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Recently, we have implemented a scheme for the calculation of the adiabatic connection linking the
Kohn–Sham system to the physical, interacting system. This scheme uses a generalized Lieb
functional, in which the electronic interaction strength is varied in a simple linear fashion, keeping
the potential or the density fixed in the process. In the present work, we generalize this scheme
further to accommodate arbitrary two-electron operators, allowing the calculation of adiabatic
connections following alternative paths as outlined by Yang �J. Chem. Phys. 109, 10107 �1998��.
Specifically, we examine the error-function and Gaussian-attenuated error-function adiabatic
connections. It is shown that while the error-function connection displays some promising features,
making it amenable to the possible development of new exchange-correlation functionals by
modeling the adiabatic connection integrand, the Gaussian-attenuated error-function connection is
less promising. We explore the high-density and strong static correlation regimes for two-electron
systems. Implications of this work for the utility of range-separated schemes are discussed.
© 2010 American Institute of Physics. �doi:10.1063/1.3488100�

I. INTRODUCTION

The adiabatic-connection �AC� formula for the
exchange-correlation energy1–5 in density-functional theory
�DFT� has motivated the construction of orbital-dependent
functionals,6,7 which represent some of the most successful
approximations in widespread use. The AC formula arises
from a consideration of the link between the Kohn–Sham
noninteracting system and the physical, interacting system as
a function of the interaction strength. A number of studies
have examined the AC using approximate methods,8–16 and
some high-accuracy studies have been carried out for few-
electron atomic systems.17–22 Recently, we presented an
implementation of a scheme allowing the calculation of ac-
curate AC curves from ab initio densities22,23 via optimiza-
tion of Lieb functionals.24 Our implementation considers not
only the usual density-fixed AC, of relevance in DFT, but
also the potential-fixed AC,22 of relevance in potential-
functional theory �PFT�,25 in which the fully interacting sys-
tem is related to the noninteracting, bare-nucleus system
�with the potential fixed at the external potential from the
nuclei�. The same connection was considered independently
by Gross and Proetto,26 who also discussed the differences
between potential-functional theory variants based on the
bare-nucleus noninteracting system �as examined here� and
potential-functional theories based on the Kohn–Sham non-
interacting system as put forward by Yang and co-workers.25

The relationship between the density- and potential-fixed
ACs is particularly clear from the point of view of the Lieb
formulation of DFT and will be further elucidated in the
present work.

Most previous studies of the AC consider only the case
in which the electron-electron repulsion is modulated in a
simple linear fashion, by introducing a straightforward scal-
ing of the two-electron interaction. However, as was pointed
out by Yang,27 this choice is not unique. In fact, the elec-
tronic interaction may be modified by any function that
smoothly connects the noninteracting and physical systems.
These generalized ACs are of particular relevance to theories
constructed to combine the Kohn–Sham DFT and wave-
function approaches as proposed by Savin.28 With an appro-
priate modification of the electronic interaction, it is possible
to attempt the construction of hybrid theories, in which
short-range interactions are treated by DFT and long-range
interactions by a suitable choice of wave-function methodol-
ogy. Recently, a variety of short-range DFT functionals have
been developed within the local-density approximation,28,29

the generalized gradient approximation �GGA�,30–32 and the
meta-GGA.33 Several implementations of these hybrid
schemes exist combining short-range DFT functionals with
long-range Hartree–Fock �HF�,34 configuration-interaction
�CI�,35,36 second-order Møller–Plesset,34 coupled-cluster,31

multiconfigurational self-consistent field,37,38 and n-electron
valence second-order perturbation-theory39 methods. We also
note that range separation of only the exchange interaction
has been explored in the context of developing new DFT
exchange-correlation functionals. Notable examples are the
long-range corrected �LC� functionals developed by Hirao
and co-workers,40,41 the �-PBEh and HSE functionals devel-
oped by Scuseria and co-workers,42,43 and the CAM-B3LYP
functional developed by Handy and co-workers.44,45 These
functionals emphasize either short-range42,43 or
long-range40,41,44 interactions; a variant emphasizing the
middle range has also been reported.46 Finally, in a differenta�Electronic mail: a.m.teale@kjemi.uio.no. FAX: �47 228 55441.
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context, we note the use of a family of similar interactions by
Gill and co-workers47–49 to remove the long-range tails of the
Coulomb interaction.

While some studies of nonlinear ACs have been carried
out from the point of view of calculating short-range DFT
exchange-correlation energies and potentials,21,50 no direct
studies of the generalized, range-dependent AC integrand
have been presented, in contrast to the linear case. Given the
central role that the AC formulation plays in the theory un-
derlying range-separated approaches, we are motivated to
consider the generalization of our previously introduced
scheme to this task. These generalized ACs are also of a
wider interest than range-separated methods. This point was
clear in the work of Yang,27 who considered the complemen-
tary error function for modulation of the electronic interac-
tion. By choosing an alternative form for the AC, the shape
of the integrand is altered. For the complementary error func-
tion, this means that both the noninteracting and physical
points are known to be simple constants. This behavior
sharply contrasts the corresponding linear case, where the
noninteracting point is the orbital-exchange energy func-
tional of the Hartree–Fock theory and the interacting point an
expectation value of the full CI �FCI� wave function.

In the present work, we generalize our optimization
scheme for the Lieb functionals22 to electronic interactions
weighted by the error function and the Gaussian-attenuated
error function. We commence, in Sec. II, by introducing the
theory of ACs with general two-electron operators and then
briefly review our approach to optimization of the Lieb func-
tionals and calculation of the AC integrands. Here we focus
on details specific to this generalized scheme, referring the
reader to our previous paper22 and the work of Wu and
Yang23 for details of the optimization scheme. In Sec. III, we
present results for the calculation of ACs corresponding to
FCI densities for some simple two-electron systems, present-
ing potential-fixed as well as density-fixed connections. We
also discuss the prospects for approximating these alternative
connections by simple forms suitable for a self-consistent
implementation. Finally in Sec. IV, we make some conclud-
ing remarks and discuss directions for future work.

II. THEORY

A. Lieb’s convex conjugate theory

Consider an N-electron system described by the Hamil-
tonian

Ĥ��v� = T̂ + Ŵ� + �
i

v�ri�, 0 � � � 1, �1�

where v�r� is the external potential at r, T̂ is the kinetic-
energy operator

T̂ = −
1

2�
i

�i
2, �2�

and Ŵ� is a generalized electron interaction operator depend-
ing on a coupling-strength parameter � that varies between
�=0 �the noninteracting system� and �=1 �the fully interact-
ing system�,

Ŵ� =
1

2�
i�j

w��rij�, w0�rij� = 0, w1�rij� = 1/rij . �3�

We now introduce the ground-state energy E��v� as a func-
tional of the external potential and the energy F���� as a
functional of the electron density by the following con-
strained minimizations24,51–53 over density matrices �̂:

E��v� = inf
�̂→N

Tr Ĥ��v��̂ = Tr Ĥ��v��̂�
v , �4�

F���� = inf
�̂→�

Tr Ĥ��0��̂ = Tr Ĥ��0��̂�
� , �5�

where we denote the minimizers by �̂�
v and �̂�

�, respectively.
Whereas a minimizer �̂�

� always exists in Eq. �5�, this is not
so for the minimization in Eq. �4�, where �̂�

v only exists for
those potentials v that support an electronic ground state for
a given interaction strength �. In the following, we shall
always assume that a minimizer exists.

As first discussed by Lieb,24 the ground-state energy as a
functional of the external potential E��v� and the energy as a
functional of the density F���� are conjugate functionals
�mutual Legendre–Fenchel transforms�,

E��v� = inf
��X

�F���� + �v���� , �6�

F���� = sup
v�X�

�E��v� − �v���� , �7�

where the domains X and X� are reflexive Banach spaces
such that �v ���=�v�r���r�dr is finite for all ��X and v
�X�. In general, we obtain from Eqs. �6� and �7� the Fenchel
inequality

E��v� � F���� + �v��� , �8�

which holds for all v and �. In the absence of degeneracies,
the conditions for a minimizing density � in Eq. �6� and for a
maximizing potential v in Eq. �7� are equivalent and may be
expressed in the following manner:

E��v� = F���� + �v��� ⇔
�E��v�
�v�r�

= ��r� ⇔
�F����
���r�

= − v�r� ,

�9�

where it is assumed that ����r�dr=0. An external potential v
and a density � that together satisfy Eq. �9� are said to be
conjugate. For a given potential v, one or more conjugate
densities � may be found provided the potential supports a
�possibly degenerate� N-electron ground state. Conversely,
an N-electron density � has a conjugate potential v �unique
to within an additive constant� provided � is v-representable.
Substituting Eqs. �4� and �5� in Eq. �9�, we note the relation

�̂�
v = �̂�

� �v and � conjugate at �� , �10�

which is valid for conjugate v and � in the absence of de-
generacies. In the present work, we consider ACs in which
we fix the �nondegenerate� density at its physical value �the
AC of DFT� and an alternative connection, in which we fix
the potential �the AC of PFT� at the nuclear-attraction poten-
tial since this potential corresponds to the �=1 system. In
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other words, we consider connections that have conjugate v
and � at �=1.

B. The adiabatic connection

Let us now relate the functionals E��v� and F���� for
�	0 to the corresponding noninteracting quantities E0�v�
and F0���, respectively,

E��v� = E0�v� + 	
0

�

E
��v�d
 , �11�

F���� = F0��� + 	
0

�

F
����d
 , �12�

where the prime denotes differentiation with respect to 
. On
the right-hand side of these equations, we insert the expres-
sions for the noninteracting energies E0�v� and F0��� ob-
tained by setting �=0 in Eqs. �4� and �5�. Next, we deter-
mine the derivatives E
��v� and F
���� by differentiation of
Eqs. �4� and �5� followed by application of the Hellmann–
Feynman theorem, leading to the following AC expressions:

E��v� = Hs�v� + 	
0

�

W
�v�d
 , �13�

F���� = Ts��� + 	
0

�

W
���d
 . �14�

We have here introduced the noninteracting bare-nucleus and
kinetic-energy functionals

Hs�v� = inf
�̂→N

Tr Ĥ0�v��̂ = Tr Ĥ0�v��̂0
v, �15�

Ts��� = min
�̂→�

Tr Ĥ0�0��̂ = Tr Ĥ0�0��̂0
�, �16�

and the potential- and density-fixed AC integrands as expec-

tation values of the differentiated two-electron operator Ŵ
�,

W
�v� = Tr Ŵ
��̂

v, �17�

W
��� = Tr Ŵ
��̂

�, �18�

with respect to the density matrices �̂

v and �̂


� optimized at
interaction strength 
 from Eqs. �4� and �5�, respectively. The
perturbative expansion of Eqs. �11� and �12� in � leads to the
bare-nucleus54 and Görling–Levy55,56 perturbation theories,
respectively, as discussed in Ref. 22.

Let us now consider the relationship between the
potential- and density-fixed connections. From Fenchel’s in-
equality Eq. �8� applied at �=0, we obtain

Hs�v� � Ts��� + �v��� �v and � arbitrary� , �19�

where equality occurs when � is conjugate to v at �=0.
Substituting Eqs. �13� and �14� into the stationary condition
Eq. �9� and invoking Eq. �19�, we obtain the inequality

	
0

�

W
�v�d
 � 	
0

�

W
���d
 �v and � conjugate at �� ,

�20�

which is valid provided v and � are conjugate at �. Finally,
introducing Eq. �10� in Eqs. �17� and �18�, we note that
W
�v�=W
��� when v and � are conjugate for interaction
strength 
, in the absence of degeneracies. In the present
work, the potential-fixed connection has v equal to the physi-
cal external potential due to the nuclei for all interaction
strengths 
, making it relevant to PFTs based on this external
potential. An alternative PFT was recently discussed by Yang
and co-workers,25 in which the energy is expressed as a func-
tional of the Kohn–Sham potential. In the present context we
note that construction of an AC for such a theory would
mean using the maximizing potential of Eq. �7� at all 
. This
potential is different at each value of 
 but always conjugate
to the physical density. As a consequence this alternative
potential-based AC and the density-fixed AC become identi-
cal.

From the concavity of E��v� and F���� in �, it follows
that these functions can always be represented in the form of
Eqs. �13� and �14�, where the integrands W
�v� and W
���
are nonincreasing right-continuous functions in 
. Under the
assumption of adiabaticity, the two integrands become equal
to the derivatives E
��v� and F
���� in Eqs. �11� and �12�,
respectively.

C. Coulomb, exchange, and correlation energies

It is customary to decompose the total interaction ener-
gies in Eqs. �13� and �14� in the manner

	
0

�

W
�v�d
 = J��v� + Ex,��v� + Ec,��v� , �21�

	
0

�

W
���d
 = J���� + Ex,���� + Ec,���� , �22�

where we have introduced the classical Coulomb functionals
��0

v is the density associated with �̂0
v�

J��v� =
1

2
	 	 w��r12��0

v�r1��0
v�r2�dr1dr2, �23�

J���� =
1

2
	 	 w��r12���r1���r2�dr1dr2, �24�

the exchange functionals

Ex,��v� = Tr Ŵ��̂0
v − J��v� , �25�

Ex,���� = Tr Ŵ��̂0
� − J���� , �26�

and the correlation functionals
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Ec,��v� = 	
0

�

Wc,
�v�d
, Wc,
�v� = Tr Ŵ
���̂

v − �̂0

v� ,

�27�

Ec,���� = 	
0

�

Wc,
���d
, Wc,
��� = Tr Ŵ
���̂

� − �̂0

�� .

�28�

To show Eqs. �21� and �22�, we substitute Eqs. �23�–�28� in

these equations and use the relation �0
�Ŵ
�d
=Ŵ�. The ex-

change and correlation energies may be combined to give the
exchange-correlation energies, which by combination of Eqs.
�25� and �26� with Eqs. �27� and �28� are given by

Exc,��v� = 	
0

�

Wxc,
�v�d
, Wxc,
�v� = Tr Ŵ
��̂

v − J
��v� ,

�29�

Exc,���� = 	
0

�

Wxc,
���d
, Wxc,
��� = Tr Ŵ
��̂

� − J
���� .

�30�

In the following, we shall study the potential- and density-
fixed AC connections and their contributions for the helium
isoelectronic series and H2 at different internuclear separa-

tions, with different choices of Ŵ�.

D. One- and two-electron contributions

The Hamiltonian in Eq. �1� provides a natural decompo-
sition of the total electronic energy into one- and two-
electron contributions,

E��v� = Tr Ĥ0�v��̂�
v + Tr Ŵ��̂�

v , �31�

F���� = Tr Ĥ0�0��̂�
� + Tr Ŵ��̂�

� , �32�

which may be further decomposed into uncorrelated and cor-
related parts. The uncorrelated energy is obtained by the sub-
stitution �̂�

v → �̂0
v in Eq. �31� and the substitution �̂�

� → �̂0
� in

Eq. �32�,

Eu,��v� = Tr Ĥ0�v��̂0
v + Tr Ŵ��̂0

v = Hs�v� + J��v� + Ex,��v� ,

�33�

Fu,���� = Tr Ĥ0�0��̂0
� + Tr Ŵ��̂0

� = Ts��� + J���� + Ex,���� .

�34�

The uncorrelated one-electron energies are thus simply the
noninteracting energies Hs�v� and Ts��� in Eqs. �15� and
�16�, respectively, whereas the uncorrelated two-electron en-
ergies are the Coulomb and exchange energies evaluated
from �̂0

v and �̂0
�, respectively. The correlation energy is next

obtained by the substitutions �̂�
v → �̂�

v − �̂0
v in Eq. �31� and

�̂�
� → �̂�

� − �̂0
� in Eq. �32�, yielding

Ec,��v� = Tr Ĥ0�v���̂�
v − �̂0

v� + Tr Ŵ���̂�
v − �̂0

v�

= Hc,��v� + Ec,�
2el�v� , �35�

Ec,���� = Tr Ĥ0�0���̂�
� − �̂0

�� + Tr Ŵ���̂�
� − �̂0

��

= Tc,���� + Ec,�
2el��� , �36�

where we use the conventional notation Ec,����=Fc,����. For
the standard connection, w��rij�=� /rij and it follows that

Ŵ1�=Ŵ1. Comparing the integrands in Eqs. �27� and �28�
with the two-electron parts in Eqs. �35� and �36�, we then
find that the two-electron correlation energy is equal to the
AC integrand at �=1:Ec,1

2el�v�=Wc,1�v� and Ec,1
2el���=Wc,1���.

However, these relations are not valid for all possible con-
nections w�.

Finally, we note that the one-electron contributions �ki-
netic and interaction with the external potential� to the total
energy must be the same for conjugate v and �,

Hs�v� + Hc,��v� = Ts��� + Tc,���� + �v���

�v and � conjugate at �� . �37�

Combining this result with Fenchel’s inequality for the non-
interacting system Eq. �19�, we obtain the inequality

Hc,��v� � Tc,���� � 0 �v and � conjugate at �� ,

�38�

where the non-negativity of Tc,���� follows from the defini-
tion of Ts,���� as the lowest kinetic-energy expectation value
consistent with the density �.

E. Range-independent and range-dependent
connections

Thus far, we have established the potential-fixed inte-
grands W��v�, Wxc,��v�, and Wc,��v� and density-fixed inte-
grands W����, Wxc,����, and Wc,����, whose coupling-
constant integration yields the total interaction energy, the
exchange-correlation energy, and the correlation energy, re-
spectively. Yang27 observed that since these integrals are de-
termined entirely by the functional values at the end points
of the integration ��2	�1�,

	
�1

�2

W��v�d� = E�2
�v� − E�1

�v� , �39�

	
�1

�2

W����d� = F�2
��� − F�1

��� , �40�

we may choose Ŵ� freely in Eq. �1� provided its end-point
values �typically 0 and 1� are unaffected. This idea provides
a justification for the proposal of Savin28 to construct a va-
riety of hybrid theories that merge wave-function approaches
with DFT from the viewpoint of a generalized AC.27 For
further discussion see Sec. III E.

While some studies have appeared examining the inte-
grated quantities Exc��� and Ec��� for the density-fixed
connection,21,50 no explicit study of the integrands involved,
varying the path between the noninteracting and interacting
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systems, has been carried out. In the present work, we con-
sider the following general forms for w��rij� in Eq. �3�:

w�
s �rij� =

�

rij
�standard� , �41�

w�
e�rij� =

erf
 �

1 − �
rij�

rij
�error function� , �42�

w�
g�rij� =

erf
 �

1 − �
rij�

rij
−

2
��


 �

1 − �
�


exp
−
1

3

 �

1 − �
�2

rij
2�

�Gaussian-attenuated error function� , �43�

whose � derivatives are given by

w�
s��rij� =

1

rij
, �44�

w�
e��rij� =

2 exp
− 
 �

1 − �
�2

rij
2�

���1 − ��2
, �45�

w�
g��rij� =

2 exp
− 
 �

1 − �
�2

rij
2�

���1 − ��2

+

2
2

3

 �

1 − �
�2

rij
2 − 1�exp
−

1

3

 �

1 − �
�2

rij
2�

���1 − ��2
.

�46�

The choice w�
s in Eq. �41� represents the standard range-

independent AC, depending linearly on �. As � increases, the
interaction is turned on uniformly for all interelectronic sepa-
rations rij. By contrast, with the error-function connection w�

e

in Eq. �42� and Gaussian-attenuated error-function connec-
tion w�

g in Eq. �43�, the interaction is turned on in a range-
dependent, nonuniform manner by the use of the functions
erf��rij�, and exp�−�2rij

2 /3� of rij, where �=� / �1−�� varies
over the range 0���� when � increases from 0 to 1. As a
result, with these two connections, long-range interactions
are accounted for first and short-range interactions last. To
illustrate the difference between the above connections, we
have in Fig. 1 plotted the functions in Eqs. �41�–�43� and
their derivatives in Eqs. �44�–�46� as functions of rij, for four
different values of �. The � dependence of the derivatives is
relevant since in the evaluation of the AC integrands in Eqs.
�17� and �18�, we calculate the expectation value of the den-
sity matrix with these derivatives.

To evaluate the AC integrands corresponding to the dif-

ferent choices of Ŵ� in Eqs. �41�–�43�, we must calculate the

expectation values of Ŵ�� with a wave function correspond-
ing to a fixed potential or a fixed density, determined by the

optimizations of Eqs. �6� and �7�. The minimization of Eq.
�6� requires only standard techniques with two-electron inte-
grals modified as described, for example, in Ref. 57. The
maximization of Eq. �7� is more difficult but can be achieved
quite efficiently by the method in Refs. 22 and 23. Expecta-
tion values of the derivatives in Eqs. �44�–�46� with the op-
timized wave functions necessary for the calculation of the
generalized AC integrands require the evaluation of two-
electron integrals of the types �ab�exp�−�rij

2 ��cd� and
�ab�rij

2 exp�−�rij
2 ��cd�, where the exponent � is determined

by �. Such integrals occur in R12 theories and as such are
available in a variety of codes; in the present work, we use
the integrals implemented for R12 theories by Samson et
al.,58 specifically the I2 and I4 integrals of that paper. The
procedure is then to choose a suitable wave function for ac-
curate determination of the Lieb functional, as described in
Refs. 22 and 23 using modified two-electron integrals ac-
cording to the choice of two-electron interaction from Eqs.
�41�–�43�. Once optimized, the expectation values of the de-
rivatives required for the calculation of the AC integrands in
Eqs. �44�–�46� are calculated, the linear AC being particu-
larly simple since only the standard expectation value of the
usual two-electron operator is required, see Eq. �44�.

III. RESULTS

A. Computational details

The Lieb maximization of Eq. �7� has been performed
using the algorithm proposed by Wu and Yang23 �see Ref. 18
for an alternative approach�, which has been implemented
recently22 in the DALTON quantum chemistry program59 for
arbitrary interaction strengths and the generalized ACs dis-
cussed in Sec. II E. The reader is referred to Refs. 22 and 23
for details of the implementation; here we note that the key
to the approach of Wu and Yang23 to perform the Lieb maxi-
mization is the parametrization of the potential in the man-
ner,

vb�r� = vext�r� + vref,��r� + �
t

btgt�r� , �47�

where the first term vext�r� is the external potential due to the
nuclei, the second term vref,��r� is a fixed reference potential
chosen to ensure the correct asymptotic behavior, and the
final term is a linear expansion in Gaussian functions gt�r�
with coefficients bt. Inserting this expansion into Eq. �7� and
using the gradient and Hessian with respect to the coeffi-
cients bt, the Lieb maximization may be performed using

FIG. 1. Attenuated operators �top row� and their � derivatives �bottom row�
as functions of r12 for �=0 �pink line�, �=1 /4 �blue line�, �=1 /2 �green
line�, �=3 /4 �red line�, and �=1 �black line�.
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standard quasi-Newton or Newton techniques. Here we have
used the Newton method employing both the gradient and
Hessian with a truncated singular-value decomposition cutoff
of 10−6 and a convergence target of less than 10−6 on the
gradient norm; for further details see Refs. 22 and 23. All of
the energies E��v� for the two-electron systems in the present
work are calculated at the FCI level.

B. The choice of basis sets

In order to perform the Lieb maximization we therefore
must choose both a primary orbital basis set and an auxiliary
potential basis set. When the potential basis set is chosen to
be very different to that of the orbital basis set, unphysical
oscillatory potentials can be obtained. This problem has been
widely discussed in the literature in the context of the opti-
mized effective potential method60–71 and more recently in
the context of constrained-search procedures72 at �=0. To
illustrate these effects we examine the exchange-correlation
potentials for the helium atom along the density-fixed range-
independent AC in Fig. 2. The uncontracted aug-cc-pVXZ
basis sets have been employed for both the orbital and po-
tential expansions. The potentials plotted in Fig. 2 represent
the combinations X= 
6,2�, X= 
4,4�, and X= 
2,6�, where
the first number refers to the orbital-basis cardinal number,
Xorb, and the second to the potential-basis cardinal number,
Xpot. For each combination, the potentials for interaction
strengths � from 0.0 to 1.0 are shown in increments of 0.1.

The combination X= 
6,2� may be regarded as unbal-
anced in the sense that the potential basis is much smaller
than that of the orbital-basis; while the potentials for this
combination are smooth, the lack of flexibility in the poten-
tial expansion may limit the variational freedom of the cal-
culation. The combination X= 
4,4� represents a balanced
choice; here a small peak can been seen close to the nucleus,
although the potential is predominantly smooth. It can be
removed by application of the smoothing norm procedure of
Ref. 72 as was done in our previous work.22 The final com-
bination X= 
2,6� is unbalanced in the sense that the poten-
tial basis set is much larger than the orbital basis set; for this
combination the unphysical feature at the nucleus becomes
much larger. Further increasing the size of the potential basis
set can cause these oscillations to grow further.

In Table I we explore the impact of different choices for
the auxiliary potential basis set on the expectation value
W����, which is central to the calculation of the density-
fixed AC in Eq. �14�. Results are presented for �=0.0, 0.5,
and 1.0. Each row represents a choice of orbital basis, with
each column corresponding to a different potential basis. For
each value of � and all choices of orbital basis, it is apparent
that the expectation value is remarkably stable with respect
to variations in the auxiliary basis. Furthermore, these small
variations are largest for �=0 where the potential is largest
�see Fig. 2� and reduce steadily to zero for �=1.0, where the
potential is zero.

The expectation value has much more significant varia-
tion with respect to the orbital basis cardinal number, as
would be expected. For each value of �, we present W����

for orbital basis sets with 2�Xorb�6, along with an estimate
of the basis-set-limit value calculated using the two-point
extrapolation formula

EXY =
X3EX − Y3EY

X3 − Y3 �48�

in Ref. 73 with X=5 and Y =6. These extrapolated results are
denoted �56�; for a discussion of the application of this for-
mula in the context of AC calculations, see Ref. 22. In the
final row for each value of � we have presented the deviation
of the Xorb=4 values from the estimated orbital basis set
limit, denoted by �. For all interaction strengths between 0
and 1 the absolute deviation from this limit is less than 1
mhartree. In light of this analysis we choose the uncontracted
aug-cc-p�C�VQZ basis sets for both the orbital and potential

FIG. 2. Exchange-correlation potentials for the helium atom along the
density-fixed AC with �=0.0–1.0 in steps of 0.1. Pane �a� corresponds to
the basis set combination X= 
6,2� for the orbital basis and potential basis
cardinal numbers, respectively. Pane �b� corresponds to the combination
X= 
4,4� and pane �c� to the combination X= 
6,2�.
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expansions for all of the two-electron systems in this study
and quote all energetic values to a precision of 1 mhartree.
This choice of basis represents a good compromise between
computational efficiency, accuracy, and adequate representa-
tion of the exchange-correlation potential. Finally, we note
that for the potential-fixed AC when calculating the expecta-
tion value W��v�, we fix the potential v at the physical ex-
ternal potential �due to the nuclei� for all values of the inter-
action strength. As such, only the orbital basis set plays a
role in these calculations and similar accuracy is achieved in
the uncontracted aug-cc-p�C�VQZ basis sets.

C. The helium isoelectronic series

The helium isoelectronic series has been extensively
studied and poses a significant challenge for approximate
exchange-correlation functionals, particularly as Z
increases.17,18,74–78 In the present work, we examine the sys-
tems with 1�Z�10 using the uncontracted aug-cc-pCVQZ
basis set,79–82 noting that uncontraction and the use of core-
correlating functions are essential to describe the compact
densities accurately. The total energy and its components are
listed in Table II, for the density-fixed connection �columns
3–9� and the potential-fixed connection �columns 10–12�. In
Fig. 3, we have plotted the total AC integrands W��v� and
W���� for the three connections w�

s , w�
e , and w�

g in Eqs.
�41�–�43�, respectively.

As Z increases in the isoelectronic series, the density
becomes more compact and may, to a good approximation,
be expressed by a scaling of the density in H−:�Z�r�
�Z3�H−�Zr�. Consequently, the energy and its components
increase in magnitude with increasing Z, in an approximately
linear manner—see Table II. The only exception to this be-
havior are the correlation energies, which remain approxi-
mately constant with Z. These observations are in agreement
with well-known scaling relations, such as J���Z�=ZJ���H−�
for the classical Coulomb energy.

Concerning the quality of the one-electron basis set, we
note that the calculated bare-nucleus energy Hs�v� in Table II
differs from the exact bare-nucleus energy Hs�v�=Z2 by less
than 0.001 Eh. Moreover, the virial theorem is satisfied to
better than 1% for H− and better than 0.1% for the remaining
systems.

Comparing the density- and potential-fixed results in
Table II, we first note that Hs�v� is lower than Ts���+ �v ���
by 13% for Z=1, by 3% for Z=2, and by 0.1% for Z=10, in
agreement with Eq. �19�. Likewise, the positive quantity
Hc�v� is several times larger than Tc��� for all Z, in agree-
ment with Eq. �38�. Finally, comparing the positive quanti-
ties �W��v�d���W����d� �see Eq. �20��, we find that the
former is larger than the latter by 27% for Z=1, by 10% for
Z=2, and by 2% for Z=10. As expected, the energy changes
that occur in the potential-fixed system with increasing � are

TABLE I. The variation of the expectation value W���� with choice of orbital and auxiliary potential expansion basis sets for the density fixed AC of the
helium atom. The uncontracted aug-cc-pVXZ basis sets have been used for both expansions. Each row represents the change in the expectation value with for
a given orbital basis cardinal number Xorb as the cardinal number of the potential basis, Xpot, is changed. For the definition of the quantities �56� and � see text.
Exchange-correlation potentials corresponding to the values marked in bold are shown in Fig. 2. All values in atomic units.

Orbital basis Xorb

Potential basis Xpot

2 3 4 5 6

�=0 .0
2 1.017 678 1.017 700 1.017 709 1.017 707 1.017 707
3 1.023 222 1.023 224 1.023 232 1.023 229 1.023 230
4 1.024 084 1.024 084 1.024 084 1.024 086 1.024 085
5 1.024 359 1.024 359 1.024 359 1.024 359 1.024 359
6 1.024 472 1.024 472 1.024 472 1.024 472 1.024 472
�56� 1.024 628 1.024 628 1.024 628 1.024 628 1.024 628

�=W�
4 −W�

�56� �0.000 544 �0.000 544 �0.000 543 �0.000 542 �0.000 543

�=0 .5
2 0.981 488 0.981 504 0.981 511 0.981 509 0.981 510
3 0.982 082 0.982 084 0.982 086 0.982 085 0.982 086
4 0.981 591 0.981 585 0.981 591 0.981 592 0.981 591
5 0.981 393 0.981 393 0.981 393 0.981 393 0.981 393
6 0.981 293 0.981 293 0.981 293 0.981 293 0.981 293
�56� 0.981 155 0.981 155 0.981 155 0.981 155 0.981 155

�=W�
4 −W�

�56� 0.000 436 0.000 430 0.000 436 0.000 437 0.000 436

�=1 .0
2 0.949 929 0.949 929 0.949 929 0.949 929 0.949 929
3 0.947 658 0.947 658 0.947 658 0.947 658 0.947 658
4 0.946 580 0.946 580 0.946 580 0.946 580 0.946 580
5 0.946 225 0.946 225 0.946 225 0.946 225 0.946 225
6 0.946 065 0.946 065 0.946 065 0.946 065 0.946 065
�56� 0.945 844 0.945 844 0.945 844 0.945 844 0.945 844

�=W�
4 −W�

�56� 0.000 735 0.000 735 0.000 735 0.000 735 0.000 735
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larger in the corresponding density-fixed system. Physically,
these relations may be understood from the observation that
the density of the potential-fixed noninteracting system is
more compact than that of the density-fixed system. We also
note that the differences between the potential- and density-
fixed quantities are largest for Z=1, which has the most dif-
fuse electron density. This behavior may be understood from
the observation that in anionic systems, the diffuseness of the
electron density arises from electron repulsion, which is ne-
glected in the noninteracting limit, generating a too compact
density in the potential-fixed connection.

A further comparison of the density- and potential-fixed
ACs is given in Fig. 3, where we have plotted W��v� and
W���� against � for 1�Z�10, where w�

s is in pane �a�, w�
e

in pane �b�, and w�
g in pane �c�. The density- and potential-

fixed integrands are very similar and we note that for all
values of � and all three connections, W��v��W����, as
may be rationalized by observing that the density becomes
more compact in the potential-fixed AC as the electronic
interactions are turned off.

Comparing the AC curves arising from the different
choices of w� in Fig. 3, we recall that each curve represents

the expectation value of Ŵ�� with �̂�
� or �̂�

v, optimized with

the two-electron operator Ŵ�. The standard connection w�
s in

pane �a� yields nearly straight lines, with a larger slope in the
potential-fixed case �dashed lines� than in the density-fixed
case �full lines�, representing a situation where the interac-
tions are turned on uniformly for all interelectronic separa-
tions. The w�

e curves in pane �b� give the same total interac-
tions as those in pane �a� but have very different shapes since
the interactions are now first turned on for large interelec-
tronic separations and subsequently for short separations.
The AC curves are therefore no longer linear but contain a
peak at that value of � where most of the interactions are
recovered. For Z=1, the peak is broad and occurs already at
��0.1, reflecting the large range of interelectronic separa-
tions that contribute to the interactions in this diffuse system.
For the most compact system with Z=10, there is a sharp
peak at ��0.87, indicating that most interactions occur at
about 0.2a0–0.3a0. The w�

g plots in pane �c� are similar to
those in pane �b� but have shaper peaks, reflecting the higher

locality of w�
g�, see Fig. 1.

For the density-fixed AC, we consider separately also the

TABLE II. Energy components of the helium isoelectronic series in the uncontracted aug-cc-pCVQZ basis �atomic units�.

Z Etot�Z� Ts��� �v ��� �W����d� J��� Ex��� Ec��� Tc��� Hs�v� �W��v�d� Hc�v�

1 �0.527 0.502 �1.374 0.345 0.773 �0.386 �0.041 0.028 �1.000 0.473 0.155

2 �2.903 2.865 �6.751 0.983 2.048 �1.024 �0.041 0.036 �4.000 1.097 0.150

3 �7.279 7.238 �16.126 1.609 3.302 �1.651 �0.042 0.039 �9.000 1.721 0.152

4 �13.654 13.613 �29.501 2.234 4.553 �2.277 �0.043 0.041 �16.000 2.346 0.153

5 �22.030 21.987 �46.875 2.858 5.804 �2.902 �0.043 0.041 �25.000 2.970 0.153

6 �32.405 32.361 �68.249 3.483 7.054 �3.527 �0.044 0.042 �36.000 3.595 0.154

7 �44.780 44.735 �93.623 4.108 8.304 �4.152 �0.044 0.042 �49.000 4.220 0.154

8 �59.155 59.109 �122.998 4.733 9.554 �4.777 �0.044 0.043 �64.000 4.845 0.154

9 �75.530 75.484 �156.372 5.359 10.805 �5.402 �0.044 0.043 �81.000 5.470 0.154

10 �93.905 93.859 �193.747 5.984 12.055 �6.027 �0.044 0.043 �100.000 6.095 0.154

FIG. 3. AC curves �atomic units� W���� �full lines� and W��v� �dashed
lines� for the helium isoelectronic series with 1�Z�10 for w�

s in pane �a�,
for w�

e in pane �b�, and for w�
g in pane �c�. In all panes, the curves increase

with increasing Z.
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exchange-correlation and correlation contributions to the full
AC curve: W����=Wxc,����+Wc,����. In Fig. 4, we have
plotted W�

s ���, W�
e���, and W�

g��� and their exchange-
correlation and correlation contributions for the helium iso-
electronic series. The W�

s ��� curves in pane �a� are positive
and nearly constant since the dominant Coulomb and ex-
change energies increase linearly with � :W�

s ����J1���
+Ex,1���=J1��� /2. The exchange-correlation curves in pane
�b� are dominated by the exchange energy Wxc,�

s ���
�Ex,1��� and are approximate mirror images of the curves in
pane �a�.

Pane �c� in Fig. 4 shows the correlation-only integrand
Wc,�

s ��� for the helium isoelectronic series, on a much larger
scale than that used in panes �a� and �b�. The curvature of the
H− curve is much more pronounced than for the other spe-
cies; as Z increases, the density accumulates close to the
nucleus and the curves become more linear. This behavior
can be understood from the relation Ec��Z��Z2Ec,1/Z��H−�,
which follows from the observed scaling of �Z with increas-
ing Z and a general scaling relation of the correlation

energy.83 For larger Z, the AC effectively explores a smaller
� interval of some approximately universal AC curve valid
for all Z. Consequently, these curves become more linear
with increasing charge as the system approaches the high-
density limit. This trend toward linearity and the rate at
which it occurs are clear in Fig. 4. We note that linearity of
the correlation AC curve means that the correlation energy
increases quadratically with �, as expected from the validity
of second-order Görling–Levy perturbation theory55,56 for
these systems.

In the range-dependent error-function curves in the sec-
ond row of Fig. 4, long-range interactions are recovered for
small values of �, while short-range interactions are recov-
ered for large � values. For the total integrand W�

e��� in pane
�d�, the height of the peak increases and moves to the right
with increasing Z, as the density contracts and the interac-
tions become more short-ranged. As for the standard connec-
tion w�

s , the exchange-correlation in pane �e� is an approxi-
mate mirror image of the total curve in pane �d�: Wxc,�

e ���
�−W�

e���. The range separation induced by the error func-

FIG. 4. AC curves �atomic units� for the helium isoelectronic series with 1�Z�10 for w�
s in panes �a�–�c�, for w�

e in panes �d�–�f�, and for w�
g in panes �g�–�i�.

For each AC, we have plotted the total curve W���� to the left, the exchange-correlation curve Wxc,���� in the middle, and the correlation curve Wc,���� to
the right. In panes �a�, �d�, and �g�, the curves increase with increasing Z; in the other panes, the curves may be distinguished by noting that the same color
scheme is used in all panes.
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tion is particularly pronounced for the correlation curves
Wc,�

e ��� in pane �f�, where the plotting scale is about 50
times larger than in panes �d� and �e�.

To understand the behavior of the error-function curves

at the end points, we note that w0
e��rij�=2 /��, implying that

Tr Ŵ0��̂=N�N−1� /�� and J0���=N2 /��. It follows that
W0

e���=N�N−1� /��, Wxc,0
e ���=−N /��, and Wc,0

e ���=0 for
a noninteracting N-electron system. In the interacting limit,

all integrands vanish since w1
e��rij�=0. We have thus estab-

lished a way to transform the shape of the AC such that the
noninteracting and interacting points are known constants.
This behavior contrasts with the standard connection, in
which the noninteracting point is a two-electron expectation
value with the noninteracting wave function, whereas the
interacting point is the expectation value of the two-electron
operator with the fully interacting wave function.

The curves in the final row of Fig. 4 show the ACs for
the Gaussian-attenuated error-function connection of Eq.
�43�. As expected from a comparison of the plots in Fig. 1,
the AC curves based on w�

g in panes �g�–�i� are more sharply
peaked and more highly localized than those based on w�

e in
panes �d�–�f�. Gaussian attenuation yields AC curves that
vanish in both limits. Otherwise, the behavior is similar to
that of the error-function curves—as Z increases, the peak in
the connection rises and moves to the right. Although, we
note the presence of two peaks in the correlation curves.

D. The hydrogen molecule

Having explored dynamic correlation in the high-density
limit for two-electron systems in Sec. III C, we now explore
the transition from dynamic correlation to static correlation
by stretching the H2 molecule. The H2 molecule is a proto-
typical system that can be considered as representative for
the dissociation of electron-pair bonds in general. The fully
interacting wave function �1 is a singlet at all geometries,84

consistent with ���r�=���r�=��r� /2, as is imposed in spin-
restricted Kohn–Sham theory. In the present work, all calcu-
lations use the restricted formalism. For a more detailed dis-
cussion, see Ref. 22. We now examine the AC curves for the
bond lengths R=0.7, 1.4, 3.0, 5.0, 7.0, and 10.0 �in units of
a0� for the different choices of two-electron interaction in
Eqs. �41�–�43�. In all calculations, the aug-cc-pVQZ basis
set79–81 is used.

The H2 energy and its components are listed in Table III,
in the same way as for the helium series in Table II. At
equilibrium, Hs�v� is 2% lower than Ts���+ �v ���, Hc�v� is
three times larger than Tc���, and �W��v�d� is 9% larger
than �W����d�. These results are similar to that of the he-

lium atom �Z=2� in Table II. However, as R increases, the
differences between the two connections become smaller un-
til they vanish in the dissociation limit. Thus, at R=10a0,
Tc��� and Hc�v� are both smaller than 0.001 Eh; in the dis-
sociation limit, these two correlation corrections vanish and
Ts���+ �v ���=Hs�v�. Concerning the two-electron interac-
tions, we note that �W����d���W��v�d��1 /R at large R;
at R=10a0, this relation holds to within 0.001 Eh. At this
separation, �W����d� consists of a dominant positive Cou-
lomb interaction J���=0.725 Eh of which 0.625 Eh is self-
interaction, which is subsequently cancelled by exchange
Ex���=−J��� /2=−0.362 Eh and static correlation Ec���
=−0.262 Eh.

In Fig. 5, we have plotted W�
s �v�andW�

s ��� in pane �a�,
W�

e�v�andW�
e��� in pane �b�, and W�

g�v�andW�
g��� in pane

�c�. For the short bond distances R=0.7a0 and 1.4a0, the
shape of the AC curves W�

s ��� and W�
s �v� in pane �a� are

similar to those for helium in pane �a� of Fig. 3 and are
indicative of the quadratic dependence of dynamical correla-
tion energy on �. However, as the bond is stretched, the
curves in pane �a� bend more sharply, the changes as a func-
tion of � becoming localized to the low-� end of the curves.
At R=10a0, the density- and potential-fixed AC curves coin-
cide �following the above discussion�. Except for very small
coupling strengths, the two curves are horizontal at
0.100 Eh, reflecting the complete absence of dynamical cor-
relation in this system.

Turning our attention to the range-separated AC curves
in panes �b� and �c� of Fig. 5, we note how long-range inter-
actions become more dominant with increasing separation R.
This behavior is particularly pronounced for the Gaussian-
attenuated error-function curves, which develop a semidis-
continuity at ��0.43 for R=10.0a0. For �	0.43, the w�

g

operator only samples interactions between electrons located
less than about 8a0 apart. Since there are few such interac-
tions in a system consisting of two hydrogen atoms 10a0

apart, the W���� curve drops to zero around �=0.43. Com-
paring the density- and potential-fixed curves in panes �b�
and �c�, we note that peaks in the potential-fixed curves ap-
pear at slightly larger � values, reflecting the more compact
electron density in the potential-fixed case for ��1. Finally,
we note that the end points in the range-separated curves are
the same as for the helium series in Fig. 3, being dictated by
the number of electrons.

We now turn our attention to Fig. 6, where we have
plotted the total density-fixed AC curves and their exchange-
correlation and correlation contributions for H2, in the same
manner as for the helium series in Fig. 4. We consider first

TABLE III. Energy components of the H2 molecule in the aug-cc-pVQZ basis �atomic units�.

R Etot�R� Ts��� �v ��� �W����d� J��� Ex��� Ec��� Tc��� Hs�v� �W��v�d� Hc�v�

0.7 �0.921 1.731 �4.869 0.788 1.653 �0.827 �0.039 0.033 �3.222 0.872 0.117
1.4 �1.174 1.141 �3.650 0.621 1.323 �0.661 �0.041 0.033 �2.568 0.680 0.093
3.0 �1.057 0.828 �2.619 0.400 0.955 �0.477 �0.077 0.042 �1.822 0.431 0.073
5.0 �1.004 0.953 �2.382 0.226 0.820 �0.410 �0.184 0.022 �1.449 0.245 0.042
7.0 �1.000 0.993 �2.284 0.147 0.767 �0.384 �0.236 0.005 �1.297 0.154 0.011

10.0 �1.000 1.000 �2.199 0.100 0.725 �0.362 �0.262 0.000 �1.201 0.101 0.001
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the range-independent curves in the first row. In pane �a�,
W�

s ��� has been plotted in the same manner as in Fig. 4;
here, the AC curves fall with increasing R. In pane �b�, we
have removed the Coulomb contribution and plotted
Wxc,�

s ���. Since the Coulomb and exchange contributions de-
crease in magnitude with increasing R, while the correlation
contribution increases, the curves now cross but may be dis-
tinguished by noting that Wxc,0

s ��� increases with increasing
R. Finally, in pane �c�, the exchange contribution has also
been removed, illustrating how the correlation contribution
Wc,�

s ��� increases in magnitude as the bond is stretched. At
dissociation, correlation is entirely static and Tc,1���=0, not-
ing that the area between a horizontal line at the Wc,1

s ���
value and the curve represents Tc,1���. At dissociation, the
curve would fall immediately to the exchange energy of a

hydrogen atom and then become horizontal, as is required to
cancel the spurious self-interaction energy in a restricted for-
malism.

The second row of Fig. 6 shows the range-separated AC
curves corresponding to the error-function attenuated opera-
tor in Eq. �42� for the various geometries of H2. It is note-
worthy that for the exchange-correlation curve Wxc,�

e ��� in
pane �e�, oscillations begin to appear in the low � regime for
the two longest bond lengths. As for the helium series in Fig.
4, we have transformed the AC into a form with known end
points but a more complicated path. Subtraction of the ex-
change contribution yields the correlation curves Wc,�

e ��� in
pane �f�. For R=0.7 and 1.4a0, the curves are similar to the
helium curves in Fig. 4. As we stretch the bond the density
becomes more diffuse, the peak becomes more negative, and
moves to the left, analogous to the behavior for descending
nuclear charge in the helium isoelectronic series. The inter-
pretation of this behavior was given in Sec. III C and similar
arguments apply here. As static correlation becomes domi-
nant in pane �f� of Fig. 6, the area under the curve becomes
larger and spreads over more of the � range with large con-
tributions below �=0.3, which were essentially negligible at
short bond lengths, where dynamic correlation is dominant.

In the last row of Fig. 6, the curves corresponding to the
Gaussian-attenuated error-function connection in Eq. �43�
are presented. For short bond distances, the AC curves are
simple in structure; as the bond stretches, the curves become
more complicated as semidiscontinuities and oscillations de-
velop. At R=10a0, the total AC curve W�

g��� vanishes for
��0.43, reflecting the physical separation of the electrons in
two atoms. By contrast, the Wxc,�

g ��� and Wc,�
g ��� curves are

more complicated, illustrating how the total AC curve W�
g���

vanishes for large � by an intricate cancellation of classical
Coulomb with non-classical Coulomb contributions that
arise from exchange and static correlation.

E. The relevance of range-dependent ACs to
range-separated approaches

The density-fixed ACs presented here correspond to the
link from the noninteracting Kohn–Sham system to the
physical interacting system. In the range-separated ap-
proaches proposed by Savin,28 one instead begins from a
partially interacting system by decomposing the universal
density functional as

F�
���� = F���� + 	

�

�

W
���d
 , �49�

where F���� with 0���� is defined as before in Eq. �5�,
whereas W
���=F
���� is given in Eq. �18�. We may further
decompose the last term in Eq. �49� in the usual manner, into
Coulomb and exchange-correlation contributions

	
�

�

W
���d
 = J�
���� + Exc,�

� ��� , �50�

where by analogy with Eqs. �24� and �30� we have defined

J�
���� =

1

2
	 	 �w��r12� − w��r12����r1���r2�dr1dr2, �51�

FIG. 5. AC curves �atomic units� W���� �full lines� and W��v� �dashed
lines� for H2 with R=0.7a0, 1.4a0, 3.0a0, 5.0a0, 7.0a0, and 10.0a0 for w�

s in
pane �a�, for w�

e in pane �b�, and for w�
g in pane �c�. In all panes, the curves

fall with increasing R at �=0.8.
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Exc,�
� ��� = 	

�

�

Wxc,
���d
 . �52�

When w��r12� represents the long-range Coulomb operator,
then J�

���� and Exc,�
� ��� are the short-range Coulomb and

exchange-correlation contributions, respectively, calculated
from the short-range w��r12�−w��r12� operator.

The short-range contributions of interest in range-
separated approaches are therefore obtained simply by
choosing a value of � �or equivalently �; see the discussion
below Eq. �46�� greater than zero to define a partially inter-
acting system with a long-range component of the two-
electron interaction. Integration over the remainder of the
W���� AC from this value to �	� gives the short-range
complement to the Coulomb and exchange-correlation ener-
gies. Subtraction of the short-range Coulomb and/or ex-
change contributions gives the corresponding exchange-
correlation or correlation-only ACs. The ACs of the present
work are therefore of direct relevance to range-separated
methodologies, the AC path being defined by the choice of
long-range interaction, typically chosen to be the erf or erf-

gau attenuated operators as have been examined here. Many
other choices of long-range interaction are of course
possible—see, for example, the work of Baer and
Neuhauser85 who recently used the generalized AC with an
alternative form for the interaction to establish a class of
density functionals with correct long-range asymptotic be-
havior. A similar division can, of course, also be made for the
standard linear AC, although the resulting hybrid theories
would not emphasize the range of the interaction, only the
strength of the interactions due to the uniform manner in
which the interactions are introduced with �, see Fig. 1.
Analogous hybrid theories can also be constructed for the
potential-fixed case for each choice of the two-electron inter-
action.

The behavior of the generalized ACs in Fig. 6 suggests
that static and dynamic correlation are not easily divided by
range-separated operators, as attempted in hybrid short-range
DFT and long-range wave function approaches. Whereas dy-
namic correlation in H2 is predominantly a short-range ef-
fect, static correlation arises from a complicated interplay of
short- and long-range interactions, as illustrated in panes �f�

FIG. 6. AC curves �atomic units� for H2 at nuclear separations R=0.7a0, 1.4a0, 3.0a0, 5.0a0, 7.0a0, and 10.0a0 for w�
s in panes �a�–�c�, for w�

e in panes �d�–�f�,
and for w�

g in panes �g�–�i�. For each AC, we have plotted the total curve W���� to the left, the exchange-correlation curve Wxc,���� in the middle, and the
correlation curve Wc,���� to the right. In panes �a�, �d�, and �g�, the curves fall with increasing R at �=0.8; in the other panes, the curves may be distinguished
by noting that the same color scheme is used in all panes.
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and �i� in Fig. 6. This observation rationalizes to some extent
the success of range-separated approaches in treating disper-
sion �long-range dynamic correlation is missing in local and
semilocal DFT� and their failure in describing bond dissocia-
tion �where static correlation dominates�.

We note that in pane �f� of Fig. 6 the error-function AC
for the correlation energy becomes small for the values of �
in the range 0.25���0.3 for the two shortest bond lengths.
This corresponds to �=� / �1−�� in the range 0.33��
�0.42, consistent with the optimal values delivered by the
prescription of Fromager et al.,37,38 which are typically in the
range 0.3���0.4, depending on the system considered.
Furthermore, these values are consistent with those used in
the LC functionals of Hirao et al.40 and in the CAM-B3LYP
functional,44,45 in which only the exchange contribution to
the functional is range separated, the correlation being
treated in a standard manner. Since the correlation parts of
these functionals cannot describe long-range dynamic corre-
lation or static correlation but do account for short-range
dynamic correlation, it is perhaps unsurprising that the opti-
mization of � for molecules close to their equilibrium geom-
etries also results in a value in this range. Such values of �
improve the description of the long-range exchange contri-
butions while larger values would compromise the descrip-
tion of short-range dynamic correlation which is dominant
for these systems. From the figures presented in the present
work, we expect the optimal � value to depend strongly on
the compactness or diffuseness of the electronic density and
as such this value should not be a fixed parameter, an idea
which was recently explored by Krukau et al.86 and Hender-
son et al.87 However, the implementation of such functionals
is much more involved.

IV. CONCLUSIONS

We have examined the AC for generalized, range-
dependent two-electron interactions, in potential- and
density-fixed formulations. The helium isoelectronic series
and the stretching of the hydrogen molecule were investi-
gated. These prototypical systems exhibit a range of densities
�diffuse and compact� and types of correlation �dynamic and
static�. In each case, the total energy was decomposed into its
individual components, comparing quantities relevant in PFT
and DFT. Standard, range-independent AC curves were com-
pared with range-dependent curves obtained by attenuating
the two-electron interaction with the error function and with
a Gaussian-attenuated error function. For the helium isoelec-
tronic series, the range-dependent ACs displayed a peak that
moved to large values of the interaction strength � as the
density became more compact; these peaks being most com-
pact for the Gaussian-attenuated error function. For H2, this
peak moved to smaller � values as the bond was stretched
and static correlation began to dominate; the striking feature
of the Gaussian-attenuated curves being the development of
a semidiscontinuity for large bond distances R.

The density-fixed ACs were then further decomposed
into their exchange-correlation and correlation-only contri-
butions. For the helium series, the exchange-correlation ACs
were similar to the negative of the full ACs �owing to the

fact that the exchange interaction is dominant in these sys-
tems and equal to minus one-half of the Coulomb contribu-
tion�. For H2, a similar situation was observed for small in-
ternuclear distances. However, as the bond was stretched, the
ACs exhibited a more complicated structure due to the in-
creasing role of static correlation.

Perhaps the most instructive ACs in the present work are
those corresponding to the correlation energy. For the stan-
dard AC of the helium isoelectronic series, the shape of these
curves was understood by noting that as Z increased, the
correlation energy could be described more and more accu-
rately by the second-order Görling–Levy perturbation theory.
For the range-dependent ACs, the curves revealed that cor-
relation interactions in these systems are shorter ranged than
the Coulomb and exchange interactions. In addition, as Z
increased, the correlation contributions became localized to
the high-� end of the connection, consistent with the short-
ranged interactions in the increasingly compact densities.

For small internuclear separations, the H2 correlation-
only AC curves were similar to those of the helium atom.
With increasing R and increasing static correlation, the stan-
dard connection bent more sharply until, at dissociation, it
would drop immediately from zero to the exchange energy of
a hydrogen atom and remain at this value for all �	0. With
increasing R and increasing importance of longer-range in-
teractions, the corresponding error-function curve displayed
a broad peak that moved to smaller � values but without
localizing at this end of the connection. For the Gaussian-
attenuated error-function connection, the correlation AC dis-
played a complicated structure, evolving a semidiscontinuity
as R increased. Both observations are consistent with the fact
that the role of static correlation is to account for deficiencies
arising from the use of a single determinant to describe the
system and as such cannot be localized to a specific range.
For H2 in a restricted formalism, this deficiency is mani-
fested by the spurious self-interaction error. Implications for
the description of static correlation by range-separated ap-
proaches were discussed in Sec. III E.

In the present work, we have utilized the error-function-
based operators to modify the electronic interaction, rather
than to attempt its separation. The extent to which this ap-
proach is helpful for the development of exchange-
correlation functionals for practical use by modeling these
connections in a similar manner to the approach in Ref. 88 is
being investigated. However, the ability to relate the features
of these integrands to features of the electronic densities, in
addition to their end points corresponding to known con-
stants, would seem to offer some promise. Of the two alter-
natives considered in the present work, the error-function-
based connection appears to be the better candidate for future
development of functionals based on modeling the AC inte-
grand owing to the relatively smooth behavior of its correla-
tion integrand.
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