
Control System Development
using a PID Controller
Mechanism for Coordinating
Vertical and Horizontal
Elasticity
Shaikh Mohammad Farabi
Master’s Thesis Spring 2017

Control System Development using a PID
Controller Mechanism for Coordinating

Vertical and Horizontal Elasticity

Shaikh Mohammad Farabi

22nd May 2017

ii

Acknowledgements

First thanks to God himself that I have finished the research in time. I
am so much grateful to University of Oslo(UiO) and Oslo and Akershus
University College to give me an opportunity to provide me such
a nice environment . Also thanks to my lovely supervisors Desta
Haileselassie Hagos and Ashish Rauniyar for all sort of assistance during
the thesis period. Many thanks to the Professor Anis Yazidi and Harek
Haugerud.Many many thanks to all the faculty members of UiO and
HIOA. At last thanks to my beloved family and friends.

iii

iv

Abstract

The popularity of the cloud computing has been increased exponentially in
recent times. The rapid development of cloud computing technologies has
lead to a paradigm shift in the way computing resources are provisioned.
Huge number of servers are deployed to serve emerging number of end
users everyday. Therefore, the complexity arises to maintain the huge
workload as well as to provide expected level of services. Web based
applications should have to ensure desired level of quality of services
despite dynamic and continuous changes of workload.

The main focus of this thesis work is to propose a control system
which is implemented with a feedback controlling mechanism known as
Proportional Integral Derivative (PID) controller with an existing hybrid
controller to dynamically allocate the resources for interactive and non-
interactive applications. Traditional approaches are used to take elasticity
based decisions such as either monitoring the resource usage or just
merely based on Quality of Services (QoS) of solely latency based critical
applications specially the webservers. Furthermore, our focus also lies on
the batch processing software which is different than the traditional latency
critical applications.

v

vi

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Expalnation of Terms: . 4

1.2.1 Set Value: . 4
1.2.2 PID controller: . 4
1.2.3 SLA based Infrastructure: 4

1.3 Thesis Workflow . 4

2 Background 7
2.1 Concept of Cloud Computing: 7
2.2 Cloud Service Models: . 7

2.2.1 Software as a Service(SaaS): 8
2.2.2 Infrastructure as a Service(IaaS): 8
2.2.3 Platform as a Service(PaaS): 8

2.3 Cloud Deployment Models: 9
2.4 Concept of Virtualization: . 10
2.5 Types of Virtualization: . 10

2.5.1 Full Virtualization: . 10
2.5.2 Para-Virtualization: . 10
2.5.3 Partial Virtualization: 11

2.6 Hypervisor . 11
2.7 Xen Hypervisor . 11
2.8 KVM . 13
2.9 QEMU . 14
2.10 CPU Schedulers . 14

2.10.1 Xen CPU-Schedulers 15
2.10.2 CFS Scheduler: . 16

2.11 Control Theory: . 16
2.12 Scalability-Horizontal and Vertical Scaling: 17

2.12.1 Horizontal Scaling: . 17
2.12.2 Vertical Scaling: . 17

2.13 HttpMon: . 18
2.14 Libvirt . 18
2.15 PID Controller . 19
2.16 Related Work . 19

2.16.1 Orchestrating Resource Allocation for Interactive vs.
Batch Services using a Hybrid Controller 19

vii

2.16.2 A Hybrid Cloud Controller for Vertical Memory
Elasticity . 20

2.16.3 Autonomic Resource Provisioning for Cloud-Based
Software . 21

2.16.4 Coordinating CPU and Memory Elasticity Control-
lers to Meet Service Response Time Constraints . . . 21

2.16.5 A Virtual Machine Re-packing Approach to the Ho-
rizontal vs. Vertical Elasticity Trade-off for Cloud
Autoscaling . 21

3 Approach 23
3.1 Objective: . 24
3.2 Set Value, Process Value and Error Value: 25
3.3 Features of PID Controller . 25

3.3.1 P Controller: . 26
3.3.2 I Controller: . 26
3.3.3 D Controller: . 27
3.3.4 Combination of the controllers: 27

3.4 Algorithm of PID Controller: 28
3.5 Autonomic Controller Model: 29
3.6 Design Phase . 29

3.6.1 Decision Model: . 30
3.6.2 Design of Controller Metrics: 31

3.7 Stages of Implementation: . 31
3.7.1 Experimental Setup: 32
3.7.2 Implement the Controller Logic 32
3.7.3 Generate Workloads: 33
3.7.4 Necessary Tools: . 34
3.7.5 Define Metrics for Interactive and Non-Interactive

Applications: . 34
3.7.6 Initial Experiment: . 35
3.7.7 CPU Hotplug: . 35
3.7.8 Memory Hotplug: . 35

3.8 Experiment: . 35
3.8.1 Control Interval . 36
3.8.2 Webserver(Vertical Scaling): 36
3.8.3 Webserver(Horizontal Scaling) 37
3.8.4 Batch Processing Experiment: 37

3.9 Data Collection and Plotting: 37
3.10 Analysis: . 38

4 Design and Models 39
4.1 Controller Characteristics: . 39
4.2 Controller Models: . 40
4.3 Performing Operation: . 41
4.4 Metrics of Controller: . 43

viii

5 Implementation 45
5.1 Experimental Setup: . 45
5.2 Network Setup: . 46
5.3 Virtual Machine: . 47
5.4 Overview of Experiment: . 49

5.4.1 Client Side: . 49
5.4.2 Server Side: . 49
5.4.3 Control Side: . 49

5.5 HAProxy . 50
5.6 RUBBoS: . 51
5.7 HandBrakeCLI: . 53
5.8 Workload Pattern: . 53
5.9 Implementing Controlling System: 54
5.10 Autobench: . 57

6 Measurements and Analysis 59
6.1 Control Interval: . 59
6.2 Webserver(Vertical Scaling) : 62
6.3 Webserver (Horizontal Scaling): 63
6.4 Batch Processing Experiment: 64
6.5 Analysis: . 65

6.5.1 Control Interval: . 65
6.5.2 Webserver(Vertical Scaling): 67
6.5.3 Webserver(Horizontal Scaling): 68
6.5.4 Batch Processing Experiment: 69

7 Discussion: 71
7.1 The Problem Statement: . 71
7.2 Evaluation: . 72
7.3 Challenges: . 72
7.4 Constraints: . 73
7.5 Future Works: . 73

7.5.1 Batch Processing Files: 73
7.5.2 Machine Learning: . 74
7.5.3 Fuzzy Logic: . 74

8 Conclusion: 75

9 Appendix 77

ix

x

List of Figures

2.1 Type 1 and Type 2 Hypervisor 12
2.2 The Architecture of XEN . 13
2.3 Diagram of Control Theory 17
2.4 Diagram of Vertical and Horizontal Scaling 18
2.5 PID Controller . 19

3.1 Diagram of P Controller . 26
3.2 Diagram of PI Controller . 27
3.3 Diagram of PID Controller . 28
3.4 Autonomic Controller . 29

4.1 Capacity and Performance based Controller 41
4.2 Design of overall Control Systems 43

5.1 Network Setup . 46
5.2 Overall Infrastructure . 49
5.3 Experimental Overview . 50
5.4 Trend Based Workload . 53
5.5 Activity diagram of decision making algorithm 56

6.1 Response Time in every 10 seconds with vCPU 60
6.2 Response Time in every 10 seconds with Memory 61
6.3 Response Time in every 20 seconds with vCPU 61
6.4 Response Time in every 20 seconds with memory 62
6.5 Response Time relations of webserver1 with vCPU 63
6.6 Response Time relations of webserver1 and webserver2 with

vCPU . 64
6.7 Frames per Second for Batch Process 65
6.8 CPU and Memory Utilization for 10 seconds 66
6.9 CPU and Memory Utilization for 20 seconds 67
6.10 CPU and Memory Utilization for Webserver1 68
6.11 CPU and Memory Utilization for Webserver2 69

xi

xii

List of Tables

4.1 Decision Performing . 42
4.2 SLA Violation of webserver 43
4.3 SLA Violation of Batch processing 43

5.1 Physical Machine Configuration 45
5.2 Network Overview . 46
5.3 Controller Parameters . 55

6.1 Difference of Metrics in 10 seconds and 20 seconds Control
interval . 66

6.2 Metrics of Webserver1 . 67
6.3 Metrics of Webserver2 . 68
6.4 Metrics of Batch-Processing 69

xiii

xiv

Chapter 1

Introduction

Cloud computing opens up a new era in the field of computing. The pop-
ularity and usability of cloud computing is increasing day by day because
it provides numerous facilities to the users like flexibility, reliability, elasti-
city and infinite computing resources and many more[73]. Therefore, many
companies and organizations, either big or small are getting benefit from
this technology. They are moving their business to cloud infrastructure.
A survey conducted by Rightscale in the beginning of 2016 shows that
more enterprise shift their workloads to cloud, especially on private cloud.
Moreover, within a year almost 17 percent of enterprises now have more
than 1000 VM’s in public cloud, up from 13 percent while 31 percent of en-
terprises running more than 1000 VM’s in private cloud as compared to 22
percent in 2015[78]. Similarly, another article published on Forbes around
2016 revealed that spending on public cloud infrastructure- hardware and
software is forecast to reach 38 billion USD, growing to 173 billion USD in
2026[17]. The entire statistics clearly reveals that how fast cloud computing
infrastructure is growing bigger and getting popular among the organiza-
tions and end users these days.

Cloud computing also create a new dimension and rises several concepts
and technologies like data center and hardware virtualizations[22]. Data
centers contributes a major role on cloud computing and it has received
significant attention as a cost-effective infrastructure for storing large
volumes of data and moreover, hosting large-scale service applications.[9].
The main benefit of data centers is that it allows dynamic resource
allocation across large server of pools and it is very much agile and
cost effective[32]. Almost all of the large multinational companies for
example Amazon, Youtube, Google, Facebook, Ebay and Yahoo use data
centers for multipurpose functions like storage, web search, and large
scale computations[80][31]. The rising demand and popularity of cloud
service and applications hosting in data centers a multi-billion dollar
business that plays a crucial role in the future Information Technology (IT)
industry[9]. Data centers consists of almost tens of thousands of computers
with significant aggregate bandwidth requirements[23]. Therefore, those
large amount of computer within a data centers consume a large amount
of energy. In a report published in US shows that only in US, the data

1

centers energy consumption rate in 2011 was approximately 100 KWh
which is equivalent to 7.5 billion US dollar.[46]. Another statistics revealed
that energy consumptions of data centers almost tripled within a decade,
an average growth rate increased by 12 percent from 2000 to 2010[76].
Servers that are used in data centers to run applications resulting poor
server utilization and high operational cost[9]. Data centers needs to be
more energy efficient and environment friendly as well as they should
be capable of handling dynamic hasty workloads. Therefore, dynamic
resource provisioning is necessary not only to avoid the application
performance degradation, but also to effectively and efficiently utilize
resources. Furthermore, the infrastructures should have the capability to
allocate resources according to the applications demands, which will be
able to create better impression to the user and attract the users towards
the services. Moreover, data centers at present use static resources which
leads to a huge operational cost for organizations also provide poor service
performances which kills userâs satisfaction. Most importantly in recent
days the customer satisfactions is the most important scenario, and it
is directly proportional to the business revenue which indicates lower
customer satisfaction decrease business revenue. Recent survey reveals
that one of the biggest electronic commerce and cloud computing company
’Amazon’ found a page load slowdown of just 1 sec could cost 1.6 billion
dollar in sales every year[21]. Another research conducted by Natural
Resources Defense Council(NRDC) reveals that the average server operates
at not more than 12 to 18 percent of its capacity while still drawing 30 to
60 percent of maximum power. Moreover, virtually idle servers consume
power 24/7, which adds up to a substantial amount of energy usage[55].

Resource elasticity is an autonomic scaling platform and one of the most
selling point of cloud computing[77][41][24]. Resource elasticity is defined
as an elastic cloud which dynamically adapts resource allocation according
to the consumer’s choice. Moreover, resource provision depends on how
much money users has paid for the service[77]. Resource elasticity are
of two types: vertical elasticity and horizontal elasticity. Horizontal
elasticity is defined as adding or removing virtual machines(VM) to or
from application depending on the number of end users[45]. Furthermore,
horizontal elasticity needs support from the application, for instance, to
close and synchronize states among VMs but it does not require any extra
support from the hypervisor. Therefore, it has become more popular
and has been widely adopted in public clouds[45][67]. However, vertical
elasticity considered as adding or removing resources such as CPU and
memory to or from an individual VMs in order to cope with runtime
changes[45]. Vertical elasticity has been achieved by changing the size
of VMs. Horizontal elasticity is coarse-grained, because of the VMs in
horizontal elasticity has static and fixed size configuration, which can be
used or run for longer period. However, vertical elasticity is known as
fine-grained because in vertical elasticity individual elements allocated to
VMs such as CPU and memory can be dynamically changed for as short as
a few seconds[45][41][67].

2

1.1 Problem Statement

The main objective of service provider or infrastructure provider is to
provide high quality of service (QoS) to their customer at any time and
maintain stable infrastructure while customer, on the other hand, want
their application running 24x7 hours without any disturbance which
indicates that they want their applications keep running(up) in any kind
of obstacle or situations i.e 100 percent QoS is always in demand for
customers. Now a days, most of the big companies and organizations
transfer their business on cloud running very important applications and
doing big transactions through service providers like Amazon. Therefore,
a high QoS is very important for them. Even a single second of latency
or disturbance or down on service can cause a massive loss. Here is
some interesting facts about net user. In America, one in four people
abandons surfing to a website if its page takes longer than four seconds
to load. Similarly, 4 in 10(almost 50 percent) Americans give up accessing
a mobile shopping site that would not load in just 3 seconds [21].
However, infrastructure providers are unknown to the pattern of web
request. They have no idea about what kind web applications running
on their infrastructure and the variations of web spikes it may receive.
In such situation, real-time applications for instance, latency-critical and
even a small amount of interference can cause significant Service-Level
Agreement (SLA) violations. Therefore, cloud service provider should
have a dynamic infrastructure (resource allocation) to serve unpredictable
spikes in user access. Otherwise, they may lost their clients. In this case, it
is very essential to have deep investigation and research on how to provide
better resource allocations on cloud platform specially on big data centers,
to design and build a better controller for getting comparatively fair result.
Furthermore, it is by far most important to have deep looks on which
scaling is better, cost saving, easy to maintain from data center point of
view.

The aim of this research is to propose a PID controller logic mechanism.
The PID controller has to be designed in such a way which can integrate
the existing autonomic controller and increase the performance of the
controller.

The problem statement which is the basic foundation of this thesis has been
divided into three parts.They are as follows:

1. How can we determine a threshold value which is known as set value?

2. How can we build a dynamic PID controller considering the differences
between the set point and measured value, and apply the correlation based
on proportional, integral, and derivative terms?

3. How can we design and build a sophisticated Service Level Agreement (SLA)
driven infrastructure to provide efficient QoS by applying better resource
allocation?

3

1.2 Expalnation of Terms:

1.2.1 Set Value:

Maximum desired response time will be set as an threshold value, which
will be known as set value.The research work carried out by Ahmad et
and al. [3] calculated the range of response time. In this paper, work the
maximum desired response time is regarded as set value and it is described
in the following section about it more precisely.

1.2.2 PID controller:

The goal of this paper work is to develop a proportional integral derivative
controller or PID for an autonomic provisional controller . The autonomic
provision controller has been made with the help of the control theory. The
motivation to design the controller model and design feedback loops to
make the cloud infrastructure dynamics(also known as self adaptive) to
gain a proper and better balance between fast reaction and better stability.
The main aim of the PID controller is to calculate the error value on the
basis of set value and measured process value. Afterwards, the correction
will take place with the basis of proportional, integral and derivative which
also known as "Modes of control"[58][59] The controller provision of high
Quality of Service(QoS) service by allocating the available resources based
on heterogeneous requests that comes to the server.

1.2.3 SLA based Infrastructure:

The SLA based infrastructure indicates that if the measured value is more
than the desired or it goes beyond the desired level then it is going to
violate the overall goal of the research work. Therefore, we need to build a
control system which can manage the code of SLA and perform better QoS
by aloocating proper resources. In addition control systems must aware of
redundant use of resources which can also vioates the QoS terminology.

1.3 Thesis Workflow

Chapter 2 we are discussing about the basic idea about Cloud computing
models, cloud deployment models, hypervisor,type 1 and type 2 hyper-
visor, Xen hypervisor, KVM, Qemu , Libvirt Control Theory and PID Con-
troller. Also some of the relevant papers and their work has been discussed
at the end of the chapters.

Chapter 3 we are discussing about the methodology and how the idea
will be developed to implement the control system based on our research
questions.

Chapter 4 we are going to describe the controller characteristics
controller models and how controller can perfrom the operations.

4

Chapter 5 we are going to highlight the most important part of the
overall research.It includes the design and implementation part.

Chapter 6 we are going to focus the analysis part, the results will be
discussed precisely and graphs has been made for complete analysis.

Chapter 7 we are going to reach a final decision of the research part
which is consists of discussion, limitation and the future plan of this
research.

Chapter 8 we are finally draw the end point of the entire research.
Chapter 9 consists of the Appendix portion where we put all the codes

of the control systems.

5

6

Chapter 2

Background

In this chapter we are going to discuss about the basic concepts of
cloud computing, virtualization , Type 1 and Type 2 hypervisor, KVM,
Qemu. CPU schedulers.In addition vertical and horizontal scaling. All
the topicsthat are essential to implement our research work. At the end of
this chapter we represented some related works which are related to our
research work also evaluate them in proper manner.

2.1 Concept of Cloud Computing:

Cloud computing is a combination of virtualization, storage, con-
nectivity and processing power[48].Cloud computing can be defined
as an on demand network access to a shared pool of network serv-
ers,storage,applications and services altogether[50].The term "Cloud" de-
rived from the virtual private network which is known as VPN when
telecommunication providers used VPN services for data communications
[43]. Cloud can be structured and released with low management ef-
fort or service level of interaction[50].The demand of cloud computing
rapidly increasing because it offers some true benefits e.g fast deploy-
ment, pay-foruse, lower costs, scalability, rapid provisioning, rapid elasti-
city,ubiquitous network access, greater resiliency, hypervisor protection
against network attacks, low-cost disaster recovery and data storage solu-
tions, on-demand security controls, real time detection of system tamper-
ing and rapid re-constitution of services [72].

2.2 Cloud Service Models:

Cloud computing has some user level agreements which describes how
cloud services are made available to the clients[30].According to the usage
of cloud services three basic service models are well known to the cloud
service providers which includes Software as a Service(SaaS),Infrastructure
as a Service(IaaS) and Platform as a Service(PaaS).The service models are
briefly highlighted in the following sections.

7

2.2.1 Software as a Service(SaaS):

Software as a Service or SaaS known as "on demand Software" model
in which applications are hosted by service provider or vendor and
made available to users over a particular network through Internet.1 In
spite of the applications are running in a cloud Infrastructure but it
is accessible from various client devices[50].One of the main advantage
of Softaware as a Service that the Application Programming Interface
or API allows the user to use the services without having no concern
about the data storage and disk space.Disk space and data management
will be done by the cloud service providers.[11].In spite of the main
disadvantages of Software as a Service it is very strenuous to the
user to ensure the proper security measures are in place as well as
it is not guaranteed that the applications will available when it will
be necessary.[72].The most notable key providers of SaaS software for
instance Salesforce.com,Netsuite,Oracle,IBM, Facebook,Google Docs,Gliffy
and Office 365.[40].

2.2.2 Infrastructure as a Service(IaaS):

Infrastructure as a Service or IaaS which basically provides generic func-
tion for hosting and provisioning of access to raw computing infrastructure
and operating middleware software of its own[61].Infrastructure as a ser-
vice(IaaS) has the capability to provide hardware,software,servers,storage
and other infrastructure components to their own end user.2.Moreover
IaaS provision access,deploy and run arbitrary software to their own cus-
tomer.[51].The main advantage of Infrastructure as a Service or Iaas has
highly scalable resources which is adjusted on demand. In spite of the ad-
vantages,the main drawback of IaaS is that it so expensive and the service
providers do not have any responsibility for backups, all backups has to be
done by the clients’ side.3.The most notable IaaS providers are Amazon
Web Services(AWS),Windows Azure,Google Compute Engine,Reckspace
Open Cloud and IBM SmartCloud Enterprise.

2.2.3 Platform as a Service(PaaS):

Platform as a Service or PaaS is relatively new idea of cloud computing
services.Platform as a Service provision platform which allows clientst́o
develop,run and manage the infrastructure without having any complex-
ity to develop or relaunching the applications.4 PaaS is basically create
a bridge between hardware and application by abstract the infrastructure
and support a set of application program interface(API) to cloud applic-
ations[29].The main advantage of Platform as a Service or PaaS is that it

1http://searchcloudprovider.techtarget.com/definition/cloud-services
2http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-

IaaS
3http://aiasecurity.com/2015/09/10/advantages-and-disadvantages-of-saaspaas-and-

iaas/
4https://en.wikipedia.org/wiki/Platformasaservice

8

provides itś own infrastructure to the customers so that users do not have
to install any in-house hardware and software to develop or run a new
software.5

2.3 Cloud Deployment Models:

Besides cloud service models, cloud environment has another type of
models which is known as cloud deployment models.Cloud deployment
model is primarily differentiated by ownership,access and size6.There are
four cloud deployment models they are known as Public Cloud, Hybrid
Cloud, Community Cloud and Private Cloud.

Public Cloud:
Public Cloud is the most well known cloud computing deployment model
in which service providers make their services e.g. storage and
applications publicly accessible over a network7.In public cloud the cloud
environment is owned by a third party vendor and they dynamically
provision their resources to the customers’.[11].Amazon Web Services and
Google Compute Engine are the most common example of public cloud.

Private Cloud:
Private Cloud has the same features like public cloud but it offers services
through a proprietary architecture over a private network.Private cloud is
owned and managed by a single organization or third party
vendor.Private cloud has the potentiality to involve in virtualize business
environments as well as it reevaluate decisions about existing
resources.8.Mirosoft,Eucalyptus,VMware is the common example of
private cloud.

Community Cloud:
Community cloud is another cloud deployment model which shares
infrastructure among several organizations.The organizations also share
common concerns for example security,compliance and jurisdiction and
make the access limited to the cloud consumers.The membership of
community cloud is owned by the community members or third party
vendor.Membership of the community does not ensure to gain control of
the clouds entire IT resources9.Outsiders does not get the access rights
until or unless they will be approved by the community.

5http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
6http://whatiscloud.com/clouddeploymentmodels/index
7http:/searchcloudcomputing.techtarget.com/definition/public-cloud
8https://en.wikipedia.org/wiki/CloudcomputingPubliccloud
9http://whatiscloud.com/clouddeploymentmodels/communityclouds

9

Hybrid Cloud:
Hybrid cloud structure is different than other cloud computing
deployment models because it consists of two or more different cloud
deployment models.Basically hybrid cloud is a combination of other cloud
computing models e.g. private cloud,public cloud and community
cloud.Hybrid cloud is used by a large organization for their privacy for
instance A is a large company has several confidential information they
handle it with private cloud and for normal traffic and other situations
they will manage public cloud.[11]

2.4 Concept of Virtualization:

Virtualization can be defined as the capability to run several virtual
machines to single resources. The history of virtualization is not new at
all.The idea of virtualization first came to 1960.IBM is the first company
who came up with an idea of CP(Control Program) and CMS(Control
Monitor System).CP acts as a host computer and it operates the VIrtual
Machines which runs the guest computers known as CMS.[36]

2.5 Types of Virtualization:

Virtual machine has created over existing operating system and hardware
known as hardware virtualization. In basis of hardware virtualization
virtualization is divided in three parts.They are Full Virtualization,Partial
Virtualization and Para-Virtualization.

2.5.1 Full Virtualization:

In full virtualization technique hypervisor allows to run multiple operating
system to run on host operating10.Basically in this technique the guest
operating system completely unaware that it is running in a virtual
environment.Therefore guest does not have the right to execute their own
commands,they have to depend on the commands issued by the host
operating systems. 11

2.5.2 Para-Virtualization:

In para virtualization technique guest operating systems are modified
so that it knows that it is running above a virtualized environment.12

Also paravirtualization offers an interface that is similar to its underlying
hardware.13. Furthermore it initiates hypercalls which makes explicit calls

10https://www.conres.com/it-products-solutions/news-events/three-types-of-server-
virtualization-and-whats-best-for-you/

11https://www.quora.com/What-is-full-virtualization-partial-virtualization-and-
paravirtualization

12www.udacity.com
13www.techopedia.com

10

to the hypervisor.The hypercall acts like system call in the operating system
contains information of packages as well as it issues the desired state of
hypercalls so that it can trap the VMM.14

2.5.3 Partial Virtualization:

In partial virtualization multiple instances of hardware are virtual-
ized.Alike full virtualization the entire operating cannot be virtualized in
partial virtualization.15 However the most important thing is address space
virtualization,which means each vm can be assigned with an individual ad-
dress spaces. But the most notable drawbacks of partial virtualization is in
some situations it needs backward compatibility.

2.6 Hypervisor

Basically hypervisor is a software layer which implements Virtual Ma-
chine(VM) and has the same architecture set like hardware[10]. Virtual-
ization has been done by hypervisor a low level program that can run mul-
tiple operating system simultaneously.On the basis of hypervisor the sys-
tem runs into virtual machines[26].Basically hypervisors are two kinds.[26]

Type 1 hypervisor known as bare metal hypervisor directly connected
with system hardware and VMâs run onto it.All operating systems are
running inside the virtual machines.Type 1 hypervisor provides hardware
virtualization.

Type 2 hypervisor known as hosted hypervisor, connected with the host’s
operating system,and it supports other guest operating systems running
above it. In this case the system is completely dependent on base operating
system.

Type 1 hypervisor gives the better performance and flexibility than the type
2 hypervisor.Because it runs directly on the underlying hardware therefore
it can operates a thin layer which provides resources to the VMâs.16 On the
other hand type 1 hypervisor is smaller than type 2 hypervisor.17

2.7 Xen Hypervisor

Xen is a well known and open source hypervisor which made up
with a small software layer.In virtualization Xen hypervisor is very
important because it executes several virtual resources for example

14www.udacity.com
15www.wikipedia.com
16http://searchservervirtualization.techtarget.com/tip/Virtualization-hypervisor-

comparison-Type-1-vs-Type-2-hypervisors
17http://www.golinuxhub.com/2014/07/comparison-type-1-vs-type-2-

hypervisor.html

11

vCPU,vMemory,event channels and shared memory of the hardware sys-
tems.Moreover it controls the I/O along with the memory access of the
particular devices.[64].Xen has the capability to host the operating systems
for instnace Windows and Linux also hosted simultaneously with a very
less overhead performance that makes Xen a strong and effective hyper-
visor[8].Xen was a research project of University of Cambridge which was
conducted by Ian Pratt and Simon Crosby18.Later, Xen project development
conducted by Citrix in the late 2007.Xen supports ARM various functional-
ity such as ARM instruction sets,x86-64 and IA-32[38].

Figure 2.1: Type 1 and Type 2 Hypervisor

Xen-Architecture Xen is a bare metal hypervisor and it has some unique
features such as small footprints and
interface,paravirtualization,operating system agnostic and
paravirtualization19.

• Small footprints and interface: The total size of footprints around 1
MB.Footprints are smaller because Xen project uses small micro
kernel design.Therefore interfaces are also limited to the guest make
it more robust and secured.

• Operating System agnostic: The virtual machines of Xen are known
as domains and they are referred as Doms[42].One special type of
domain which known as domain0 or dom0 [64]. Domain 0 or dom0 is
the main control stack which can run any paravirtualized operating
systems like Linux.The guest operating systems which are running
are optimized by changing their source code and replace instructions
which mentioned as hypercalls [38].

• Driver Isolation: One of the most important part of Xen hypervisor
is to allow the device driver to run inside a virtual Machine.If driver
of a particular VM has crashed then it reboots or restart
independently without any impact of the system.

18https://en.wikipedia.org/wiki/Xen
19https://wiki.xen.org/wiki/XenProjectSo f twareOverview

12

• Paravirtualization: The main theme of paravirtualization is
modifying the guest Operating Systems(OS).The main key factor of
Xen hypervisor is that it implements the paravirtualization to
modify the operating systems and make them faster and effective.It
often faster than Hardware assistant Virtualization(HVM).

Figure 2.2: The Architecture of XEN

Whereas Xen is a bare metal hypervisor it directly runs on the hardware
layer and directly handles CPU,Memory and interrupts.The Xen
hypervisor architecture has also some features e.g. Guest Types, Domain 0
and Toolstacks.In Guests Types Hardware assisted Virtual Machine(HVM)
guests and paravirtualized guests are allowed to run in Xen
hypervisor.Domains are used to get limited hardware I/O access except
one single domain which is known as domain 0[27][42]. Dom0 is the most
significant and only privileged domain that has the capability to handle all
inputs/outputs(I/O) [42].The user domains(dom0,dom1,dom2....domU)
have played a key role to illustrate network drivers,data flows and control
flows [42].If user domains need to access to the CPU,Memory or any I/O
devices then it will forward request to the dom0 [27]. Xen project stack and
implications uses various frontend toolstacks which also play a great role
in Xen project architecture.

2.8 KVM

Kernel based Virtual Machine which known as KVM is a virtualization
infrastructure which is developed in Linux by Qumranet and later it turned
into a type-II hypervisor[26, 85].QEMU emulator has been used to create
KVM and it uses all operation and management tools of QEMU[26].The
main speciality of KVM is unlike XEN it can run unmodified operating

13

systems like Linux and Windows Image.Also KVM has the capability
to run multiple virtual machines on itś layer 20.Moreover the main
advantage of Kernel Based Virtual(KVM) machine is that it can add
virtualization capabilities to a standard Linux Kernel and turn into a
hypervisor[84, 85].KVM is simple implementation rules which makes it
stronger in Performance, Scalability, Security,Memory Management and
Live Migration[84].KVM has simply two components one is Kernel Space
Device Driver and another one is User Space Emulator. Kernel Space
Device Driver plays an important role by handling CPU and Memory
Virtualiztion. However, User Space Emulator deals with the PC hardware
emulation by simple using ioctl() system calls which is derived from
QEMU[84].

2.9 QEMU

QEMU is basically a fast and well developed functional system emulation
tool which is used in virtualization and Linux process simulation [13, 19].
QEMU emulator is free and open source and it can be used as a hypervisor
like XEN and KVM 21.QEMU performs Hardware Virtualization and it
uses Dynamic Binary Translation Technique which helps to achive a better
performance(DBT)[19].QEMU emulator is very powerful and flexible
to run unmodified guest operating systems and application programs.
QEMU emulator along with KVM hypervisor can run several virtual
machine and support architectures like X86,ARM and SPARC[28].

2.10 CPU Schedulers

The concept of CPU scheduling is when the CPU remains idle then
allow one process from the ready queue to use the CPU and hold
the execution of other process for quite a while because of lacking
resources22.CPU schedulers help multiple users to share the resources
effectively and achieve Quality of Service(QoS). CPU schedulers have
many criteria for example measuring Throughput, CPU utilization ,Turn
around time,Waiting time,Response time and Load Average23. The main
key role played by short time scheduler which picks up a process from the
ready queue and send it to CPU.The scheduler works by maintaining two
algorithms one is preemptive and another is non-preemptive.Preemptive
scheduler selected a process which has higher priority for instance a
process has priority 5 and it is running,then if another process comes
up with priority 10 then CPU stops the current process deliberately and
choose the next process until it will be finished.However,Non Preemptive
scheduler is the reverse of preemptive scheduling algorithm if a process
has given to the CPU it is not intervened or taken away until it finishes.

20https://www.linux-kvm.org/page/MainPage
21https://wiki.archlinux.org/index.php/QEMU
22http://www.studytonight.com/operating-system/cpu-scheduling
23http://www.studytonight.com/operating-system/cpu-scheduling

14

2.10.1 Xen CPU-Schedulers

Xen hypervisor also act as a hypervisor schedular which helps various
virtual CPU to take their scheduling decision[14].The main functionality
of the hypervisor scheduler is to decide which vCPU of the virtual
machine will get priority to execute it’s operation on host’s physical CPU
or pCPU[14].The most notable schedulers of Xen hypervisor are Credit
scheduler,RT-Xen scheduler, Simple Earliest Deadline First or SEDF scheduler
and Borrowed Virtual Time scheduler or BVT schedular [14].

• Credit Scheduler: Credit was the most popular virtual CPU sched-
uler which was derived from XEN hypervisor scheduler.Credit was
the first among all the schedulers’ of XEN hypervisor project and it is
most notable to conserve the Symmetric Multiprocessing host or SMP
hosts.Credit scheduler has also assigned a weight and a 0 cap which
means it can able to run in any amount of CPU time[15]. The credit
hypervisor scheduler has also some basic features like it is quantum
based so it should have longer time slice that is 30 ms which denotes
it can run 30ms before it can interrupt by other vCPU.Another one is
mentioned before that it has 0 cap feature which means it can able to
put Virtual Machines in work conserving mode.

• RT-Xen Scheduler: Real Time Scheduler which is known as RT-Xen is
second most popular and open source virtual machine monitor which
can support Xen in real time scheduling[16]. RT-Xen is the first real
time CPU scheduler and widely used by the researchers and integ-
rators due to it’s attractive platform and provision real scheduling
to guest Linux operating system[83].RT-Xen virtual machine mon-
itor support embedded systems by provision real-time performance
to the virtual machine images which will make sure that integrated
subsystems be capable to fulfil their requirements[83].The main be-
nefit of that particular scheduler is that it based on real time schedul-
ing algorithm which makes it efficient,flexible and effective.It also set
fixed-priority scheduling process in virtualized platforms.

• Simple Earliest Deadline First(SEDF): Simple Earliest Deadline
First Scheduler also known as SEDF scheduler is also a weighted
CPU scheduler which is based on real time algorithms like RT
Xen and use time slice[14].The real time scheduling algorithm of
SEDF was the modified version of Earliest Deadline First(EDF)
algorithm. The SEDF scheduler consists of domains,each domain has
it’s own processing resources which also contains two parameters
period and slice [56].The two variables has been created by two
different purposes slice ensure the execution of the domains in a
certain amount of time which is given by the period parameter[56].
SEDF schedular has the capability to work both conserving and non
conserving environment.

• Borrowed Virtual Time(BVT): Borrowed Virtual Time or BVT
schedular is the least well known Xen CPU scheduler which is ba-

15

sically a fair share and general purpose scheduler. BVT also contains
domains which shares CPU time like SEDF scheduler[14].Burrowed
Virtual Time scheduler is also quantum based and also have time slice
but they are known as different name like context switch allowance and
it also has symmetric multiprocessing capability but conserving work
mode is disabled.

2.10.2 CFS Scheduler:

Completely Fair scheduler known as CFS scheduler is a process scheduler
developed by Ingo Molner in October 2007[53].Completely Fair Scheduler
has developed in Kernel version 2.6.23 which was basically the updated
version of O(1) scheduler[81].The main purpose of CFS scheduler to
allocate CPU resources among the executable tasks and ensure better
interactive performance.The scheduler is mainly used the algorithm red
black tree which is counting timeslice of the tasks just before it is
scheduled for execution[44].Furthermore, CFS scheduler is exceptional
than the other scheduler because of it distribute the CPU power equally
among the tasks for instance in a multitasking procedure M process are is
running simultaneously then every process will get 1/M seconds each for
execution[44].

2.11 Control Theory:

Control Theory is a notable and well known branch in the field of
Engineering and mathematics which dynamically adjust the systems
behaviour.The mechanism is that it adds new element in the input chain
of the systems that modifies the behaviours of one or more elements and
modify the output chain [1] [54].Karl Astorm who is known as one of the
top most inventor of control theory stated that control theory is a magic of
feedback because it modifies the components of a system dramatically which
performs lot better than the previous[65].A controller has to be designed on
the basis of control theory which can control a system this term known
as plant[54].The modified output signal known as reference.The error signal
which is basically the difference between the modified output and the
previous output has applied in the inputs of the system to get the desired
control signal.

16

Figure 2.3: Diagram of Control Theory

2.12 Scalability-Horizontal and Vertical Scaling:

Scalability is defined as the capability of a system,network or process to
handle the growing amount of work by increasing extra nodes or extra
resource.Furthermore,scalability means to tackle the workload, by adding
the resources, it’s can be done in two ways by adding an extra server
or hardware with an existing systems or add memory or CPU with the
existing system. Scalability are of two kinds, Horizontal Scaling and
Vertical Scaling.They are describing briefly in following.

2.12.1 Horizontal Scaling:

Horizontal scaling is to add or remove more computing resources for in-
stance computer, server or distributed environment for the existing soft-
ware systems[49]. Horizontal scaling is often known as scale in/out.The
main advantage of horizontal scaling is that it can dynamically provision
it’s resources when it necessary.Horizontal scaling id more reliable and give
better performance than the vertical scaling[3].

2.12.2 Vertical Scaling:

Vertical scaling is to add or remove computer nodes for instance
memory,CPU or storage of a single node or single computing re-
sources.Vertical scaling is often called as scale up/down approach.The
main benefit of vertical scaling is that it can re-size without changing
the code.Vertical scaling has less overhead and all the data is put on the
single machine[52].Moreover,in vertical scaling managing data is easier
than the horizontal scaling.The major problem of vertical scaling is cost
efficiency,the cost is more when additional RAM or CPU set up with the
existing machine than set up smaller instances[52].

17

Figure 2.4: Diagram of Vertical and Horizontal Scaling

2.13 HttpMon:

HTTPMon is basically a monitoring tool that using HTTP protocol.The
main task of HTTPMon is to check the status about the website by sending
valid requests within a regular intervals.The benfit of the HTTPMon
is that it can keep tracks of the uptime and downtime of a particular
website.Therefore,large companies or organizations whose website has to
be used in selling or buying staffs they are hugely benefitted by HTTPMon
to check their website uptime performance and make the right decision
regarding hostime,infrastructure and software that has been used by the
website[57].

2.14 Libvirt

Libvirt is an open source application programming interface(API) de-
veloped by Red Hat 24.Libvirt is a widely used API to support orches-
tration layer of hypervisors.Hypervisors like KVM ,QEMU ,XEN, Virtu-
alBox ,Microsoft Hyper-V, VMWare ESX and SGX, IBM PowerVM, Open
VZ , Virtuzzo ,Bhyve are fully supported by Libvirt 25.Basically libvirt de-
signed for c programming language.However to support other program-
ming languages like for instance Python,Java,Ruby,Perl,JavaScript and so
on libvirt has its own package named libvirtmod.The API also support
local access control using Policykit. API also provide portable clients
for Windows,Solaris and Linux.Libvirt also provide CIM for Distributed
Management Task Force(DMTF) schema of virtualization. Libvirt also
provide technologies to manage virtual machines, virtual networks and

24https://en.wikipedia.org/wiki/Libvirt
25http://libvirt.org/

18

storage.Libvirt also help to fetch information like VMâs status,CPU usage
rate,VCPU number,virtual memory etc [34].

2.15 PID Controller

Proportional-Integral-Differentiator controller also know as PID controller
is control loop feedback mechanism controller [58].The controller is the
most widely used process control technique for many years [12].The
first idea of PID controller has been given by a British scientist named
James Clerk Maxwell [58].However, Russian American engineer Nikolas
Minorsky developed the idea and bring it to the reality by using theoretical
analysis and named it as PID controller [58].PID controller has several
design techniques but most notable design has been made of by two
American scientist named John G. Ziegler and Nathaniel B. Nichols which
is also known as Ziegler-Nichols Method [12]. The most notable design
method of PID controller consists of time-domain or frequency-domain
performance criterion [12].PID controller basically calculates an error value
which is basically the difference between set value and a measured process
value. Afterwards, it applied three basic coefficients proportional, integral
and derivative [60].

Figure 2.5: PID Controller

2.16 Related Work

Although the concept is pretty new but some notable research takes place
in this particular field.Some of the research work has been discussed in this
section.

2.16.1 Orchestrating Resource Allocation for Interactive vs. Batch
Services using a Hybrid Controller

The research paper proposed a hybrid controller model which is based
on control theory that co-ordinates real time and non real time applica-
tions[3].The hybrid controller is autonomic and increase server utilization

19

as well as the revealed resources guaranteed the Quality of Services(QoS).
The main focus of the research is to maximize the server utilization within
a limited amount of power consumption.Vertical and horizontal elasticity
concept has discussed for better resource allocation.

Researchers study about different control models and their specific re-
quirements.Afterwards They try to relate control theory with the con-
troller models.The controller model has to be special feature like adapt-
ive,scalable,rapid,reliable and robust[3].Controller Matrix deals with SLA
parameters such as response time and frames per second.

In the experiment section the researcher has used 2 Dell PowerEdge R610 as
physical machine.Xen hypervisor used as a hypervisor, for hyperthreading
purpose 16 vcpu has been used as well.Moreover, 10.0.0.0/24 considered as
public network and IPTABLES rules are also implemented.A bridge vibr0
was created for proper connectivity between VM’S and Internet. Apache
open source server is used for web service besides apache various open
source tools for instance Git,HAproxy,HandbrakeCLI,Libvirt,RuBBos and
Loader. .

2.16.2 A Hybrid Cloud Controller for Vertical Memory Elasticity

The researcher proposed a synthesize controller which is designed with the
basis of control theory named hybrid memory controller.The controller has
the capability to scale up the resources if the system needs more resources
or scale down the resources to avoid the wastage of extra resources[24].The
main contribution of the paper is that the proposed controller adjust the
size of RAM of the VM’s by considering both memory utilization and
application performance[24].The one of main creation of this paper is
build up a new idea of vertical elasticity approach that is Hybrid elasticity
approach which is basically the combination of Capacity-based approach
and Performance-based approach.

They defined a new parameter named control knob parameter which solely
took the decision about the scale up and scale down of the allocated
memory.The decision has been taken on the basis of the response time(RT)
and VM’s memory utilization.The hybrid memory controller has 3 parts
Controller,Sensor and Actuator.Sensors gather major real time information
like memory utilization and mean response time which contributes in
decision making.Controller is doing the major part of the entire system
it dynamically tune the amount of memory according to the information
provided by the sensor.Actuator contributes to increase or decrease the
memory in each interval.

20

2.16.3 Autonomic Resource Provisioning for Cloud-Based Soft-
ware

This paper comes up with an elasticity controller named RobusT2Scale
which is created by using fuzzy logic.The controller automatically add or
remove the resources according to the defined elasticity policy.Elasticity
policy has been made by using type 2 fuzzy set[41].Threshold value was set
for the autonomic controller,the decision such as CPU utilization has been
made off by this particular threshold value.Elasticity rules has been applied
depends on this particular threshold value,threshold values consists of
only two variables high and low.

2.16.4 Coordinating CPU and Memory Elasticity Controllers to
Meet Service Response Time Constraints

Farokhi et al. proposed an autonomic resource controller which has the cap-
ability to adjust CPU and memory requirements for the cloud based inter-
active applications[25].Resource controller was implemented in the basis of
Fuzzy Logic.This paper researchers used three different benchmark tools
like RUBiS,RUBBoS and Olio to estimate the workload on open and closed
system models[25].The controller consists of four parts fuzzy controller, cpu
controller, memory controller and sensor.Fuzzy Controller implements fuzzy
logic in the system and it generates a coefficient in between -1 to 1, if it
generate -1 then it means the resources are over provisioned and if gener-
ates 1 then it means resources are under provisioned.Fuzzy Logic Systems
which is known as FLS has developed by the researchers to implement
the fuzzy controller.Fuzzy Logic systems derived from the fuzzy rules and
membership functions.(MFs)[25].They set some variables to design fuzzy
logic systems,average Response Time(RT), average CPU utilization(Ucpu)
and average Memory Utilization(Umem) are set as input variable.On the
other hand CPU coefficient(Ccpu) and Memory coefficient(Cmem) has set as
output variable.CPU controller works as an adaptive controller,the job of
the CPU controller is to adjust CPU cores for the applications by getting
the value from the fuzzy controller.The value is measured by considering
Response Time(RT) and the CPU coefficient(Ccpu).‘Memory Controller has
the same function like CPU Controller but the basic difference is instead
of adjusting cpu cores it deals with the memory.It dynamically adjust the
memory for the applications by the measured value of Response Time(RT)
and Memory coefficient(Cmem). Sensor is the last part of the controller, the
main task of Sensor is to allocate VM periodically by gathering information
about mean response time,average CPU utilization and average memory
utilization.

2.16.5 A Virtual Machine Re-packing Approach to the Horizontal
vs. Vertical Elasticity Trade-off for Cloud Autoscaling

Sedaghat et al. proposed automated scaling system which is basically
follow both vertical or horizontal scaling approach to handle the work-

21

load.The proposed autonomous system has the capability to dynamically
handle the existing resources in both pattern either scale out or scale up
approach [67].The system is cost effective and perform quite well.

22

Chapter 3

Approach

The chapter will outline a detail overview that how this research will go in
progress.The main motivation of this research is that the experiment will
be conducted based on the research questions and describe the questions
in details.

1. How can we determine a threshold value known as set value?

2. How can we build a dynamic PID controller considering the differences
between the set point and measured value, and apply the correlation based
on proportional, integral, and derivative terms?

3. How can we design and build a sophisticated Service Level Agreement (SLA)
driven infrastructure to provide efficient QoS by applying better resource
allocation?

The research questions set a clear view how the paper will be in
progress.The set value is played the most valuable part of this entire
part of the research. The first phase of the research is to analysis the
set value which will be the main part to implement the PID controller.
Depending on the set value the PID controller will do the job.PID controller
will increase the server utilization in order to use the concept of control
theory. The fundamental logic of PID controller is it based on the
mathematical logic of proportional,Integral and derivative and generates
a value which will make the existing anatomic controller more dynamic
and more reliable. The whole infrastructure should ensure quality of
services(QoS) for interactive and non interactive applications.Moreover,
Service level agreement is another key issue which should be maintained
by the whole infrastructure.

The approach part will consists of following steps:

• Determine the set value.

• Design of the PID Controller Model

• Implementation of the model

• Experiments in different environment

23

• Data Collection

• Data Representation

• Fetch the resulting Value

• Analysis the expected result

3.1 Objective:

The main objective of this research was highlighted in the problem
statement which consists of three questions that need to be solved precisely
to figure out the whole problem statement. The terms and concept which
is placed in the background chapter give a clear indication about the work
and also provide some basic ideas of control theory and PID controller.

The main motivation of the research is to build an experimental scenario for
PID controller logic which will enhance the performance of the autonomic
controller to increase the server utilization. The set point is one of the
main feature to build PID controller logic. The existing system already
have installed server and the batch processing features are installed in the
server system. Moreover, PID controller logic will perform the experiments
in both vertical and horizontal scaling procedure to ensure better resource
allocation. However, the existing autonomic controller used application
level metrics for interactive and non interactive applications. Service Level
agreement should be full filled to improve the performance the autonomic
controller.

Overall the design pattern of this entire research will consists of three basic
parts. Design part gives a clear view to the reader that how this research is
conducted.The three basic parts highlighted in following.

1. Design Phase

• Fix Set Value

• PID Controller Model

• Decision Model

• Expected Result

2. Implementation Phase

• Experimental Setup

• PID controller logic implementation

• Pattern the workloads

• Conduct the Experiments

• Testing Phase

• Results from the experiment

24

3. Analysis and Result Phase

• Collecting Data

• Plotting Graphs

• Analyzing the Graphs

3.2 Set Value, Process Value and Error Value:

The set value is known as the set point which will play the crucial role in
the whole part of this research. Set value is also known as Control Value
[66]. The set point is a non-negative weighted value that is basically a
threshold value in this research. Set value or set point is the targeted value
or desired value that needs to be achieved. Therefore, the value is known
to describe the overall norm of the entire system [69]. The set value will be
set according to the value of the desired response time.Ahmed and et al. [3]
estimated the value will be the range of minimum and maximum average
response time for instance if the average response time in between 100 and
500 ms. then we have to take the set value within range of 100 to 500. The
set value should be more precise to count the error value. If the measured
value is less than 100 then the value is ignored and instantly reduce the
resources. Response time time is it in between 100 to 500 will be counted as
normal and controller does not have to perform any operations . However.
if the response time is more than 500 than the difference will be calculated
between average response time and measured process value.

Process Value is known as measured value [66]. The measured value is
the response time that is generated by the system. Moreover, the thesis
work is to minimize the process value through the controller. The goal of
the controller is to minimize the error value through it’s mechanism. The
error value is denoted by e(t). Error value has been changed through the
controller and generates a moderate value near to the set point known as
control variable and it denotes as u(t).

3.3 Features of PID Controller

PID controller is build on a topology based on proportional,integral and
derivative terminology. The controller build in a control loop feedback
mechanism. The most basic features of the PID controller it estimated
the error value e(t) on the basis of the difference between set value and
the measured value. Afterwards, it applies the topology of proportion,
integral and derivative terms and make the correction of the error value
and generate the controller output [58]. The controller sends the output
to the existing autonomic controller to adjust the resources. PID controller
itself is divided by three control based logic units and the logic units itself
acts as a controlling unit Proportional controller or P controller, Integral
controller or The controllers are describe briefly in following. The error
value is the difference between the process value and the set value.

25

3.3.1 P Controller:

Proportional controller which is known as P controller. The goal of the
controller is to generate an output value which is proportional to the error
value e(t). Controller estimated output value by multiplying the error value
with a certain constant value [2]. This certain value is known as proportional
coefficient and is denoted by the symbol Kp. The proportional coefficient is
a non negative weighted value and it is determined when the controller is
tuned [66]. The controller has some limitations for instance it never reaches
im steady state condition. As a result steady state error is quite familiar in
this controller. However, if the error is small then the P-controller could not
be able to provide a better solution [66].

Figure 3.1: Diagram of P Controller

3.3.2 I Controller:

Another component of PID controller is I controller and I is originated
from the mathematical term Integral. The integral controller comes to
the scenario to remove the steady error. Major functionality of integral
controller is to integrate the error value over a period of time until the error
value has reached to zero [2]. After the integration part a resultant value
has been generated which is called accumulated error value. In the next
phase the accumulated error value is multiplied with a Integral Constant
Ki. Integral controller has the capability to minimize the steady error and
if the steady error decreases then steady error also decrease.

26

Figure 3.2: Diagram of PI Controller

3.3.3 D Controller:

The last component is the D controller like Integral controller it also
originated from the mathematical concept Derivative. The rest of the
controller for instance P and I controller does not have the capability
to predict the future behaviour of the error but the D controller is an
exception. Derivative component of the controller is more necessary to
compensate for sudden changes in the error [66].

3.3.4 Combination of the controllers:

Though the three main components composed the actual PID, but most
often the P and I controller has been used because of the D controller
or the derivative controller has the lack of finesse [74]. Moreover, the D
controller is difficult to implement. In spite of the problems of D controller,
D controller is anticipating the future behaviour of the error [2]. P, I and D
individual controller has several drawbacks, also integral and derivative
action to a proportional-only controller do not generate the appropriate
outcome [74]. Moreover, the I controller is too much aggressive which
makes PI controller is bit complex. So, the overall combination of all
these three functions make the controller quite stable and robust which can
generate an appropriate control signal to get the desired response from the
controller [66].

27

Figure 3.3: Diagram of PID Controller

3.4 Algorithm of PID Controller:

PID controller is a combination of mathematical function like proportion,
integral and derivative. It follows a mathematical equation. Moreover, the
behaviour of the controller maintains control theory mechanism which has
been stated on briefly in the background chapter. Controller has generated
a process value u(t) through a mathematical function and minimized the
error value. PID controller has followed a simple algorithm to generate the
above mentioned process value although there has been many algorithm
has been followed by the PID controller. However, in this research a simple
and most well known algorithm has been discussed.

PID controller has several well known algorithms but most common
algorithm is the Zieglers Nichols Algorithm. This study will brief discuss
how this algorithm will work and contribute this research.

CO = Kp[e(t) +
1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

][75][4] (3.1)

e(t)=Error Value
Kp= Proportional constant
CO = controller Output
Td= Derivative time constant
Ti= Integral time constant
Kp = Proportional Gain

CO = Kpe(t) + Ki

∫ t

0
e(τ)d(τ) + Kd

de(t)
dt

[75] (3.2)

The first equation resembles the mathematical function of getting the
control variable. Td and Ti are the time constant for derivative and integral

28

controller consecutively. Whenever Kp is multiplied by the Integral time
constant we get a new constant that is called Integral tuning constant or
Ki. Similarly, whenever Kp is multiplied by the derivative time constant
new derivative tuning constant has been generated which is expressed by
Kd. However, in our PID controller we are directly work with the tuning
constant parameters such as Ki and Kd instead of using the derivative time
constant Td and integral time constant Ti. The parameters Kp , Kd and Ki
should be estimated optimally so that the closed loop system has to give
desired response [6].

3.5 Autonomic Controller Model:

The autonomic controller has designed by the researcher Bilal for decision
making purposes [3]. Based on the decision it perform both horizontal
and vertical scaling by allocating resources. The control theory is used
for decision making. Autonomic controller model is basically adopted the
model of hybrid controller model and like other controller it is base on
some parameters. Two parameters rtk and rti is defined, the the desired
value is set as rtk and rti set as measured value. An error value is set
which indicates the difference between the two values. Parameters Umemi
and Ucpui deals with the utilization of memory and cpu respectively. In
addition controller allocate CPU and memory by two parameters cpui and
memi.

Figure 3.4: Autonomic Controller

3.6 Design Phase

PID controller is more popular and widely used controller in the industry
because of it’s simplicity and robust performance. Though PID controller
is much effective controller logic and provide good solutions for some
control problems but in some cases it cannot provide optimal control [58].
Moreover, small number of parameters are used for tuning the control
mechanism also tuning methods may not provide satisfactory closed loop
responses in some circumstances [5]. We have to consider all those issues

29

to design the controller and make as much efficient to provide better and
fair result from the controller. PID controller logic has been implemented
with the existing autonomic controller. Both PID and autonomic controller
is based on the control theory and PID is follow the close loop feedback
mechanism. Decision made by PID controller and the task of autonomic
controller is to the resources for instance by doing vertical and horizontal
scaling.

3.6.1 Decision Model:

PID controller is a feedback model controller that maintains a sudden
algorithm. The prototype of the PID controller maintains a certain
algorithm to generate the control output. A build in sensor lies on the
prototype which has the ability to compare the generated response time
which is identified by the process value and compare with the maximum
response. The whole operation has been divided in two phases .The
first phase is handled by the prototype of PID controller and the second
phase has been done by the existing autonomic controller. The existing
autonomic controller consists of four sub models which has the ability
to work simultaneously [3]. Autonomic controller is also based on some
parameters which contributes to perform Vertical and horizontal scaling
[3]. We are going to give overall descriptions of the whole mechanism in
the implement section but in this section we just highlight every phases in
following:

First Phase: PID controller is going to perform the operation in the
initial stage.

• Generate the process value by the sensor.

• Based on the process value or PV an error value has been estimated.

• Error value has gone through the process of PID.

• The output signal has been generated through the PID.

Second Phase:

• Collect the information from the PID

• Decision to perform Vertical Scaling

• Decision to perform Horizontal Scaling

• Confirmation of the final state.

Whenever the first phase has finished the operation then the second phase
will start. In the second phase the vertical scaling and horizontal scaling
both are going to add new resources. However, in vertical scaling a new
CPU or memory is added and in horizontal scaling a completely new VM
is added.

30

3.6.2 Design of Controller Metrics:

We need to perform precise actions to show the overall analysis. Metrics
are the measurement of the controller behaviour which denotes how
controller reacts and how it adjust resources for real time and non real time
applications [3]. To perform correct actions metrics plays an important
role and metrics will be collected from the VM’s [3]. Webservers are
always latency critical and for calculating the response time for real time
applications we have to measure each state of the webserver. Non real time
applications for instance the batch processing the state will also checked
like real time applications. Though the research will focus much less in
non real time applications. The metrics which will consider in this research
will be stated in following:

• Response time of Webserver

• Frame Per Second or FPS of Video encoding

• Increase or decrease CPU cores

• Allocated or dis-allocated of RAM

Response time of the webserver is defined by as total amount of time
is needed to respond a particular request. Large number of request is
sending each seconds in the webservers and response of those request has
been generated every moment. In this thesis we are going to generate
request of 250 or 500 clients and calculate response time in milliseconds
or ms. However, in the case of batch processing software consumes more
CPU power to do video encoding. Therefore, to ensure QoS we have to
measure the non interactive batch processing applications by Frames per
Second(FPS)

The whole part of of design of the controller metrics has done already in
the autonomic controller in the previous thesis. Therefore, I have given
some basic ideas of the design of the controller metrics. Control metric has
designed by Bilal and et al. in the existing autonomic controller.

3.7 Stages of Implementation:

The implementation procedure consists of several tasks that needed
to be completed before going to the final experiment. Moreover,in
implementation stage we need to setup an outline for building up the
experimental stage which consists of several important tasks. The tasks
will be discussed in following:

• Experimental Setup

• Implement the controller Logic

• Generate Workloads

31

• Necessary Tools

• Define Metrics for Interactive and Non-Interactive Applications

• Conducting Initial Experiment

3.7.1 Experimental Setup:

Experimental setup gives a clear vision of our entire implementation
procedure. After designing the PID controller logic we need to configure
the physical servers. The physical servers are setup in Linux environment
of Ubuntu 12.0.5. Two physical servers are build up with same platform for
this entire research project. Physical servers should be reliable in terms of
performance and security.

To build up virtual environment we need to install hypervisor and VM’s.
Therefore, we have install Xen hypervisor which is a type 1 bare metal
hypervisor and the installation procedure of Xen is simple than other
hypervisors for instance KVM and VMWare. However, in the case of
XEN hypervisor installation disk partition has to be performed during the
time of installing the operating systems [3]. A dynamic disk partition tool
named Logical Volume Manager or LVM has been set up for partitioning
disks. LVM is a common and most well known tool that has been
used more often for disk partitioning and LVM has the capability to
manage large disks by allowing disks to be added and replaced by without
downtime or service disruption [47].

In the final phase of experimental section we have to configure the
networking and allocate separate subnets for the VM’s. Moreover, an
established connection between the servers is set up to ensure high
performance of each servers [3]. The servers has the ability to host three
different kinds of VM’s. The are listed in following:

• Webservers

• Batch

• Database

Implementation of Database and Webserver we have followed 3 tier
application systems [33]. Webservers deal with Presentation layer and
Business/Domain layer, whereas Database handles data storage layer.
Batch is dealing with the batch processing jobs for instance video encoding.
The SSH or secure shell connection will be establish for security and
authentication purposes.

3.7.2 Implement the Controller Logic

The prototype of the controller logic has to be implemented with the
existing autonomic controller. The prototype of the pid controller logic

32

and the existing autonomic controller both are derived from the control
theory. PID controller logic has been set up with the existing autonomic
controller to make it more efficient and robust. Moreover, the foundation
of the whole research lies on the PID controller logic implementation which
can contribute to achieve the desired level of QoS for server utilization [3].

PID controller logic is the main foundation of this particular research.
The controller is based on a threshold value which has the capability
to control the resources or allocate the resources in proper way. PID
controller operation is so simple than other controllers [39]. The logic
of PID is easy to implement, but the parameters has to be set carefully.
Moreover, implementation of PID depends more in the parameters value.
The parameter set value, Kp, Kc and Ki will be set to run the PID. In our
case we write a python script to configure the PID. Also we have tested
with different set value to test the PID controller. Finally, run the code to
execute the PID.

The existing autonomic controller is also written in python script [3]. Like
PID controller the autonomic controller has the potential to make decisions.
Autonomic controller has the capability to perform vertical and horizontal
scaling. Furthermore, controller has the ability to collect the metrics from
the running VM’s [3].

The major thesis work is to relate the PID controller with the existing
autonomic controller. PID controller has the capability to send the signal to
the autonomic controller. The major work is to make the decision precisely
and appropriately. PID take the decision based on the response time
for the webservers and frames per second for the batch processing files.
Whenever PID take the decision it generates the control signal which sends
to the autonomic controller. Afterwards, autonomic controller provide the
resources by performing scaling. Vertical scaling has performed before
horizontal scaling. CPU and memory has been provide based on the
availability of the resources, whenever the resource allocation is completely
done then it performs the horizontal scaling by providing a new webserver.

3.7.3 Generate Workloads:

The workloads has to be measured in several ways. Many tools have been
used so fa too measure the workload for instance Loader.io , Autobench
and Httpmon. In this case we have generated workload through Httpmon.
Httpmon is a simple monitoring tool that has been design to monitor the
response time. The installation procedure is simple than other tools and it
generated the workload and save it in a log file.

The two physical server we are dealing with in this research. One is named
bilal1 and another one is bilal2. The installation procedure has taken place
in bilal1. Before installing Httpmon we have to install a revision control
system. Git is most well known and lightly used revision control system.
After installing Git in our physical server we have to configure the Httpmon.

33

3.7.4 Necessary Tools:

To create and test the environment we need some tools to use. As
mentioned before that generating loads we need Httpmon and Git. Besides
this two tools we need more tools for building the environment of the
entire systems. Most of the tools are open source and configured manually.
Moreover, almost all of the tools are easy to install and user friendly.
However, tools have the system dependencies for instance the physical
servers are running on Ubuntu 12.04 which is bit old therefore we need to
keep an eye to installing these tools. The tools are discussed in following:

• Apache2: Apache2 has been installed for running both of the
webservers.

• Autobench: The benchmark tool has used to generate the average
response time of the server by sending the amount of HTTP request
and present it in the graphical manner.

• Git: Most used open source revision control system Git has been used
in out experiment.

• Httpmon: Httpmon used as a monitoring tool basically used to
survey the state of the running webservers by sending valid Http
request. Httpmon used the HTTP protocol.

• RuBBoS: RUBBoS is particularly a bulletin board benchmark applic-
ation and it was by JMOB [63]. It allows users to browse and post
their comments and activities.

• Python: Python the scripting language we used for our tools.

3.7.5 Define Metrics for Interactive and Non-Interactive Applica-
tions:

The application level metrics is the measurement criteria of the webservers
and batch processing software. The level of metrics predefined in our
analysis terms. Our system needs to achieve a certain goal which
particularly depends on the level of metrics. However, the criteria is
differed for interactive and non interactive applications.

The response time is the measurable criteria for the interactive applications.
The task of a response time is defined as the time elapsed between the time
when a task is ready to execute to the time when it finishes its job [62].
Basically the response time is the amount of time is needed to finish a
particular service for instance memory fetch, disk I/O , database query
and loading website [62]. Several causes are responsible to generate high
response time such as slow database query, high CPU usage, memory
starvation and poor performance of server. Our goal is to maintain a
desired level of response time within a certain interval to minimize the
Service Level Agreement(SLA) violation [3].

34

In non interactive applications a software service has used so far to
measure the Frames per second. The software is known as HandbrakeCLI.
HandbrakeCLI basically a command line interface which enables video
encoding, decoding and conversion [35].The average frame per second
should be in a decent range for instance in between 15-20 not below than
15. Otherwise, it counts as SLA violation.

3.7.6 Initial Experiment:

The experiment will conduct with two different phases. Experiments
will show how our prescribed system will work and help us to make
final decision about our system. The first phase of experiments lies our
observation about how changing CPU cores influence to map the VM’s
which is known as CPU hotplug Next phase we are performing the same
operation instead of changing the CPU cores we will change the memory
that is called memory hotplug.

3.7.7 CPU Hotplug:

Hotplug means adding or removing any components and add the capacity
of the total system without switching off the whole system [37]. The
CPU hotplug means the adding or removing the vcpu on a VM from the
hypervisor without closing or rebooting the VM [3]. We need to do CPU
hotplug because of testing purpose, we need to give more resources to
perform that how long it takes to VM to add the vcpu by adding or
removing them.

The hotplugging has taken place in the phase of vertical scaling. The whole
experiment conducts in a two phase. First phase we increase the CPU one
by one and measure the amount of time it takes to map the VM. Next phase
we decrease the vcpu in the same rate and examine the time.

3.7.8 Memory Hotplug:

Memory hotplug has the same conception like CPU hotplug. In stead of
adding CPU it is adding or removing memory from the system.

We will conduct memory hotplug in two phases, in first phase we will
test with 8GB. Afterwards we will increase the memory and make it 10
GB and try to calculate the to map the VM. At the same we also decrease
the memory from 10 GB to 8 GB and calculate the estimated time.

3.8 Experiment:

The section will focus the overall experiments and their prerequisites
briefly. This phase will conduct after the completion of the initial exper-
iments. Initial experiments provide some basic ideas to the reader how the
main experiments will be conducted. In the phase of the experiment, we

35

also have conduct some of the proposed sample experiments which can
generate the results and generate the data for the analysis stages.

The structure of the sample experiment stages contribute to build a proof
of concept of the contribution of this particular research. The total structure
of the sample experiment is stated in following:

• Control Interval

• Webserver (Vertical Scaling)

• Webserver (Horizontal Scaling)

• Batch Processing Experiment

3.8.1 Control Interval

In this experimental phase we have to test the prototype before the main
experiment, therefore we have to find a stable interval to test our prescribed
PID controller prototype [3]. We will generate a response time in two
phases of interval for instance we will set a valid time duration for
generating the response time. The time duration will be stated as following:

• 10 seconds

• 20 seconds

However, for the batch job to generate Frames per Second(FPS) takes longer
time for instance the interval is around 10 minutes.

3.8.2 Webserver(Vertical Scaling):

In this section of the experiment performs with the real time latency crit-
ical applications and allocate nodes to perform vertical scaling procedure.
Moreover, the workload has been generated accordingly. In this experi-
ment we have to generate workloads in two different phases. Firstly gen-
erate the workload for 1000 active users and test the prototype can handle
it effectively. Secondly the same experiment will run for the 2000 active
users. If the response time is increased the controller will allocate the re-
sources accordingly. On the other hand, if the response time is decreas-
ing than the resources are reduced. However, when all the resources have
been used then the goal of the latency critical application to steal all the re-
sources from the batch and provide it accordingly to meet the desired level
of throughput and avoid the SLA violation [3]. Furthermore, the system
has the functionality to fully avoid the conflict of the resources.

The purpose of this experiment is to observe that the prototype has the
capability to allocate the resources successfully for the latency critical
applications and maintain the desired level of throughput and avoid the
SLA violation and maintain the QoS. Moreover, the controller system has
to be maintain a solid cooperation between real time and non real time

36

application to provide resources from the batch job to lend it from the
batch and allocate it to the webserver. Whenever there is no shortage of
the resources then it also give it back to the batch.

3.8.3 Webserver(Horizontal Scaling)

This section will discuss about a major issue suppose the workload
increases randomly and it’s duration stays for longer period also the
batch is running out their resources then we have to perform horizontal
scaling.To perform horizontal scaling we have to set up a new physical
machine and bootup seconds new webserver. Also add up load balancing
configuration to balance load between the two webservers.

In horizontal scaling we have to add a new webserver that will boot
up and configured in the second physical machine. Load balncer has
configured with the newly formed webserver. When the newly formed
webserver is added to the system, the first webserver reduce half of it’s
resources immediately for the batch job. Second new webserver used half
of it’s resources together with the first webserver and tackle the workload
as long as workload tends to become normal. Afterwards when the
workloads going back to the normal stage, the system shut down the
second webserver and reduces the resources. Therefore, the system goes
back to it’s previous stage and perform vertical scaling as before.

3.8.4 Batch Processing Experiment:

Batch processing jobs are only CPU intensive but it used minimal level
of memory. The batch jobs are not latency critical applications. Batch
processing files deals with the video encoding. We perform the batch
process which estimated number of frames in one seconds then we show
how much CPU it utilized. For this experiment we configure new VM
called batch and perform operation onto it.

3.9 Data Collection and Plotting:

The PID controller maintain a desired level of response time per
second(RPS) for the real time applications and frames per second(FPS) for
the non real time application by providing the resources according to the
defined policies. To proof that the system is functioning properly and do
the operation for instance changing cpu and memory properly we need
to generate the data precisely. Moreover, data reflects that the accuracy
of the system and proof that our implementation of the whole system is
working according to our prescribed terminology. However, for collecting
data there should be certain prerequisites. Most desired prerequisites are
the two physical servers, two webservers , database servers and batch pro-
cessing service should tuning fine and accordingly.

Whenever the data has been collected then we have to represent it as a

37

graphical ways. Data has been collected the from the VM’s simultaneously.
Cpu script is running on the VM’s which can give the actual usage of CPU.
On the other hand the memory usage also measure with a bash script. After
getting the data we have to plot line graphs to represent them.

3.10 Analysis:

The last phase of the approach part will consist of the most important
section of analysis. The task of this phase is to analyze the plots and
charts which are obtained by plotting data in the previous phase. Analysis
phase will help us to find the ways how can it develop it in future which is
regarded as future works and draw a fair conclusion.

The most crucial part of of analysis is to check the behaviour of the pid
controller system, also observe that the PID controller can synchronize
in a right manner with the existing autonomic controller. Also a major
point of the consideration includes how the controlling system perform in
the decision making phase and minimize the desired threshold value to
allocate proper resources without SLA violation. Furthermore, to maintain
the Quality of Service(QoS) the controlling system should truly determine
the resources and avoid the misuse of resources for instance task is to avoid
over or under provision of resources [3]. To avoid the violation in decision
making the controller should have to consider the following [3].

• Response time < 500 miliseconds.

• Average Frames per Seconds > 15 frames per second.

38

Chapter 4

Design and Models

In this chapter the implementation of the controllers both the PID controller
and existing autonomic controller will be described more than in the
approach and the design part of the approach. Moreover we are going to
focus deeply about our overall operation of the whole controlling systems
which will reflect how can we adjust the resources. In the last phase of
this chapter controller metrics will contains information on how we set the
criteria of adjusting the resources which will help us to design an algorithm
in the next chapter.

4.1 Controller Characteristics:

PID controller and autonomic controller both are derived from the control
theory, also they are working as feedback closed loop controllers. As we
describe the structure of both of the controllers in our approach chapter.
Feedback controller has some potential anticipation than the open loop
controllers. Feedback controllers have some basic characteristics [18].

• Steady State Accuracy: A process is called in steady state if the
parameters which define the behavior of the system or the process
are unchanging in time [70]. Whenever, a system comes to a steady
state, the difference of input and output is measured [71]. To predict
the accuracy in a steady state of a control system, a standard measure
of performance is widely used which is known as Steady State error.
Steady state error occurs when the the output of the system at steady-
state does not exactly agree with the input [71].

• Stability: Stability of a controller indicates small changes in input for
instance reference input etc.and any other initial conditions do not
occur any large changes in the control system output [18].

• Disturbance Rejection : In real time control system it is always
demanding to design a good controller which can generate desired
control output because there is always some external noise that
can change the actual output. The distribution and magnitude of
the disturbance or noise relies on the working environment, and

39

sometimes it is too difficult to avoid the noise from happening [20].
However, PID controller has the ability to reject the disturbance by
using the output to shape the input of the system [79].

• Sensitivity: In the structure of a feedback controller the parameters
are matched to the system process. Sometime, the process variation
can occur and change the parameters of the controller which can
make the system unstable [68]. Therefore, the sensitivity is another
key issue for the feedback controlling system. Parameters of the
controller should have chosen carefully so that the process variation
does not the effect the sensitivity characteristics of the controller [68].

• Bandwidth Extension: Bandwidth extension denotes to the deliberate
process of expanding the frequency range of a bandwidth signal
in which it contains an appreciable and useful content, and the
frequency range in which its effects are not so small [7] .Control
system has the capability to expand it’s frequency range when it is
necessary.

4.2 Controller Models:

The desired characteristics of the feedback controller are stated in section
4.1. The existing autonomic controller has also been designed based on
on some ideal controller models [3]. Two types of controller models has
been prescribed, one is capacity based and another is performance based
controller. The main evaluation criteria of the controller is their behaviour
and performance. The prototype of the of the autonomic controller has
made based on the combination of these two models [3]. The controller
models has been described briefly in below.

1. Capacity-based Controller Model: This model mostly based on
the concept of allocating the resources properly and contribute the
level of utilization [3]. Capacity based model is well known for it’s
simple architecture so that the model is widely used for performing
vertical scaling [3]. However, there is some drawbacks in capacity
based model for instance the utilization of resources of real time
applications cannot assure the proper Quality of Services(QoS) which
might be lead to over-provisioning of resources.

2. Performance-based Controller Model: In performance based con-
troller model the level of resource utilization strongly emphasized
on the Quality of Services(QoS) in real time applications. Many re-
searches found out that the performance based controller model in-
crease resource efficiency than the other controller models. Perform-
ance based model gather information from the application level met-
rics such as response time, and perform the decision based on the
criteria. Application level metrics provide a clear indication about

40

latency critical applications. Controller itself has some parameters for
instance acceptable and non acceptable values which largely contrib-
utes in decision making. However, like other controlling models per-
formance based controller models has some drawbacks. One of the
major limitation is that the performance based model decision mak-
ing criteria mainly based on the application level metrics which does
not indicate, which resource or resources are causing the degradation
of Quality of Services (QoS). Moreover, the model also requires col-
lection of resource utilization to perform decisions in a more efficient
way to reduce resource wastage [3].

Figure 4.1: Capacity and Performance based Controller

4.3 Performing Operation:

The decision model was described briefly in section 3.5. We have just
highlighted the basic principles of our overall decision model. PID
controller handles the major decision logic about the whole system. As
described in section 3.1 is that the set value plays a key role in decision
making. Set value has been manually configured in the whole system.
We will described more about set value in the last section of this chapter.
In this section we will describe how our prescribed controlling system
performing the mechanism in overall. The whole mechanism is divide
in five phases. First three phase the PID controller perform the decision
based on proportional, integral and derivative and generate the controller

41

output(CO) based on the process value. Also the controller generate a
controller output and send it to the autonomic controller. In following the
whole operations of the control system will describe successively.

Perform Decisions
Phase Number Controller Name Perform Activity
1 PID Controller Find out the Process

Value(the measurement
of QoS The average Re-
sponse Time / Frames Per
Second) and compare with
the desired amount of QoS.

2 PID Controller Determine the error value
and apply correction based
on Proportion, Integral and
Derivative.

3 PID Controller Determine the Controller
Output and send back to the
Autonomic Controller.

4 Autonomic Con-
troller

Check the CPU and Memory
Utilization.

5 Autonomic Con-
troller

Perform actions if needed.

Table 4.1: Decision Performing

Set value is the measurement of desired level of QoS and it has been fixed
manually by the system administrator . PID controller compare the set
value with the generating process variable in sudden time interval. The
controller has the capability to check the process value of the environment.
A sensor has been built with the PID that can check out the process value.
Time interval is also fixed before performing the operation. If the process
value is equal to the set value then no operations will perform. Another
most important task of PID is to maintain the desired level of QoS.

The autonomic provision controller task is to get the output from the PID
and allocate or reduce memory or CPU. However, the controller can check
frequently how much memory or CPU has been utilized by the system. The
controller has two specific parameters Ucpui and Umemi. Parameters are
the equivalent of CPU and memory utilization.

42

Figure 4.2: Design of overall Control Systems

4.4 Metrics of Controller:

The controller metrics has defined for webserver and batch jobs separately.
The main contribution of this project is the set point which is particularly
dealing with the SLA violation. Study shows that human brain cannot dif-
ferentiate the changes which happens with 100 miliseconds []. Moreover,
a human eye can detect changes when it is at least 1 seconds. Therefore
based on this research we will keep our average response time within 100-
500 miliseconds. Average response time more 500 miliseconds will be re-
corded as SLA violation [3]. However, if the response time will drop than
100 miliseconds which indicates the drop of workload, so forth the resource
will reduce instantly. The extra usage of resources cause redundancy and
QoS does not ensure properly. The following tables will give a clear view
about the Service Level Agreement which we defined for the webserver.

SLA Violation
Average Response Time SLA Criteria
Fast less than 100 miliseconds
Accurate 100-500 miliseconds
Slow More than 500 miliseconds

Table 4.2: SLA Violation of webserver

In batch processing files SLA violation policy is bit different than the policy
of webserver. The measurement criteria of batch processing files is Frames
per Second or FPS. In this case the lower priority is counted as Service Level
Agreement(SLA) violation. Average FPS should lies in between 15-20 and
below 15 FPS has been counted as SLA violation.

SLA Violation
Average Frames per Second SLA Criteria
Fast more than 20 FPS
Accurate 15-20 FPS
Slow less than 15 FPS

Table 4.3: SLA Violation of Batch processing

43

44

Chapter 5

Implementation

In this chapter includes the whole experimental setup of our entire
research project. Experimental setup consists of the network configuration,
virtual machine setup, configuration of load balancing such as HAProxy
, generation of workload through HTTPmon and Autobench. Moreover,
an algorithm is also designed which will reflect how can we allocate the
resources. The algorithm contains information on how the design became
and how this was done. The algorithm will be represented as a flow chart
which can clearly describe the logic of the whole system.

5.1 Experimental Setup:

The set up of network system consists of two Physical Machine(PM) of of
DELL PowerEdge R610. The machine was set up in Oslo and Akershus
University College [3]. Two machines were already setup for the previous
experiments. To perform the experiment, we are allowed to get access to
both of the machines and manage to control all the resources. Both of
the machines have same specifications and running the same operating
systems Ubuntu 12.04.5 LTS. Xen is the only bare metal hypervisor which
supports all these specification and for it’s simple architecture, we used
it in our experiment. The following table stated the configuration of the
Physical Machines.

PM 2xR610
Components Configuration
CPU 2xQuad-core Xeon E5530 2.40

GHz
Memory 24GB of 1066 MHz
Disk 2x146 GB
Network 8xEthernet Ports

Table 5.1: Physical Machine Configuration

To perform vertical scaling we need to increase our nodes for instance,

45

memory and CPU. Therefore, we have allocated used 16 CPU and 24 GB of
Memory to do the vertical scaling procedure. Hyper threading is enabled
in the CPU. The PM’s are connected each other through an interface eth1
and the bandwidth capacity is allocated about 1 Gbps [3]. Moreover, the
Physical Machines(PM) have Internet access and secure shell access from
outside.

Figure 5.1: Network Setup

5.2 Network Setup:

The VM’s which are created for the experimental setup were configured
with a private network 10.0.0.0 and Subnet is 255.255.255.0. Server1 and
Server2 has named Bilal1 and Bilal2 successively. The firewall rules of
the two servers were configured to allow traffic outside from the main
network. Moreover, NAT rules are also configured to allow internet access
through whole network.

Network Overview Table
Physical
Machine

Interface IP Subnet

Server1 eth0 129.39.120.25 255.255.255.254
Server1 eth1 10.0.0.1 255.255.255.0
Server2 eth0 128.29.120.26 255.255.254.0
Server2 eth1 10.0.0.2 255.255.255.0

Table 5.2: Network Overview

Server1 and Server2 is directly connected with the Internet through the
interface eth0. To ensure Internet connections from the other network
peripherals we have to apply the IPTABLES rule for POSTROUTING as

46

well as MASQUERADE. The IPTABLES rules are stated in List 5.1. The
bridge vibr0 has been configured to ensure network connection between
the VM’s internet connection which is attached with the interface eth1. The
other connections such as tcp and udp connections are ACCEPT in both
ways from webserver, batch and database to servers or vice verse.

Listing 5.1: IPTABLES Rule

i p t a b l e s −I FORWARD − i v i r b r 0 −o eth0 −m s t a t e −−s t a t e
NEW, RELATED, ESTABLISHED − j ACCEPT

i p t a b l e s −t nat −I POSTROUTING −o eth0 − j MASQUERADE

5.3 Virtual Machine:

As mentioned in section 2.7 that Xen has a special domain called domain0
or Dom0 which contains drivers for the hardware, as well as the toolstack
to control VMs.[82]. Before installation the Xen hypervisor the Domain
Dom0 was installed. Besides,Dom0 Xen hypervisor has other guest which
also known as guest domain or DomU but the Dom0 is the most privileged
domain among them.

The main drawbacks of Virtual Machine(VM) is that it needs more storage.
It can be solved in two ways either installing them from VM or creating the
Logical Volume Manager(LVM) partition. In addition the LVM partition
is bit risky and bit complex. Therefore, we have selected the disk image
procedure which is more simple and convenient than the LVM partitioning.
To perform the installation procedure first we have to create the disk image
which later used to bootup the virtual machines for instance the webserver,
database and batch.However the size of the disk image is 10 GB or 20 GB
based on the purpose of the VM. The commands that are used to create the
disk image are listing in list 5.2.

Listing 5.2: Disk Image

dd i f =/dev/zero of=template . img bs =8388608k
seek =6144 count=0

mkfs −t ext3 XenGuest1 . img

Disk image is stored .img file later it used fore creating the configuration
file for the VM’s. Each configuration files used separate disk images file
for installation procedure. The configuration of the VM’s stored in VM.cfg
files which consists of the total amount of memory,number of vCPUs, IP-
address, MAC-address, virtualization technique and so on. Each of the VM
is managed through the VNC console and access inside the VM which can
help us to do the troubleshooting for instance if any of the VM is crushed
then we can fix it through the VNC. In addition to change the network

47

or Secure Shell(SSH) configuration we are to do it through VNC [3]. The
Virtual Machine configuration file has been listed in list 5.3.

Listing 5.3: VM Configuration

import os , re
arch = os . uname () [4]

kernel = "/ usr/ l i b /xen−d e f a u l t /boot/hvmloader "
bui lder = ’hvm’
memory = 2048
maxmem = 5120
shadow_memory = 8
name = " webserver1 "
vcpus = 2
maxvcpus = 2
v i f = [’ bridge=virbr0 , mac = 0 2 : 1 6 : 3 e : 1 0 : 1 1 : 1 0 ’]
disk = [’ f i l e :/home/ramesh/webserver1 . img , hda ,w’]
, ’ f i l e :/home/ramesh/ubuntu−12.04.5−desktop−amd64 .
iso , hdc : cdrom , r ’]
device_model = ’/ usr/ l i b /xen−d e f a u l t /bin/qemu−dm’
boot =" c "
boot ="d"
vnc=1
v n c l i s t e n = " 0 . 0 . 0 . 0 "
vncconsole =0
vfb = [’ type=vnc , v n c l i s t e n = 0 . 0 . 0 . 0 , vncpasswd=t e s t 1 2 3 ,
vncdisplay =2 ,keymap=no ’]
acpi = 1
apic = 1
sdl =0
stdvga=0
s e r i a l = ’ pty ’
usbdevice = ’ t a b l e t ’
#on_poweroff = ’ destroy ’
on_reboot = ’ r e s t a r t ’
on_crash = ’ r e s t a r t ’

The VM’s are configured in the second server Server2 so the disk image
files are all put in there. Primarily for testing purpose we installed all of
the VM’s in both of them. However, later we have used Server1 for testing
purpose and closed all the VM’s because of saving the storage.Therefore the
overall infrastructure of our research project has been stated in the figure
5.2.

48

Figure 5.2: Overall Infrastructure

5.4 Overview of Experiment:

To perform the experiment we divided the whole infrastructure into three
parts They are Client side, Server side and Control side [3].

5.4.1 Client Side:

Client side is basically the portion where the workload pattern is feed into
the HTTPMon or Autobench and then simulate the traffic by sending HTTP
requests. Afterwards, it estimated the response time based on the sending
requests.

5.4.2 Server Side:

In server side all the VM’s are running except the database VM. Because,
controller adjust the resources all the VM’s and allocated them based on
the instruction. Only database server does not have the elastic resources
so that it cannot perform in this operation. In addition the initial domain
Dom0 also running in the server side. Load balancing tool such as HAProxy,
bulletin board application RuBBoS also set up as a server side application
[3]. The bootup procedure of the second webserver also take place in server
side to perform the horizontal scaling.

5.4.3 Control Side:

The controller works in the control side and performing the vertical or
horizontal scaling. The traffic arrives in the control side and distributed

49

between the webserver VM’s. Controller runs at a specific time interval
and collect the data based on controller metrics for real time and non real
time application. According to the collection of data the decision has been
made that whether to increase or decrease the resources. However, the
decision has been made whenever the resource utilization is more than 80%
otherwise no actions has been taken by the controller itself. In addition
control side is also responsible to allocate the resources of the batch VM. If
all the resources utilized the resources then it is going to check the resources
of the batch VM. If the batch use more resources then the control side can
allocate the resource by stealing the resources from the batch. Whenever
all the resources has been utilized then the controller send the signal to the
server side to boot up a new webserver to perform the horizontal scaling.

Figure 5.3: Experimental Overview

5.5 HAProxy

HAProxy is a load balancing tool, which is used to balance the load
between the webservers. In the case of vertical scaling scenario there is
only one webserver VM has been working. But whenever all the resources
are utilized and another webserver is boot up to perform horizontal scaling
then load balancing is needed to distribute the load between the two web
VM’s. An algorithm roundrobin has been designed which distributes the
traffic between the two webservers. We choose HAProxy because HAProxy
has native support for SSL which makes configuration lot easier than the
other load balancing applications. The default port 1947 is enabled which
gives a real time overview about the statistical data about webservers [3].
The configuration file of HAProxy is listed in list 5.4.

50

Listing 5.4: HAProxy Configuration

l i s t e n appli2−i n s e r t 0 . 0 . 0 . 0 : 1 0 0 0 2
option httpchk
balance roundrobin
cookie SERVERID i n s e r t i n d i r e c t nocache
server i n s t 1 1 9 2 . 1 6 8 . 1 1 4 . 5 6 : 8 0
cookie server01 check i n t e r 2000 f a l l 3
server i n s t 2 1 9 2 . 1 6 8 . 1 1 4 . 5 6 : 8 1
cookie server02 check i n t e r 2000 f a l l 3
capture cookie v g n v i s i t o r = len 32

option h t t p c l o s e
r s p i d e l ^Set−cookie :\ IP=

l i s t e n appli3−r e l a i s 0 . 0 . 0 . 0 : 1 0 0 0 3
dispatch 1 9 2 . 1 6 8 . 1 3 5 . 1 7 : 8 0

l i s t e n appli4−backup 0 . 0 . 0 . 0 : 1 0 0 0 4
option httpchk /index . html
option p e r s i s t
balance roundrobin
server i n s t 1 1 9 2 . 1 6 8 . 1 1 4 . 5 6 : 8 0
check i n t e r 2000 f a l l 3
server i n s t 2 1 9 2 . 1 6 8 . 1 1 4 . 5 6 : 8 1
check i n t e r 2000 f a l l 3 backup

5.6 RUBBoS:

RUBBoS is a bulletin board benchmark application and it was developed
by the project JMOB [63]. The main task of RUBBoS is that it enables the
end users to browse and post their comments and activities. In spite of lots
of advantages, the setting up procedure of RUBBoS is bit difficult task. To
perform the installtion of RUBBoS the first step is to install the webserver,
MySQL database server and initialize the MySQL database. MySQL is
required to install the PHP [63].

RUBBoS is a well structured benchmark application and it requires PHP5
version to make it usable. The first step is to install a web service platform
in both of the webserver VM. To employ PHP5 a web service platform is
needed. In this case Apache2.0 is installed with the module Apache MPM
prefork because of it is an open source web service platform, thread safe
and more suitable for PHP5 applications. Furthermore, a timeout has been
set for 5 seconds, the parameter has been names as Keep Alive timeout. To
setup the MySQL database we have to deploy a separate VM where Mysql
database is installed. The PHP5 configuration file of RUBBoS is listed in list
5.5.

51

Listing 5.5: PHP Script

<?php
funct ion getDatabaseLink (& $ l i n k)
{

$ l i n k = mysql_pconnect (" 1 0 . 0 . 0 . 9 " , " b i l a l " , " os lo123 ") ;
mysql_select_db (" rubbos " , $ l i n k) ;

}

func t ion getMicroTime ()
{

l i s t ($usec , $sec) = explode (" " , microtime ()) ;
re turn ((f l o a t) $usec + (f l o a t) $sec) ;

}

func t ion printHTMLheader ($ t i t l e)
{

inc lude (" header . html ") ;
p r i n t (" < t i t l e > $ t i t l e </ t i t l e > ") ;

}

f u n c t i o n p r i n t E r r o r ($scriptName , $startTime , $ t i t l e ,
$ e r r o r) ;
{

printHTMLheader (" RUBBoS ERROR: $ t i t l e ") ;

printHTMLfooter ($scriptName , $star tTime) ;
}

func t ion a u t h e n t i c a t e ($nickname , $password , $ l i n k)
{

$ r e s u l t = mysql_query (" SELECT id FROM users WHERE
nickname=\"$nickname \" AND password=\"$password \ " " ,
i f (mysql_num_rows ($ r e s u l t) == 0)

$row = mysql_fetch_array ($ r e s u l t) ;
re turn $row [" id "] ; }

func t ion getUserName ($uid , $ l i n k)
{

$user_query = mysql_query (" SELECT nickname
FROM users WHERE id=$uid " , $ l i n k) ;
$user_row = mysql_fetch_array ($user_query) ;
re turn $user_row [" nickname "] ;

}
?>

52

5.7 HandBrakeCLI:

For doing the Batch job HandBrakeCLI tool has been configured. To perform
the configuration of the HanfBrakeCLI tool we have to boot up a completely
separate Virtual Machine(VM). HandBrakeCLI basically a video encoding
to tool that can encode video for instance 1000 kbps for MPEG video
and 160kbps audio. It is also CPU intensive and able to perform in
multiprocessing [3]. The command of HandBrakeCLI is enlisted in list 5.6.

Listing 5.6: HandBrakeCLI

HandBrakeCLI − i Source −o Dest ina t ion

5.8 Workload Pattern:

Workload has been generated to test the system can properly handles the
workload and allocate the resources. To simulate the workload pattern
we have to generate only a single type workload that is the trend based
workload. The trend based workload has been generated gradually started
from 0 clients to 1000 and then stabilizes. The controller we have designed
can capable to handle the workload which increases gradually with the
amount of time. In the figure we have stated a sample of trend workload
pattern. The requests has been increases 0 to 10000 within 10 minutes.

Figure 5.4: Trend Based Workload

53

5.9 Implementing Controlling System:

The PID controller mechanism has describe in detail in section 3.3. Also
how PID controller mechanism is perform the operations along with the
existing autonomic controller was highlighted briefly in section 4. Both
of the controller has been implemented in a python script. The existing
autonomic controller model and script both are taken from the the research
conducted by Bilal et al. [3]. The autonomic controller script has been listed
in Appendix. The PID controller class file is listed in list 5.7.

Listing 5.7: PID Class

def _ _ i n i t _ _ (s e l f , P = 1 . 3 , I = 0 . 3 , D= 0 . 3 , Der ivator =0 ,
I n t e g r a t o r =0 , Integrator_max =500 , Integrator_min =−500):

s e l f . Kp=P , s e l f . Ki=I , s e l f . Kd=D
s e l f . Der ivator=Derivator
s e l f . I n t e g r a t o r = I n t e g r a t o r
s e l f . Integrator_max=Integrator_max
s e l f . Integrator_min=Integrator_min
s e l f . s e t _ p o i n t =0.5
s e l f . e r r o r =0.0

def s e t P o i n t (s e l f , s e t _ p o i n t) :
s e l f . s e t _ p o i n t = s e t _ p o i n t
s e l f . I n t e g r a t o r =0
s e l f . Der ivator =0

def s e t I n t e g r a t o r (s e l f , I n t e g r a t o r) :
s e l f . I n t e g r a t o r = I n t e g r a t o r

def s e t D e r i v a t o r (s e l f , Der ivator) :
s e l f . Der ivator = Derivator

def setKp (s e l f , P) :
s e l f . Kp=P

def s e tK i (s e l f , I) :
s e l f . Ki= I

def setKd (s e l f ,D) :
s e l f . Kd=D

def getPoint (s e l f) :
re turn s e l f . s e t _ p o i n t

def getError (s e l f) :
re turn s e l f . e r r o r

def g e t I n t e g r a t o r (s e l f) :
re turn s e l f . I n t e g r a t o r

def getDer ivator (s e l f) :
re turn s e l f . Der ivator

54

PID controller script has several parameters such as Kp,Ki and Kd which
are manually configured in the script. The controller runs in the interval
of every ten seconds for webservers and every five minutes for the batch
processing job [3]. Autonomic controller script code there is several built
in functions as well as several parameters for instance to count size of
size of CPU and memory two parameters cpui and memi. Besides these
two there are more parameters have been defined in code for controlling
the resources which is inside the autonomic controller script. Resource
parameters is defined for each and every VM’s so that the batch job can
allocate 10 vcpu [3] . They are highlighted in table 5.3. Initially the system
has 10vcpu and 12GB of memory and a buffer has set for used memory
512MB. Because of if memory reduces less than 512MB the whole system is
going to crash.

Control Parameter
Control Parameter Value
minimum-vCPU 1
maximum-vCPU 10
minimum-memory(MB) 12000
minimum-used-memory(MB) 1024
url1 http://10.0.0.12/PHP/RandomStory.PHP
url2 http://10.0.0.10/PHP/RandomStory.PHP

Table 5.3: Controller Parameters

To assure better QoS an algorithm has been done to perform the vertical
scaling mechanism. In vertical scaling mechanism will be perform in the
fist stage of the experiment. Afterwards, if all the vCPU and Memory is
allocated then bootup a new VM to perform horizontal scaling. Memory
and vCPU is allocated with the script with some certain commands of Xen
hypervisor. The commands are also listed in list 5.8. The main reason of
performing the horizontal scaling to assure the desired level of Quality of
Services(QoS), if the first Physical Machine has the lack of resources then it
can perform in the second Physical Machine [3].

Listing 5.8: XM commands to adjust Resources

xm vcpu−s e t webserver1 [domain−id] 16[count in cores]
xm mem−s e t webserver1 [domain−id] 12000[count in MB]

A decision algorithm has been prescribed for the controlling system. The
algorithm set the decision and make the resource allocation much more
efficient. Algorithm gives a clear vision about how can we allocate the
resources. The system basically needs 2 vcpu and 1 GB of memory
else, it cannot be perform the operations, sometimes the whole system
functionality completely going down. Therefore by taking all these cases in

55

our research we can manage to design a sophisticated and simple algorithm
for our resource allocation and also consider to assure desired level of QoS.

Figure 5.5: Activity diagram of decision making algorithm

The algorithm basically used by the PID controller to perform the actions.
Algorithm is known as decision making algorithm because based on the
instruction of the algorithm whole control system is going to perform
the resource allocation. The algorithm has been designed for making
decision for both real time and non real time applications. Decision making
algorithm is prtially borrow from the thesis conducted by Bilal et al., the
algorithm also works for our system as well.

56

5.10 Autobench:

Autobench is using to generate the workload. The tool has been installed in
local machine and generate the traffic from the local machine to the server.
Therefore, to measure the external workload it is undoubtedly pne of the
easiest tool. The tool also have some built in library and it also helps the
graphical representation of the whole data.

Listing 5.9: Autobench

autobench −−s i n g l e _ h o s t −−host1 1 2 8 . 3 9 . 1 2 0 . 2 6 −−ur i1
/index . html −−quie t −−low_rate 10 −−high_rate 100
−−r a t e _ s t e p 10 −−num_call 10 −−num_conn 1000
−−t imeout 5 −− f i l e random . tsv

57

58

Chapter 6

Measurements and Analysis

This chapter covers all the analysis phase of the experiment we have
conduct. The experiments shows that how the control system is working so
far. We sent traffic to the server2 from our external machine. Experiments
show how the control system are going to handle the workload and allocate
the resources. First phase we have counted response time in 10 seconds and
20 seconds of interval. The name of the experiment named Control Interval.

After performing the Control Interval experiments we are going to perform
the experiment of Vertical Scaling experiment as well as Horizontal Scaling
experiment. The experiments are going to represent graphically and
prepare for the final analysis procedure. Experiments are going to reveal
how our prescribed control system able to handle the situations. In
addition it is going to tell us how efficient our prescribed algorithm.

6.1 Control Interval:

Control Interval experiment is the very first experiment we are going to
perform. The experiment has to perform in two phases. Response time has
been generated for every ten seconds of interval. Moreover, the workload
has been generated nearly one thousand number of connections. In this
experiment we observe the response time. The experiment is divided in
two parts. They are following:

1. 10 seconds

2. 20 seconds

10 seconds of time we create workload from the local machine of end user
and create workload to the physical machine and check the response time.
The script has given 10 seconds of interval which means it is running each
10 seconds of time period. In addition the script will work for nearly 5
minutes. For checking the time a date function has been estimated which
can calculate the time. After 5 minutes it stops automatically and generate
the result. After getting the result we plot a graph with the response time
and time duration. The graph also represent the resource allocation both

59

vCPU and Memory. First graph represent the scenario the changes of
response time influence the change of vCPU.

Figure 6.1: Response Time in every 10 seconds with vCPU

In figure 6.1 we have got thirty two reading in ten seconds of interval. The
vertical line represents the response time in miliseconds and the number
of vCPU. However, the horizontal line represents the time duration of the
experiment. In the scenario it reveals that response time lies in the range
of 100 to 300 millisecond. The most important scenario is that whenever
the response time is increase above 500 miliseconds the vCPU increases
immediately to make the response time within range. On the other hand
whenever the response time is getting low and fall below 100 miliseconds
then vCPU decreases. Nevertheless, to tune in the whole system at least
2 vCPU is running always, otherwise the system is vulnerable and going
to crash at any time. Therefore, the system does not reduce the vCPU
whenever the response time drops below 100 miliseconds.

The graph in the figure 6.2 is based on the same data of response time but
in that case it represents the change of the memory in this time period. In
case of memory we have to put a buffer of 512 MB so that we fixed the
minimum memory usage is 1024 MB. In addition every iteration it check
the memory like VCPU and allocate the memory according to the existing
algorithm.

60

Figure 6.2: Response Time in every 10 seconds with Memory

Like vCPU the memory is also increased 1 GB whenever the response time
rises above 500 miliseconds and alleviate the response time. Whenever
the response time drops below 100 miliseconds the memory drop 512MB
but there is a loophole in this system. Response time drops so frequently
then the used memory decreases so fast and destabilize the entire system.
Therefore we have set a buffer of 512 MB and make the reduction of
memory in three phases.

Next phase we make the time interval of 20 seconds, that means the
response time generates in every 20 seconds. The workload is also remain
same as before in between 100 to 1000 number of connections. We also do it
from outside the network. Also compare the average response time of this
two scenario. Figure 6.3 represent the response time which is generated in
every 20 seconds and allocated the vCPU accordingly.

Figure 6.3: Response Time in every 20 seconds with vCPU

61

Figure 6.3 the response time lies in between 56 to 475 miliseconds. The
highest peak is the 475 miliseconds, like figure 6.1 response time drops at
the same rate like before.

Figure 6.4: Response Time in every 20 seconds with memory

Figure 6.4 the fluctuation rate of memory is graphically represented.
Response time starts from 113.77 milliseconds and initially 10088 MB
memory has been allocated. In the graph it clearly visible that there is
no sudden peaks which is more than 500 milliseconds. Therefore there
is no increase of memory usage. However, the response time drops below
than 100 milliseconds and memory has been reduced same as 10 seconds
of interval and the lowest memory usage is 1040 MB which is pretty decent
usage of Memory.

6.2 Webserver(Vertical Scaling) :

The vertical scaling procedure is perform with only one webserver and
tackle the workload for 0 to 2000 clients. The script is running for 5 minutes
and trend based workload pattern has been applied. Moreover, the 10
seconds of control interval has been used to perform the operation. The
traffic has been generated through the Autobench. While performing the
operation the webserver2 has been shutdown for the proper results.

62

Figure 6.5: Response Time relations of webserver1 with vCPU

The maximum response time for webserver1 is 415.35 milliseconds which
is less than the 500 so no more resources are allocated by the system. On the
other hand only one time response time drops below than 100 milliseconds
which is 62.35 milliseconds. Hence the system utilized minimal number
of CPU cores so that the CPU core is not decreased by the system itself.
Therefore the number of CPU core is remained static in this case. Although
the vertical scaling deals allocate the nodes of the system for instance CPU
and memory but we only represent the changes of the vCPU, changes of
memory is also done by the system but it’s graphical representation is
much time consuming so forth we cannot capable to present the memory
fluctuation rate in graphically.

6.3 Webserver (Horizontal Scaling):

Horizontal scaling occurs when the workload increases so fast and it’s
duration is much longer than original period and no other memory and
CPU is remaining to handle the workload. Then a new webserver is
boot up in the second physical machine in our case it is server1 and
tackle the extra workload. The same workload pattern has followed in
this experiment as well. The webserver2 is booted up and deploy with
the existing webserver. The load has been distributed with HAProxy.
However, when the second new webserver is spawn up and the traffic
has been distributes with the round robin algorithm. Meanwhile, if the
traffic increases then the webserver increase it’s full resources to tackle the
large amount of workload. Whenever, the situation tends to be normal
the webserver1 give it’s available memory to batch job and webserver2

63

also closes the operation and the system goes back to the vertical scaling
procedure. Moreover, the second physical machine is closed all the
operations of the webserver2.

Figure 6.6: Response Time relations of webserver1 and webserver2 with
vCPU

The figure 6.6 also depicts the whole situation, in the very beginning of
the graph the webserver2 handles the workload with 3 CPU core and
the response time drops less than 100 milliseconds then it reduces it’s
resources.

6.4 Batch Processing Experiment:

The experiment of batch processing jobs is bit easier, it is more CPU
intensive rather than the memory, whenever the system needs memory
than it first check that it uses minimal amount of resources or not. We
established batch VM to perform the experiment and allocate 2 vCPU for
resource utilization. The batch VM does not need to provide extra amount
hence it is not memory intensive.

64

Figure 6.7: Frames per Second for Batch Process

6.5 Analysis:

In this sections the overall analysis of the experiments are presented and
evaluate them accordingly. Also perform comparison about how the
control system behave in all of the experiments. In addition how much
vCPU and memory utilized in all the experiments we have performed so
far.

6.5.1 Control Interval:

Response time fluctuation rate in 10 seconds of time interval is bit higher
than the 20 seconds of interval, the highest response time in 10 seconds of
interval is 579.59 milliseconds on the other hand the highest response time
in 20 seconds interval is 474.36 milliseconds. However, the lowest rate of
response time lies on the 10 seconds of interval which is 47.16 milliseconds.
In tables 6.1 the highest and lowest rate of response time of both of the
scenario is represented. Furthermore, the average response time in 10
seconds of interval is only 1.63 milliseconds higher than the 20 seconds
of time interval. However, in both of the cases 0 to 1000 HTTP request
has been sent to the server and trend based workload pattern has been
followed.

65

Metrics of 10 seconds and 20 seconds interval
Metrics 10 seconds Control In-

terval
20 seconds Control In-
terval

Average Response
Time

167.80 166.17

Minimum Response
Time

47.16 ms 54.17

Maximum Response
Time

579.59 ms 474.36 ms

Total HTTP Request 1000 1000
Highest rate of request
per seconds

100 150

Table 6.1: Difference of Metrics in 10 seconds and 20 seconds Control
interval

The CPU and memory utilization also vary in 10 seconds and 20 seconds of
control interval. CPU and memory utilization in 10 seconds control interval
is represented graphically. Almost 70.02% CPU and 42.08% memory has
been utilized in 10 seconds of control interval.

Figure 6.8: CPU and Memory Utilization for 10 seconds

In case of 20 seconds control interval the difference is not that much large
than the 10 seconds of control interval. In 20 seconds of interval 67.9%
of CPU has been utilized the difference is only 2.3% also in memory the
difference is much lower than CPU utilization it is only 0.11%. Therefore
the data reveals that the amount of CPU and memory utilization is almost
same in both of the cases.

66

Figure 6.9: CPU and Memory Utilization for 20 seconds

6.5.2 Webserver(Vertical Scaling):

In the vertical scaling phase 0 to 2000 HTTP requests has been generated
with the tool Autobench. The average response time is also calculated
and that is 197.08 milliseconds. The minimum response time is 62.35
milliseconds and the highest response time is 415.35 milliseconds. Table
6.3 has been listed the data of the vertical scaling.

Metrics of Webserver1
Metrics Webserver1
Average Response
Time

194.08 ms

Minimum Response
Time

62.35 ms

Maximum Response
Time

415.35

Total HTTP Request 2000
Highest rate of request
per seconds

500

Table 6.2: Metrics of Webserver1

The webserver1 CPU and memory utilization has been stated in Figure
6.10. The CPU and memory utilization of webserver1 is 42.70% and 39.65%.

67

Figure 6.10: CPU and Memory Utilization for Webserver1

6.5.3 Webserver(Horizontal Scaling):

In the horizontal scaling phase the same amount of workload has been
like the previous experiments, also trend based workload pattern has been
followed. We also generate 0to 2000 HTTP requests with the tool Autobench.
The minimum response time is 45.46 milliseconds and maximum response
time is 389.21 milliseconds. Also the average response time is 48.12
milliseconds less than vertical scaling.

Metrics of Webserver2
Metrics Webserver1
Average Response
Time

145.96 ms

Minimum Response
Time

45.46 ms

Maximum Response
Time

389.21 ms

Total HTTP Request 2000
Highest rate of request
per seconds

500

Table 6.3: Metrics of Webserver2

The webserver2 CPU and memory utilization has been stated in Figure
6.11. The CPU and memory utilization of webserver1 is 38.70% and 24.87%
which is bit lower than webserver1 because of webserver1 performing
both in vrtical and horizontal scaling and webserver2 is only perform in
horizontal scaling.

68

Figure 6.11: CPU and Memory Utilization for Webserver2

6.5.4 Batch Processing Experiment:

In the case batch processing the lower has higher priority which means
frames > 15 fps is counted as SLA violation and if the frames > 20 fps then
the process is fast and resources will be reduced. In our case the minimum
frame is 7.64 fps which is counted as SLA violation and the maximum
frames are 34.73 fps. Whenever it drops less than 15 the PID allocate the
resource instantly to tackle the frames. However, it finally manages to
make the frames per second in desired level which is in between 15 fps
to 20 fps. After performing the experiment the CPU decreased from 2 to 1.

Metrics of Batch-Processing
Metrics Batch
Average Frames per
Second

19.99

Minimum Frames per
Second

7.64 fps

Maximum Frames per
Second

34.73 fps

Table 6.4: Metrics of Batch-Processing

69

70

Chapter 7

Discussion:

The aim of this thesis has been to compare the overall performance of the
control system using the Proportional Integral and Derivative Controller or
PID controller and maintain a desired level of Quality of Services(QoS). In
addition maintain the code of Service Level Agreement (SLA) also a large
issue of this entire research work. In this chapter we discuss about the
entire goal of the research work, what challenges we have faced so far to
implement the control system and how it can improve in the near future.
Furthermore it will take us to a fare conclusion about the entire project.
Also increase the vCPU from 1 to 2 to tackle the increased frames.

7.1 The Problem Statement:

Firstly, the thesis work lies to implement PID controller logic with the
existing autonomic controller. The research questions that we have defined
in the Introduction chapter provide a clear indication to the reader that what
we are going to achieve throughout our overall experiment. We describe
the problem statement in the Approach chapter in detail. However, in this
chapter we just going to review it once again for the convenience of the
reader.

1. How can we determine a threshold value known as set value?

2. How can we build a dynamic PID controller considering the differences
between the set point and measured value, and apply the correlation based
on proportional, integral, and derivative terms?

3. How can we design and build a sophisticated Service Level Agreement (SLA)
driven infrastructure to provide efficient QoS by applying better resource
allocation?

In order to achieve desired Quality of Service(QoS) we defined a set value
which is the average response time and average Frames per Second. In
addition the set value is the measurement criteria of the controller for
resource allocation. PID controller make decision on the basis of the set
value and capable to build the entire control systems in a proper way

71

which cannot break the code of Service Level Agreement also ensure better
resource allocation and make the infrastructure more efficient and robust.

7.2 Evaluation:

Results from the proposed solutions in this research work have disclosed
some interesting findings. The controller parameters tuning has been de-
termined several time and the parameters such as Kp, Ki and Kd are cor-
rectly determines to manage the desired level of performance. The math-
ematical function of PID controller which contributes in decision making
is precisely generate valid Controller output and able to synchronize the
existing autonomic controller mechanism. It reduces the CPU and memory
utilization in a notable figure. However, the entire control system is so
much robust that it can handle any amount of workload and remove the
peaks of response time also the resources properly. Therefore, the code of
service Level Agreement has been properly maintained. It also save the
redundancy of the extra resources. In the analysis phase we observe the
webserver CPU and memory utilization is below the 50% which ensure
that it saves almost 20% of resources and ensure quality performance of
the webserver.

7.3 Challenges:

The biggest challenge we have faced to implement the PID controller and
coordinating the controller with the existing autonomic controller. The
parameters value does not set dynamically which is one of the major
challenges to implement the controller. So forth we have to set the
parameters manually in every time which is really a tough task for a system
administrator. To synchronize both the control system operation together
we cannot do the hot-plugging experiment to map the VM’s. Moreover the
PID controller except fuzzy logic is more old fashioned and less robust to
determine the external environment. The python script of the autonomic
controller which allocate the resources based on the PID output is quite
difficult to implement. There is no enhanced python library to implement
the controller script easily. In addition the PID cannot determine the
spike based workload, so if the workload increases randomly the controller
cannot take the proper measure. Therefore, in our experiment we can deal
only the trend based workload. Therefore, the decisions only has been made
of by only a single pattern of workload. The configuration of VM’s are also
quite difficult task hence The Logical Volume Manager(LVM) procedure is
risky and less convenient so we have to follow the disk image procedure
which is very much time consuming.

72

7.4 Constraints:

The research work is basically focus to increase the server utilization for
interactive and non interactive applications. Basically we want to minimize
the response time for interactive applications with the control systems
that using the PID. However, the delay time of PID impacts largely in
this research. Almost ten seconds of delay has been counted to test the
mechanism. Therefore we generated response time in every 10 seconds
instead of the smaller value like 5 seconds or less. In addition controller
has the lower stability rate.

Live Migration also puts a key limitations of this research work. Initially
the plan was to perform the horizontal scaling by live migrating VM’s into
the second physical machine. However to implement this procedure is very
handy and it required a shared-storage to be created where the disk-images
had to be placed. In addition NFS share was created to accommodate the
VMs on the running Physical machines. Meanwhile in the experimental
phase, the VMs started to break down due to errors in memory, when the
live-migration was performed.

Workload pattern has been stated in the Challenge section, Like in this case
only the trend based workload has to be performed. To create more realistic
workload pattern for longer period it really needs stable the web traffic
since it varies during the day with a specific amount of peaks. Moreover,
the controller also plays a biggest role to create the workload pattern.

The algorithm we prescribed it is based on both real and non real time
applications but being time constraint we cannot manage our work for
batch processing, so the algorithm has not been tested properly. However,
the design of the algorithm should be more precise and sophisticated which
can give better performance for decision making in both real time and non
real time applications.

Fot time constraint we cannot perform the hotplugging operations like add
or remove VCPU or memory which can map the VM’s. It reflects how
much time it takes to map the VM by adding or removing CPU or memory.

7.5 Future Works:

There is always a scope for potential development for the research work.
Lots of feature and functions can be developed in order to improve the
performance and expand the capabilities of the entire research. There is
following areas which we have plan to develop in near future.

7.5.1 Batch Processing Files:

The non interactive applications for instance, batch processing files, need
to improve for getting the better performance from the control systems.
Controller need to implement more features in order to allocate resources

73

for bath jobs. Batch jobs are normally CPU intensive, but it needs minimal
amount of memory to perform the tasks. PID controller mechanism is
sometimes fail to find the suitable state for batch jobs. In near future we
have to find a suitable algorithm for batch processing jobs.

7.5.2 Machine Learning:

Machine learning has to be implemented to analysis the environment.
Suppose the behaviour of the system for instance which time server
has to face the workload for instance during the day there is normally
more traffics, so forth the controller allocate more resources from the
very beginning. In addition controller has the prediction capabilities and
more efficient in the peak detection. For instance control system has the
capability to predict the whole scenario of environment.

7.5.3 Fuzzy Logic:

Fuzzy logic is also implemented to dynamically tuned the parameters of
the PID controller as well as the autonomic controller. Implementation
of Fuzzy mechanism will be a new challenge to improve the overall
performance of the controllers. Fuzzy algorithm has the capability to
predict the scenario of the adopted controllers.

74

Chapter 8

Conclusion:

The main goal of this thesis was to investigate how the vertical and
horizontal elasticity improves the server utilization in large data centers.
The main purpose is to allocate resources efficiently. We have to design a
control system which can handle the increased amount of workload and
ensure the proper usage of resources.

The problem statement was also addressed a control system which was
developed with PID and Autonomic Controller which can make the
decision based on the defined criteria for instance average response time
and average frames per second. While the measured value of response time
is more than average response time for the latency critical applications then
it is allocated resources or if the measured value for is less than the average
response time then it reduce the resources. A decision making algorithm
also been designed on the basis of the decision making criteria.

The main contribution of this paper is that we have implemented a soph-
isticated control system which can capable of to allocate the resources by
monitoring the resource usage. PID controller mechanism is implemen-
ted with a hybrid controller model and synchronize together to build a
robust control system which can capable of decision making and allocating
resources by elasticity approach for instance vertical and horizontal elasti-
city.

The analysis phase also give a clear indication that the performance of
the controller is relatively well in resource allocation. For non real time
applications for instance batch job does not perform quite efficiently but so
far it can predict how the resource should allocate for the batch processing
files.

Further testing and development will require to make it more reliable,
secured and robust. In addition to perform elasticity in non latency based
crtitcal application can add another dimension in this entire research work.

75

76

Chapter 9

Appendix

Listing 9.1: Code of Control Systems

import reques ts
import commands
import u r l l i b
import datetime

def cpu_logical_cores_number (domain_name) :
s = commands . g e t s t a t u s o u t p u t (" sudo xm l i s t
| awk ’/"
+ domain_name + "/ { p r i n t $4 } ’ ")
p = s [1]
re turn p

def over_al l_cpu_usage (domain_name) :
s = commands . g e t s t a t u s o u t p u t (" sudo
xentop −b −d 1 − i 2 |
awk ’/" + domain_name + "/ { p r i n t $4 } ’ ")
p = s [1]
p l i s t = p . s p l i t (’\n ’)
re turn p l i s t [1]

def memory_usage (domain_name) :
s = commands . g e t s t a t u s o u t p u t (" sudo xm l i s t |
awk ’/" + domain_name + "/ { p r i n t $3 } ’ ")
p = s [1]
re turn p

’ ’ ’ time i n t e r v a l in second ’ ’ ’
t i m e _ i n t e r v a l = 5

77

ur l1 = " ht tp : / / 1 0 . 0 . 0 . 1 2 /PHP/RandomStory . php"
ur l2 = " ht tp : / / 1 0 . 0 . 0 . 1 0 /PHP/RandomStory . php"
desired_response_t ime = 0 . 5

domain = ’Domain−0’
max_memory = 20484
max_cpu_core = 16

min_memory = 1024
min_cpu_core = 2

def response_time (desired_resp , r _ u r l) :
roundtrip = 0
t r y :

s t a r t = datetime . datetime . now ()
nf = u r l l i b . urlopen (r _ u r l)
page = nf . read ()
nf . c l o s e ()
end = datetime . datetime . now ()
roundtrip = (end − s t a r t) . t o t a l _ s e c o n d s ()
re turn roundtrip *10

except reques ts . except ions . Timeout as f :
p r i n t " High Response Time "

return roundtrip
server_params = [

{ ’ name ’ : ’Web Server 1 ’ , ’ url ’ :
’ ht tp :// google . com ’ , ’d/omain ’ : ’ webserver1 ’ } ,
{ ’ name ’ : ’Web Server 1 ’ , ’ url ’ :
’ ht tp : / / 1 0 . 0 . 0 . 1 2 /PHP/RandomStory . php ’ ,
’ domain ’ : ’ webserver1 ’ } ,

{ ’ name ’ : ’Web Server 2 ’ , ’ url ’ : ’
ht tp : / / 1 0 . 0 . 0 . 1 0 /PHP/RandomStory . php ’ ,
’ domain ’ : ’ webserver2 ’ }

]
" " " Server Params " " "
f o r item in server_params :
p r i n t (’ s tage : i n i t ’)
Qdomain = item [’ domain ’]
p r i n t (Qdomain)
commands . g e t s t a t u s o u t p u t (
" sudo xm mem−s e t "
+ Qdomain + " 20000")
commands . g e t s t a t u s o u t p u t ("
sudo xm vcpu−s e t "
+ Qdomain + " 1 6 ")

78

t r y :
while True :
p r i n t (’++++++++++++++++++++++++++++++++’)
f o r item in server_params :

name = item [’ name ’]
u r l = item [’ url ’]
domain = item [’ domain ’]
p r i n t (’ For ’ + name + ’ : ’)
res_t ime = f l o a t (response_time
(desired_response_time , u r l))
time = reques t s . get (url ,
t imeout=max_response) .
elapsed . t o t a l _ s e c o n d s ()
p r i n t " This time " , time
core_number = i n t (cpu_logical_cores_number
(domain))
cpu_usage = f l o a t (over_al l_cpu_usage (domain))
memory_in_use = i n t (memory_usage (domain))
p r i n t (’ I n t e r v a l : ’)
p r i n t (’ Response time : ’ + s t r (res_t ime))
p r i n t ’Number Of Logica l CPU cores : ’
+ s t r (core_number)
p r i n t ’ Usage Of TOTAL CPU : ’ + s t r (cpu_usage)
’ %’
p r i n t ’Memory : ’ + s t r (memory_in_use) + ’MB’
i f res_t ime > 0 . 5 :

p r i n t (’ I n c r e a s i n g Resource ’)
i f not (core_number + 1) >
max_cpu_core :

commands . g e t s t a t u s o u t p u t ("
sudo xm vcpu−s e t
" + domain +
" " + s t r (core_number + 1))
p r i n t (’ Updated Number of Core : ’ +
s t r (core_number + 1))

e l s e :
p r i n t (’Max number of
CPU Cores are being
used ’)

i f not (memory_in_use + 1024) > max_memory :
commands . g e t s t a t u s o u t p u t (" sudo
xm mem−s e t "
+ domain +
" " + s t r (memory_in_use + 1 0 2 4))
p r i n t (’ Updated Memory : ’ +
s t r (memory_in_use
+ 1024)
+ ’ MB’)

79

e l s e :
p r i n t (’Max amount of memory i s being used ’)

i f res_t ime < 0 . 1 :

i f not (core_number − 1) <min_cpu_core :
p r i n t (’ Reducing CPU’)
commands . g e t s t a t u s o u t p u t (" sudo xm
vcpu−s e t
"
+ domain +
" " + s t r (core_number − 1))
p r i n t (’ Updated Number of Core : ’ +
s t r (core_number − 1))

e l s e :
p r r i n t (’ Min number of CPU Cores are
being

used ’)

i f (memory_in_use − 512) > min_memory :
p r i n t (’ Reducing Memory ’)

ands . g e t s t a t u s o u t p u t (" sudo xm mem−s e t
+ domain
+ " "
+ s t r (memory_in_use − 5 1 2))
p r i n t (’ Updated Memory : ’ +
s t r (memory_in_use
− 512)
+ ’ MB’)

e l s e :
nt (’ Min amount of memory i s being used ’)

except KeyboardInterrupt :
p r i n t (’ Exi ted S u c c e s s f u l l y ’)

80

Bibliography

[1] Tarek Abdelzaher et al. ‘Introduction to control theory and its
application to computing systems’. In: Performance Modeling and
Engineering. Springer, 2008, pp. 185–215.

[2] Tarun Agarwal. The Working Principle of a PID Controller for Beginners.
URL: https://www.elprocus.com/the-working-of-a-pid-controller/.

[3] Haugerud Ahmad Yazidi and Farokhi. ‘Orchestrating Resource Al-
location for Interactive vs. Batch Services using a Hybrid Controller’.
In: 2016.

[4] Karl Johan Astrom. Control System Design. 2002.

[5] Derek P Atherton and S Majhi. ‘Limitations of PID controllers’. In:
American Control Conference, 1999. Proceedings of the 1999. Vol. 6. IEEE.
1999, pp. 3843–3847.

[6] Aytekin Bagis. ‘Determination of the PID controller parameters by
modified genetic algorithm for improved performance’. In: Journal of
Information Science and Engineering 23.5 (2007), pp. 1469–1480.

[7] Bandwidth Extension. URL: https://en.wikipedia.org/wiki/Bandwidth_
extension.

[8] Paul Barham et al. ‘Xen and the art of virtualization’. In: ACM
SIGOPS operating systems review. Vol. 37. 5. ACM. 2003, pp. 164–177.

[9] Md Faizul Bari et al. ‘Data center network virtualization: A survey’.
In: IEEE Communications Surveys & Tutorials 15.2 (2013), pp. 909–928.

[10] Thomas C Bressoud and Fred B Schneider. ‘Hypervisor-based fault
tolerance’. In: ACM Transactions on Computer Systems (TOCS) 14.1
(1996), pp. 80–107.

[11] Sean Carlin and Kevin Curran. ‘Cloud computing security’. In:
(2011).

[12] Dan Chen and Dale E Seborg. ‘PI/PID controller design based on
direct synthesis and disturbance rejection’. In: Industrial & engineering
chemistry research 41.19 (2002), pp. 4807–4822.

[13] Guillon Christophe. Program Instrumentation with QEMU.

[14] Citing a web page with no author. URL: https://wiki.xenproject.org/wiki/
Xen_Project_Schedulers (visited on 13/10/2016).

[15] Citing a web page with no author. URL: https://wiki.xen.org/wiki/Credit_
Scheduler (visited on 13/10/2016).

81

[16] Citing a web page with no author. URL: https ://www.xenproject .org/
directory/directory/projects/92-rt-xen.html (visited on 2013).

[17] Louis Columbus. ‘Roundup Of Cloud Computing Forecasts And
Market Estimates, 2016’. In: Forbes Magazine (2016).

[18] Control Systems. URL: http://www.iitg.ernet.in/engfac/chitra/notes/
EE350/Lecture-14.pdf.

[19] J Ding et al. Pqemu: A parallel system emulator based on qemu. ICPADS.
2011.

[20] Disturbance Rejection. URL: http://www1bpt.bridgeport.edu/~risc/html/
proj/introb/node16.html.

[21] Kit Eaton. ‘How One Second Could Cost Amazon $1.6 Billion In
Sales’. In: Fast Company 14 (2012).

[22] Fahimeh Farahnakian et al. ‘Using ant colony system to consolidate
vms for green cloud computing’. In: IEEE Transactions on Services
Computing 8.2 (2015), pp. 187–198.

[23] Mohammad Al-Fares, Alexander Loukissas and Amin Vahdat. ‘A
scalable, commodity data center network architecture’. In: ACM
SIGCOMM Computer Communication Review. Vol. 38. 4. ACM. 2008,
pp. 63–74.

[24] Soodeh Farokhi et al. ‘A hybrid cloud controller for vertical memory
elasticity: A control-theoretic approach’. In: Future Generation Com-
puter Systems 65 (2016), pp. 57–72.

[25] Soodeh Farokhi et al. ‘Coordinating cpu and memory elasticity
controllers to meet service response time constraints’. In: Cloud and
Autonomic Computing (ICCAC), 2015 International Conference on. IEEE.
2015, pp. 69–80.

[26] Michael Fenn et al. ‘An evaluation of KVM for use in cloud
computing’. In: Proc. 2nd International Conference on the Virtual
Computing Initiative, RTP, NC, USA. 2008.

[27] SÃ«bastien Christophe FrÃ«dÃ«rique FrÃ«mal, Michel Bagein and
Pierre Manneback. ‘Optimizing Xen Inter-domain Communications’.
In: Proceedings of the 8th International Workshop on Virtualization
Technologies in Distributed Computing. ACM. 2015, pp. 3–10.

[28] Marius Gligor and FrÃ«dÃ«ric PÃ«trot. ‘Combined use of dynamic
binary translation and systemc for fast and accurate mpsoc simu-
lation’. In: 1st International QEMU UsersÃ¢ÂÂ Forum. Vol. 1. 2011,
pp. 19–22.

[29] Chunye Gong et al. ‘tg’. In: Parallel Processing Workshops (ICPPW),
2010 39th International Conference on. IEEE. 2010, pp. 275–279.

[30] Eugene Gorelik. ‘Cloud computing models’. PhD thesis. Massachu-
setts Institute of Technology, 2013.

[31] Albert Greenberg et al. ‘The cost of a cloud: research problems in data
center networks’. In: ACM SIGCOMM computer communication review
39.1 (2008), pp. 68–73.

82

[32] Albert Greenberg et al. ‘VL2: a scalable and flexible data center
network’. In: ACM SIGCOMM computer communication review. Vol. 39.
4. ACM. 2009, pp. 51–62.

[33] Nikolay Grozev and Rajkumar Buyya. ‘Multi-cloud provisioning and
load distribution for three-tier applications’. In: ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 9.3 (2014), p. 13.

[34] Fang-fang Han et al. ‘Virtual resource monitoring in cloud comput-
ing’. In: Journal of Shanghai University (English Edition) 15.5 (2011),
p. 381.

[35] HandBrakeCLI. URL: https : / / wiki . archlinux . org / index . php /
HandBrakeCLI.

[36] Samah Sabir M Hassan and Shadi MS Hilles. ‘Enhancing Security
Concerns in Cloud Computing Virtual Machines:(Case Study on
Central Bank of Sudan)’. In: (2014).

[37] Hot-Plugging CPU’s to conserve power. URL: http : / / linuxforthenew .
blogspot.no/2013/01/hot-plugging-cpus-to-conserve-power.html.

[38] Joo-Young Hwang et al. ‘Xen on ARM: System virtualization using
Xen hypervisor for ARM-based secure mobile phones’. In: Consumer
Communications and Networking Conference, 2008. CCNC 2008. 5th
IEEE. IEEE. 2008, pp. 257–261.

[39] Introduction to PID control. URL: http : / / beta . machinedesign . com /
sensors/introduction- pid- control?utm_test=redirect&utm_referrer=
https%5C%3A%5C%2F%5C%2Fwww.google.no%5C%2F.

[40] Yashpalsinh Jadeja and Kirit Modi. ‘Cloud computing-concepts,
architecture and challenges’. In: Computing, Electronics and Electrical
Technologies (ICCEET), 2012 International Conference on. IEEE. 2012,
pp. 877–880.

[41] Pooyan Jamshidi, Aakash Ahmad and Claus Pahl. ‘Autonomic
resource provisioning for cloud-based software’. In: Proceedings of the
9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM. 2014, pp. 95–104.

[42] Reece Johnston et al. ‘Xen Network Flow Analysis for Intrusion
Detection’. In: Proceedings of the 11th Annual Cyber and Information
Security Research Conference. ACM. 2016, p. 18.

[43] Lori M Kaufman. ‘Data security in the world of cloud computing’.
In: IEEE Security & Privacy 7.4 (2009).

[44] Jacek Kobus and Rafal Szklarski. ‘Completely Fair Scheduler and its
tuning’. In: draft on Internet (2009).

[45] Ewnetu Bayuh Lakew et al. ‘Towards faster response time models
for vertical elasticity’. In: Proceedings of the 2014 IEEE/ACM 7th In-
ternational Conference on Utility and Cloud Computing. IEEE Computer
Society. 2014, pp. 560–565.

83

[46] Yanfei Li et al. ‘An online power metering model for cloud environ-
ment’. In: Network Computing and Applications (NCA), 2012 11th IEEE
International Symposium on. IEEE. 2012, pp. 175–180.

[47] Logical Volume Manager. URL: https://en.wikipedia.org/wiki/Logical_
Volume_Manager_(Linux).

[48] M Malathi. ‘Cloud computing concepts’. In: Electronics Computer
Technology (ICECT), 2011 3rd International Conference on. Vol. 6. IEEE.
2011, pp. 236–239.

[49] Margaret Rouse. URL: http : / / searchcio . techtarget . com / definition /
horizontal-scalability.

[50] Peter Mell, Tim Grance et al. ‘The NIST definition of cloud comput-
ing’. In: (2011).

[51] Ankur Mishra et al. ‘Cloud computing security’. In: International
Journal on Recent and Innovation Trends in Computing and Communic-
ation 1.1 (2013), pp. 36–39.

[52] Mrinmoy Ghosal. URL: https : / / www . linkedin . com / pulse /
20141021201313-156372715-vertical- scaling-vs-horizontal- scaling-big-
data (visited on 2014).

[53] No author. URL: https : / / en . wikipedia . org /wiki / Completely_Fair_
Scheduler (visited on 2013).

[54] No author. URL: https://en.wikipedia.org/wiki/Control_theory (visited
on 2017).

[55] NRDC. AmericaÃ¢ÂÂs Data Centers Are Wasting Huge Amounts of
Energy. Aug. 2014. URL: https://www.nrdc.org/sites/default/files/data-
center-efficiency-assessment-IB.pdf.

[56] Diego Ongaro, Alan L Cox and Scott Rixner. ‘Scheduling I/O in
virtual machine monitors’. In: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments. ACM. 2008, pp. 1–10.

[57] Oriental.net. URL: http://www.httpmon.com/.

[58] PID controller. URL: https://en.wikipedia.org/wiki/PID_controller.

[59] PID for Dummies. URL: https : / / www . csimn . com / CSI _ pages /
PIDforDummies.html (visited on 2016).

[60] PID Theory Explained. URL: http://www.ni.com/white-paper/3782/en/.

[61] Radu Prodan and Simon Ostermann. ‘A survey and taxonomy of
infrastructure as a service and web hosting cloud providers’. In: Grid
Computing, 2009 10th IEEE/ACM International Conference on. IEEE.
2009, pp. 17–25.

[62] Response time. URL: https://en.wikipedia.org/wiki/Response_time_
(technology).

[63] RUBBoS. URL: https://github.com/michaelmior/RUBBoS.

84

[64] Reiner Sailer et al. ‘Building a MAC-based security architecture for
the Xen open-source hypervisor’. In: Computer security applications
conference, 21st Annual. IEEE. 2005, 10–pp.

[65] RaÃēl Alves Santos et al. ‘Edusca (educational scada): Features
and applications’. In: Advances in Control Education. Vol. 7. 1. 2006,
pp. 614–619.

[66] JORDAN SCHAENZLE. PID Ã¢ÂÂ Helping Computers Behave More
Like Humans. URL: https://spin.atomicobject.com/2016/06/28/intro-
pid-control/.

[67] Mina Sedaghat, Francisco Hernandez-Rodriguez and Erik Elmroth.
‘A virtual machine re-packing approach to the horizontal vs. vertical
elasticity trade-off for cloud autoscaling’. In: Proceedings of the 2013
ACM Cloud and Autonomic Computing Conference. ACM. 2013, p. 6.

[68] Sensitivity. URL: https://en.wikipedia.org/wiki/Sensitivity_(control_
systems).

[69] Set Point. URL: https : / / en .wikipedia . org /wiki / Setpoint_ (control_
system).

[70] Steady State. URL: https://en.wikipedia.org/wiki/Steady_state.

[71] Steady State Error. URL: https://www.facstaff.bucknell.edu/mastascu/
eControlHTML/Design/Perf1SSE.htm#What.

[72] Subashini Subashini and Veeraruna Kavitha. ‘A survey on security
issues in service delivery models of cloud computing’. In: Journal of
network and computer applications 34.1 (2011), pp. 1–11.

[73] Salesforce UK. Why Move To The Cloud? 10 Benefits Of Cloud Comput-
ing. Oct. 2016. URL: https://www.salesforce.com/uk/blog/2015/11/
why-move-to-the-cloud-10-benefits-of-cloud-computing.html.

[74] Understanding PID Control. URL: http://www.controleng.com/single-
article/understanding- pid- control/ebf9ab7fe3e5571f83901e0b8f3d8f07 .
html.

[75] Antonio Visioli. ‘Fuzzy logic based set-point weight tuning of PID
controllers’. In: IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans 29.6 (1999), pp. 587–592.

[76] Ingolf WaÃmann, Daniel Versick and Djamshid Tavangarian. ‘En-
ergy consumption estimation of virtual machines’. In: Proceedings of
the 28th Annual ACM Symposium on Applied Computing. ACM. 2013,
pp. 1151–1156.

[77] Andreas Weber et al. ‘Towards a resource elasticity benchmark for
cloud environments’. In: Proceedings of the 2nd International Workshop
on Hot Topics in Cloud service Scalability. ACM. 2014, p. 5.

[78] Kim Weins. Cloud Computing Trends: 2016 State of the Cloud Survey.
Oct. 2016. URL: http : / / www . rightscale . com / blog / cloud - industry -
insights/cloud-computing-trends-2016-state-cloud-survey.

85

[79] What is Disturbance Rejection? URL: http : / / www . cds . caltech . edu /
~macmardg/wiki/index.php?title=What_is_disturbance_rejection%
5C%3F.

[80] Wikipedia. Virtualization. Oct. 2016. URL: https ://en .wikipedia .org/
wiki/Virtualization.

[81] CS Wong et al. ‘Fairness and interactive performance of o (1) and cfs
linux kernel schedulers’. In: Information Technology, 2008. ITSim 2008.
International Symposium on. Vol. 4. IEEE. 2008, pp. 1–8.

[82] Xen. URL: https://wiki.debian.org/Xen#Domain_0.

[83] Sisu Xi et al. ‘Rt-xen: Towards real-time hypervisor scheduling
in xen’. In: Embedded Software (EMSOFT), 2011 Proceedings of the
International Conference on. IEEE. 2011, pp. 39–48.

[84] L YamunaDevi et al. ‘Security in virtual machine live migration for
KVM’. In: Process Automation, Control and Computing (PACC), 2011
International Conference on. IEEE. 2011, pp. 1–6.

[85] Jun Zhang et al. ‘Performance analysis towards a kvm-based embed-
ded real-time virtualization architecture’. In: Computer Sciences and
Convergence Information Technology (ICCIT), 2010 5th International Con-
ference on. IEEE. 2010, pp. 421–426.

86

