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ABSTRACT
Self-consistent N-body simulations of modified gravity models are a key ingredient to obtain
rigorous constraints on deviations from general relativity using large-scale structure obser-
vations. This paper provides the first detailed comparison of the results of different N-body
codes for the f (R), Dvali–Gabadadze–Porrati and Symmetron models, starting from the same
initial conditions. We find that the fractional deviation of the matter power spectrum from �

cold dark matter agrees to better than 1 per cent up to k ∼ 5–10 h Mpc−1 between the different
codes. These codes are thus able to meet the stringent accuracy requirements of upcoming
observational surveys. All codes are also in good agreement in their results for the velocity
divergence power spectrum, halo abundances and halo profiles. We also test the quasi-static
limit, which is employed in most modified gravity N-body codes, for the Symmetron model
for which the most significant non-static effects among the models considered are expected.
We conclude that this limit is a very good approximation for all of the observables considered
here.

Key words: large-scale structure of Universe.

1 IN T RO D U C T I O N

Cosmology, and in particular observations of the large-scale struc-
ture (LSS), provide unique possibilities for testing general relativity
(GR) on length scales that cannot be probed by any other means
(see e.g. Jain & Khoury 2010; Koyama 2015; Berti et al. 2015, for
reviews). Motivated by the observed accelerating expansion of the
universe (Riess et al. 1998; Eisenstein et al. 2005; Bennett et al.
2013; Planck Collaboration XIII 2015), a number of theories have
been proposed, in which the acceleration is explained by deviations

�E-mail: hans.a.winther@gmail.com

from GR on large scales (Carroll et al. 2004; Dvali, Gabadadze &
Porrati 2000; Nicolis, Rattazzi & Trincherini 2009; Hinterbichler &
Khoury 2010), (see Clifton et al. 2012, for a comprehensive review).
In almost all cases, these theories add to the standard massless spin-
2 graviton of GR a new light scalar degree of freedom ϕ. Thus,
the Einstein and fluid equations of standard cosmology are aug-
mented by an equation of motion for ϕ. All these models are faced
with the challenge of producing sizeable effects on large scales –
the most desirable being a natural explanation of the accelerated
expansion – while at the same time passing the stringent local con-
straints on modifications to GR (Will 2014). This requires some
form of screening mechanism, that is, a way of dynamically sup-
pressing the effects of the fifth force mediated by ϕ in high-density

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

mailto:hans.a.winther@gmail.com


Modified gravity N-body code comparison project 4209

regions (compared to the cosmological average) where local exper-
iments have tested GR to high precision. Such an effect is typically
realized by non-linearities in the equation of motion of ϕ, which
results in a violation of the superposition principle that suppresses
the fifth force. The screening leads to a complex interplay between
the large-scale distribution of matter and the magnitude of the fifth
force mediated by ϕ.

The standard tools to compute LSS observables in the non-linear
regime are N-body simulations. Consequently, in order to robustly
test GR with cosmology, reliable N-body simulations of modified
gravity models are a necessity. These simulations must solve the
non-linear equation of ϕ in conjunction with the Vlasov–Poisson
system that is solved in standard N-body simulations. The non-linear
nature of the scalar field equation requires the implementation of
novel numerical techniques, which is what makes N-body simula-
tions of modified gravity so challenging.

To date, a number of codes have been developed to perform sim-
ulations of modified gravity. For instance, Oyaizu (2008) presented
a code that simulates the Hu–Sawicki f (R) model (Hu & Sawicki
2007) by solving the scalar field equation on a fixed mesh/grid
(throughout we use the words mesh and grid interchangeably).
Based on the work of Oyaizu (2008), Schmidt (2009b,a) devel-
oped a code (which we call DGPM here) that performed simulations
of the Dvali–Gabadadze–Porrati (DGP) braneworld model (Dvali
et al. 2000), also on a fixed mesh. Fixed-grid simulations of the
DGP model were also performed in Chan & Scoccimarro (2009)
and Khoury & Wyman (2009). More recently, efforts have been
made to simulate modified gravity cosmologies on adaptively re-
fined meshes, which allow for better resolution on small scales,
where the effects of the screening are most important. These ef-
forts resulted in the development of a modified version (Li & Zhao
2009; Zhao, Li & Koyama 2011; Li, Mota & Barrow 2011; Li &
Barrow 2011) of the MLAPM code (Knebe, Green & Binney 2001),
which is a serial N-body code. The implementation of modified
gravity solvers on adaptive mesh refinement (AMR) parallelizable
codes was achieved with the development of the ECOSMOG (Li et al.
2012; Li, Zhao & Koyama 2013a; Li et al. 2013b), MG-GADGET

(Puchwein, Baldi & Springel 2013) and ISIS (Llinares & Mota 2013;
Llinares, Mota & Winther 2014) N-body codes. While careful con-
sistency checks have been performed by the authors of each code
(for example, by solving test cases with known analytical solu-
tions), no detailed comparison between codes has been performed
so far. A main goal of this paper is precisely to provide a rigorous
cross-check of the accuracy of the non-trivial algorithms of these
codes. This is particularly important in light of the stringent accu-
racy requirements demanded by current and future observational
campaigns.

Here, we simulate the f (R), DGP and Symmetron (Hinterbich-
ler & Khoury 2010) models with the DGPM, ECOSMOG, MG-GADGET

and ISIS codes. We start all simulations of the different codes from
the same initial conditions and compare their results for the matter
and velocity divergence power spectra, halo mass function, as well
as density, force and velocity profiles of dark matter haloes. For
the case of the Symmetron model, we also measure the impact of
assuming the quasi-static limit in N-body simulations of modified
gravity, which amounts to neglecting time derivatives of ϕ, by com-
paring with the results of a version of the ISIS code that explicitly
solves for the time evolution of ϕ.

An important consideration in such a comparison project relates
to determining the target accuracy. To guide ourselves in the inter-
pretation of the results, we use the expected accuracy of the next
generation of LSS surveys. For instance, for a mission such as that to

be carried out by the Euclid satellite1 (Laureijs et al. 2011; Amen-
dola et al. 2013), the non-linear matter power spectrum up to a
wavenumber k ∼ 5 h Mpc−1 should be accurate to 1 per cent.2 Since
our goal here is to accurately calibrate modified gravity effects, we
aim for an agreement in the fractional change of the matter power
spectrum relative to � cold dark matter (�CDM) of 1 per cent or
better. The agreement of the different codes on the absolute �CDM
predictions is not of primary concern here, as there are dedicated
comparison projects for this purpose (Schneider et al. 2015). We
shall also aim for an accuracy of a few per cent in the code results
for velocity statistics, the halo mass function and halo profiles.

Before proceeding, we note that the results presented in this
paper contribute to recent efforts in testing and comparing N-body
codes and codes that extract observables from simulations. For
instance, there have been detailed comparisons of standard GR N-
body codes (Scannapieco et al. 2012; Schneider et al. 2015) and
also of codes that identify dark matter haloes (Knebe et al. 2011),
voids (Colberg et al. 2008), halo substructure (Onions et al. 2012,
2013; Pujol et al. 2014; Hoffmann et al. 2014), galaxies (Knebe
et al. 2013a), tidal debris (Elahi et al. 2013), merger trees (Srisawat
et al. 2013), halo mock generation (Chuang et al. 2015) and galaxy
mass reconstruction (Old et al. 2014), just to mention a few. See
Knebe et al. (2013b) for a review on the current status of structure
finding in N-body simulations. Comparison projects of these (often
complex) numerical techniques are crucial to identify any worrying
systematics in the theoretical predictions.

The rest of the paper is organized as follows. In Section 2, we
briefly introduce and review the f (R), DGP and Symmetron models
that are used in our numerical comparison. In Section 3, we outline
the general numerical techniques that are used to solve the modified
gravity equations in a N-body solver. In Section 4, we summarize
the main features of each of the codes and specific details in how
they tackle the equations of the different models. In Section 5,
we present our comparison results for the matter power spectrum
(Section 5.2), the velocity divergence spectrum (Section 5.3), the
halo mass function (Section 5.4), and the density, force and velocity
profiles of haloes (Section 5.5). We summarize our findings and
draw our conclusions in Section 6.

2 MO D I F I E D G R AV I T Y T H E O RY

Alternative models to �CDM (like the modified gravity theories
studied here) are numerous (see e.g. Amendola & Tsujikawa 2010;
Clifton et al. 2012; Koyama 2015), as are the problems with which
they must struggle. Some models are plagued by theoretical insta-
bilities and others require at least some degree of fine-tuning of the
model parameters in order to meet observational constraints. One
particularly simple extension of GR is the inclusion of a single scalar
field ϕ to the standard GR Einstein–Hilbert action. However, when
coupled to matter, the scalar field gives rise to an additional grav-
itational interaction, which is often referred to as a fifth force (see
e.g. Mota & Shaw 2006; Hellwing & Juszkiewicz 2009; Amendola
et al. 2013; Hellwing et al. 2013a). This fifth force can be quan-
tified by γ ≡ |FFifth|/|FN| where FN is the standard Newtonian
gravitational force that we obtain in the weak-field limit of GR.
Several experiments (see e.g. Adelberger 2002; Bertotti, Iess &
Tortora 2003; Williams, Turyshev & Boggs 2004; Will 2014) have

1 http://www.euclid-ec.org/
2 See for example Kitching & Taylor (2011) for requirements on the error
envelope around the non-linear P(k) for cosmic shear tomography.
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constrained γ � 1 on Earth and in the Solar system. This seems to
leave us with two possible explanations: either the fifth force is zero
on all scales, i.e. γ = 0, or γ is not a constant but instead varies in
space and/or time.

Models where γ is space dependent are dubbed screened mod-
ified gravity models, as one typically desires the fifth force to be
screened in high-density environments (like the Solar system). Next,
we follow Joyce et al. (2015) in the classification of the different
types of screening mechanisms. A general Lagrangian density for
the scalar field can be written schematically as

L = −1

2
Zμν(ϕ,∂ϕ, ∂2ϕ)∂μϕ∂νϕ − V (ϕ) + β(ϕ)T μ

μ , (1)

where Zμν represents derivative self-interactions of the scalar field,
V(ϕ) is a potential, β(ϕ) is a coupling function and T μ

μ is the trace
of the matter energy-momentum tensor. For non-relativistic matter
fields, T μ

μ = −ρm, the dynamics of ϕ therefore depend on the local
density of the system, ρm. Around the background ϕ̄, the dynamics
of the fluctuations of ϕ are determined by three parameters: the
mass m(ϕ) (roughly given by the curvature of the effective poten-
tial), the coupling β(ϕ) and the kinetic function Zμν(ϕ). Screening
can be realized mainly in three different ways utilizing these three
parameters:

(i) Large mass. If the mass of the fluctuations m2(ϕ) is large in
dense environments, then the scalar field cannot propagate beyond
its Compton wavelength m(ϕ)−1 and the fifth force mediated by
the scalar field is suppressed. On the other hand, in low-density
environments such as the cosmological background, the mass can
be light and the scalar field mediates a sizeable fifth force. This idea
characterizes the so-called Chameleon type of screening (Khoury
& Weltman 2004b,a).

(ii) Large kinetic term. If the kinetic function Zμν(ϕ) is large in
dense environments, the coupling to matter is suppressed. One can
either make the first or the second derivative of the scalar field large
in dense environments. The former case is realized in the k-mouflage
(Babichev, Deffayet & Ziour 2009; Brax & Valageas 2014) and D-
BIonic type of screening (Burrage & Khoury 2014), while the latter
case characterizes the Vainshtein screening mechanism (Vainshtein
1972).

(iii) Small coupling. If the coupling to matter β(ϕ) is small in
the region of high density, the strength of the fifth force FFifth is
weak and the modifications to gravity are suppressed. On the other
hand, in low-density environments, the size of the fifth force can
be of the same order as standard gravity (γ ∼ 1). This idea is real-
ized in the dilaton (Brax et al. 2010) and Symmetron mechanisms
(Hinterbichler & Khoury 2010).

In this code comparison project, we take f (R), DGP and Sym-
metron gravity as our working example models that screen the
fifth force via large mass, large kinetic terms and small coupling
strengths, respectively. Thus, while we do not consider every indi-
vidual modified gravity model proposed in the literature, our sim-
ulations do cover all classes of models. Throughout, we work with
the perturbed Friedmann–Robertson–Walker space–time metric in
the Newtonian gauge

ds2 = −(1 + 2	)dt2 + a2(1 − 2
)δij dxidxj , (2)

where 
 and 	 represent the two gravitational potentials. The dy-
namics of non-relativistic matter is governed by 	, whereas the
bending of light is determined by the lensing potential 	+ = (	 +

)/2. The modified gravity simulations employed here assume the
same weak-field and non-relativistic limit as standard GR simula-

tions, i.e. higher order terms in the dark matter velocities, as well
as dynamically generated vector and tensor modes are neglected.

In addition, unless otherwise specified, we assume the quasi-
static limit for the modified gravity field equation. This refers to
neglecting the time derivatives of the perturbed fields, as in ϕ̇ =
˙̄ϕ + ˙δϕ ≈ ˙̄ϕ, where δϕ is the fluctuation of the scalar field. In this
paper, we shall assess the validity of the quasi-static limit in the
N-body simulations of the Symmetron model.

We now describe the specific modified gravity models consid-
ered in this paper. We will often refer back to the quasi-Newtonian
potential 	N which is defined through the Poisson equation,

∇2	N = 4π Ga2δρm , (3)

where δρm is the matter density perturbation.

2.1 f (R) gravity

f (R) gravity is arguably the most well-studied modified gravity
model in the non-linear regime of cosmological structure formation.
In this model, one adds a function of the Ricci scalar R to the
Einstein–Hilbert action

S =
∫

d4x
√−g

1

16πG
(R + f (R)) + Sm(gμν, ψi), (4)

where g is the determinant of the metric gμν and Sm is the action
of the matter fields ψ i. In the quasi-static and weak-field limits, the
relevant equations for non-linear structure formation can be written
as

∇2	 = 16πG

3
a2δρm + 1

6
a2δR, (5)

∇2fR = −a2

3
[δR + 8πGδρm] , (6)

where δρm = ρm − ρ̄m and δR = R − R̄ are the density and Ricci
scalar perturbations, respectively (overbars denote background av-
eraged quantities), and fR = df (R)/dR. In this formulation, fR plays
the role of the scalar degree of freedom ϕ that determines the fifth
force and that is solved for by the numerical codes.

We specialize to the Hu–Sawicki model (Hu & Sawicki 2007),
which is characterized by

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (7)

fR = − c1

c2
2

−n(−R/m2)n−1

[(−R/m2)n + 1]2
, (8)

where m2 = H 2
0 m is a mass scale (not to be confused with the mass

of the scalar fluctuations relevant for the Chameleon mechanism
discussed above) and c1, c2 and n are model parameters. Note that
the field value is negative (fR < 0) which is necessary to ensure a
positive mass of the scalar degree of freedom and hence stability of
the theory. Since

− R̄ ≈ 8πGρ̄m − 2f̄ (R) = 3m2

(
a−3 + 2c1

3c2

)
, (9)

one recovers a �CDM expansion history by setting c1/c2 =
6�/m. For values (m, �) = (0.269, 0.731) (as we consider
in the simulations of this paper), then −R̄ 	 m2 and one can write

fR = −n
c1

c2
2

(
m2

−R

)n+1

. (10)
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For the simulations of this paper, we always consider n = 1, and
hence, the remaining free parameter is c2. However, in previous
studies it has become more common to specify the Hu–Sawicki
model not in terms of c2, but in terms of the equivalent value of f̄ R

at the present day, f̄ R0. Note that by making use of equations (9)
and (10), one can eliminate δR in favour of fR in equations (5) and
(6). For completeness, we note that the modified Poisson equation,
equation (5), can also be written as

∇2	 = ∇2	N − 1

2
∇2fR. (11)

This makes it explicit that in f (R) models the total gravitational force
is governed by a modified gravitational potential 	 = 	N − 1

2 fR.
We note that the modified gravitational equations defined above

hold only for the dynamical potential of the model. The lensing
potential 	+ in f (R) models (which are equivalent to scalar-tensor
theories with a conformal coupling to matter) is not affected by the
extra degree of freedom (Brax et al. 2008) in the weak-field limit.

The term δR on the right-hand side of equation (5) depends non-
linearly on fR (cf. equation 10). The non-linearity is what gives rise
to the Chameleon screening mechanism. The screening of the fifth
force is determined by the depth of the gravitational potential 	N. A
spherically symmetric object is screened if the thin-shell condition

|fR∞ − fRs| <
2

3
|	N| (12)

is satisfied, where fR∞ is the fR field away from the object and fRs is
that inside the object. In order to satisfy the Solar system constraint,
the Milky Way galaxy with the potential |	N| ∼ 10−6 needs to be
screened. This imposes the constraint | fR0| < 10−6, if one assumes
that the Milky Way galaxy is an isolated object in the cosmological
background (Hu & Sawicki 2007).

For the simulations presented in this paper, we consider models
with |f̄ R0| = 10−5 (F5) and |f̄ R0| = 10−6 (F6). Although the former
parameter value may already be in tension with Solar system tests,
we choose to simulate this model anyway, since it gives rise to larger
fifth forces and places the screening threshold for haloes at mass
scales that are well resolved in the simulation.3 Our main goal in
this paper is to compare the different code predictions for the fifth
force, and not so much to study the observational viability of the
models.

2.2 DGP

The DGP model is an example of a braneworld model. In this model,
matter is confined to live in a four-dimensional brane, embedded in
a five-dimensional bulk space–time. The action is given by

S =
∫

brane
d4x

√−g

(
R

16πG

)
+

∫
d5x

√
−g(5)

(
R(5)

16πG(5)

)

+ Sm(gμν, ψi), (13)

where g(5) denotes the five-dimensional metric in the bulk, with R(5)

being the Ricci scalar for g(5), while g and R are the induced metric
on the brane and its Ricci scalar, respectively. G(5) and G denote
the five- and four-dimensional gravitational constants. The matter
fields ψ i are confined to the four-dimensional brane. The relative

3 See fig. 6 in Gronke et al. (2015a). For | fR0| = 10−5 haloes with mass M
� 3 × 1013 M� h−1 are screened while the smallest haloes we can resolve
have M ∼ 1012 M� h−1.

sizes of the two gravitational strengths is a parameter of the model
known as the crossover scale, rc,

rc = 1

2

G(5)

G
, (14)

below which gravity looks four-dimensional, and above which the
five-dimensional aspects become important. The cosmological so-
lutions of this model are characterized by two branches of solutions.
The normal branch requires a dark energy term to be added to the
four-dimensional part of the action to explain the accelerated expan-
sion of the Universe (Sahni & Shtanov 2003; Lue & Starkman 2004;
Schmidt 2009a); the more appealing self-accelerating branch does
not require a dark energy field, but it is in tension with cosmic mi-
crowave background and supernovae data (Fang et al. 2008) and is
also plagued by problems associated with the propagation of ghosts
(degrees of freedom whose energy is unbounded from below; Luty,
Porrati & Rattazzi 2003; Nicolis & Rattazzi 2004; Koyama 2007).
In this paper, we focus on the normal branch of the DGP model.
The dark energy component on the brane is adjusted to precisely
yield a flat �CDM background cosmology (Schmidt 2009a).

The modifications to the gravitational law in this model are de-
termined by a scalar field, ϕ, which is associated with the bending
modes of the 4D brane. The brane-bending mode influences the
dynamics of particles through the dynamical potential 	, which,
assuming the same boundary conditions for 	 and ϕ, is given by

	 = 	N + 1

2
ϕ. (15)

The equation for ϕ reads, in the quasi-static and weak-field limits
(Koyama & Silva 2007),

∇2ϕ + r2
c

3β a2

[
(∇2ϕ)2 − (∇i∇j ϕ)2

] = 8π G a2

3β
δρm, (16)

where (∇ i∇ jϕ)2 = (∇ i∇ jϕ)(∇ i∇ jϕ), and the function β(a) is given
by

β(a) = 1 + 2H (a) rc

(
1 + Ḣ (a)

3H 2(a)

)
, (17)

where we have assumed the normal branch of the DGP model
already. The quasi-static approximation in the DGP models was
tested for self-consistency in section IV C of Schmidt (2009b) and
was also recently shown to be an excellent approximation in Brito
et al. (2014) and Winther & Ferreira (2015b).

As in f (R) gravity, the propagation of photons, determined by the
lensing potential 	+, is not directly affected by ϕ.

In models like DGP it is the Vainshtein screening mechanism
that provides the chance to pass Solar system tests. For simplic-
ity, we focus on spherically symmetric configurations to illustrate
how the screening works. Writing down equation (16) in spherical
coordinates and integrating once as

∫
r2dr, one gets

2r2
c

3β

(ϕ,r

r

)2
+

(ϕ,r

r

)
= 2

3β

GM(r)

r3
, (18)

where M(r) is the mass enclosed inside a radius r, and a comma
denotes partial differentiation. The solution to the last equation is
given by

ϕ,r = 4

3β

(
r

rV

)3
[
−1 +

√
1 +

( rV

r

)3
]

GM(r)

r2
, (19)

where we define the distance scale

rV(r) =
(

16r2
c GM(r)

9β2

)1/3

, (20)
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which is known as the Vainshtein radius. This radius defines the
distance from the centre of the spherical overdensity below which
the spatial gradient of ϕ becomes suppressed (and hence the fifth
force effects become negligible). Explicitly, for a top-hat density
profile of radius Rth and mass Mth, if r 	 rV > Rth, then

ϕ,r

2
= 1

3β

GMth

r2
= 1

3β
	N,r , (21)

i.e. the fifth force becomes a sizeable fraction of the force in GR
(cf. equation 15). On the other hand, if Rth < r � rV, then ϕ, r → 0.

In the simulations of this paper, we consider two parameter val-
ues, rcH0 = 1 and rcH0 = 5. These were chosen to roughly match
the F5 and F6 models, respectively, in terms of the values of σ 8 at
z = 0.

2.3 Symmetron

The third model that we consider is the Symmetron model (Hinter-
bichler & Khoury 2010, see also Pietroni 2005; Olive & Pospelov
2008), whose action is given by

S =
∫

dx4√−g

[
R

16πG
− 1

2
(∂ϕ)2 − V (ϕ)

]

+ Sm(g̃μν, ψ). (22)

The matter fields, ψ , couple to the Jordan frame metric g̃μν which
is given by a conformal rescaling of the Einstein frame metric gμν

g̃μν = A2(ϕ)gμν. (23)

In the Symmetron model, the coupling function A(ϕ) is given by

A(ϕ) = 1 + 1

2

( ϕ

M

)2
, (24)

where M is a mass scale. This coupling function determines the fifth
force and the total gravitational force is given by

F = ∇
(

	N + 1

2

ϕ2

M2

)
= ∇	N + ϕ∇ϕ

M2
. (25)

The potential is taken to be of the symmetry breaking form

V (ϕ) = V0 − 1

2
μ2ϕ2 + 1

4
λϕ4. (26)

With these choices for A(ϕ) and V(ϕ), the model becomes invariant
under the symmetry ϕ → −ϕ. The value of V0 is determined by
the condition that the model gives rise to the observed accelerated
expansion of the Universe (Hinterbichler et al. 2011). The field
equation for ϕ follows from the variation of the action, equation (22),
with respect to ϕ and reads

�ϕ = Veff,ϕ, (27)

where, for non-relativistic matter, the effective potential is given
by

Veff (ϕ) = V0 + 1

2

( ρm

M2
− μ2

)
ϕ2 + 1

4
λϕ4. (28)

In working with the model, it is convenient to define a matter density
scale for symmetry breaking, ρSSB, and its associated scale factor,
aSSB, where ρ̄(aSSB) = ρSSB, as

ρSSB ≡ μ2 M2 = 3H 2
0 M2

plm/a3
SSB. (29)

Other useful quantities are

β0 = ϕ0MPl

M2
; λ0 = 1√

2μ
; ϕ0 = μ√

λ
, (30)

where β0 is the coupling strength of the unscreened fifth force, λ0

is the Compton length (giving the range of the fifth force) and ϕ0

is the symmetry breaking vacuum expectation value of ϕ (when ρm

= 0). In the simulations of this paper, we consider β0 = 1, λ0 =
1 h−1 Mpc and aSSB = 0.5 which lie on the boundary of the allowed
{aSSB, λ0} parameter space coming from local constraints (see the
discussion below equation 32). These parameter values have been
previously simulated in Davis et al. (2012), Brax et al. (2012b),
Llinares et al. (2014) and Llinares & Mota (2014).

In the quasi-static limit, equation (27) becomes

∇2χ = a2

2λ2
0

(
ρm

ρSSB
− 1 + χ2

)
χ, (31)

where χ = ϕ/ϕ0. The full field equation, without applying the
quasi-static limit, is discussed in Section 4.2.3.

During the cosmological evolution (Brax et al. 2011b, 2012a;
Hinterbichler et al. 2011; Davis et al. 2012) the field sits close to
the global minimum of the effective potential at ϕ = 0 for a < aSSB.
For a > aSSB, the effective potential develops two minima at ϕ =
±ϕ0

√
1 − a3

SSB/a3, to which the field at ϕ = 0 (now a maximum)
evolves, thereby spontaneously breaking the ϕ → −ϕ symmetry.
Since the field can choose different minima (+ or − branches) in
different parts of the Universe, this model therefore leads to the
formation of domain walls. The properties of these domain walls
have been studied beyond the quasi-static approximation (Llinares
& Mota 2013; Llinares & Pogosian 2014; Pearson 2014).

Screening in the Symmetron model is very similar to that in the
Chameleon/f (R) cases in the sense that the condition for screening
is determined by the local gravitational potential. There is however
the important difference that the coupling β(ϕ) = β0ϕ

ϕ0
, which is

constant for f (R) gravity, now depends on the local field value. In
high-density regions, ρm > ρSSB, the field moves towards ϕ = 0, and
since the coupling is proportional to ϕ, the fifth force is suppressed.
In the Symmetron model, the condition for the thin-shell effect is
given by∣∣∣∣ϕs − ϕ∞

ϕ0

∣∣∣∣ � 	Nβ(ϕ∞), (32)

where ϕ∞ is the ϕ field far away from the object and ϕs is that
inside the object. In order to satisfy Solar system bounds, we get
the constraint ( λ0

h−1 Mpc
)2a−3

SSB � O(1) by assuming that the Milky
Way galaxy is an isolated object in the cosmological background
(Brax et al. 2012a).

3 MODI FI ED G RAVI TY SI MULATI ONS

3.1 General force calculation

Cosmological dark-matter N-body simulations for standard gravity
are characterized by the following two equations. First, we have the
Poisson equation (3)

∇2	N = 4πGa2δρm, (33)

which determines the Newtonian potential, 	N, given the density
fluctuations δρm. Secondly, we have the geodesic equation

ẍ + 2H ẋ = −∇	, (34)

which tells the particles how to move. At every time step in the
simulation, one (i) computes the density field from the particle
positions; (ii) uses it in the Poisson equation to solve for the potential
and (iii) plugs 	 into the geodesic equation to move the particles.
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Table 1. Key features of the N-body codes compared in this paper.

Code DGPM ECOSMOG MG-GADGET ISIS ISIS-NONSTATIC

Code paper Schmidt (2009b) Li et al. (2012, 2013a) Puchwein et al. (2013) Llinares et al. (2014) Llinares & Mota (2014)
Base code Oyaizu (2008) RAMSES P-GADGET3 RAMSES RAMSES

Density assignment CIC CIC/TSC CIC CIC CIC
Force assignment CIC CIC/TSC Effective mass CIC CIC
Adaptive refinement? No Yes Yes Yes No
Time step Fixed Adaptive Adaptive Adaptive Adaptive
MG solver Multigrid Multigrid Multigrid Multigrid Leapfrog
Gravity solver Multigrid Multigrid TreePM Multigrid Multigird
Parallelization OPENMP MPI MPI MPI MPI
Programming language C++ FORTRAN C FORTRAN FORTRAN

Models simulated DGP f (R)/DGP f (R) f (R)/Symmetron Symmetron

This process is repeated from some initial redshift, z = zi, until
typically z = 0.

As we have seen in the previous section, modified gravity models
alter this picture by modifying the Poisson equation that governs
the total gravitational potential (like in f (R) and DGP gravity), or
by adding extra terms to the right-hand side of the geodesic equa-
tion (like the term ∝∇A(ϕ) in the Symmetron model).4 In general,
modified gravity models can also differ in the background expan-
sion rate of the Universe. In this paper, however, we shall always
consider models with the same �CDM background evolution.

The bulk of the computing time in modified gravity simulations
is spent solving the non-linear equation that governs ϕ (see the
previous section), which can be cast in the general form

L[ϕ] = S(δρm, ϕ), (35)

where L is some non-linear operator that acts on ϕ, and S is a source
term that depends on the matter density fluctuations and possibly
on the scalar field. The exact functional form of L and S varies
from theory to theory, but as we have discussed in the previous
section, this operator should possess some degree of non-linearity
to ensure the presence of screening effects. The non-linearity in
the equations, however, is what makes N-body simulations of these
models so challenging. On the other hand, equation (33) is a linear
elliptic partial differential equation (PDE), which means that it can
be solved with efficient fast Fourier transform (FFT) methods. This
is in general not possible in modified gravity models, which typi-
cally have non-linear equations. This difficulty can be overcome by
employing an FFT-relaxation method (Chan & Scoccimarro 2009),
if the equations are to be solved on a regular grid. However, this
method does not work on irregularly shaped refinements. The codes
we compare in this study solve equation (35) via direct discretiza-
tion and relaxation on such an irregular grid.

In the rest of this section, we briefly outline the relaxation algo-
rithm, describing also the main idea behind multigrid acceleration
methods. The latter significantly improves the efficiency of the re-
laxation algorithms.

3.2 Iterative methods with multigrid acceleration

With the exception of the ISIS-NONSTATIC code (see next section), all
codes make use of multigrid acceleration to speed up numerical
convergence of the PDEs for ϕ. Here, we briefly review the main

4 Note that any extra term in the geodesic equation can always be absorbed
into the definition of a modified gravitational potential. This essentially
illustrates the equivalence between the Jordan and Einstein frames.

aspects of these techniques and refer the reader to Brandt (1977),
Wesseling (1992), Trottenberg, Oosterlee & Scholler (2000) and to
the code papers (cf. Table 1) for further details on their implemen-
tation.

3.2.1 Gauss–Seidel iterations

The goal is to solve a differential equation that can be written in the
form of equation (35). The basic algorithm consists in discretizing
the equation on a grid and using an iterative scheme to obtain
improved solutions given an initial guess. All codes assume periodic
boundary conditions on the domain (unrefined) grid. The codes
that include grid refinements use fixed boundary conditions on the
boundary of the refinements, obtained by interpolating from the
next coarser refinement level.

Upon discretization, the solution to equation (35) is given by the
solution of the large set of algebraic equations

Ll[ϕl] = Sl, (36)

where Ll and Sl are the discretized versions of the L and S operators
and ϕl is the field solution we aim to determine. The index l labels
the refinement level of the grid. The discretization of the equation
consists in writing each of the derivatives that appear in L as a
combination of the values of ϕ on the grid cells. For instance, the
codes employed here use the three- and four-point stencils

∂2
xϕi,j,k = 1

h2

(
ϕi+1,j ,k + ϕi−1,j ,k − 2ϕi,j,k

)
(37)

∂x∂yϕi,j,k = 1

4h2

(
ϕi+1,j+1,k − ϕi+1,j−1,k

− ϕi−1,j+1,k + ϕi−1,j−1,k

)
, (38)

where {i, j, k} labels each grid cell. The iterations can be made
in two different ways. If the operator L is linear, then it is best to
perform explicit iterations, in which one rearranges the discretized
equation analytically to solve directly for ϕijk in each cell (this
is, for instance, how the standard RAMSES code solves the Poisson
equation). For non-linear problems (as those in modified gravity),
an implicit iteration scheme is more suitable. In this case, one can
use the Newton–Raphson method to solve the equation

T l[ϕl] = Ll[ϕl] − Sl = 0. (39)

The resulting value of ϕ can be written as

ϕ̄l = ϕl − T l

∂T l/∂ϕl
, (40)
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where the barred field corresponds to the updated value. Finally, one
needs to specify the way in which sweeps are made across the grid
in each iteration step. The simplest sweeping strategy consists in
following a lexicographic ordering, in which the calculation on the
cell {i, j, k} is followed by the calculation on the cell {i + 1, j, k}, and
so on. A more widespread strategy which has better convergence
and parallelization properties is the so-called two colours scheme,
in which the calculation is performed alternatively in cells of the
same colour, as in the colour scheme of a chess board. In the first
half-sweep all black cells are updated, and the second half-sweep
takes care of the remaining white cells. Further generalizations of
this scheme exist with four or even eight colours.

The iterations proceed until a certain convergence criterion is
fulfilled. There are several criteria in the literature. These typically
involve computing the residual, εl, of the solution defined as

εl = Ll[ϕl] − Sl. (41)

The convergence criterion is then given by ‖εl‖ < εconverged, where
‖.‖ is a norm (typically L2) that is taken over the entire grid and
εconverged is a (small) predefined constant that we use to define con-
vergence. Exact solutions of the algebraic equation have εl = 0.
However, owing to truncation errors (the error inevitably intro-
duced by discretizing a continuous equation), exact solutions of the
algebraic equation are not equal to the solutions of the discretized
equation. The iterations are then assumed to have converged once
the residual falls below a predetermined fraction of the truncation
error.

3.2.2 Multigrid acceleration

In a relaxation method such as the one described above, during the
first few iterations the residual decays very efficiently. However,
the convergence becomes considerably slower as one approaches the
true solution. This slowdown of the convergence is attributed to the
fact that the components of the residual whose Fourier wavelength
modes are longer than the size of the grid cell decay much more
slowly than those modes whose wavelength is comparable to the grid
size. The goal of multigrid methods is to speed up the convergence
of these longer wavelength modes by using a hierarchy of coarser
grids. In short, when the convergence of the solution starts to slow
down, one interpolates the equation on to the next coarser grid of
the hierarchy and solves it there. This makes the longer wavelength
modes decay faster, therefore bringing the solution closer to its true
value. This coarsening scheme can proceed up to several coarser
grids. The coarser solutions can then be interpolated back to the
finer (original) level.

To be more concrete, the typical way to arrange different resolu-
tions is to use a set of grids whose resolutions are half, one quarter
and so on of the target resolution. A two-grid scheme is defined in
the following way. One starts by performing a given number of iter-
ations on the target grid l. Then, when the convergence slows down,
one moves to the next coarser grid l − 1 and performs iterations
for an equation whose solution corresponds to the error δϕl − 1 of
the previous solution. In the case of a linear PDE (we will turn to
the non-linear case below), the equation that must be solved on the
coarser grid is

Ll−1[δϕl−1] = R(εl), (42)

where L is now a linear operator while R is a restriction operator that
is chosen according to the problem and translates information from

the fine grid (the target grid) to the coarse grid. Once the coarse grid
iterations are done, one corrects the fine grid solution as

ϕ̄l = ϕl + P (δϕl−1), (43)

where P is now a prolongation operator which translates information
from the coarse to the fine grid. In general, one uses more than one
coarse grid and these processes of going up and down in resolution
are called V-cycles. After one V-cycle, if convergence is not yet
achieved on the target grid, then further V-cycles are performed. All
the codes analysed here use V-cycles, although other arrangements
are possible such as W-cycles (in these, one can move in between
coarser levels several times before returning to the target grid).

In the case of non-linear equations however, this multigrid algo-
rithm requires some changes, as it relies on the linear superposition
of solutions from different grids. In the non-linear case, instead of
solving following the solution for the errors on the coarse grids,
one obtains improved approximations of the solution (not the error)
itself. In this case, the coarse grid iterations are made according to

Ll−1[ϕl−1] = −R(εl(ϕl, Sl)) + εl−1(R(ϕl), R(Sl)) (44)

and the coarse grid correction of the fine grid solution is given by

ϕ̄l = ϕl + P (ϕl−1 − R(ϕl)). (45)

4 C O D E A N D A L G O R I T H M D E S C R I P T I O N

In this section, we briefly introduce the different N-body codes com-
pared in this paper and comment on some aspects of the numerical
handling of the specific model equations. We shall keep our descrip-
tion simple and refer the interested reader to the code papers for the
details. Some of the key features of the codes are summarized in
Table 1.

4.1 Code summary

4.1.1 DGPM

The DGPM code (Schmidt 2009b,a) is a fixed-grid particle-mesh
code that solves the Vainshtein-type equation of motion (16). Based
on the fixed-grid f (R) code presented in Oyaizu (2008), it employs a
second-order leapfrog scheme with fixed step size �a in scale factor
to advance particles. Densities are interpolated on to the grid using
cloud-in-cell (CIC) interpolation, which is also used to evaluate
derivatives on the grid. The Poisson equation for the Newtonian
potential is solved using FFT on the fixed grid. The Gauss–Seidel
relaxation is then performed using the Newton–Raphson method
and multigrid acceleration as described in Section 3.2. At each
multigrid level, 5–10 relaxation sweeps are performed. Convergence
to an rms residual of less than 10−10 (where typical values of ϕ are
of the order of 10−5) is usually reached within three V-cycles. The
step size used for this paper is �a = 0.02, which results in 490 steps
from z = 49 (when all our simulations start) to z = 0.

4.1.2 ECOSMOG

The ECOSMOG code (Li et al. 2012) is built on top of the publicly
available AMR N-body code RAMSES (Teyssier 2002). The code can
be compiled to work with CIC (like in RAMSES) or triangular-shaped
cloud (TSC) schemes for the interpolation of the density and force
fields. Unless otherwise specified, the ECOSMOG results shown in this
paper are for TSC. The time evolution is performed with a second-
order leapfrog algorithm with adaptive time steps (set by the AMR
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grid, as in RAMSES). The Gauss–Seidel relaxations of the scalar
field equation are performed using the Newton–Raphson methods
with multigrid acceleration on all levels of the AMR grid. For the
simulations in this study, the grid was set to be refined whenever
the particle number exceeded 8 inside a grid cell.

In addition to the f (R) and DGP gravity results shown in this pa-
per, the ECOSMOG code has also been used to simulate dilaton (Brax
et al. 2011a), Symmetron (Davis et al. 2012; Brax et al. 2013), Cu-
bic Galileon (Barreira et al. 2013a) and Quartic Galileon (Li et al.
2013b) gravity cosmologies, as well as a general parametrization of
Chameleon theories (Brax et al. 2012b). Different versions of the
code differ in the detailed way the scalar field equations are solved.
The performance of the relaxation algorithm is also slightly dif-
ferent, although, for all these models, the residuals always reach a
value of � 10−3 times the truncation error after 5–10 V-cycles. The
extensions made to RAMSES to develop ECOSMOG can also be straight-
forwardly coupled to the hydrodynamic modules of the base code,
although to date such a project has never been undertaken. In case
of the DGP model, ECOSMOG solves a different version of the scalar
field equation as DGPM, which will be discussed in Section 4.2.2
below.

4.1.3 MG-GADGET

The MG-GADGET code (Puchwein et al. 2013) is an extension of
the cosmological hydrodynamical TreePM+SPH simulation code
P-GADGET3 which is itself based on GADGET2 (Springel 2005). It
features the baryonic physics modules of P-GADGET3 as well as a
modified gravity solver. In addition, MG-GADGET allows the inclu-
sion of massive neutrinos in simulations of modified gravity (Baldi
et al. 2014) by making use of the particle-based massive neutrino
module (Viel, Haehnelt & Springel 2010) which is implemented in
P-GADGET3.

In contrast to RAMSES, P-GADGET3 does not intrinsically possess an
AMR grid. To overcome this, MG-GADGET constructs an adaptively
refining grid that covers the whole simulation volume by appro-
priately choosing nodes from the oct-tree structure of P-GADGET3’s
Poisson solver. This grid is then used to solve for the scalar degree
of freedom using the method described in Section 3.2, i.e. using
CIC density assignment and multigrid-accelerated Gauss–Seidel
relaxation on the different levels of the AMR grid.

So far the code has been used to simulate the Hu & Sawicki
(2007) f (R) gravity model, both in collisionless (dark matter only)
and hydrodynamical simulations (Arnold, Puchwein & Springel
2014, 2015). For hydrodynamical simulations, the fluid equations
are solved using the same entropy-conserving smoothed-particle
hydrodynamics scheme (Springel & Hernquist 2002) as P-GADGET3.

4.1.4 ISIS

The ISIS code (Llinares et al. 2014), like ECOSMOG, is a modified
version of RAMSES. To date, ISIS has been used to simulate f (R)
gravity (Llinares et al. 2014), the Symmetron model in both the
quasi-static (Llinares et al. 2014) and non-static limits (Llinares &
Mota 2014), the non-static disformal gravity model (Koivisto, Mota
& Zumalacarregui 2012) in its pure disformal limit, the non-static
disformally coupled Symmetron model (Hagala, Llinares & Mota
2015) and the Cubic Galileon/DGP model (Winther & Ferreira
2015a). In Hammami et al. (2015) and Hammami & Mota (2015),
ISIS has also been used to study hydrodynamic effects in simulations
of f (R) and Symmetron models.

The static version of ISIS solves the equation of motion of the
scalar field using the multigrid methods outlined in the previous
section. The code uses a CIC scheme to interpolate the density from
the particles to the grid, and the time steps of each particle are
determined by the AMR grid (as in standard RAMSES). In our simu-
lations of the static ISIS code, each grid cell was refined whenever
the particle number contained in it exceeded 8 (as in the ECOSMOG

simulations).
The non-static version of ISIS (the version that goes beyond the

quasi-static limit) uses a leapfrog scheme to evolve the scalar field
in time. In this case, the code includes two time steps: a coarse
one for the particles, which is determined by the domain grid (the
non-static version does not admit refinements) and a finer one for
the time evolution of the scalar field. The total number of scalar
field time steps is typically 3–4 orders of magnitude larger than the
number of particle time steps.

4.2 Model algorithms

In the remainder of this section, we briefly outline the strategy
employed by the different codes to solve the equations of the three
modified gravity models we consider.

4.2.1 f (R) simulations

The simulations of the f (R) Hu–Sawicki model were performed with
ECOSMOG, MG-GADGET and ISIS. All these codes discretize and relax
the scalar field equation of motion, equation (6), in a similar way.
Instead of solving for fR directly, the scalar field is redefined in terms
of u ≡ ln(fR/f̄ R(a)) which is then numerically computed. Using
the variable u has considerable advantages in terms of numerical
stability as it implicitly avoids unphysical positive values of fR when
performing the Newton–Raphson iterations.

Once fR is found, the three codes compute the total force in
slightly different ways. In ECOSMOG the code uses the solution for fR

to compute the δR term on the right-hand side of equation (5). The
code then determines the total potential 	 by solving the modified
Poisson equation in a similar way to the standard gravity solver in
RAMSES. The total (modified) force, ∇	, is finally interpolated from
the mesh to the particle positions (like in standard RAMSES).

In MG-GADGET, the total force is also obtained by solving the
modified Poisson equation, but by making use of the standard
tree+particle-mesh gravity algorithm of the base code. In order
to do so, the modified Poisson equation is rewritten in terms of
an effective mass density: ∇	 = 4πG(δρ + δρeff ), where δρeff =
1
3 δρ − 1

24πG
δR. Adding the effective to the real mass density, the

values of the scalar field can be directly used in the highly optimized
and efficient TreePM gravity algorithm of P-GADGET3 to compute the
total force.

Although these two methods for solving the modified Poisson
equation are mathematically equivalent, they can yield different nu-
merical accuracies. In addition to the convenience of using the stan-
dard Poisson solver, MG-GADGET’s effective mass algorithm avoids
an interpolation of the scalar field gradient (the fifth force) from the
adaptive mesh to the particle positions, as the tree force is directly
computed there. It might, nevertheless, be somewhat less accurate
in highly screened regions than the method used in ECOSMOG due to
numerical summation errors in the tree gravity, which can result in
less precise screening of the fifth force. This causes somewhat larger
random force errors for the individual particles while the integrated
effects are expected to average out. Fig. 1 displays profiles of the
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Figure 1. Fifth to Newtonian force ratio profile, Fφ/FN, obtained from
interpolating the scalar field gradient from the grid to the particle positions
(blue) and from the effective matter density method using the tree force
calculation (red) in MG-GADGET for the f (R) simulations. The profiles shown
are the average for haloes with masses M ∈ [1 × 1014, 5 × 1014] M� h−1.
The error bars are the variance of this average.

ratio of fifth to Newtonian force in dark matter haloes obtained via
interpolation of the gradient from the grid (blue) and via the effec-
tive density scheme (red). Although it is noticeable that there are
significant differences between the two methods on small scales,
this occurs only in a regime where the fifth force is already highly
screened (� 1 per cent of normal gravity). As force errors of around
one percent also occur in the standard tree gravity algorithm, these
errors are expected to be negligible. In the region where screening
just sets in (which several observables might be sensitive to) the
curves almost perfectly match each other. Consequently, the men-
tioned inaccuracies in the fifth force calculation will not change the
total force significantly and will therefore only have a very minor
impact on observables (as we shall see in more detail in the next
sections).

Finally, in ISIS, the code computes the gradient of the scalar field
and interpolates it on to the particle positions. The GR gravitational
potential, 	N, is solved exactly as in RAMSES, and the total force
at the particle positions is given by ∇	 = ∇	N − ∇fR/2 (cf.
equation 11).

We refer the reader to the respective code papers for more details
about how ECOSMOG, MG-GADGET and ISIS solve the modified gravity
equations, code tests, and explicit discretization of the equations.

4.2.2 DGP simulations

The simulations of the DGP braneworld model shown here were
performed with the DGPM and ECOSMOG codes. In DGPM, the scalar
field equation is discretized as it is written in equation (16). Some
of the simulations using DGPM presented in Schmidt (2009b,a)
employed a Gaussian smoothing of the density field in order to
improve convergence. For the analysis of this paper, however, no
such smoothing was performed.

In the strategy employed by the ECOSMOG code, equation (16)
is manipulated analytically before being discretized. This manip-
ulation is called the operator-splitting trick (Chan & Scoccimarro
2009; Li et al. 2013a,b), which we describe next. Equation (16) can
be cast as

(1 − w)
(∇2ϕ

)2 + α∇2ϕ − � = 0, (46)

where

α = 3β(a)a2

r2
c

, (47)

� = (∇i∇j ϕ
)2 − w

(∇2ϕ
)2 + 8πGa4

r2
c

δρ, (48)

and w is a constant numerical factor. Equation (46) can be solved
once to yield

∇2ϕ = α ±
√

α2 + 4(1 − w)�

2(1 − w)
. (49)

Decomposing the term ∇ i∇ jϕ into its trace and traceless part (this
is the operator-splitting trick),

∇i∇j ϕ = 1

3
γij∇2ϕ + ∇̂i∇̂j ϕ, (50)

it is possible to show, after a bit of algebra, that

� = (∇̂i∇̂j ϕ
)2 + 8πGa4

r2
c

δρ, if w = 1

3
. (51)

That is, if w = 1/3, then this cancels out the term ∇2ϕ in �.
The reason why this is useful is because, upon discretization, the
traceless part ∇̂i∇̂j ϕ does not depend on the grid cell value, ϕijk, but
only on its neighbours. Hence, in the equation that ECOSMOG solves,
which is equation (49), ϕijk appears only on the left-hand side, and
not inside the square root. This is found to improve considerably the
performance of the code. Moreover, by taking out ϕijk from inside
the square root one also avoids potential problems associated with
imaginary square roots caused by some bad initial guess for ϕijk.
The sign of the square root in equation (49) is chosen to be the same
as the sign of the α function. This is the solution which corresponds
to the physical (linear theory) result that ∇2ϕ → 0, when δρ → 0.

Once ϕ is found on every grid cell, both DGPM and ECOSMOG

compute the total force, ∇	, as the sum of normal gravity and the
fifth force, ∇	 = ∇	N + ∇ϕ/2.

For completeness, we point out that if δρ becomes negative (as it
does in voids), then there is the risk that the argument of the square
root in equation (49) may become negative. This does not happen
for the DGP model, but similar Vainshtein screening models such
as the Cubic (Barreira et al. 2013a) and Quartic Galileon (Li et al.
2013b; Barreira et al. 2013b) do suffer from imaginary square-root
problems in low-density regions (see Winther & Ferreira (2015b)
for a discussion about the meaning of these imaginary square-root
problems).

4.2.3 Quasi-static and non-static simulations of the Symmetron
model

The simulations of the f (R) and DGP models are performed under
the quasi-static approximation. To go beyond this approximation
means to explicitly take into account the time-derivative terms of
the scalar field in the equations. This way, the solution for the scalar
field at a given time depends also on its past evolution, as opposed
to depending only on the matter configuration at that given time. To
date, non-static cosmological simulations of modified gravity have
been performed for the Symmetron and disformal gravity models
using the explicit leapfrog method (Llinares & Mota 2013, 2014;
Hagala et al. 2015), for f (R) gravity using the implicit Newton–
Gauss–Seidel method (Bose, Hellwing & Li 2015) and for the DGP
and the Cubic Galileon models using both of the methods mentioned
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above, but only in a spherical symmetric space–time (Winther &
Ferreira 2015b).

For the Symmetron model, the full Klein–Gordon equation (27)
reads

χ̈ + 3Hχ̇ − ∇2χ

a2
= − 1

2λ2
0

[
a3

SSB

a3
χη − χ + χ3

]
, (52)

where η is the matter density in units of the background value. In
ISIS-NONSTATIC (the modified version of ISIS that relaxes the quasi-
static approximation), the second-order equation of motion of the
scalar field is decomposed into a system of two first-order equations
as

χ̇ = q

a3
, (53)

q̇ = a∇2χ − a3

2λ2
0

[
a3

SSB

a3
χη − χ + χ3

]
, (54)

which are used to propagate both χ and q using a leapfrog algorithm.
The ‘position’ χ and ‘velocity’ q are displaced from each other by
1/2 time step and the discretized equations become

χn = χn−1 + χ̇n−1/2�t, (55)

qn+1/2 = qn−1/2 + q̇n�t, (56)

where fn ≡ f(tn). The spatial derivatives of χ in the formulae above
are calculated from the grid using a five-point stencil, see Llinares
& Mota (2014) for a detailed description of the implementation of
the scheme.

The quasi-static simulations of the Symmetron model are per-
formed by discretizing equation (52) and neglecting the first two
terms on the left-hand side. In this case, one does not need to explic-
itly evolve the scalar field. Instead, given the matter distribution, η,
at a given time step, the code relaxes the equation that contains only
the scalar field and its second spatial derivative (not time deriva-
tives), using the multigrid methods described in Section 3.2.

5 R ESULTS

In this section, we present the main results of this code comparison
project. We present and discuss the different code results for the
matter and velocity divergence power spectra and halo mass func-
tion, as well as the halo profiles of the scalar degree of freedom,
forces and density.

5.1 Simulation setup

All the simulations performed in this study have used the same initial
conditions, which were generated using 2LPT (Crocce, Pueblas &
Scoccimarro 2006) from a �CDM cosmology with m = 0.269,
� = 0.731, h = 0.704, ns = 0.966 and σ 8 = 0.8. The simulations
have N = 5123 particles in a box of size B = 250 h−1 Mpc and
they start at redshift z = 49. All modified gravity models simulated
here have the same expansion history as a �CDM model with the
above parameters and the evolution of density perturbations at high
redshifts (z � 10) is almost identical to that of the �CDM model
justifying the use of the same initial conditions.

For simulations with a RAMSES-based code, we used a coarse-level
grid with refinement level lmin = 9 corresponding to 5123 coarse
cells. Each cell was refined if the number of particles contained in
it exceeded 8. The maximum level of refinement corresponded to

lmax = 15 for F6 and rcH0 = 5 and lmax = 16 for F5 and rcH0 = 1.
For the MG-GADGET simulations, the relative tree opening criterion
was used where the tree is open when the relative force acceleration
error is larger than 0.0025, the force softening was 18.75 kpc h−1

and for the long-ranged forces a particle-mesh grid with 5123 grid
cells was used. The force softening corresponds to the grid spacing
at level �14 in the AMR hierarchy.

The codes compared in this project differ in two aspects: (i) the
exact way in which the equations of the scalar field are solved and
(ii) the force calculation and time stepping, which were taken from
the original codes they were built from (e.g. P-GADGET3 and RAM-
SES). To separate the differences that arise from these two aspects,
simulations of the standard �CDM model were also performed.
This way, differences between the code predictions for the absolute
value of a measured quantity (e.g. Pk) are affected by both aspects.
On the other hand, comparisons of the code predictions for the rel-
ative difference to �CDM (e.g. �Pk/Pk,�CDM) should be mostly
determined by aspect (i) and not so much by aspect (ii).

The run-time of the modified gravity simulations we have per-
formed was about 5–10 times that of the corresponding �CDM
simulation.

5.2 Matter power spectrum

As a consistency check, we have measured the matter power spec-
trum, Pk, from the simulations using three independent codes. One
is the POWMES code (Colombi et al. 2009), which uses Fourier trans-
forms with folding methods to compute Pk. Another is a code
written by one of the authors of this paper (RS), which works
similarly to POWMES except that it does not apply folding methods.
Both these codes deconvolve the window function of the density
assignment and shot-noise is subtracted. Lastly, we have also mea-
sured the power spectrum using a density field obtained with the
Delanuay Tesselation Field Estimator (DTFE) method of Schaap
& van de Weygaert (2000). We have found that the results from
these three codes agree very well (to the 1 per cent level5) and
when considering �P

PLCDM
the agreement was below 0.1–0.5 per cent

for all scales of interest. All the plots shown in this paper are
those obtained using the code made by RS mentioned above. We
show the power spectrum out to the particle Nyquist frequency,
kmax = πN

1/3
particlesB

−1
0 = 6.4 h Mpc−1, of the simulations.

Next, we present our results for the matter power spectrum, dis-
cussing separately the results obtained for �CDM, f (R), DGP and
Symmetron models.

5.2.1 �CDM

Before comparing the results for the modified gravity models, it is
instructive to have a look at how the codes compare for �CDM.
This is shown in the left-hand panel of Fig. 2 for z = 0 (solid)
and z = 1 (dashed). The red and green lines show, respectively, the
ratio of the ISIS and ECOSMOG result to that of MG-GADGET. One notes
that the two RAMSES-based codes predict less power (4–5 per cent
at z = 0, k ≈ 7 h Mpc−1) than the MG-GADGET simulations. This
can be attributed to the different ways the base codes compute
the gravitational force on small scales. In P-GADGET3, the force on

5 For this comparison, we have ignored the four largest Fourier modes
where cosmic variance is significant since the different codes use different
methods to estimate the power on these scales which can lead to quite large
differences.
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Figure 2. Comparison of the matter power-spectrum results of the ECOSMOG, MG-GADGET and ISIS codes for the �CDM (left), F5 (middle) and F6 (right) models,
as labelled. When comparing the two RAMSES-based codes (ISIS and ECOSMOG), we show the ECOSMOG results from simulations run with CIC and with TSC
interpolation schemes, as labelled.

large scales is computed using a particle-mesh method, just like
in RAMSES. On small scales, however, P-GADGET3 switches to a tree
method, whereas in RAMSES the calculation remains as on large
scales. The accuracy of the RAMSES code on small scales depends
also on the criteria to trigger a refinement of the AMR grid. In
all RAMSES-based AMR simulations of this paper, the grid refines
itself whenever the particle number inside a given cell exceeds 8.
Due to these differences between the force calculation on small
scales, one should therefore not expect perfect agreement between
the RAMSES-based and GADGET-based codes. We refer the reader to
Schneider et al. (2015) for a more detailed comparison study of
the performance of the RAMSES, GADGET and also PKDGRAV3 codes in
�CDM simulations.

The result shown by the blue and pink lines illustrates the impact
of using different schemes for interpolating the density and the force
between the particle positions and the grid in the two RAMSES-based
codes. The blue lines show that the �CDM results obtained with
ISIS and ECOSMOG are in very good agreement (<1 per cent error for
all scales and times shown) if both codes use the same interpola-
tion scheme, in this case CIC. This shows that the modifications
made to RAMSES to develop ECOSMOG and ISIS do not introduce any
systematics in the way the codes work for GR.6 On the other hand,
compared to the ECOSMOG run with TSC, the power in ISIS is higher
by ≈3 per cent, (7 per cent) for z = 0, (z = 1), for k ≈ 7 h Mpc−1.
This is because the CIC interpolation distributes the mass of each
particle into fewer grid cells, which results in higher peaks in the
density field, compared to TSC. We note that the size of the dif-
ferences between ISIS and ECOSMOG to MG-GADGET are comparable to
the differences induced by different interpolation schemes.

6 We note that the versions of the ISIS and ECOSMOG used in this paper are not
built on the exact same release of RAMSES, which explains why their �CDM
results are not ‘exactly’ the same.

5.2.2 f (R)

The f (R) model was simulated with ECOSMOG, MG-GADGET and ISIS. In
all codes, the relaxation of the scalar field equation was performed
on an AMR grid. The results are shown in the middle and right-hand
panels of Fig. 2 for the F5 and F6 f (R) models, respectively. Fig. 3
shows the relative difference to �CDM in F5 (left) and F6 (right)
for z = 0, 1, 2. This depicts the known result that the modifications
to gravity in this model boost structure formation on small scales
and that these effects are stronger in the F5 than in the F6 model.
It is perhaps also interesting to note that, for the F5 model at z =
0, the relative difference to �CDM does not flatten out on scales
k � 0.1 h Mpc−1, which are scales on which the growth is scale
independent in �CDM. This shows that in modified gravity, the
naive expectation (inspired from �CDM) for the scales on which
the growth of structure is scale independent can be misleading
(Hellwing et al. 2013b).

The differences observed in the right-hand panels of Fig. 2 are
similar in shape and size to those in the left-hand panel for �CDM,
which suggests that the calculation of the fifth force is consistent in
between the three codes. This is confirmed by the result depicted in
Fig. 3, which shows the good agreement between the three codes for
all scales and times shown.7 In particular, at z = 0 (z = 2), all codes
agree to within 1 per cent for scales k < 7 h Mpc−1 (k � 5 h Mpc−1).
From this, we can conclude that any differences between these three
modified gravity codes for f (R) are driven almost exclusively by the
differences in their main codes (in this case RAMSES and GADGET),
and not by the extra modules that solve for the effects of the fifth
force. This is a very reassuring result.

7 Note that MG-GADGET agrees well with the two RAMSES-based codes on small
scales. This shows that any errors arising from summation errors in the tree
algorithm in GADGET do not translate into discrepant power-spectrum results.
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Figure 3. Fractional difference of the matter power spectrum with respect to �CDM from the simulations of the F5 (left) and F6 (right) models performed
with the ECOSMOG (TSC), MG-GADGET and ISIS codes, as labelled. In the lower panel insets, ε = (P/P�CDM)code/(P/P�CDM)ref − 1, with MG-GADGET being the
reference code. At z = 0, the codes are all accurate to within 1 per cent on all scales shown.

5.2.3 DGP

The simulations of the DGP model were performed with the DGPM

and ECOSMOG codes. The latter was run both with refinements and
with a fixed grid to better compare with DGPM, which is fixed grid
only. The top panel of Fig. 4 shows the ratio of the �CDM power
spectrum of the DGPM to ECOSMOG simulations without refinements
for z = 0 and z = 1. The lower panels of Fig. 4 show the relative
difference to �CDM measured in the simulations of the rcH0 =
5 (left) and rcH0 = 1 (right) DGP models. We recover the known
result that, in the DGP model, the amplitude of the power spectrum
is boosted by a scale-independent factor on scales k � 0.1 h Mpc−1.
On mildly non-linear scales, 0.1 h Mpc−1 � k � 1 h Mpc−1, the
boost in the power spectrum is stronger than on linear scales due
to mode-coupling. However, on non-linear scales, k � 1 h Mpc−1

(halo size scales), the suppression effects of the Vainshtein screening
mechanism are dominant, which effectively reduces the impact of
the fifth force on the power spectrum (e.g. Schmidt, Hu & Lima
2010).

Fig. 4 shows that the three codes agree very well (up to 1 per cent)
on scales k � 1 h Mpc−1. For k � 1 h Mpc−1, however, the power in
the DGPM simulations is higher than in ECOSMOG. This is due to the
different interpolation schemes used in the codes. In particular, in
DGPM, the CIC interpolation yields a density field with higher peaks
than the density field in ECOSMOG, which is smoother because of
the use of the TSC scheme. This is similar to the ECOSMOG and ISIS

results in the left-hand panel of Fig. 2 (blue and pink lines). The
lower panels of Fig. 4 also show the ECOSMOG result with refinements
(blue). For the rcH0 = 5 model the three codes are, overall, in good
agreement for all redshifts and scales shown (<1 per cent for k �
5 h Mpc−1). However, the modifications to gravity in the rcH0 = 5
model are weaker than in the rcH0 = 1 case, and as a result, it is easier
to interpret the code results for the rcH0 = 1 model. For this case,
the three codes agree very well for k � 1 h Mpc−1. Note also that
the ECOSMOG results with refinements agree with its results for fixed
grid on these large scales. For k � 1 h Mpc−1, DGPM is also in good
agreement with the results from ECOSMOG for fixed grid. Recall that
the two codes solve the DGP scalar field equation in substantially
different ways (cf. Section 4.2.2), so this is a non-trivial test. On
these small scales, the agreement of the fixed-grid codes with the
ECOSMOG code with refinements gets worse, but this is expected due
to the gain in resolution in the latter. It is also interesting to note
that, at z = 0 and for k � 4 h Mpc−1, the enhancement in the power
is smaller in the ECOSMOG simulations with refinements compared to
the fixed-grid cases. The explanation here is that the AMR nature of
the grid allows it to resolve better the higher density peaks that exist
on these smaller scales. This results in the code capturing better
the suppression effects of the screening, and hence, the boost in the
power relative to �CDM becomes less pronounced. This is more
pronounced at z = 0 compared to z = 1 because at earlier times the
density field is less evolved, hence the screening efficiency is also
weaker.

MNRAS 454, 4208–4234 (2015)



4220 H. A. Winther et al.

Figure 4. The top panel shows the comparison of the matter power-spectrum results of the DGPM and ECOSMOG (fixed grid) simulations of the �CDM, rcH0 =
5 and rcH0 = 1 DGP models, as labelled. The lower left and lower right panels show the fractional difference with respect to �CDM of the two codes for the
rcH0 = 5 and rcH0 = 1 DGP models, respectively. The lower panels show the ECOSMOG results both for fixed and refined grid simulations, as labelled. In the
lower panel insets, ε = (P/P�CDM)code/(P/P�CDM)ref − 1, with ECOSMOG (refined grid) being the reference code.

In summary, we conclude that the two available N-body im-
plementations of the Vainshtein screening agree well in the non-
refining case, with the differences from the refined case appearing
fully consistent with being due to the higher resolution of the lat-
ter. In the future, it would be desirable to also test an independent
implementation of Vainshtein screening with refinements.

5.2.4 Symmetron

The left-hand panel of Fig. 5 shows the power-spectrum results
for the Symmetron model, which were obtained with the ISIS and
ISIS-NONSTATIC code, both run without refinements. The figure shows
that the impact of the time-derivative terms in the equation of the
Symmetron model, equation (52), is below the 0.5 per cent level

MNRAS 454, 4208–4234 (2015)



Modified gravity N-body code comparison project 4221

Figure 5. Comparison of the matter power-spectrum (left) and halo mass function (right) results of the Symmetron model simulations performed by the ISIS

and ISIS-NONSTATIC codes. The lower panels shows the error induced by applying the quasi-static approximation, ε = PQuasi-static/PFull − 1, whereas the upper
panels shows the fractional difference relative to �CDM, as labelled. In all panels, the error induced by employing the quasi-static limit lies comfortably below
1 per cent for all the times and scales shown.

for all times and scales shown. Moreover, there seems to be no
trend with scale. Hence, we can conclude that, in what concerns
measurements of the non-linear matter power spectrum from N-
body simulations of the Symmetron model, the use of the quasi-
static limit has virtually no impact on the results.

This result is not unexpected since the calculation of the matter
power spectrum is dominated by high-density regions (haloes, if one
thinks about it in the framework of the halo model), where the time
derivatives are indeed expected to be negligible relative to the spatial
ones. Consequently, it may be of interest to investigate whether
the quasi-static assumption remains also a good approximation for
observables which are more sensitive to lower density regions. Such
an investigation is not explored in this study.

It would also have been good to have a comparison with MG-
GADGET and ECOSMOG for the Symmetron model but we leave this
to future work. A brief comparison of P(k) for the (quasi-static)
Symmetron model and the codes ISIS, ECOSMOG and MLAPM can be
found in Llinares et al. (2014).

5.3 Velocity divergence spectra

We have measured the power spectrum of the velocity divergence
field defined as Pθθ (k) ≡ 〈θ2

k 〉, where θ (x) = H−1
0 ∇ · v(x), with v

being the peculiar velocity field. In the linear regime, θ is related
to the matter density contrast as θ ∝− δf, where f = dlnδ/dlna is
the linear growth rate. We show only results for the divergence of
the velocity field, but note that on small scales, where non-linear

processes become important, the vorticity (rotational component of
v(x)) is non-negligible and hence the whole velocity field cannot be
described solely by θ .

To measure Pθθ (k), we constructed a volume-weighted velocity
field (Bernardeau & van de Weygaert 1996) with the DTFE method
implemented in the publicly available code of Cautun & van de
Weygaert (2011). We refer the reader to Li et al. (2013c) for more
details about our method to compute the velocity divergence field
from the N-body particle positions and velocities. Next, we discuss
our results for the f (R) and DGP simulations. We have also measured
Pθθ for the Symmetron simulations of the ISIS and ISIS-NONSTATIC

codes, but since there are virtually no differences between the full
and quasi-static results, we refrain from showing them.

5.3.1 f (R)

Fig. 6 shows the fractional difference of the velocity divergence
power spectrum with respect to �CDM in the F5 (left) and F6
(right) models. The enhancement in the amplitude of Pθθ in f (R)
relative to �CDM is noticeably larger than that seen for the matter
power spectrum (see also Jennings et al. 2012; Li et al. 2013b,c;
Hellwing et al. 2014). In particular, for the F5 (F6) model at z = 0
and k ≈ 3 h Mpc−1, the amplitude of Pθθ is enhanced by ≈50 per cent
(≈20 per cent), while the boost in the amplitude of P(k) is kept at 20–
25 per cent (≈5 per cent) only. The velocity field is more sensitive
than the density field to the modifications to gravity because it
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Figure 6. Fractional difference of the velocity divergence power spectrum with respect to �CDM from the simulations of the F5 (left) and F6 (right) models
performed with the ECOSMOG ( CIC), MG-GADGET and ISIS codes, as labelled. In the lower panel insets, ε = (P/P�CDM)code/(P/P�CDM)ref − 1, with MG-GADGET

being the reference code.

starts to be affected at earlier times, and the effects get accumulated
throughout the history of structure growth.

As in the case of the matter power spectrum, the agreement
between ECOSMOG, MG-GADGET and ISIS is notable. In particular, for
both F5 and F6 at z = 0, the three codes agree up to ≈1 per cent
down to k ∼ 3 h Mpc−1, and for higher k-values the difference never
exceeds 2 per cent. The case of the ISIS code for F5 at z = 1 is an
exception to this very good agreement, for which the difference
with the other two codes is at the 2–4 per cent level for k ∼ 0.3–
3 h Mpc−1. We have checked that at z = 2 the agreement between the
three codes is at the 1–2 per cent level, which suggests that the larger
disagreement at z = 1 could be due to a transient effect related, for
instance, to differences in the time integration.8 We leave a more
thorough investigation of this difference for future work.

5.3.2 DGP

Fig. 7 shows the fractional difference of the velocity divergence
power spectrum with respect to �CDM in the rcH0 = 5 (left) and
rcH0 = 1 (right) DGP models. The agreement between DGPM and
ECOSMOG is very good, with any differences in rcH0 = 5 predictions
being below ≈1 per cent for all times and scales shown. For the
rcH0 = 1 model, the agreement between the codes worsens, but the

8 For example, slight differences in the AMR structure and velocity field
in the ECOSMOG and ISIS simulations can result in different time step sizes
(determined by the same criteria as in standard RAMSES).

difference is always below the 2 per cent level. Similarly to the case
of the f (R) model, we also note that the modifications to gravity in
the DGP model affect the amplitude of Pθθ more than they affect
the amplitude of P(k).

In Fig. 7, it is interesting to note that on small scales (k � 2–
3 h Mpc−1), the difference between the fixed (red and green) and
refined grid (blue) results is smaller than that seen in Fig. 4 for the
matter power spectrum. Given the gain in resolution when ECOSMOG

is run with refinements, one does not expect the results to fully
agree with fixed-grid simulations which cannot resolve small-scale
structures, and as a result, the agreement depicted in Fig. 7 may
seem surprising. We do not perform any detailed investigations of
this result, but simply note that the density field used to compute P(k)
is mass weighted, whereas the density field used to compute Pθθ is
volume weighted. This, together with the suppressed contribution
of virial velocities to the velocity divergence, may help explain why
the use of adaptively refined grids does not have a critical impact on
the resulting Pθθ . For completeness, we further note that, as found in
Falck, Koyama & Zhao (2015), peculiar velocities on small scales
are also less affected by the Vainshtein mechanism, compared to
the effects of the Chameleon mechanism.

5.4 Halo mass function

The halo mass function, n(M), defined as the number density of
dark matter haloes with mass M, is an important statistic that is
particularly sensitive to modifications to gravity. We used a modified

MNRAS 454, 4208–4234 (2015)



Modified gravity N-body code comparison project 4223

Figure 7. Fractional difference of the velocity divergence power spectrum with respect to �CDM from the simulations of the rcH0 = 5 (left) and rcH0 = 1
(right) DGP models performed with the DGPM and ECOSMOG codes. The two sets of ECOSMOG results correspond to the results from simulations run with fixed
and refined grids, as labelled. In the lower panel insets, ε = (P/P�CDM)code/(P/P�CDM)ref − 1, with ECOSMOG (refined grid) being the reference code.

version of the spherical overdensity AMIGA’S HALO FINDER (AHF) code
(Gill, Knebe & Gibson 2004; Knollmann & Knebe 2009) to identify
dark matter haloes and calculate their profiles. For this, simulation
outputs from all codes were written in the standard GADGET2 format,
but with new data blocks added, which contain the components
of standard gravity and the fifth force as well as the Newtonian
potential and the scalar field at particle positions. We outputted
quantities at particle positions rather than leaf cells of the AMR
grids or trees because, unlike the leaf cells, the particle IDs are the
same in all simulations, making comparisons more straightforward.
Note that this means that the scalar field and forces in underdense
regions were not very well sampled, which however should not be
a serious issue given that we are mostly interested in haloes.

The major modifications to AHF were threefold: (i) new routines
to read the above data, which has the same format as the default
GADGET2 data such as particle coordinates and velocities; (ii) new
routines to compute the force and scalar field profiles in haloes,
by averaging over their values at all particle positions in a given
spherical shell (the radial binning scheme for this was the same as
in the default AHF code) and (iii) the routine in AHF which does the
removal of unbound particles was also modified so that the code
determined whether a particle was bound or not by comparing its
velocity with the total gravitational potential instead of the standard
Newtonian potential. Note that if (iii) is not properly done, then
the mass function tends to be lower because more particles are
considered as too fast to be bound. Li & Zhao (2010) studied the
effect of taking account the fifth force in the halo unbinding process

for certain Chameleon models using N-body simulations and found
a noticeable difference in the resulting mass functions (see also
Hellwing, Knollmann & Knebe 2010; Hellwing et al. 2013a).

We used AHF with �vir = 200 so that MAHF = M200c. Next, we
discuss our mass function results for the f (R), DGP and Symmetron
simulations.

5.4.1 f (R)

Figs 8 and 9 show the mass function results of the ECOSMOG, ISIS

and MG-GADGET simulations for f (R). As first shown quantitatively
in Schmidt et al. (2009), f (R) models predict an enhancement in the
abundance of haloes relative to �CDM. The enhancement is more
pronounced in the F5 model because the Chameleon screening is
less efficient. This is particularly noticeable at the high-mass end
for which, in the F6 model, the number density of haloes is almost
the same as in �CDM. The differences in the mass dependence
of �n/n�CDM for different f (R) model parameters and redshifts
illustrates the complex interplay between the mass and time depen-
dence of the Chameleon screening mechanism (see e.g. Lombriser,
Koyama & Li 2014; Shi et al. 2015; Gronke, Mota & Winther 2015b;
Gronke et al. 2015a; Gronke, Llinares & Mota 2014; Winther, Mota
& Li 2012, for studies of halo properties in f (R)).

Fig. 8 shows the ratio of the ECOSMOG and ISIS results to those
of MG-GADGET for the �CDM (left-hand panel), F5 (middle panel)
and F6 (right-hand panel) models. The three codes show varying
levels of agreement (between 2 and 10 per cent) throughout the
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Figure 8. Comparison of the halo mass function results of the ECOSMOG, MG-GADGET and ISIS codes for the �CDM (left), F5 (middle) and F6 (right) models, as
labelled. The two sets of ECOSMOG results correspond to the results from simulations using the CIC and TSC density assignment, as labelled.

Figure 9. Fractional difference of the halo mass function with respect to �CDM from the simulations of the F5 (left) and F6 (right) models performed with
the ECOSMOG (TSC), MG-GADGET and ISIS codes, as labelled. In the lower panel insets, ε = (n/n�CDM)code/(n/n�CDM)ref − 1, with MG-GADGET being the reference
code.

mass range probed by our simulations and for the two redshifts
shown. In particular, at z = 0 and intermediate mass scales, M ∼
1013 M� h−1, ECOSMOG and ISIS agree with MG-GADGET at �4 per cent,
but the agreement worsens to 5–10 per cent for smaller mass scales.

At the high-mass end, M ∼ 1014 M� h−1, the finite box size limits
us to only a few halo samples, which is why the high-mass end is
noisy (as can be checked by the scatter between different mass bins).
Overall, the trend is for the two RAMSES-based codes to underpredict
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the abundance of smaller mass haloes, compared to MG-GADGET.
This discrepancy can be linked to the way the base codes RAMSES

and P-GADGET3 compute the force on small scales (see discussion in
Section 5.2). Also, there is a marked improvement in the agreement
between ECOSMOG and ISIS when the two codes are run with the same
density assignment scheme (CIC in this case).

The amplitude and shape of the curves in Fig. 8 is similar for
�CDM and the two f (R) models, which indicates that differences
between the modified gravity codes are mostly driven by differences
in the default codes. Indeed, this is again confirmed by the result
of Fig. 9 which shows the fractional difference in the f (R) mass
functions relative to �CDM. One notes that the three codes agree
very well, especially at z= 0, echoing the results seen in the previous
two sections for the matter and velocity divergence power spectra.

5.4.2 DGP

The top panel of Fig. 10 shows the ratio of the mass function results
obtained with the DGPM code to those obtained with ECOSMOG (both
with and without refinements) for the simulations of the �CDM
and rcH0 = 5 and rcH0 = 1 DGP models. For the three models,
there is a systematic trend for DGPM to produce more massive haloes
than ECOSMOG, even when ECOSMOG is run without refinements like
DGPM. This result can be linked to the different density assignments
of the two codes (CIC for DGPM versus TSC for ECOSMOG). The
lower panels of Fig. 10 show that the agreement between the two
codes improves when one looks at the fractional difference of the
two DGP models to �CDM. For the case of the rcH0 = 5 model,
although there are still visible differences between the results of the
two codes, these remain of the same order as the bin-to-bin scatter.
The agreement worsens slightly for the rcH0 = 1 model. Overall,
both DGPM and ECOSMOG are in good agreement in their predictions
for �n/n�CDM, although to a lesser extent than the agreement for
the matter and velocity power spectra seen in the previous sections
(Figs 4 and 7).

5.4.3 Symmetron

The right-hand panel of Fig. 5 measures the impact of the quasi-
static limit on the mass function of the Symmetron model, as pre-
dicted by the ISIS and ISIS-NONSTATIC codes (both run without refine-
ments). As seen in the case of the mass power spectrum (upper
panels), relaxing the quasi-static approximation has no appreciable
effect on halo abundances: differences are �0.5 per cent and have
no clear dependence on mass.

5.5 Halo profiles

Finally, we turn our attention to the code results for the radial profiles
of the density, velocity dispersion, force and scalar field around dark
matter haloes. For this, we used the z = 0 AHF halo catalogues of
each simulation and binned them in mass according to: [5 × 1012, 1
× 1013], [1 × 1013, 5 × 1013], [5 × 1013, 1 × 1014] and [1 × 1014,
5 × 1014] M� h−1. For each mass bin, we scaled the AHF haloes
by their virial radii (determined by the AHF code) and stacked them
to compute average profiles of the different quantities. We take
the variance of this average as the error bars. The density, scalar
field, and force profiles are calculated using all particles around a
given AHF halo centre, which includes particles that lie beyond the
AHF halo. On the other hand, the velocity dispersion profiles are

calculated using only particles defined to be part of the AHF halo,
thus they only extend out to the virial radius.

As before, we discuss our results for the halo profiles in turn for
the f (R), DGP and Symmetron models.

5.5.1 f (R)

We plot the profiles of the scalar field in Fig. 11, of the force
modulus in Fig. 12, and of the density and velocity dispersion in
Fig. 13 for the haloes found in the F5 and F6 ECOSMOG, MG-GADGET

and ISIS simulations. The ECOSMOG results in these figures correspond
to the runs performed with the CIC interpolation scheme (as in ISIS).
For MG-GADGET, the force profiles shown are those calculated by
interpolating the gradient of the scalar field from the grid to the
particle positions instead of the effective density method (recall
the discussion about fig. 1 in Section 4.2.1). The gradient method
captures more accurately the suppression effects of the screening in
the inner regions of the haloes.

Overall, the ISIS and ECOSMOG codes agree very well, with any
deviations typically lying within the error bars in the profiles de-
picted in Figs 11–13. This is reassuring but not very surprising,
considering that they are both based on RAMSES and are run with
the same settings. It is therefore more interesting to compare ISIS

and ECOSMOG with MG-GADGET, for which some differences exist. For
instance, although at large radii there is good agreement between
the scalar field profiles obtained by the three codes, in the inner
regions of the haloes there is not. This is particularly noticeable in
the F6 model at r/rvir � 1 (right-hand panels of Fig. 11), for which
MG-GADGET overpredicts the values of fR compared to ECOSMOG and
ISIS. In the F5 model, the discrepancies soften considerably, espe-
cially for the low-mass haloes. These differences in the fR profiles
naturally translate into differences in the amplitude of the fifth force
on small radial scales, as seen in the lower four panels of Fig. 12.
However, the lower panels of Fig. 12 show that the discrepancies
between MG-GADGET and the two RAMSES-based codes are only ap-
preciable when the fifth force is a small fraction (�0.1) of the total
force (due to screening). This means that, although the codes may
disagree on their exact predictions for the amplitude of the modifi-
cations to gravity, they only do so in regimes where the fifth force
is not very important anyway. This is confirmed by the fact that the
density and velocity dispersion profiles shown in Fig. 13 agree very
well (there are differences of order 5 per cent, which we note are
likely to come from differences in the base codes.)

At large radii (r/rvir � 1), MG-GADGET overpredicts the amplitude
of the Newtonian force compared to ECOSMOG and ISIS. Here, we
stress that what we average in a given halo mass bin is the force
modulus and not any directional component of the force (e.g. ra-
dial). This is why the force profiles do not keep decaying towards
large radii but instead level off due to the matter distribution that
surrounds the haloes.9 This can explain the mismatch in the New-
tonian force at large radii because the matter distribution around
haloes in GADGET and RAMSES simulations is not exactly the same,
and the base code algorithms that compute the Newtonian force are
also different. What is important here is that, at these large radii, the
three codes agree very well in their fifth force predictions, which
are the corrections to normal gravity we are interested in testing in
this paper.

9 If one would average the radial component of the force for a large number
of haloes, then the contribution from the surrounding structure would cancel
out.
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Figure 10. The top panel shows the comparison of the halo mass function results of the DGPM and ECOSMOG (fixed grid) simulations of the �CDM, rcH0 = 5
and rcH0 = 1 DGP models, as labelled. The lower left and lower right panels show the fractional difference with respect to �CDM of the two codes for the
rcH0 = 5 and rcH0 = 1 DGP models, respectively. The lower panels show the ECOSMOG results both for fixed and refined grid simulations, as labelled. In the
lower panel insets, ε = (n/n�CDM)code/(n/n�CDM)ref − 1, with ECOSMOG (refined grid) being the reference code.

5.5.2 DGP

Figs 14 and 15 show the same as Figs 12 and 13, but for the
DGP simulations performed with the DGPM and ECOSMOG (with and
without refinements) codes. The absolute value of the scalar field in
the DGP model is irrelevant as the equations of the model contain
only its derivatives. For this reason, we do not show the scalar field
profiles and prefer to plot the gradient of the field (which, up to a
factor of 1/2, is the fifth force as seen in equation 15).

The Newtonian force profiles of the two codes are in very good
agreement when ECOSMOG is run without refinements (like DGPM).
There are marked differences in the solutions of the two codes
for the size of the fifth force in the inner regions of the haloes,
but since the amplitude of the fifth force is small there anyway, the
difference does not translate into the density and velocity dispersion
profiles (as seen in Fig. 13). However, when analysing these results,
it is important to bear in mind that the grid size of the non-refined
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Figure 11. Radial profiles of the fR scalar field in dark matter haloes found in the simulations of the ECOSMOG (CIC), MG-GADGET and ISIS codes for the F5 (left)
and F6 (right) models. The result is shown for the following four halo mass bins: M ∈ [1 × 1014, 5 × 1014], M ∈ [5 × 1013, 1 × 1014], M ∈ [1 × 1013, 5 ×
1013] and M ∈ [5 × 1012, 1 × 1013] M� h−1 (from bottom to top). For clarity, the profiles for each mass bin are displaced vertically, with the four horizontal
lines (also displaced vertically) indicating fR/fR0 = 1 of each mass bin.

simulations (�r � 0.5 h−1 Mpc) is half of the typical halo size
scales of ≈1 h−1 Mpc. As a result, one should not attempt to draw
any physically meaningful conclusions from the results depicted by
the red and green lines. We showed these lines simply to illustrate
that the DGPM and ECOSMOG (non-refined) codes agree in their total
force profiles, even though their solutions may not be accurate.

When ECOSMOG is run with refinements on the grid, the code is able
to better resolve the matter distribution in and around the haloes.
The top panels of Fig. 15 show that the density profiles of the non-
refined simulations only agree with those of the refined simulation
for r/rvir � 5–10. This provides a measure for the radial scales
below which one should not trust the non-refined simulations. It is
also interesting to note that the ratio of the fifth to Newtonian force
does not depend on halo mass, as seen in the lower panels of Fig. 14.
This illustrates that the efficiency of the Vainshtein mechanism in
the DGP model is independent of the mass of the haloes (Schmidt
2010; Falck et al. 2014, 2015), which is different from what is seen
in the lower panels of Fig. 12 for the f (R) models.

5.5.3 Symmetron

Fig. 16 shows the radial profiles of the scalar field and of the fifth
to Newtonian force ratio obtained from the ISIS and ISIS-NONSTATIC

simulations of the Symmetron model. The scalar field in the ISIS-
NONSTATIC simulations oscillates very rapidly with time. For this
case, the profiles we show represent the mean value averaged over
several oscillations close to z = 0. We note also that since these sim-
ulations were performed on a fixed grid, they suffer from the same
resolution problems as the non-refined DGP runs. This prevents the
simulations from fully capturing a number of effects such as the ef-
ficiency of the screening. Nevertheless, for the sake of determining
the impact of the quasi-static limit these issues can be ignored. The
result of Fig. 16 reinforces the conclusions drawn previously that

relaxing the quasi-static limit has little impact on the simulations of
the Symmetron model.

6 SU M M A RY A N D C O N C L U S I O N S

N-body simulations of modified gravity play a key role in cosmo-
logical tests of gravity using LSS observations. In this work, we
have performed an extensive comparison of the simulation results
of f (R), DGP and Symmetron gravity using five modified gravity
N-body codes, which were the DGPM, ECOSMOG, MG-GADGET, ISIS and
ISIS-NONSTATIC codes. In the models we simulated, the gravitational
law is modified due to the presence of a fifth force mediated by
a scalar field. The algorithms in these codes differ from those for
standard gravity by having extra modules that iteratively relax the
equation of the scalar field on a grid/mesh to determine the fifth
force. The ISIS-NONSTATIC code is a version of the ISIS code that goes
beyond the quasi-static approximation that is often employed in
modified gravity studies. We used this code to test the validity of
this assumption in the case of the Symmetron model.

The modified gravity routines included in the modified gravity
codes are typically installed in existing and well tested N-body
codes for GR (such as RAMSES or P-GADGET3). Since these main
codes can show some level of disagreement in their results for
standard �CDM, then these differences would naturally propagate
into the modified gravity results. To overcome this, in this paper we
have run also simulations of standard �CDM, which were used as
a reference to measure the effects of the modifications to gravity.
Hence, our main concern in this paper was to compare the code
predictions for the fractional difference with respect to �CDM of
a given quantity, and not so much its absolute values.

All our simulations of the different models and codes start from
the same set of initial conditions, which allows a direct comparison
between the results. We analysed the code results for the power
spectrum of the matter density fluctuations and peculiar velocity
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Figure 12. Radial profiles of the Newtonian force (upper), fifth force (middle) and fifth to Newtonian force ratio (bottom) for haloes in the F5 (left) and F6
(right) simulations, performed with the ECOSMOG (CIC), MG-GADGET and ISIS codes, as labelled. The result is shown by splitting haloes into the same mass bins
used in Fig. 11. In this case, however, the results for each bin are not displaced vertically. In the lower panels, the horizontal lines show Fφ/FN = 1/3, which is
the expected value in the absence of screening. When determining the force profiles in each mass bin, what is averaged is the force moduli of the haloes, and
not its radial component.
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Figure 13. Radial profiles of the density (upper) and velocity dispersion (bottom) for haloes in the F5 (left) and F6 (right) simulations, performed with the
ECOSMOG (CIC), MG-GADGET and ISIS codes, as labelled. The result is shown by splitting the haloes into the same mass bins used in Figs 11 and 12. Note that in
the lower panels the profile is only shown up to r/rvir = 1.

divergence. We have also compared results for the abundances of
dark matter haloes and for their density, velocity dispersion and
force profiles.

We have generally found agreement at the few-per cent level in
the properties of the matter density and velocity fields. This means
that modified gravity simulations satisfy the accuracy requirements
of currently planned LSS surveys, provided that the absolute cali-
bration of GR predictions is of comparable accuracy.

In what follows, we recap the main results of this comparison
project in more detail.

(1) Matter power spectrum. Given its immediate relation to galaxy
redshift and lensing observables, the matter power spectrum P(k)
is one of the most important observables for tests of gravity. For
�CDM, we found that the modified gravity codes (run with the

routines for modified gravity switched off) agree up to 1 per cent
for k � 1 h Mpc−1, but start differing on smaller scales (∼5 per cent
at k ∼ 5 h Mpc−1) due to different density and force assignments
schemes and intrinsic algorithmic differences in the force calcula-
tion in AMR (for ECOSMOG and ISIS) and TreePM (for MG-GADGET)
codes (cf. Fig. 2).
For the f (R) simulations, which were performed with the ECOSMOG,
MG-GADGET and ISIS codes, we find that any differences in P(k) are
driven almost exclusively by the differences in the base codes (RAM-
SES and P-GADGET3 respectively). In terms of the relative difference
to �CDM, all code results for f (R) agree to better than 1 per cent
for k � 7 h Mpc−1 (cf. Fig. 3).

While ECOSMOG and ISIS are based on the same GR code and use
very similar algorithms, MG-GADGET is sufficiently different to make
this a non-trivial consistency test.
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Figure 14. Radial profiles of the Newtonian force (upper), fifth force (middle) and fifth to Newtonian force ratio (bottom) for haloes in the rcH0 = 5 (left) and
rcH0 = 1 (right) simulations, performed with the DGPM and ECOSMOG codes. The ECOSMOG results are shown for both the fixed and refined grid simulations, as
labelled. The result is shown by splitting haloes into the same mass bins as used in Fig. 12. When determining the force profiles, what is averaged is the force
moduli, and not its radial component. Note also that for all mass scales, the AMR nature of the grid plays a key role in the measured force profiles.
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Figure 15. Radial profiles of the density (upper) and velocity dispersion (bottom) for haloes in the rcH0 = 5 (left) and rcH0 = 1 (right) simulations, performed
with the DGPM and ECOSMOG codes. The ECOSMOG results are shown for both the fixed and refined grid simulations, as labelled. The result is shown by splitting
the haloes into the same mass bins used in Fig. 14. For clarity, the result for the different mass bins has been displaced vertically in the density panels. In these,
the differences between the two codes for fixed grid are kept below ≈5 per cent for all mass bins and scales shown. Note that in the lower panels the profile is
only shown up to r/rvir = 1.

The simulations of the DGP model were performed with the DGPM

and ECOSMOG codes. The former code does not have an adaptive
mesh, but ECOSMOG can be run on both a fixed and refined mesh. For
the fixed-grid case, the two codes are in very good agreement in
their predictions for the relative difference to �CDM (�1 per cent
for k � 7 h Mpc−1; cf. Fig. 4). This is a non-trivial test since the
DGP scalar field solvers in DGPM and ECOSMOG are substantially
different. The fixed grid simulations start to differ from the refined
grid simulations on small scales, but this is expected since the latter
is able to resolve small scales much better.

For the test of the validity of the quasi-static limit in the Sym-
metron model, we have seen that the results from ISIS and ISIS-
NONSTATIC are nearly indistinguishable (cf. Fig. 5). We conclude that

the impact of adding the time-derivative terms to the Symmetron
field equation of motion is negligible (<0.5 per cent on all scales and
redshifts shown). We note, however, that in the current implemen-
tation of the time derivatives in the ISIS-NONSTATIC code, the particles
do not feel the details of the rapid oscillations of the scalar field,
due to the difference in the particle and scalar field time steps (see
Llinares & Mota 2014, for more details). In the future, it would be
of interest to clarify whether using the same time steps for particles
and the scalar field has an impact on the results presented here.

(2) Velocity power spectrum. In terms of the velocity divergence
power spectrum, Pθθ , we have found that ECOSMOG, MG-GADGET and
ISIS are again in very good agreement in their predictions for the
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Figure 16. Radial profiles of the scalar field (left) and of the fifth to Newtonian force ratio (right) for haloes in the Symmetron model simulations, performed
with the ISIS and ISIS-NONSTATIC codes. The result is shown by splitting the haloes into the same mass bins used in the figures of the f (R) and DGP models. As in
Fig. 5, the quasi-static limit remains an extremely good approximation.

fractional difference with respect to �CDM in f (R) models. At z =
0, the three codes agree to better than 1 per cent for k � 3 h Mpc−1,
for both the F5 and F6 models (cf. Fig. 6). For the DGP simulations,
the DGPM and ECOSMOG codes are also in very good agreement, with
their predictions differing by �2 per cent for both models simulated
and for all times and scales shown (cf. Fig. 7). Interestingly, we have
also seen that the Pθθ results of the DGP simulations on small scales
are not critically affected by the use of a fixed or refined grid. For
brevity, we did not show the impact of the quasi-static limit on Pθθ

in the Symmetron model, but we have checked that it is negligible
(just like for P(k)).

These results are encouraging as the precise modelling of cosmic
velocity fields is a crucial ingredient in connecting the theoretically
predicted clustering statistics in real space with the observed galaxy
redshift space power spectrum.

(3) Halo mass function. The good agreement outlined above for the
matter and peculiar velocity divergence power spectrum holds also
for the halo mass function. Given the relatively small simulation
volume, the accuracy of the mass function comparison is limited
by cosmic variance. However, we are still able to conclude that the
codes agree to a satisfactory level. In particular, for f (R), the code
predictions for �n/n�CDM agree up to ≈4 per cent for all mass scales
probed by our simulation box (cf. Fig. 9). For the DGP simulations
the agreement is at the 5–10 per cent level (cf. Fig. 10). Like for P(k),
the inclusion of the time-derivative terms in the Symmetron model
equations leads to negligible differences only (�0.5 per cent).

(4) Halo profiles. Understanding dark matter halo profiles in modi-
fied gravity is crucial to devise tests of gravity using galaxy clusters
(Lam et al. 2012; Terukina & Yamamoto 2012; Lam et al. 2013;
Zu et al. 2014; Lombriser et al. 2012; Wilcox et al. 2015; Bar-
reira et al. 2015; Terukina et al. 2015). For the f (R) simulations,
although there are significant differences in the fifth force profiles
of the RAMSES-based codes and MG-GADGET in the inner regions of
the haloes (cf. Fig. 12), these do not translate into differences in the
resulting density and velocity divergence profiles because they only
appear in regions where the force modification is highly suppressed
by Chameleon screening (cf. Fig. 13).

Similarly, the fifth force halo profiles of the DGPM and ECOSMOG

(fixed grid) DGP simulations also differ, but only in the inner regions
of the haloes, where the fifth force is already weak (cf. Fig. 14).
We note, however, that although it is reassuring that the two codes
agree in their halo density and velocity dispersion profiles (which is
a cross-check of the validity of the algorithms), the resolution of the
fixed grid prevents us from trusting their physical results on halo
size scales. Indeed, the DGP simulations run with ECOSMOG (refined
grid) show very different results, due to the gain in resolution (cf.
Fig. 15).

The halo profiles in the Symmetron simulations performed with
the ISIS and ISIS-NONSTATIC codes are nearly indistinguishable, which
reinforces further the validity of the quasi-static limit (cf. Fig. 16).

Tests of gravity on large scales using galaxy power spectra, galaxy
dynamics, cluster abundance, cluster profiles and so on are one of
the main science drivers of many upcoming large surveys. Accurate
simulations of non-linear structure formation in these models are
therefore crucial to ensure robust theoretical predictions that can be
compared with the observational data. In this paper, we have seen
that the N-body codes that have been developed so far are in very
good agreement for different models. This dedicated comparison
project constitutes an important validity check of the different codes,
which brings us one step closer to performing larger and more
expensive modified gravity simulations to be used to prepare for
several future observational efforts.
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