a fully virtual-
ized environment vs. paravirtualized environment.

Figure 2.2: Full -vs. Paravirtualization

2.1.1.1 Full virtualization

Full virtualization offers security, simplifies migration and portability. In
terms of complexity, this is probably the least painful approach. In full
virtualization single or multiple OSs and the application it holds can run
on top of a virtual hardware. Each instance on the OS requires that every
feature of the hardware is reflected into one of several VMs, known as
guest operating system (Guest OS). These guest OSs are managed by a VMM,
which then has control of every set of instructions between the guest OSs
and the physical hardware [24]. In this approach the a binary translation
of OS requests translation of kernel code to replace non-virtualizable
instructions [34].

The system is fully virtualized when it is completely decoupled from
the underlying hardware. The guest OS is not aware that it is virtualized
and this is the only form of virtualization that requires no form of hardware
assistance in order to virtualize sensitive or privileged instructions. The
VMM does all of this [34]. VMware was one of the pioneers who introduced
this technique with the x86 architecture allowing a full virtualization [25,
34]. Figure 2.3 shows what a fully virtualized system looks like.

9

Figure 2.3: Full virtualization

2.1.1.2 Paravirtualization

In Greek the word "Para" stands for "beside" or "alongside" translating
the word "paravirtualization to "alongside virtualization" [34]. Unlike full
virtualization this approach requires the guest OSs to be modified in order
to be operated in a virtual environment, with lightweight hardware [28].

Compared to full virtualization 2.1.1.1, instead of binary translation of
the instruction set the VMM and guest OS communicate with each other,
to improve the quality and performance of the system. This involves
modifying the OS kernel to replace non-virtualizable instructions with
hypercalls which communicate directly with the virtualization layer, as seen
in figure 2.4.

Paravirtualization works on a bit more advanced level compared to
full virtualization. Due to the fact that this approach requires deep OS
kernel modifications, it can offer great support and maintainability with
production issues [34].

10

Figure 2.4: Paravirtualization

2.2 QEMU & KVM

QEMU is a software which allows virtualization. There are several modes
in which the software operates, where “full system emulation” is amongst
one of them. This also allows QEMU to host a variety of machines as guests
in this specific mode. This is especially helpful when simulating a real data
centre, where the need to create and host a large number of VMs is required.
This is possible because a compiler in QEMU translates binary code which
is destined for one CPU type to another [32].

Amongst the multiple hosting modes QEMU allow, KVM-hosting is
one of them. KVM which stands for Kernel Virtual Machine is a full
virtualization solution for the Linux x86 architecture. KVM is a hypervisor,
another variant of QEMU and if run accordingly it can also transform the
Linux Kernel into a hypervisor, meaning all the guests running on this
kernel would work as if they were processes on the host [41].

2.2.1 Libvirt

Libvirt is a collection of software that offers a convenient way to manage
VMs and other virtualization functionalities. Libvirt is developed by Red
Hat and offers an interface (API), a daemon (Libvirt) and a command line
utility (Virsh). The foremost goal of Libvirt is to provide a way to manage
multiple virtual hosts. Some of the major features libvirt offers are host
management and Remote machine support. With the VM management
functionality the possibility to conduct operations like start, stop, pause,
save, migrate and restore are offered [16].

Along with VM management, libvirt also offers the possibility to create
virtual switches (or use existing one). This is a very resourceful option
as it makes transfer of network traffic easier. In some cases, one needs to

11

be able to edit the network definition per wishes and apply these changes
instantly. Libvirt makes it possible to add new static MAC and IP mappings
for the DHCP server on the network. The Virsh command will let the user
edit and make changes, and these will not take effect until the network
is destroyed and re-started. One drawback of this approach is that all
the guest interfaces lose their network connectivity with the host until re-
attached again [23].

It is common to use a combination of QEMU, KVM and Libvirt when
setting up a virtualized environment on a Linux platform.

2.3 Cloud Computing

A quick search for Cloud computing on any search engine will generate a
large sum of results. There are also several paid advertisement placements
from companies offering “fast, reliable and secure” cloud services. Cloud
computing allows storing data or applications over a network instead of
having them locally stored on a physical hard drive [18]. The network
that is distributed is referred to as a cloud. Though there is no standard
definition of Cloud Computing, researchers and authors seem to agree that
it mostly consist of many clusters of distributed computers, which form the
term cloud.

Cloud computing offers three important business models, which has
made cloud computing even more popular for businesses to invest in.
Cloud computing is an effective way of allowing companies to focus on
having flexible and accessible machines at all times, instead of focusing
on spending money on creating their own infrastructure. It also enables
companies to consume compute resources as a utility, just like electricity
and is therefore a Pay-as-you-go model.

The three major business models are known as Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [19].

SaaS is a method of software delivery which makes it possible to
allow data to be accessible from any device with an internet connection
and web browser. SaaS first emerged in the early 1960’s as a shared
resource environment such as cloud computing. This method is beneficial
as companies do not need to invest in extensive hardware to host software.

PaaS is a model which offers hardware and software tools to its
users as a service. PaaS provider hosts the hardware and software on
its own infrastructure, which is an advantage as it does not replace an
entire infrastructure, instead a business relies on PaaS for key services,
for example Java development or application hosting. This is also an
advantage as it frees its users from having to install in-house hardware to
develop or run new applications.

12

Figure 2.5: Cloud services

The current commercial offering of cloud computing became apparent
in late 2007 [26]. The recent uptake of cloud computing and the high
demand of cloud solutions show that until recently most research base
the work on load balancing with assumed homogeneous nodes, which
is unrealistic. A data centre is dynamic and the need for dynamic and
heterogeneous systems are necessary to provide on-demand resources of
services [26].

2.3.1 Distributed Load Balancing for Cloud Computing

Load balancing is essential for operating a dynamic data centre. In a
survey by Al Nuaimi et al. [1] the challenges with load balancing in cloud
computing is narrowed down in four different categories. All are linked
to the fact that the research in cloud computing with load balancing in
the focus is often done in a constrained environment. This means that
algorithms are often designed to be efficient only for intranet or nodes that
are closely located, where no communication delay is negligible. The issue
with designing algorithms in these cases has been the many factors that
needs to be taken into account, such as speed, network links and distance
[1, 26]. Load-balance is a critical function among storage nodes, by load
balancing the resources can be well utilized and maximize performance
[12].

There is a need to develop a more efficient way that can control the load
balancing dynamic in a better way than today.The benefit of algorithms
for load balancing is that they are preferred to be less complex. In terms
of implementation and operations, the more complex the algorithm is
the more complex the process is. Hence, less complex algorithms can be
more preferable, rather than more complex algorithms to suit the dynamic
situation of a cloud data centre [1].

13

2.4 Live Migration

Live Migration is the process of moving the state of a running VM or
application to any other host or different PM, without interrupting or
effecting the state of the VM being migrated. RAM, CPU, storage and
network connectivity of the VM is transferred from the original machine
to the destination of the migration.

In a data centre there can be up to hundreds of physical server racks
with PMs running. Imagine the PMs only consisting of one VM on each
PM, this would be a total waste of energy and resources. Live migration
exists for the purpose of avoiding such a scenario, by migrating and
distributing one or multiple VMs on to one or several underutilized PMs.
This helps freeing up space and saving consumption [10].

Migration can be used for several purposes, either for the purpose
described above -to free space - or it can be used to balance load in a
overutilized data centre. Load balancing is the term used to avoid a
situation where a PM can become overutilized. A desired solution is to
have the load balanced equally across one or more PMs.

In simple terms, migration is the process of moving the state of a
running VM or application to any other host or different PM, without
interrupting or effecting the state of the VM being migrated. RAM, CPU,
storage and network connectivity of the VM is transferred from the original
machine to the destination of the migration [22].

Figure 2.6: Simulation of Live migration

2.4.1 Process of Live Migration

Though the migration in itself isn’t challenging, moving the contents of a
VM’s memory from one PM to another it is important that the transfer of
the VM happens in a manner that can help reduce the downtime and total
migration time [5].

14

Total migration time is the time it takes from one VM to move its
memory and details from one host to another, till it arrives the destination
host and is running. A migration can happen in the following phases:

• Push Phase

• Stop-and-copy Phase

• Pull phase

In the Push Phase the source VM continues to run, while some certain
pages of the VM is sent over the network to the new host destination. In
the Stop-and-copy phase, the source VM is stopped and the remaining pages
are transferred to the end destination VM and the VM is again started at
the new destination. The last phase is the Pull Phase in this phase the VM is
initiated again and up on the new destination [5].

There are also the many phases that a migration process goes through.
However, to cover the most common and basic ways, Pre-Copy Migration
and Post-Copy Migration is presented to understand what happens before
and after a migration.

2.4.2 Pre-Copy Migration

This is the process where the VM, which is supposed to transfer from Host
A to Host B, is prepared. The hypervisor copies all the memory pages from
Host A to Host B, while the VM is still running on Host A. If some of these
memory pages become dirty (change) during the process, they will be re-
copied as long as the dirty rate allows it. Dirty rate is the rate at which the
disk or memory changes during the migration [5, 32].

2.4.3 Post-Copy

Between the pre-copy and post-copy migration process there is the
Reservation process where a request on Host B for the VM from Host A
is made. This is to ensure there is enough resources to be able to have
a successful migration. The next process is the Iterative pre-copy process
where all the pages are copied over from Host A to B, including the dirty
pages. Next the Stop-and-copy phase stops the instance running at Host A
and redirects the network traffic to Host B, the remaining memory pages(if
any) and CPU state is transferred. In the Commitment phase, Host B
acknowledges to Host A that it has received the OS image. Host A will
respond and discard the original VM. Host B is now the primary host.
The last Activation process, is when the VM hat was migrated to Host B
is activated. The post-migration code runs to re-attach the drivers to new
host and advertise traffic correspondingly [5].

15

2.5 Load Balancing vs. Consolidation

Load balancing is a distinct term which is self-explanatory. For the common
man it means the same as a load distributed over two or more sets, made
to carry a load of any kind. This can be compared to a regular trip to the
grocery store, where all the groceries bought are distributed into multiple
grocery bags. To make the load feel even, one would want to have the same
amount of weight in each bag. This analogy can be transferred to servers.
Load balancing is a technique of distributing the amount of connections to
a machine over multiple machines, based on how much traffic is directed
at the node.

The technique of load balancing exists to handle the problem of
overutilization of a node. By overfilling the grocery bag, a certain risk
of the plastic tearing up always exists. In the same way each server can
only handle a maximum amount of load before it violates the maximum
capacity and exhausts the server. High amount of CPU and memory usage
are the main problem which can cause exhaustion and a potential system
break down.

The grocery bag analogy can also introduce another approach which
is a highly popular solution in the industry today, Consolidation. To be
effective and save money, one would skip on distributing the load and fill
the groceries in one bag as efficiently as possible. In non-human language,
this means that the load of the servers should be packed onto least possible
servers to save resources. This reduces the total number of active servers
but this does not necessarily always reduce the risk of server exhaustion.

The ideal way to deal with traffic and VMs is to create a data centre
that is scalable at all times. Load on servers can be dynamic because the
percentage can change over time as the load can increase and decrease,
active and inactive servers can start/stop depending on the traffic. The
problem is not the dynamic, it is how the load varies and how a void is
created due to the fact that a VM is started up and shut down at different
times. This causes the system to be thrown out of balance.

There are several algorithms which try to address the void-problem,
where the deployment of an VM is decided beforehand. For instance in
this project a solution which is adjustable and can adopt to any number of
incoming requests is presented. This approach should not only work for
smaller environments but in larger data centers as well. The deployment of
the VM is decided by the available number of servers and not pre-decided
deployments. In this way the void-problem is avoided and the exhaustion
problem justified.

16

2.5.1 Load Balancing strategies

Load balancing has many benefits, it improves the performance of each
individual node, hence the overall system performance. There is a short
response time, higher throughput, higher reliability, low cost but high gain.
Most of all it has an incremental growth [31].

Load balancing offers a wide range of strategies or algorithms to
address problems with imbalance in data centers. There are two categories
which load balancing can be defined under and these are Static Load
Balancing and Dynamic Load Balancing.

In Static load balancing algorithms each process is assigned to the
processors according to its performance, there are no reassignment or
changes of the tasks. The number of jobs in each node is fixed, and the
nodes do not collect any information [2, 31]

In Dynamic load balancing algorithms each job can be reassigned at the
run time depending on load being transferred from heavy to light node.
No decision can be taken until the process is done and executed. Dynamic
load balancing is mostly used for systems that are heterogeneous, due to
the difference of speed, link speed, varying memory and load values.

In this project the Stable Marriage algorithm is implemented exactly to
gain load balance in a dynamic infrastructure, to strengthen and optimize
performance of a system.

17

2.6 Centralized, Decentralized, Distributed & Swarm
Intelligence

The term Distributed was briefly introduced along with Centralized in the
introduction. Each approach is different and is not to be confused with
each other. As the terms implies, a Centralized system is where there is one
central manager who controls the entire system. A Decentralized system is
a system which operates on local information to accomplish one mission.
Distributed system is where several components or computer nodes interact
with each other through message exchange in order to achieve a common
goal. Swarm intelligence is the behaviour of a decentralized system where
the concept is usually employed on artificial intelligence, some examples
include ant colony, bird flocking, honeybee intelligence and so on [9, 37–
40].

Figure 2.7: Difference between Centralized, Decentralized and Distributed
[9]

Figure 2.7 shows the distinct difference between the three main
approaches. In terms of maintenance, a centralized system is easier to
maintain. There is one central manager, if something needs repair it doesn’t
take long. Centralized systems are also good if a fast growth is needed and
scaling is not a concern. A decentralized system might be a tad difficult
to maintain but works well in terms of management, these are especially
good for problem solving projects. Distributed systems are often hard to
maintain, but in return very stable, a small failure will not effect the rest of
the system. In terms of scalability, distributed systems are one of the best
options [9].

2.6.1 Self-organizing Algorithms

Automation and autonomic compute systems are well known terminolo-
gies. It’s a common misconception that systems today are completely auto-
mated. There is still a long way to go before systems will be completely free
of user intervention. The term Autonomic was first applied in the IT-sector

18

by IBM. This implied that systems are able to self-manage, self-configure, self-
protect and self-repair. The term Self-organizing can be defined as a set of dy-
namical mechanisms which has the capability to interact among low-level
components of a system [4].

A system is built up by many components and layers, research in
recent years on self-organizing systems have started to surface. The studies
mostly focus on finding algorithms which can make systems even more
efficient, both in terms of efficiency in virtualized environments which
helps create a system which can manage itself and as well as less user
intervention. A very notable approach to obtain self-organizing computer
systems in recent years is the focus on nature-inspired algorithms. The
term nature can be defined in many ways, in this case with inspiration from
other fields than computer science.

The reason for this is simple, many of the algorithms seem to show good
results. By using inspired behaviour from humans, animal kingdom etc,
many rules can be applied as algorithms in science. Section 2.10 introduces
a few studies on such inspirations.

2.7 Bin Packing

There have been numerous sections which have described an ideal
situation for a data centre. The terms efficiency and resource minimization are
repeatedly used. Up until now it is evident that in any given data centre
the goal is to pack the physical resources to minimum, while avoiding
situations that can create problems with the efficiency and performance.
Bin Packing does exactly this in mathematical terms [10, 13, 35].

Bin packing is the concept which allows a way to pack any given
number of objects of different sizes. Bin packing is known as an NP-hard
problem. NP-hard is a term which is shortened from Non-deterministic
polynomial-time hard [11, 36]. In the field of computer science a problem
is NP-hard when an algorithm is needed for solving it, and that algorithm
can be applied to any NP-problem, it can also be translated to "At least as
hard as any NP-problem, although it might be harder" [43].

The NP-hardness problem applies for virtual environments because of
the constant change in the environment. The dynamic situation of a data
centre makes it hard to use bin packing as an ideal algorithm, because
before the algorithm manages to calculate an optimal bin packing solution
for the system, the state is changed [10, 43].

In a data centre over the recent years the emerging problems with
physical resources, power consumption and overutilization has been a hot
topic. The extreme cost and inefficient way of solving these issues have led
to research focusing on Bin Packing solutions. There are many approaches
to bin packing, such as 2D, 3D, linear packing or weight packing. Even
though Bin packing seems to be an ideal approach, it can be a slow process
due to its long calculation time as there are several permutations [10].

19

2.7.1 Bin Packing algorithms

To name some algorithms which are commonly used a brief introduction
of the First fit algorithm and Best fit algorithm is presented below.

2.7.1.1 First Fit Algorithm

The first fit algorithm is based on placement of an item in the first available
bin. This does not consider the optimal situation. An item is supposed to
be put int the oldest (earliest opened) bin into which it fits first. If the item
does not fit in the first available bin, only then is it possible to open a new
bin [11, 33].

2.7.1.2 Best Fit Algorithm

The best fit algorithm bases its placement of items on the weight of the
items. Each item has a given weight, and the algorithm is supposed to
place each item one at the time. The best fit bin for given item is the bin
that has the least capacity remaining, but still enough to fit the weight of
the given item. In this way the capacity is not violated, but not wasted
either. The best fit algorithm makes it possible to fit as many items into as
few bins as possible [11, 33].

2.8 Stable Matching

In 2012 the Noble Peace Prize in economics was awarded to Lloyd Shapley
and Alvin Roth. Their contribution was an extended development of a
real world problem theory from the 1960s. The problem revolved around
practical real-world-problems, such as assigning doctors to hospitals,
students to schools and human organs for transplantation. Shapley made
the early contributions while Roth unexpectedly adopted the contributions
two decades later. Roth was investigating the market for U.S doctors. With
his further research, findings generated analytical development as well as
practical design of market institutions.

The fundamentals of economics is based on demand and supply, where
analysis often studies markets where prices adjust so that the supply equals
the demand. This is done because in practice the markets functions well on
these premises. The problem with this model is however, that prices cannot
be used to allocate resources. For instance in the case of human organs for
transplantation, monetary payments are ruled out on ethical grounds, in
cases like these an allocation still has to be made, so on which basis should
this allocation take place as effectively as possible?

Shapley et al. started working on different approaches and analysis
of allocation mechanisms. It is a rather abstract idea, if rational people
who know what their best interest is and behave accordingly, engage in
unrestricted mutual trade, the outcome should be efficient. If otherwise,

20

individuals would devise new trades that were ideal for their situation.
An allocation where no individual perceive any gain from any further
trade is called Stable. Stability is a central notion on the concept of
cooperative game theory, this is an abstract area of mathematical economics
which seeks to know how any constellation of rational individuals might
cooperate to choose an allocation.

Shapley applied the stability idea to a special case in 1962, in a short
paper he examined the case of pairwise matching. Pairwise matching was
the idea how individuals can be paired up when they all have different
views regarding who would be the best match. The matching was analysed
at an abstract level where the idea of marriage was used as an illustrative
example.

For this experiment they tested how ten women and ten men should
be matched, while respecting their individual preferences. The main
challenge was to find a simple method that would lead to stable matching,
where no couples would break up and form new matches which would
make them better off. The solution was deferred acceptance, a simple set of
rules that always led straight to the stable matching.

Deferred acceptance can be set up in two different ways, either men
propose to women or women propose to men. If women propose to men
the process begins with each woman proposing to the man she likes the
best. Each man then looks at the different proposal he has received, if any,
and regards the best proposal and reject the others. The women who were
rejected in the first round, then move along to propose to their second best
choice. This will continue in a loop until no women want to make any
further proposals. Shapley et al proved this algorithm mathematically and
showed that this algorithm always leads to stable matching.

The specific way the algorithm was set up turned out to have an
important distributional consequence. It mattered a great deal whether the
right to propose was given to the women or to the men. If men proposed
this lead to the worst outcome from the women’s’ perspective. This is
because if women proposed some women would end up with men they
liked even better. No woman would be worse off than if the men had been
given the right to propose [17].

21

Figure 2.8: Stable Matching

The model 2.8 presents the selection process for Stable Matching. On
the right side are the women with their preferences and to the left are the
men with their.

2.9 Tools

2.9.0.0.1 Python

Python is a programming language known to be simple and easy to
learn. The syntax accentuates readability, which the industry has a benefit
of considering this reduces program maintenance, in addition the code is
pleasant and orderly to read. The Python dictionary is based on the English
language, which makes it globally easier accessible. Version: 2.7

Figure 2.9: Python Logo

2.9.0.0.2 Eclipse

Eclipse is a Java-based program-platform that allows the programmer
to create a customized development environment (IDE) from plug-in

22

components, built by other Eclipse members all around the world. In
short, Eclipse is used as a editor to develop programs with many different
languages like C, C++, PHP and Ruby etc. Customarily Eclipse does not
have any editors where Python can be downloaded as a default, PyDev is
however, a plug-in that can run with Eclipse and allow Python scripts to
run and compile like any other editor. Version: Neon Release (4.6.0)

Figure 2.10: Eclipse Logo

2.9.0.0.3 Git and Bit Bucket

Git is a well known platform for developers who want to ensure backup
of their code. The hours spent working are not worth a loss if faced
with technical issues. The source code of this project was securely stored
through Git and Bit Bucket for version control.

2.9.0.0.4 Dropbox

Dropbox is a cloud solution where users can store their files and access
them with their user-account at any device where Dropbox is found. To
make sure that the project was safely stored, Dropbox was also used to
ensure safety of the files and easy access from any device with the updated
version at all times.

2.9.0.0.5 QEMU & KVM

KVM stands for Kernel Virtual Machine and it is built into the Linux OS.
KVM is a hypervisor program that allows different and multiple operating
systems to share a single hard-core host. Many guest OS’s can work with
KVM. QEMU is also a hypervisor just like KVM. The difference is that

QEMU can make use of KVM when running a target architecture that is
the same as the host architecture.

2.9.0.0.6 LIBVIRT

Libvirt is a toolkit used to manage virtualization hosts. Libvirt supports
KVM, QEMU and many other hypervisors. With the help of Virsh, an
interactive shell it is possible to script and manage tasks on all Libvirt
domains, networks and storage.

23

Section 2.2 gives a deeper insight to the technologies QEMU, KVM and
Libvirt.

2.9.0.0.7 TinyCore

To create a realistic simulation of a data centre every detail needs to be
recreated as it would be in a real data centre. TinyCore offers the possibility
to create customised Linux based VMs, which works just the way a Linux
node would. This allows several guest OS’s to run on top of one host OS,
which can simulate a data centre.

2.9.0.0.8 ISC DHCP

To provide each VM with an IP address and MAC address, the open
source software ISC DHCP is chosen. It offers solution for implementing
DHCP servers, relay agents and clients for small local networks or larger
enterprises.

24

2.10 Relevant Research

This section provides the background for this project. The subsections
will be divided into two different categories; research on Load balancing
and research on consolidation, as well as some important research on
nature inspired algorithms. Usually the path to achieve load balancing
or consolidation is based on somewhat same approaches such as inspired
algorithms from different fields aside from the computer science field.

In recent years there has been very little research on load balancing
and there is comparatively more research on consolidation. Considering
that both approaches use inspiration from different fields and try to solve
the same problems in computer science, it is important to study their
approaches and results. Hence, in this section relevant studies for both
the approaches are presented.

2.10.1 Load Balancing in Cloud computing through Nature in-
spired Algorithms

2.10.1.1 Load balancing in structured Peer-to-Peer systems

Rao et al. proposes a solution which is quite considerate to scalability by
using the peer-to-peer protocol as mentioned in section [thesis Peer2-Peer
resource allocation]. With the help of each peer knowing its neighbour we
get the view to the entire system. Rao et al. also uses data hashing table
(DHT) in their article, which stores the unique ID of each peer in a table
making it easier and faster to find a peer based on a unique ID.

Rao et al. present three different but simple techniques to achieve load
balancing in a structured system. The three different approaches are the
way they balance the load by migrating nodes from one place to another.
The first technique one-to-one picks two random virtual machines, where
one is a heavy node and the other one is a light node. Each light node can
periodically pick a random ID and then perform a look up operation to find
the node that is responsible for that ID. If that node is a heavy node, then a
transfer may take place between the two nodes. The second scheme is the
"One-to-many" scheme, in this scheme a heavy node is allowed to consider
more than one light node at the time and migrate to the lightest one after
choice. The third and last technique is the many-to-many scheme, which is
an extension of the first two schemes. In this however, there is a concept of
a global pool where each heavy node drops off their weight. This happens
over three phases; unload, insert and dislodge. Without going into much
detail this is where heavy nodes come to drop their "weight" and unload
it until they become a light node. The idea is to transfer all virtual servers
from the pool to light nodes without creating any new heavy nodes [27].

The system is simulated with 4096 nodes and all three schemes do
very well in terms of scalability. This research considers the multi-
dimensionality problem and as the entire point of a load balancer is to
utilize resources in the best possible way, considering scalability.

25

2.10.2 Extended scheduler for efcient frequency scaling in virtu-
alized

Dynamic Voltage and Frequency Scaling (DVFS) is introduced as a
hardware technology to dynamically modify the processor frequency,
depending on the CPU needs, in order to reduce energy consumption.
Kamga et al. [14] presents a solution consisting of VM scheduler and DVFS
to conduct some experiments. With seven powerful nodes and help of
Xen to virtualize the environment for experiments, DVFS seemed to be a
powerful tool, but generated low VM performance.

2.10.2.1 Ant Colony optimization

The first time an Ant-Colony algorithm was introduced was by Marco
Dorigo in 1991 while he was writing his PhD thesis. There are several ant-
colony based algorithms. Figure 4 shows the list of the different algorithms
presented over time.

The Ant Colony Optimization algorithm has been used to solve
optimization problems. Generally the idea is based upon the way the real
ants solve problems using pheromones. They are capable of finding the
shortest path from a food source to their nest by leaving pheromones on
the ground which can be picked up by other ants. All ant algorithms use
pheromones as a chemical messenger [44].

In one of the studies, Yaseen G. in [7], sorts the problem of the algo-
rithms into two different rules the ACO system applies, local pheromone
rule update and global pheromone updating rule. The study further sug-
gests that an ACO algorithm include two more mechanisms, tail evapora-
tion and optionally daemon actions.

By studying the behaviours we can create rules based on the informa-
tion, by understanding how the ants think by dropping pheromone on the
ground, which then other ants detect, following this path and determin-
ing the shortest path from one source to another. By understanding these,
researchers divide the behaviour into short “list”/rules, which can be ap-
plied to a compute node to make the node behave in a similar way, to find
the shortest path during a migration from one compute node to another
compute node, closest to its own source [7, 44].

2.10.2.2 Honeybee behaviour

Swarm intelligence has been a popular choice for research in recent years.
Karaboga [15] introduces new research on swarm optimization algorithm
through research on honeybees. To understand the concept of swarm
optimization, Karaboga [15] divides the fundamental concepts into two
different sections self-organization and division of labour. These are
necessary properties to obtain swarm intelligent behaviour, such as solving
problems with distributed systems that can self-organize and adapt in
their given environments. The first concept of self-organization can be

26

divided into four sub-fundamentals: Positive feedback, negative feedback,
fluctuations and multiple interaction.

The positive feedback is a behaviour, which enhances recruitment and
reinforces trail laying and following group of other bee in “dances” the
bees do. Whilst negative feedback counterbalances the positive feedback to
help stabilize the collective pattern. This might occur in terms of available
foragers, food source exhaustion, crowding or competition at the food
sources.

Fluctuations is defined as random walks, errors, random task switching
among swarm individuals, these are vital for the creativity and innovation
of the swarms. The randomness intact within swarms is often crucial for
structures and finding possible new discoveries and solutions.

Imagine being an employee at a company, you are hired to take care of
the food stock coming in and out of the place. This is the work the forager
bees are hired to do. They are employed as specialists at a particular food
source. They carry the information about the profit, its distance from nest
to food source and share this information with other bees.

The unemployed bees/scouts can be imagined to be as unemployed
humans searching for a job, a better job, a job nearby or a job with better
income, and then share this information with other bees.

Karaboga described a simple and flexible technique, which was
simulated through two different functions.Sphere and Rosenbrock Valley, the
latter being a known optimization problem. The simulation was tested
on very limited set of problems. The numbers however seem promising
and the algorithm is suitable for unimodal and multi-modal numerical
optimization problems.

2.10.3 Consolidation through peer-to-peer algorithms

2.10.3.1 Gossiping Algorithm V-MAN

Marzolla et al., proposes a decentralized gossip-based algorithm, called V-
MAN to address to the issues regarding consolidation in their thesis. V-
MAN algorithm is an algorithm based on a gossiping protocol*. The entire
focus of the algorithm is on the VM itself, which means it is independent
from any sort of application or instrument to be a central controller. The
algorithm – V-MAN - is performed periodically to create new arrangements
for existing VMs onto fewer servers, maximizing empty servers.

Marzolla et al., assumes that the cloud system has a communication
layer, so that any pair of server can exchange messages in between. In
section of related work Marzolla et al., talks about another thesis Bio-
inspired algorithm in which the algorithm used in the thesis, they use
scouts on the migration work where the scouts are allowed to move from
one PM (physical machine) – to be able to recognize which compute node
might be a suitable migration destination for a VM. This is completely
opposite of what V-man does. Where V-MAN does not rely on any subset

27

like scouts, instead each server can individually cooperate to identify a new
VM location, which makes V-MAN scalable. It is also to be noted that any
server can leave or join the cloud at any time.

The thesis is based on simulation conducted with four different
experiments. Each experiment has V-MAN implemented but the first two
experiments use a limited amount of servers and VMs in the experiment
and no server can leave and join the cloud. The two latter experiments,
experiment 3 and 4, simulate a more realistic scenario, where servers can
leave and join the cloud and the amount of nodes are a realistic numeric.

In the end the thesis has a very promising result. The results show that
using V-MAN converges faster – less than 5 rounds of message exchanging
between the servers – and the algorithm was also resilient to server failure.

A gossip protocol is a style of computer-to-computer communication
protocol inspired by the form of gossip seen in social networks. Modern
distributed systems often use gossip protocols to solve problems that
might be difficult to solve in other ways, either because the underlying
network has an inconvenient structure, is extremely large, or because
gossip solutions are the most efficient ones available[20].

2.10.3.2 Cooperative VM Consolidation

In an extensive research performed by Sedaghat et al. A distributed
algorithm and gossiping protocol is considered to gain an effective
approach to consolidation. Sedaghat et al, use Peer-to-Peer protocol to
achieve energy efficiency and increase the resource utilization. Peer-to-
Peer protocol provides mechanisms for nodes to join, leave, publish or
search for a resource-object in the overlay or network. This also considers
multi-dimensionality – because the algorithm needs to be specified to be
dimension aware, (each PMs Proportionality should be considered).

Each node is a peer where a peer sampling service, known as newscast,
provides each peer with a list of peers whom are to be considered
neighbours. Each peer only know k random neighbours, mapping its local
view. In the research by Sedghat et al, using the gossip-based protocol,
there are continuously decisions made in order to improve a common
value. Which is defined as the total imbalance of each pair at the time of
decision-making and the goal is to reduce this imbalance by redistributing
the VMs among them.

The thesis also modifies and uses a dimension aware algorithm to
consider – as mentioned above – the multi-dimensionality of the problem.
The algorithm is an iterative algorithm which starts from an arbitrary VM
placement. When the algorithm in converged a reconfiguration plan is
set so the migration of the VMs can start. The reconfiguration will re-
consolidate only if the three steps in the thesis are followed[30].

28

2.10.3.3 Peer-to-Peer resource Allocation

The next thesis also uses a distributed algorithm and gossiping protocol
to gain an effective approach to consolidation. Sedaghat et al., use Peer-
2-Peer protocol to achieve energy efficiency and increase the resource
utilization. Peer-2-Peer protocol provides mechanisms for nodes to join,
leave, publish or search for a resource-object in the overlay or network.
This also considers multi-dimensionality – because the algorithm needs to
be specified to be dimension aware, (each PMs Proportionality should be
considered).

Each node is a peer, where a peer sampling service, known as newscast
provides each peer with a list of peers whom are to be considered
neighbours. Each peer only know k random neighbours, mapping its local
view. In the thesis, using the gossip-based protocol, there are continuously
decisions made in order to improve a common value. Which is defined as
the total imbalance of each pair at the time of decision-making and the goal
is to reduce this imbalance, by redistributing the VMs among them.

The thesis also modifies and uses a dimension aware algorithm, to
consider – as mentioned above – the multi-dimensionality of the problem.
The algorithm is an iterative algorithm, which starts from an arbitrary VM
placement. When the algorithm in converged a reconfiguration plan is set
so the migration of the VMs can start. The reconfiguration, which will re-
consolidate only if the three steps in the thesis are followed.

Simulation of 100.000 physical machines and 200,000 VM requests.
Results: 75% resource utilization, whereas the aim is 90% - done in less
than 7 cycles [29, 30].

29

30

Part I

The project

31

Chapter 3

Approach

This chapter outlines the problem statement: Can we achieve load balancing
in a data centre using simple message exchange between physical machines in a
distributed manner?.

As well as:

How can we borrow the principal of Stable Marriage to gain load balance in a
distributed data centre?

The problem statement introduces a set of important underlying
questions such as scaling problems, optimization of performance and
energy efficiency issues. In this section the approach to provide a ground
for research through implementation of Stable Marriage is presented.

The approach will outline some of the following sections:

• Design

• Environment

• Schemes

• Algorithm design

• Implementation Design

• Expected Results

3.1 Objectives

To outline the structure of the project that has been introduced through
various inspirational studies and concepts in the background chapter, there
will be three main objectives in this project. In the first phase the design
of the project is presented, the implementation phase next and finally the
results and analysis. Each objective will be presented through a detailed
breakdown of the structure with designated sections.

Below is a list of what the idea behind each objective is:

1. Design

33

(a) Create a model of the simulated and real life environment.

(b) Create a model of the Stable Marriage algorithm with formal
notations and illustrations.

(c) Introduce tools, prerequisites and features of the framework.

(d) Provide an overview of the working framework and hardware.

2. Implementation

(a) Configure the environment for simulation and experiment.

(b) Introduce implemented features as designed in the first objec-
tive.

(c) Implement the algorithms while testing it during build.

3. Result & Analysis

(a) Conduct tests to ensure the environment is ready for experi-
ments.

(b) Execute simulation, test Migrate Large.

(c) Execute simulation, test Migrate Small.

(d) Execute experiment, test Migrate Large.

(e) Execute experiment, test Migrate Small.

3.2 Mapping the load balancing problem to Stable
marriage

System administrators today are on call 24/7. The need to ensure systems
are up and running at all time has introduced variety of issues that did
not exist until only a few years back. The job of a system administrator
has been ever evolving, new languages, new software, new versions of
an OS, going from only having computers at work to almost everyone
owning a computer in just a few years. This again introduced a series
of things to consider. People working from home, customers trying to
access information on company webpages, the complexity kept and keeps
growing.

Today is a day and age where there is no fine line between automation
and manual labour anymore - we are somewhere in between. Virtualiza-
tion is a concept which has been around for a long time however only in
recent years became a useful tool with the growth of automated systems.
With growing demand new and greater ideas formed the systems we have
today. One particular system is the cloud system, which is probably one of
the most complex systems available today. The extreme demand for cloud
solutions has become a big business, now this is where system administra-
tors play a major role.

With almost every infrastructure trying to adapt this new cloud system
customers cannot simply accept a “Sorry, our system is not working today”

34

anymore. A few years ago this was a valid reason and universally accepted,
however as the technology evolves, humans have more expectations and
they expect systems to be working at all times as well. How can system
administrators assure that the already most complex system is available
and efficient at all time?

The clue would be to not add more pressure on system administrator’s
work with more manual labour but introduce a more scalable and balanced
system, where no decision made by a system administrator would have to
exclude important variables to the system.

Thus in this chapter we focus on the problem statement and connecting
it to the Stable marriage algorithm through the approach with design and
implementation .

3.3 Design

Figures, drawings and images are a few ways of visualizing any particular
problem. By visualizing problems, one automatically narrows down
the path to a solution. To help visualize the solution a combination of
models and figures as close to the actual implementation is provided as
a prototype. The complexity of the Stable Marriage algorithm is best
described with the support of figures and graphs. The algorithm has a set
of requirements, which are expected from the work environment as well as
the simulation and each requirement will be identified and explained.

3.3.1 Modelling

In a complex environment it is desirable that the process of any given
project is disassembled into pieces with in-depth details to provide a larger
understanding. This also gives a better understanding of every feature, the
functionalities and the policies set for a framework. These functionalities
and policies will be described through a series of models to support the
visual overview of the framework before diving in the implementation
chapter to look at the underlying technologies.

A model can be many different things, it may be graphs, diagrams,
tables and images. Stable Marriage is a algorithm which can be related
to real life models.

Diagrams will act as models to visualize the chain of process each
function of the framework is built on. The mind mapping diagrams will
be used to display the process of planning the necessary requirements for a
functioning framework, while the flow diagrams represent the data which
the flow of the system goes through.

The design phase will also provide an overview of a functioning
framework as well as the simulation. These models will represent the
practical parts of the framework, as well as what is expected final result
after the implementation of the framework. It is however difficult to predict

35

if the final result may match what the models in the design phase show. To
ensure that the models and end result are similar to some extent the models
will be designed with a basic case which will reflect the result in any case.

3.3.2 Load balancing Schemes

Stable marriage is, as explained in section 2.8 the technique of finding the
right partner out of preference. However, the same way a selection of
partner can have different approaches through either dating or being set
up, the algorithm can have more than one way or scheme to find the perfect
balance for a system. All the schemes try to balance the load by migrating
VMs from over-utilized servers to underutilized servers. The difference
between the schemes are the amount of VMs and data transferred and that
the selection process is by mutual consent.

In this case the different approaches to find a suitable partner will be
divided into two different schemes. These can be viewed as two different
sub schemes, where the weight and volume of a server is the most attractive
quality of a preferred partner. The schemes are straightforward, to avoid
any misconception or doubt the schemes are simply named Large and Small.

Stable Marriage is the principle-underlying algorithm at all times, the
point is to create a stable and even data centre. However, as mentioned
above the same way a marriage approach can have different ways, a data
centre may also vary in shape and size because of its dynamic nature.
The large and small scheme will hence be applied to the Stable Matching
algorithm as schemes, to make sure that all volumes, small, medium or
large servers and infrastructures are scalable in every situation possible.

In the design phase, to provide an understanding of how the Stable
Marriage algorithm works, a demonstration will be given in a step-wise
model to display the way the implementation may take place and what
the design is thought to be. The model will only demonstrate how the
algorithm works, and not the schemes in this case.

36

3.4 Implementation

The implementation phase is the technical part of the project. In this phase
all the concepts, models and functions described in the design phase are
developed to be implemented to an actual framework. Programming and
coding are not the only part this phase consist of. The environment the
framework is supposed to be constructed under plays a major role as well.
That is why the configuration, setup of virtual environment and as well as
the physical environment is also to be covered under this chapter.

3.4.1 Environment

The project will be implemented in a real working environment, which will
try to imitate a real data centre. The physical environment, the hardware
and utilities are in a server room at the Oslo and Akershus University
College. The college provides all the physical utilities and bandwidth.

The problem statement revolves around load balance in cloud data
centers, which implies that the framework needs to be based on a
virtualized platform. The servers will run Ubuntu 16.04 LTS as native and
the virtualized environment will be using QEMU/KVM and libvirt as a
solution for virtualized networks and hosting of VMs. These are all open
source tools and easily accessible, in terms of cost and efficiency these tools
will not be hard on the budget and resolving problems that might occur
may be easier to solve.

3.4.2 Framework

The framework itself is divided into two parts. The first part is the
configuration of the virtual environment, spawning, deploying, migration
and general management of the VMs. This also includes creating custom
image for the TinyCore VMs. The first part of the framework is crucial,
unless the virtual environment is configured and the volume needed is
generated, the implementation of the algorithm is pointless. The second
part is the implementation of the algorithm and the schemes. This is done
in python version 2.7.

3.4.3 Data Collection & Comparison

The aim of creating such a framework is to provide some sort of results.
To form a result, some type of data is needed. The problem statement is
basically asking for improvement of current load balancing techniques in
data centers. This means that the outcome of the project should be better
than the current situation of any given data centre, to call it a success. The
data that will be extracted from this framework will focus on four outcome:

1. Situation Mapping:

37

(a) Average CPU load

(b) Imbalance before migration

(c) Imbalance after migration

(d) Gain of migration (better/worse - exit if no gain)

As mentioned earlier the algorithm will be implemented with two
varying schemes where either larger VMs are migrated or smaller ones.
After collecting data from the various experiments the framework will
go through, graphs of how the results turned out will be displayed.
These graphs will be generated for each individual test and in the end
comparisons of both the schemes will be given with analysis of the data
represented.

3.5 Result & Analysis

The experiments will be separated into two categories. The first category
will be the configuration experiment and the second category will be the
scheme experiment. The configuration experiment will test to see if the
virtual configuration and its functionalities work and are robust enough
to be able to handle the scheme experiments. The scheme testing will base
upon the migration of large or small VMs. The experiments for the schemes
can be divided into two categories again, simulation vs. real working
experiments.

For the sake of readability, each experiment will follow with a Analysis
section. This is to help the reader understand the experiment and the
results extracted. The best possible way to display the graphs will be
decided at the time the results are extracted. Depending on the results,
it is hard to design a picture of which graph would best suit the results

3.5.1 Configuration Experiments

The configuration experiments test the environment. The virtual environ-
ment, as mentioned, will be built using QEMU, KVM and Libvirt. QE-
MU/KVM will be used to emulate machines and Virsh the command line
of libvirt to delegate tasks. Before implementing the algorithm the environ-
ment will be tested with a few simple tasks:

1. Task

(a) Install QEMU, KVM, Libvirt

(b) Spawn VMs, delete, pause and onto VM

(c) Migrate VM back and forth between two nodes

(d) Monitor the memory of the system

38

3.5.2 Scheme experiments

Since both the Large and small migration schemes will have the same
underlying structure and code the same experiments will be conducted for
both of the schemes. The data which will be extracted can be compared to
find which is more efficient or if both generate results which show a better
gain in any given situation.

The tasks that the schemes must perform are:

1. Task

(a) Execute scheme large

(b) Read the imbalance ratio

(c) Execute scheme small

(d) Read the imbalance ratio

3.6 Expected Results

Stable Marriage has never been implemented in computer science before.
As pioneers, it is hard to predict if the complexity of the idea works the
same way after implementation. However, the experiments will show the
change of the situation in a data centre based on the imbalance of the centre
before the schemes and algorithm were implemented, as well as after.

Each scheme based on the experiments will help indicate whether there
are benefits of migrating larger or smaller VMs or if both show benefits.
Due to a completely new territory, it is also not unreasonable to expect
technical difficulties with implementation, configuration, problems with
migrations and even coding errors and bugs.

3.7 Appraising Properties

The vast amount of research and studies on topic of load balance and
consolidation in cloud data centers highlight that there is a lot of room
for improvement. The problem statement and introduction introduces
current problems at traditional data centres. Scaling in data centers
has been a problem the recent years due to the dynamic nature of
such an environment. To address these issues either load balancing or
consolidation is chosen.

This project will implement the concept of stable marriage to gain
load balance in an attempt to improve the scaling problem. This will be
done with a distributed approach, which means that instead of having one
central manager in the data centre where everything can fail, each machine
will be an individual with the possibility to plan and execute what is best
for the situation. Scaling is an adjustment problem, as mentioned earlier
the vast turnover in centers leads to problems.

39

Stable marriage is a completely new concept and has never been imple-
mented in computer science earlier. The concept has been implemented in
an abstract real-world problem by Nobel peace prize winners Alvin Roth
and Lloyd Shapley and generated positive results. This contribution holds
a lot of promise in terms of results, once it is implemented.

3.8 Discussion & Conclusion

The data extracted from the experiments can tell a lot. Extracted data
will consist of three primary values and these will be written to a file and
consecutively extracted to draw points for the discussion.

The discussion chapter will summarize the effects of the project and
what the outcome of the results were. The chapter will also take a brief
look upon all the chapters throughout the project to see how the result were
compared to what the expectations and the approach were.

The chapter will conclude with a summary of what the contribution of
the project was.

3.9 Challenge Prediction

It is no secret to man that project work can be a variety of emotions. The
calm start, irritation, happiness, anger and confusion. This also reflects
the normal day of a system administrator. Computer systems are usually
reliable, but unfortunate events happen.

There are expectations from the framework, and it has been stressed
many times earlier in the project that this is a completely new method
to implement. Many unforeseen challenges may arise, it could be
anything from problems with implementation, bugs in the code, missing
components, problems with the virtual environment and configuration to
name a few.

The biggest constraints can be problems with the hardware and its
facilities. The small amount of hardware available might not be able
to deal with the complex implementation and larger testing. Even if
the manipulated amount of CPU and memory allocated to the virtual
environment may be able to be steady, the actual hardware may not.
This can effect the main problem, which is scalability in a distributed and
dynamic environment.

It is better to be prepared for the worst and work for the best, this is
the best possible way to deal with any unforeseen problems and that is the
motivation of this project.

40

Chapter 4

Result I - Design

The design chapter will present the prototype of the framework before
indulging into the technical details in the Implementation and Experiment
section. The project is separated in two sets, not only is the project
simulated but it is also implemented in a working environment. This
chapter will also outline the design of the Stable Marriage algorithm which
is implemented in both sets. A deeper insight into the idea for the project
will be presented.

4.1 Model

Various studies have tried to implement different approaches, within
consolidation and load balancing. In the background chapter some of the
studies and approaches presented also show that it is common practise to
use inspiration from other fields, especially from the nature, to try to solve
different problems in the computer science field. There is however no study
or implementation of the Stable Marriage algorithm, which shows that
there is still plenty of room for introducing methods which can improve the
average day of a system administrator and preferably improve the current
problems of cloud computing and data centres.

4.2 Overview of a functioning framework

As the algorithm implemented will be based on a real life inspiration, it is
important to understand that the outcome can end in two different cases.
Just as each relationship does not end in marriage neither will the decision
of the PMs. Each PM can be viewed as individuals making their own “life
choices”.

Figure 4.1 and 4.2 enhances the different outcome the algorithm can
opt for and how the framework is set up to work around the execution
of the algorithm. Note that the environment later implemented is not in
actual data centres however, for the sake of showing that the main goal is
to achieve load balance in a distributed cloud data centre, the intention is

41

to create a framework that may work in any given scenario and setup.

Figure 4.1: Proposal accepted

Figure 4.2: Proposal Rejected

The basic framework for both scenarios are the same, it is a data centre

42

consisting of PMs with different weight. However, as explained in the
section above, based on the calculations of the underloaded server in the
second scenario the proposal is rejected and the PM moves on to the next
best on their list, this process is supposed to be a continuous process, unless
the target load for each PM is achieved then the process stops entirely.

4.3 Formal Notations

In order to understand the algorithms it is highly important to have a
better understanding of the formal notations used in the algorithms. The
notations below shows the formal notation defined for the stable marriage
algorithm.

Mi: Total used memory of server i. mj: Memory allocated to VM
number j, i.e, VMj

Mi = ∑
VMj∈Mi

mj

This means the total used memory of server i is equal to the the sum of
memory of the VMs that are allocated to that server.

Similarly,
Ci: Total used CPU load of server i. cj: CPU assigned VMj

Ci = ∑
VMj∈Mi

cj

There are some constraints. Each server i has a maximum CPU capacity
Mi

max and maximum memory capacity

Mi
max.

Mi ≤ Mi
max

Ci ≤ Ci
max

When it comes to consolidation, most algorithms take into account the
bottleneck resource as a sole criterion for achieving better consolidation
decisions. Similarly, when it comes to load balancing, one can take into
account the most imbalanced resource as a criterion. For the sake of
simplicity, let us suppose that the CPU is the most imbalanced resource
in our data center.

Average load, is the average CPU load,

C̄ = ∑
PMi

Ci/N =
N

∑
i=1

Ci/N

Average capacity ¯Cmax

¯Cmax = ∑
PMi

Ci
max/N

43

Let Ti be the the target load at PMi where there is no imbalance is:

Ti =
Ci

max

¯Cmax C̄

If all the machines have the same capacity, this would reduce to:

T(CPU)i = C̄ = ∑PMi
Ci/N

Imbalance of a machine PMi in terms of CPU load, is the deviation of
the load of machine PMi from the target CPU load:

I(CPU)i = |T(CPU)i − Ci|

4.4 Bin Packing with Stable Marriage

Bin packing is the famous way of packing an n amount of objects on to
least possible bins as possible. In this case, the servers, which the project
is implemented on, are called bins. This terminology works perfectly with
the stable marriage algorithm, as the bins in that particular form would be
the humans, where they want to look for a partner/bin which creates least
constraints. A constraint can be defined by many different definitions, but
for a bin some normal constraints would be the height of the box, its width
and depth.

Section 4.3 pointed out some of the constraints the Stable Marriage
algorithm will focus on, these constraints were VCPU and memory. Since
the aim of the algorithm is to even the weight of the data centre by dividing
the weight of the VMs into an equal setting, the bins should never be
overfilled or under filled. Best fit algorithm is one of the algorithms that bin
packing allows. This particular algorithm can help minimize the number of
live migrations, as it focuses on finding the best possible match at all times.

This is why two schemes have been worked out, at all times, the
schemes will adjust to the weight of the data centre and find the best match
according to the current weight. In this situation either larger VMs, larger
in terms of their VCPU, RAM and disk allocation or smaller VMs will be
migrated to bins that fit accordingly.

The demonstration below presents the selection process and shows the
idea behind the process of the algorithm.

4.4.1 Stable Marriage Animation

With a known set of servers divided into two groups overutilized (men)
and underutilized (women). The goal is to find a perfect match for the
overutilized servers. The matchmaking is based on three values, the
average CPU, and the imbalance before and after migration (calculated
before the eventual migration) and the profit of such a marriage.

The first figures below will demonstrates the expected outcome of
implementing the Stable Marriage algorithm. As this approach is mainly

44

centralized the PMs know the allocated values of each other, this means
that each PM, both over and underutilized has a list of preferred men and
women they want to propose to or receive a proposal.

Figure 4.3: Set of over/under utilized servers

PM1 has reached full capacity as marked by the red line. The red line
represents the average capacity that each PM can handle. Consider that
each group of men can only handle four or six full servers, in this case PM1
has then reached its full capacity and so has PM2. They need to migrate
the load to a underloaded PM of preference, so they can balance the load
equally. Hence, the overloaded server PM1 proposes to his first choice,
PM3.

Figure 4.4: PM1 proposes to PM3

However, PM3, the female set of servers have their own capability
to calculate the advantage/disadvantage of such a marriage. If the
underutilized PM calculates a higher imbalance than before the marriage,
she sees this as a disadvantage and rejects the proposal. This is also a great
way to avoid the proposing party of getting underutilized in the future.

45

Figure 4.5: PM3 rejects PM1 seeing no benefit to this marriage.

After being rejected, PM1 goes on to his next best choice that is PM4.
PM4 then calculates the imbalance before and after marriage to check
if it improves after a potential migration. In this case imbalance factor
improves, and PM4 accepts the proposal. The migration can now take
place.

Figure 4.6: PM4 accepts PM1’s proposal

Since PM4 has the same amount of capacity to accept load 4/6 is now
full. Which means the server is not over-utilized and the load has been
balanced between the married PMs.

Figure 4.7: Migration successful

This particular animation doesn’t have any scheme implemented. The
animation gives an idea of how the algorithm is supposed to work. The

46

schemes will only make a difference in terms of the size that is being
migrated. The figure below gives a small insight to how the sizes may
differ on each PM and how the migration process may look inside each
server.

Figure 4.8: PM with various flavours

4.4.2 Libvirt Live Migration

Live migration was introduced earlier in 2.4. Live migration is the process
of moving a running VM from one host to another in its current state.
Unnecessary amount of live migrations is not good either, this leads to a
lot of downtime in total, while the migration is taking place. To avoid
migrating unnecessary the Stable Marriage algorithm which focuses on
the stability part, will also lead to less migrations, due to the aim of the
algorithm to avoid re-allocations.

4.4.3 VMs

To recreate a data centre with intention of it being as close to reality as
possible, the VMs play a part in realizing this aspect. As introduced
in section 2.9.0.0.7 (TinyCore), the VMs are linux-based with the help of
TinyCore. TinyCore offers the possibility to manipulate and customise
images as per requirements.

To be able to simulate a real data centre some precautions are important,

47

to be able to spawn as many VMs as possible TinyCore was a flexible
choice, TinyCore can run with varying flavours starting from as little as
46 MB RAM. TinyCore also offers the possibility to manipulate and create
custom images or run the default image. One simply has to boot an image
file (.iso) and it will run any pre-configured settings and packages.

The project requires that the VMs are doing some sort of work which
use CPU and memory to create a realistic effect. Hence all the VMs that will
be spawned will perform a SSH-server start up, create a root user, install
and configure Python whenever booted.

4.4.4 Node communication

The problem statement introduced communication and message exchange as
a way of mapping the system view for an individual node on search for its
best match. The aim for this is to spread awareness between PMs and find
the best possible match.

To be able to implement a way to make the PMs communicate together,
a socket using TCP protocol will be set up on the available PMs. However,
the setup of a socket will depend entirely on the hardware and the results
and then see if it is operationally possible to implement this feature.

4.5 Schemes

A data centre has varieties of PMs, which consists of different weights.
To be able to test the algorithm to see it fit for dynamic environments,
also known as scaling, it is only fair that each experiment has different
configurations to mirror the vast differences of workload in a centre.

First the weight of each bin in the data centre is calculated and
distributed amongst the peers, secondly the total CPU load is calculated
and then the average CPU of the centre. This is to ensure that the weight of
each bin should never violate the average CPU load, to ensure that a target
load is set for each bin to follow, so load balance can be the result. Later the
imbalance of the bins (both over and underloaded) are calculated to find
the status of the centre.

4.5.0.1 Imbalance

The term imbalance means lack of balance or refers to state that is out of
proportion. Especially in load balancing where this term is central and a
term which defines the state of a data centre. To be able to balance a whole
centre, each node needs to be in its own balance. This improves the state
thoroughly.

Imbalance will be a central value in this project as well. In this
project the imbalance will be defined through a value which indicates the
state before and after migration. This is a value which can be used to

48

compare the two states, to see improvements and eventually how much of a
improvement.

Each PM will have a max target load which means that when the target
load is overlooked, the server is overloaded. The imbalance will define how
far off this individual node is from the target load. In terms of balance, as
long as the load is underneath the target it is balanced. In total for the data
centre, as long as each node stays under its target load it is then in complete
balance. Which means there is no imbalance overall. In this project, when
referring to imbalance, it means imbalance per node.

4.5.1 Scaling the percentile

There are three particular sizes that the VMs are actually categorized by;
small, medium and large. Each VM is allocated with an ID, VCPU, RAM
and disk. A data centre does not only have homogeneous VMs. As
previously mentioned many studies focus on the concept of scaling in
terms of amount where homogeneous nodes are used. It is important to
reflect a real centre, with heterogeneous nodes. This is why this project has
been designed to present different flavours of VMs.

The chart below draws a picture of the different allocations a VM will
supposedly have for the experiments.

4.5.1.1 VM Size index

Figure 4.9: VM Chart

Not only can the sizes vary, but instead of manually having to add each
VM to each bin in an arbitrary way, a method to scale the actual amount of
the different sizes of VMs it will be possible to tune the percentage of how
many of each category is wanted. If 100% is the maximum for a data centre,
then it will be possible to manipulate the data centre to have for instance
20% of small VMs, 20% of medium VMs and 20% of larger VMs. Again,
this project aims to provide a scaling solution which fits for any given size
or volume.

4.5.2 Stable Marriage Algorithm - Migrate Large & Migrate Small

The two different schemes that will be implemented are Migrate Large and
Migrate small. These two schemes do the almost same thing, but with

49

different values. As the chart 4.9 implies, there are different allocations.
Based on these values a calculation is done, where the value of the CPU is
extracted to find out whether the VM in the bin is small or large. Based on
this, the program continues to execute the same way for both schemes. The
figure below is the allocated value to the designated VMs.

Figure 4.10: VMs with their allocated values

4.5.3 Distance Vector

There is a quote that says "Matches made in heaven". However it doesn’t
mean that each perfect match finds it way directly to its better half on the
first try. The term Stable in Stable Marriage symbolizes the perfect match
out of all the other possibilities.

In a centre consisting of many thousand VMs it might seem like an
impossible task, however since each node is aware of it’s neighbours details
it is easier to start with the one with largest imbalance to find the one with
the perfect imbalance for itself.

50

Chapter 5

Result II – Implementation

This chapter will present the implementation of the framework. To provide
better understanding of how the framework is put together and how the
Stable Marriage algorithm has been implemented, detailed descriptions
will be provided throughout the chapter. Each experiment accompanies
some analysis to create an understanding of the situation at the given point.

The figure below is a diagram of the work flow, a breakdown of how
the implementation chapter is presented.

Figure 5.1: Chapter overview

A note to the reader, the code may be presented as pseudocode. For the

51

actual code, the reader is advised to peek at the Appendix (8).

5.1 Model Overview

Figure 5.2 below is a model which gives an overview of the structure in
which the project will be implemented. This is a figure which shows
how the different components from entirely different worlds are paired
together. The bottom layer is the physical hardware consisting of PM1-
PM3 or Lab01-Lab03 which are the assigned name on the OS. This layer
is controlled by the hypervisor KVM, which is in control of the virtual
environment, also the network of VMs which are later spawned in layer
3.

Figure 5.2: Design

5.2 Environment Configuration

Evidently, a framework is built with several services and components,
which are necessary for an environment to work. To set up a virtual
environment for this project several physical and virtual technologies were
necessary.

The physical servers in this project are stored in a server room at Oslo
& Akershus College University. There are three dedicated servers for this
project, as seen in figure 5.4. The setup consists of a dedicated gateway
to connect to the outside. All of the PMs are inter-connected through a
dedicated switch.

52

Figure 5.3: Overview of the Physical lab structure

Each server is allocated with same specifications:

Figure 5.4: Physical attributes

These are the details for the physical hardware which are dedicated
for the virtual implementation. The PMs run Linux, Ubuntu which is
easier to work with especially with QEMU and KVM for virtualization of
the environment. The installation of these packages are straightforward,
however before installing any of these technologies require a check to see
if the CPU allows hardware virtualization.

5.3 Virtual Configuration

To virtualize the environment it is important to check if the hardware
allows this. A simple command as seen below can identify and check if
the hardware allows virtualization.

53

1 egrep ’(vmx|svm)’ --color=always /proc/cpuinfo

If the command responds with a pre-defined answer, then the hardware
is able to process and handle virtualization, if nothing happens after typing
the command, then the process must be stopped.

The next step is to configure the virtual network. This network will also
ensure that when migrating VMs from one host to another, this happens
within the same virtualized network. Figure 5.5 below shows how the
PMs are connected and how the VMs reside inside the PMs. The VMs are
attached to a virtual bridge by birth. This is a actually a virtual switch,
however it is called a bridge and used with KVM/QEMU hypervisors to
be able to use live migration for instance.

To connect the PMs together, a physical switch is connected between
the PMs.

Figure 5.5: Physical Lab details

5.3.1 Network of VMs

Creating and deploying several hundred or thousand VMs requires some
order. In a giant network braiding several components together can be
done by uniquely distributing an ID. Each device connected to a network
needs an IP address and a MAC address. This also applies to VMs, hence
using ISC DHCP, all three PMs work as DHCP servers.

To provide each VM with an IP and MAC-address a script which can
define up to 100 VMs has been implemented. The network range of
192.168.1.0/24 has been reserved for the VMs. This means that the first VM
that will be spawned will be addressed to an IP starting from 192.168.1.101,

54

where the last spawned VM will be given 192.168.1.200. The virtual bridge
is configured as:

1 #Typing the ifconfig commando, lists the virtual bridge in the

2 configuration:

3

4 virbr0 Link encap:Ethernet HWaddr 52:54:00:f1:46:a3

5 inet addr:192.168.122.1 Bcast:192.168.122.255

6 Mask:255.255.255.0

7 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

8 RX packets:4745 errors:0 dropped:0 overruns:0 frame:0

9 TX packets:4934 errors:0 dropped:0 overruns:0 carrier:0

10 collisions:0 txqueuelen:1000

11 RX bytes:519650 (519.6 KB) TX bytes:2345192 (2.3 MB)

The pseudocode underneath demonstrates what the ISC DHCP script
does:

1 def randomMac():

2 <Define a variable mac which uses the random class and

3 to generate MAC addresses>

4 <return the mac adr>

5

6 with open(networkfile, "a")

7 <iterate through the file with for-loop>

8 <Distribute each mac address and fixed IP to

9 a host>

10 <write to file & close>

This is how the first VM will be assigned an IP and MAC address:

1 <host mac="00:16:3E:4F:FD:4A" name="vm1" ip="192.168.1.101" />

The benefit of having local DHCP server on each instance is that once
the VM is migrated to host destination, there won’t be a need to ask for a
new IP address. The new host won’t need to assign a new IP, but can ask
the previous host to use the existing IP and MAC address.

55

5.3.2 VM Communication & Message Exchange

One of the biggest benefits of having a distributed system is the possibility
to implement communication between the nodes. This can spread an
awareness of neighbours weight and node information. The idea behind
Stable Marriage is to be able to find a best possible match for the node.
This leads to a faster calculation time and a effective way of avoiding
unnecessary amount of migrations.

Using the TCP/IP protocol a socket for communication between client
and servers can be set up. The sockets can be configured to act as server and
listen in the background for incoming messages. Sockets can also connect
to other applications as a client, and after both ends of a TCP/IP socket are
connected, the communication goes both direction.

To implement a socket, one first needs to setup a socket, assign it to a
server address, for instance localhost and a port number. Further one can
setup a listen and accept method, which waits for incoming connection.
Contrary to the server socket setup, the client setup uses a connect method
to attach the socket directly to the remote address. After the connection is
established, data can be sent through the socket.

Beneath is a shot pseudocode snippet of one way of communication
between server & client on sending a message:

1 #Socket for sending data

2 try:

3 #<Create a message variable for sending messages>

4 message = ’Add some message here or details from a PM’

5 <Print and finish>

6

7 #Search for response

8 <Variables to store the response message>

9

10 #Start a while loop to check if the message received is

11 the same as sent by check the length.

12 <Compare amount received vs. expected>

13

14 <Print and finish>

15

16 final:

17 #<Close Socket>

18 sock.close()

19

20 ##Pack he message to a specific server:

56

21

22 while True:

23 sock.sendall(str.encode(message), server_address)

5.3.3 Deployment of a VM

Before implementing the algorithm, a small test is performed to see if VMs
are able to spawn and run with libvirt. This is to test if it is possible
to deploy and assign VMs with the flavours and configurations that are
required by the algorithm.

The code snippet beneath shows how a VM is manually spawned with
libvirt, as well as which network it gets assigned to along with IP and MAC
address, the choice of flavour is completely arbitrary and does not have
any effect. A test migration will also be performed to see if the connection
between the PMs are established:

1 #Spawning a VM, this is a one-liner without any

2 breaks to spawn a VM:

3

4 virt-install --virt-type "kvm" --name "vm1" --cdrom "my.iso"

5 --network "bridge=virbr0,mac=52:54:00:7A:28:7E"

6 --nodisk --vnc --noautoconsole --memory 2048 --vcpu 2

7

8

9 #Output looks like this:

10 Starting install...

11 Creating domain...

12

13 #virsh list --all:

14 Id Name State

15 --

16 1 vm1 running

To test if migration with libvirt is working as well as to check the
connection establishment between the PMs, a small migration from PM1
(Lab01) to PM2 (Lab02) was performed, underneath is a snippet of the
migration process.

1 #Migrate VM1 previously spawned from Host to new Host:

2 disha@lab01:~$ virsh migrate --live vm1 qemu+ssh://12.12.12.3/system

57

3

4 #On PM2 the "watch" command is running, which allows monitoring of the

5 process:

6 disha@lab02:~$ watch -n 0.5 ’virsh list --all’

7

8 Id Name State

9 --

10 1 vm1 paused

11

12

13 (After 0.5 sec)

14 #disha@lab02:~$ virsh list --all

15

16 Id Name State

17 --

18 1 vm1 running

One of the benefits of using TinyCore VMs is that it provides the
possibility to be able to sign into each individual VM where the user is
free to use the VM as whatever preferred reason.

Each VM that is spawned under the virbr0 network, also gets its
designated virtual interface. This is created and assigned while the VM
is operating, and migrates along during a migration. This interface is also
destroyed once the VM is destroyed.

1 #ifconfig

2

3 vnet1 Link encap:Ethernet HWaddr fe:54:00:7a:28:8b

4 inet6 addr: fe80::fc54:ff:fe7a:288b/64 Scope:Link

5 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

6 RX packets:543 errors:0 dropped:0 overruns:0 frame:0

7 TX packets:137076 errors:0 dropped:0 overruns:0 carrier:0

8 collisions:0 txqueuelen:1000

9 RX bytes:68724 (68.7 KB) TX bytes:7312991 (7.3 MB)

58

5.4 Stable Marriage

The physical and virtual environment is tested and all setup. The next step
in the process of completing a framework is developing and implementing
the main algorithm, the Stable Marriage algorithm.

Stable Marriage is, as mentioned previously, an approach to find
the perfect match for gaining load balance. Each node is considered
an individual with preferences and demands. These are taken into
consideration, to be able to find the perfect balance for each individual
node.

The flow diagram below gives an insight on how the Stable Marriage
Algorithm is made and which methods are implemented to make the
algorithm work:

Figure 5.6: Flow Diagram of the Stable Marriage Implementation

59

Note, the code is available for the reader in the appendix section 8, this
section provides a rough translation of the most important methods of the
implementation.

The first process is to define the flavours of the VMs that will be
used, this example a snippet of how the small VM is defined is presented,
medium and large are not presented below, but are implemented the same
way:

1 VM_list = []

2 small_vm = {

3 ’name’ : ’small %d ’ ,

4 ’cpu’ : 2,

5 ’mem’ : 2048,

6 ’disk’ : 20,

7 ’n’ : 1

8 }

The next step in this process is to find and define the weight or load of
the server:

1 def Get_Bin_Load(bin):

2 load=0

3 <for-loop to iterate and count VMs inside bin>

4 <define load>

5 <load is defined as CPU index of VM>

6 return load

After the load of the bin is defined, it is necessary for some calculations
to take place. One of the most important calculations of this algorithm is
the imbalance and the gain of a migration, as well as the CPU load. In the
pseudocode below, the imbalance and CPU calculation is presented.

1 total_cpu_load=0

2

3 for i in range(N):

4 total_cpu_load=total_cpu_load+VM_list[i][’cpu’]

5

6

7 average_cpu_load=total_cpu_load*1.0/K

60

Imbalance and gain of migration:

1 def Gain_of_Migration_Couple(Over_Bin, Under_Bin, Big_VM, average_cpu_load):

2 #Calculate imbalance BEFORE an eventual proposal/migration

3 <get load of overloaded server>

4 <subtract the weight from the average CPU load to find

5 the imbalance before of overbalanced PM>

6

7

8 <Get load of underloaded>

9 <subtract the weight from the average CPU load to find the

10 imbalance before of underbalanced PM>

11 <print the Imbalance before of underutilized server>

12

13 #Calculate the total imbalance BEFORE a marriage:

14 <Total imbalance is = imbalance of overloaded bin +

15 imbalance of underloaded bin>

16

17

18 ###AFTER###

19

20 #Calculate imbalance AFTER an eventual proposal/migration

21 <Overloaded>

22 <Get load of overbalanced server, subtract the largest VMs CPU

23 and again subtract the average CPU load>

24 <print the Imbalance after of overutilized server>

25

26

27 <Underloaded>

28 <Get load of underbalanced server, add the largest VMs CPU and

29 subtract the average CPU load>

30 <print the Imbalance after of underutilized server>

31

32 #Calculate the total imbalance AFTER a marriage:

33 <Total imbalance is = imbalance of overloaded bin -

34 imbalance of underloaded bin>

35

36 #Calculate the gain

37 <gain = total imbalance before - the total imbalance after>

61

38 <Positive result shows a gain, went from worse to better>

This method calculates the imbalance of each bin by using the load
of overbalanced PMs and subtracting that from the average CPU load.
Then the underloaded bins weight is subtracted from the average cpu to
find the before imbalance for the underbalanced server. To find the total
imbalance, that is the total then added of the number from the imbalance
of the overbalanced node + the under balanced node.

The process to find the imbalance after is Imbalance underbalanced =
get the load of underbalanced PM and add the CPU load of the largest VM,
subtract the average cpu load. The biggest VM is chosen because this is the
one VM which creates the largest imbalance in any situation.

The benefit of a migration is to so if there is an improvement of the
imbalance, if it is a beneficial marriage. If the result show a positive value,
this marriage is going to be stable.

Stable Marriage allows the framework to restrict that if there is no
more “gain”/nothing more to balance, the job is done. The algorithm
will then exit. It also restricts overloaded servers to become underloaded,
which means that PMs may also decline a proposal if the overloaded
server becomes underloaded. This would create an unnecessary loop and
the whole purpose of load balancing would be pointless if it was not
considered. Hence, it was highly important to implement a solution, which
considers the state of the machines at all times.

1 #Define gain/no-gain as a variable

2

3 while (nogain==False):

4 <for-loop to iterate through the under/over bin>

5 <print iteration of the gain calculated by using the info of

6 under/overbin, average cpu load and amount of servers.>

7 <defines under vs. overloaded bin>

8 <if the largest VM in the bin crosses the average cpu>

9 <set nogain = True>

10 <exit if>

11 <exit for>

In the "no_more_gain" method if there is no beneficial proposal that
reduces the imbalance or the proposals will increase the imbalance, the
algorithm will stop whenever there are no possibilities to reduce further
imbalance.

This means that a node can never become overbalanced again or
underbalanced to take more VMs on board. This is one important

62

implementation, as the point of the Stable Marriage algorithm is to Stabilize
the system, this algorithm contributes to the stability factor.

5.5 Schemes

Next, the main methods which distinctly creates the possibility to scale
are the two schemes introduced earlier. The implementation of how the
algorithm finds the largest vs. smallest index to differentiate between the
sizes of the VMs on a PM.

Stable Marriage is not a complex algorithm, which is exactly what is
needed in a another complex day for a system administrator. The point is to
keep the system in balance, and make it possible to have a dynamic system
which is fault tolerant. The schemes that are implemented are basically a
max or min at code level. This is one of the benefits of an abstract idea,
which is represented below.

5.5.1 Migrate Large First

Here the simple method of finding the largest VM, that loops through the
list of VMs to find the index of the largest VM. This is done by first going
through each bin and VMs inside it, if the index cpu of the bin is larger than
max, then the index of the largest VM is returned.

1 def Get_Index_Largest(bin):

2 max=0

3 <set index to max>

4 <for-loop to iterate through VMs inside the server>

5 <if the VMs index cpu is larger than max>

6 <set the max to be the largest VM>

7 <index is now set as max>

8 <exit loop and return max index>

The only difference between the two implementation of the schemes in
terms of code, is that the index changes from searching for the largest VM
to the smallest based on the CPU.

5.5.2 Migrate Small First

Here the simple method of finding the smallest VM, that loops through the
list of VMs to find the index of the smallest VM. This is done by first going
through each bin and VMs inside it, if the index cpu of the bin is smaller
than than min, then the index of the smallest VM is returned.

63

1 def <Get the smallest bin>:

2 min=10000000000

3 <set index to min>

4 <for-loop to iterate through VMs inside the server>

5 <if the VMs index cpu is less than max>

6 <set the min to be the smallest VM>

7 <index is now set as min>

8 <exit loop and return min index>

5.6 Summary

The aim of the project is to see if it is possible to load balance with
stable marriage. This implementation chapter provided the necessary
information to technically be able to set up the framework, before
performing experiments. A small test to check if the environment was
done, as well as testing the spawning of a VM and migrating it.

The next chapter will provide the results of the experiment, which is a
stepping stone for the Stable Marriage algorithm for any future work on
this.

64

Chapter 6

Result III – Experiment &
Analysis

This chapter presents the results extracted from the experiments. Each
experiment is unique in its own way and is presented with graphs
accordingly. The methods which were implemented in the previous
chapter will be put to test.

6.1 Testing

Testing is one of the most crucial parts. There are many things that can halt
a progress such as technical difficulties, errors, and wrong output. Often
these questions could be easily resolved if each section was tested before
shipping the product. The testing method for this project can fall under
the Unit Testing method. Each method has been tested as whole during the
progress.

6.2 Simulation Experiments

After testing the framework in different ways as presented in the beginning
of this chapter, the framework is now ready run tests. Most of the
experiments generated very positive results. Each experiment with
different configuration was tested at least 10 times to see if the average
of each test had a positive outcome, in total 12 tests were run with different
configurations for the simulation. The more positive data generated, the
more confidence there is to the fact that the algorithm has a positive effect
and works the way it is supposed to. However, it is highly important to
take error margin into account while generating data.

To strengthen the positive results a confidence interval was made for
the total average taken from the average imbalance before and after a
migration from all the 12 tests. A value of 95% for confidence interval
was chosen, this means that around 5% of the interval is reserved for error
margins.

65

Figure 6.1 and 6.2 below shows the average confidence level of the mean
from all of the 12 simulated samples conducted. Meaning the samples
are 95% reliable, however scientifically speaking in statistics there are some
parameters that determine whether the results displayed are of significance
or not, this is determined by a p-value. In statistical hypothesis testing the
p-value is the probability for a given model, that when the null hypothesis
- a general statement that there is no relationship between two measured
phenomena or association among groups - is true the summary, such as
the mean, would be the same or more than the actual results [42]. The p-
value is of significance if the value is less than 0.5, in this case the p-value
resulted in p > 0.5 = 0,629 for figure 6.1 and p = 0,655 for the 6.2. Just above
the significance value.

Figure 6.1: Mean of CI for Small Migration scheme

Figure 6.2: Mean of CI for Large Migration scheme

Figure 6.3 shows the number of Experiments from E1-E6. For each

66

experiment conducted, a box plot graph is provided. A Boxplot graph is
the way to see the spread of all the different data points collected. This
also provides additional information instead of just providing the average
numbers of the experiments. The “whiskers” shows the spread of the data
range from the lowest data point to the highest data point.

Figure 6.3: Table of Experiment details

6.3 Simulation

The first part of the experiments were conducted in a simulated environ-
ment. This helped find flaws and bugs which could prevent further prob-
lems with the real implementation. There are 6 experiments, and each ex-
periment is presented with an analysis to highlight what the results actually
show.

Each graph is the average result taken from each experiment. For
example, if experiment 1 had five migrations, the average imbalance
before and after is displayed on the graph. This is to show the average
improvement.

6.3.1 Summary

If the reader would like to skip reading the graphs, the next sections
are all a visual display of the results extracted from the experiments.
Each graph shows the average imbalance before and after a migration.
Each experiment was a new experience in terms of knowledge. Many
improvements were made during the progress to find the perfect solution
for the algorithm.

The reader is advised to take a look at especially the results from 6.3.7
and 6.3.9. These show a great improvement, where least possible physical
resources have been used.

To make it easier for the reader to follow the experiments, the results of
the experiments are graphically presented with Boxplot. Each graph is also
described in the analysis.

67

6.3.2 Small scale migration - I

The first experiment was a test as well as an experiment. The aim of this
test was to see if migration was possible and if it was working. The aim of
this experiment was to migrate 60 small vs. 60 large VMs to balance a data
centre consisting of 10 PMs.

Figure 6.4: Migration of 60 Large VMs

Figure 6.5: Migration of 60 Small VMs

68

6.3.3 Analysis

There were high hopes for the first experiment to turn out positive, the
smaller scheme seemed to do much better in terms of improving the
imbalance of the center compared to the larger one.

The graphs display the average imbalance for each bin before a
migration and after a migration. The aim is to lower the average imbalance
of each bin, which leads to a better environment for the VMs. Low CPU
and memory utilization in other words.

The graphs presented above display the Stable Marriage algorithm in
action with different schemes. The first noticeable improvement is of the
Migrate small scheme, the average imbalance improved alot. The graphs
show the average imbalance improvement before and after the migration.

In this test the algorithm extracted 5 migrations, each of the migrations
provided a value before and after the migration which was the imbalance
ratio. The graph above displays the average taken from the 5 migrations.
Figure 6.6 below provides an example of how the imbalance was extracted
and plotted, resulting in the graph from the average values.

Figure 6.6: Imbalance example

69

6.3.4 Small scale migration - II

The aim for the second simulation was to see how scaling up with a few
more VMs and PMs would go. In this experiment 125 large and small VMs
were migrated inside a 20 PM data centre.

Figure 6.7: Migration of 125 Large VMs

Figure 6.8: Migration of 125 Small VMs

70

6.3.5 Analysis

At this point the CPU average was not monitored for data collection,
however the algorithm won’t allow migration if it isn’t a perfect match, and
the CPU and memory are a part of that requirement. This is the one and
only experiment which did not improve the imbalance factor. By looking
at the IQR -inter quartile range IQR Before: 0,64, IQR After: 1,94 it is clear
that there has been an increase in the imbalance of the system. The positive
thing is, that such a decision will not be able to happen anymore. This
was discovered fast enough to prevent future experiments to get the same
results.

6.3.6 Workaround

After the first two experiment, issues with how the calculation was done
started to show. The minute the number of VMs on a PM crossed above
100 the algorithm was not efficient enough for migration of the heavier
VMs. The CPU average was crossed and the average imbalance was not
improving. This was quickly corrected, as there was some spelling error in
the script which showed the incorrect imbalance.

This experiment was included because this bug led to another vital
policy included in the schemes. Earlier in the Design section 4.5.1, scaling
with percentage was introduced. This is a method which would allow the
user to produce different percentage of heterogeneous nodes. The average
CPU load was also being monitored.

Each experiment from this test onwards has been modified with
different weight. If a complete data centre is 100% then the number of VMs
and their weight can be manually manipulated.

71

6.3.7 Medium Scale migration - I

For this experiment scaling was implemented. 2500 VMs were migrated
on only 3 PMs. 2500 pose a scale of 100 %. This means that the amount of
flavours on the VMs can be modified.

Figure 6.9: Migration of 2500 Large VMs

Figure 6.10: Migration of 2500 Small VMs

72

6.3.8 Analysis

This particular experiment consisted of the following sizes and flavours for
each scheme:

Figure 6.11: Flavours of VMs

One of the goals of this experiment was to check if migration would
be possible with no large flavoured VM and if the migration went to the
next largest flavour - medium. In this case the medium flavour becomes
the largest and is considered as a large for the algorithm.

Results still show positive gain and the boxplot graph show a large
improvement. The wide boxes symbolise a wide range of number, this
means that the distance from the top whisker to bottom whisker all
represent the improvement the migration does on the after box. Another
important reason why the boxes appear larger than what has been
presented is because the amount of average test for each experiment was
changed from 5 to 10 to find a larger variety. Hence, the graphs from this
experiment onwards are larger, with a larger variety of results.

73

6.3.9 Medium Scale Migration - II

To turn the scale up a bit a simulation of 5000 VMs migrating within 5 PMs
was tested. In this particular test the flavours were adjusted to create a data
centre consisting of 60% small VMs.

Figure 6.12: Migration of 5000 Large VMs

Figure 6.13: Migration of 5000 Small VMs

74

6.3.10 Analysis

After finding a stable point the aim of the experiments was to scale and
create simulations with as many different flavours as possible. This was
to monitor if the algorithm worked in any given case. The flavours of this
experiment:

Figure 6.14: Flavours of VMs

The box graph for the larger scheme is much wider and fuller than the
one before. This is simply because the average number of test results were
somewhere between 50-70, while the average numbers after the migration
had a varying number from 20-55. This means that larger values before
migration improved to much better and lower results in the after box. For
instance, imbalance for test 3 was 75,2 for the migrate small box, and the
imbalance after was 27,2.

75

6.3.11 Large Scale Migration - I

Moving on with the flavour testing, the next in cue is the test which
experiment with the larger flavour. 8 VCPUs each for each and every large
node as 10.000 VMs migrate between 100 servers.

Figure 6.15: Migration of 10.000 Large VMs

Figure 6.16: Migration of 10.000 Small VMs

76

6.3.12 Analysis

One of the most important and interesting thing about this particular
experiment is the size of the boxes. The fact that the after-boxes are in
the lower ranges of the imbalance ratio is positive, however, the sizes of
the boxes point at something important. This shows that after a certain
amount of VMs, there will be a difference in the imbalance, BUT the scale
will not be far behind the before-box. For instance, take the scheme for
migrating 10.000 large VMs. The imbalance ratio for one of the tests before
showed a ratio of 10,88 and the after ratio showed 8,88.

It is no secret that the larger the number of VMs will be the longer and
difficult it will be to migrate. However, testing this scheme, these were the
flavours implemented:

Figure 6.17: Flavours of VMs

The CPU load was also very low on this test compared to the others, this
is important to address, because in this particular test the amount of PMs
were quite kind, on the other tests the VMs have been tested with fewer
PMs to see how much they affect the algorithm in performing. In this test,
the aim was to create as heavy nodes as possible and see the migration
results.

77

6.3.13 Large Scale Migration - II

One of the final tests consisted of 20.000 VMs with the least possible amount
of server, 15. This was to test how the CPU load would rise compared to
the previous test with a kind amount of servers.

Figure 6.18: Migration of 20.000 Large VMs

Figure 6.19: Migration of 20.000 Small VMs

78

6.3.14 Analysis

To the best surprise, the algorithm was still able to migrate and balance the
data centre. Unsurprisingly on the other hand the CPU load was intense.
The graphs also show the improvement of the imbalance before and after
migration. Very similar to the last test, even though this experiment was
tested with fewer servers. The flavours used for this experiment:

Figure 6.20: Flavours of VMs

79

6.4 Real Experiment

Unlike the simulation, the real experiment required a lot of failure and
trying. The results from the real experiment will not be presented in
boxplot graph, but in column chart. Problems with configuring the third
PM resulted in only two PMs to experiment on. In some cases this led to
manually spawning the VMs to get results.

The same way each experiment was presented for each scheme, so will
the experiments from this experiment. In the results below, some snippets
as well as graphs will display the process of migration from one host to the
other.

6.4.1 Migrating Small Scale

The aim of this experiment is to see how migration can take place in a real
virtualized environment with different flavours of VMs. The figure below
displays the results extracted from the experiment:

Figure 6.21: Small Imbalance Before vs. After

The output after the migration show the VMs up and running at PM2,
with following command:

1 root@lab02:virsh list --all
2

3 Id Name State
4 --
5 4 vm3 running
6 5 vm4 running
7 6 vm5 running
8 7 vm10 running
9

10

80

11

12 This output for Test1 is generated by the script to inform the user of the \\
13 size of the VMs migrating:
14

15 moving small {’mem’ : 2048, ’disk’ : 20, ’name’ : ’small\ %d ’ , ’cpu’ : 2}
16 From: 1
17 To: 2
18 moving small {’mem’ : 2048, ’disk’ : 20, ’name’ : ’small\ %d ’ , ’cpu’ : 2}
19 From: 1
20 To: 2

Please note that the VM names are not in any particular order, but
arbitrary due to an earlier test with IP assignment.

6.4.2 Analysis

Figure 6.21 displays the results extracted from 3 rounds of migration
between host PM 1 and PM2. Test1 had an imbalance of 3.0 before
migration and the imbalance after went down to 1.0. The test had one
overloaded server with five small flavoured VMs (6.3). The destination
host only had two VMs, and space for more. PM1 sent over 2 VMs to PM2.

Test 2 consisted of seven VMs in total, where only two small VMs
resided with five medium VMs. The destination host consisted of four
VMs, but all small flavoured. This resulted in 3 migrations in total from
PM1 til PM2. In this particular migration, two of the VMs were small
flavoured and one was medium flavoured.

Right after the migration, the small VMs were up and running quite
quickly, using around 0.4 of CPU, while the medium VM spent a quarter
of a second more than the small VMs. The imbalance before migration was
8.0, and after it went down flat 0.0. Which is a great result, concluding the
bin in complete balance.

The aim for Test 3 was to see if now PM2 was overloaded, does it locate
PM1 and continue migration, as well as how many VMs it would migrate if
it only was small flavoured. With an imbalance of 10.0 before and 0.0 after
migration.

This test consisted of sixteen small VMs on PM2, while on PM1 there
were two small and one large VM. The acceptance of the proposal ended
with four migrations. Now, one would think that this results in PM2 still
being overloaded with 12 VMs, however, PM1 has one large VM, which
evens the imbalance out for both bins. The average CPU load was only 22.

6.4.3 Migrating Large Scale

Figure 6.22 displays the results extracted from 3 rounds of migration
between host PM1 and PM2, based on the large flavour scheme.

81

Figure 6.22: Large Imbalance Before vs. After

6.4.4 Analysis

The tests were performed exactly the same way as the previous small
flavour experiments were performed. The first Test, had an imbalance of
17.0 before migration and 3.0 after. Already by this point it is obvious that
the machine is working hard to perform the migrations.

Test 2 had an imbalance of 17.0 before migration and 7.0 after.
Compared to the other columns, it is easy to notice that the two imbalances
do not differ much from each other. There is an improvement, however
PM1 was heavily loaded with seven large VMs, while PM2 had five VMs
where three were small and two were large. The algorithm decided to
migrate three of its largest VMs from PM1 to PM2, as this would be the
best choice.

One reminder is that the algorithm will not execute on three conditions;
if the nodes receiving and giving changes state to under or overloaded, if
the weight of the bins are exactly the same and lastly, if there is no gain by
migration at all.

Test 3 has an imbalance of 36.0 before and resulted in 4.0 after migration.
This test had fourteen large VMs on PM1 and eight VMs on PM 2. Out
of the eight VMs, four were small and four were large flavoured. The
migration resulted in five large VMs from PM1 to PM2. There was more
room on PM2 because of the smaller VMs.

6.5 En route Proposal Acceptance

So far the experiments have only provided a long list of imbalances before
and after migration. One interesting thing which is not included in those
experiments are the many proposals the overloaded servers make in order
to find their perfect match.

82

Earlier under the Approach chapter, a small animation consisting of the
approach of how men propose to women was presented. This was also
one of the iterations that was considered while designing the algorithm.
It would be interesting to see how the men find their better halves and
importantly how many it takes before finding the one.

The graphs presented in this chapter show how many Rounds it takes
to go from the imbalance before to the imbalance after. The number
of rounds are arbitrary and depends on the imbalance of the node and
available possible matches. To find its best match the node searches
for other neighbour nodes to exchange details about a potential match,
before finding the perfect match. The graph values will be displayed in
descending order from the highest imbalance point before to the lowest
after. The results again are experimented in various size scales, with the
large vs. small scheme.

6.5.1 Five Rejected Proposals - Large

Figure 6.23 shows the current imbalance and imbalance after a migration.
The aim for this graph is to show how the algorithm iterates through the
list of PMs to find the best match for itself. It looks for a value which is
below its current state, until it finds the one perfect match. It took exactly 6
proposals, before the best match was found.

It is important to remember that the imbalance describes the average
imbalance of an individual node, and not a data centre. Hence, in this
particular test scaling was just as vital as any of the tests before. This centre
consisted of 10 PMs and 1000 VMs. There were 40% Large VMs, 20% small
and 40% medium VMs.

Figure 6.23: Descending Imbalance

83

6.5.2 Three Rejected Proposals

This next centre consisted of 15 PMs and 5000 VMs. There were 80% Large
VMs, 20% small and 0% medium VMs. It took three rejected proposals
before the final and perfect match was found:

Figure 6.24: Descending Imbalance

6.5.3 Thirty three Rejected Proposals

To scale the situation up, the next centre consisted of 20.000 VMs and 70
PMs. The situation of the scale was 40% Large VMs, 40% small and 20%
medium VMs.

Figure 6.25: Descending Imbalance

84

6.5.4 Twelve Rejected Proposal

This final large scheme test consisted of 25000 VMs, and 10 PMs. This time
there were 40% Large VMs, 40% small and 20% medium VMs. It took the
algorithm exactly twelve proposals before the perfect match was found.

Figure 6.26: Descending Imbalance

6.5.5 Analysis - Scheme Large

The results from lap count and distance to perfect match prove the fact that
with more PMs available, the range to select the best partner for one node
can vary depending on the amount of PMs as well. This is nothing new,
however this means it takes longer for the VM to go through PMs to find
its perfect match, and that slows down the process of migration.

6.5.6 Three Rejected Proposals - Small

To test the smaller scale, a data centre consisting of 1000 VMs and 10 PMs,
20% Large VMs, 60% small and 20% medium VMs. The imbalance before
was 21.6 and the imbalance after 5 proposals was 16.4 as the final match. It
took three rejected proposals before the perfect imbalance was found.

85

Figure 6.27: Rounds of Proposal

6.5.7 Ten Rejected Proposals

The scale was slightly adjusted to host 5000 VMs on top of 10 PMs. 20%
Large VMs, 60% small and 20% medium VMs, were hosted on this data
centre.

Figure 6.28: Rounds of Proposal

6.5.8 Eleven Rejected Proposals

The aim for this test was to check the amount of laps for the slightly scaled
up smaller scheme. The data centre consisted of 20000 VMs and 25 PMs, a
kinder amount compared to the larger VMs.This time there were 40% Large
VMs, 40% small and 20% medium VMs.

One noticeable about this particular experiment is that the graph

86

doesn’t point straight down in descending order. This is because in a larger
infrastructure the overloaded PM might run into PMs which are slightly
bigger than the previous ones, but still below it’s own imbalance. It still
won’t consider it to be the final match unless this other node doesn’t inform
him of other nodes with lower imbalances.

Figure 6.29: Rounds of Proposal

6.5.9 Eleven Rejected Proposals

The data centre consisted of 25000 VMs and 25 PMs.This time there were
20% Large VMs, 80% small and 0% medium VMs. In this test it took 11
rejected proposals before finding the perfect node.

Figure 6.30: Rounds of proposal

87

6.5.10 Analysis - Scheme Small

Comparing the results from the larger scheme to the small scheme it is
evident that the amount of PMs effect the range of selection and the time
of selection. In terms of improvement, the imbalance goes down quite
considerably. The larger VMs have a larger effect due to their weight and
load, compared to smaller VMs effect.

88

Chapter 7

Discussion

This chapter presents the discussion which follows the end of the project.
This is to reflect upon the results and see how well the solution addressed
the problem statement presented in the introduction chapter and what
problems were introduced along the way.

7.1 Background

A large amount of research have tried to optimize the situation in a cloud
data center before. During the course of the thesis, it was discovered that
this, however was the first thesis to contribute with the Stable Marriage
algorithm in computer science.

The main idea in this project was to implement the Stable Marriage
algorithm in a data center to load balance. The idea behind Stable Marriage
was to find a suitable match for each virtual machine on top of physical
machines in a data center until the load of a center would be even. By going
forth with a distributed approach where all the nodes would communicate
through message exchanges, the current situation of a center would be
known at all times. This would make the partner selection easier, as each
node in the system is aware of its neighbours.

The wish to work on something that could combine several fields led
to this project. The project used an algorithm inspired from the field of
economics, which was inspired by a real-world problem. If an idea so
abstract and simple could generate good results in economics, maybe it
could work well in computer science as well.

The key point in previous research on load balancing show inspired
algorithms is a popular research topic for cloud data centers. It should be
as well, many of the studies conclude with results that show optimized and
effective solution. One particular type of research emerging fast is the type
that use some form of communication or gossiping protocols [21, 29, 30].
One of the reason for this trend is that downtime is often a negative term in
computing, systems that are fast, reliable and most importantly don’t halt
other operations are very much desired.

89

This project aims to use prior research as a base to introduce Stable
Marriage in the group of research on distributed peer-to-peer algorithms.

7.2 Design & Implementation

Stable Marriage is an abstract idea, a practical problem which was easy to
imagine but hard to restrict on the paper. With one study in economics and
no real connection to computer science, a lot was left to the imagination.
In one way this was a good thing, the complete freedom to design the
algorithm in any way possible. The decision fell on finding problems with
the traditional cloud data centers and look at which areas other research
focus on. This is when designing a problem to address issues with scaling
became interesting.

7.2.1 Proposals

In the Stable Matching algorithm the experiment was based on a group of
couples where in the first experiment, the women propose. In the end the
paper concluded with the fact that if women proposed to men, the match
was better. In this project however, the Stable Marriage algorithm men
propose. This decision was made solely because in terms of servers, there
were two possibilities which create a load balancing problem, that being
the weight of the servers. In this case the overloaded servers became men
and underloaded servers became women.

The concept was designed to avoid being too complex, easy to
implement yet effective. Hence the design was based on how humans
tend to look for partners and make decisions, as well as implementing the
stability factor, where no re-allocations would be allowed. Initially an idea
to make it possible for both parties to propose was also introduced, but this
would slow down the calculations and be ineffective, hence it was taken
out of the design.

One of the problems which can be a drawback is the many laps the
algorithm need to make in order to find its perfect match. Chapter 6
introduced experiments with how many rounds it took for the imbalance
to go down. In some cases it took 13 rejected proposals before one perfect
match was found. This could slow down the process a little. However, one
of the biggest achievements of this algorithm is that once the perfect match
for each PM is found, there won’t be any need for the PM to find a new or
better PM afterwards. The restrictions in the algorithm is implemented to
make it impossible for a PM to change its state after a migration, the state
of a PM can not go back to being overloaded or underloaded. This results
in a balanced system, which is the aim of the project.

90

7.2.2 Schemes & Live migration

Another significant difference between the original idea and the implemen-
tation in this project is that the algorithm has been divided into two sets.
Each set or scheme, as it has been introduced in this project, had to consider
either the highest amount of load or the lowest amount of load in each bin,
load for a VM is the VCPU value. Originally, there was no such scheme and
the plan was to implement only the algorithm to see if it works and has its
benefits. However, during the process it became interesting to see whether
migrating a larger VM or smaller VM would have any effect on the situ-
ation and hence the decision to design two different schemes were taken.
This was especially interesting as scaling was one of the central topics for
this algorithm in particular.

The schemes are not complex at all. In terms of design and develop-
ment, the Migrate Large scheme iterates through the list of VMs inside each
bin to find the largest VM and based on this, finds a partner most suitable
for an eventual migration. The same goes for the Migrate small scheme,
only except that it considers the smaller VMs. The medium VMs are neu-
tral, hence any particular scheme to migrate medium servers weren’t made.
If there are no large VMs (8 VCPUs), the medium VM is considered largest
compared to the inferior VMs.

By implementing schemes, it was easier to see if the decision to either
migrate a larger VM or smaller VM would make any difference on the
system, if there was any gain, if it was better to migrate large or small,
or even both. In the end, after implementation and experiments, the
results showed that scientifically speaking there was not a large difference
between the results of either. Which is positive, because it meant that
both the schemes did a good job on improving current centre state and
in total this meant that by implementing the Stable Marriage algorithm
meant improvement either way. However, the CPU time showed a huge
difference for the larger nodes compared to the smaller ones.

The larger nodes had high CPU time usage and the smaller nodes had
lower time. The average CPU time for the smaller nodes were around 10.5
seconds, while for the largest VMs the average was around 58.7 seconds. It
is hard to state any difference of CPU usage in this particular case, because
all the VMs are running the exact same applications and programs. Hence
their CPU usage will still be the same, as there is no CPU intensive jobs for
the VMs. The CPU usage for both the larger and smaller nodes have been
between 0.4 or 0.7 % at max depending on the process.

Another thing to consider for such a project is the migration time. This
was not an area of focus in this particular project, however the time of
migration was monitored to see the effect of migration. The experiments
from the migrate large schemes showed a migration time between 5-6
seconds, from the time it was moving from host A to host B and up and
running again. While the time of migration for the smaller scheme was
around 3-4 seconds. There may not be a large difference, especially in the

91

constrained environment the real experiments were conducted, but if this
would be to try in a larger environment, it can mean alot of time, depending
on the hardware as well.

7.2.3 Migrate Large Vs. Migrate Small

Schemes, which were one of the most vital features of the algorithm re-
quired little to no complexity in terms of implementation. The experiments
were fun to conduct because the interest to see which scheme performed
better than the other generated a lot of enthusiasm.

While all of the results generated have shown improvement, it is hard
to pick if one scheme has performed better than the other. The scales have
been arbitrary, but have been divided into larger and smaller infrastructure
to give the closest feeling to a real data centre as possible.

Two things which can be said and addressed about the schemes are
that, the benefit of either scheme depends on the preferred outcome. If
migration time is one constraint, then the smaller scheme is much faster
and easier for smaller businesses to implement in smaller infrastructures.
If time is not a constraint and the weight is, a larger scheme would benefit.
In terms of time, the latter scheme would also require a longer down time
if it is an intensive VM.

Based on the results, a combination of both can work well in a dynamic
data centre. It isn’t necessary to only implement one or the other. One
goal for any future work on this can be implementing a Medium Scheme. In
this project, heterogeneous nodes were only small or large, in reality there
might be a something in-between which can improve the state of a data
centre even further.

7.3 Results & Analysis

Due to the unfortunate events of the physical hardware not being robust
enough to handle various experiments in larger proportions, the original
plan to conduct several experiments had to be cut short. With only two
PMs, it seemed unreasonable to spend a fortune of time on the issues, and
smarter to find solutions that could verify the Stable Marriage algorithm.

The problems with the hardware led to experiments with fewer number
of VMs instead of driving the only two available servers to its death bed.
Hence, the number of VMs compared to the simulation was dramatically
dropped. The results were still very good compared to the expectations.

One of the benefits of testing the algorithm so many times in a
simulated environment made it easier to catch and understand bugs
and errors which could prevent further problems. As the analysis from
the simulations tell, the first few experiments were ground breaking for
further development of the algorithm. CPU, memory and scale were three

92

constraints that we wanted to address. There were also restrictions which
were added to make the system more robust.

This project consisted of many graphs. Compared to other methods
of collecting data, this method seemed like the best way to display the
change of values over time. The results were one of the most important
sections for this project in particular, being a stepping stone for any future
implementation of Stable Marriage.

7.3.1 Dedicated vs. Non-dedicated links

One of the drawbacks with the experiments performed in this project was
the missing dedicated link to perform the migrations on. The internet is a
shared resource and the network at Oslo and Akershus University College
is used by many students. A Dedicated line is a form of communication
dedicated for a special application, and in this project the PMs could have
had the benefit of having such a link.

Migration time was not a direct focus in this project and with few
hardware utilities setting up a dedicated link was not in focus. However, in
larger networks and data centres, it could be very beneficial to implement
a dedicated link to reduce the migration time, as well as the time of the
selection process. For any future work on Stable Marriage, it is advised to
test and implement the environment with dedicated links, to ensure faster
convergence.

7.3.2 Managing Scaling in cloud computing

Scaling is and always will be an important factor. The growing demand of
cloud services, small and large businesses rapidly working to use this new
technology, servers are working harder than ever before.

The results from this project shows that it is possible to implement
different approaches with heterogeneous nodes to improve the imbalance
problem of a data centre, including different amounts of the flavoured
VMs. Many of the studies presented in the background chapter 2 have
addressed these problems using different communication protocols which
have shown great results. This is one more contribution to this area of
research proving that it is possible to consider scaling, CPU, memory and
performance to optimize current problems in cloud data centers.

Load balancing and consolidation has often been set up against each
other. The main goals for research on consolidation has been improving
the energy consumption and minimize the resource utilization. The current
global status has led companies to resort to chose consolidation because
green computing is a oncoming trend and reduces company expenses. In
the long run, hardware is not made to be jam-packed and running on high
load utilization. Load balancing focuses on optimizing performance, avoid
exhaustion and flexible in terms of scaling.

93

For any future work, a balance between load balancing and consolida-
tion to provide for very dynamic centers could be an option. Many of the
research in load balancing is also very flexible and able to be implemented
for a consolidation environment.

7.4 Future Work

The aim for the framework was to be able to perform live migrations based
on Stable Marriage in a cloud data centre. This required a very stable and
robust environment which could provide a good alternative for modern
day load balancing issues.

There are many unforeseen problems that can occur during a time span
of a project. Setting up the physical lab was one of them. Testing the real
environment didn’t seem feasible as the physical servers didn’t allow for
heavy jobs to be processed. The basic infrastructure and configuration was
done without any problems and the virtual environment was configured
quite well. The problems occurred with the third available server, which
was never configured due to technical problems from the start.

To avoid spending an unnecessary amount of time on errors and trial,
the implementation was implemented and tested with fewer VMs than
usually. This was done by spawning several VMs with libvirt with different
sizes and volumes and later tested following the Stable Marriage approach.
This is obviously not an optimal way to solve things, and the first and
foremost goal for any future work on this project would be to upgrade the
physical hardware. The machines should be able to run many intensive
jobs.

For further improvement of the algorithm, there are a few things which
can be worked on. In this project CPU was one of the main constraints,
which could be better monitored. Memory was also a part of the focus,
however this can be much better advanced. While assigning VMs with
a certain amount of memory and watching VMs migrate, one interesting
thing to point at, is that the reserved amount of memory at the destination
host, which was allocated but never entirely used by the VM. Hence the
results may show a larger usage of memory than actual.

In defiance of practical issues, simulations and manual tests did reveal
to have good effect. Improving traditional data centres consists of many
bits and pieces which need to work together. It is evident that research
in this area is very much needed and that there still are many interesting
approaches left to discover. It would be particularly interesting to see
any future implementation of Stable Marriage completely automated and
even implemented in a consolidation project to compare the results to load
balancing.

94

Chapter 8

Conclusion

The aim of this project was to see if by implementing the Stable Marriage
algorithm load balancing could be possible in a cloud data centre. To the
best of our knowledge, this is the first attempt in the literature to apply the
latter algorithm in the context of load balancing in data centre.

To address the problem statement a framework which was supposed to
improve scaling problems in traditional data centres was introduced. The
framework was able to show that by implementing the Stable Marriage
algorithm along with its schemes we were able to improve the imbalance
of a cloud data centre. The imbalance varied depending on the size of a
centre and no result has been negative with this implementation.

The main contribution of this thesis is the Stable Marriage algorithm,
which migrates VMs based on their weight to a host of its own preference,
with no need for re-allocation and unnecessary amount of live migrations.
This is however a new approach and more research could benefit and
improve current results.

95

96

Bibliography

[1] Klaithem Al Nuaimi et al. “A survey of load balancing in cloud com-
puting: Challenges and algorithms.” In: Network Cloud Computing and
Applications (NCCA), 2012 Second Symposium on. IEEE. 2012, pp. 137–
142.

[2] Md Firoj Ali and Rafiqul Zaman Khan. “The study on Load Balancing
strategies in distributed computing system.” In: International Journal
of Computer Science and Engineering Survey (2012).

[3] Kenneth Salem Ashraf Aboulnaga Cristiana Amza. "Virtualization
and Databases:State of the Art and Research Challenges". URL: https://
cs.uwaterloo.ca/~ashraf/pubs/icde07dbvirtTutorial.pdf.

[4] Donato Barbagallo et al. “A bio-inspired algorithm for energy
optimization in a self-organizing data center.” In: Self-Organizing
Architectures. Springer, 2010, pp. 127–151.

[5] Christopher Clark et al. “Live migration of virtual machines.”
In: Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association.
2005, pp. 273–286.

[6] Ph.D. Daniel A. Menascé. "Virtualization: Concepts, Concepts, Applica-
tions, Applications, and Performance Performance Modeling". URL: http:
//cs.gmu.edu/~menasce/papers/menasce-cmg05-virt-slides.pdf.

[7] Marco Dorigo et al. Ant Colony Optimization and Swarm Intelligence:
6th International Conference, ANTS 2008, Brussels, Belgium, September
22-24, 2008, Proceedings. Vol. 5217. Springer, 2008.

[8] Eugen Feller, Louis Rilling, and Christine Morin. “Energy-aware ant
colony based workload placement in clouds.” In: Proceedings of the
2011 IEEE/ACM 12th International Conference on Grid Computing. IEEE
Computer Society. 2011, pp. 26–33.

[9] Saurabh Goyal. "Centralized vs Decentralized vs Distributed". URL:
https : / / medium . com / @bbc4468 / centralized - vs - decentralized - vs -
distributed-41d92d463868.

[10] Thomas Hage. “The CERES project-A Cloud Energy Reduction
System.” In: (2014).

[11] James Hamblin. "Math for Liberal Studies: Bin-Packing Algorithms".
URL: https://www.youtube.com/watch?v=vUxhAmfXs2o.

97

https://cs.uwaterloo.ca/~ashraf/pubs/icde07dbvirtTutorial.pdf
https://cs.uwaterloo.ca/~ashraf/pubs/icde07dbvirtTutorial.pdf
http://cs.gmu.edu/~menasce/papers/menasce-cmg05-virt-slides.pdf
http://cs.gmu.edu/~menasce/papers/menasce-cmg05-virt-slides.pdf
https://medium.com/@bbc4468/centralized-vs-decentralized-vs-distributed-41d92d463868
https://medium.com/@bbc4468/centralized-vs-decentralized-vs-distributed-41d92d463868
https://www.youtube.com/watch?v=vUxhAmfXs2o

[12] Hung-Chang Hsiao et al. “Load rebalancing for distributed file
systems in clouds.” In: IEEE transactions on parallel and distributed
systems 24.5 (2013), pp. 951–962.

[13] David S Johnson. "Near-optimal bin packing algorithms". URL: https :
//dspace.mit.edu/handle/1721.1/57819#files-area.

[14] Christine Mayap Kamga, Giang Son Tran, and Laurent Broto.
“Extended scheduler for efficient frequency scaling in virtualized
systems.” In: ACM SIGOPS Operating Systems Review 46.2 (2012),
pp. 28–35.

[15] Dervis Karaboga. An idea based on honey bee swarm for numerical
optimization. Tech. rep. Technical report-tr06, Erciyes university,
engineering faculty, computer engineering department, 2005.

[16] Libvirt. "What is libvirt". URL: http : / /wiki . libvirt . org /page/FAQ#
What_is_libvirt.3F.

[17] Alvin Roth Lloyd Shapley. "Stable matching: Theory, evidence, and
practical design". URL: http : / / www . nobelprize . org / nobel _ prizes /
economic-sciences/laureates/2012/popular-economicsciences2012.pdf.

[18] What is Margaret Rouse. "Cloud computing". URL: http : / /
searchcloudcomputing.techtarget.com/definition/cloud-computing.

[19] What is Margaret Rouse. "SPI model (SaaS, PaaS, IaaS)". URL: http :
//searchcloudcomputing.techtarget.com/definition/SPI-model.

[20] Moreno Marzolla, Ozalp Babaoglu, and Fabio Panzieri. “Server
consolidation in clouds through gossiping.” In: World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2011 IEEE International
Symposium on a. IEEE. 2011, pp. 1–6.

[21] Carlo Mastroianni, Michela Meo, and Giuseppe Papuzzo. “Self-
economy in cloud data centers: Statistical assignment and migration
of virtual machines.” In: Euro-Par 2011 Parallel Processing. Springer,
2011, pp. 407–418.

[22] Mayank Mishra et al. “Dynamic resource management using virtual
machine migrations.” In: Communications Magazine, IEEE 50.9 (2012),
pp. 34–40.

[23] Libvirt N. "What is libvirt - FAQ". URL: https://wiki.libvirt.org/page/
Networking.

[24] NIST. "Guide to Security for Full Virtualization Technologies". URL: http:
//nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.
pdf.

[25] Lucas Nussbaum et al. “Linux-based virtualization for HPC clus-
ters.” In: Montreal Linux Symposium. 2009.

[26] Martin Randles, David Lamb, and A Taleb-Bendiab. “A compara-
tive study into distributed load balancing algorithms for cloud com-
puting.” In: Advanced Information Networking and Applications Work-
shops (WAINA), 2010 IEEE 24th International Conference on. IEEE. 2010,
pp. 551–556.

98

https://dspace.mit.edu/handle/1721.1/57819#files-area
https://dspace.mit.edu/handle/1721.1/57819#files-area
http://wiki.libvirt.org/page/FAQ#What_is_libvirt.3F
http://wiki.libvirt.org/page/FAQ#What_is_libvirt.3F
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/cloud-computing
http://searchcloudcomputing.techtarget.com/definition/SPI-model
http://searchcloudcomputing.techtarget.com/definition/SPI-model
https://wiki.libvirt.org/page/Networking
https://wiki.libvirt.org/page/Networking
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf

[27] Ananth Rao et al. “Load balancing in structured P2P systems.” In:
International Workshop on Peer-to-Peer Systems. Springer. 2003, pp. 68–
79.

[28] Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. “Virtu-
alization: A survey on concepts, taxonomy and associated security
issues.” In: Computer and Network Technology (ICCNT), 2010 Second In-
ternational Conference on. IEEE. 2010, pp. 222–226.

[29] Mina Sedaghat, Francisco Hernández-Rodrıguez, and Erik Elmroth.
“Autonomic resource allocation for cloud data centers: A peer to
peer approach.” In: Cloud and Autonomic Computing (ICCAC), 2014
International Conference on. IEEE. 2014, pp. 131–140.

[30] Mina Sedaghat et al. “Divide the task, multiply the outcome:
Cooperative VM consolidation.” In: 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE. 2014, pp. 300–305.

[31] Richa Singh. "Load balancing in Distributed Systems". URL: https : / /
www . slideshare . net / RichaSingh59 / load - balancing - in - destributed -
systems.

[32] Fredrik Meyn Ung. “Towards efficient and cost-effective live migra-
tions of virtual machines.” In: (2015).

[33] UNL. "Bin Packing algorithms". URL: http://www.math.unl.edu/~s-
sjessie1/203Handouts/Bin%5C%20Packing.pdf.

[34] VMware. "Understanding full virtualization, paravirtualization and hard-
ware assist". URL: http : / / www . vmware . com / techpapers / 2007 /
understanding-full-virtualization-paravirtualizat-1008.html.

[35] Wiki. "Bin Packing". URL: https://en.wikipedia.org/wiki/Bin_packing_
problem.

[36] Wiki. "NP-Hardness". URL: https://en.wikipedia.org/wiki/NP-hardness.

[37] wiki. "Centralisation". URL: https : / / en . wikipedia . org / wiki /
Centralisation.

[38] wiki. "Decentralized system". URL: https : / / en . wikipedia . org / wiki /
Decentralised_system.

[39] wiki. "Distributed Computing". URL: https ://en .wikipedia .org/wiki/
Distributed_computing.

[40] wiki. "Swarm Intelligence". URL: https://en.wikipedia.org/wiki/Swarm_
intelligence.

[41] Wikipedia. "Features KVM-QEMU". URL: http : / / wiki . qemu . org /
Features/KVM.

[42] Wikipedia. "P-value". URL: https://en.wikipedia.org/wiki/P-value.

[43] Wolfram. "NP-Hard problem". URL: http://mathworld .wolfram.com/
NP-HardProblem.html.

[44] Xin-She Yang. Nature-inspired optimization algorithms. Elsevier, 2014.

99

https://www.slideshare.net/RichaSingh59/load-balancing-in-destributed-systems
https://www.slideshare.net/RichaSingh59/load-balancing-in-destributed-systems
https://www.slideshare.net/RichaSingh59/load-balancing-in-destributed-systems
http://www.math.unl.edu/~s-sjessie1/203Handouts/Bin%5C%20Packing.pdf
http://www.math.unl.edu/~s-sjessie1/203Handouts/Bin%5C%20Packing.pdf
http://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
http://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Centralisation
https://en.wikipedia.org/wiki/Centralisation
https://en.wikipedia.org/wiki/Decentralised_system
https://en.wikipedia.org/wiki/Decentralised_system
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Swarm_intelligence
http://wiki.qemu.org/Features/KVM
http://wiki.qemu.org/Features/KVM
https://en.wikipedia.org/wiki/P-value
http://mathworld.wolfram.com/NP-HardProblem.html
http://mathworld.wolfram.com/NP-HardProblem.html

100

Appendices

101

Appendix A

Working Environment

A.1 create isc hosts dhcp.py

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 import random
5 import pprint
6 import os
7

8 networkfile="isc_dhcp_hosts"
9

10 def randomMAC():
11 # mac = [0x00, 0x16, 0x3e,
12 mac = [0x52, 0x54, 0x00,
13 random.randint(0x00, 0x7f),
14 random.randint(0x00, 0xff),
15 random.randint(0x00, 0xff)]
16 return ’:’.join(map(lambda x: "%02x" % x, mac))
17

18 with open(networkfile, "a") as f:
19

20 for i in range(1,101):
21 mac = randomMAC()
22 hostname = "vm"+str(i)
23 host_octet = str(i+100)
24 f.write("host "+hostname+" {\n")
25 f.write("\thardware ethernet "+mac.upper()+";\n")
26 f.write("\tfixed-address 192.168.1."+host_octet+";\n")
27 f.write("}\n")
28 f.close()

103

A.2 vm-net

1 <network>
2 <name>vms</name>
3 <bridge name="virbr0" />
4 <forward mode="nat"/>
5 <ip address="192.168.1.1" netmask="255.255.255.0">
6 <dhcp>
7 <range start="192.168.1.210" end="192.168.1.250" />
8 <host mac="00:16:3e:4f:fd:4a" name="vm1" ip="192.168.1.101" />
9 <host mac="00:16:3e:6c:48:ef" name="vm2" ip="192.168.1.102" />

10 <host mac="00:16:3e:5c:b1:50" name="vm3" ip="192.168.1.103" />
11 <.....>
12 <host mac="00:16:3e:28:c7:06" name="vm100" ip="192.168.1.200" />
13 </dhcp>
14 </ip>
15 </network>

104

A.3 deploy_large.py

1 import random
2 import math
3

4

5 def Get_Bin_Load(bin):
6 load=0
7 for i in range(len(bin[’VMS’])):
8 #print "here bin[’VMS’][0]", bin[’VMS’][0]
9 #print "here bin[’VMS’][0][’cpu’]", bin[’VMS’][0][’cpu’]

10 load=load+bin[’VMS’][i][’cpu’]
11 return load
12

13

14

15 def Gain_of_Migration_Couple(Over_Bin, Under_Bin, Big_VM, average_cpu_load):
16

17 ############## Before ##############################
18 Imbalance_Over_Bin_Before=math.fabs(Get_Bin_Load(Over_Bin)-average_cpu_load)
19 #print "Imbalance_Over_Bin_Before ", Imbalance_Over_Bin_Before
20 Imbalance_Under_Bin_Before=math.fabs(Get_Bin_Load(Under_Bin)-average_cpu_load)
21 #print "Imbalance_Under_Bin_Before ", Imbalance_Under_Bin_Before
22

23 Total_Imbalance_Before=Imbalance_Over_Bin_Before+Imbalance_Under_Bin_Before
24 #print "Total_Imbalance_Before", Total_Imbalance_Before
25

26 #imbalance after eventual migration
27 Imbalance_Over_Bin_After=math.fabs(Get_Bin_Load(Over_Bin)-Big_VM[’cpu’]-average_cpu_load)
28 #print "Imbalance_Over_Bin_After", Imbalance_Over_Bin_After
29

30

31 ############## AFTER #############################
32 Imbalance_Under_Bin_After=math.fabs(Get_Bin_Load(Under_Bin)+Big_VM[’cpu’]-average_cpu_load)
33 #print "Imbalance_Under_Bin_After", Imbalance_Under_Bin_After
34

35 Total_Imbalance_After=Imbalance_Over_Bin_After+Imbalance_Under_Bin_After
36

37 ############## Gain (difference) ##############################
38

39 Gain=Total_Imbalance_Before-Total_Imbalance_After
40 return Gain
41

42 def Get_Index_Largest(bin):
43 max=0
44 index_max=0
45 for i in range(len(bin[’VMS’])):
46 if bin[’VMS’][i][’cpu’]>max:

105

47 max=bin[’VMS’][i][’cpu’]
48 index_max=i
49

50

51 return index_max
52

53

54 VM_list = []
55

56 small_vm = {
57 ’name’: ’small%d’,
58 ’cpu’: 2,
59 ’mem’: 2048,
60 ’disk’: 20,
61 ’n’: 1
62 }
63

64 med_vm = {
65 ’name’: ’medium%d’,
66 ’cpu’: 4,
67 ’mem’: 4096,
68 ’disk’: 40,
69 ’n’: 1
70 }
71

72 large_vm = {
73 ’name’: ’large%d’,
74 ’cpu’: 8,
75 ’mem’: 8192,
76 ’disk’: 80,
77 ’n’: 1
78 }
79

80

81 Bins=[]
82

83 #2 Physical Machines
84 bin_0 = {
85 ’id’:0,
86 ’cpu’: 48, # 4.0 overcommit with cpu
87 ’mem’: 240000,
88 ’disk’: 2000,
89 ’VMS’:[],
90 }
91

92

93 bin_1 = {
94 ’id’:1,
95 ’cpu’: 48, # 4.0 overcommit with cpu

106

96 ’mem’: 240000,
97 ’disk’: 2000,
98 ’VMS’:[],
99 }

100

101

102 # 2 Bins
103

104 Bins.append(bin_0)
105 Bins.append(bin_1)
106

107 K=len(Bins)
108

109 #Populate BIN 1
110 Bins[0][’VMS’].append(small_vm)
111 Bins[0][’VMS’].append(large_vm)
112 Bins[0][’VMS’].append(large_vm)
113 Bins[0][’VMS’].append(large_vm)
114 Bins[0][’VMS’].append(large_vm)
115

116

117 #Populate BIN 2
118 Bins[1][’VMS’].append(small_vm)
119 Bins[1][’VMS’].append(small_vm)
120 Bins[1][’VMS’].append(large_vm)
121 Bins[1][’VMS’].append(med_vm)
122

123

124 #All VMS2
125 VM_list=Bins[1][’VMS’]+Bins[0][’VMS’]
126 total_cpu_load=0
127

128

129 for i in range(len(VM_list)):
130 total_cpu_load=total_cpu_load+VM_list[i][’cpu’]
131

132

133 average_cpu_load=total_cpu_load*1.0/K
134

135 print "average cpu load", average_cpu_load
136

137

138 Bins_Under_Utilized=[]
139 Bins_Over_Utilized=[]
140

141

142 total_load_check=0
143 for i in range(K):
144 if Get_Bin_Load(Bins[i])>=average_cpu_load:

107

145 print "got it over"
146 Bins_Over_Utilized.append(Bins[i])
147 else:
148 print "got it under"
149 Bins_Under_Utilized.append(Bins[i])
150

151 total_load_check=total_load_check+Get_Bin_Load(Bins[i])
152

153

154 for i in range(K):
155 index_largest= int(Get_Index_Largest(Bins[i]))
156 #print "index largest",index_largest
157 #print "type of VM for Bin number ", i, " is ", Bins[i][’VMS’][index_largest][’name’]
158

159

160

161

162 #print "here", Bins_Over_Utilized
163 Over_Bin=Bins_Over_Utilized[0]
164 Under_Bin=Bins_Under_Utilized[0]
165

166 Big_VM=Over_Bin[’VMS’][Get_Index_Largest(Over_Bin)]
167

168

169

170

171 Bins_Before=Bins[:]
172 Imbalance_before=0
173

174 for bin in Bins:
175 Imbalance_before=Imbalance_before+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
176 print "Average Imbalance before", Imbalance_before*1.0/K
177

178

179 Bins_After=Bins[:]
180

181

182

183 min=1000000000000
184

185

186 NO_more_gain=False
187 while (NO_more_gain==False):
188 NO_more_gain=False
189 for under_bin in Bins_Under_Utilized:
190 min_best_to_balance=min
191 best_over_bin_to_balance=Bins_Over_Utilized[0]
192 distance_to_balance=-1
193 for over_bin in Bins_Over_Utilized:

108

194 #print "Over bin er: ", over_bin
195 #print over_bin[’VMS’]
196 largeVM=over_bin[’VMS’][Get_Index_Largest(over_bin)]
197

198 distance_to_balance=average_cpu_load-(Get_Bin_Load(under_bin)+largeVM[’cpu’])
199 if (distance_to_balance<=0):
200 NO_more_gain=True
201 if (distance_to_balance>0):
202 #print "getting into loop"
203 #difference to the average
204

205 if (distance_to_balance<min_best_to_balance):
206 #print "before it ----"
207 min_best_to_balance=distance_to_balance
208 best_over_bin_to_balance= over_bin
209 #print "inside best", distance_to_balance
210

211 if (distance_to_balance!=min):
212 Bins_Under_Utilized.remove(under_bin)
213 Bins_Over_Utilized.remove(best_over_bin_to_balance)
214 print "moving large", largeVM
215 print "from: ", under_bin[’id’]
216 print "to: ", best_over_bin_to_balance[’id’]
217 under_bin[’VMS’].append(largeVM)
218 best_over_bin_to_balance[’VMS’].pop(Get_Index_Largest(best_over_bin_to_balance))
219 Bins_Under_Utilized.append(under_bin)
220 Bins_Over_Utilized.append(best_over_bin_to_balance)
221

222

223

224

225 Bins=Bins_Under_Utilized+Bins_Over_Utilized
226 Imbalance_after=0
227

228 for bin in Bins:
229 Imbalance_after=Imbalance_after+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
230 print "average Imbalance after", Imbalance_after*1.0/K

109

A.4 deploy_small.py

1 import random
2 import math
3

4

5 def Get_Bin_Load(bin):
6 load=0
7 for i in range(len(bin[’VMS’])):
8 load=load+bin[’VMS’][i][’cpu’]
9 return load

10

11

12 def Gain_of_Migration_Couple(Over_Bin, Under_Bin, Big_VM, average_cpu_load):
13

14 ############## Before ##############################
15 Imbalance_Over_Bin_Before=math.fabs(Get_Bin_Load(Over_Bin)-average_cpu_load)
16 #print "Imbalance_Over_Bin_Before ", Imbalance_Over_Bin_Before
17 Imbalance_Under_Bin_Before=math.fabs(Get_Bin_Load(Under_Bin)-average_cpu_load)
18 #print "Imbalance_Under_Bin_Before ", Imbalance_Under_Bin_Before
19

20 Total_Imbalance_Before=Imbalance_Over_Bin_Before+Imbalance_Under_Bin_Before
21 #print "Total_Imbalance_Before", Total_Imbalance_Before
22

23

24 #imbalance after eventual migration
25 Imbalance_Over_Bin_After=math.fabs(Get_Bin_Load(Over_Bin)-Big_VM[’cpu’]-average_cpu_load)
26 ############## AFTER ##############################
27

28

29 Imbalance_Under_Bin_After=math.fabs(Get_Bin_Load(Under_Bin)+Big_VM[’cpu’]-average_cpu_load)
30 #print "Imbalance_Under_Bin_After", Imbalance_Under_Bin_After
31

32 Total_Imbalance_After=Imbalance_Over_Bin_After+Imbalance_Under_Bin_After
33

34 ############## Gain (difference) ##############################
35 Gain=Total_Imbalance_Before-Total_Imbalance_After
36 return Gain
37

38 def Get_Index_Largest(bin):
39 max=0
40 index_max=0
41 for i in range(len(bin[’VMS’])):
42 if bin[’VMS’][i][’cpu’]>max:
43 max=bin[’VMS’][i][’cpu’]
44 index_max=i
45 return index_max
46

110

47

48 def Get_Index_Smallest(bin):
49 min=10000000000
50 index_min=0
51 for i in range(len(bin[’VMS’])):
52 if bin[’VMS’][i][’cpu’]<min:
53 min=bin[’VMS’][i][’cpu’]
54 index_min=i
55 return index_min
56

57 VM_list = []
58

59 small_vm = {
60 ’name’: ’small%d’,
61 ’cpu’: 2,
62 ’mem’: 2048,
63 ’disk’: 20,
64 ’n’: 1
65 }
66

67 med_vm = {
68 ’name’: ’medium%d’,
69 ’cpu’: 4,
70 ’mem’: 4096,
71 ’disk’: 40,
72 ’n’: 1
73 }
74

75 large_vm = {
76 ’name’: ’large%d’,
77 ’cpu’: 8,
78 ’mem’: 8192,
79 ’disk’: 80,
80 ’n’: 1
81 }
82

83

84 Bins=[]
85

86 #2 Physical Machines
87 bin_0 = {
88 ’id’:0,
89 ’cpu’: 48, # 4.0 overcommit with cpu
90 ’mem’: 240000,
91 ’disk’: 2000,
92 ’VMS’:[],
93 }
94

95

111

96 bin_1 = {
97 ’id’:1,
98 ’cpu’: 48, # 4.0 overcommit with cpu
99 ’mem’: 240000,

100 ’disk’: 2000,
101 ’VMS’:[],
102 }
103

104

105 Bins.append(bin_0)
106 Bins.append(bin_1)
107

108 K=len(Bins)
109

110

111 #Populate BIN 1
112 Bins[0][’VMS’].append(small_vm)
113 Bins[0][’VMS’].append(large_vm)
114 Bins[0][’VMS’].append(large_vm)
115 Bins[0][’VMS’].append(large_vm)
116 Bins[0][’VMS’].append(large_vm)
117

118

119 #Populate BIN 2
120 Bins[1][’VMS’].append(small_vm)
121 Bins[1][’VMS’].append(small_vm)
122 Bins[1][’VMS’].append(large_vm)
123 Bins[1][’VMS’].append(med_vm)
124

125 VM_list=Bins[1][’VMS’]+Bins[0][’VMS’]
126

127 total_cpu_load=0
128

129

130 for i in range(len(VM_list)):
131 total_cpu_load=total_cpu_load+VM_list[i][’cpu’]
132

133

134 average_cpu_load=total_cpu_load*1.0/K
135

136 print "average cpu load", average_cpu_load
137

138

139 Bins_Under_Utilized=[]
140 Bins_Over_Utilized=[]
141

142 total_load_check=0
143 for i in range(K):
144 if Get_Bin_Load(Bins[i])>average_cpu_load:

112

145 Bins_Over_Utilized.append(Bins[i])
146 else:
147 Bins_Under_Utilized.append(Bins[i])
148

149 total_load_check=total_load_check+Get_Bin_Load(Bins[i])
150

151

152

153 for i in range(K):
154 index_largest= int(Get_Index_Largest(Bins[i]))
155 #print "index largest",index_largest
156 #print "type of VM for Bin number ", i, " is ", Bins[i][’VMS’][index_largest][’name’]
157

158

159

160 Over_Bin=Bins_Over_Utilized[0]
161 Under_Bin=Bins_Under_Utilized[0]
162

163 Big_VM=Over_Bin[’VMS’][Get_Index_Largest(Over_Bin)]
164

165

166

167

168 Bins_Before=Bins[:]
169

170

171 Imbalance_before=0
172

173 for bin in Bins:
174 Imbalance_before=Imbalance_before+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
175 print "Average Imbalance before", Imbalance_before*1.0/K
176

177 Bins_After=Bins[:]
178

179

180

181 min=1000000000000
182

183

184 NO_more_gain=False
185 while (NO_more_gain==False):
186 NO_more_gain=False
187 for under_bin in Bins_Under_Utilized:
188 min_best_to_balance=min
189 best_over_bin_to_balance=Bins_Over_Utilized[0]
190 distance_to_balance=-1
191 for over_bin in Bins_Over_Utilized:
192 largeVM=over_bin[’VMS’][Get_Index_Smallest(over_bin)]
193 #should not get underload

113

194

195 distance_to_balance=average_cpu_load-(Get_Bin_Load(under_bin)+largeVM[’cpu’])
196 if (distance_to_balance<=0):
197 NO_more_gain=True
198 if (distance_to_balance>0):
199 if (distance_to_balance<min_best_to_balance):
200 #print "before it ----"
201 min_best_to_balance=distance_to_balance
202 best_over_bin_to_balance= over_bin
203 #print "inside best", distance_to_balance
204

205 if (distance_to_balance!=min):
206 Bins_Under_Utilized.remove(under_bin)
207 Bins_Over_Utilized.remove(best_over_bin_to_balance)
208 print "moving large", largeVM
209 print "from: ", under_bin[’id’]
210 print "to: ", best_over_bin_to_balance[’id’]
211

212 under_bin[’VMS’].append(largeVM)
213 best_over_bin_to_balance[’VMS’].pop(Get_Index_Smallest(best_over_bin_to_balance))
214 Bins_Under_Utilized.append(under_bin)
215 Bins_Over_Utilized.append(best_over_bin_to_balance)
216

217

218 Bins_Under_Utilized[0], Big_VM, average_cpu_load)
219

220

221

222 Bins=Bins_Under_Utilized+Bins_Over_Utilized
223 Imbalance_after=0
224

225 for bin in Bins:
226 Imbalance_after=Imbalance_after+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
227 print "average Imbalance after", Imbalance_after*1.0/K

114

Appendix B

Artificial Simulation

B.1 Many to Many Move Smallest.py

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 import random
4 import math
5

6

7 def Get_Bin_Load(bin):
8 load=0
9 for i in range(len(bin[’VMS’])):

10 load=load+bin[’VMS’][i][’cpu’]
11 return load
12

13

14 def Gain_of_Migration_Couple(Over_Bin, Under_Bin, Big_VM, average_cpu_load):
15

16 ############## Before ##############################
17 Imbalance_Over_Bin_Before=math.fabs(Get_Bin_Load(Over_Bin)-average_cpu_load)
18 Imbalance_Under_Bin_Before=math.fabs(Get_Bin_Load(Under_Bin)-average_cpu_load)
19 Total_Imbalance_Before=Imbalance_Over_Bin_Before+Imbalance_Under_Bin_Before
20

21 #imbalance after eventual migration
22 Imbalance_Over_Bin_After=math.fabs(Get_Bin_Load(Over_Bin)-Big_VM[’cpu’]-average_cpu_load)
23

24 ############## AFTER ##############################
25 Imbalance_Under_Bin_After=math.fabs(Get_Bin_Load(Under_Bin)+Big_VM[’cpu’]-average_cpu_load)
26 Total_Imbalance_After=Imbalance_Over_Bin_After+Imbalance_Under_Bin_After
27

28 ############## Gain (difference) ##############################
29 Gain=Total_Imbalance_Before-Total_Imbalance_After
30 return Gain
31

32 def Get_Index_Largest(bin):

115

33 max=0
34 index_max=0
35 for i in range(len(bin[’VMS’])):
36 if bin[’VMS’][i][’cpu’]>max:
37 max=bin[’VMS’][i][’cpu’]
38 index_max=i
39 return index_max
40

41

42 def Get_Index_Smallest(bin):
43 min=10000000000
44 index_min=0
45 for i in range(len(bin[’VMS’])):
46 if bin[’VMS’][i][’cpu’]<min:
47 min=bin[’VMS’][i][’cpu’]
48 index_min=i
49

50

51 return index_min
52

53 N = 20000
54 N_large=N*4/10
55 N_small=N*4/10
56 N_med=N*2/10
57

58 #N=60
59 K=15
60 #K=10
61

62 VM_list = []
63 for i in range(N_small):
64 small_vm = {
65 ’name’: ’small%d’ % i,
66 ’cpu’: 2,
67 ’mem’: 2048,
68 ’disk’: 20,
69 ’n’: 1
70 }
71 VM_list.append(small_vm)
72

73 for i in range(N_med):
74 med_vm = {
75 ’name’: ’medium%d’ % i,
76 ’cpu’: 4,
77 ’mem’: 4096,
78 ’disk’: 40,
79 ’n’: 1
80 }
81 VM_list.append(med_vm)

116

82

83

84 for i in range(N_large):
85 large_vm = {
86 ’name’: ’large%d’ % i,
87 ’cpu’: 8,
88 ’mem’: 8192,
89 ’disk’: 80,
90 ’n’: 1
91 }
92 VM_list.append(large_vm)
93

94

95 Bins=[]
96 for i in range(K):
97

98 bin = {
99 ’id’:i,

100 ’cpu’: 48*4, # 4.0 overcommit with cpu
101 ’mem’: 240000,
102 ’disk’: 2000,
103 ’VMS’:[],
104 }
105 Bins.append(bin)
106

107

108 Bins=[]
109 for i in range(K):
110

111 bin = {
112 ’id’:i,
113 ’cpu’: 48*4, # 4.0 overcommit with cpu
114 ’mem’: 240000,
115 ’disk’: 2000,
116 ’VMS’:[],
117 }
118 Bins.append(bin)
119

120 random.shuffle(VM_list)
121

122

123 for i in range(N):
124 index_bin=i%K
125 Bins[index_bin][’VMS’].append(VM_list[i])
126

127

128 total_cpu_load=0
129

130

117

131 for i in range(N):
132 total_cpu_load=total_cpu_load+VM_list[i][’cpu’]
133

134

135 average_cpu_load=total_cpu_load*1.0/K
136

137 print "average cpu load", average_cpu_load
138

139

140 Bins_Under_Utilized=[]
141 Bins_Over_Utilized=[]
142

143

144 total_load_check=0
145 for i in range(K):
146 if Get_Bin_Load(Bins[i])>average_cpu_load:
147 Bins_Over_Utilized.append(Bins[i])
148 else:
149 Bins_Under_Utilized.append(Bins[i])
150

151 total_load_check=total_load_check+Get_Bin_Load(Bins[i])
152

153 for i in range(K):
154 index_largest= int(Get_Index_Largest(Bins[i]))
155 #print "index largest",index_largest
156 #print "type of VM for Bin number ", i, " is ", Bins[i][’VMS’][index_largest][’name’]
157

158

159 Over_Bin=Bins_Over_Utilized[0]
160 Under_Bin=Bins_Under_Utilized[0]
161

162 Big_VM=Over_Bin[’VMS’][Get_Index_Largest(Over_Bin)]
163

164

165 Bins_Before=Bins[:]
166

167

168 Imbalance_before=0
169

170 for bin in Bins:
171 Imbalance_before=Imbalance_before+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
172 print "Average Imbalance before", Imbalance_before*1.0/K
173

174

175 Bins_After=Bins[:]
176

177 min=1000000000000
178

179

118

180 NO_more_gain=False
181 while (NO_more_gain==False):
182 NO_more_gain=False
183 for under_bin in Bins_Under_Utilized:
184 min_best_to_balance=min
185 best_over_bin_to_balance=Bins_Over_Utilized[0]
186 distance_to_balance=-1
187 for over_bin in Bins_Over_Utilized:
188 largeVM=over_bin[’VMS’][Get_Index_Smallest(over_bin)]
189 #should not get underload
190

191 distance_to_balance=average_cpu_load-(Get_Bin_Load(under_bin)+largeVM[’cpu’])
192 if (distance_to_balance<=0):
193 NO_more_gain=True
194 if (distance_to_balance>0):
195 #print "getting into loop"
196 #difference to the average
197

198

199 #print "outside", distance_to_balance
200

201 if (distance_to_balance<min_best_to_balance):
202 #print "before it ----"
203 min_best_to_balance=distance_to_balance
204 best_over_bin_to_balance= over_bin
205 #print "inside best", distance_to_balance
206

207 if (distance_to_balance!=min):
208 #print "found a match"
209 Bins_Under_Utilized.remove(under_bin)
210 Bins_Over_Utilized.remove(best_over_bin_to_balance)
211 under_bin[’VMS’].append(largeVM)
212 best_over_bin_to_balance[’VMS’].pop(Get_Index_Smallest(best_over_bin_to_balance))
213 Bins_Under_Utilized.append(under_bin)
214 Bins_Over_Utilized.append(best_over_bin_to_balance)
215 #NO_more_gain=True
216

217 Bins=Bins_Under_Utilized+Bins_Over_Utilized
218 Imbalance_after=0
219

220 for bin in Bins:
221 Imbalance_after=Imbalance_after+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
222 print "average Imbalance after", Imbalance_after*1.0/K

119

B.2 Many to Many Move Largest.py

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 import random
5 import math
6

7 def Get_Bin_Load(bin):
8 load=0
9 for i in range(len(bin[’VMS’])):

10 load=load+bin[’VMS’][i][’cpu’]
11

12 return load
13

14

15 def Gain_of_Migration_Couple(Over_Bin, Under_Bin, Big_VM, average_cpu_load):
16

17 ############## Before ##############################
18 Imbalance_Over_Bin_Before=math.fabs(Get_Bin_Load(Over_Bin)-average_cpu_load)
19 Imbalance_Under_Bin_Before=math.fabs(Get_Bin_Load(Under_Bin)-average_cpu_load)
20

21 Total_Imbalance_Before=Imbalance_Over_Bin_Before+Imbalance_Under_Bin_Before
22 #imbalance after eventual migration
23 Imbalance_Over_Bin_After=math.fabs(Get_Bin_Load(Over_Bin)-Big_VM[’cpu’]-average_cpu_load)
24

25 ############## AFTER ##############################
26 Imbalance_Under_Bin_After=math.fabs(Get_Bin_Load(Under_Bin)+Big_VM[’cpu’]-average_cpu_load)
27 Total_Imbalance_After=Imbalance_Over_Bin_After+Imbalance_Under_Bin_After
28

29 ############## Gain (difference) ##############################
30

31 Gain=Total_Imbalance_Before-Total_Imbalance_After
32 #Positive Gain means we went from Worse to Better
33 return Gain
34

35 def Get_Index_Largest(bin):
36 max=0
37 index_max=0
38 for i in range(len(bin[’VMS’])):
39 if bin[’VMS’][i][’cpu’]>max:
40 max=bin[’VMS’][i][’cpu’]
41 index_max=i
42

43 return index_max
44

45 N = 20000
46 N_large=N*4/10

120

47 N_small=N*4/10
48 N_med=N*2/10
49

50 #N=60
51 K=15
52 # number of bins
53 #K=10
54

55 VM_list = []
56 for i in range(N_small):
57 small_vm = {
58 ’name’: ’small%d’ % i,
59 ’cpu’: 2,
60 ’mem’: 2048,
61 ’disk’: 20,
62 ’n’: 1
63 }
64 VM_list.append(small_vm)
65

66 for i in range(N_med):
67 med_vm = {
68 ’name’: ’medium%d’ % i,
69 ’cpu’: 4,
70 ’mem’: 4096,
71 ’disk’: 40,
72 ’n’: 1
73 }
74 VM_list.append(med_vm)
75

76 for i in range(N_large):
77 large_vm = {
78 ’name’: ’large%d’ % i,
79 ’cpu’: 8,
80 ’mem’: 8192,
81 ’disk’: 80,
82 ’n’: 1
83 }
84 VM_list.append(large_vm)
85

86

87 Bins=[]
88 for i in range(K):
89

90 bin = {
91 ’id’:i,
92 ’cpu’: 48*4, # 4.0 overcommit with cpu
93 ’mem’: 240000,
94 ’disk’: 2000,
95 ’VMS’:[],

121

96 }
97 Bins.append(bin)
98

99 #N should be biggger than K
100 random.shuffle(VM_list)
101

102 for i in range(N):
103 index_bin=i%K
104 Bins[index_bin][’VMS’].append(VM_list[i])
105 #print "Bin", Bins[index_bin]
106

107 total_cpu_load=0
108

109

110 for i in range(N):
111 total_cpu_load=total_cpu_load+VM_list[i][’cpu’]
112

113

114 average_cpu_load=total_cpu_load*1.0/K
115

116 print "average cpu load", average_cpu_load
117

118

119 Bins_Under_Utilized=[]
120 Bins_Over_Utilized=[]
121

122

123

124 total_load_check=0
125 for i in range(K):
126 if Get_Bin_Load(Bins[i])>average_cpu_load:
127 Bins_Over_Utilized.append(Bins[i])
128 else:
129 Bins_Under_Utilized.append(Bins[i])
130

131 total_load_check=total_load_check+Get_Bin_Load(Bins[i])
132

133

134 for i in range(K):
135 index_largest= int(Get_Index_Largest(Bins[i]))
136 #print "index largest",index_largest
137 #print "type of VM for Bin number ", i, " is ", Bins[i][’VMS’][index_largest][’name’]
138

139

140

141 Over_Bin=Bins_Over_Utilized[0]
142 Under_Bin=Bins_Under_Utilized[0]
143

144 Big_VM=Over_Bin[’VMS’][Get_Index_Largest(Over_Bin)]

122

145

146 Bins_Before=Bins[:]
147

148 Imbalance_before=0
149

150 for bin in Bins:
151 Imbalance_before=Imbalance_before+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
152 print "Average Imbalance before", Imbalance_before*1.0/K
153

154

155 Bins_After=Bins[:]
156

157 min=1000000000000
158

159 NO_more_gain=False
160 while (NO_more_gain==False):
161 NO_more_gain=False
162 for under_bin in Bins_Under_Utilized:
163 min_best_to_balance=min
164 best_over_bin_to_balance=Bins_Over_Utilized[0]
165 distance_to_balance=-1
166 for over_bin in Bins_Over_Utilized:
167 #print "Over bin er: ", over_bin
168 #print over_bin[’VMS’]
169 largeVM=over_bin[’VMS’][Get_Index_Largest(over_bin)]
170

171 #should not get underloaded
172

173 distance_to_balance=average_cpu_load-(Get_Bin_Load(under_bin)+largeVM[’cpu’])
174 if (distance_to_balance<=0):
175 NO_more_gain=True
176 if (distance_to_balance>0):
177 #print "getting into loop"
178 #difference to the average
179

180

181 if (distance_to_balance<min_best_to_balance):
182 #print "before it ----"
183 min_best_to_balance=distance_to_balance
184 best_over_bin_to_balance= over_bin
185 #print "inside best", distance_to_balance
186

187 if (distance_to_balance!=min):
188 #print "found a match"
189 Bins_Under_Utilized.remove(under_bin)
190 Bins_Over_Utilized.remove(best_over_bin_to_balance)
191 under_bin[’VMS’].append(largeVM)
192 best_over_bin_to_balance[’VMS’].pop(Get_Index_Largest(best_over_bin_to_balance))
193 Bins_Under_Utilized.append(under_bin)

123

194 Bins_Over_Utilized.append(best_over_bin_to_balance)
195 #NO_more_gain=True
196

197 Bins=Bins_Under_Utilized+Bins_Over_Utilized
198 Imbalance_after=0
199

200 for bin in Bins:
201 Imbalance_after=Imbalance_after+math.fabs(Get_Bin_Load(bin)-average_cpu_load)
202 print "average Imbalance after", Imbalance_after*1.0/K

124

	
	Introduction
	Problem Statement
	Definitions
	Chapter Summaries

	Background
	Virtualization
	Virtualization types

	QEMU & KVM
	Libvirt

	Cloud Computing
	Distributed Load Balancing for Cloud Computing

	Live Migration
	Process of Live Migration
	Pre-Copy Migration
	Post-Copy

	Load Balancing vs. Consolidation
	Load Balancing strategies

	Centralized, Decentralized, Distributed & Swarm Intelligence
	Self-organizing Algorithms

	Bin Packing
	Bin Packing algorithms

	Stable Matching
	Tools
	Relevant Research
	Load Balancing in Cloud computing through Nature inspired Algorithms
	Extended scheduler for efcient frequency scaling in virtualized
	Consolidation through peer-to-peer algorithms

	I The project
	Approach
	Objectives
	Mapping the load balancing problem to Stable marriage
	Design
	Modelling
	Load balancing Schemes

	Implementation
	Environment
	Framework
	Data Collection & Comparison

	Result & Analysis
	Configuration Experiments
	Scheme experiments

	Expected Results
	Appraising Properties
	Discussion & Conclusion
	Challenge Prediction

	Result I - Design
	Model
	Overview of a functioning framework
	Formal Notations
	Bin Packing with Stable Marriage
	Stable Marriage Animation
	Libvirt Live Migration
	VMs
	Node communication

	Schemes
	Scaling the percentile
	Stable Marriage Algorithm - Migrate Large & Migrate Small
	Distance Vector

	Result II – Implementation
	Model Overview
	Environment Configuration
	Virtual Configuration
	Network of VMs
	VM Communication & Message Exchange
	Deployment of a VM

	Stable Marriage
	Schemes
	Migrate Large First
	Migrate Small First

	Summary

	Result III – Experiment & Analysis
	Testing
	Simulation Experiments
	Simulation
	Summary
	Small scale migration - I
	Analysis
	Small scale migration - II
	Analysis
	Workaround
	Medium Scale migration - I
	Analysis
	Medium Scale Migration - II
	Analysis
	Large Scale Migration - I
	Analysis
	Large Scale Migration - II
	Analysis

	Real Experiment
	Migrating Small Scale
	Analysis
	Migrating Large Scale
	Analysis

	En route Proposal Acceptance
	Five Rejected Proposals - Large
	Three Rejected Proposals
	Thirty three Rejected Proposals
	Twelve Rejected Proposal
	Analysis - Scheme Large
	Three Rejected Proposals - Small
	Ten Rejected Proposals
	Eleven Rejected Proposals
	Eleven Rejected Proposals
	Analysis - Scheme Small

	Discussion
	Background
	Design & Implementation
	Proposals
	Schemes & Live migration
	Migrate Large Vs. Migrate Small

	Results & Analysis
	Dedicated vs. Non-dedicated links
	Managing Scaling in cloud computing

	Future Work

	Conclusion
	Appendices
	Working Environment
	create isc hosts dhcp.py
	vm-net
	deploy_large.py
	deploy_small.py

	Artificial Simulation
	Many to Many Move Smallest.py
	Many to Many Move Largest.py

