
Visualization of Robotic Sensor
Data with Augmented Reality

Improving the observer’s understanding

Mathias Ciarlo Thorstensen

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2017

Visualization of Robotic Sensor
Data with Augmented Reality

Improving the observer’s understanding

Mathias Ciarlo Thorstensen

© 2017 Mathias Ciarlo Thorstensen

Visualization of Robotic Sensor Data with Augmented Reality

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

To understand a robot’s intent and behavior, a robot engineer must
analyze data at the input and output, but also at all intermediary steps.
This might require looking at a specific subset of the system, or a single
data node in isolation. A range of different data formats can be used
in the systems, and require visualization in different mediums; some are
text based, and best visualized in a terminal, while other types must be
presented graphically, in 2D or 3D. This often makes understanding robots
challenging for humans, as it can be hard to see the whole picture of the
situation.

This thesis attempts to solve this issue, by creating an augmented reality
system on the virtual reality platform HTC Vive, to investigate methods for
visualization of a robot’s state and world perception. It also investigates the
effect augmented reality has in increasing a user’s understanding of a robot
system.

The visualization was achieved by projecting a robot’s sensor data into
the user’s reality, presenting it in a intuitive way. Augmented reality
was achieved by utilizing HTC Vive’s front facing camera, and showing
the augmented video see-through in virtual reality. To test the system’s
ability in increasing the user’s understanding, a user study was conducted.
The study tested the users’ understanding of the robot’s perception of its
environment. This was done by comparing the augmented reality system
with traditional methods.

The implemented augmented reality system was successfully tested on
31 subjects in the user study. Quantitative data was recorded to measure
the understanding, and a questionnaire was conducted to get qualitative
data about the system. The results show a significant increase in the
subjects’ understanding.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals of the thesis . 2

2 Background 3
2.1 Virtual reality . 3

2.1.1 Teleoperation . 4
2.1.2 In education . 5

2.2 Augmented reality . 5
2.2.1 Achieving augmented reality 6
2.2.2 Pose estimation - Computer vision 7

2.3 Projection . 8
2.3.1 The perspective / pinhole camera model 9

2.4 Robotics . 11
2.4.1 Robot perception . 11
2.4.2 Previous work in the field of augmented reality and

robotics . 12
2.5 Understanding a robot . 12

2.5.1 Human-robot interaction 12
2.6 System testing . 13

2.6.1 Evaluation of an information system 13
2.6.2 Statistical method . 14

3 Tools and software 17
3.1 HTC Vive . 17
3.2 ROS - the robotic operating system 17

3.2.1 Intel RealSense depth camera 19
3.3 Unity . 22

3.3.1 Scripting . 23
3.3.2 Unityros . 26

3.4 OpenCV . 26
3.4.1 ArUco . 26

4 Implementation 29
4.1 System design . 29

4.1.1 The robot . 29
4.1.2 The augmented reality computer 32

iii

4.2 Planning the user study . 41
4.2.1 AR only experiments 42
4.2.2 Experiments where AR is compared to the traditional

method . 43
4.2.3 Test design . 43

4.3 Framework for the user study 44
4.3.1 The faulty object detection algorithm 44
4.3.2 The physical setup . 46
4.3.3 Data collection and questionnaire 46
4.3.4 System architecture . 48

5 Experiment and results 51
5.1 The study . 51

5.1.1 The invisible object test in detail 51
5.1.2 Experiment setup . 51
5.1.3 Questionnaire . 55
5.1.4 Execution of the study 55
5.1.5 Pilot studies . 57

5.2 Main experiment results and analysis 58
5.2.1 Efficiency results . 59
5.2.2 Efficiency analysis . 60
5.2.3 Accuracy results . 60
5.2.4 Accuracy analysis . 63

5.3 Questionnaire results and analysis 64
5.3.1 Quantitative data . 65
5.3.2 The 31 subjects preferring augmented reality 65
5.3.3 Solving the tasks with the traditional method 66
5.3.4 Difficulties with the traditional method 69
5.3.5 Solving the tasks with augmented reality 70
5.3.6 Difficulties with the augmented reality system 70
5.3.7 Previous experience 71

6 Discussion 73
6.1 The study . 73

6.1.1 Thoughts on the study design 73
6.1.2 A deeper analysis of the scenes and cubes 74
6.1.3 Bias in the study . 75

6.2 Visualization in augmented reality vs. virtual reality 76
6.3 Augmented reality as visualization tool 77

7 Conclusion and future work 79
7.1 Conclusion . 79
7.2 Future work . 79

7.2.1 Applying the system to a real robot 79
7.2.2 Visualization of decision 80
7.2.3 Human-robot interaction 81

7.3 Future development . 81
7.3.1 Efficiency . 82

iv

7.3.2 Stability . 82
7.3.3 Visual quality . 83

v

vi

List of Figures

2.1 Reality-virtuality continuum 4
2.2 The pose of coordinate system B relative to A 8
2.3 The perspective / pinhole camera model 9
2.4 The extrinsic part of the perspective camera model 10
2.5 Perspective / pinhole camera model, the intrinsic part 11

3.1 HTC Vive . 18
3.2 Screenshot from rviz . 19
3.3 Intel RealSense f200 depth camera 19
3.4 Byte structure of a point cloud entry 20
3.5 Live sensor_msgs/pointcloud2 message 21
3.6 Depth image from depth sensor 22
3.7 Screenshot from the Unity editor 23
3.8 Monobehaviour flowchart . 24
3.9 ArUco marker . 27

4.1 The system setup . 30
4.2 Image of the robot prototype. 30
4.3 Pixel coordinates to 3D transformation 36
4.4 First attempt at augmented reality 39
4.5 The coordinate frames of the Vive, ArUco and sensor 39
4.6 Comparison of point cloud sources 40
4.7 Robot sensing an obstacle . 41
4.8 Object masking . 45
4.9 Images of the cube prototypes. 47
4.10 ROS graph during the user study 48
4.11 Adjusting the cube masks . 49

5.1 Experiment environment. 52
5.2 The subject’s seat and computer mouse to control the view

of the point cloud on the laptop. 53
5.3 The subject’s view of the robot and scene. 53
5.4 The 5 scenes used in the experiment. 54
5.5 Main experiment data collection form. 55
5.6 Experiment form example . 56
5.7 Time spent on different tasks 59
5.8 Time efficiency for the traditional method 61

vii

5.9 Histograms showing the total number of failed tests per
subject in both methods. 61

5.10 The probability of failing at a given task 63
5.11 Error distribution in the scenes 64
5.12 Quantitative results. 67

6.1 Part and point cloud, compared visualization methods . . . 76

7.1 Human and robot . 80
7.2 Human and robot interacting 81

viii

List of Tables

4.1 Overview of software used in the robot prototype. 30
4.2 Measured bandwidth usage 34
4.3 Measured frame rates in Unity 37

5.1 Flow chart of main experiment procedure 57
5.2 Summary of time spent on the different tasks 60
5.3 Summary of time efficiency 60
5.4 The number of failures per subject with the two methods . . 62
5.5 The probability of failing at a given task 62
5.6 The number of severe errors 62

ix

x

Acknowledgements

My deepest appreciation goes to my supervisor: PhD Candidate Tønnes
Nygaard for an incredible effort, through inspiration, support, and humor.
You have made these two years a pleasure. Thank you.

A special thanks goes to postdoctoral fellow Charles Martin, who has
been helping me by sharing his experience in user studies.

Another thanks goes to the staff at ROBIN, and the great dual boiler
espresso machine, which has been very supportive, supplying me with
1200 lattes1.

I would also like to thank the lecturers from the computer vision course
at UNIK, for their enthusiasm and inspiration. A special thanks goes to
Trym Haavardsholm for taking the time to help debugging a specific part
of the system, in times of depression and despair.

Another thanks goes to Bjørn Ivar Teigen and Emilie Hallgren for
exceptional modeling, and everyone who took the time to participate in
the user study.

I would also like to express my sincere gratitude for everyone who are
close to me, supporting me through this work. This would not have been
possible without you.

1Access to the espresso machine was granted in September, 2015. As of May, 2017, this
is 20 months ago. 3 lattes a day, 5 times a week equals 1200 lattes.

xi

xii

Chapter 1

Introduction

Robots are becoming an increasingly bigger and important part of our
society. They are used in a wide range of applications, from consumer
luxury aid, for example vacuum cleaners and lawn mowers, to military
and deep sea operations, where it is dangerous for humans to operate.
This range use of cases is often called The three D’s, standing for Dirty,
Dangerous and Dull. When creating a robot, robot engineers have to plan,
design, build, program, and test the robot. While the physical part of the
implementation can be hard enough, the process of testing and tuning the
parameters of the algorithms is often tedious and time consuming.

1.1 Motivation

Many robots are dependent on the ability to sense their environment.
Autonomous robots are a good example, since they need to make decisions
based on their surroundings. Without this information, they cannot
navigate or send information about their current situation to their operator.
The information usually comes from different sensors on the robot, for
example laser range scanners and stereo cameras.

When a robot engineer is creating a robot, he or she needs to understand
how the robot makes its decisions. The decisions can be based on multiple
factors, such as internal state and sensor data. Unfortunately, robots do not
have a good way of expressing their internal data or state, which can make
robot engineering a challenging task.

The elements of the decision base are separated. For example, the
current ways of visualizing state are often text-based, while 3D sensor data
typically is shown in 3D programs. Second generation information, like the
output from an algorithm processing sensor data can be hard to visualize.
Getting an overview of the robot’s situation can thus be challenging.

What if one had the ability to see the robot’s plan of action, and which
elements that lead to its decision? Getting this information into our point

1

of view, instead of on a computer screen would likely make it easier
to understand the robot. This thesis attempts to solve this problem, by
presenting an augmented reality system for visualization of robotic sensor
data.

1.2 Goals of the thesis

The goals of this thesis are formulated below:

1. Investigate visualization of robotic sensor data through augmented
reality using the virtual reality platform HTC Vive

2. Test the system’s effectiveness in improving the user’s understanding
of sensor data

2

Chapter 2

Background

This chapter gives an overview of the field of mixed reality, as well as
the required background knowledge for the implementation of a robotic
augmented reality system. Applied techniques for system testing and
validation are also covered.

2.1 Virtual reality

Virtual reality has a wide range of applications, from surgery to
entertainment. The first references to virtual reality dates back to 1935,
from a science fiction story called Pygmalion’s Spectacles by Stanley G.
Weinbaum, describing a pair of virtual reality goggles showing the user
fictional content, including touch and smell. In 1999, projective virtual
reality was found as a new way to control and supervise robotic systems[1].
The word projective is used because actions from the user in the virtual
reality system are projected into the real world, for example through a real
robot.

Mixed reality In 1994, Paul Milgram and Fumio Kishino published the
article A taxonomy of mixed reality visual displays, where they define the
term mixed reality. The term was defined as the area between the real
and the virtual environment, along the so called reality-virtuality continuum.
This area includes the sub categories augmented reality and the less famous
augmented virtuality. The latter basically means the opposite of augmented
reality - augmentation with real content on top of a virtual environment,
that is, see figure 2.1. Milgram and Kishino stated that a taxonomy, or
a classification framework for the virtuality continuum was needed since
there was no such established framework in the community.

"The purpose of a taxonomy is to present an ordered classification, ac-
cording to which theoretical discussions can be focused, developments
evaluated, research conducted, and data meaningfully compared."[2].

3

Real
environment

Augmented
reality

Augmented
virtuality

Virtual
environment

Mixed reality

Figure 2.1: Reality-virtuality continuum

Multi-sensory feedback and operator performance A group research-
ing human-robot interaction (HRI) studied how one can utilize the per-
formance of a robot operator by using multi-sensory feedback interfaces.
They mapped sensor data from simulated robots to different senses on the
operator. The different types of sensory feedback used was visual (LCD
display), audio, vibration, touch, and smell. Multiple studies were done
and they found that using multi-sensory feedback was beneficial for in-
creasing operator performance[3].

2.1.1 Teleoperation

Some places are hard to reach for humans, due to dangerous environ-
ments. In the oil industry, welders have to dive to the bottom of the sea
to do maintenance. This is both extremely dangerous and expensive. By
using virtual reality, the welder is able to become the robot, and perform the
maintenance in a safe environment above the surface. Other fields include
space and surgery, where space falls into the same category as deep sea.
In surgery, some operations can be difficult to get done in time, due to the
need of specialists who are far away from the patient. This problem can be
solved with teleoperation, where a surgeon operates through a robot inter-
face from another place in the world. Traditionally, this has been achieved
through a two dimensional screen, with a joystick. However, this method
suffers from the lack of precision. If the screen is replaced with a virtual
reality headset, the specialist will have depth perception, making higher
precision possible. To achieve even higher precision, a haptic controller can
be utilized, giving the specialist the ability to feel the force applied to the
patient. This can improve the quality of surgery and examination through
teleoperation.

How teleoperation is done A study found three ways of achieving
teleoperation[1]. The first method involves the recording of a user
performing a task, and later playing it back through the robot. The second
method is by direct, real time robot control through the virtual reality
system. While this method is very flexible, time delay can be an issue. An
example of this is when an operator is controlling a robotic arm and grasps

4

an object he or she sees, later discovering that the remote controlled arm in
fact did not grasp the object, but rather pushed it over. A third approach,
called task deduction, involves the virtual reality system recording the user’s
actions, classifying, and dividing them into sub tasks which are sent to the
robot.

2.1.2 In education

Some fields are difficult to practice in. Virtual reality can be applied to
simulate these situations, making it possible to train more quantitatively
and methodically. For instance, pilot training is extremely expensive
because of fuel and maintenance. Virtual reality can thus be applied to
avoid the costs, while giving both accurate and valuable simulation.

Medicine In medicine, surgery training brings patient safety issues. The
classical model of surgical education is See one, do one, teach one, and while
giving the trainee first-hand experience from the actual operating room,
studies show that this can be a suboptimal way of learning[4]. One of
the reasons for this is the fact that the act is not centered on education,
and must be focused on the patient. In addition, procedures cannot be
repeated for the student to watch again. The operating room can also
be a hostile and stressful environment for the trainee. Studies show that
cognitive performance as function of stress is shaped like the Bell curve,
thus showing that only moderate levels of stress is optimal[5]. Practicing
in a virtual environment can therefore help by lowering the stress, while
still keeping it on a moderate level, because the experience feels somewhat
real for the trainee. In addition, medicine students often use videos to learn
how different procedures are performed. While the 2D-videos are a good
and inexpensive education form, they lack depth. In a virtual environment,
the students can both get a better view on the anatomy, as well as feel it - if
a haptic controller is utilized.

Summarized, virtual reality makes it possible to train more quantita-
tively and in a wider range of scenarios, the only limits are the technology,
designers, costs, and time.

2.2 Augmented reality

Augmented reality is about changing how we sense the real world. It
finds its place in the virtual continuum, on the opposite side of the spectrum
compared to virtual reality, closer to reality, see figure 2.1. To create
augmented reality, start with a given sense, for example vision, and then
change something. What most people associate with augmented reality
is originating from mobile entertainment. This includes using the mobile
device’s main camera on the opposite side of the screen, and adding -
or augmenting - something into the live video feed. Concrete examples
of such apps are Snapchat, and the more recent Pokémon GO. Snapchat

5

focuses on face recognition, and changes the user’s looks with different
filters. Pokemon GO adds 3D figures to the smartphone’s live video feed.
Another example is in medicine, where the surgeon is able to see through
the skin of the patient, observing data from sensor scans[6].

2.2.1 Achieving augmented reality

Augmented reality can be achieved through a range of different
methods. A common example is through a display. The display can be
hand-held or head-mounted. The hand held solutions, for instance a smart
phone, are typically more affordable than the head mounted displays. The
built in camera in the smart phone is used to capture a video stream while
the processor augments it, by for example adding 3D models to the scene.
A challenge arises due to the high demand of computational power to run
in real time, and thus reduces the maximum possible resolution. A study
showed that high responsiveness and avoiding lag were key factors in a
good augmented reality system[7].

Head-attached displays are the group of all displays attached to the
user’s head in some way. Retinal displays project the image directly onto
the eye[8], offering an ultra-wide field of view, but are limited to red laser1.
Head-mounted displays are a subgroup using a small monitor to display
the image. These displays can be further separated into video see-through
and optical see-through[9, 10]. Video see-through uses a display in front
of the eye, working just like the hand-held solution, and has the same
performance issues. Optical see-through achieves augmentation with a
partially transparent mirror to reflect the image, or with a transparent LCD
screen[11]. This technique does not suffer from the latency issues and the
following motion sickness introduced by the video see-through display,
and is only limited by the typical low resolution in the augmentation
overlay.

Another approach is to use Spatial Augmented Reality (SAR). This
technique differs from the others because it is not connected to the body.
One example is a regular monitor showing video see-through. Another
example is spatial optical see-through displays, that work by aligning the
augmented images to align with the environment, for example with a
transparent display. A last method is to project images directly onto a
surface in the environment[12].

Ethical and privacy concerns There are ethical questions that have to
be looked at as new technology is emerging, as augmented reality can
be used to extract and display information about other people with facial
recognition[13, 14]. Such information can be sensitive and expresses the
importance of this subject.

1Low powered lasers in other colors are not yet available.

6

2.2.2 Pose estimation - Computer vision

As presented in this section, there are different ways of achieving
augmented reality. When looking at cases where added graphics or
animations have a connection to the environment, the system needs to
know exactly where the environment is and how it is moving relative to
the user. An example case is a virtual 3D figure that is added to the room,
making it look like the figure is real. If the target medium was only a
single image, achieving this would be easy, as the figure could simply be
drawn into the image at the desired location. This would by definition
indeed be augmented reality, although this is more commonly known as
simple photo editing. However, in this example, there is not only one
image, but a continuous video feed, which means the floor will be moving
relative to the AR goggles, as the user moves. This makes the system more
complicated, since the 3D figure must move with the environment. When
adding 3D models or special effects in film production, some advanced
video editors have built in computer vision algorithms, making them able
to automatically calculate how the camera moves relative to the scene. This
way 3D models can be placed into the video to create credible film. These
algorithms can be quite expensive computational vise, but since the video
production does not happen in real time, this is not a big issue. However,
in real time augmented reality systems, efficiency is a critical subject. Stable
frame rate is important for the overall quality feel of the system; resolution
is therefore often sacrificed in these applications to keep an acceptable
frame rate.

Pose estimation To be able to track the environment’s movement, the
exact position and orientation of the headset’s coordinate frame, relative to
the environment’s coordinate frame must be known. This combination of
position and orientation is called the pose, and is a key concept in computer
vision. The pose is the rotation and translation required to move coordinate
system A to B. Although augmented reality requires 3D pose, 2D pose
is visualized in figure 2.2 for simplicity. The resulting transformation
matrix is shown in equation 2.1, and can easily be used to translate points
from one coordinate system to another, by multiplying the points with the
transformation matrix.

[
R t
0 1

]
=

cosθ −sinθ AtBx
sinθ cosθ AtBy

0 0 1

 (2.1)

Back to the example, the headset’s exact pose must be known to be able
to draw the augmented graphics in the right position. To find the pose,
different techniques can be applied. If the augmented reality system is in
a motion capture lab, reflectors can be attached to the headset to track its
position and orientation. This is not the case in most AR applications, so the
headset’s pose must be calculated through the built-in camera. This can be
done in different ways. If the frame contains a known object, the distortion

7

yA

yB

xB

xA{A}

{B}
The pose of B relative to A

Figure 2.2: The pose of coordinate system B relative to A

of the object can be analyzed and used with the optical characteristics of the
camera to calculate the pose. This method is used in a popular computer
vision library called ArUco[15]. ArUco uses printed markers that are easy
to distinguish from the background, to estimate the camera’s pose relative
to the markers. This is more thoroughly explained in section 3.4.1.

If the AR system is not dependent on knowing its exact pose relative
to the environment, but rather on how it changes, another technique can
be applied: Find points of interest in the current frame in the video feed
and compare with the next frame. If at least three corresponding points
are present in the two frames, the pose between the two frames can
be estimated. This is called the perspective-3-point-problem[16]. Another
possible technique is Optical Flow, where the movement of brightness
patterns in the image is measured to calculate the relative motion between
the camera and the scene[17].

2.3 Projection

In camera based augmented reality applications where artificial 3D
objects are drawn into the scene, knowledge about how the objects would
appear in the image is required. Correct rendering can be achieved by
transforming, or deprojecting, the object’s 3D points into the 2D images. This
transformation can be described by a camera model. There are different
models; the generic camera model is one of them, supporting zooming,
focusing, and fisheye lenses[18]. A simpler model, the pinhole camera model,
is covered in this chapter.

Image formation A camera is an imaging device, where photons are
captured onto a detector. Cameras require a way to focus photons onto the
detector, to form an image. The pinhole camera describes a simple camera

8

C

Figure 2.3: Perspective / pinhole camera model. A triangular prism in
front of the camera is captured through the pinhole, onto the image sensor
(gray).

without a lens, with a small opening, or pinhole, that focuses points from
the world through the pinhole, and onto the detector, forming an image.
The size of the pinhole is called the aperture, and should be as small as
possible to produce a sharp image, although this also makes the image
darker. Cameras with a lens can still produce sharp images with large
apertures, making it possible to adjust the brightness and field of depth (the
distance from the nearest to the furthest point in focus). The camera’s focal
length is the distance from the pinhole to where the light rays are brought
to focus, and determines the field of view (how wide the imaged area is),
as well as the field of depth. An image is captured by opening the pinhole,
exposing the detector to photons, and closing the pinhole when the detector
has been exposed to enough light to produce a bright image.

2.3.1 The perspective / pinhole camera model

The pinhole camera model describes a simple camera without a lens,
where the 2D pixels from the detector in the image can be traced along
straight lines through the pinhole of the camera, to their origin in the 3D
space in front of the camera. The camera model consists of two parts: The
extrinsic and the intrinsic part. The pinhole camera is illustrated in figure
2.3.

The extrinsic part This part handles the transformation from the world
coordinate frame to the normalized image plane (3D → 2D). The normalized
image plane is placed normal on the z-axis at z = 1, in the camera’s
coordinate frame, see figure 2.4. The extrinsic part is the product of two
matrices, shown in equation 2.2. The first matrix is a perspective projection,
which transforms 3D points into 2D (3x4 matrix, far left of equation 2.2).
The second matrix is the pose of world coordinate frame, relative to the
camera coordinate frame (4x4 matrix, second matrix on the left side of the
equation. Note that R is 3x3; t is 3x1). Recall that the pose translates from
world coordinates to camera coordinates.

9

{C} zc

ycxc

wX
cx

zc = 1

{W}

Figure 2.4: The extrinsic part of the camera model, illustrating the
relationship between points in the world coordinate frame (wX), and their
corresponding point in the normalized image plane (cx).

1 0 0 0
0 1 0 0
0 0 1 0

[

R3x3 t3x1
01x3 1

]
=
[
R t

]
(2.2)

The extrinsic part thus describes the relation between a point in the
normalized image plane cx̃ and the corresponding point in the world
coordinate frame wX̃. This relation is shown in equation 2.3. Note the use
of tilde, meaning that the points are homogeneous2.

cx̃ =
[
R t

]wX̃ (2.3)

The intrinsic part This part translates points from the normalized image
plane (x, y) to image coordinates (u, v), and is thus a 2D to 2D
transformation. The transformation is illustrated in figure 2.5. The camera
calibration matrix K describes the intrinsic transformation and is displayed
in equation 2.4.

K =

f u s cu
0 f v cv
0 0 1

 (2.4)

The values in the matrix come from the camera’s optical characteristics.
f u and f v are related to the pixel densities in the u and v directions,
relative to the focal length. cu and cv define the optical center on the
sensor array. s is the skew parameter[18]. The relationship between the
(both homogeneous) image coordinate ũ and the normalized image plane
coordinate x̃ can thus be described, and is shown in equation 2.5:

2Homogeneous coordinates have an extra dimension (i.e. [x, y, z, 1] in 3D), giving them
the ability to be multiplied by a non-zero scalar and still represent the same point. This can
be observed in figure 2.4, as the two points are at the same line, but have different scaling.
This makes homogeneous coordinates especially useful in projective geometry.

10

x

y

x =
x
y

[]
K

u

v u = u
v

[]

Pixel coordinates
Normalized image coordinates

Figure 2.5: The intrinsic part of the pinhole camera model transforms
points in the normalized image plane (left), into pixel coordinates (right). Both
coordinate frames are seen from the camera’s front, towards the sensor.

ũ = Kx̃

u
v
1

 =

f u s cu
0 f v cv
0 0 1

x
y
1

 (2.5)

The projection matrix The projection matrix is combined by the extrinsic
and the intrinsic part, and describes the correspondence, or projection,
between points in the image and in the world, displayed in equation 2.6
and 2.7:

P = K
[
R t

]
(2.6)

ũ = PX̃ (2.7)

2.4 Robotics

Robotics is a field between computer engineering, physics, and elec-
tronics, pulling in many other sciences as well. The field has numer-
ous uses, from stationary robots used in automatic manufacturing[19, 20]
and surgery[21], to mobile robots used in Urban Search and Rescue
(USAR)[22, 23] and hostile environments such as Mars[24, 25].

2.4.1 Robot perception

Robots sense their surroundings with sensors. There are a great variety
of sensors, which can be separated in two groups, proprioceptive and
exteroceptive[24]. The former classifies sensors measuring internal data,
such as temperature and torque. The latter are sensors measuring external
information about the robot’s environment, for example range and sonar

11

sensors, tactile sensors (proximity/pressure), and vision sensors (cameras).
However, all sensors have limitations, and are not always accurate[26],
validation and testing are thus important procedures in robot engineering.

2.4.2 Previous work in the field of augmented reality and robotics

There are multiple studies on augmented reality done within the
field of human-robot interaction. Augmented reality can be applied to
shared industrial environments, where robots work alongside humans, to
visualize assembly procedures and show general information[27]. It can be
used to aid in human-machine interaction in disaster sites, by for example
visualizing a collapsed building’s 3D model[28].

In applications requiring the human to see spatial sensor data from the
robot, such as a point clouds, visualization have been found to be much
more effective with stereoscopic displays than single displays. The reason
for this is that the depth is perceived directly in a natural way for the human
observer, without having to look for hints in the image to understand the
depth[29].

Other studies focus on the control of robotic system through augmented
reality. A study presented the use of augmented reality to quickly visualize
a robot’s path planning with Programming by Demonstration[30]. Another
study used augmented reality to visualize the interactive mapping of the
robot’s world model, path planning, and intention, and mentions possible
visualization of sensor data for future work[31]. In medicine, minimal
invasive cardio-vascular surgery is possible through the combination of
robotics and augmented reality[32].

2.5 Understanding a robot

This section covers the basics in human-robot interaction, and the
background necessary to define understanding in the field of robotics.

Understanding is a psychological process related to an abstract or
physical object, such as a person, situation, or message whereby one
is able to think about it and use concepts to deal adequately with that
object.[33]

2.5.1 Human-robot interaction

An important field within robotics is human-robot interaction, or HRI.
This field is about how humans interact with robots. By definition,
interaction is a two-way event that occurs when two or more objects are
affecting each other. There are two types of HRI, remote interaction and
proximate interaction. The former is applications where the human is in
a remote location relative to the robot. An example is a deep sea robot,

12

inspecting oil and gas pipes on the sea bed[34]. The latter is the opposite
case - where the human and the robot are in close vicinity, for example in
production environments[35].

Information exchange There are different types of information exchange
within HRI, which can be categorized by medium and format. Examples
of mediums are visual, audio, and touch. Common for all is that they are
sensory based, as it is impossible to gain information for humans without
the use of senses. A medium example for visual sensory information
is graphical user interfaces on computer screens, in virtual reality or in
augmented reality.

Situation awareness Situation awareness or SA is defined as an idea of
the environment’s state and its elements, in a limited volume of space and
time. This includes the ability to understand what is happening in the
moment, as well as in the future. SA is important in many applications,
for example driving, air traffic control, and in search-and-rescue situations,
to name a few. The formal definition breaks SA into three levels[36]:

1. Perception of the elements in the environment

2. Comprehension of the current situation

3. Projection of future status

2.6 System testing

Humans make errors[37]. Therefore computer programs also contain
errors. These defects, or bugs, can introduce health risks for people and
economic risks for companies. Medical and flight control systems naturally
require more vigorous testing than a web page for visualization of different
color palettes. Software testing includes multiple levels during the testing
process[38]. After the software product is shipped by the producing
organization, the client can perform an acceptance test, making sure the
product meets his requirements. These tests can focus on non-functional
characteristics such as the system’s usability. This is usually done with
alpha or beta testing, where the software is tested on users; either at the
producing organization’s location (alpha) or another place with a beta
version of the software.

2.6.1 Evaluation of an information system

A system designed for human users might require testing on human
users. In robotics, evaluation of systems does often not involve users. A
robot learning to walk with an evolutionary algorithm can be evaluated
with a fitness function. The algorithm evaluates the fitness of each
generation and iterates until a desired fitness have been achieved. With
users, it is not possible to simply start an algorithm to test the system in

13

such an automated fashion. Validating abstract metrics like understanding
requires a different approach.

Usability Usability is an important measure in system design. It has
a standard from the International Standards Organization (ISO). This
standard defines five key concepts[39]:

Learnability This measures how easy the system is to learn for new users

Efficiency How fast users are able to perform tasks in the system. When
users have learned how the system works, they should be able to
work effectively.

Memorability The user’s ability to come back to the system after some
time, and still be able to use it, without having to relearn it.

Errors How often users makes errors, and how easy it is to recover from
them.

Satisfaction A measure of the users overall feeling with the software. They
should be satisfied when using the system.

In usability testing, the five key concepts should be analyzed. Because
of the scope of this thesis, Efficiency and Errors will be the main focus. Errors
can be interpreted as the accuracy of the users[40]. A study investigating
the use of augmented reality to understand 3D models measured the users’
accuracy by calculating their error rate[41].

2.6.2 Statistical method

Research Methods in Human-Computer Interaction[42] presents the statis-
tical background needed to perform a good study in the field of HCI. This
section is inspired by the methods presented in this book.

The null hypothesis and the alternative hypothesis The null hypothesis
is normally a hypothesis stating that there is no difference in two measures,
while the alternative hypothesis states that there is a difference. A
researcher can use statistical methods to disprove the null hypothesis, and
thus confirm the alternative hypothesis. An example null-hypothesis and
its opposite alternative hypothesis are displayed below.

• H0: Sleep duration does not affect reaction time

• H1: Sleep duration does affect reaction time

Randomization Randomization is important for good experiment de-
sign. If not done thoroughly, the study’s results can get corrupted, as un-
wanted factors are introduced. Every aspect of the study should be ran-
domized, the sequence of the experiments, which subject are given treat-
ment, and which are given placebo[43].

14

Between-group and within-group When testing multiple systems, or
conditions, for instance in a study on how sleep affects work performance
with two conditions: 6 hours of sleep versus 8 hours of sleep, a decision in
whether to use the between-group or within-group design has to be made.
Between-group means every study participant is tested in all conditions or
systems. In the sleep example, if the experiment compares 6 and 8 hours
of sleep, all subjects would be tested in both 6 and 8 hours. On the other
hand, in a between-group study, a subject would either participate in the 6
or 8 hour group, but never in both.

There are pros and cons with both styles. In within-group design, both
learning effect and fatigue (from long lasting experiments) can occur, since
each subject is tested multiple times. This is not an issue in between-group
design, since each subject is only tested in one condition.

A disadvantage in between-group design is that individual differences
can obscure the results, making significance less likely to occur. This can
cause a type II error, which means acceptance of the null-hypothesis, when
it should have been rejected[44]. Another rather important disadvantage
with between-group design is the requirement of a larger subject pool. The
reason for this is that statistical significance is harder to achieve with fewer
subjects. For instance, a between-groups study with two conditions will
approximately require twice as many subjects compared to within-group
design, since the subjects must be divided in two groups. This can make
the between-group study challenging to conduct.

Errors There are two types of errors, random errors and systematic errors.
Random errors will always be present in experiments due to noise. For
example - someone who needs 30 minutes to travel to work will not always
use 30 minutes, maybe 28 minutes on a good day, and 32 minutes on a
bad day. Here the errors are the deviance from the actual value (-2 and
2). Systematic errors or bias, in contrast to random errors, moves the mean
in one direction (random errors do not affect the mean when there are a
significant number of samples). The bias can be caused by different issues:

• A faulty measurement apparatus, e.g., not measuring time correctly

• A within-group experiment with multiple conditions that are not
randomized

• Inconsistent instructions to the study participants

• The experiment leader intentionally or unintentionally affecting the
subject with wording or body language.

Significance tests When data is gathered, it can be wise to compare the
means between the groups to see the tendency. Different means does not
hold for concluding that the groups are in fact different, but can be a good
indication that a significance test should be conducted.

15

Student’s t-test The t-test is a simple method to measure the statistical
significance of a hypothesis where the means of two groups are compared.
One must be aware of whether the two groups are independent or
paired(dependent in some way), as the test is performed differently for
each of the cases. A paired t-test yields higher precision and thus stronger
tests than the independent one[45].

To suggest whether there is a significant difference in the two means
or not, the calculated t value is compared with the t value from a t
table(table with different values depending on degrees of freedom and
chosen confidence interval, e.g. 95%). The null-hypothesis can be rejected
if the calculated test statistic value is higher than the corresponding value
from the table.

The test can be two-tailed or one-tailed. The former is used when the
goal is to investigate if there is a difference between two groups. However,
sometimes testing if one of the groups is better than the other is more
appropriate. In this case, a one-tailed test should be applied. An important
matter to remember is that when using a t table, the t value for a 95%
confidence interval in a one-sided t-test is the same as the t value for a
90% confidence interval in a two-sided t-test.

Investigator bias Bias from the investigator is an important challenge in
all research[46]. Studies motivated by economic or political goals can have
poorly documented details, making it hard to recreate the experiments.
However, other good studies can still find false conclusions, because of
investigator bias. This can happen if an experiment has a poor hypothesis,
or is designed to prove a point.

Learning effect During a user study where subjects are tested multiple
times in the same system, in multiple conditions, a learning effect may occur.
The effect can make users perform better after multiple tests have been
conducted, when they have learned, or become more familiar with the test
conditions. If this effect is not taken into consideration, a false conclusion
can be drawn. A method to counter this issue is to randomize the sequence
of the conditions[42].

16

Chapter 3

Tools and software

This chapter presents the different tools and software used in the
system. It covers a brief introduction to the robotic operating system,
computer vision libraries, and a game engine often used for controlling
augmented reality goggles.

3.1 HTC Vive

This section covers the chosen platform for augmented reality, the
HTC Vive. The Vive is a virtual reality platform, but it can be used to
achieve augmented realty. This is possible because it has a front-facing
camera, and transforms the Vive into a head-mounted see-through display,
as covered in section 2.2.1. In 2016, the goggles were one of the leading
commercially available virtual reality systems, offering high resolution
displays, at 1080x1200, with a refresh rate of 90 Hz. The headset comes
with two hand controllers, making it possible to interact with the virtual
environment in an intuitive way. The headset and controllers’ poses are
tracked by two sensors. The system is displayed in figure 3.1.

3.2 ROS - the robotic operating system

The robotic operating system, or ROS, is a vastly popular open source
system for development of robotic systems[47]. It supports multiple
languages, including C++ and python, and cross-language development,
which means a robot can have its components programmed in different
languages. This works by using an Interface Definition Language (IDL),
requiring message definitions in text files. An example of such a message
definition file is displayed below.

17

Figure 3.1: HTC Vive. Goggles and sensor in the right corner.

This expresses v e l o c i t y in f r e e space
broken i n t o i t s l i n e a r and angular p ar t s .
Vector3 l i n e a r
Vector3 angular

Listing 3.1: ROS message (geometry_msgs/Twist Message).

Nodes and topics A node is a core concept in ROS. It is a small process,
and can be responsible for different tasks, for example controlling a sensor,
or managing the navigation of a mobile robot. Nodes can communicate
with each other with messages. The sending node publishes a message on a
topic. Another node, which needs the published information, can subscribe
to the said topic. The listening node subscribes to the topic and defines a
callback function, automatically called when a message arrives on the topic.
Services is another method for communication, working in a similar fashion
as a function with a return value. The service is defined by two messages:
A request and a response.

rviz rviz is a powerful 3D visualization tool for ROS, offering real time
monitoring of a robotic system. The program makes it possible to observe
the robot model in relation to its environment, as well as its sensor data.
Additionally, the software offers control of the robot in the graphical user
interface, for example by drag-and-dropping an arrow to make the robot
navigate to a desired position in the map. In figure 3.2, sensor data from
an Intel RealSense depth camera, in form of a point cloud, is visualized.
The sensor’s origin is also displayed in the 3D environment, but below the
visible frame in this image. The topic tf contains information on how the
cloud’s coordinate system is positioned and rotated relative to the sensor’s
base. This makes rviz able to draw the point cloud and the robot, at correct
relative positions. However, this requires a 3D model of the robot.

18

Figure 3.2: Screenshot from rviz, inspecting the real time point cloud from
an Intel RealSense depth camera

Figure 3.3: Intel RealSense f200 depth camera

RosBridge rosbridge_server is a ROS package making communication
between ROS nodes on different computers possible. The server uses
WebSocket as transport layer. The WebSocket protocol dates back to 2011,
and enables a two-way communication between a client and a server[48].
Unlike HTTP, WebSocket keeps the connection open, and do not require
HTTP handshakes for every message.

3.2.1 Intel RealSense depth camera

This section attempts to go through the most important parts of the
depth camera used in this thesis. It starts with a brief explanation on how
the sensor works, followed by the software part, including driver control
and published topics. The full name of the sensor is Intel RealSense f200,
and is pictured in figure 3.3.

Sensing the depth The RealSense gets depth information by projecting a
grid in the infrared spectrum into the room in front of the camera. It then

19

F i e l d name : [x] [y] [z] [unused] [r] [g] [b] [unused
Byte index : 0 4 8 12 16 17 18 19

Figure 3.4: Byte structure of a point cloud entry

measures how the grid hits surfaces with an infrared camera. The sensor
does not see black objects or glass, since it depends on reflected rays from
the surface. Black surfaces absorb light, and glass reflects very little back to
the sensor.

Depth information from the sensor The RealSense ROS package pub-
lishes three important topics. The first one is /camera/depth/image_raw, this
topic contains the raw depth images from the sensor, 640x480 pixels of 16
bits. Each pixel holds a depth measure in millimeters. The second impor-
tant topic is /camera/depth/camera_info, this topic holds information about
the sensor’s optical characteristics - the camera matrix and distortion coef-
ficients. The third topic is /camera/depth/points, and contains the complete
point cloud.

The point cloud message The first message to look at is the pointcloud2
message. A live data packet, fetched with rostopic echo -n1 /camera/depth/-
points is illustrated in figure 3.5. The following paragraphs will explain its
contents.

fields The first part to look at is the field explaining the internal structure
of the point cloud. It is called fields: and contains an array of type
sensor_msgs/PointField. This array describes one entry in the point cloud.
In our live packet we observe, by looking at fields:, that each entry in the
point clouds contains the four fields x, y, z, and rgb, each encoded as float32
(datatype: 7 means float321). It is further important to notice the field offset.
This shows where the x, y, z, and rgb starts, and is set to 0, 4, 8, and 16
respectively. The numbers make sense for x, y, and z, since each of them
needs 32 bit, or four bytes. Even though the z field ends at index 11, the rgb
field starts at index 16. Inspection of the source code in the ROS package
shows that the rgb field consists of three bytes. The resulting byte structure
of a point entry is visualized in figure 3.4.

point_step The next important field is point_step. This field covers how
many bytes each entry in the point cloud uses. Its value is 32, which means
there are 13 seemingly unused bytes between rgb (ending at index 18) and
the next entry (starting at index 32). As seen in figure 3.4, each entry has
a total of 17 unused bytes 2. A consequence of this is that each point

1http://docs.ros.org/api/sensor_msgs/html/msg/PointField.html
2The documentation for the RealSense ROS package is quite minimal, the unused bytes

are not mentioned.

20

header :
seq : 537
stamp :

s e cs : 1478272396
nsecs : 68496564

frame_id : camera_depth_optical_frame
height : 480
width : 640
f i e l d s :
−

name : x
o f f s e t : 0
datatype : 7
count : 1

−
name : y
o f f s e t : 4
datatype : 7
count : 1

−
name : z
o f f s e t : 8
datatype : 7
count : 1

−
name : rgb
o f f s e t : 16
datatype : 7
count : 1

i s_b igendian : Fa l se
point_s tep : 32
row_step : 20480
data : [0 , 0 , 192 , 127 , 0 , 0 , 192 , . . .]
i s_dense : Fa l se

Figure 3.5: Live sensor_msgs/pointcloud2 message

cloud occupies 480 ∗ 640 ∗ 17 ≈ 5 MB unused space, which can lead to a
significant bandwidth issue in real-time applications.

row_step The next field is row_step. This tells us how many bytes one row
contains. It is set to 20480. The number comes from 640 pixels multiplied
by 32 bytes.

data The last important field is data. This is the actual point cloud data
encoded into an unit8 array. Its size is row_step ∗ height = 20480 ∗ 480 ≈ 9.8
MB. This means we can expect a bandwidth usage around 295 MB/s (at 30
fps).

The image message Compared to the point cloud message, the image
messages also contains depth data, but in a simpler fashion. Each pixel
has a depth measure, in millimeters. Each depth measure can be used to

21

Figure 3.6: Raw depth image from an Intel RealSense depth camera. The
distance is coded in gray scale, dark areas are close, light areas are far.

calculate a 3D point in the room in front of the sensor, since the camera
lens characteristics are known. Each message contains width, height, step
(the length of an image row in bytes), as well as encoding. The latter
is an important field, since it declares which encoding the pixels have.
For the image topic from the RealSense ROS package, the encoding is
mono16, meaning a gray scale 16-bit integer. This means each message use
640 ∗ 480 ∗ 2 ≈ 614 KB per message, corresponding to 18 MB/s at 30 fps.
Figure 3.6 illustrates what a depth image looks like.

The compressed image message The RealSense ROS package also pub-
lishes depth images on the topic /depth/image_raw/compressedDepth. This
topic contains PNG (Portable Network Graphics) compressed images of
message type sensor_msgs/CompressedImage. Its bandwidth usage is thus
smaller than the image message, but varies depending on the image con-
tent.

3.3 Unity

Unity is a popular cross-platform game engine, available for Windows,
OS X, and Linux. A game engine is essential for development of advanced
games; it controls the video stream, the audio mix, controls, to name a
few. Unity has a powerful GUI (Graphical User Interface), allowing users
with little or no programming experience to create games. This is a key
factor helping Unity become as popular as it is[49]. Unity also has a large
pool of tutorials, making it easy to get started with game development as
a beginner. It offers a large, well-documented API (application protocol
interface), as well as a large online community and forum, making help
easily available. Unity offers scripting in both C# and UnityScript. The
latter is designed for Unity and is modeled after JavaScript.

22

Figure 3.7: Screenshot from the Unity editor

Asset store Unity has an asset store, which is a large collection of pre-built
components. Two of these assets were required for this thesis. The first is
the SteamVR Plugin3, making creation of virtual reality games with Unity
possible. The second is OpenCV for Unity4.

Game objects and coordinate systems The ball from the Unity editor
(figure 3.7), is a game object. This is the base class for all entities in a scene5.
All instances of this class have basic attributes such as transform. The
transform contains the object’s position, rotation, and scaling, according to
the base coordinate system in Unity. Game objects can be nested, making
linked systems of joints simple to work with, by visualizing the different
coordinate systems in the editor, and how they affect each other.

3.3.1 Scripting

Game objects can have scripts attached to them. MonoBehaviour is the
base class all scripts inherit from. There are two important functions in a
MonoBehaviour script to be implemented, Start and Update. Start is called
before any Update calls, to initialize the script and scene. Update is the most
common function for implementing any game behavior, and is called every
frame6. The diagram in figure 3.8 shows the execution order in a script’s
lifetime. To make a fluent and responsive game with a stable frame rate, it
is important to make sure the Update function is efficient and includes no
waiting calls or large, time demanding tasks.

3SteamVR Plugin: https://www.assetstore.unity3d.com/en/#!/content/32647
4OpenCV for Unity: https://www.assetstore.unity3d.com/en/#!/content/21088
5https://docs.unity3d.com/ScriptReference/GameObject.html
6https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

23

Figure 3.8: Monobehaviour flowcharta. The diagram shows the ordering
and repetition of event functions during a script’s lifetime.

aMonobehaviour flowchart [Digital image]. (n.d.). Retrieved November 23, 2016, from
https://docs.unity3d.com/Manual/ExecutionOrder.html

24

Coroutines Sometimes there is need for a waiting call, or a time
demanding task. In those situations Coroutines should be used. For
example, if a ball should move from point a to point b when the user presses
space, a common technique to program this would be to give the ball an
x, y, and z velocity; to make the ball move in the desired direction. It is
tempting to write the following code:

void Update () {
i f (Input . GetKeyDown (" space ")))

Move () ;
}

void Move () {
// The b a l l moves 100 s teps in the x d i r e c t i o n
f o r (i n t i = 0 ; i < 1 0 0 ; i ++) {
b a l l . x += 0 . 1 f ;
}

}

Listing 3.2: Naive ball movement without coroutines. This results in all the
movement happening in the same frame, meaning no visible animation.

The problem with this code is that the Move function has to finish before
the update function finishes. The result of this is that the ball’s movement
from point a to point b completes before the update function is finished.
From figure 3.8 we observe that the scene rendering happens after the
update function, under "Game logic". A solution to this is to let the ball
move a little bit between every update call. This can be achieved by using
coroutines. A coroutine stops execution before it completes, and continues
where it stopped in the next frame, see the modified code below:

void Update () {
i f (Input . GetKeyDown (" space ")))

S tar tCorout ine (" Move ") ;
}

IEnumerator Move () {
// The b a l l moves 100 s teps in the x d i r e c t i o n
f o r (i n t i = 0 ; i < 1 0 0 ; i ++) {

b a l l . x += 0 . 1 f ;
y i e l d return n u l l ;

}
}

Listing 3.3: Ball movement using coroutines. Animation happens over
multiple frames.

Since coroutines can run over multiple frames, they can be used for
background tasks in Unity. An example use case is when the game waits

25

for a network event, since the time of the event is unknown, coroutines has
to be used to regularly check if data has arrived.

3.3.2 Unityros

Unityros is a Unity project hosted on GitHub, created by Michael
Jenkins in 20157. The project connects to the TurleBot ROS tutorial. TurtleBot
is a simple robot platform with functionality such as teleoperation and
navigation, controlled by commands sent to its topics8. The ROS computer
running TurtleBot requires a ROS package called RosBridge, covered in
section 3.2. This package allows connections to other computers. Unityros
is not well documented, the following quote from the project page’s readme
reflects this well:

"[...] Then fire up the unity program. with luck (?) you should see a
checkerboard with a robot on it. [...]"

Testing the system After some trial and error, the project was up and
running, with the TurtleBot ROS package running on a laptop and unityros
running on another. The robot was controlled with the arrow keys from
the Unity computer, showing synchronized movement on both machines.
The system used subscription, publishing, as well as services, covering all the
methods for communication with ROS. A problem with this project was the
lack of documentation and explanation, meaning it required a lot of time to
understand.

3.4 OpenCV

OpenCV is a large, open-source computer vision library, available
in multiple languages, on multiple platforms[50]. The library supports
common computer vision techniques, such as feature extraction, structure
from motion, and facial recognition. OpenCV is used in many visual systems,
for example augmented reality applications[51], gesture recognition[52],
and motion tracking[53].

There is a Unity plug-in called OpenCV For Unity9. It is not complete, but
already has a lot of functionality, including ArUco, a core component in this
thesis.

3.4.1 ArUco

ArUco is a module for augmented reality that can be included in
OpenCV[54]. It provides a way to generate markers, such as the one in
figure 3.9. The markers can be detected in an image, and the pose of

7Unityros: https://github.com/michaeljenkin/unityros
8TurtleBot: http://wiki.ros.org/Robots/TurtleBot
9https://www.assetstore.unity3d.com/en/#!/content/21088

26

Figure 3.9: ArUco marker

the camera relative to the marker can be calculated. Multiple markers
can be used at the same time, making it possible to track multiple objects
simultaneously, and from different angles.

27

28

Chapter 4

Implementation

This chapter covers what was implemented, and how it was done.
Creating a proof of concept required many choices to be done regarding
how the prototype was going to be implemented.

4.1 System design

The implementation of the system is complex, and is therefore divided
in different sections. It consists of two main parts: A computer running
ROS, simulating a real robot, and a second computer controlling the
augmented reality goggles. The setup is illustrated in figure 4.1.

4.1.1 The robot

This section covers the implementation of the robot prototype. Instead
of a full scale robot, a minimal robot prototype was created, as this was
found to be sufficient for investigation of sensor data.

Physical robot The robot prototype was built out of a plywood sheet,
dimensions 40x20x0,5 cm. The sheet was designed to be attached to the live
quadrupedal robot, Dyret[55], to have the opportunity to test the system in
a real setting. A big ArUco marker, dimensions 20x20 cm, was glued on
top, see section 3.4.1. A sensor was secured to the sheet with screws. A
hole was drilled in the sheet for the sensor cable to go through. The sheet
was equipped with four steel legs, to make the platform stable. The robot
prototype can be seen in figure 4.2.

Sensor and ROS computer The robot prototype was connected to a
laptop, running Ubuntu 16.04, with ROS kinetic installed. The chosen
sensor on the robot was an Intel RealSense f200. This sensor is a close
range, depth sensor, which produces 3D point clouds, and works well in
an indoor environment, see section 3.2.1 in the Tools and software chapter.
In addition to the infrared camera, used to sense depth, the sensor has an
RGB (red, green, blue) camera, but this was not used in this prototype.
Required software for this system can be seen in table 4.1.

29

Augmented reality computer ROS computer

HTC Vive

Robot

Sensor

Figure 4.1: The system setup

Figure 4.2: Image of the robot prototype.

Software Purpose Version
Ubuntu Linux operating system 16.04
ROS The robotic operating system Kinetic
rviz 3D visualization tool for 1.12.4
rosbridge_server Package for sending data over network 0.7.16
realsense_camera Package with drivers for the sensor 6c8f08a

Table 4.1: Overview of software used in the robot prototype.

30

Testing the RealSense When the robot was set up with the sensor and
an operative ROS configuration, testing of the sensor’s capabilities could
begin. The ROS package for the sensor was run with a launch file, setting
parameters like resolution, frame rate, enabling of the point cloud, and
more. The default frame rate was set to 30 frames per second. To look at
the actual sensor data, rviz was used. Visualization can done by choosing
one or multiple topics.

There were two main topic types that could be used for displaying
the point clouds: /camera/depth/points and /camera/depth/image_raw. As
explained in section 3.2.1, the image_raw topic simply contains the depth
image, while points contains the actual point cloud. However, rviz can
generate point clouds from the image_raw topic, so both topics can be used
to visualize the point clouds, with no visible difference.

Bandwidth issues As seen in section 3.2.1, the point cloud topic required
2.4 Gb/s at 30 frames per second, which did not work, as modern network
adapters typically are rated for 1 Gb/s. Methods for decreasing the
bandwidth were thus investigated. The easiest method was to lower the
camera’s frame rate. This augmented reality system did not require high
frame rates in the point cloud; the frame rate could thus be lowered to 5
frames per second. This also lowers the bandwidth, by a factor of 6; down
to 400 Mb/s. Further, the sensor resolution was decreased from 640x480
to 640x2401, effectively cutting the bandwidth in half; down to 200 Mb/s.
Unfortunately there was a bug in the realsense_camera ROS package, locking
the frame rate to 30 fps, and thus the bandwidth to 1.2 Gb/s.

Sending the sensor data to the augmented reality computer The next
step was to send the depth data to the computer responsible for the
augmented reality goggles. This was done with rosbridge_server, making
communication between ROS nodes on different computers possible, as
covered in section 3.2. The server uses port 9090 as default, and sends
data with WebSocket. This was a problem on the university local network,
as most ports were blocked. Two options were considered to solve this
problem, the first was to use port-forwarding. A project called ngrok2

makes this possible by forwarding connections to their server in the cloud
through port 80, and then to the desired port, in our case 9090. A
big advantage with ngrok is that the ROS computer could be wireless,
removing the requirement of the two computers to be connected, however,
this did not matter as the augmented reality goggles were wired, meaning
that the robot had to be within 5 meters from the machine.

Communication with an Ethernet crossover cable Since the augmented
reality goggles were wired, connecting the two computers directly with

1The resolution was decreased by cropping the top and bottom.
2https://ngrok.com

31

cable was also an option. An Ethernet crossover cable is a type of cable
that is used to let two computers communicate directly. In the earlier days,
crossover cables were made by crossing some of the internal wires in an
Ethernet cable. Today this is not necessary, since automatic crossover was
introduced in 1998. This makes a direct connection possible without the
use of a special cable[56]. The connection was then implemented by setting
up a unique static IPv4 address on both computers.

4.1.2 The augmented reality computer

The augmented reality computer is necessary for two things. First
and foremost it drives the augmented reality goggles. Secondly it
communicates with the robot computer, receiving the point clouds. The
computer was installed with Windows 10, since Windows is the only
supported operating system for HTC Vive.

Controlling the goggles The next step was to find a way to control the
augmented reality goggles. The HTC Vive developers have created a Unity
asset, making this fairly simple. It contains a game object representing the
Vive play area, which can be dragged and dropped into the scene in Unity.
When the game object is imported and the play button is pressed, the game
starts, and the scene is perfectly rendered in the Vive. This means that the
only difference from a "normal" Unity game and Vive Unity game, is how
it is observed, through goggles, instead of a screen.

Connecting Unity to the robot computer One repository on GitHub that
had implemented communication between ROS and Unity was found. The
project, called unityros, is described in tools and software, section 3.3.2. It is
important to notice that the project is not a library for connecting Unity to
ROS, but a specific sample application for TurtleBot.

Applying unityros to this project To make the system applicable for this
thesis, a lot of changes had to be done. First, all unnecessary files were
stripped from the system to make it as clean as possible. Then all TurtleBot
related files were deleted. The remaining files consisted of SimpleJSON,
a library for working with JSON (JavaScript Object Notation), and code
for setting up a connection to a RosBridge server. The code responsible
for the ROS connection was located in a folder called ROSBridgeLib. The
implementation only included the most important ROS messages and those
necessary for the project. This thesis would require implementation of new
messages. At this point, a decision to create a bare bone library based on
this code was made. A new GitHub project was created, forked from the
unityros project, called ROSBridgeLib3.

3ROSBridgeLib, available at https://github.com/MathiasCiarlo/ROSBridgeLib

32

Collaboration with the University of the Balearic Islands When the de-
velopment of ROSBridgeLib, was close to finished, including new messages
and documentation, another GitHub project called arsea (Augmented Real-
ity Subsea Exploration Assistant)4, was discovered. The project is created
by the systems, robotics & vision group at the University of the Balearic
Islands. The authors also had branched out from the unityros project, and
implemented the same missing ROS messages. Since both groups were
working on the same thing, collaboration was agreed on. ROSBridgeLib
has thus become a more complete library, making it easier for others in the
future.

Testing the connection After the library was complete, getting sensor
data into Unity was the next step. A new Unity project was created,
with the library imported as a git submodule5. The two computers were
connected wirelessly with ngrok, described in section 4.1.1. The project was
then set up to subscribe to the depth/points topic. The point clouds arrived
successfully, and were disposed upon arrival, as it was the connection that
was being investigated at this point.

Firewall issues Once the first connection between the computers was
complete, the messages were received at approximately 1 fps, even though
the messages were published at 30 fps. Even though the frame rate was
stable, the delay kept increasing as the system was running. This latency
was first believed to originate from the third party server (ngrok). Therefore
the two machines were connected with an Ethernet crossover cable instead.
After the machines were correctly set up, it became clear that the latency
issue was still present. It turned out that the increasing delay came from
the Windows firewall, as disabling it solved the problem. Since the wired
solution required less set up, and the two computers had to be close, it was
decided to continue with the wired solution. Note that the frame rate was
still only 1 fps.

Visualizing point clouds in Unity After the firewall issue was resolved,
code for transforming the point clouds to Unity objects was written. Since
the point clouds can be massive (up to 153.600 points), the creation of them
can be quite slow. However, going from only receiving point clouds to
actual rendering in Unity did surprisingly not decrease the frame rate,
suggesting the bottleneck was the data transfer over the network.

4https://github.com/srv/arsea
5https://git-scm.com/docs/git-submodule

33

Topic Bandwidth
/depth/points 1181 Mb/s
/depth/image_raw 79 Mb/s
/depth/image_raw/compressedDepth 7 Mb/s

Table 4.2: Measured bandwidth usage for different ROS topics at 640x240
resolution, 30 fps

Countering the bandwidth issue The point cloud topic required 1.2 Gb/s
at 30 fps (even after half the resolution was cut). Since the frame rate was
fixed to 30, two options to solve this problem were considered:

1. Use a lighter image topic at 30 fps

2. Modify the source code to make the ROS package work at lower
frame rate

The first option was to use a lighter topic. There are two alternative depth
image topics, /depth/image_raw and /depth/image_raw/compressed_image.
Their bandwidth usages are shown in table 4.2. Although this approach is
the most efficient considering bandwidth, it does not come without a cost.
Since the messages only contain depth images, their corresponding point
clouds have to be constructed when they arrive at the augmented reality
computer. Projecting 2D pixels into 3D space would be a challenging task
to get right. On the other hand, the other option, modifying the ROS source
code, would also be challenging. To be able to do this, a much deeper un-
derstanding of ROS was necessary. Considering both options, choosing a
lighter topic was found as the best solution, as this was the most elegant
one. Both the raw and the compressed topic are small enough to avoid net-
work saturation. The compressed one was chosen due to its smaller size,
even though it would have to be decompressed back into raw images upon
arrival in Unity.

Using compressed images To access the individual depth values, the
images had to be decompressed. In Unity this was attempted with the
built-in image load function6. However, the data seemed to be corrupted,
as no image was created. The first ting to be tested was if the data already
was corrupt before it was sent. Back on the robot computer, rviz showed
that the compressed image topic looked just like the raw image topic,
meaning the issue originated from the loading into Unity. PNG images
start with an 8 byte long PNG signature, but the signature was not present.
Help was requested in the Unity forums and revealed that the signature
was located at byte index 137. By removing the first 12 bytes, the image
was loaded successfully. This introduced a new issue, as there were only

6Texture2D.LoadImage creates a Unity texture from a byte array.
7https://forum.unity3d.com/threads/need-help-decoding-a-16-bit-1-channel-

png.442317/#post-2861464

34

five different shades of gray in the images. The whole dynamic depth
range had been reduced to five levels8. The issue was likely the result of a
too powerful compression, and could not be solved without changing the
source code in the realsense_camera ROS package itself. Therefore, the raw
depth image topic was used instead.

Using the raw images Although the compressed images would have
been optimal, the raw image topic still offered an acceptable bandwidth
usage. Extracting the depth measures from the pixels was straightforward.
The byte array was traversed with a double for loop (240 rows x 640
columns), reading 16 bits at the time. This way each depth reading got
linked with its corresponding pixel coordinates.

Construction of point clouds Each of the pixel coordinate-depth pairs
was then sent to a function to calculate their corresponding 3D points. The
returned 3D points were then pushed to the point cloud data structure.
The function was designed to take a pair of pixel coordinates and a depth
measure. The transformation was done as follows:

In section 2.3, the pinhole camera model, including the relation between
3D points and pixel coordinates, was covered. To calculate 3D points from
pixel coordinates and depth measures, the first thing that had to be done
was translation of image coordinates into the normalized image plane. This
translation can be done by multiplying the image coordinates ũ with the
inverse of the calibration matrix K−1, giving the corresponding point in the
normalized image plane x̃. See equation 4.1. Note that the skew parameter
in the calibration matrix was set to 0.

x̃ = K−1ũ

x
y
1

 =

1
fu

0 − cu
fu

0 1
fv
− cv

fv

0 0 1

u
v
1

x
y
1

 =

u
fu
− cu

fu
v
fv
− cv

fv

1

(4.1)

Since the point in the normalized image plane is homogeneous, it
can be scaled to its correct length, or depth, by multiplying it with the
corresponding depth measure z. Recap that the normalized image plane
is in the camera’s coordinate frame, at z = 1, as illustrated in figure 4.3.
The scaled point can be interpreted as the translated 3D point X̃ (ready to
be put into the point cloud). The final scaling is shown in equation 4.2,
which was used directly to calculate the 3D points in the point clouds.

8The 5 shades of gray: 0.000, 0.004, 0.008, 0.012 and 0.016. An interesting detail is that
these numbers are the numbers you get if you divide the numbers 0-4 by 256.

35

u

v

ũ
z

yx
X̃

x̃

Norm
ali

ze
d im

ag
e pla

ne

z = 1Pixel coordinates

Camera coordinate frame

Figure 4.3: The transformation from pixel coordinates and a depth measure
to the corresponding 3D point.

x
y
z

 =

u
fu
− cu

fu
v
fv
− cv

fv

1

 z (4.2)

Note that this model is fairly simple and does not take distortion into
account.

Point cloud rendering At this point, every pixel in every raw depth
image was transformed into a 3D point, and then added to the current point
cloud. Once a new point cloud had been constructed, the old was deleted.
Real time inspection of the point clouds in Unity showed that the frame rate
was quite low. This does make sense, since the point clouds can be massive
(up to 130.560 points, at 640x240 resolution). Both the raw image topic
and the point cloud topic were tested, and the measured frame rates are
shown in table 4.3. Note that the point cloud resolution was set to 640x480
during the experiment. The point cloud topic’s low frame rate is likely low
because of bandwidth saturation, as there was not much difference with
and without rendering. With the raw image topic, the frame rate was close
to the source frame rate (at 30 fps) without rendering, but dropped to 8
with rendering. This confirms that the image topic does not saturate the
bandwidth, and that the maximum frame rate that can be achieved is 8,
at 640x480 resolution. Since the system’s resolution is set to 640x240, the
maximum frame rate should be 16.

Experimentation with virtual reality Since the chosen platform for
augmented reality was mainly a virtual reality headset (HTC Vive), it
was natural to test its VR capabilities. The SteamVR plugin, mentioned
in section 3.3 in the tools and software chapter, makes it easy to add the
headset to the Unity scene. The headset acts like a camera in the scene,
moving in Unity as the user moves and looks around in the real world,
giving the user a first person experience in 3D. The first experiment was

36

Topic Only network With rendering
/points 1.7 1.6
/image_raw 25 8

Table 4.3: Measured frame rates in Unity with different topics, with and
without actual rendering of the point clouds. The ROS computer was
publishing messages at 30 Hz and with 640x480 resolution. This shows
how much of the latency comes from the network.

to model the RealSense camera in the scene, and project the point cloud in
front of it.

Implementation of augmented reality The first step was to get hold of
the video feed from the front facing camera on the HTC Vive. This was
achieved by using the Unity plug-in OpenCVForUnity. The camera is a
fish-eye lens, making the video feed quite distorted (straight lines appear
as curved lines). To make the see through experience as natural as possible,
the camera was calibrated in MATLAB with its built-in calibration app,
using multiple pictures of a checkerboard. The resulting model had a
mean reprojection error of 0.19, meaning that the model was not optimal.
Although undistorting the video feed makes it appear more natural, some
of the resolution is sacrificed, resulting in a cropped and more blurry image.
The video stream was then put 1 meter directly in front of the user in virtual
reality, and scaled up to cover about 70 percent of the user’s field of view.

Locating the robot in the frame To be able to draw the point cloud at the
correct position, a way to locate the robot had to be decided. The simplest
solution found was to use OpenCV to locate an ArUco marker on the robot,
see section 3.4.1. Every frame in the video feed was analyzed to detect the
marker. If the marker was detected in the frame, the camera’s pose, relative
to the marker was calculated.

Adding the point cloud to the video feed At this point in time, the
virtual environment was a completely empty, black void, except for the
rectangular screen with the video feed, positioned 1 meter in front of the
user. The first attempt to draw the point cloud to the view was to simply
place it with correct scaling between the video feed plane and the user,
making it look like it is in the image. This did not work since the video feed
was 2D, and the point cloud was 3D. If the user was focusing on the video
feed, the points were out of focus and doubled. Similarly, when the user
attempted to focus on the points, the same effect happened to the video
feed. This effect caused severe nausea in about 30 seconds, making it clear
that this was not the right direction to continue in, and showing the point
cloud in 3D was thus discontinued. The next option was to draw the point
cloud into the video feed. This was done by using the OpenCV function
Calib3d.projectPoints, taking a list of 3D points (in the world coordinate
frame), the camera’s pose relative to the world coordinate frame, distortion

37

coefficients (for the camera). The function returns a list of 2D points, which
are the image coordinates the 3D points were projected into. The 3D points
are all the points in the point cloud, and the pose is fetched directly from the
ArUco marker (world coordinate frame). The next step is to simply draw
all the returned points into the image, and with that, achieving augmented
reality. The points were drawn in pink, as this was an easily distinguishable
color in the environment.

Adding the point cloud at the correct position Figure 4.4 shows the first
attempt at drawing the point cloud in the image. In the image, the sensor is
sensing a red wire roll (lower right). The clearly wrong position of the point
cloud originated from the fact that it was drawn directly into the ArUco
marker’s coordinate frame. As explained above, the projection function
takes the pose of the camera relative to the coordinate system of the 3D
points to be projected. The pose sent was the pose of the Vive, relative
to the ArUco marker, marked as T1 in figure 4.5. To place the point cloud
in the right position, the pose of the Vive, relative to the sensor has to be
calculated. Since the pose of the ArUco marker, relative to the sensor is
known (T2, measured with ruler), the two poses can be multiplied, to find
the combined pose, shown in equation 4.3.

TSensor→ Vive = T1 ∗ T2 (4.3)

Unfortunately, in the Unity implementation of OpenCV, the representa-
tion of poses made multiplication unnecessary complicated, and was thus
discontinued. Instead, a simpler method was applied. Every point in the
point cloud was transformed with the inverse pose of the ArUco marker,
relative to the sensor (T−1

2), moving them to the correct positions. Although
this was not the most efficient technique9, it aligned the point cloud in the
correct position.

Debugging the inaccurate point clouds The projected points did not
align perfectly with their corresponding real objects. The deviations
increased with the distance to the sensor. The first thing that was done
to identify the issue was to draw the sensor’s coordinate system into the
image, to verify its position and orientation. The next possible error was
the point cloud construction from the depth images. To verify if this was
the issue or not, the manually constructed point cloud was compared
to the prebuilt point cloud from the ROS package. To avoid network
saturation, the frame rate issue first had to be resolved. A bug report
describing the issue was sent10. The issue was not resolved, as the report
uncovered that the sensor was unstable. A temporary fix was to set the
ROS parameter motion_range to 100, effectively reducing the frame rate to
10. While sacrificing quality, this made the comparison possible. Figure 4.6
shows the two point cloud sources, and confirms that the deviations did

9Transforming each point in the whole cloud can be slow on large point clouds.
10Bug report: https://github.com/intel-ros/realsense/issues/152

38

Figure 4.4: First attempt at drawing the point cloud into the video. The
sensor is facing the red wire roll in the lower right. The system is configured
as if the sensor was placed in the ArUco marker’s center, facing up. Red=z,
blue=x, green=y. This image is from the Vive’s camera.

z
y

Vive

z

x

ArUco marker

Robot

y

z
Sensor

T1

T2

Figure 4.5: Side view of the coordinate frames for the Vive, ArUco marker,
and sensor. The poses T1 and T2 describe the relations between the three
coordinate systems.

39

Figure 4.6: Comparison of the pre-built point cloud from the ROS package
(top), and the manually constructed point cloud from the raw depth images
(bottom). A-D show errors in depth, present in both point clouds. Notice
the error increasing with distance from the sensor.

not originate from the point cloud construction, since the deviations were
present in both point clouds. Another possible cause was the projection
of the points into the Vive’s camera. Recall that the camera model used in
calibrating the Vive camera was not optimal. The last hypothesis was that
the sensor was inaccurate. A test rig with known lengths was put in front of
the sensor, and the lengths were verified in rviz, rejecting that hypothesis.

Finding a workaround for the prototype Although the origin for the
inaccuracies in the point clouds was not identified, the point clouds could
be aligned sufficiently at around 40 cm in front of the sensor, by performing
small adjustments on the transformation matrix. The settings were made
easily adjustable as sliders in the Unity editor. This made it possible to
modify the sensor’s coordinate system and scaling the point cloud in real
time, making fine tuning very easy. For example, the sensor was not
secured to the robot completely straight, and had a slight rotation of about
3 degrees. Although this does not seem like much, it creates a 5 centimeter
deviation one meter in front of the sensor. This error was quick to correct
with the real time settings. The corrected model is shown in figure 4.7. In
the image, robot prototype was only connected to the quadrupedal robot
for testing purposes.

Stabilizing the point cloud The point clouds were not stable. If the
viewing angle on the ArUco marker was low or if there were light
reflections in the marker, the point cloud started to flicker. It was
programmed to only be visible when the ArUco marker was visible. This
means that there always has to be a clear line of sight between the AR
headset and the marker. However, even in good light conditions and with
angles that were good for the marker detection, there was a constant small,
but rapid movement in the point cloud. Different marker sizes were tested,
but the marker was still unstable. This issue may originate in the Vive’s
poor camera quality. This issue was particularly annoying when trying to

40

Figure 4.7: The robot sensing an obstacle. This image is what the user of
the augmented reality system sees. From putting on the goggles, the user
understands exactly what the robot sees. The user sees that the robot only
senses the top box, and only half of its side. Note that the image is from
a continuous video feed, the user is free to move around and inspect the
scene from other angles.

adjust the settings to debug or align the point cloud with the objects in the
scene. To counter this problem, a stabilization algorithm was implemented.
The algorithm looks at the last 5 poses of the marker, and calculates a
weighted average, favoring the newest poses. The formula is shown in
equation 4.4.

µ =
∑ wixi

∑ wi
, where wi =

1
1 + i2 (4.4)

A simple average over the 10 last poses was also implemented. While
this was more effective than the weighted average, it was not as responsive,
giving bad results when either the user or the robot was moving. Therefore,
both stabilization modes were available while the system was running,
letting the user choose the most fitting mode, depending on the situation.

4.2 Planning the user study

This section describes the design process of the user study. Different
experiment types will be covered, rounding off with the chosen experiment
for the user study. The section starts by defining the term understanding to
reduce the scope.

Understanding To fit our context we define understanding to be the
following:

41

The ability to create a mental picture of the robot’s situation,
meaning its position, state, and view of the world around it.

This thesis focuses on point clouds. We therefore wish to investigate
to what degree point clouds in augmented reality affect the user’s
understanding of the robot. Another term that will be used a lot in this
chapter is the traditional way, which can be defined as follows:

The current common technique of inspecting robotic sensor
data in ROS, is by using the visualization program rviz. The
user looks at the robot and scene, and inspects the sensor data
on a computer monitor.

Experiment types Different options were considered. Both tests where
the augmented reality system was tested isolated, and tests where it was
compared with the traditional way of examining sensor data.

4.2.1 AR only experiments

An early idea was to study how the combination of visual quality and
point cloud resolution affects an observer’s understanding of the robot’s
situation. These two metrics are the two major variables in the system.
The plan was to create a 3D color graph, showing understanding as a
function of point cloud resolution and visual quality. The visual quality
was controlled by adding Gaussian blur in combination with contrast
reduction. By creating such a graph, the lower boundary for useful
visualization can be located, and help show how the different factors affect
understanding. Data would be gathered by letting the users perform a test,
getting scores based on efficiency and accuracy. An example of such a test is
the counting-objects test, where the users count objects in front of the robot.

A problem with the counting-objects test The user might favor full
visual quality on the video feed, without the lowest point cloud resolution.
This is because the points can get clustered together into a pink smudge,
completely obscuring the object behind. This happens when many points
are drawn in a small area in the image. Additionally, in good lighting
conditions, the user has most of the information he or she needs, just by
looking at the image, so there is no need for a point cloud. An exception is
when objects hide behind other objects, making them possible to see in the
point cloud, but not without.

A problem with AR only experiments in general An important problem
with these types of experiments is that they only evaluates the AR system.
They find which combinations of settings that work best, but they do not
show how AR performs in relation to the traditional method. This type of
experiment was thus abandoned, to further investigate experiments that
compare the two methods, as this makes it much easier to answer the
second goal of the thesis.

42

4.2.2 Experiments where AR is compared to the traditional
method

Another experiment type is when augmented reality is compared to
the traditional method. This type was found to be a better option, because
it allows investigation on how AR performs compared to the traditional
method. Considering the test where the users count objects, scores could be
gathered based on efficiency and accuracy from both groups, which further
makes it possible to apply statistical techniques to determine if there is a
significant difference in the two groups.

4.2.3 Test design

Designing a test that measures understanding was challenging. Some
keywords were chosen to help narrow down the test possibilities. These
keywords were found based on previous work seen in user studies from
related work. The first thing is perspective, as the user has to watch two
different places(at the physical robot and at the monitor) to understand
what the robot sees in relation to what actually is in front of the robot.
The second thing is correspondence, which translates to the user’s ability
to understand how the point cloud on the screen corresponds to the scene
in front of the robot. The last thing is dependency; to be solved, the test
should require the user to look at both the point cloud and the physical
scene in front of the robot. These key points are formulated in a list below.

1. The experiment should test the user’s understanding of perspective
in both methods.

2. The experiment should test the users’ ability to understand what each
point in the cloud corresponds to in the real world.

3. The tests should not be solvable solely by looking at the scene in front
of the robot.

After the limitations were formulated, possible tests were looked at.
The counting-objects test makes sense in an AR only experiment, but
conflicts with the third point above, as the user can simply look at the scene
in front of the robot to solve the task. Additionally, it would likely be an
experiment in disfavor for AR, since the resolution in the goggles is quite
low.

The invisible object test Another idea was to rely on the fact that the
RealSense (robot sensor) has issues in detection of glass and black objects.
This test would require the users to identify objects present in the scene
that are invisible to the robot, and thus lacking from the point cloud.
However, tests based on invisible objects originating from material usage
were abandoned because of two reasons: The first, and most important
reason was because of the learning effect, see section 2.6.1. As there was
desirable to test each user several times with different object setups, there

43

is a risk of the user learning that the black and glass objects are the ones
that are invisible, corrupting the following tests. The problem here is not
that the users are getting slightly better at each test, but rather that they
change their algorithm for solving the tasks once they discover that they
only need to look for black and glass objects. The second reason this test
was discontinued, was because the test is based around the fact that the
RealSense has issues sensing some materials. This is a rather specific case,
and it was thus more desirable to find a more general test.

The modified invisible object test The final result of the design process
was based on the same principle as the invisible object test, but instead
of using special materials to make objects vanish, a faulty object detection
algorithm was implemented. This algorithm is faulty because it does not
detect all the objects in the scene, making some of them invisible. This
is described further in section 4.3.1. All the objects to be used in a scene
should be of equal size, shape, and color. The choosing of which of the
objects that are made invisible should be random. The user’s task is to
identify the objects visible to the robot by examining the point cloud.

Metrics Two metrics were used in the experiment: Efficiency and
accuracy. Efficiency measures how fast the users solve the tasks in seconds.
Accuracy measures how many errors they do. It is possible to make
multiple errors on a single scene, since all the present objects have to be
identified. A scene can produce from 0 to 6 errors, depending on the scene
size. This makes it possible to analyze the data in multiple ways. The
simplest method is to use a binary measure, that is, error or no error. This
can be used to calculate an error rate.

Another method is to sum the number of misclassifications in the scene.
This method should be used carefully, since misclassification of one object
can lead to misclassification of the rest of the objects. However, this fact can
be used to measure the severity of the errors.

4.3 Framework for the user study

This section covers the materials and programming necessary in the
user study. First, implementation details of the experiment found in the
previous section is covered. Then, the physical objects to be used, data
collection method, and the required programming is reported.

4.3.1 The faulty object detection algorithm

To make the experiment as similar to a real life case as possible, it was
desired to use an object detection algorithm to detect the objects in the
scene, and then hide a random subset of the objects from the point cloud.
The user’s task would then be to identify the remaining objects visible in
the point cloud. This however was not done, since there is no guarantee

44

(a) Original depth image of two ob-
jects

(b) Right object masked out

(c) Original point cloud (d) Masked point cloud

Figure 4.8: Masking of objects by erasing a rectangle from the depth image
(b). The rectangle translates into a truncated square pyramid hole in the
point cloud, as seen in (d).

for an optical object detection algorithm to always behave correctly. Since
the user’s accuracy is calculated by comparing the actual present objects
with the user’s answer, there can be no uncertainty about the actual present
boxes. Therefore, another technique had to be developed.

The solution was to note the position of each object in the scene and mask
out the corresponding areas in the point cloud. The masking was done by
removing a square from the depth image, resulting in a truncated square
pyramid in the point cloud, with the top side closest to the camera, and the
base side furthest away, see figure 4.8. This introduced an unwanted effect
when the surface the objects are sitting on is visible in the point cloud, as the
resulting point cloud will have a "hole" in the surface where the removed
object was. This required the surface beneath the objects to be hidden in
the point cloud. Two methods to achieve this were conducted:

1. Filter the point cloud by defining a plane below the objects and
removing all points below the plane

2. Use a invisible material as base for the objects

The latter was chosen, as matte, black, plastic trays were easily available
and invisible to the RealSense.

45

4.3.2 The physical setup

This section describes how the objects to be used in the experiment were
chosen, and their design process, from low to high fidelity prototypes.

Volatile setup Since the masking areas are predefined, the experiment
setup is sensitive to movement. The relative positions of the robot and the
scene in front it thus had to be constant. This required the scenes and their
objects to be robust.

Selecting a fitting object The objects had to be large enough to easily be
identified through the AR goggles, which suffer from low resolution. They
also had to be made of a material visible to the RealSense. White 3D printed
cubes were selected, as they are quick to produce, and tough.

Identification of objects The users needed a way to identify the cubes
in the scene. The study was going to use different scenes, each having
different numbers of cubes, with a maximum of six cubes. Two options on
how to do this were considered. The first one was to write numbers on the
cubes. This was tested with the AR goggles, and the numbers were found
to be hard to read, because of the low resolution in the goggles.

The next option was to mark the cubes with color. This limits the
number of cubes in the same scene to the number of different colors
available. Since the goggles suffered from poor visual quality, only colors
easily distinguishable could be used, leaving red, green, and blue. This
did not give enough combinations, so two colors for each cube was
tested. Unfortunately the colors blended, making this approach impossible
without using larger cubes.

The end result was larger cubes (size 4x4x4 cm) with big, black numbers
written on them. A very thick line thickness was found to be crucial for the
numbers to be readable through the goggles. The numbers also needed to
have some margin from the edges on the cubes, to avoid blending with the
black background. The prototypes, from low fidelity paper models, to high
fidelity 3D printed are visualized in figure 4.9.

Different scenes A scene is defined as a black plastic tray with numbered
cubes glued on top. Multiple scenes were needed, with a varying
number of cubes, and different positioning of the cubes, both scattered and
clustered. 6 scenes were constructed, in which scene 1 had one cube, scene
2 had two cubes, scene 3 had three cubes, and so on.

4.3.3 Data collection and questionnaire

Two measures were to be collected during each experiment: The
number of errors, and the time spent. To make the experiments as efficient

46

(a) Low fidelity prototype. (b) High fidelity prototype, number
not shown.

Figure 4.9: Images of the cube prototypes.

and less prone to errors as possible, the data collection had to be simple.
While the time spent was easy to measure, the errors were not. For
example, scene 4 has 4 cubes. When the experiment starts, only a random
subset of these cubes will be visible in the point cloud. The user compares
the physical scene in front of the robot with the point cloud and identifies
the visible cubes. At once the user states an answer, the time and answer
has to be noted. To be able to validate the answer, the actual visible cubes
had to be written down for comparison. Multiple options were considered
to solve this challenge.

Option 1 The first option was to program the whole user study. For each
scene, the computer chooses a random subset and then takes the user’s
answer as input, writing the result to file. Although this would be the
easiest way to conduct the experiments, it would be a time consuming task
to program, because of Unity’s architecture.

Option 2 Another option was to generate the random subsets prior to the
experiment and input them to the computer to make it mask the scenes
either before or during the experiments.

Option 3, the chosen A third option was to generate the random subsets
during the experiment, making the computer output the correct answer
for the experiment operator to note. Back to the example with scene
4, the operator inputs that scene 4 is about to be tested, the computer
generates the random subset which in this case was cube 1 and 3. Below
the operator’s interaction with Unity is shown.

> User study s t a r t e d .
> Mask a c t i v a t e d on scene 4 , cubes [1 , 3] are v i s i b l e .

When the operator has noted the correct answer (1 and 3), the scene
is presented to the user, and the time is started. To avoid bias in the
experiment, the users must not see the scenes before the time is started.

47

ROS computer

/realsense camera

/republisher

/depth/image raw

Augmented reality computer
/rectanglemaskcoordinates

/depth/image raw masked

Figure 4.10: ROS graph during the user study. rviz is also subscribing to
the republisher, but is not shown in the graph.

This was solved by letting the users sit with the goggles on, and with
blacked screens, between the experiments. When an augmented reality
test started, the screen was turned on. When a traditional test started, the
subject removed or put the goggles on his or her forehead.

Questionnaire A questionnaire was created to learn more about the
system. It included some quantitative questions, to determine which
system they preferred and similar, and some qualitative questions, to find
out why they preferred the chosen system and to identify problems with
the two systems.

4.3.4 System architecture

The simplest way to mask out the cubes would be on the Unity
computer. When a depth image arrived, OpenCV could be used to do the
masking, before cloud construction. However, since the traditional method
requires the users to inspect the point cloud on the ROS computer, the
masking had to take place there. This meant that the depth images had
to be edited on the ROS computer, before they could be visualized as point
clouds in rviz, and sent to the Unity computer.

The masking ROS node A new ROS node was created. It was set
to subscribe to the depth image topic (/depth/image_raw), and a new
topic for masking instructions (/rectanglemaskcoordinates). When a depth
image arrives, it is either left untouched, or masked, depending on the
node’s state. After the possible masking operation was done, the depth
image was republished to a new topic (/depth/image_raw/masked). The
system is visualized in figure 4.10.

Controlling the masking Since the Unity computer generates a random
subset of cubes to mask, it was most convenient to send the masking

48

Figure 4.11: To find the correct coordinates and size of the each mask, the
border of a dummy mask was drawn into the depth image. The mask was
controlled with sliders in Unity (real time), making it easy to find all the
mask positions.

instructions to the ROS computer, instead of having to input scene id and
cube ids manually on the ROS computer. To achieve this, a new ROS
message was defined, called RectangleMaskMsg. This message contains the
coordinates (2D) and sizes of up to 6 squares to be masked out. On the
receiving part, the masking node simply draws a black square covering
the requested coordinates. The node holds this mask configuration until
the masks are removed with an empty message or a new configuration
is received. This required the positions of all the cubes to be known.
There were 6 different scenes, with a total of 21 cubes. Every single cube’s
coordinates had to be found. This was solved by setting up Unity with
parameter sliders to control the coordinates and size of a single mask,
sending continuous masking updates to the masking node. The node was
set up to draw the mask’s border, to make it easier to use the smallest masks
possible11. The mask adjustment is shown in figure 4.11. When all the cube
positions had been located, a mask controller module was programmed in
Unity. The controller could take a scene id as parameter, lookup the scene’s
cube positions, choose a random subset of them, print the chosen numbers
to terminal, and generate and send a mask message to the masking node.

11Small masks were desired, as they allow cubes to be close, without the masks
interfering with other cubes.

49

50

Chapter 5

Experiment and results

This chapter explains how the user study was conducted, its results,
and analysis. The study is split up in two major parts, the main experiment,
where accuracy and efficiency were measured, and a questionnaire.

5.1 The study

This section covers details of the study, and experiment setup. See
section 4.2 for the planning of the study and reasoning in its design.

5.1.1 The invisible object test in detail

In the planning phase, the experiment was designed as follows:

The experiment involves a robot with a faulty object detection
algorithm making it unable to see all the objects in front of it.
The user’s task is to identify the objects that the robot does see.

The objects were numbered, white cubes. The cubes were glued onto
black, plastic trays. These trays, or scenes, are invisible to the sensor, making
the cubes the only visible objects for the robot.

Around 30 participants were found to be a sufficient number for the
study. Based on this, it was decided that 5 different scenes would be
sufficient. This translates to 10 tests for each subject, which should translate
to below 30 minutes. To draw a statistical conclusion with the t-test, both
accuracy and efficiency were to be calculated for each subject.

5.1.2 Experiment setup

This section describes how the experiment was set up in detail,
including the experiment environment and how data was collected.

51

Figure 5.1: Experiment environment. Experiment controller (back) and
subject (front).

Experiment environment The experiment was conducted in a narrow,
but quite long room. The subject was seated in one end of the room, while
the experiment controller was seated on a control computer in the other
end, see figure 5.1. The laptop visible in the center of the image in figure
5.1 is the ROS computer, which is showing the point cloud in full screen
mode. The subject can control the zoom and rotation of the view with a
computer mouse, see figure 5.2. Approximately 80 centimeters in front of
the subject, the robot prototype was placed, perpendicular to the subject,
see figure 5.3. In front of the robot there was a platform with a black plastic
tray on top. This tray will from here on be called the scene. The robot was
angled in such way that the scene is the only object it could see.

Different scenes The 5 different scenes are shown in figure 5.4. Note that
the plan was to use 6 scenes, but scene 1 was removed after the pilot study
was conducted, more on this in section 5.1.5. The scenes were designed to
be of increasing difficulty, assuming difficulty increases with the number
of cubes in the scene. The cubes were arranged in different ways, both in a
pattern (scene 6), and in more random arrangements.

Randomization of the tests Because a between-group design was used,
there were 10 tests in total (each of the 5 scenes was tested with both AR and
the traditional method). To counter unwanted biases like learning effect,
the sequence of the tests had to be random. The randomization was done
with a JavaScript implementation1 of the Fisher-Yates shuffle[57].

1https://github.com/Daplie/knuth-shuffle

52

Figure 5.2: The subject’s seat and computer mouse to control the view of
the point cloud on the laptop.

Figure 5.3: The subject’s view of the robot and scene.

53

(a) Scene 2 (b) Scene 3

(c) Scene 4 (d) Scene 5

(e) Scene 6

Figure 5.4: The 5 scenes used in the experiment.

54

Figure 5.5: Main experiment data collection form.

Form for data collection To be able to manually collect data during
the experiments, forms with the 10 test combinations and columns for
noting their time and error was produced. Each row has a corresponding
condition, see figure 5.5. Note the 5 scenes, or conditions, numbered 2-5,
appearing for both augmented reality and the traditional method.

5.1.3 Questionnaire

To learn about challenges with augmented reality and the traditional
method, as well as how the users approached the problems, a questionnaire
was designed. The study both included quantitative and qualitative
questions, put in a natural order, according to the experiment. Quantitative
questions are relatively simple to analyze and visualize, since the answers
are predefined, e.g. yes/no. Qualitative questions cannot be visualized in
the same way, but can identify important issues with the system, as well
as uncovering the thought process of the individuals, using the different
systems. Summarized, the questions were designed to investigate the
following issues:

• Which system the users preferred

• What technique they used for solving the tasks

• Problems encountered with both systems

• Previous experience from similar systems

5.1.4 Execution of the study

This section describes how the user study was performed, including
preparations before each experiment and the following execution. To
make sure the experiments were executed as consistent as possible, an
experiment procedure was created and printed.

55

Figure 5.6: Cutout from the experiment form. The first test is AR-5,
augmented reality, scene 5. The computer generated the subset [2, 4, 5]
and made the cubes visible in the point cloud. The subject reported that
he saw cube [2, 3, 5], after 6 seconds. This means that the subject at least
misclassified one cube, hence the one error.

Before the experiment The first ting checked was the tidiness of the
experiment room. Then a verification that all position critical equipment
(the subject’s chair, ROS computer, robot, scene, computer mouse.) were in
the correct positions, indicated with tape markings on the floor/table. The
next thing was to make sure a new data form with a random test sequence
strip glued onto it2 was ready. The ROS computer was confirmed to have
the correct screen angle, and that it visualized the point cloud in full screen
correctly in rviz,3. Rotation of the view with the mouse was also tested. The
Unity computer was tested by generating random masks for scene 5 a few
times, verifying that the masking was working, both seen through the Vive,
and in rviz. The blackening of the goggles was tested, and the goggles were
left in that mode. The Vive headset was placed by the computer mouse.
Then all masks were removed, and a test scene was placed in front of the
robot. The test scene had two cubes, and was used in the demonstration
during the experiment brief.

The experiment The subject was welcomed and placed in the chair. After
getting information about how the experiment was going to be conducted,
a demonstration was done, letting the participant try both systems on the
test scene, to understand how the missing cubes were visualized. After the
demonstration, the subject got a chance to ask questions if something was
unclear. The 10 tests were then run according to the random test sequence.
Each test was performed strictly according to the flow chart in table 5.1.
Write answer and write time means to note the users answer and time on the
form, as shown in figure 5.6. After the 10 tests were done, the headset was
removed, and the questionnaire started. The questionnaire was formed as
an interview, except for the fact that it was not a dialogue. The experiment
operator transcribed the subjects’ answers as accurate as possible4. When
the experiment was over, the subject was thanked sincerely and given a
small chocolate.

2Paper strips with random test sequences were printed and glued onto the data forms.
3A default view was created to make sure all the users had the same view.
4Transcription of audio or video recordings after the experiments would have required

too much time.

56

Input current scene to Unity to update mask
Write actual visible cubes
Change the physical scene

Reset rviz view and verify that the masking was successful
"The next test is [AR / Traditional]"

AR Traditional
Get ready Take off headset when I say start
“Start” + start timer + screen on “Start” + start timer
Stop timer + write answer Stop timer + write answer
Press space (black screen) "Put the headset on again please"
Write time Write time
Thank you Thank you

Table 5.1: Flow chart showing the main experiment procedure. Both AR
and traditional tests have the same start. A quoted phrase implies that it
should be read out loud to the subject.

5.1.5 Pilot studies

To improve the study, two pilot studies were performed. As recom-
mended in [42], multiple pilot studies should be performed. The users
should be from the target group, not from the department. However, be-
cause of limited time, there were only conducted two pilot studies, each
with one subject. The first subject was from the department, and the sec-
ond was from the target group. The pilot studies were performed to iden-
tify possible biases by analyzing the experiment procedure. As discussed in
section 2.6.2, biases can affect the results of a study and must therefore be
avoided.

Pilot 1 The first pilot was performed with a subject and the experiment
leader, as well as an observer. The observer was participating to provide
a different view on the conduction of the experiment, and detecting
undesired factors, like bias from the experiment leader. After the
experiment, the subject said it was uncomfortable to sit in complete
darkness between the experiments. Therefore a simple white rectangle
was placed in the middle of the darkness, providing something to look
at. The subject reported that the script was lacking information, as he
did not feel he knew what was coming when the experiments started,
introducing stress. Another issue with the insufficient script was that the
view in rviz was not explained well enough, as it was unclear where the
sensor and robot was, relative to the cubes. The script was thus expanded
to cover this. Lastly, the subject said he was a little disappointed that
he did not get anything after the experiments, like for instance a small
chocolate. Chocolate was thus included, starting in the second pilot. In
general, it was hard to explain the experiment procedure to the subjects,
and a demonstration part of the briefing was thus introduced in the second
pilot.

57

Edge cases In the first pilot study, the subject noted that he got confused
if either none or all of the cubes in a scene were visible. A lot of discussion
followed. These two cases were defined as edge cases. The number of
cubes to mask out was initially random, which produced edge cases. It was
hypothesized that the traditional way of solving an edge case simply was to
count the cubes in the scene and on the screen. The user can thus conclude
that all the objects are present in the scene. The point of the experiment
was to test the user’s understanding of the relationship between the point
cloud and the real world; this is however not tested efficiently when the
users simply count the objects.

By excluding the edge cases, it was believed that the results from the
tests would be more consistent, since it would exclude the events where
the subject use extra time, in confusion. More consistent results are
beneficial because it reduces the variance, and thus makes it easier to draw
a statistical conclusion. Another consequence of removing the edge cases
was that scene 1 had to be excluded, since it would have always been an
edge case.

Wording The experiment was originally designed to identify the missing
cubes, not the visible ones. However, the subject reported that this was
confusing, and made the task harder. The wording was thus changed from
"Identification of the cubes that are missing in the point cloud" to "Identification
of the cubes that are present in the point cloud", as this was believed to be
more intuitive for the users.

Pilot 2 The second pilot study was conducted a few days after the
first one, and the changes had been implemented, with a new subject.
No observer was present in this pilot. The subject reported that the
demonstration before the experiments worked well, as it removed his
uncertainties in what was about to happen. The subject said the white
rectangle implemented after the first pilot was too bright and straining to
the eye. The rectangle was thus colored with a dark shade of gray.

After the two pilot studies were conducted, the script read to the subjects
at the start of the experiments was heavily expanded. For example, both
subjects said it was hard to see the numbers with the AR system, and the
script was thus expanded to explicitly warn about this issue, and to lean
forward to see the numbers better.

5.2 Main experiment results and analysis

This section presents the results and analysis from the main experiment.
31 students (16 males and 15 females) from the Department of Informatics
at the University of Oslo participated in the study. The study was con-
ducted over three consecutive days. Each experiment took approximately

58

AR−2 AR−3 AR−4 AR−5 AR−6 Trad−2 Trad−3 Trad−4 Trad−5 Trad−6

5
10

15
20

Figure 5.7: Time spent on the different tasks, with augmented reality (left
hand side) and the traditional method (right hand side). The data clearly
shows that augmented reality is more time efficient than the traditional
method.

25 minutes to conduct. Even though the results come from the same ex-
periment, the time (efficiency) and error (accuracy) results are split up to
provide a better overview.

Handling of subjects with impaired vision Some of the subjects used
glasses, which did not fit inside the AR headset. They were comfortable
with taking them off, since their vision was not more nearsighted than -
2. In the traditional tests, they were allowed to take off the headset while
holding their eyes closed and to put on their glasses before the experiment
started.

5.2.1 Efficiency results

In figure 5.7, all the recorded times are plotted by scene. Scene 2-6 with
AR can be seen on the left side, and the same scenes with the traditional
method on the right side. The data clearly indicates that the subjects used
less time with the AR method than with the traditional method. The results
are listed in table 5.2.

The efficiency was found by calculating each subject’s mean time for
both AR and traditional method. This means that the 5 AR time measures
and the 5 trad time measures for each subject were converted into one

59

Scene Min Max Mean S.D.
AR-2 1 4 1.645 0.877

Trad-2 2 17 4.677 2.821
AR-3 1 10 2.161 1.734

Trad-3 2 23 6.290 5.054
AR-4 1 7 2.871 1.408

Trad-4 3 19 8.226 4.121
AR-5 1 7 3.097 1.620

Trad-5 3 17 8.290 3.977
AR-6 2 10 4.548 2.142

Trad-6 4 24 10.970 5.671

Table 5.2: Summary of time spent on the different tasks, with augmented
reality (top half) and the traditional method (bottom half).

Method Min. Max. Mean S.D.
Trad 4.400 15.600 7.690 2.934
AR 1.200 5.000 2.865 0.956

Table 5.3: Summary of time efficiency for the traditional method, and
augmented reality group in seconds.

AR measure, and one trad measure. All answers were included, both the
correct and the incorrect ones. These two measures, AR efficiency and
traditional method efficiency are illustrated in figure 5.8, details can be
found in table 5.3. Calculating a mean time for each method (AR and trad)
on each subject makes it possible to apply a t-test, making comparison of
the two methods possible.

5.2.2 Efficiency analysis

To test if augmented reality is significantly better than the traditional
method, a null hypothesis and an alternative hypothesis was formed:

H0: Using augmented reality goggles does not improve recog-
nition time above traditional methods.

HA: Using augmented reality goggles improves recognition
time above traditional methods.

Under H0 the test statistic is t-distributed with n-1 = 30 degrees of
freedom. t = 9.276, corresponding to the one-sided p-value of 1.28e-
10. The null hypothesis may therefore be rejected, and we conclude that
augmented reality is significantly faster than the traditional method.

5.2.3 Accuracy results

The accuracy was measured in the user’s ability to correctly identify
which cubes the robot saw. The number of misclassifications for each

60

Trad times AR times

2

4

6

8

10

12

14

16

Figure 5.8: Time efficiency for the traditional method, and augmented
reality group in seconds. The data clearly indicates that augmented reality
is faster than the traditional method.

task was recorded, both for AR and the traditional method. Each subject
did 5 tests with AR, and 5 tests with the traditional method. Although
the number of misclassifications was recorded for each test, the dataset’s
complexity was simplified by classifying each test as a pass or a fail. The
total number of failed tests per subject, in each method, is shown in the
histograms in figure 5.9 and table 5.4.

28 out of the 31 subjects (90%) of the subjects passed all the tests with
augmented reality. This is much higher than the result from the traditional
method, where only 7 passed all the tests (23%). The probability of failing at
a given task with the traditional method was 0.245, compared to 0.026 for

Total errors

F
re

qu
en

cy

0

5

10

15

20

25

30

7

14

7

2
1

0 1 2 3 4

(a) Traditional method

Total errors

F
re

qu
en

cy

0

5

10

15

20

25

30 28

2
1

0 0

0 1 2 3 4

(b) Augmented reality

Figure 5.9: Histograms showing the total number of failed tests per subject
in both methods.

61

Method Min Max Mean S.D.
Trad 0 4 1.226 0.990
AR 0 2 0.129 0.428

Table 5.4: The number of failures per subject with the two methods. Out
of the 10 tests (5 AR, 5 trad) conducted with each subject. On average,
the subjects failed once with the traditional method, and did not fail with
augmented reality.

Method Probability of failure
Trad 0.245
AR 0.026

Table 5.5: The probability of failing at a given task with the traditional
method, and augmented reality. The data shows that failure is almost ten
times more likely with the traditional method.

augmented reality. This means that failure is almost ten times less likely
with augmented reality; see figure 5.10 and table 5.5.

To make the t-test applicable, only two accuracy measures for each
subject was desired; one for AR and one for the traditional method. This
was achieved by calculating the mean of the 5 measures for each method,
and results in a new dataset with 31 AR measures and 31 trad measures.

This method of examining accuracy can be called the error rate, which
is how often the users make errors. With this method, each scene can
only produce one error. Another way of investigating the accuracy is by
examining the severity of the errors, as the subjects can make multiple
misclassifications on a single scene. Table 5.6 shows that there were few
severe errors in general; 4 in total. All of them originated from the
traditional method, one from scene 5 and three from scene 6. The scenes
can be found in figure 5.4. The highest severity recorded was 2 (two
misclassified cubes in a scene).

Error distribution Another interesting result is how the errors are
distributed. A box plot is in this case not particularly useful, since the data

Method Severe errors
Trad 4
AR 0

Table 5.6: The number of severe errors, defined as multiple misclassifica-
tions in the same scene/task. There were few severe errors in general, in
which none occurred with augmented reality.

62

Trad AR
0.00

0.05

0.10

0.15

0.20

Figure 5.10: The probability of failing at a given task with the traditional
method, and augmented reality. The data clearly shows that failure is much
more likely with the traditional method.

has very few levels, thus, a bar plot was chosen. The error distribution is
visualized in figure 5.11.

Although the scenes were designed to be of increasing difficulty, where
scene 2 is easiest, and scene 6 is most difficult, the data shows something
else. The error distribution in figure 5.11, show that scene 4 produced more
errors than scene 5. The rest of the scenes’ difficulties appear as intended.

5.2.4 Accuracy analysis

To test if augmented reality is significantly better than the traditional
method, a null hypothesis and an alternative hypothesis was formed:

H0: Individuals using augmented reality goggles have an equal
or worse understanding of what the robot sees than with
traditional methods.

HA: Individuals using augmented reality goggles have a better
understanding of what the robot sees than with traditional
methods.

Under H0 the test statistic is t-distributed with n-1 = 30 degrees of
freedom. t = 5.677, corresponding to the one-sided p-value of 1.724e-
6, which is lower than 0.001. The null hypothesis may therefore be
rejected, and we conclude that augmented reality gives significantly better
understanding than the traditional method.

63

scene 2 scene 3 scene 4 scene 5 scene 6
0

2

4

6

8

10

12

(a) Traditional method

scene 2 scene 3 scene 4 scene 5 scene 6
0

2

4

6

8

10

12

(b) Augmented reality

Figure 5.11: Plot showing how the errors were distributed in the scenes/-
tasks with the traditional method (a) and augmented reality(b). The data
shows the sum of all the errors that occurred in each scene/task. Although
the scenes were designed to be of increasing difficulty, the data show that
scene 4 produced more errors than scene 5.

5.3 Questionnaire results and analysis

This section presents the results and analysis of the data collected from
the questionnaire. First the quantitative (yes/no questions) data will be
presented, followed by the results from the long answers (the qualitative
data). All of the 31 subjects who participated in the study answered
10 questions after the main experiment was finished. Answering the
questionnaire took approximately 7 minutes per subject. The questionnaire
was conducted as an interview, where the researcher asked the questions.
All questions asked are listed below:

1. Which system do you think was better for understanding the robot’s
situation? [Trad, AR, Equal]. Why?

2. Do you feel that the augmented reality method gave you a better
understanding of the robot’s situation? [Yes, No]. Why / why not?

3. How did you solve the tasks with the traditional way?

4. Did you control the camera in the traditional way? [Yes, No]
Why/why not, and did it help?

5. How did you solve the tasks with augmented reality?

6. Did you encounter any problems with the traditional way? Rate
seriousness. [Low, medium, high]

7. Did you encounter any problems with the augmented reality way?
Rate seriousness. [Low, medium, high]

8. Which system do you prefer for solving these tasks? [Trad, AR]

64

9. Do you think Augmented reality can improve understanding of robot
systems like this? [Yes, No]

10. Do you have any previous experience that you think might have
affected your ability to solve these tasks?

5.3.1 Quantitative data

The quantitative questions can easily be visualized. The results can
be inspected in figure 5.12. 5.12a and 5.12b both represents questions
about which system the users preferred. Although they are almost equally
formulated, question 5.12a also asked the subjects to reason their decision,
while question 5.12b was toward the end of the questionnaire, allowing the
users to reflect on difficulties with the two systems before answering the
second question. The two plots show no difference, all subjects preferred
augmented reality.

5.3.2 The 31 subjects preferring augmented reality

The participants reasoning in why they preferred augmented reality
over the traditional method is best summarized in quotes:

"It was so much better to see what I was looking at. The glasses
highlighted the correct boxes, it was so easy. In the traditional
way, I had to think. The camera’s perspective was different than
my own, so I had to imagine that I was where the camera was."

"I got the depth that was linked to my movements, instead
of the mouse’s movement, in the traditional method. The
connection with reality was great." (Translated)

"I know where I’m in the room, so I did not have to see where
the robot is and put me into its eyes. I saw myself as the robot
when I wore the glasses." (Translated)

"Easier to understand how the robot sees the world, in the way
we humans see the world." (Translated)

"The fact that I get all the information at the same time made
it a lot easier. With the traditional method, I had to look back
and forth, take the model in 3D and transfer it to what I see. It
would be much harder in a real situation, since things do not
move here." (Translated)

"Like seeing it yourself, just a little further away." (Translated)

The above quote addresses the fact that the field of view with the
goggles are a little shallower than human’s field of view, making the scene
appear further away than it really is.

65

"You could see the boxes in relation to each other. Although
it was difficult to see the whole model because I saw it from
the side, unlike the traditional way, where you saw the whole."
(Translated)

The above quote addresses an advantage with the traditional way, at
least when the observer is seated and unable to move.

Do you feel that the augmented reality method gave you a better
understanding of the robot’s situation? The response to this question is
visualized in figure 5.12c. Only 2 of the 31 participants said they did not
feel they got a better understanding of the robot’s situation. Their reasons:

"No, it is easy to mix what the robot sees with what you see
in AR. In the traditional method you see exactly what the
robot sees. In AR it kind of looks like the robot just selected
something." (Translated)

"No, I understood it OK." (Translated)

5.3.3 Solving the tasks with the traditional method

To improve the current methods of solving a problem, it is important to
first understand the current methods and what difficulties there are. This
section summarizes what the participants reported as their techniques to
solve the tasks with the traditional method.

Centerline As presented in section 5.1.4, before the experiments started,
the subjects were introduced to the 3D program. This included two
important things: Where the sensor was in the model, and in which
direction, relative to the sensor, the view was aimed. The participants
where explicitly told which of the grid lines was the centerline. The
centerline is the imaginary line pointing straight out in front of the sensor.
17 out of the 31 participants (~55%) reported that they solved the tasks by
examining the cube’s positions relative to the centerline in the 3D model.
They saw which of the cubes in the model were to the left and to the right
of the centerline, and compared this to the real cubes in the scene in front
of the sensor, taking note of which seemed to be to the left and to the right.
This was most likely not very easy, since they had to stay in their chair,
limited to lean around.

The relative positions of the cubes Another common reported technique
was to compare the relative positions, or pattern, between the cubes in the
3D model with the physical cubes in the scene. If three cubes were visible
in the 3D model, and they formed a perfect equilateral triangle, the subjects
looked for such a relation among the physical cubes in the scene. As human
beings are good at pattern recognition[58], this technique is effective.

66

Trad AR Equal
0

10

20

30

(a) Which system do you think was
better for understanding the robot’s
situation?

Trad AR
0

10

20

30

(b) Which system do you prefer for
solving these tasks?

Yes No
0

10

20

(c) Do you feel that the augmented
reality gave you a better under-
standing of the the robot’s situ-
ation? 2/31 participants an-
swered "no"

Yes No
0

10

20

30

(d) Do you think Augmented reality
can improve understanding of robot
systems like this?

Yes No
0

10

20

(e) Did you control the camera in
the traditional way? 21/31 partici-
pants controlled the camera dur-
ing the traditional method

Yes No
0

10

(f) Do you have any previous ex-
perience that you think might have
affected your ability to solve these
tasks? 13/31 of the participants
said they had previous experi-
ence

Figure 5.12: Quantitative results.

67

Seeing from the robot’s point of view 8 of the 31 subjects said they tried
to put themselves in the robot’s position, imagining how the physical cubes
would look from the robot’s angle. A quote from one of the subjects goes
as follows: "[...] I put myself into the sensor’s place. How would it look to
me?" (Translated)

A comment on the scene’s orientation relative to the sensor One of the
subjects commented the following: "Used the center line to see right/left.
A bit difficult because the board was not aligned with the sensor [...]"
(Translated). The plastic trays the cubes were sitting on were intentionally
rotated slightly. The subject implied that the tasks would be easier if
the square trays were perfectly perpendicular in relation to the sensor’s
centerline. The reason for the slight rotation was to avoid reflection from
the sensor, as well as it represented a more realistic situation.

Rotation of the view in the traditional way 21 out of the 31 participants
tried to rotate the view in the 3D program, which of 15 said it helped them
in gaining information. Most said it helped in seeing the depth between
the cubes better.

The rotators 15 of the 31 subjects (~50%) found it useful to rotate the view.
One of the participants said rotating helped see the grid better. The grid is
default in the 3D program, and makes it easier to see the depth. Below,
some of the answers are quoted (all translated from Norwegian):

• "Yes, sometimes, it helps to see things from another perspective. It
helped when it was difficult to see the distances between the boxes."

• "Yes, to get a better understanding of how the boxes were in relation
to each other."

• "Yes, to check if it helped. It did not help so much. And to see the
routes between clearer, I mean the grid."

• "Yes, to see where the sensor was. It sometimes helped, especially
when only one box was visible."

Observing the scene from above In total, 4 subjects mentioned the top-
down approach (rotating the view to a top-down angle). One participant
reported that it helped see the depth better. Another reported having
thought of it, but did not use it because it would take more time. Two
reported they came to think about the top-down approach only after they
had completed the test.

The non-rotators 16 of the 31 subjects (~50%) did not rotate the view at
all, or did not find it helpful after trying. Many said it did not improve their
overview, as the default view was sufficient. Below, some of the answers
are quoted (all translated from Norwegian):

68

• "Yes, once. I tried to rotate to compare how it looked from the side."

• "I rotated the view one time, hoping it would help me see the depth
between two boxes, where the one was behind the other. It did not
help, I did not gain any information."

5.3.4 Difficulties with the traditional method

This section summarizes common issues the users experienced using
the traditional method during the experiments.

"If two boxes were close, but one was missing, it was hard to
tell which it was." (Translated)

The above quote addresses a common issue and was reported by
multiple subjects. It appears in scenes where groups of two cubes are
placed close, making it difficult to tell which of the two cubes is visible
in the 3D model.

"It was hard to identify the cubes when you see the same pattern
between the boxes in the point cloud and several places in the
physical scene." (Translated)

"It was difficult, especially if there are few items visible in the
point cloud." (Translated)

The above quote confirms that the intended design worked, as some of
the scenes were designed to be difficult in this manner. In total, 4 subjects
reported this specific issue.

"I was not sure if I chose correctly" (Translated)

Lack of perspective 8 participants said they had difficulties from the lack
of perspective. The following quotes addresses the issue well:

"It was very difficult to get perspective, since I don’t know
where the tray is in the scene, and I don’t know the distances
from the cubes to the camera." (Translated)

"Because we only saw the points it was difficult to relate it to
reality." (Translated)

Lack of depth perception 8 subjects reported that they had trouble seeing
the depth in the 3D model. The grid in the 3D model makes it possible
to see the relative depth difference between the cubes, but without deeper
knowledge about the grid size it does not show the actual depths in relation
to the physical scene.

69

Difficulties with few visible cubes 5 participants said few visible cubes
made the task much harder.

"With only 1 visible box in the 3D model, I had no relation to
compare with." (Translated)

5.3.5 Solving the tasks with augmented reality

The feedback on how the participants solved the tasks with augmented
reality was quite short, compared to the traditional method. Most subjects
answered with a single sentence on the form: "I looked where the pink dots
where, and read the number on the cube.". Most of the subjects hesitated on
this question as they were not sure how to explain it because they thought
the procedure was very simple.

"It was pretty straight forward, I saw which of them that were
illuminated." (Translated)

"I looked at the real world, and searched for places where there
was pink, that’s where the robot was looking." (Translated)

5.3.6 Difficulties with the augmented reality system

Compared to the issues reported with the traditional method, the
following issues are of a more technical matter.

Resolution issues 16 out of the 31 participants reported low resolution
in the goggles as an issue. Most of them said it was of low seriousness,
since they only had to lean closer to read the numbers. One of the subjects
reported it was hard because of visual impairment. The participants with
glasses did not wear them during the experiment, as they do not fit well
inside the goggles.

Unstable point cloud Another issue reported was that the point cloud
disappeared when the subjects leaned towards the cubes to see the
numbers more clearly. The system is dependent on keeping the robot and
its marker within the field of view to function properly. If a participant
leans closer, but fails to keep the marker within the frame, the point cloud
disappears until the marker is back in the frame. 7 participants reported
this as an issue. The following quote shows this well:

"It was hard to lean closer to see better, because it made the
points disappear." (Translated)

Noise and point intensity 4 of the subjects reported that they sometimes
were confused by noise in the scene. There is some random noise, observed
as individual points, or small groups, in the scenes.

70

"I assumed the noise that was around could be a goal, so I had
to lean closer to see better." (Translated)

Another subject said that some of the cube surfaces were more
illuminated in pink than others, causing confusion. The reason for this is
the angle of the cubes, as the sensor senses surfaces at certain angles better
than others.

5.3.7 Previous experience

13 of the 31 participants said they had previous experience that they
thought might have affected their performance. Most of the 13 had used
virtual or augmented reality goggles before. One reported experience with
rviz (the 3D program), and another said that the their academic background
in robotics might have helped.

71

72

Chapter 6

Discussion

This chapter put the findings from the experiments into perspective.

6.1 The study

This section takes a deeper look at how the study was designed, and
which consequences the design choices might have had.

6.1.1 Thoughts on the study design

This section evaluates the design of the study, and discusses what could
have been done differently.

Time stress Before the main experiment started, the users were told "You
should state your answer as fast as possible. You have 30 seconds for each
task.". This was done to improve their performance, as discussed in section
2.1.1, under Medicine, where users under moderate stress were found to
perform better. A study on HCI, on menu selection systems, found that
time stress actually decreased the users performance, both accuracy and
efficiency[59]. Since these two studies found the opposite result, this study
might have seen better performances if the participants were told to take
their time. It would probably not have affected the measured difference
between augmented reality and traditional methods, since both methods
were subject to the time stress effect.

Interpretation of the user’s accuracy As discussed, there are different
ways of measuring the accuracy. Although the original plan was to record
the number of misclassifications in a scene, the data was transformed into
a binary measure, error, or no error. It is important to notice that the way
the experiment was designed, made it possible for a subject to misclassify
cubes without it being recorded. This can happen if for example two cubes
are visible, and the subject classifies the first as the second, and the second
as the first. This is a possible weakness in the experiment, but was not
believed to have a significant impact on the results.

73

Accuracy resolution There was a limited resolution on accuracy, between
0 and 5 errors per subject. The scores on were fairly high, making the score
distribution very skewed, as most of the subjects had 0 errors with AR, and
1 error in the traditional method. This suggests that the tasks were too easy,
as a less skewed distribution would have been better.

Correlation between questionnaire data and error severity Observing
that the error severity was much worse in the traditional way might further
confirm the users’ description of their technique in solving the tasks. The
users described their technique for solving the tasks with the traditional
method as very dependent on the other cubes. They first found one cube,
and then used that information to identify the others. This suggests that
multiple misclassifications easily can occur if the first cube is misclassified.

Users limited to the chair Whether to let the users move around as they
pleased or to limit them to the chair was a big topic during the design
phase. As seen in the results from the questionnaire, more than 50% of the
participants used the centerline to identify the cubes with the traditional
method, see section 5.3.3. Since the users were not allowed to move from
the chair, understanding where the actual centerline coming out of the
physical sensor might have been harder than in a real use case, where
the users are able to move around and look at the system from above.
The choice in limiting them to the chair was done to limit the amount of
factors in the experiment. It was hypothesized that some users would move
around, gaining an advantage above the more discrete users, not leaving
the chair. This decision might have come in favor to augmented reality,
since its way of solving tasks is so simple, compared to the traditional
method.

6.1.2 A deeper analysis of the scenes and cubes

From the main experiment results, especially in accuracy, scene 4
produced more errors than scene 5. Recall that the scenes were numerated
according to difficulty, in ascending order. This is also visible in the
efficiency scores, where the two scenes come out very close. These two
findings might confirm that the fourth scene in fact is harder than the fifth.

This can be reasoned in multiple factors. As assumed before the
experiment, and supported by the questionnaire, the positioning of the
cubes are crucial for the difficulty of the scene. Another possible factor is
confusion between the cubes. It was observed that some participants mixed
cube 4 and cube 1, this most likely happened because of the similarity of the
two numbers combined with low resolution. Additionally, as the numbers
were hand written, and were not consistent in all the scenes.

This was not investigated further, as it was not prioritized due to the fact
that it could only have affected the augmented reality system negatively.

74

The conclusion would therefore not likely have been affected. If such an
inconsistence exists in e.g. one of the scenes, a new statistical analysis can
be conducted, excluding the data from that specific scene.

Issues with the augmented reality system The issues the participants
experienced with the augmented reality system can be said to be prototype-
specific, as both low resolution and an unstable system will not likely be an
issue in a future system.

6.1.3 Bias in the study

Running a study alone does not come without the risk of bias. Both
the main experiment and the questionnaire were at risk of bias. As
discussed in 2.6.2, in the paragraph about errors, the researcher is at risk
of biasing the participants in the study. This can happen both intentionally
or unintentionally. In the study, the experiment leader did his best to not
to say anything else than what was scripted, as this can easily bias the
subject. Also, the experiment environment was kept as equal and clean
as possible to avoid environmental bias. From the quantitative data in
figure 5.12, we observed that all subjects preferred the augmented reality
system over the traditional one. This is a suggestive type of question on
the form "Do you like the amazing system I created?". Since all the subjects
agreed that AR was best, there was reason to suspect bias. This could have
been avoided if an independent person had conducted the experiment,
instead of the creator of the system. Such bias is technically possible in
the main experiment as well, as subjects can intentionally fail with the
traditional method, to help the researcher. However, the main experiment
was conducted in a controlled manner, so we have little reason to believe it
was biased enough to affect the conclusions.

Unfair setup? In the traditional tests, the users had to take the goggles
off to be able to see the scene. This operation took approximately half
a second, and may have introduced bias in the study, by making the
traditional efficiency scores marginally worse. However, the augmented
reality system was unstable and had low visual quality, compared to the
completely stable traditional method. This suggests that the bias would
have little effect compared to the effect of an improved prototype.

Removed edge cases Recall that the edge cases, where none or all the
cubes were visible, was excluded1. This design choice might have affected
the results, but it is hard to tell in which direction. Although the edge cases
were believed to be much easier to solve in the traditional method than the
normal cases2, they confused the subject, as seen in the pilot study. This

1If the program produced an edge case, it started over, until the subset of visible cubes
was not an edge case.

2What makes the traditional method hard compared to ar, is that the cubes have to
be identified by looking at the relative positions of the visible cubes. If edge cases were

75

(a) Part (b) Traditional method

(c) Augmented reality

Figure 6.1: Part and its point cloud. Traditional visualization method
compared to augmented reality.

suggests that the edge cases could have improved the accuracy, especially
in the traditional method, but reduced the efficiency in both methods.

6.2 Visualization in augmented reality vs. virtual
reality

During the implementation phase, visualization of the point clouds was
tested in both VR and AR. This section discusses some major differences.
A part consisting of different materials is pictured in figure 6.1. The part’s
point cloud is visualized with both the traditional method (rviz), and with
augmented reality. Visualizing the point cloud in VR would looks very
similar to the traditional method, except for a few important differences.

Visualization in virtual reality The first working point cloud visualiza-
tion in Unity was in virtual reality. This was an interesting experience, as it
was much easier to understand the point cloud in 3D, as opposed to with
traditional methods (on a monitor in a 3D visualization program), because
of the depth perception offered by stereo vision. Additionally, navigation
in the point cloud is intuitive, since the view is controlled by the user’s
movements. This suggests that a user without experience can handle the
navigation better in VR than with traditional methods.

included, the subject could solve the task by simply counting the visible cubes.

76

Visualization in augmented reality Augmented reality is not isolated in
a virtual world, and offers a link with the real world. As we have seen in
the implemented system, users can see the relation between the real world
and how the robot sees it, because the two information sources overlap.
In contrast to virtual reality, the system does not offer depth perception,
because the augmented reality is presented on a 2D screen, in virtual reality.
As covered in the background chapter, there are other AR platforms that
can give augmentation in 3D, such as Microsoft’s HoloLens. HTC Vive is
not a platform for augmented reality, but it worked as a prototype.

6.3 Augmented reality as visualization tool

The augmented reality system was tested on users to investigate how
it performed compared to traditional methods. The user study tested the
understanding of the robot’s sensor data. As seen in the previous chapter,
the results were very clear, there was no doubt that augmented reality
was superior to traditional methods, it was much faster, and it produced
ten times fewer errors. It is however important to remember that the
experiment does not cover all types of understanding, as only the robot’s
point cloud, relative to the robot and its environment was tested. In the
implementation chapter, understanding was defined as follows:

The ability to create a mental picture of the robot’s situation,
that is its position, state, and view of the world around it.

Perspective The results from the questionnaire support one of the main
issues with the traditional methods for sensor visualization, part of the
motivation for the thesis. A quote from one of the subjects, after being
asked if he/she experienced difficulties with the traditional method,
follows.

"It was very difficult to get perspective, since I don’t know
where the tray is in the scene, and I don’t know the distances
from the cubes to the camera." (Translated).

This is spot on what the augmented reality system solves, giving
perspective. In the AR system, the cubes, tray, robot, and its sensor are
visible, and presented in the user’s point of view.

What did the study test? The point clouds should not be interpreted
as the raw sensor data, as they represent the robot’s understanding of
its surroundings. Autonomous robots can make decisions based on
information gained from processing their raw sensor data. This is the type
of information investigated in the study, by testing the users’ ability to
relate the robot’s view to their own. However, the experiment can be said
to be somewhat shallow, since it only tested a specific case, in a very limited
environment.

77

Applying the results to a more general case Although we cannot prove
the system is effective in a more general area than the one tested, it is
reasonable to believe it will. We have seen the system’s effectiveness in
strengthening the link between human and robot. This link can be applied
to a wide range of use cases, and a stronger link can increase the level of
situation awareness in humans.

78

Chapter 7

Conclusion and future work

This chapter summarizes the findings from the thesis and arrives at a
conclusion.

7.1 Conclusion

This thesis has presented an augmented reality system for visualization
of robotic sensor data. The system was implemented on the virtual reality
platform HTC Vive. The chosen sensor data was 3D point clouds from a
depth camera, connected to a robot running ROS. The system can easily
be applied to other sensors and robots. A user study was conducted
and showed that the system had a significant positive effect on the users’
understanding of the sensor data, compared to traditional methods. In
light of the investigation conducted and the results from the study, we
conclude that augmented reality can improve a user’s understanding of
a robot system.

7.2 Future work

The second goal of this thesis was to test the system’s effectiveness in
improving the user’s understanding of sensor data. This section discusses
what can be done in the future to further investigate this topic.

7.2.1 Applying the system to a real robot

As seen in figure 7.1, the robot prototype was attached to the live
quadrupedal robot, Dyret[55]. As the image shows, the user of the
augmented reality system is able to see the robot’s perception of the human
in front of it.

Visualization of internal state There are a lot of other interesting work
that can be done to raise the observer’s understanding. Information such
as the robot’s battery status, navigation goal, planned path, and control
loop could be visualized to provide the observer with valuable picture of
the robot’s situation.

79

Figure 7.1: Human and robot, seen through the augmented reality system.
The user of the system understands exactly what the robot sees. Note that
the image is from a continuous video feed, and the user is free to move
around and inspect the scene from other angles.

7.2.2 Visualization of decision

The robot’s decisions could be visualized by showing the different
factors that are used in the decision process in a combined fashion. This
concept can be applied to different use cases.

Debugging The first case is in a debugging scenario, where a quadrupedal
robot for example has failed to pass an obstacle, and fallen over. The re-
searcher could go back to the time of the event, and see the robot’s decision
process, discovering that the robot classified the obstacle as passable, but
did not change its gait, causing it to trip and fall. This type of visualiza-
tion could be valuable in robot development, and can be investigated in
the future.

Real-time supervision and control Another case is in real-time situa-
tions, where a robot engineer observes a robot solving a task. He or she
can inspect how the robot processes the data from its sensors in combina-
tion with its internal state, learning how the factors and chosen parameters
affect the decision making. For example, a robot navigating through an
obstacle track could have its path planning visualized, by projecting the
possible paths in front of it, and the following selection process.

In a teleoperation situation, the robot operator could get a clearer picture
of the robot’s situation, and thus be able to control it in a better fashion.
Another example is a semi-autonomous robot that has encountered a
situation where it needs assistance from a human to proceed. The different

80

Figure 7.2: Human and robot interacting, seen through the augmented
reality system.

options and possible trade offs, detected by the robot, could be visualized
for the operator, giving a higher situation awareness, and thus making the
his or her decisions simpler. At this point in time and near future, robots
still need assistance from humans. Future investigation of this subject can
thus lead to a better symbiosis between the robot and the operator.

Prediction Prediction is an important field in robotics, where the robot
attempts to predict what will happen in the near future. This process can be
complicated, in which multiple factors, like current sensor data, knowledge
about the environment, and previous experience, are combined to make a
prediction. The prediction model could be visualized to show different
outcomes, and their perceived causes. Visualizing this allows an engineer
to get a clearer picture of the process and thus create a better prediction
model, making this a good candidate for future work.

7.2.3 Human-robot interaction

An example future use case for the system is in an Urban Search and
Rescue situation, where a team of humans and robots work alongside to
rescue victims trapped in the debris. The robots can enter small entrances
and dangerous areas, unavailable for the rescuers, providing them with the
ability to see through material, to observe the robots’ locations and view, in
the search for signs of life.

Figure 7.2 shows the interaction between the quadrupedal robot
Dyret[55] and a human, controlling it. There is a lot of related work that
can be done in the field of HRI. Since augmented reality can strengthen the
link between humans and robots, it is reasonable to believe that applica-
tions where humans work alongside robots can see improvements in the
coming time.

7.3 Future development

This section covers technical details in the current system that should be
improved for achieving better results. Discussed topics are the efficiency,

81

stability, and the visual quality of the system.

7.3.1 Efficiency

Efficiency is an important topic in this project, because of the impor-
tance of stable frame rate in a mixed reality system. Below are some things
that can be done to improve the system.

Triangles instead of 130.560 points The system draws all the points in
the point cloud as a single point. This is unnecessary many to represent a
surface, which is what the point cloud represents. By drawing shapes, like
triangles, the number of required points could be decreased greatly, which
would increase the system’s efficiency.

Alignment of the point cloud in the image The most efficient way of
making the point cloud align with the image is by adjusting the rotation
and translation vectors received from the ArUco function estimatePoseSin-
gleMarkes, so the transformation accounts for the offset (both rotation and
translation) from the ArUco marker to the sensor.

In this project, for simplicity, another less efficient method is applied.
The way this project achieves alignment is by transforming each point in
the point cloud into the ArUco coordinate system. This is a computational
heavy operation with a complexity of O(n), where n is the number of points
in the cloud. In a typical scene there are about twenty to seventy thousand
points, and this is calculated for each frame in the video feed.

7.3.2 Stability

As of today, the point cloud is only visible when the ArUco marker is
detected in the frame. This means that if the marker gets partially covered
by for instance a hand, the point cloud disappears. The marker used in the
experiments is 20x20 centimeters. The thought behind a large marker was
to make it easy to track in the low resolution and highly distorted images
from the Vive’s front facing camera. One of the most important drawbacks
with a large marker is therefore the criteria to have clear line of sight to the
entirety of the marker at all times. A possible solution is to use multiple,
smaller markers[54]. This way, as long as at least one marker is visible, the
AR headset’s pose is known. The markers should also be placed in different
angles around the sensor, to cover more viewing angles. In a robot use case,
markers should be placed in such a way that there is always at least one
visible marker. The downside of adding more markers, and especially on
different planes, is that each marker’s precise position and rotation, relative
to the sensor, must be known.

82

On the other hand, when the marker completely leaves the frame, there
are other techniques that can be used to still keep track of the position
and orientation of the AR headset. SLAM (Simultaneous localization
and mapping) is a computer vision algorithm that can keep track of the
camera’s movement between the frames in a video feed. Another option is
to use an IMU (Inertial measurement unit). This is an external sensor that
has to be mounted on the AR headset, and gives position updates based
on its acceleration. A clear advantage over SLAM is the reduced need for
processing power. However, SLAM is a computational heavy algorithm
which might put too much load on a mobile system. Another option would
be to use Optical Flow, as discussed in section 2.2.2. To improve the system’s
stability when it temporarily looses track of the marker, a Kalman filter can
be applied to estimate the marker’s position.

7.3.3 Visual quality

HTC Vive is a virtual reality platform, not designed for augmented
reality. This resulted in a very low resolution AR video feed. Additionally,
a better way to display the AR video feed in virtual reality would be
on a curved screen, not a flat one, as suggested in the Unity tutorials1.
Implementing the system on another platform, better suited for augmented
reality, would likely have given much better results. Good candidate
platforms are Microsoft’s HoloLens2, and Meta’s Meta 2 Developent Kit3.

Improving the accuracy in the point clouds Testing the augmented
reality system showed that the point cloud sometimes did not properly line
up with the real world, as discussed in section 4.1.2, under Debugging the
inaccurate point clouds. An unanswered question from the implementation
was whether using OpenCV’s fish-eye model, instead of the standard
model, to undistort the image would resolve the problem, or not. This
would probably not help, as the model is only better near the edges4, and
the deviations were not only present near the edges. Since the point clouds
were first inspected in virtual reality, the inaccuracies were not discovered
until the augmented reality system had been implemented. The issue
was thus not resolved, since the deviations were small, and there was not
budget for further investigation. This is thus a factor for improvement in
the system.

X-ray vision Picture a natural work environment, i.e. a laboratory, where
the robot engineer is observing the robot, wearing augmented reality
glasses. Since the observer is free to move around, the sensor data (or
other augmented information5) from the robot can get behind elements

1https://unity3d.com/learn/tutorials/topics/virtual-reality/user-interfaces-vr,
accessed December, 2016

2https://www.microsoft.com/en-us/hololens
3https://www.metavision.com/
4http://docs.opencv.org/trunk/db/d58/group__calib3d__fisheye.html
5Augmented information can be battery status, navigation goals, state, and similar.

83

in the scene. The system’s current configuration makes the augmented
information always visible, making it work like x-ray vision. A question
on whether this is desirable or not arises. This type of functionality can
be valuable in some applications, for example in an Urban Search and
Rescue situation, where the ability to look through material can be useful,
as discussed in section 7.2.3. On the other hand, this information can very
well be redundant and obscure objects of interest in the foreground.

No 3D, only 2D The inspiration to do augmented reality came from the
HTC Vive’s room view. This is a functionality that lets the user see through
the camera on the front side of the goggles. The room view is monochrome,
with very little detail, but, is more than good enough to navigate in the
room, and untangle the headset’s cable. The original plan was to use this
functionality and draw the point clouds into it. Unfortunately, the room
view feed was unavailable; the see through part of the augmented reality
application therefore had to be created manually from the raw video feed
from the camera. This video feed was, as explained in the implementation
chapter, simply drawn one meter in front of user in virtual reality, creating
a virtual, see through monitor. Ideally, a view similar to HTC’s room view
should have been implemented6, to give full 3D experience, and thus using
the virtual reality headset to its full extent. The increased complexity of
this problem did not fit into the time available to solve all the challenges,
included in this work.

6This could have been implemented by using stereo from motion. Comparing every
frame with the previous frame, finding matching features, creating a disparity image, and
thus a 3D model of the room.

84

Bibliography

[1] J. R. Echard Freund, “Projective virual reality: Bridging the gap
between virtual reality and robotics,” IEEE TRANSACTIONS ON
ROBOTICS AND AUTOMATION, vol. 15(3), pp. 411–422, 1999.

[2] F. K. Paul Milgram, “A taxonomy of mixed reality visual displays,”
IEICE Transactions on Information Systems, vol. E77-D, 1994.

[3] P. G. de Barros and R. W. Lindeman, “Multi-sensory urban search-
and-rescue robotics: Improving the operator’s omni-directional per-
ception,” Frontiers in Robotics and AI, vol. 1, p. 14, 2014.

[4] K. Haluck, “Computers and virtual reality for surgical education in
the 21st century,” Arch Surg, vol. 135, pp. 786–792, 2000.

[5] F. S. Lupien, Maheu, “The effects of stress and stress hormones on
human cognition: Implications for the field of brain and cognition,”
Brain and Cognition, vol. 65, pp. 209–237, 2007.

[6] Y. Sato, M. Nakamoto, Y. Tamaki, T. Sasama, I. Sakita, Y. Nakajima,
M. Monden, and S. Tamura, “Image guidance of breast cancer surgery
using 3-D ultrasound images and augmented reality visualization,”
Medical Imaging, IEEE Transactions on, vol. 17, no. 5, pp. 681–693, 1998.

[7] L. Lamport, “A survey of augmented reality technologies, appli-
cations and limitations,” The International Journal of Virtual Reality,
vol. 9(2), pp. 1–20, 2010.

[8] H. L. Pryor, I. Thomas A. Furness, and I. Erik Viirre, “The virtual
retinal display: A new display technology using scanned laser light,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
vol. 42, no. 22, pp. 1570–1574, 1998.

[9] Y. Genc, M. Tuceryan, and N. Navab, “Practical solutions for cali-
bration of optical see-through devices,” in Proceedings - International
Symposium on Mixed and Augmented Reality, ISMAR 2002, pp. 169–175,
2002.

[10] H. Kaufmann, K. Steinbugl, A. Dunser, and J. Gluck, “General
training of spatial abilities by geometry education in augmented
reality. [References],” Annual Review of CyberTherapy and Telemedicine,
pp. 65–76, 2005.

85

[11] O. Bimber and R. Raskar, Spatial Augmented Reality Merging Real and
Virtual Worlds, vol. 6. 2005.

[12] J. Underkoffler, B. Ullmer, and H. Ishii, “Emancipated pixels: real-
world graphics in the luminous room,” Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pp. 385–392,
1999.

[13] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch,
R. W. Picard, and A. Pentland, “Augmented reality through wearable
computing,” Presence: Teleoperators and Virtual Environments, vol. 6,
no. 4, pp. 386–398, 1997.

[14] A. Acquisti, R. Gross, and F. Stutzman, “Faces of facebook: Privacy in
the age of augmented reality,” BlackHat USA, no. 2, pp. 1–20, 2011.

[15] “Aruco: a minimal library for augmented reality applications based
on opencv,” 2016. [Online; accessed 17-October-2016].

[16] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,
2010.

[17] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[18] A. Ryberg, A.-K. Christiansson, B. Lennartson, and K. Eriksson,
Camera modelling and calibration-with applications. INTECH Open
Access Publisher, 2008.

[19] P. Sicard and M. D. Levine, “An Approach to an Expert Robot Welding
System,” IEEE Transactions on Systems, Man and Cybernetics, vol. 18,
no. 2, pp. 204–222, 1988.

[20] S. Jorg, J. Langwald, J. Stelter, G. Hirzinger, and C. Natale, “Flexible
robot-assembly using a multi-sensory approach,” Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 4,
no. April, pp. 3687–3694, 2000.

[21] G. H. Ballantyne, “Robotic surgery, telerobotic surgery, telepresence,
and telementoring: Review of early clinical results,” 2002.

[22] J. Casper and R. R. Murphy, “Human-robot interactions during the
robot-assisted urban search and rescue response at the World Trade
Center,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 33, no. 3, pp. 367–385, 2003.

[23] A. Davids, “Urban search and rescue robots: From tragedy to
technology,” IEEE Intelligent Systems and Their Applications, vol. 17,
no. 2, pp. 81–83, 2002.

[24] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots, vol. 23. 2004.

86

[25] R. Chatila, S. Lacroix, T. Simeon, and M. Herrb, “Planetary exploration
by a mobile robot: Mission teleprogramming and autonomous
navigation,” Autonomous Robots, vol. 2, no. 4, pp. 333–344, 1995.

[26] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. 2005.

[27] G. Michalos, P. Karagiannis, S. Makris, Ö. Tokçalar, and G. Chrys-
solouris, “Augmented Reality (AR) Applications for Supporting
Human-robot Interactive Cooperation,” in Procedia CIRP, vol. 41,
pp. 370–375, 2016.

[28] S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara, a. Shin-
joh, T. Koto, K. Takeuchi, T. Takahashi, F. Matsuno, M. Hatayama,
J. Nobe, and S. Shimada, “The {RoboCup}-{Rescue} project: a robotic
approach to the disaster mitigation problem,” {IEEE} {Conference} on
robotics and automation ({ICRA}), vol. 4, pp. 4089–4094, 2000.

[29] P. Milgram, S. Zhai, D. Drascic, and J. Grodski, “Applications of
augmented reality for human-robot communication,” Proceedings of
1993 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’93), vol. 3, no. C, pp. 1467–1472, 1993.

[30] J. W. S. Chong, S. K. Ong, A. Y. C. Nee, and K. Youcef-Youmi, “Robot
programming using augmented reality: An interactive method for
planning collision-free paths,” Robotics and Computer-Integrated Man-
ufacturing, vol. 25, no. 3, pp. 689–701, 2009.

[31] B. Giesler, T. Salb, P. Steinhaus, and R. Dillmann, “Using augmented
reality to interact with an autonomous mobile platform,” IEEE
International Conference on Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004, vol. 1, pp. 1009–1014, 2004.

[32] F. Devernay, F. Mourgues, and E. Coste-Maniere, “Towards endo-
scopic augmented reality for robotically assisted minimally invasive
cardiac surgery,” in International Workshop on Medical Imaging and Aug-
mented Reality, pp. 16–20, 2001.

[33] M. L. Andersen and H. F. Taylor, Sociology: Understanding a Diverse
Society, Updated. Cengage Learning, 2007.

[34] L. Whitcomb, D. Yoerger, H. Singh, and J. Howland, “Advances in
underwater robot vehicles for deep ocean exploration: Navigation,
control, and survey operations,” in Navigation, Control and Survery
Operations,” in The Ninth International Symposium on Robotics Research,
Citeseer, 1999.

[35] M. A. Goodrich and A. C. Schultz, “Human-Robot Interaction: A
Survey,” Foundations and Trends® in Human-Computer Interaction,
vol. 1, no. 3, pp. 203–275, 2007.

[36] M. R. Endsley, B. Bolté, and D. G. Jones, Designing for Situation
Awareness: An Approach to User-Centered Design. 2003.

87

[37] D. Norman, The design of everyday things. New York: Basic Books, 1998.

[38] E. V. V. Rex Black, Dorothy Graham, Foundations of Software testing.
2012.

[39] J. Nielsen, Usability Engineering, vol. 44. 1993.

[40] Q. S. E. Q. R. Group, “Usability engineering.” http://qse.ifs.tuwien.ac.
at/courses/Usability/downloads_05/Usability_Engineering_20040920b.
pdf, 2004. (Accessed on 04/10/2017).

[41] Y. Chen and H. Chi, “Use of tangible and augmented reality models
in engineering graphics courses,” Journal of Professional Issues in
Engineering Education and Practice, vol. 137, no. 4, pp. 267–277, 2011.

[42] J. Lazar, J. H. J. Feng, and H. Hochheiser, Research methods in human-
computer interaction. 2010.

[43] G. W. Oehlert, A first course in design and analysis of experiments. 2010.

[44] R. Rosenthal and R. L. Rosnow, Essentials of behavioral research: Methods
and data analysis. McGraw-Hill Humanities Social, 2008.

[45] J. Rice, Mathematical statistics and data analysis. Nelson Education, 2006.

[46] C. G. Durbin, “How to come up with a good research question:
framing the hypothesis,” Respiratory care, vol. 49, no. 10, pp. 1195–
1198, 2004.

[47] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Mg, “ROS: an open-source Robot Operating
System,” ICRA, vol. 3, p. 5, 2009.

[48] P. Saint-Andre, “RFC Standard 6455– The WebSocket Protocol,” RFC
6455 (Proposed Standard), pp. i –73, 2011.

[49] W. Goldstone, Unity Game Development Essentials, vol. 10. 2009.

[50] G. Bradski et al., “The opencv library,” Doctor Dobbs Journal, vol. 25,
no. 11, pp. 120–126, 2000.

[51] T. Lee and T. Hollerer, “Handy ar: Markerless inspection of aug-
mented reality objects using fingertip tracking,” in Wearable Comput-
ers, 2007 11th IEEE International Symposium on, pp. 83–90, IEEE, 2007.

[52] C. Manresa, J. Varona, R. Mas, and F. J. Perales, “Hand Tracking and
Gesture Recognition for Human-Computer Interaction,” Electronic
Letters on Computer Vision and Image Analysis, vol. 5, no. 3, pp. 96 –
104, 2005.

[53] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A Survey,” ACM
Computing Surveys, vol. 38, no. 4, pp. 13–es, 2006.

88

[54] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
M. J. Marín-Jiménez, “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47,
no. 6, pp. 2280–2292, 2014.

[55] T. F. Nygaard, J. Torresen, and K. Glette, “Multi-objective evolution of
fast and stable gaits on a physical quadruped robotic platform,”

[56] “Presentation to ieee 802.3ab working group.” http://www.ieee802.org/
3/ab/public/feb98/ddmdix1.pdf. (Accessed on 04/07/2017).

[57] R. Durstenfeld, “Algorithm 235: random permutation,” Communica-
tions of the ACM, vol. 7, no. 7, p. 420, 1964.

[58] B. D. Ripley, “Pattern Recognition and Neural Networks,” Analysis,
no. 1995, p. 403, 1996.

[59] D. F. Wallace, N. S. Anderson, and B. Shneiderman, “Time Stress
Effects on Two Menu Selection Systems,” Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 31, no. 7, pp. 727–
731, 1987.

89

