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Abstract

Identifying different types of terrains is an important ability for every
legged robot to achieve a stable locomotion. A variety of sensors has been
applied to different robots in order to discriminate between terrains ac-
curately. The tactile sensor has the benefits of measuring properties from
terrain by physical contact between the sensor and the surface. However,
the tactile sensor has rarely been utilized on quadruped robots in previous
studies, and little attention has been paid to the type of sensor. There is a
variety of types of tactile sensors, each with their benefits and drawbacks.
The optical tactile sensor has high sensitivity, small size, light weight and
low detection time, which are important properties to distinguish between
different surfaces.

This thesis investigates the possibility of identifying different terrains us-
ing 3D optical tactile sensors and machine learning. The measurements
were retrieved from a quadruped robot developed at the University of Oslo
on four different terrains. The proposed approach has the ability to clas-
sify terrains in real-time on the physical robot, and a custom segmentation
method was presented for extracting desired sensor data. The segmented
sensor data was the basis for creating five different feature sets and tested
on five different classifiers: support vector machine, artificial neural net-
work, naive Bayes, k-nearest neighbors, and decision tree. The experimen-
tal results demonstrated to be among the top performing approaches com-
pared to earlier work with an accuracy of 94.8% with the support vector
machine.
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Chapter 1

Introduction

Humans have the ability to adapt their walking styles on different terrains
to achieve stable locomotion. This ability to adapt locomotion is based on
previous experience. For instance, one would not run on an icy sidewalk
in order to prevent slipping or falling. In contrast, on more rough surfaces,
one may freely decide the speed to move without worrying about losing
grip or balance. To attain this ability to adapt while moving, robots must
first be able to detect and distinguish among different terrains.

Terrain classification is the process of identifying different types of terrain
by measuring features such as texture, slope, roughness, hardness, and fric-
tion. It is a popular research field where countless studies can be found in
the literature [1, 2, 3, 4, 5, 6]. Some of the importance of terrain classification
is shown in [7], where different controllers were suited for different terrains
by letting a quadruped robot hop on a soft and hard terrain. Another study
investigated the effect of performance with different gait parameters on
different terrains [4]. The results indicated there is a trade-off between the
energy consumption and physical speed of the robot by controlling the ve-
locity of the leg motors on different types of terrains.

Robot’s perception of different surfaces plays an important rule for suc-
cessful terrain classification. Researchers often obtain features from ter-
rain from a distance using sensors such as cameras [6] or laser scanners [8].
Other studies measure properties through robot’s interaction on different
surfaces such as leg joints [9], and accelerometers [10], or by physical con-
tact between the sensor and a surface such as the tactile sensor [11, 12, 13].
Degrave et al. [11] investigated different types and combinations of sen-
sors for a quadruped robot to identify which were suitable and provided
most information on the terrain. The result indicated that the combination
of tactile sensor and proprioceptive joint angle were the most informative
of all the sensors.

In most of the studies, the tactile sensor is often fused with other sensors
due to terrain classification [14, 15, 16, 17, 13]. Exclusively using a tac-
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1.1. GOAL OF THE THESIS

tile sensor is not as common [11, 16], nor does the researchers report the
type of the tactile sensor employed in experiments. It exists a variety of
tactile approaches that are based on different technologies such as resis-
tive [18, 19, 20, 21], piezoelectric [22, 23], capacitive [24, 25], magnetic [26],
and optical [27, 28, 29, 30, 31, 32, 33], where every tactile type has its ben-
efits and drawbacks. Thus, selecting the type of tactile might be crucial to
achieving feasible results due to the terrain classification problem. The op-
tical sensor has a high sensitivity, small size, light weight and low detection
time [34], which are important properties to distinguish between different
surfaces. However, further research is necessary to determine whether an
optical sensor is suitable for terrain classification. This work utilizes simi-
lar sensor and robot platform as presented in [11], but instead of evaluating
the different type of sensors, this thesis will rather investigate optical sen-
sor with different approaches for terrain classification.

1.1 Goal of the thesis

The main goal of this thesis is to evaluate 3D optical force sensor for the
terrain classification problem. This thesis will also be investigating and
developing a reliable approach for data processing, preprocessing, feature
selection, and classification for the presented sensor.

1.2 Outline

This thesis is divided into five additional chapters: background, software
and tools, implementation, experiments and results, and discussion.

Chapter 2: Background The background chapter presents theory on
which this thesis is based, including a survey of existing work.

Chapter 3: Software and tools The software and tools chapter gives an
overview of the tools, programming framework and libraries used in this
thesis.

Chapter 4: Implementation The implementation chapter explains the
reasons behind the various choices of implementations used to preprocess
data from the sensor, and evaluates a learning model.

Chapter 5: Experiments and results The experiments and results chapter
presents experiments and its results along with a short analysis.
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Chapter 6: Discussion The discussion chapter discusses the results from
the experiments. Last is a conclusion along with the future work of this
thesis.
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Chapter 2

Background

2.1 Legged robots

Legged robots have been a popular topic of robotic research, mainly due
to their ability to traverse on rough terrain. Stable locomotion of legged
robots is achieved through the gait. A gait is a sequence of cyclic motions
of foot contacts with the ground that produce locomotion [35]. The char-
acteristic of gait is the sequence of which legs are lifted and placed on the
ground. Thus, a robot that has a variety of gaits has the ability to locomote
in many different ways.

There are many types of legged robots, which are often defined by the
number of legs on the robots. The following paragraphs will introduce
four different types of legged robots and are organized by the number of
legs in ascending order.

Monopod The monopod is a simple one-legged robot design. The
locomotion of monopod robots is performed through hops, and hence also
called "hopping robots". Having only a single point of ground contact,
the challenge is achieving stability. An example of a one-legged robot is
developed by Marc Raibert, shown in figure 2.1a [36].

Biped A biped is a robot with two legs. The studies on biped robots have
been a popular research field, especially towards developing humanoids.
Creating a humanoid implicates that the robot is able to imitate human
behavior, such as walking, running, jumping, traversing on stairs, etc. The
well-known NAO robot [37], shown in figure 2.1b has impressive abilities.
Not only is the NAO robot able to walk, but it is also capable of seeing,
hearing and speaking.
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2.2. TACTILE SENSOR

(a) One legged
robot [36]

(b) The NAO
robot [39]

(c) The bigdog
[38].

(d) Lauron V
robot [40].

Figure 2.1: Overview of different types of legged robot: monopod (a), biped
(b), quadruped (c), and hexapod (d).

Quadruped The quadruped is a robot designed with four legs and is
inspired by animals. The benefit of the quadruped robot is more easy to
attain the stability of locomotion due to many legs, and therefore capable
of traversing on rough terrain. For instance, the BigDog [38] shown in
figure 2.1c has shown impressive performance. Hydraulic actuators make
the BigDog stronger and able to carry loads from 50kg to 150kg, depending
on the terrain. Other abilities include jumping, running, and maintaining
stability even if it gets pushed or is walking on slippery terrain.

Hexapod A hexapod is a six-legged robot, and is inspired by insects, but
mostly spiders. Having six legs provides a more stable walking system
than a quadruped robot. However, the leg coordination might be more
complex, due to having to control six legs. Lauron, shown in figure 2.1d
is an example of a hexapod developed by The FZI Research Center for
Information Technology.

2.2 Tactile sensor

Tactile sensors are designed to measure properties through direct physical
interaction [41]. The tactile sensing provides many types of information to
be obtained:

• Contact is the most simple data obtained from the sensor, which
detects whether there is a touch from external agents.

• Force provides the amount of locally applied force.

• Geometrical information gives the geometrical shape of the contact
area. However, it is also able to deduce the type of object in contact
with the sensor, for instance, determine whether an object is spherical
or cylindrical.

6



2.3. OPTICAL TACTILE FORCE SENSOR

(a) Manipulation (b) Exploration (c) Response

Figure 2.2: Three types of application that can be used of the tactile sensor:
manipulation (a), exploration (b), and response (c) [41].

• Mechanical properties give measurements such as slip condition,
thermal or roughness of an object.

Based on the information described in the list above, the tactile sensor can
be used for manipulation, exploration or response. These applications are
shown in figure 2.2. Using tactile sensor for manipulation is to control,
for instance, the grip force on an object. Exploration reflects the possibility
of identifying objects by assimilating information about properties such as
hardness, friction, and roughness from materials and surfaces. Response
refers to the detection of, and reaction to, contact from external agents, and
sensing if it is a gentle touch or strong impact.

2.3 Optical tactile force sensor

Optical force sensors use light reflection, based on the physical principles
of light waves to measure force. Some of the first optical tactile sensors
[27, 29] consist of an optical waveguide, made of transparent glass, which
is illuminated along its edge by a light source, and use cameras to ana-
lyze the images. This approach is uniaxial, that is the sensor is only ca-
pable of measuring the force applied, but not the force direction. Ohka et
al. [42] modified and improved the technology and further optimized it in
[43, 44, 30]. The developed optical sensor consists of a charge-coupled de-
vice (CDD) camera, a light source, an acrylic hemispherical dome, and an
array of rubber sensing elements. It has shown promising results, in that
the sensor can identify differences in tribological behaviors between abra-
sive paper and a Teflon surface.

Another design and very common technology is based on Fiber Bragg Grat-
ings (FBG) [33]. The FBG sensors are suitable for distributed strain mon-
itoring and offer advantages such as relative measurement and linear re-
sponse. By exploiting the relationship between the variation of the external
force and the FBG wavelength applied, the force can be measured.

Tar and Cserey [45] presented an alternative to low-cost 3-axis optical sen-
sors by using optoelectronic components. The design of the sensor consists
of a hollow compliant convex surface made of silicone rubber, three pho-
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todiodes and an infra LED based sensor. The force is measured by the
deformation of the silicone rubber. For instance, if a force is applied to the
silicone rubber, it will cause a deformation that changes the amount of light
to each of photodiodes, which in turn will change their force vector accord-
ingly. Using the optical method to measure the force has offered highly
dynamic sensory range, low noise, and high speed operation.

Another interesting approach uses three sets of optical sensors to develop
a 6-axial force sensor, developed by Hirose and Yoneda [46]. The design
of the sensor is cylindrical and contains three photosensors which measure
the force around the cylinder. Another and more recently design of 6-axial
optical force sensors can be found in [47, 48].

2.4 Machine learning

Machine learning is the process of building a model from a dataset in
order to make predictions or decisions on new datasets without being
explicitly programmed to do so. Each dataset consists of a feature vector
which belongs to a specified class. The training process consists of
analyzing each feature vector and producing an inferred function, which
is used for labeling new and unseen datasets into a class. The learning
algorithm can be separated into supervised, unsupervised, reinforcement
and evolutionary learning [49].

Supervised learning Supervised learning algorithms predict new data
based on a labeled dataset. That is, the system in the learning process
knows the correct answers of each dataset, which is also the basis for
the prediction. The learning process usually stops when the algorithm
converges towards an acceptable level of performance.

Unsupervised learning Unsupervised learning algorithms make predic-
tions from data points without labels. The system has to organize the data
on its own which is the basis for predictions.

Reinforcement learning Reinforcement learning algorithms choose an
action for each dataset and receive a reward indicating how good the
decision was. Based on rewards, the algorithm modifies its strategy in
order to get the highest reward.

Evolutionary learning Evolutionary learning uses biological evolution
such as reproduction, mutation, recombination, and selection as a learning
process.
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2.4.1 Classifier

The classifier is where the learning process occurs, and produces the
inferred function. The following paragraphs will introduce the technical
background of five classifiers; the artificial neural network, the support
vector machine, the naive Bayes, the k-nearest neighbors, and the decision
trees.

Artificial neural network

The Artificial Neural Network is inspired by neurons in the human brain.
A common representation of a neuron is the perceptron shown in figure
2.3. It consists of weighted set inputs wi, an adder which sums weighted
input signals, and an activation function to decide whether it should fire
for the current input xi. By connecting many perceptrons, one will obtain a
neural network. Note that neurons only depend on its own inputs and er-
rors. That is, a neuron will not be affected by other neurons’ performances.
Each neuron gives a result based on its own weights and the input, adding
them together, and comparing the result to its own threshold. The only
thing neurons share is the input and output.

The learning process of a perceptron in supervised learning aims to be able
to reproduce a particular pattern to a class, which consists of firing and
non-firing neurons for a given input. If some of the neurons yield a wrong
output, for instance, a neuron does not fire when it should, then its weights
will be adjusted to make it fire right the next time. There is a possibility to
add more layers to the neural network, which would make it able to handle
non-linear separable problems. This is also called a multi-layer perceptron
(MLP), or a multi neural network.

Figure 2.3: Model of a single perceptron [49].

Multi-Layer Perceptron A multi-layer perceptron consists of two or more
layers between the input and output. Those layers are also called hidden
layers because its value cannot be changed directly, and it is only observed
in the training set. The training process can be divided into a forward
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2.4. MACHINE LEARNING

algorithm and a backward algorithm. The forward algorithm starts first
by calculating the activations of the first hidden layer. These activations
and the next set of weights will be used to calculate the activations for the
next layer, which could either be a hidden layer or the output. The output
will then be compared to a target to compute an error. The backward
algorithm will use the error to adjust the weights between the output layer
and hidden layer. The algorithm stops when it has reached the inputs and
changed weights in the entire graph.

Figure 2.4: Model of a multi-layer perceptron with one hidden layer [50].

Support vector machine

The support vector machine (SVM) algorithm was introduced by Cortes
and Vapnik [51], and the classifier often provides a significantly better per-
formance than other algorithms, when the data set is not extremely large
[49]. Consider the two-class classification shown in figure 2.5 where the
classes are circles and crosses. The dotted line is the hyperplane/decision
boundary created by SVM, and shows where each class belongs. If the de-
cision boundary was moved by a small amount, there would be a risk that
a datapoint from one class that lies close to the boundary would be on the
wrong side. Finding the best decision boundary is done by defining the
optimal margin. The margin is defined as the largest region where it sepa-
rates the classes without having any points inside. The data points that lies
on the margin are the support vectors. Finding the optimal margin can be
done by using the dot product between each datapoint [51].
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Figure 2.5: Model of optimal margin and hyperplane created by SVM on a
two-class classification problem [51].

A weakness of SVM is that the classification is only feasible when the
classes are linearly separable as in figure 2.5. However, this issue can
be prevented by transforming the data into a higher dimensional space
where the data is linearly separable as shown in figure 2.6. Recall that
the decision boundary is only dependent on the dot-product of each data
point, which means the transformation itself is not needed. Instead, use a
function that implicitly computes the high-dimensional dot-product. This
function is referred to as a kernel function. There are many types of kernel
function as shown in table 2.1, where each of them is more appropriate than
another depending on how complex the problem is. For instance, the dot
product is sufficient if a problem is linearly separable in the original space.
Meanwhile, the Gaussian radial basis function (RBF) or polynomial may be
a better option for a more complex problem.

Figure 2.6: Transformation of the data from non linearly separable to
linearly separable space [49].
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Kernel name Values

Linear ~x ·~x

Gaussian radial basis function exp(−γ||~x ·~y||2)

Polynomial (1 +~x ·~y)d

Table 2.1: SVM kernel functions.

Naive Bayes

The naive Bayes algorithm is a probabilistic classifier based on Bayes’
theorem with the assumption that the effect of a feature on a given class
is independent of the values of other variables [49]. The assumption
simplifies computation, hence the name naive. Consider a vector with n
features, Xj, and a class, Ci, then the Bayes theorem can be formulated as in
equation 2.1.

P(Ci|Xj) =
P(Xj|Ci)P(Ci)

P(Xj)
(2.1)

The given output, P(Ci|Xj) is the probability that the features Xj belong
to a class Ci. Similarly to P(Xj|Ci) which is the probability of the class
Ci, belongs to this set of features Xj. P(Ci) and P(Xj) are the prior
probabilities of Ci and Xj respectively. The problem with using the Bayes
theorem occurs when the number of features increases, which requires
more computation time. Thus, assumptions of independence reduce
the computation time.Hence, the equation 2.1 can be reformulated as in
equation 2.2.

P(Ci|Xj) = P(Ci)∏
k

P(Xk
j |Ci) (2.2)

The prediction is based on selecting the class Ci with the highest probabil-
ity.

K-nearest neighbors

K-Nearest Neighbors (KNN) is one of the simpler classifiers presented
by Cover and Hart [52]. The classification process consists of looking at
the k-nearest classes and classifying the new data as the class with the
largest majority of them. Choosing the value for k will therefore be crucial
to achieving high classification accuracy. An illustration of the effect of
performance on different k values is shown in figure 2.7. All the blue
squares and red triangles are the training data, while the green circle
represents new data, which is to be classified. The solid and dashed circle
is when the k is set to either 3 or 5 respectively, to illustrate the boundary
between k nearest among all classes. If k is set to 3, the green circle will be
classified as a triangle, which is the majority of them. Conversely, if k is set
to 5, then the green circle will be classified as a square.
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Figure 2.7: An example of a KNN classification [53]. The green circle is to
be classified as either a blue square or red triangle. The solid circle is when
k = 3, while the dashed circle is when k = 5.

A common method to find the k-nearest data points is to calculate the
Euclidean distance. The Euclidean distance is expressed in equation 2.3
[54].

D(x, y) =

√
m

∑
i=1

(xi − yi)2 (2.3)

The x and y in equation 2.3 represent the actual and unseen classes, and
m is the number of input variables. The algorithm will then count the k
classes with the shortest distance to determine which class the unseen data
belongs to.

Decision tree

The decision tree is a non-parametric classifier presented by JR Quinlan
[55]. A tree, as shown in figure 2.8, consists of nodes, which represent one
of the features, and leaf nodes are associated with classes. The process of
the decision tree is first to construct a tree with nodes and edges based on a
training data, then predict on a new data set by following a path from the
root to a leaf node.
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Figure 2.8: An example of a simple decision tree [55]. This decision tree
classifies a day to be P or N based on outlook, humidity and wind.

An important aspect of decision trees is how to construct one based on
the features. Although there are a few different methods, most are based
on the same principle: by starting at the root, and choosing the most
discriminative feature at each step [49]. The attractiveness with trees is that
they are efficient, and it is easy to understand and interpret the data.

2.4.2 Hyperparameter tuning

Every classifier has parameters that need to be set and may strongly affect
the performance induced by them. Consequently, it is recommended to
set appropriate parameters in order to optimize a classifier. But it is hard
to determine the optimal values of parameters since it often differs for
different datasets. A strategy to finding these parameters, recommended
by Hsu et al. [56], is to use a grid search. A grid search will exhaustively
search through a desired specified subset and output the parameters with
the best results. A benefit of using a grid search, instead of searching by
heuristics or approximations, is that it avoids getting stuck in local optima.
However, the biggest weakness is computation complexity when the search
space increases.

2.5 Features

An important part of achieving a good classification is finding good
features from sensor data. The features are what distinguish classes and
will be used as a learning set. Thus, finding good features is crucial to
obtaining an accurate classifier.
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2.5.1 Curse of dimensionality

The curse of dimensionality occurs when one includes too many features
in the input vector. The dimensionality of feature vectors will increase,
and similarly the complexity of the underlying pattern may also increase,
which might cause a poor performance of the classifier. To prevent the
curse of dimensionality one can add more training samples to uncover the
underlying pattern.

2.5.2 Features extraction

Feature extraction is the process of building a new set of features from the
original set and use it as a training set. Those extracted features should
make it easy for a classifier to distinguish between the various classes. A
common method is extracting statistical features.

Statistical features

The following paragraphs will elaborate five commonly used statistical fea-
tures; mean, variance, standard deviation, skewness, and kurtosis.

Mean The mean is generally referred to as the average, and is defined
by the sum of the values divided by the number of values and is given in
equation 2.4 [57].

x̄ =
1
N

j=0

∑
N−1

xj (2.4)

Variance Variance describes the spread between numbers in a data set
[57]. The variance is given in equation 2.5.

Var(x0 . . . XN−1) =
1
N

j=0

∑
N−1

(xj − x̄)2 (2.5)

Standard deviation Standard deviation is a measure of spread of a data
set from its mean [57]. High deviation indicates that the data points are
further from the mean. This can be calculated by taking the square root
from the variance and is given in equation 2.6.

σ(x0 . . . XN−1) =
√

Var(x0 . . . XN−1) (2.6)
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Skewness Skewness describes asymmetry of a distribution and is given
in equation 2.7 [57].

Skew(x0 . . . XN−1) =
1
N

j=0

∑
N−1

[
xj − x̄

σ

]3

(2.7)

The skewness can be either negative or positive depending on whether data
points are skewed to the left or the right. A negative skewness is when data
is skewed to the left, while positive skewness is when the data is skewed
to the right, as shown in figure 2.9.

Figure 2.9: Skewness [57].

Kurtosis Kurtosis measures the peak and tails of a distribution relative
to a normal distribution [57]. Using kurtosis might help to understand
general characteristics about the distribution of the data. The kurtosis is
given in equation 2.8.

Kurt(x0 . . . XN−1) =

{
1
N

j=0

∑
N−1

[
xj − x̄

σ

]4
}
− 3 (2.8)

A positive kurtosis of distribution has a sharper peak and heavier tails
relative to normal distribution, while a negative kurtosis has a flatter peak
and lighter tails relative to the normal distribution which is shown in figure
2.10.

2.5.3 Features selection

The process of feature selection is to select a subset of features from the
original set. Selecting good features has the benefit of increasing classifier
performance, preventing the curse of dimensionality mentioned in section
2.5.1, and reducing storage requirements and training time. But, one has
to be aware that even a feature that can individually be completely useless,
might be relevant when used together with other features [58]. There are
three types of feature selection algorithms: filter-, wrapper-, and embedded
methods.
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Figure 2.10: Kurtosis [57].

Filter Filter feature selection is independent of any classifier. It uses
statistical measures to assign each feature a score. Features will either be
kept or removed based on the score. The filter methods are considered fast
and effective.

Wrapper Wrapper feature selection will try different combinations of the
feature set, evaluate by a classifier and keep the feature set with the best
outcome.

Embedded Embedded feature selection performs feature selection as part
of the learning procedure and is usually specific to a given classifier.

2.5.4 Features scaling

Different features often have a different range of values which may cause
a skew in the distribution. This is an issue particularly for classifiers that
involve distances in their computation such as SVM and KNN described
in section 2.4.1. When a feature has a large range, it will dominate other
attributes and cause poor performance of the classification. To reduce
bias effect caused by skewed distributions, it is common to standardize
the feature vectors. The standardizing weights all feature equally in
their representation. A common way is to standardize the feature vector
to zero mean and unit variance as given in equation 2.9, where x, x̄
and σ are the feature to be standardized, mean and standard deviation,
respectively.

z =
x− x̄

σ
(2.9)
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2.6 Model validation

Model validation relates to evaluating the performance of a classifier.

2.6.1 No Free Lunch Theorem

The well-known No Free Lunch theorem [59] in machine learning states
that there is no best classifier for every problem. That is, even if a model
achieves great performance for one problem, it might not hold for another
problem. Thus, it is recommended to apply several different classifiers for
various problems.

2.6.2 Overfitting and underfitting

Overfitting and underfitting the data is an issue in machine learning
which causes poor performance of classification. Overfitting occurs if the
learning process is done too extensively, which might make the classifier
adapt about to inherent noise in the training set as shown in figure 2.11a.
Meanwhile, underfitting occurs if there is not enough training data and the
classifier will not be able to generalize a new data set as shown in figure
2.11b.The cross-validation estimates how accurately the classifier model
will perform in practice, which might prevent the model from overfitting
or underfitting.

(a) Overfitting (b) Underfitting

Figure 2.11: Illustration of when a model is overfitted 2.11a, and underfit-
ted 2.11b.

2.6.3 Cross-Validation

Cross-validation is a statistical method to assess the quality of learning
models [60]. The process of cross-validation is first to remove some of
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the data before the training begins. After the training, the model will use
the removed data to test the performance. The intention is to evaluate the
classifier performance in a more realistic scenario by predicting new and
unseen data. The K-fold is a common cross-validation method.

K-fold The process of K-fold is to partition the data into k subsets, where
one subset is used for testing, and the other is used for training. When the
trained model has assessed the test set, a new subset is selected as the test
set. This process will be repeated k times, that is when all subsets have
been used as a test set. Setting k to the length of feature vectors is also
known as leave-one-out cross-validation (LOOCV). LOOCV only uses one
feature vector as a test set, with the remaining as a training set as shown
in figure 2.12. Estimations based on LOOCV tend to be almost unbiased,
but unreliable due to high variance. However, it is widely used especially
when there are only small amounts of data available in order to use as many
training samples as possible.

Figure 2.12: An instance of k-fold cross validation. In this case it is the
LOOCV, since the k is set to be 8 which is the length of the feature vectors.

2.6.4 Evaluating Classifiers

Evaluating the performance of a classifier can be done by calculating
metrics based on correct or wrong outputs. For instance, a two-class
classifier with classes "positive" and "negative" will have four different
outcomes:

1. True Positive (TP) is a correct prediction of class positive.

2. True Negative (TN) is a correct prediction of class negative.

3. False Positive (FP) is a wrong prediction of class positive.

4. False Negative (FN) is a wrong prediction of class negative.

These four variables can be further used to calculate the precision, accuracy,
recall and f-score.
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Precision Precision gives the number of correct detected class members
as given in equation 2.10.

Precision =
TP

TP + FP
(2.10)

Accuracy Accuracy gives the ratio of correct to incorrect predictions as
given in equation 2.11.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

Recall Recall gives the number of detected actual class members as given
in equation 2.12.

Recall =
TP

TP + FN
(2.12)

F-score F-score is a balanced measure of recall and precision as given in
equation 2.13.

F-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.13)

The accuracy gives an indication of the overall performance of a model.
However, there is a possibility that the model only classifies three of four
classes correctly and still gets a high accuracy. Thus, it will be recom-
mended to analyze the f-score. A low f-score indicates that the class either
has a low precision, recall or both. A low precision score indicates that the
classifier has difficulty in predicting the current class, while low recall in-
dicates that it is more likely that a class is to be classified as other classes.

A confusion matrix gives an insight of which classes were easier to pre-
dict than others. The confusion matrix consists of a square matrix with
one row for predicted class, and a column for actual class (or vice-versa).
Consider the confusion matrix of the 3-class classification in table 2.2. The
model got the correct classification of all instances that belongs to class C1.
Meanwhile, the model misclassified five instances of C2 as C3, and is not
able to classify any instance that belongs to class C3 correctly.

Actual
C1 C2 C3

Predicted
C1 8 0 0
C2 0 8 5
C3 5 3 0

Table 2.2: Confusion matrix of a 3-class classification.
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2.7 Existing work on terrain classification

Terrain classification has been applied to both wheeled and legged robots.
Wheeled robots have the benefit of achieving stable locomotion by chang-
ing their speed on different terrains, while the legged robots must either
change their gait, walking speed or both. Changing the gait for a legged
robot can be complex, but has the benefit of being able to traverse on more
difficult terrains.

The most commonly used legged robots in terrain classification are
quadrupeds [11, 6, 15, 17] and hexapods [16, 9, 4], due to their stability
on rough terrain. However, there are few studies where the monopod [61]
and the biped [62] have been used.

2.7.1 Terrain sensing

In order to classify various terrains, the system must obtain information
from the terrain either by remote sensing, local sensing or both.

Remote sensing Remote sensing obtains information about a terrain from
a distance and does not measure the terrain physically, such as with cam-
eras and laser scanners.

Filitchkin et al. [6] presents a visual terrain classification by using a single,
compact camera to change the gait patterns of a quadruped robot. Three
types of gait were used during the experiment, a gait designed for a flat
surface, a gait for rough terrain and a mixture of the former two. To know
which gait should be chosen for each terrain, an initial test by assigning a
gait to each terrain type was required. There were in total four different ter-
rains: small rocks, rocks, grass, and tile. The experiment consists of letting
the robot identify the terrain every few steps and switch gait according to
which terrain it was on. Robot performance was measured by comparing
the traversal time between each gait independently and the changing gait.
The results show that the changing gait is able to classify terrain and tra-
verse through the terrain faster. Meanwhile, the other two gaits were quick,
but not able to classify big rocks, and the last gait was able to classify all
terrain but had a slower traversal time.

Plagemann et al. [8] used a laser ranger finder to predict terrain elevation
at unseen locations. The research extended the Gaussian process model
to achieve a more accurate prediction of elevations. The results show that
the proposed method is capable of accurately predicting elevations unob-
served even in the presence of noise. These features gave the possibility of
planning the foot trajectories of the robot to reach a goal location

A weakness of using the remote sensors is that it does not give insight into
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the characteristics of the current terrain itself. For instance, remote sensors
might have difficulties distinguishing between terrains that are covered
with either compacted or uncompacted snow. Thus, a preferable option
is to measure terrain directly by local sensing.

Local sensing Local sensing measures aspects of the interaction between
the robot and terrain when the robot walks through. This gives a mea-
surement of mechanical surface properties and provides useful informa-
tion such as how the environment is currently affecting robot performance.

Walas [12] attached a 6-axis tactile sensor on a hexapod to discriminate five
different terrains which were soft ground, artificial grass, gravel, pebbles,
and sand. The experiment’s design was to classify the terrains while the
robot locomotes on it. There were in total 10 trials for each terrain where
each trial consisted of six steps. The author investigated the performance
of each single signal from the tactile sensor independently. The results
showed that the information from the force in the x and y-directions and
torque in x, y, and z-directions did not give informative properties from the
terrain, where the highest accuracy was less than 60%. However, by using
data from the force and torque in the z-direction, the author achieved an
accuracy of 76.67%.

Wu et al. [13] designed a capacitive tactile sensor mounted on a small two-
legged robot. Six different terrains were used in experiments, but the ter-
rains were further grouped into four terrain classes based on their friction
and stiffness properties. The four classes consisted of a high friction hard
surface class, a low friction hard surface class, a deformable surface class,
and a granular class. The results show that the proposed tactile sensor, in
combination with motor torque and robot gait, gave an accuracy of over
90%. The author concluded that the tactile sensor was one of the most use-
ful sensors due to perceiving informative features from the terrain.

Stejskal et al. [63] presents a road-following hexapod robot which uses the
feedback from robot servo drives that provided information about the leg
motion. The road following consists of letting the robot blindly walk on
asphalt. After each gait cycle, the robot will determine whether it was on
new terrain or on asphalt. If it is determined as off-road, then the robot will
steer back to the asphalt. Three different terrains were used in the experi-
ments: asphalt, dirt, and grass. The results show that the robot was most
confused by dirt, which accounted for about 86% of misclassified samples.
The author states that the confusion is because of similar leg motion when
the robot either locomotes on asphalt or dirt. However, the overall result of
terrain classification had an accuracy of 96.2%, which can be considered as
a feasible approach.

Kim et al. [61] used the ground reaction force and torque sensors of a
one-legged robot for terrain classification. The goal of the research was
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to compare the performance of the neural network and the support vector
machine. Four different terrains were used in the experiments: flat, grass,
sand, and gravel. The sensor data was collected by walking through each
terrain many times. Different features were extracted from the sensor data
and further partitioned into a training and test set. The results show that
the support vector machine achieved an accuracy of 78.75%, which was a
slightly better performance than the neural network with an accuracy of
78.6%.

Hoepflinger et al. [64] present a novel approach to terrain classification for
legged robots by using properties from joint motor currents and force sens-
ing resistors. The goal was to improve the guiding of foot placement and
stability of legged robots in rough terrain. Usually, experiments are done
by having a robot walk through terrains. However, in this experiment,
the author separated one of the robot’s legs and mounted it to a sample
holder of a testbed. The work designed two experiments, where different
properties of surfaces were investigated. The first experiment consisted
of distinguishing four different shapes of terrain: a convex and a concave
cone, a convex hemispherical bulge, and a concave hemispherical indenta-
tion. Meanwhile, the second experiment was to distinguish between three
different types of surfaces such as abrasive paper and a low friction PTFE
coating. The sensor data from both experiments was collected by perform-
ing a scratching motion on the terrain. The results from the first experiment
show that the presented approach was able to distinguish between differ-
ent terrain shapes with an accuracy of 93.8%. Results from the second test,
on the other hand, show that the presented approach is had difficulty dis-
tinguishing different types of abrasive papers and led to an accuracy of
73.3%.

2.7.2 Learning algorithms

There is a vast number of classifiers and a variety have been used
within terrain classification, such as neural networks [11, 14, 65], adaptive
Bayesian filtering [66, 15], support vector machines [61, 67, 68] and decision
trees [15]. The No Free Lunch theorem described in section 2.6.1 appears in
previous work [10] that SVM, KNN, and naive Bayes gave higher accura-
cies than the decision tree, while in [15] better performance was achieved
by SVM, decision tree and naive Bayes than by KNN. Thus, it is recom-
mended to build several algorithms, and choose the best of them for the
specified problem.

Most studies based their terrain classification on supervised learning.
However, Giguere and Dudek [2] presented a new clustering method for
terrain classification using unsupervised learning. This makes a robot able
to automatically distinguish terrain without any human interaction or feed-
back. The same authors [14] designed a tactile probe and demonstrated the
possibility of utilizing the sensor in unsupervised learning.
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2.7.3 Features

As mentioned in section 2.5, finding good features is a crucial part of the
classification process. Earlier work has extracted features in combinations
of statistical features in the time domain with frequency domain features
[69, 2, 64]. Other researcher only extract features in the time domain [12]
or in the frequency domain [70, 71]. The following paragraphs will give an
insight of features extracted in past work.

Giguere and Dudek [69] extracted features such as mean, variance, skew-
ness, kurtosis, fifth moment, and the sum of the variation over time in
the time domain. The feature in frequency domain consists of the sum of
higher half of amplitude spectrum extracted.

Hoffmann et al. [17] defined features in the time domain such as mini-
mum, maximum, mean, kurtosis, skewness, median, standard deviation,
the approximation of the integral, amplitude of Hilbert transform. Other
features were extracted in the frequency domain such as the frequency with
the highest amplitude and its magnitude, similar to the second and third
highest amplitude.

Kertész [72] computed median, maximum, skewness and root mean square
from of the accelerometer angles in x, y and z-directions. Those features
were also extracted in the frequency domain for the z-direction. Features
extracted from force sensors were interquartile range, maximum, skew-
ness, RMS amplitude and the highest amplitude in the frequency domain.

Best et al. [9] extracted five statistical features in the time domain such
as minimum, maximum, mean median, and standard deviation. However,
some statistical features are also calculated in the frequency domain with
the energy additionally.

Walas [12] suggested four statistical features in the time domain which
were variance, skewness, kurtosis, and the fifth moment from the 6-axis
tactile sensor.

The paragraphs above shows that many of previous work has been us-
ing statistical features, where some of them are described in section 2.5.2.
The work in [61] is an example of extracting good features is crucial to good
performing model. The researcher used statistics with a support vector ma-
chine and gave an accuracy of 40%, while a principal component analysis
gave an accuracy of 78.75%.

2.7.4 Model evaluation

A common method to evaluate a model is using the k-fold cross-validation
[73, 11, 3, 17, 15, 72]. However, the selection of k varies. A common k value
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is set either to 2 [73, 11], 10 [9, 3, 17, 15, 72] or equal to the length of the
feature vectors [9].

Mrva et al. [73] used 2-fold cross-validation and achieved an overall ac-
curacy of 99.4%, and states the possibility of obtaining 100% with more
folds. Best et al. [9] used 10-fold cross validation and achieved an accuracy
of 99% while the leave-one-out-cross validation decreased slighty the clas-
sifier performance with accuracy of 97.4%. The studies seems to achieve
feasible results. However, as stated in [72], the k-fold only gives a reason-
able estimate of performance. That is, it does not give insight on how well
it predicts with unseen data. This is because experiments always use the
same samples which are involved in either training or testing. The model
might be less generalized, because the data more likely to refer to itself,
and there might be difficulty with predicting unseen data. Most authors
are aware of this issue and have rectified it by partitioning the samples to
make the training and test sets independent [9]. The learning process will
only be used from a certain set, and testing from another set.

Not all studies evaluated their models by k-fold cross-validation, but also
either with new data to get a better estimation [64, 16, 14]. A simpler
method of validation is to randomly partition the data set with 70% used
for training, and the rest for testing [14]. The most realistic scenario is
to base the evaluation on a robot traversing through different terrains
[73].
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Chapter 3

Software and tools

This chapter gives an introduction to different tools and libraries used
throughout the thesis.

3.1 Optical force sensor

OptoForce (3D force sensor) [74] shown in figure 3.1 is a similar sensor to
that of Tar and Cserey [45].

Figure 3.1: 3D OptoForce sensor [75].

The sensor consists of a light emitter (LED) and four sensing elements
(photodiodes) which are wrapped within two layers; a reflective layer and
a sensing surface. The four photodiodes obtain the force by measuring
the infrared light reflected by the reflective layer. If a force is applied on
the sensing surface, the amount of reflected light on each photodiode will
change accordingly. The forces in the x- and y-directions are measured by
the difference in the amount of reflected light between the two opposing
photodiodes for each direction, while the force in the z-direction is the
average of the four measurements. The force axes of the sensor are shown
in figure 3.2. OptoForce sensor is a relatively new sensor (2015), and the
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manufacturer claims the sensor can guarantee precise measurements even
up to a 200% overload [76].

Figure 3.2: Force axes of the OptoForce sensor.

3.2 Robot

A Quadruped robot developed at the University of Oslo is shown in figure
3.3. The legs are about 45 cm long and mounted with optical force sensors.
The robot also provides five different gaits developed by Nygaard et al.
[77]. All gaits are optimized by an evolutionary algorithm. To elaborate on
each gait, the gait names will be simplified as letters. Gait A is optimized
to achieve the highest speed. This makes the robot walk very fast and is
not very stable. Gait B is optimized to achieve the most stable locomotion,
which leads to a slow speed. The remaining three gaits are all optimized to
achieve both stable and fast locomotion. However, gait C tend to favor on
achieving a faster speed rather than stability. Conversely, gait D has tend
to favor on achieving a stability rather than faster speed. Meanwhile, the
gait E is a mixture of the gait C and gait D.
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Figure 3.3: Quadruped Robot developed at the University of Oslo mounted
with the optoforce sensor.

3.3 Robot operating system

The robot mentioned in section 3.2 operates on a Robot Operating System
(ROS) [78]. ROS is an open-source software framework and is used to
create robot applications. ROS consists of nodes that can be grouped into
packages, shared and distributed. A node is a process that performs the
computation. For instance, one node could be controlling the robot, while
another controls the prediction of terrain. This allows parallel execution of
the data collection and class prediction in real time. Currently, the most
compatible programming languages are Python, C++, and Lisp.

3.3.1 Messages and topics

A message is a data structure which could be an integer, floating point,
array, etc. Nodes can use a message and publish it under a given topic
[79]; this feature is also called "publisher". The topic is used to identify
the content of the message where a node has the possibility to subscribe
to the topic and receive data, which is also called "subscriber." This can
be seen as many-to-many, one-way communication. That is, many nodes
can subscribe to a topic, but they do not have the opportunity to pass any
message back to the publisher.
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3.3.2 Services

Service and client give the possibility of a request and reply interaction
between two ROS nodes [79]. A service can be either requesting or replying
to the client. The client calls the service by sending the request message and
awaiting the reply.

3.3.3 Rosbag

Rosbags are used for recording and playing back ROS message data
[79]. This has the benefit of storing sensor data which is necessary for
developing and testing algorithms.

3.3.4 OptoForce package

A ROS package for the Optoforce sensor described in section 3.1 can be
found in [80]. The package contains a node that is able to read data from
the sensor with a frequency of 100Hz and will publish the data stream as
floats to a topic. This gives the opportunity for other nodes to obtain data
from the sensor by subscribing to the node.

3.4 Python libraries

Python provides lots of libraries which reduce developing time. The
libraries are well-documented and have the freedom to customize each
algorithm to use.

Scikit-learn Scikit-learn [81] is an open source library that provides tools
for data mining and data analysis. The library is dependent on numpy,
scipy and matplotlib. All classifiers and preprocessing data tools can be
found in this library.

Runstats Runstats [82] is a library which computes statistics, such as max,
mean, skew, variance and standard deviation, some of which are described
in section 2.5.2.
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Chapter 4

Implementation

This chapter attempts to present the environment setup and explain
the various choices which have been made to create machine learning
models.

4.1 Environment setup

Four different terrains are used in the experiments: floor, carpet, soft mat,
and hard mat as shown in figure 4.1. A reason for choosing these terrains is
to create a more challenging task for the classifier, because of their similar
properties. The assumption is that if the algorithm manages to discriminate
between floor and carpet, it should be able to distinguish other terrains as
well. Floor, carpet and hard mat have the most similar properties and also
the most difficult to identify. They are all slippery and have nearly equal
hardness. Soft mat, on the other hand, differs from the others with its soft-
ness and high friction. The experiments will be investigating whether the
classifier can distinguish these terrains with minor differences.

The quadruped robot and the optical force sensor used in this thesis are
mentioned in chapter 3. Although the robot provides five different types of
gaits as described in section 3.2, only gait E is used in all experiments. The
reason is that the other gaits had issues when walking on the soft mat. The
robot either got stuck with a slow gait, or fell with a fast gait.
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4.2. CHOICE OF IMPLEMENTATION LANGUAGE

(a) Floor (b) Carpet

(c) Soft mat (d) Hard mat

Figure 4.1: Four different terrains used in all experiments: floor (a), carpet (b),
soft mat (c), and hard mat (d).

4.2 Choice of implementation language

The robot operates on ROS which is currently only compatible with C++,
Python or Lisp. Thus, segmentation of data, described later in section
4.3.3, is implemented in C++, due to fast computation. However, C++
does not provide many learning libraries. Hence the learning algorithm
is implemented in Python.

4.3 Data from optical force sensor

This section will first describe how the measurement from the sensor is
obtained. Next, it will present how the data is segmented into sequences
and used as the basis for creating feature vectors.
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4.3. DATA FROM OPTICAL FORCE SENSOR

4.3.1 Data collection

Sensor data was obtained by having the robot walk 10 steps on each
terrain. The trials were recorded into rosbags, which makes it possible to
re-simulate the trials. Five trials were recorded for each terrain, which is in
total 20 trials. This gives in total 200 steps on each terrain from one sensor,
and 800 steps with all four sensors together. However, this thesis will only
use sensor data provided from the front left foot of the robot to evaluate the
performance of each classifier.

4.3.2 Analyzing the sensor data

The analyze of the sensor data aims to find common characteristics, and
to be able to segment desired data. Sensor data arrives in a stream as
shown in figure 4.2. The periodic sequences are for each step. A common
characteristic of all terrain is when the foot is in the air. There is no contact
between the sensor and the surface and will give a minor change, almost
constant, in the sensor data. When there is a contact between the sensor
and a surface it provides a big force variation in the all three directions.
This characteristic will be used to segment desired data, described in the
next section 4.3.3.

(a) Floor
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4.3. DATA FROM OPTICAL FORCE SENSOR

(b) Carpet

(c) Soft mat

(d) Hard mat

Figure 4.2: Example of sensor data from each terrain: floor (a), carpet (b),
soft mat (c), and hard mat (d).
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4.4. FEATURE SETS

4.3.3 Data segmentation

An appropriate method to segment sensor data is using a sliding window
algorithm. However, it is difficult to decide on an acceptable size of the
window, and to determine whether the data is relevant from the window,
and windows which are too big are inefficient. Thus, a custom algorithm
to segment data was created.

It is considered that the most informative data of terrain is taken when
the foot is on the ground. The custom algorithm will be storing the data
sequences when the foot is on the ground, and stops when it is not on the
ground. As mentioned in section 4.3.2, a characteristic for all terrain when
a foot is in the air, is that the x, y, and z-direction to a sensor have minor
changes in their values within a short sequence. Using this property gives
the possibility to determine when a foot is either in the air or on the ground.
In the implementation, two thresholds have to be set; one to consider the
minor change in each direction, and one to consider the minimum length
of the minor change sequence, which are set to 0.009 and 15 respectively.
That is, when the data sequence consists of at least 15 elements, and the dif-
ference between the current data and its neighbor do not exceed 0.009, it is
considered that the foot is in the air. When a foot reaches the ground, there
will be a big change in each direction for the sensor, and the algorithm will
start to store the data from the sensor into an array until it is in the air again.
Each step will be used as a sample in the training and test sets. The source
code of segmenting desired sensor data is given in appendix A.

4.4 Feature sets

As mentioned in section 2.5, a good classifier is dependent on good
features. As most previous works have extracted features both in the time
domain and frequency domain, this thesis will also be extracting in both
domains. Five different feature sets will be created and applied to learn
and evaluate each of classifiers. The following paragraphs will introduce
each feature set.

Feature set one - raw data This feature set uses all data from each step in
the x, y, and z-directions. As the length of sensor data varies, the feature
vector is decimated in the front and end of the sequence to achieve a fixed
length, in this case, 125. The choice of sequence length and method of
decimating is described and reasoned in the next section 4.5. The feature
vector set is shown in equation 4.1.
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4.4. FEATURE SETS

fset1 = {x1, . . . , x125,
y1, . . . , y125,
z1, . . . , z125} (4.1)

The vector contains 125 features from all 3 directions, which is in total 375
features.

Feature set two - statistical features This feature set extracts statistical
features from the dataset. As elaborated in section 2.7.3, much of the early
work has utilized statistical features for the terrain classification. Thus, this
thesis will be extracting similar features. Calculation of some statistical
metrics are described in section 2.5.2. The features created in this set will
be from each direction, x,y and z in the time domain:

1. The maximum value of the dataset in the time domain

2. The minimum value of the dataset in the time domain

3. The mean of the dataset in the time domain

4. The variance of the data set in the time domain

5. Skew in the time domain

6. Kurtosis in the time domain

7. Standard deviation in the time domain

The feature set is shown in equation 4.2.

fset2 = {xmax, xmin, xskew, xkuortosis, xstd, xvar, xmean,
ymax, ymin, yskew, ykuortosis, ystd, yvar, ymean,
zmax, zmin, zskew, zkuortosis, zstd, zvar, zmean} (4.2)

The vector contains 7 features from all 3 directions, which is in total 21
features.

Feature set three - complete frequency spectrum Previous work has
shown that using frequency has given promising results. In this feature
set, the raw data from the time domain is transformed into the frequency
domain by fast Fourier transformation. After transformation, a decimation
is used to achieve a fixed length. Since the minimum length in the time
domain is 125, and the fast Fourier transform is symmetric, the minimum
length of the entire spectrum will be 62.5, but in this approach, the thesis
will be decimating to a length of 61. Contrary to decimating in the front and
end of the sequence, it is considered that data at the end of the sequence is
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4.4. FEATURE SETS

less important than in the front, hence these features will be discarded. The
feature set is shown in equation 4.3.

fset3 = { f x1, . . . , f x61,
f y1, . . . , f y61,
f z1, . . . , f z61} (4.3)

The vector contains 61 features from all 3 directions, which is in total 183
features.

Feature set four - statistical features This feature set computes the
statistical metrics similarly to feature set two but in the frequency domain.
Additionally, the energy of the spectrum suggested in [9], by calculating
the sum of the squares of the amplitudes, is also included.

1. The maximum value of the dataset in the frequency domain

2. The minimum value of the dataset in the frequency domain

3. The mean of the dataset in the frequency domain

4. The variance of the data set in the frequency domain

5. Skew in the frequency domain

6. Kurtosis in the frequency domain

7. Standard deviation in the frequency domain

8. Energy

The feature vector is shown in equation 4.4.

fset3 = { f xmax, f xmin, f xskew, f xkuortosis, f xstd, f xvar, f xmean, f xE,
f ymax, f ymin, f yskew, f ykuortosis, f ystd, f yvar, f ymean f yE,
f zmax, f zmin, f zskew, f zkuortosis, f zstd, f zvar, f zmean, f zE} (4.4)

The vector contains 8 features from all 3 directions, which is in total 24
features.

Feature set five - set two and four Good features might come from
different feature sets. This set will collect feature sets two and four into
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4.5. ACHIEVING A FIXED LENGTH OF THE SEQUENCES

one unified set as seen in equation 4.5.

fset5 = {xmax, xmin, xskew, xkuortosis, xstd, xvar, xmean,
ymax, ymin, yskew, ykuortosis, ystd, yvar, ymean,
zmax, zmin, zskew, zkuortosis, zstd, zvar, zmean,
f xmax, f xmin, f xskew, f xkuortosis, f xstd, f xvar, f xmean, f xE,
f ymax, f ymin, f yskew, f ykuortosis, f ystd, f yvar, f ymean f yE,
f zmax, f zmin, f zskew, f zkuortosis, f zstd, f zvar, f zmean, f zE} (4.5)

The vector contains 15 features from all 3 directions, which is in total 45
features.

4.5 Achieving a fixed length of the sequences

In order to use raw data as input, a fixed length is required. After many
trials, the length of the data sequences varies between 125 and 135. Thus,
to ensure that all sensor data from each step is obtained the data samples
will be decimated to a constant length of 125. A simplified method for
achieving a fixed length is in listing 4.1. Note the technique is simplified to
a one-dimensional array, while this thesis uses a 3-dimensional array, but
the intention is the same. Contrary to discarding the data either in the front
or end of the sequence, this technique will be discarding on both sides,
to retain the data in the middle, which is considered more informative
data.

def f i x _ l e n g t h ( data_sequence ) :
f i x e d _ l e n g t h = 125
t o t a l _ l e n g t h = len ( data_sequence )

# Tota l amount data to be removed
t o t a l _ c u t = t o t a l _ l e n g t h−f i x e d _ l e n g t h

# In case the sequence length i s odd
r e s t = t o t a l _ c u t%2

# Ca l c u l a te the s t a r t and end p o s i t i o n
s t a r t _ p o s = t o t a l _ c u t /2
end_pos = t o t a l _ l e n g t h − ( t o t a l _ c u t /2)+ r e s t

# Ret r ieve f i x e d length of sequense data
f ixed_sequence = data_sequence [ s t a r t _ p o s : end_pos ]
re turn f ixed_sequence

Listing 4.1: A simplified method to achieve a fixed length of data sequence
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4.6. EVALUATION PROCEDURE

4.6 Evaluation procedure

This section presents two processes which are used to evaluate a certain
classifier. The first process is collecting sensor data samples into a single
file. The second process is using the file to evaluate a certain machine
learning model.

4.6.1 Collecting data samples

The first process shown in figure 4.3 is to gather data for each terrain which
will be stored into files. Those files will further be collected into a single file
and used as the training and test samples in the next process.

Raw data

Data
segmentation

Write to file

Figure 4.3: Process of storing data samples.

Process of storing samples

1. Raw data
Raw sensor dataset is retrieved from the optical force sensor.

2. Data segmentation
The sensor data will be partitioned into samples as described in
section 4.3.3.

3. Write to file
This step will write each data sequence into a file labeled with the
terrain name.
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4.6. EVALUATION PROCEDURE

4.6.2 Create and test machine learning model

When the data samples of each terrain are unified into a single file,
the learning process as shown in figure 4.4 is to evaluate each classifier.
Rectangles are processes that take a given input and produce an output.
The dashed rectangles are processes that can be omitted.

Loop

Read file

Extract features

Split data

Scaling

Train the
classifier

Scaling

Test classifier

Store partial
result

Result

Training set

Test set

Scaling factors

Figure 4.4: Process of creating and evaluating a classifier.
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4.6. EVALUATION PROCEDURE

Details of evaluating a classifier

1. Read file
This step will take a file created from section 4.6.1 as input.

2. Extract features
This step will create one of the five feature sets as mentioned in
section 4.4.

3. Loop

(a) Split data
The extracted feature vectors are partitioned into training and
testing sets. The thesis will be using LOOCV described in section
2.6.3. Thus training set will consist of 199 samples and only one
sample in the test set.

(b) Scaling
This step takes the training set as input and standardizes the
data as mentioned in section 2.5.4. The scaling factor will be
further applied to the test data.

(c) Train the classifier
The classifier will take the training set as input and train. The
hyperparameters of the classifier are set to default values.

(d) Test classifier
This step uses the model to predict the test set.

(e) Store partial result
This step will store the partial result of the test sample. If every
data sample has been used in the testing set, the next step is
number 4. If there is still more data to be tested, the loop starts
over again from step 3a.

4. Result
This step will compute several measures of performance for a certain
chosen classifier, specified in section 2.6.4.
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4.6. EVALUATION PROCEDURE

4.6.3 Evaluation

To find the optimal feature combination and algorithm for the optical
sensor, the following steps will be investigated:

1. Evaluate the performance of all five classifiers with different feature
sets. Additionally, investigate whether a feature scaling is appropri-
ate.

2. The learning process will be integrated with two different feature
selection methods to achieve better performance.

3. Some of the top performing classifiers along with the feature set will
be further tested on new data samples.

4. Select the two best performers and use a grid search with the
training samples to find the best parameters, and test on data samples
collected in step 3.

5. The best performing classifier will be further used to evaluate the
performance when the robot walks through two different terrains.

6. Lastly, test whether it is appropriate to use currently training samples
to predict the other sensors.
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Chapter 5

Experiments and results

This chapter is divided into six main sections, where each of them consists
of an experiment. The first section will present the result of each classifier
with the different sets of features. The second section will present a
modified implementation to increase the performance and its result. The
third section will select some of the well-performing classifiers with their
feature sets to evaluate on a new set of data samples. The fourth section
will use a grid search to tune parameters of the two best performing
classifiers, and compare to earlier results. The fifth section presents a real-
time implementation used to evaluate the performance of the best classifier
when the robot walks on two different terrains. The last section shows the
possibility of using training samples from the sensor mounted on the front
left foot of the robot, to predict the sensor data provided from the front
right foot.

5.1 Evaluation of classifier

This section presents the results of each classifier on different feature sets
along with an analysis.

5.1.1 Results

Table 5.1 shows the results of each classifier when using the learning
approach described in section 4.6.2. The color indicates how high the
accuracy is, where green is an accuracy of 90% and over, yellow is 80%-
89%, while red is 79% and under. The experiments were done with and
without feature scaling.
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5.1. EVALUATION OF CLASSIFIER

Accuracy
Feature set Classifier

Not scaled Scaled

Naive Bayes 83% 83%

Decision tree 94% 96%

KNN 89% 91%

Neural network 95% 96%

Set one -
raw data

SVM 89% 93%

Naive Bayes 82% 82%

Decision tree 83% 84%

KNN 84% 84%

Neural network 83% 88%

Set two -
statistical features in
time domain

SVM 76% 85%

Naive Bayes 91% 91%

Decision tree 83% 82%

KNN 91% 88%

Neural network 93% 93%

Set three -
complete frequency
domain

SVM 52% 93%

Naive Bayes 81% 81%

Decision tree 80% 82%

KNN 88% 84%

Neural network 85% 88%

Set four -
staticial features in
frequency domain

SVM 83% 86%

Naive Bayes 82% 82%

Decision tree 79% 80%

KNN 88% 84%

Neural network 87% 89%
Set five -
set 2,4

SVM 83% 86%

Table 5.1: Results from five different feature sets on five different classifiers
when using the approach shown in figure 4.4. The colors represent how
high the accuracy is. Green has an accuracy of 90%, yellow is 80%-89%,
while red 79% and under.
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5.1. EVALUATION OF CLASSIFIER

5.1.2 Analysis

All classifiers have an accuracy of at least 70%. Top performing classifiers
are the decision tree and neural network with an accuracy of 96%. How-
ever, KNN, naive Bayes, and SVM also perform well, with an accuracy of
90%.

Regarding the feature scaling, out of SVM and KNN which use distances
in their computation, SVM had the biggest effect. SVM with the scaled
feature on set three went from 52% to 93%. KNN, on the other hand, was
slightly affected by scaling, but mostly gave a lower accuracy. The neu-
ral network achieved a small improvement, while the decision tree either
performed better when scaled or not scaled, dependent on the feature set.
Navie Bayes did not undergo any effect by standardized features. Since
the feature scaling achieved a big improvement with the SVM and minor
improvement on the other classifiers, scaled features will be used in further
experiments.

Among the best results are those from either whole raw data sequences or
a complete frequency domain where mostly accuracy was over 90%. While
statistics features extracted in either the time domain, frequency domain,
or both, gave an accuracy of between 80% to 89%.

Besides looking at the performance of each classifier, it is also interesting
to look at how data provided from the sensor responds to different terrain.
In the time domain, which can be seen in figure 5.1, of the terrains, soft mat
differs the most. Forces from floor, carpet and hard mat in the x-direction
are relatively similar as shown in figure 5.1a. Forces in the y-direction as
seen in figure 5.1b are more distinguishable, but the data streams are still
quite similar to each other. Meanwhile, forces in the z-direction as seen in
figure 5.1c are even more distinguishable. Only carpet and hard mat pro-
vide similar forces but differ in the shapes of curves. Floor and carpet, on
the other hand, have similar shapes of curves but vary in the forces. In the
frequency domain, again, of the terrains, soft mat differs the most. In con-
trast to similar data from floor, carpet and hard mat in the time domain, in
the frequency domain, the floor is more distinguishable as seen in figure
5.2. The carpet and hard mat have an almost equally magnitude in the x-
direction. However, there is a slight difference between them in the y- and
z-direction shown in figures 5.2b, and 5.2c respectively.
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5.1. EVALUATION OF CLASSIFIER

(a) Mean of 10 samples in x-direction

(b) Mean of 10 samples in y-direction

(c) Mean of 10 samples in z-direction

Figure 5.1: The mean of sensor data on 10 steps for each terrain in the time
domain: the mean in the x-direction (a), the mean in y-direction (b), and
the mean in z-direction (c).
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5.1. EVALUATION OF CLASSIFIER

(a) Mean of 10 samples in x-direction

(b) Mean of 10 samples in y-direction

(c) Mean of 10 samples in z-direction

Figure 5.2: The mean of sensor data on 10 steps for each terrain in the
frequency domain: the mean in x-direction (a), the mean in y-direction (b),
and the mean in z-direction (c).
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5.2. INTEGRATION OF FEATURE SELECTION

5.2 Integration of feature selection

Even though there are classifiers which outperform the others, there is
still improvement potential. The result achieved was without a feature
selection method. The purpose of not using the feature selection was to
investigate the performance without removing any features. However,
as mentioned in section 2.5.3, selecting features from a set can increase
the classifier performance and prevent the curse of dimensionality. Thus,
in the following experiment, the feature selection will be integrated with
the previous implementation described in section 4.6.2 to see if there is
any improvement. The modified implementation is shown in figure 5.3,
where the added function is colored as red. The algorithm will select
feature on the currently entire data set before the data is partitioned in the
cross-validation. The filter and wrapper method will be used, and both
are libraries provided by scikit-learn mentioned in section 3.4. The filter
method will be removing features with low variance, while the wrapper
method is recursive feature elimination and removes features to a desired
number.

Removing features with low variance Removing Features with Low
Variance (RFLV) is a filter method that removes all features where the
variance does not meet some threshold. The default value of the threshold
will remove all features that contain the same values, which is unlikely to
occur in this experiment. To keep as many features as possible and at the
same time removing features with relatively low variance, the threshold
will be set to 0.2.

Recursive feature elimination Recursive Feature Elimination (RFE) is a
wrapper method that uses a supervised classifier to rank each feature and
remove features with a low rank. A chosen estimator will be used to train
the set of features, and weigh them. Features with the smallest weights
are pruned, and start over to estimate the current remaining set of features.
This will be repeated until the desired number of features is reached. In
this experiment, the default value will be used, which removes half of the
feature set.
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Loop

Read file

Extract features

Feature selection

Split data

Scaling

Model

Scaling

Test classifier

Store partial
result

Result

Training set

Test set

Scaling factors

Figure 5.3: Modified evaluation process from section 4.6.2. The new
function is feature selection and is colored red.
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5.2.1 Results

Table 5.2 shows the new number of features after they were removed
for each feature set, and table 5.3 shows the results for when feature
selection is applied to the earlier learning approach. The five highest
performing models are marked with bold text and will be used in further
experiments.

Feature set
Feature selection

None RFLV RFE

Set one 375 230 187
Set two 21 8 10
Set three 183 2 91
Set four 24 11 12
Set five 45 19 22

Table 5.2: New length of each feature set after applying the feature selection
method.
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Accuracy
Feature set Classifier

Old result Filter Wrapper

Navies Bayes 83% 78% 81%

Decision tree 96% 96% 93%

KNN 91% 95% 93%

Neural network 96% 94% 95%
Set one -
raw data

SVM 93% 91% 94%

Naive Bayes 82% 74% 84%

Decision tree 84% 79% 81%

KNN 84% 82% 82%

Neural network 88% 81% 84%

Set two -
statistical features in
time domain

SVM 85% 80% 83%

Naive Bayes 91% 76% 94%

Decision tree 82% 76% 81%

KNN 88% 83% 88%

Neural network 93% 78% 94%

Set three -
complete frequency
domain

SVM 93% 79% 97%

Navie Bayes 81% 75% 79%

Decision tree 82% 82% 81%

KNN 84% 85% 86%

Neural network 88% 84% 90%

Set four -
staticial features in
frequency domain

SVM 86% 82% 86%

Naive Bayes 82% 74% 84%

Decision tree 80% 82% 82%

KNN 84% 86% 86%

Neural network 89% 81% 85%
Set five -
set 2,4

SVM 86% 83% 84%

Table 5.3: Results from five different feature sets on five different classifiers
when applying the feature selection method. The colors represent how the
new accuracy is compared to the old accuracy. Green represent increased
accuracy, yellow represent the same accuracy, and red represent decreased
accuracy.
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5.2.2 Analysis

Adding the feature selection has decreased performance of most classifiers.
The RFLV on the feature set three gave the poorest performance. This is also
the set which had the most features removed, as seen in table 5.2. How-
ever, the sets that contain statistical features have been removed to nearly
equal length for both methods, and they generally have achieved approx-
imately the same results. The RFE selection also has some classifiers that
performed less accurately, but the decreased accuracy is less than the filter
method. However, SVM with feature set three has improved with an accu-
racy of 97%.

It will be interesting to investigate the features selected from each method.
However, this thesis will only present features which gave the highest ac-
curacy, that is the RFE on feature set three. Other selected features can be
seen in appendix B. To give a more reliable comparison between each fea-
ture on each terrain, the figure 5.4 is the mean of ten steps on each terrain
in the frequency domain. The first feature in the x, y, and z-directions is
the feature that shows most differences among them. Further behind in the
feature set, each feature becomes more equal. The floor, carpet, and hard
mat show some differences but tend to overlap each other. Meanwhile, the
soft mat differs the most among the terrains.
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(a) Features in x-direction

(b) Features in y-direction

(c) Features in z-direction

Figure 5.4: A comparison between each feature selected by RFE on feature
set three.
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5.3 Cross-validation on unseen data

Note that the k-fold validation in earlier experiments was only using the
same single set both for training and testing, which make the data refer-
ring to themselves and has the risk of not generalizing the classifier. In that
case, results achieved from table 5.1 and table 5.3 only give an estimation
on how successful a classifier is, but does not give an insight on how well it
predicts on unseen data. One way to avoid this issue is to make the train-
ing and testing sets independent of each other, so the predictions will be
based on new and unseen data [9]. The following experiment will be us-
ing high performing classifiers which are shown in table 5.3, marked with
bold text. As there are three shared second-best classifiers, all of them will
be included in this experiment. Additionally, the neural network without a
selection method with the feature set five achieved a satisfying result which
will also be further investigated. The reason is that the four best performing
classifiers only use either the entire raw data or frequency domain. Thus,
it will be interesting to compare a classifier that uses statistical features as
well.

In this experiment, 50 new data samples for each terrain is collected. The
cross validation will use the old dataset as a training set, while the newly
collected samples will be used as a test set. The cross validation technique
in this experiment is still LOOCV, in order to train as many samples as
possible. To achieve a reliable performance estimation, it can be done by
running the cross-validation multiple times [60]. Thus, the training and
test sets will be randomly shuffled before each round of cross validation,
and each classifier will be run five times. The table 5.4 shows the classifier
and feature set used in this experiment.

Feature set Classifier Feature selection

Set three SVM RFE
Set one Neural network None
Set five Neural network None
Set one Decision tree None
Set one Decision tree RFLV

Table 5.4: Overview of top performing classifiers with their feature set
which will be used to test on unseen data.
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5.3.1 Results

An overview of the performance of the five top performed classifier is
shown as a box plot in figure 5.5. Again, the top performing is the SVM,
and second best is the neural network with the feature set five. These
will also be used in further experiments. The other classifiers have heavily
decreased their accuracy in their performance.

Figure 5.5: Boxplot of the five top performing models on unseen data.

5.3.2 Analysis

This section will present a more detailed description of each classifiers
performance with statistics metrics mentioned in section 2.6.4. The
following paragraphs are organized by average accuracy in descending
order.
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SVM - feature set three - RFE

This is the best performing classifier, and table 5.5 shows the performance
of each run. The average performance of predicting unseen data has an
accuracy of 94.8%, and compared to the old result from table 5.3 it has
decreased by 2.2%. The classifier easily predicts floor, carpet, and soft mat,
while it has some difficulties predicting hard mat. When the robot is on the
hard mat, it has an average precision of 84%, and it tends to predict it as
carpet. Because the hard mat tends to be predicted as other terrains, the
f-score for floor and carpet is decreased a little as seen in table 5.5c. The
hard mat and carpet have relative equal f-scores. However, the carpet got
a lower recall, but higher precision, while the hard mat got a higher recall,
but lower precision.

Terrain
Run

1 2 3 4 5

Floor 100% 100% 100% 100% 100%

Carpet 94% 96% 96% 96% 98%

Soft mat 100% 100% 100% 100% 100%

Hard mat 82% 94% 82% 80% 82%

(a) Precision - SVM - feature set three - RFE.

Terrain
Run

1 2 3 4 5

Floor 90.9% 92.6% 92.6% 92.6% 87.5%

Carpet 87% 98% 87.2% 85.7% 98%

Soft mat 100% 100% 100% 100% 100%

Hard mat 100% 100% 100% 100% 100%

(b) Recall - SVM - feature set three - RFE.

Terrain
Run

1 2 3 4 5

Floor 95.2% 96.2% 96.2% 96.2% 98%

Carpet 90.4% 97% 91.4% 90.6% 97%

Soft mat 100% 100% 100% 100% 100%

Hard mat 90.1% 96.9% 90.1% 88% 90.1%

(c) F-score - SVM - feature set three - RFE.
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Run Accuracy
Confusion matrix

Floor Carpet Soft mat Hard mat

1 94%

50 0 0 0

3 47 0 0

0 0 50 0

2 7 0 41

2 97%

50 0 0 0

2 48 0 0

0 0 50 0

2 1 0 47

3 94%

50 0 0 0

2 48 0 0

0 0 50 0

2 7 0 41

4 94%

50 0 0 0

2 48 0 0

0 0 50 0

2 8 0 40

5 95%

50 0 0 0

1 49 0 0

0 0 50 0

2 7 0 41

(d) Accuracy and confusion matrix for the SVM with RFE using feature set three
after five runs. Regarding the confusion matrix, the rows show the actual terrains

and the columns show the predicted terrains.

Table 5.5: Results of the SVM using feature set three with RFE after five
runs. The results consist of: precision (a), recall (b), f-score (c), and accuracy
and confusion matrix (d).
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Neural network - feature set five

This is the second best performing classifier, and in table 5.6 shows the
performance of each run. The average performance of predicting unseen
data has an accuracy of 78.2%, and compared to the old result from table
5.3 it has decreased by 10.8%. The classifier has difficulties predicting the
hard mat and tends to predict it as carpet. Soft mat is the easiest to identify,
but there is a minor amount of error in the recall when the robot is on the
floor. The floor has the second highest accuracy with over 80%. It has
a precision of at least 88%, and the recall is under 80%, because there is
shown misclassification of floor when the robot is on hard mat and floor.
The carpet has a precision of at least 78%, but the recall is under 63.5%,
while the hard mat has a higher recall of at least 71%, and lower precision
of approximately 41%.

Terrain
Run

1 2 3 4 5

Floor 96% 92% 88% 90% 94%

Carpet 80% 78% 84% 78% 80%

Soft mat 100% 100% 100% 100% 100%

Hard mat 40% 40% 42% 40% 42%

(a) Precision - neural network - feature set five.

Terrain
Run

1 2 3 4 5

Floor 78.7% 79.3% 80% 76.3% 78.3%

Carpet 63.5% 60.9% 63.6% 60.3% 63.5%

Soft mat 100% 100% 98% 98% 100%

Hard mat 76.9% 71.4% 75% 76.9% 77.8%

(b) Recall - neural network - feature set five.

Terrain
Run

1 2 3 4 5

Floor 86.5% 85.2% 83.8% 82.6% 85.4%

Carpet 70.8% 68.4% 72.4% 68% 70.8%

Soft mat 100% 100% 99% 99% 100%

Hard mat 52.6% 51.3% 53.8% 52.6% 54.6%

(c) F-score - neural network - feature set five.
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Run Accuracy
Confusion matrix

Floor Carpet Soft mat Hard mat

1 79%

48 2 0 0

4 40 0 6

0 0 50 0

9 21 0 20

2 77.5%

46 4 0 0

3 39 0 8

0 0 50 0

9 21 0 20

3 78.5%

44 5 1 0

1 42 0 7

0 0 50 0

10 19 0 21

4 77%

45 4 1 0

5 39 0 6

0 0 50 0

9 21 0 20

5 79%

47 3 0 0

4 40 0 6

0 0 50 0

9 20 0 21

(d) Accuracy and confusion matrix for the neural network using feature set five
after five runs. Regarding the confusion matrix, the rows show the actual terrains

and the columns show the predicted terrains.

Table 5.6: Results of the neural network using feature set five after five runs.
The results consist of: precision (a), recall (b), f-score (c), and accuracy and
confusion matrix (d).
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Decision Tree - feature set one - RFLV

This is the third best performing classifier, and table 5.7 shows the
performance of each run. The average performance of predicting unseen
data has an accuracy of at least 73.6%, and compared to the old result
from table 5.3 it has decreased by 22.4%. Again, it has problems predicting
the hard mat, which it tends to predict as carpet. In contrast to the three
best performing models, this model consists of more misclassification in
every class. However, the floor and soft mat still have among the highest
accuracies with f-score of at least 88%. The carpet has a high precision, but
low recall, and vice versa with the hard mat.

Terrain
Run

1 2 3 4 5

Floor 94% 94% 88% 90% 90%

Carpet 78% 82% 82% 82% 80%

Soft mat 88% 94% 94% 90% 94%

Hard mat 32% 28% 34% 30% 24%

(a) Precision - decision tree - feature set one - RFLV.

Terrain
Run

1 2 3 4 5

Floor 79.7% 77% 78.6% 76.3% 78.9%

Carpet 56.5% 55.4% 58.6% 54.7% 53.3%

Soft mat 91.7% 100% 94% 100% 94%

Hard mat 66.7% 77.8% 70.8% 65.2% 66.7%

(b) Recall - decision tree - feature set one - RFLV.

Terrain
Run

1 2 3 4 5

Floor 86.3% 84.7% 83% 82.6% 84.1%

Carpet 65.5% 66.1% 68.4% 65.6% 64%

Soft mat 89.8% 96.9% 94% 94.7% 94%

Hard mat 43.3% 41.2% 45.9% 41.1% 35.3%

(c) F-score - decision tree - feature set one - RFLV.
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Run Accuracy
Confusion matrix

Floor Carpet Soft mat Hard mat

1 73%

47 1 2 0

5 39 1 5

0 3 44 3

7 26 1 16

2 75%

47 3 0 0

6 41 0 3

0 2 47 1

8 28 0 14

3 75%

44 3 3 0

5 41 0 4

0 0 47 3

7 26 0 17

4 73%

45 4 0 3

6 41 0 3

0 3 45 2

8 27 0 15

5 72%

45 2 3 0

6 40 0 4

0 1 47 2

6 32 0 12

(d) Accuracy and confusion matrix for the decision tree using feature set one with
RFLV after five runs. Regarding the confusion matrix, the rows show the actual

terrains and the columns show the predicted terrains.

Table 5.7: Results of decision tree using feature set one with RFLV after five
runs. The results consist of: precision (a), recall (b), f-score (c), and accuracy
and confusion matrix (d).
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Decision Tree - feature set one

This is the fourth best performing classifier, and table 5.8 shows the
performance of each run. The average performance of predicting unseen
data has an accuracy of at least 73.8%, and compared to the old result from
table 5.3 it has decreased by 22.2%. It still has problems predicting the
hard mat, which it tends to predict it as carpet. It also shows a similar
misclassification as the third best performing classifier when it is on the
soft mat. However, soft mat still has the highest precision and recall of at
least 92% and 87% respectively. The carpet varies in precision between 76%
- 82%, while the recall is under 50%. The hard mat achieved a precision of
between 28% - 36% and a big variation in the recall with a range of 66.7%
to 78.3%.

Terrain
Run

1 2 3 4 5

Floor 86% 90% 88% 88% 96%

Carpet 82% 76% 82% 82% 78%

Soft mat 92% 94% 94% 92% 98%

Hard mat 28% 34% 34% 28% 36%

(a) Precision - decision tree - feature set one.

Terrain
Run

1 2 3 4 5

Floor 78.1% 77.6% 78.6% 75.9% 78.7%

Carpet 56.9% 57.6% 58.6% 58.6% 65%

Soft mat 88.5% 92.2% 94% 90.2% 87.5%

Hard mat 66.7% 68% 70.8% 66.7% 78.3%

(b) Recall - decision tree - feature set one.

Terrain
Run

1 2 3 4 5

Floor 81.9% 83.3% 83% 81.5% 86.5%

Carpet 67.2% 65.5% 68.4% 68.4% 70.9%

Soft mat 90.2% 93.1% 94% 92% 92.5%

Hard mat 39.4% 45.3% 45.9% 39.4% 49.3%

(c) F-score - decision tree - feature set one.

62



5.3. CROSS-VALIDATION ON UNSEEN DATA

Run Accuracy
Confusion matrix

Floor Carpet Soft mat Hard mat

1 72%

43 5 2 0

4 41 2 3

0 0 46 4

8 26 2 14

2 73%

45 4 1 0

5 38 2 5

0 0 47 3

8 24 1 17

3 75%

44 3 3 0

5 41 0 4

0 0 47 3

7 26 0 17

4 72%

44 2 4 0

6 41 0 3

0 0 46 4

8 27 1 14

5 77%

48 0 2 0

5 39 2 4

0 0 49 1

8 21 3 18

(d) Accuracy and confusion matrix for the decision tree using feature set one after
five runs. Regarding the confusion matrix, the rows show the actual terrains and

the columns show the predicted terrains.

Table 5.8: Results of the decision tree on feature set one after five runs.
The results consist of: precision (a), recall (b), f-score (c), and accuracy and
confusion matrix (d).
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Neural network - feature set one

This is the fifth best performing classifier and table 5.9 shows the
performance of each run. The average performance of predicting unseen
data has an accuracy of 67.4%, and compared to the old result from table
5.3 it has decreased by 28.6%. In contrast with the other models, this has
the poorest result of predicting the floor, which it tends to predict as carpet.
Again, the hard mat is the most difficult to predict and has the highest
probability of being predicted as carpet, but it is also likely to be predicted
as floor as well. The carpet has the second highest precision with a least
96%, but a low recall of under 48.5%. The floor has a precision of over
40% and recall of between 64.5% - 75%. The hard mat achieved the lowest
precision with under 24%, but has a high recall with over 83.3%.

Terrain
Run

1 2 3 4 5

Floor 50% 52% 40% 54% 52%

Carpet 98% 96% 96% 98% 98%

Soft mat 100% 100% 100% 100% 100%

Hard mat 22% 22% 20% 18% 24%

(a) Precision - neural network - feature set one.

Terrain
Run

1 2 3 4 5

Floor 67.6% 72.2% 64.5% 75% 72.2%

Carpet 48% 47.1% 44.9% 47% 48.5%

Soft mat 100% 100% 100% 100% 100%

Hard mat 100% 91.7% 83.3% 90% 92.3%

(b) Recall - neural network - feature set one.

Terrain
Run

1 2 3 4 5

Floor 57.5% 60.5% 49.4% 62.8% 60.5%

Carpet 64.4% 63.2% 61.2% 63.5% 64.9%

Soft mat 100% 100% 100% 100% 100%

Hard mat 36.1% 35.5% 32.3% 30% 38.1%

(c) F-score - neural network - feature set one.
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Run Accuracy
Confusion matrix

Floor Carpet Soft mat Hard mat

1 68%

25 25 0 0

1 49 0 0

0 0 50 0

11 28 0 11

2 68%

26 24 0 0

1 48 0 1

0 0 50 0

9 30 0 11

3 64%

20 30 0 0

0 48 0 2

0 0 50 0

11 29 0 10

4 68%

27 23 0 0

0 49 0 1

0 0 50 0

9 32 0 9

5 69%

26 24 0 0

0 49 0 1

0 0 50 0

10 28 0 12

(d) Accuracy and confusion matrix for the neural network using feature set one
after five runs. Regarding confusion matrix, the row is the actual terrains and the

columns is the predicted terrains.

Table 5.9: Results of the neural network using feature set one after trials
runs. The results consist of: precision (a), recall (b), f-score (c), and accuracy
and confusion matrix (d).
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5.3.3 Summary

In this experiment, five classifiers with different feature sets were investi-
gated on new data samples. Compared to the old results from table 5.3,
every classifier has decreased their accuracy. However, the SVM is still the
best performing classifier with an average accuracy of 94.8%, while the oth-
ers are decreased to under 80%.

Regarding different sets of features, it can be seen that using decimated
raw data from the time domain gave the poorest performance. The neural
network only achieved an average accuracy of 67.4%. It is also worth not-
ing that the decision tree with and without the feature selection method did
not result in any notable differences. Feature set five which uses statistics
features from time and frequency domains gave feasible results, and did
not decrease as much as the models using feature set one.

A common similarity between most of the models is that the soft mat is
the easiest terrain to identify, although some of the models have shown mi-
nor confusion. Every model has difficulty predicting hard mat, and tend to
predict it as carpet. This misclassification also leads to a lower recall and
f-score for the carpet. But most of the models are able to have a high pre-
cision of prediction on floor and carpet. Even though the hard mat is often
mistaken for carpet, the other three terrains are less often mistaken for hard
mat.
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5.4 Parameter tuning

Previously, the evaluation of classifiers was based on default hyperparam-
eters. However, tuning parameters might increase the performance of the
classifier as mentioned in section 2.4.2. The reason for not using the param-
eter tuning in earlier experiments is due to time-consuming and difficult to
find the correct settings, and default values often give an adequate perfor-
mance. In this experiment, an exhaustive grid search will be used to find
optimal parameters on two top performing classifiers as shown in the table
5.10, and further tested on unseen data.

Feature set Classifier Feature selection

Set three SVM RFE
Set five Neural network None

Table 5.10: Two best performing models used to find the best parameters.

Neural network A crucial part of the neural network is the choice of
the number of hidden nodes, and hidden layers. These choices are
fundamental to achieving a promising result of the algorithm. It is common
to use two hidden layers, but there is no theory on how to choose the
number of neurons [49]. To find the best number of neurons, one has to
test many different values and chose the one that gives the best results.
An exhaustive grid search is therefore appropriate to test every possible
combination of neurons in one and two hidden layers, as seen in table 5.11.
The parameters obtained from the grid search will be further tested with
three different representations of terrains.

The current representation of the terrain is that each terrain is assigned
to four nodes. Hence, predictions of current terrain will be based on the
highest score of these nodes. Another representation of terrain is binary
numbers. This representation, instead of selecting the highest score from
one node, will be looking at a pattern of firing and non-firing neurons.
Thus, two other alternatives representing classes with binary numbers are
shown in table 5.12, which will also be tested with the best parameters
found with the grid search. The first representation is by two binary
numbers as shown in table 5.12a. This representation will only have
two output nodes, and it will always predict a terrain even if it appears
misfiring. Representation of each terrain with four binary numbers, on the
other hand, will give the output as unknown terrain when at least two
neurons are misfiring.
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Parameter Hidden layer Values

Neurons 1st 1,...,100
Neurons 2nd 0,...,100

Table 5.11: Parameter and values used in grid search on the neural network.

Binary Class

00 Floor
01 Carpet
10 Soft mat
11 Hard mat

(a) Representation of each terrain with
two binary numbers.

Binary Class

0001 Floor
0010 Carpet
0100 Soft mat
1000 Hard mat

(b) Representation of each terrain with
four binary numbers.

Table 5.12: Representation of each terrain with two binary numbers (a), and
four binary numbers (b).

SVM Hyperparameters that will be searched for SVM is shown in table
5.13. The kernel can be seen as a similarity function. Each kernel
has a different way to compute their similarities. Specifications of the
computation for each kernel is given in table 2.1. When one does not want
a perfect separation between all data, one can allow some misclassification
by tuning the parameter C. The parameter C determines how much one
wants to avoid misclassifying each training sample. A large C value
gives a better separation of the data, but might not be able to generalize
data. Meanwhile, a small C value allows more misclassification and might
contain more errors.

Parameter Values

Kernel RBF, linear, polynomial

C
0.1,0.2,...,0.9 and
1,2,...,1000

Table 5.13: Parameter and values used in grid search on the SVM.

5.4.1 Results

Table 5.14 shows the result after a tuned parameter. The best result is
marked with bold text and will be used in the last two experiments.
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Classifier
Feature
set

Feature
selection

Output
type

Number
of output

Old
result

New
result

Neural network Set 5 None
String 1 78.2% 77.6%
Binary 2 NaN 78.9%
Binary 4 NaN 74.2%

SVM Set 3 RFE String 1 94.8% 93.6%

Table 5.14: Results after tuning parameters on the neural network and
SVM.

5.4.2 Analysis

Tuning parameters did not have a effect on the performance. Mostly it
slightly decreased, but the neural network with two outputs had a minor
increase. Again, the best performing classifier is SVM with feature set three.

Regarding the binary representation of terrains, there is shown a decrease
of accuracy when having a representation of the terrain with four binary
numbers. There is a minor increase of accuracy when the output consists
of two binary outputs.
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5.5 Classification in real-time

A more realistic practical scenario is to let the robot traverse through
different terrains. Thus, the earlier approach will be modified for this
experiment. In this experiment, the robot will be walking on two different
terrains. There are in total five different setups.

1. Floor to carpet

2. Hard mat to floor

3. Hard mat to soft mat

4. Soft mat to hard mat

5. Soft mat to carpet

5.5.1 Real-time implementation

The real-time implementation can be seen in figure 5.6, which is a
modification of the earlier approach. In this implementation, a ROS service
node mentioned in section 3.3.2, is created after modeled a classifier. The
training is the same set as used in earlier experiments with 50 samples
for each terrain. The service will be waiting for a request from another
node, which is the segment data node. The segment data gathers a data
stream from the optoForce sensor. The method will collect interesting data
as described in section 4.3.3. After a step is extracted from the sensor,
it will then be passed to the service. The service will receive the data
and start to preprocess the data. It will extract features, select features,
and scale according to the training samples. The last step will classify,
and output the terrain label of the preprocessed data. Python provides
a probability function on SVM, which is used to estimate the probability
of each terrain when predicting. It will be interesting to look how high
probability each terrain is to be predicted. However, the documentation is
aware that the probability involves Platt scaling, which may be inconsistent
with the scores. For example, the highest probability is not necessarily the
highest score achieved without the probability function. Thus, one has
to be aware of this when analyzing the results. After given a result, the
program will be waiting for a new partition of sensor data from segment
data algorithm.
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Read file

Extract features

Feature selection

Scaling

Training

Create ROS
service
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request

Request?
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Predict

Raw data stream

Segment data

Yes

No Data sample

Figure 5.6: Real-time implementation.
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5.5.2 Result and analysis

The following paragraphs present the results along with an analysis of each
experiment, when the robot traverses through two different terrains in this
order:

1. Floor to carpet

2. Hard mat to floor

3. Hard mat to soft mat

4. Soft mat to hard mat

5. Soft mat to carpet
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Floor to carpet

The data stream when the robot traverses from floor to carpet is shown
in figure 5.7, where the vertical line is the transition between the terrains,
and table 5.15 shows probabilities for each terrain on each step. The
overall accuracy of predicting correctly is 88.9%. However, how certain the
classifier is to predict correctly is under 78%. The fifth step is the transition
and as shown, there is some confusion between floor and carpet. It is
also worth noticing that at the fourth step the carpet has almost the same
probability as the floor with 56.4% and 42.5% respectively. The soft mat
and hard mat have small probabilities in every step and is less likely to be
predicted.

Figure 5.7: Data stream of the robot traversing from floor to carpet. The
thick gray horizontal line is the boundary between the two terrains.

Step 1 2 3 4 5 6 7 8 9

Floor 0.782 0.680 0.747 0.561 0.564 0.282 0.206 0.252 0.282
Carpet 0.105 0.289 0.162 0.425 0.353 0.704 0.730 0.573 0.599
Soft mat 0.008 0.009 0.010 0.008 0.010 0.005 0.009 0.009 0.015
Hard mat 0.104 0.022 0.081 0.007 0.073 0.010 0.055 0.166 0.104

Table 5.15: Estimated probability of each terrain per step from floor to
carpet. Values are marked green to represent correct predictions. For
incorrect predictions, the actual value is marked yellow while the predicted
value is marked red.
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Hard mat to floor

The data stream when the robot traverses from the hard mat to floor is
shown in figure 5.8, where the vertical line is the transition between the
terrains, and table 5.16 shows probabilities for each terrain on each step.
The overall accuracy of predicting correctly is 50%. The first two steps have
shown a high accuracy of predicting correctly with over 90%. The third
step, on the other hand, which is the step before the transition, has a lower
probability of the hard mat, with a similar probability as the carpet. It is
also worth noticing that the force in the y-direction at this step differs from
earlier steps. The fourth step is the transition, and is also where the model
misclassifies the new terrain. It rather predicts it as carpet than floor.

Figure 5.8: Data stream of the robot traversing from hard mat to floor. The
thick gray horizontal line is the boundary between the two terrains.

Step 1 2 3 4 5 6

Floor 0.006 0.008 0.172 0.263 0.141 0.078
Carpet 0.008 0.073 0.375 0.641 0.615 0.822
Soft mat 0.006 0.004 0.008 0.023 0.019 0.014
Hard mat 0.980 0.915 0.444 0.073 0.225 0.085

Table 5.16: Estimated probability of each terrain per step walking from hard
mat to floor. Values are marked green to represent correct predictions. For
incorrect predictions, the actual value is marked yellow while the predicted
value is marked red.
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Hard mat to soft mat

The data stream when the robot traverses from hard mat to soft mat is
shown in figure 5.9 and table 5.17 shows probabilities for each terrain on
each step. The overall accuracy of predicting correctly is 100%, while the
average of choosing the correct terrain is 72.7%. The forces in the y- and
z-directions are much higher when walking on the hard mat than the soft
mat. There is some uncertainty on the first, third and sixth step, where the
probability of predicting correctly is less than 54%.

Figure 5.9: Data stream of the robot traversing from hard mat to soft mat.
The thick gray horizontal line is the boundary between the two terrains.

Step 1 2 3 4 5 6 7 8

Floor 0.329 0.015 0.081 0.059 0.022 0.115 0.059 0.048
Carpet 0.105 0.045 0.105 0.041 0.015 0.095 0.037 0.033
Soft mat 0.023 0.006 0.284 0.759 0.923 0.477 0.816 0.834
Hard mat 0.542 0.935 0.529 0.142 0.040 0.313 0.088 0.085

Table 5.17: Estimated probability of each terrain per step walking from hard
mat to soft mat. Values are marked green to represent correct predictions.
For incorrect predictions, the actual value is marked yellow while the
predicted value is marked red.
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Soft mat to hard mat

The data stream when the robot traverses from the soft mat to hard mat is
shown in figure 5.10, and table 5.18 shows probabilities for each terrain on
each step. The overall accuracy of predicting correctly is 100%, while the
average of choosing the right terrain is 79%. Again, the forces in the y-,
and z-directions are much higher when walking on the hard mat than the
soft mat. There is some uncertainty on the first and fourth steps, where the
probability of predicting correctly is less than 53.5%.

Figure 5.10: Data stream of the robot traversing from soft mat to hard mat.
The thick gray horizontal line is the boundary between the two terrains.

Step 1 2 3 4 5 6 7

Floor 0.099 0.019 0.018 0.138 0.021 0.008 0.038
Carpet 0.065 0.023 0.017 0.134 0.050 0.005 0.022
Soft mat 0.535 0.871 0.911 0.384 0.009 0.009 0.011
Hard mat 0.300 0.086 0.054 0.344 0.921 0.978 0.930

Table 5.18: Estimated probability of each terrain per step walking from soft
mat to hard mat. Values are marked green to represent correct predictions.
For incorrect predictions, the actual value is marked yellow while the
predicted value is marked red.
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Soft mat to carpet

The data stream when the robot traverses from the soft mat to carpet is
shown in figure 5.11, and table 5.19 shows probabilities for each terrain on
each step. The overall accuracy of predicting correctly is 87.5%. Again,
the forces in the y- and z-directions are much higher when walking on
carpet than the soft mat. There is some uncertainty on the first and fourth
steps, where the probability of predicting correctly is less than 53.5%. The
fifth step is when the robot is on the new terrain, and has a probability
of predicting it correct of 66.7%. Regarding step six, the classifier makes
a wrong prediction between carpet and hard mat with a probability of
93.3%.

Figure 5.11: Data stream of the robot traversing from soft mat to carpet.
The thick gray horizontal line is the boundary between the two terrains.

Step 1 2 3 4 5 6 7 8

Floor 0.021 0.022 0.068 0.031 0.100 0.020 0.016 0.018
Carpet 0.017 0.019 0.049 0.023 0.667 0.041 0.942 0.904
Soft mat 0.909 0.914 0.762 0.891 0.017 0.007 0.006 0.006
Hard mat 0.054 0.045 0.121 0.055 0.216 0.933 0.037 0.072

Table 5.19: Estimated probability of each terrain per step walking from soft
mat to carpet. Values are marked green to represent correct predictions. For
incorrect predictions, the actual value is marked yellow while the predicted
value is marked red.
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5.5.3 Summary

A more realistic practical scenario is investigated. Five different setups
where the robot walks between two different terrains achieved an over-
all accuracy of 85.3%. It is worth noting that the robot often did not have a
straight walk, which is also some of the reason why the step in each exper-
iment varies.

A common characteristic is that the probability decreases, particularly on
the steps between the transition of terrain. Another characteristic is that
the first and last step also tend to have a lower accuracy. Regarding the
data provided from the sensor, the soft mat has a smaller force in the y-
and z-directions than the other terrains. There is also no misclassification
of the soft mat. However, there is some misclassification between floor and
carpet, and hard mat and carpet.
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5.6 Prediction on other sensor

All previous experiments have only used data provided from the sensor
mounted on the front left foot of the robot. Thus, it will be interesting to
investigate the possibility of using the current training set to predict the
data provided from a sensor mounted on the front right foot. The reason
for testing the front right foot is that it has a more similar leg motion to
the front left foot. The back foot, on the other hand, has a different leg
motion which provides different data in each direction. In this following
experiment, 30 data samples from the right foot for each terrain will be
stored into a file and used to as test samples. The model used is still SVM
on the feature set five.

5.6.1 Results

Table 5.20 shows the results of using the training set provided from left
front foot to predict data from right front foot.

Terrain Floor Carpet Soft mat Hard mat
Floor 29 1 0 0
Carpet 3 27 0 0
Soft mat 0 0 30 0
Hard mat 2 13 0 16
Precision 96.7% 90% 100% 53.3%
Recall 85.3% 65.9% 100% 100%
F-score 90.6% 76.1% 100% 69.5%
Accuracy 84.3%

Table 5.20: Results of predicting sensor data provided from the front right
foot.

5.6.2 Analysis

The overall accuracy of predicting data from the sensor mounted on the
right foot is 84.3%. It has a precision of over 90% when predicting floor,
carpet, and soft mat. Hard mat, on the other hand, achieved only a pre-
cision of 53.3%. The low precision is due to its tendency to be predicted
as carpet. Results achieved in this experiment are similar to earlier experi-
ments as in section 5.5.2, when testing the classifier on new data samples.

Further analysis will be looking at the data provided from each sensor on
each terrain. Thus a mean of 10 steps on each terrain with each sensor is
shown in figure 5.12. The force in the x-direction between the two sen-
sors differs from each other in every terrain. Meanwhile, the forces in the
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y- and z-directions have similar values, except for the soft mat, where the
force provided from the right front foot is much higher.

(a) Floor

(b) Carpet
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(c) Hard mat

(d) Soft mat

Figure 5.12: Comparison between sensor data with the sensor mounted on
the left and on the right front foot for each terrain: floor (a), carpet (b), hard
mat (c), and soft mat (d). (S1) and (S2) refer to sensor data provided from
front left foot and front right foot respectively.
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Chapter 6

Discussion

6.1 Classifiers performance

Many classifiers have given a good performance; however, when the mod-
els were tested on new samples, the performance decreased, as seen in sec-
tion 5.3. The neural network and decision tree on raw sensor data did not
give adequate performances. There is a high chance that these classifiers
were overfitted and therefore not able to generalize the data well. It is also
worth mentioning that the method of decimating the raw sensor data to
a fixed length described in section 4.5 might also affect the performance.
The method discards features at the start and the end of the feature vector
because they were considered as less important. However, the longer the
time series is, the more features are removed from the feature vector, with a
risk of removing important features. The best performing classifier was the
SVM with an overall accuracy of 94.8%. Note that only SVM used the com-
plete frequency domain as features, and therefore it is hard to tell whether
it was the classifier or the feature set that achieved the high accuracy.

Common characteristics are that the classifier tended to predict hard mat as
carpet, and the soft mat in every trial achieved a high f-score as shown in
section 5.3. These common characteristics might be due to the sensor data
as seen in figures 5.1 and 5.2. Sensor data on hard mat and carpet have the
most similar features and are most likely to be confused. While the sen-
sor data on soft mat distinguishes from the other terrains, which is also the
reason for a high f-score. Several feature selection methods were applied to
remove common features and keep distinctive features. It is shown in table
5.3 that the RFE on feature set three did obtain minor improvement and
achieved an accuracy of 97%. It indicates that good features are kept and it
is able to distinguish between each terrain, although there is still difficulty
predicting the hard mat. The issue of predicting hard mat can be seen in
figure 5.4, where there are especially many similar features behind the first
ten of the sequence in the x-,y-, and z-directions. A further improvement is
to test different values on the RFE, by discarding more features and keeping
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more distinctive features.

6.2 Hyperparameter-tuning

The achieved parameters from the grid search did not show notable im-
provement on the performance of the neural network and SVM. The SVM
was already a well performing model, and is therefore difficult to find pa-
rameter values to obtain a better performance. Neural network, on the
other hand, only searched for the number of neurons in one or two hid-
den layers, while there are many other settings which should be tested to
achieve a more optimal classifier.

Regarding having binary numbers as output for the neural network, there
was a minor improvement of the model when representing terrain with
two binary numbers. A reason could be that, instead of choosing the out-
put with the highest score, it treats every output equally. That is, every
neuron that meets its threshold will be taken into account. Representa-
tions with four binary numbers, on the other hand, consider a terrain as
unknown when more than two neurons fire. Allowing unknown terrains
in the model leads to a higher rate of misclassification. However, despite
being able to identify unknown terrains, it may be suitable if the robot is
exploring or detecting new terrains.

6.3 Transition between terrains

The result achieved in the transition between terrains in section 5.5.2 has
given an overall accuracy for all trials of 86.8%. The overall accuracy of
transition from floor to carpet is 88.9%, which indicates that the classifier
is able to identify terrains even with minor differences in their properties.
However, after the transition from hard mat to floor, the classifier is con-
fused between floor and carpet, as seen in table 5.5.2. This confusion has
been shown from an earlier experiment in table 5.5, where the carpet tends
to have a small misclassification as floor. It is also worth mentioning that
the robot tends to not walk straight during the experiments, which might
cause the confusion between the terrains. All of the training samples were
obtained when the robot walked straight. Thus, there is a high chance of
affecting the classification when the robot walks toward the right or left.

Regarding estimated probability on the first step on the new terrain, one
can observe that the estimated probabilities are typically low. These issues
might come from the fact that all training samples were collected when the
robot walked on a certain terrain. Preventing this can be done by gathering
training samples where the robot traverses through different terrains. An-
other thing to be observed is the step in the beginning, where the estimated
probability of correct terrain is also typically low. It might indicate that the
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first step has a particular behavior, as in the middle the robot got more sta-
ble. Thus, extracting more data from the first step may improve the result.

Regarding how fast the robot detects new terrain, when the two terrains
have great differences in their properties, such as floor and soft mat, it de-
tects the new terrain quickly. Terrains with less difference in their prop-
erties may not be detected as fast. Results of the transition from floor to
carpet in table 5.15 show that the classifier sensed the new terrain after the
second step on the new terrain. Note that the experiments are mostly based
on transitions with the soft mat, which only gives an indication of how fast
it detects the terrains with high difference in their properties. Thus, to give
a more reliable evaluation, more experiments on transitions between floor,
carpet, and hard mat is necessary.

6.4 Predicting on the other sensor

The sensor data provided from the front right foot differs somewhat from
the data from the front left foot, as seen in figure 5.12. The differences may
come from when mounting the sensor on the robot. There is a possibility
that the axis from the sensor on the front left foot does not precisely point in
the same direction as the sensor on the front right foot. Despite differences
in sensor data, the results from table 5.20 indicate that most of the terrains
have been predicted correctly, but predicting the hard mat correctly is still
challenging. Thus, it is possible to use the training data from the front left
foot on the front right foot when incorporating them, but to achieve a more
reliable result, it is best to train each sensor independently.

6.5 Compared to earlier work

To give an overview of the thesis performance, a comparison with earlier
work is shown in table 6.1. These approaches were all performed with
local sensing and tested on unseen data. The thesis approach has among
the top performers and obtains similar result as in [14, 68, 61, 9] with an
accuracy of more than 90%. Note that the experiments in [14, 68] were
performed by a wheeled robot, which more easily achieves maintained
stability and less noisy data when preprocessing data from a sensor than
a legged robot. The thesis approach also outperforms past work which
utilized more than one sensor [15, 3]. The work in [9] only utilized the
servo and demonstrated an accuracy of 97%. However, the authors were
incorporating all six servos from each leg which produces more sensor data
to be preprocessed. It is also worth mentioning the work achieved higher
accuracy when rocks and mulch were considered as one terrain. Utilizing
more sensors or incorporating all four sensors in this work might also
improve the results. The most similar comparison is with work reported
in [11], where a similar quadruped robot and tactile sensor were used in
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the experiments. However, the work does not report the type of tactile
sensor used, which makes it difficult to compare the sensor type itself. The
experiments were tested on blue foil, styrofoam, linoleum, cardboard, and
rubber, which have great differences in their properties and achieved an
accuracy of 84.69%. As the robot in this thesis is able to distinguish between
floor, carpet, and hard mat, it should also be able to predict all of those as
well.

Approach Sensor type Classifier
Number of
terrains

Accuracy

Hoepflinger el at. [64]
Force sensing
Joint motor currents

Adaboost 4 73.3%

Walas [12] Tactile sensor Linear Discriminant Analysis 5 76.67%

Kim el at. [61]
Ground reaction force
Torque sensors

SVM 4 78.75%

Degrave el at. [11] Tactile sensor Reservoir Computing 5 84.69%

Kertész [15]
Accelerometer
Paw sensor

Naive Bayes 5 90.9%

Bermudez el at. [3]
Vibration
motor control data
magnetic encoders

SVM 3 93.8%

Giguere and Dudek [14] Tactile probe Neural network 10 94.3%

Best el at. [9] Servos SVM 4 97.3%

Thesis approach Optical tactile sensor SVM 4 94.8%

Table 6.1: Comparison between thesis approach with other approaches
on unseen data. Thesis result is the mean of the accuracy achieved from
LOOCV on unseen data using the best performed model obtained in
section 5.3.2. The most similar approach with robot platform and sensor
used is marked with bold text.

6.6 Conclusion

The aim of this thesis was to investigate the possibility of terrain classifica-
tion using a 3D optical force sensor. The approach was machine learning on
force data provided from the sensor mounted on a quadruped robot. Four
different terrains - floor, carpet, hard mat, and soft mat - were used in the
experiments. The data set consisted of the robot walking on each terrain
separately. Although the terrains such as the floor, carpet, and hard mat
have similar properties, analysis of the sensor data showed that the sensor
is able to perceive small differences between them. The differences can be
found in the sensor data in the y- and z-directions, where the amount of
force and the shape of time series differ between each terrain. Sensor data
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in the x-direction, on the other hand, provided almost identical features
from the floor, carpet, and hard mat.

The evaluation of the force sensor was done by using five different clas-
sifiers - naive Bayes, decision tree, KNN, neural network, and SVM - with
five different feature sets. The feature sets consist of either using decimated
raw data in the time domain or frequency domain, or statistical features in
the time domain, frequency domain or both. Many of the classifiers ob-
tained a high accuracy during the cross validation. However, when select-
ing five well-performing models on unseen data, the accuracy dropped as
anticipated. The neural network and decision tree, which had an accuracy
of over 90%, decreased to 64% and 78% respectively. This may indicate that
the models were overfitted and did not generalize data well. The combi-
nation of selected features from the complete frequency domain and SVM
gave the best results with an accuracy of 94.8%. This feature set seems to
contain distinctive and informative features that make the terrains distin-
guishable. However, the model still had difficulty predicting the hard mat.

A real-time implementation was implemented in order for the purpose of
a more realistic scenario when the robot was walking through different ter-
rains. The real-time implementation was able to segment sensor data and
make the classification fast. However, since the algorithm was only tested
on a certain gait and flat surfaces, one might achieve a different perfor-
mance when another gait or more rough terrain is chosen. The experiment
showed a feasible result with an overall accuracy of 86.8%. Note that there
were some trials where the robot did not have straight locomotion, which
might have decreased the performance

The last experiment demonstrated the possibility of using training data
from a sensor mounted on the front left foot to predict front right foot data
samples. The data provided from both sensors showed differences but had
some of the same shapes of the time series. The results of this experiment
indicate that one can obtain more training samples by using sensor data
from both sensors. However, in case the legs have different walking be-
haviors, it may be more appropriate to have separate training samples for
each sensor.

The results confirm that the optical force sensor is suitable to use for terrain
classification. Comparing the results obtained from cross-validation on un-
seen data from earlier studies, the thesis approach has achieved among
the top performances with an accuracy of 94.8% on SVM. Note that this
work only utilized one sensor on a legged robot to discriminate the ter-
rains, while much of the other past work have either used sensor fusion or
wheeled robots, which provide more stable locomotion to achieve a good
result. As the sensor in this thesis is able to distinguish terrains such as
floor, carpet, and hard mat, which have similar properties, there is a high
chance of it correctly predicting outdoor terrains as well.
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6.7 Future work

The classifier is based on the features from the sensor data. However, fea-
tures of the terrain itself such as hardness and friction are not analyzed
directly, which can be addressed in future work.

This thesis has only experimented with flat terrains. It will be interesting
to include rougher surfaces or other types and investigate the performance
with the current model.

This thesis has mostly used sensor data from one leg. However, incorpo-
rating all four legs might increase the performance of terrain classification.

Many authors have utilized sensor fusion to achieve feasible results. Thus,
using data from other sensors such as leg motion, servos etc. could further
aid the performance.

Instead of explicitly labeling the terrain, having unsupervised learning
could be appropriate. This gives the robot the ability to explore and de-
tect terrains by itself.

Only one robot was used to evaluate the sensor. However, different plat-
forms may not give the same results. Thus, different robot platforms
should be tested to achieve a more reliable evaluation of the sensor.

One of the important abilities for a robot to achieve terrain classification
is to change their gaits on different terrains. Thus, the approach can be
further extended to give the robot the ability to select appropriate gaits be-
tween different terrains.
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Appendix A

Code segmentation of sensor
data

The custom method of segmenting desired sensor data is shown in listing
A.1.

//Used to s t o r i n g raw sensor data continuously
std : : vector <std : : vector < f l o a t >> rawDataS0 ;

//Used to d e t e c t whether the f o o t i s on ground or not
std : : vector <std : : vector < f l o a t >> s t a b i l i t y L s t ;

//Used to s t o r i n g desired sensor data
std : : vector <std : : vector < f l o a t >> i n t e r e s t D a t a S 0 ;

//Enables when the f o o t i s on ground
i n t s t a r t _ t o _ f i l l = 0 ;
i n t f i l l = 0 ;

void checkDesiredData ( i n t sensorNr )
{

i n t maxBoundary = 1 4 5 ;
i f ( sensorNr == 0) {

i n t e r e s t D a t a S 0 . r e s i z e ( i n t e r e s t D a t a S 0 . s i z e ( ) − s t a b i l i t y L s t
. s i z e ( ) ) ;

i f ( i n t e r e s t D a t a S 0 . s i z e ( ) < expected_length_data ||
i n t e r e s t D a t a S 0 . s i z e ( ) > maxBoundary ) {
i n t e r e s t D a t a S 0 . c l e a r ( ) ;
re turn ;

}
}

//Writes the des ired data i n t o a f i l e ( not shown in code )
wr i teToFi l e ( ) ;

}

i n t i s S t a b l e ( std : : vector <std : : vector < f l o a t >> s t a b i l i t y A r r a y )
{

f l o a t boundary = 0 . 0 0 9 ;
i n t s t a b i l i t y C o u n t = 0 ;
i n t pos1 = s t a b i l i t y A r r a y . s i z e ( ) −2;
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i n t pos2 = s t a b i l i t y A r r a y . s i z e ( ) −1;

i n t i ;
f o r ( i =0 ; i <3 ; i ++) {

f l o a t current = s t a b i l i t y A r r a y . a t ( pos1 ) . a t ( i ) ;
f l o a t next = s t a b i l i t y A r r a y . a t ( pos2 ) . a t ( i ) ;

i f ( fabs ( next − current ) > boundary ) {
re turn 0 ;

}
}
re turn 1 ;

}

void handleDataS0 ( )
{

i f ( s t a b i l i t y L s t . s i z e ( ) > 2) {
i f ( f i l l == 0 && i s S t a b l e ( s t a b i l i t y L s t ) ) {

f i l l = 1 ;
}
e l s e i f ( f i l l ) {

i f ( ! i s S t a b l e ( s t a b i l i t y L s t ) ) {

i f ( s t a b i l i t y L s t . s i z e ( ) > stabThres ) {
s t a r t _ t o _ f i l l = 1 ;
i n t las tElement = s t a b i l i t y L s t . s i z e ( ) −1;
i n t secondLast = s t a b i l i t y L s t . s i z e ( ) −2;
i n t e r e s t D a t a S 0 . push_back ( s t a b i l i t y L s t . a t (

secondLast ) ) ;
i n t e r e s t D a t a S 0 . push_back ( s t a b i l i t y L s t . a t (

las tE lement ) ) ;
}
f i l l = 0 ;
s t a b i l i t y L s t . c l e a r ( ) ;

} e l s e i f ( s t a r t _ t o _ f i l l && s t a b i l i t y L s t . s i z e ( ) >=
stabThres ) {
s t a r t _ t o _ f i l l = 0 ;
checkDesiredData ( 0 ) ;

}
}
e l s e {

f i l l = 0 ;
s t a b i l i t y L s t . c l e a r ( ) ;

}
}

}

//This funct ion obta ins sensor data
void optoforceCal lback0 ( const geometry_msgs : : WrenchStamped : :

ConstPtr& msg)
{

std : : vector < f l o a t > tmp ;
//Stor ing sensor data

tmp . push_back (msg−>wrench . f o r c e . x ) ;
tmp . push_back (msg−>wrench . f o r c e . y ) ;
tmp . push_back (msg−>wrench . f o r c e . z ) ;
rawDataS0 . push_back ( tmp ) ;

i f ( s t a r t _ t o _ f i l l ) {
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i n t e r e s t D a t a S 0 . push_back ( tmp ) ;
}
s t a b i l i t y L s t . push_back ( tmp ) ;
handleDataS0 ( ) ;

}

Listing A.1: A simplified algorithm to segment desired sensor data.
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Appendix B

Selected features

The following paragraph shows the five different feature sets with their
features selected by RFLV and RFE.

Feature set one

RFLV

fset1 = {x8, x19, . . . , x24, x27, x53, . . . , x61, x80, . . . , x83

x86, . . . , x119

y14, . . . , y27, y52, . . . , y60, y81, . . . , y84, y101, . . . , y123

z1, . . . , z125} (B.1)

RFE

fset1 = {x1, x5, x6, x9, x12, x13, x14, x19, x20, x23, x25, x26,
x35, x39, x45, x47, x50, x51, x52, x55, x56, x60, x62, x64, x65, x66,
x72, x73, x74, x76, x80, x81, x84, x88, x91, x93, x94, x97, x98, x103,
x105, x107, x108, x109, x111, x113, x114, x116, x118, x119, x120, x123, x124, x125,
y1, y2, y3, y6, y9, . . . , y13, y16, y17, y26, . . . , y30, y33, y34, y37, . . . , y40,
y42, y44, y47, . . . , y52, y54, y57, . . . , y60, y63, y65, y66, y67, y69,
y70, y71, y73, y74, y76, y77, y78, y81, y83, y85, y86, y89, y91, y94, y97, y98,
y101, y102, y103, y105, y106, y109, y110, y114, y116, y118, y121, y122, y124, y125,
z2, z3, z4, z6, z9, z10, z11, z13, z27, . . . , z30, z32, z35, z36, z38, z39, z40,
z43, z44, z47, z48, z49, z51, z53, z54, z55, z58, z59, z60, z63, z64, z66, z67, z68,
z72, . . . , z75, z78, z79, z81, . . . , z84, z88, z89, z92, z95,
z100, z103, z106, . . . , z109, z115, z116, z119, z120, z121, z122, z125} (B.2)
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Feature set two

RFLV

fset2 = {xmax, xkurtosis, xskew,
ymax,
zmin, zmax, zmean, zvar} (B.3)

RFE

fset2 = {xvar, xstd,
ymax, ykurtosis, yskew, yvar,
zmax, zkurtosis, zvar, zstd} (B.4)

Feature set three

RFLV

fset3 = { f x1, f z1} (B.5)

RFE

fset3 = { f x1, . . . , f x8, f x10, f x13, . . . , f x19, f x21, f x22, f x24, f x27

f x30, f x32, f x33, f x34, f x37, f x38, f x39,
f y1, f y3, f y4, f y6, . . . , f y13, f y15, f y16, f y20, f y22, f y24, f y25,
f y27, f y28, f y29, f y31, f y32, f y33, f y36, f y37, f y38, f y39, f y51,
f z1, . . . , f z11, f z13, f z17, . . . , f z22, f z24, f z34,
f z36, f z38, f z39, f z51, f z59, f z60, f z61} (B.6)

Feature set four

RFLV

fset4 = { f xmax, f xkurtosis, f xskew, f xE,
f ymax, f yE,
f zmin, f zmax, f zmean, f zvar, f zE} (B.7)

RFE

fset4 = { f xvar, f xstd,
f ymax, f ymean, f ykurtosis, f yskew, f ystd, f yE,
f zmin, f zmax, f zkurtosis, f zvar} (B.8)
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Feature set five

RFLV

fset5 = {xmax, xkurtosis, xskew, f xmax, f xkurtosis, f xskew, f xE,
ymax, f ymax, f yE,
zmin, zmax, zmean, zvar, f zmin, f zmax, f zmean, f zvar, f zE} (B.9)

RFE

fset5 = {xvar, xstd, f xmean, f xvar, f xstd, f xE,
yskew, f ymax, f ykurtosis, f yskew, f yE,
zmin, zmax, zmean, zkurtosis, zvar, f zmin, f zmax, f zmean, f zkurtosis} (B.10)
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