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ABSTRACT: The flow of GPS data on animal space is challenging old
paradigms, such as the issue of the scale-free Lévy walk versus scale-
specific Brownian motion. Since these movement classes often re-
quire different protocols with respect to ecological analyses, further
theoretical development in this field is important. I describe central
concepts such as scale-specific versus scale-free movement and the
difference between mechanistic and statistical-mechanical levels of
analysis. Next, I report how a specific sampling scheme may have
produced much confusion: a Lévy walk may be wrongly categorized
as Brownian motion if the duration of a move, or bout, is used as
a proxy for step length and a move is subjectively defined. Hence,
the categorization and recategorization of movement class compli-
ance surrounding the Lévy walk controversy may have been based
on a statistical artifact. This issue may be avoided by collecting re-
locations at a fixed rate at a temporal scale that minimizes over- and
undersampling.

Keywords: Lévy walk, Lévy flight, Poisson process, animal foraging,
animal movement.

Introduction

From the perspective of a biological journal, this note is
starting from an unexpected location: a description of a
moving robot (cybernetics) is connected to some basic
principles of statistical mechanics (physics) before landing
at the core message (biology). The motivation for this
broadened approach is shared by an increasing number
of ecologists who seek a better integration of physics and
biology in analyses of animal movement (Gautestad and
Mysterud 2005; Getz and Saltz 2008; Nathan et al. 2008;
Struve et al. 2010; Petrovskii et al. 2011). For example,
the Lévy flight foraging hypothesis (Viswanathan et al.
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1999; Humphries et al. 2010, 2012; Sims et al. 2012) ex-
plicitly builds on adaptive switching between the physical
models Brownian motion (BM) and Lévy walk (LW) under
different environmental conditions. In the context of this
note, LW and Lévy flight can be considered synonymous.
In a resource-poor environment where food is randomly
scattered and unpredictable, the occasional very long steps
of LW are advantageous for food detection since a given
total movement path covers a larger area than a BM path
of similar accumulated length (BM, LW, and other con-
cepts appearing in this outline will be defined in the next
two sections). However, to what extent animals are actually
performing LW is a controversial theme (Viswanathan et
al. 2011), which will come into focus in the second part
of this note.

Large GPS samples of individual locations, or fixes, cou-
pled with high-resolution and multilevel GIS data, provide
a rapidly expanding empirical database. However, what do
the data provide us beyond descriptive analyses? What is
the predictive power of the respective models for space-
use dynamics? A wide range of sophisticated models are
emerging (Fryxell et al. 2008; Gautestad and Mysterud
2010b), and old ones are subject to acid testing against
the broader and better data material (Humphries et al.
2010; Sims et al. 2012). For example, biological models
on animal space use, such as BM and diffusion, have been
traditionally built on theory from physics of scale-specific
statistical mechanics. But physicists may also be drawn to
the recent series of GPS results indicating scale-free rather
than scale-specific movement (see below), “particles” that
move in a manner leading to complex but statistically
consistent spatial patterns of space use, apparently stretch-
ing the theory of nonequilibrium statistical mechanics be-
yond its limits (Gautestad and Mysterud 20104; Gautestad
2012b).

To illustrate one particular challenge, figure 1 indicates
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Figure 1: A simulated series of N = 10* spatial relocations of a Lévy walk, where the next move length L,y = a(1 — rnd)"*"", with

o = land B = 2 (rnd is a random number between 0 and 1). A maximum step length of L

‘max

= 40,000 length units (identical in magnitude

to the length scale of the area shown) was imposed, but this maximum length was not reached by any of the steps in the series. Successive
relocations (representing fixes in GPS terminology) are connected by line segments. The segment circled in red represents an example of
a period (N = 70) with apparently little movement from the perspective of the complete track but with microscale displacements at a fine

spatial resolution (inset).

how scale-free movement will make it problematic to apply
the local density of fixes as a proxy for local habitat pref-
erence. Density will vary in a self-similar (fractal) manner,
leading to fix aggregations over a range of scales even in
a completely homogeneous environment. The increased
fix density variance from scale-free movement, relative to
expectation based on standard BM-based diffusion, will
require novel approaches to ecological inference based on
analysis of GPS fixes. For example, Gautestad and Mys-

terud (2010b) proposed an index for local intensity of
space use that adjusts for the scaling complexity by com-
paring density of fixes at two spatial resolutions. Two lo-
calities may have similar fix density, but the fixes may have
different “clumping intensity.”

Below I provide a brief summary of some central con-
cepts related to scale-specific and scale-free habitat utili-
zation and show how a specific method to test for Lévy
walk (LW), an example of scale-free space use, may have
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contributed to some of the confusion and controversy in
statistical analyses of animal movement. In particular, LW
may have been wrongly classified as BM.

Markov the Robot

Consider an animal, represented by a robot called Markov,
moving unidirectionally by default but responding to en-
vironmental conditions in a deterministic and strictly rule-
following manner. For example, when an obstacle is
reached, Markov decides to move to the right or left, based
on which direction seems to offer the optimal choice (e.g.,
Markov would move to the left if fewer obstacles were
sensed in that direction). During some intervals and over
some locations, the interrupts may be more frequent than
during other intervals and over other places, implying en-
vironmental heterogeneity. Further consider that a se-
quence of this path is successively resampled by recording
the location at constant time intervals ¢, , where £,  is
substantially greater than the mean time interval ¢ between
direction-influencing events (this is often the case for GPS
fixes of animals, which may have ¢, of hours rather than
seconds or minutes). Next, study the step-length distri-
bution by plotting the total sample of step lengths into
respective size categories L, L,, L;, ... where each L; rep-
resents a unit interval called a “bin” (a larger j means a
longer step length). Of particular interest is the shape and
steepness of the large-step (“tail”) part of the distribution
F(L)), over the range of j where L;is greater than the median
step length. If ¢,  and the sample size are both sufficiently
large, the number of steps falling into a given bin L; will
tend to be, based on the rules given for Markov above, a
given percentage smaller than the number in the preceding
bin L. In other words, in the long run, the tail fits a
Poisson distribution, characterized by a negative expo-
nential curve, which is typical for a scale-specific process.

In this manner, a study of a sample of fixes would reveal
a lot about Markov the robot’s behavior. For example, the
fact that Markov both perceives and responds to its en-
vironment within a narrow-scale range in time and space,
characterizing a scale-specific kind of space use, would be
revealed owing to the choice of a sufficiently large ¢
Consequently, the focus would shift from the mechanistic
to the statistical-mechanical level, bringing our study from
the biological (behavior-characterized) microscales to the
physical mesoscales. From the perspective of ¢, > t/, the
successive lengths that appear from connecting line seg-
ments between fixes would no longer reflect successive
behavioral decisions about if and where to move but would
comply with a BM process. BM is statistical mechanical
(and thus physical) by nature, not biological. In short, a
given step length represents the resultant vector from a
series of unknown intermediate move-related decisions,

leading to unsampled zigzagging in a more or less het-
erogeneous spatial “field” of Gaussian-dispersed path in-
terrupts. This leads to an exponential variation of observed
step lengths at the statistical-mechanical level ¢, (see “Sta-
tistical-Mechanical Aspects of GPS Data” in the appendix,
available online).

In simulation examples to be shown below, I contrast
BM with so-called scale-free movement, leading to differ-
ent statistical-mechanical functions and parameters. This
kind of physical-level information can be accessed only
with great difficulty by analyzing the myriad behavioral
events directly at biological microscales, where the indi-
vidual actually interacts with its environment (Gautestad
2011; Petrovskii et al. 2011). I also propose how an explicit
consideration of the statistical-mechanical properties of
animal space use may contribute to resolving some of the
controversy on scale-specific versus scale-free foraging
bouts by individuals.

Scale-Specific Versus Scale-Free Movement:
A Concept Walk-Through

The mechanistic rules that Markov the robot executes in
a deterministic (nonstatistical) manner do not contain any
rule for the exponential distribution of step lengths. On
the contrary, there is no intrinsic rule for step termination
at all; Markov moves till interrupted by an external ob-
stacle. The average distance between interrupts, which may
vary locally over many kinds of habitat, invokes one of
nature’s statistical laws: the central limit theorem. Expo-
nential step-length distribution becomes an emergent
property, resulting from the observer’s choice to follow
displacements at a scale 7., that is larger than the interrupt
“field,” which in turn emerges as a result of environmental
interactions on temporal scale ¥ on average. The Mar-
kovian algorithm for movement may be simple (as above)
or very extensive, involving a large set of rules for various
types of events. However, if each direction-influencing de-
cision is independent of previous decisions, this menagerie
of potential rules will lead to a qualitatively similar pattern
at statistical-mechanical scales t, > t', a negative expo-
nential distribution of step lengths.

By purpose I defined Markov the robot’s rules to be
deterministic. The reason was to clarify a common mis-
conception: when modeling animal movement by Brown-
ian motion, this choice does not imply that the behavior
behind the movement is assumed to be random and
drunken walker—like. There may—or may not—be an el-
ement of stochasticity in all or some of the elements of
the movement rules, but that is not crucial for the pattern
that is observed at the statistical-mechanical level ¢, >
t'. A BM model represents a simplification of scale-specific
space-use dynamics at the expense of mechanistic details.
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Interestingly, a BM path that is sampled at a larger ¢, is
still a BM (Turchin 1998). The spatial pattern of fixes is
self-similar (a statistical fractal; Mandelbrot 1983), despite
the fact that the process as such is scale-specific owing to
the characteristic disturbance scale .

In physics, the average length moved between direction-
influencing events is called the mean free path, a central
concept for statistical mechanics. In biology, this charac-
teristic spatial scale and its temporal complement ¢ has
an important meaning as well: an animal foraging in a
resource-rich locality is expected to show a more strongly
jagged path (Turchin 1998; Barraquand and Benhamou
2008) and, consequently, a smaller net displacement dur-
ing an interval ¢, than in a more resource-sparse habitat.

Recall that the robot Markov was defined to move uni-
directionally between environmentally invoked interrupts,
and the BM appeared as a result of successive interactions
with its environment at the scale of the mean free path.
Then consider an alternative movement principle, Lévy
walk, which is characterized by steps of length L that, on
average, are taking place 1/[° as often, with 1 <3< 3. 3
is expressing how “steeply” the frequency of larger steps
occur, relative to any chosen length L larger than the me-
dian length. For example, if we chose a bin representing
step lengths in the interval 100-200 m (average 150 m)
and compare the number of steps in this interval with
those in the next bin comprising step lengths of 200-300
m (average 250 m), we expect (150/250)> = 0.36 as many
steps in the larger bin if § = 2. Since this “ratio” rela-
tionship between two L; is independent of which index j
we choose to compare it with (j + 1, in our example), the
movement is scale free over the range of L, where (8 is
constant.

LW is expressing a power-law tail of the distribution
rather than an exponential tail: F(L;) = CL;B and 1 <B<
3 (where c is a scaling constant that is reflecting median
step length). In logarithmic form, this becomes
log [F(L))] = —B"log(L;) +log (c). Thus, the distribution’s
tail becomes linear under log transformation, with a slope
—pB. Both very short and very long steps become more
predominant in comparison to the exponential distribution
from a BM process. In spatial terms, the scale-specificity of
a BM is expressed by N in the exponential function
F(L;) = Ne ", where \ is inversely proportional to the av-
erage step length (a larger N implies smaller steps). Under
log transformation, this becomes log [F(L;)] = —\L;+
log (N). This kind of exponential tail is less “fat,” or far less
elongated, than a power-law tail. The inverse parameter,
1/N, represents the process’ scale-specificity and is positively
correlated with the mean free path. For example, while the
LW step distribution is scale free owing to a constant ratio
relation (divide one L; with another and a pure number
remains, without metrics such as m or km), a BM distri-
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bution changes relative to AL;, which expresses a specific
length scale such as m or km, when transformed to N' =
/N

Theoretically, the scale-free property of LW should be
observable only at finer scales than the mean free path,
since direction-influencing factors in the environment will
tend to terminate long steps more prematurely the higher
the spatial density of such factors (Reynolds and Rhodes
2009). In other words, when an LW path is sampled at
coarser spatial scales than ¢, the more familiar exponential
decay of step lengths in F(L) that characterizes BM is
expected. The principle is the same as described above for
unidirectional (rather than IW) movement by Markov the
robot when observed at t, > t". Hence, LW may be ob-
served over a limited temporal scale range, and the mean
free path sets a limit to the bin range j where F(L)) is scale
free. Hence, to expect a power-law distribution, t,,, should
be larger than the microresolutions where Markov-com-
pliant movement behavior (the mechanistic rules) may be
studied in order to ensure a statistical-mechanical level of
analysis. Further, £, should be smaller than the mean free
path. This scale window means that IW becomes more
complex to study than a scale-specific process like BM. As
a consequence of this sampling scale sensitivity, the dis-
tribution of step lengths should reflect the following pro-
gression in the observed distribution of step lengths: LW
(power-law tail for t, < t’ but larger than the Markov
resolution), truncated IW with a power-law tail, but a
tendency for cutoff in the form of an exponential tail
toward the largest bins (when ¢, is somewhat smaller than
), toward BM (pure exponential tail where ¢, > ¢/
Reynolds and Rhodes 2009; Gautestad 2012b).

However, LW has been observed in movement data from
many species and taxa, over a broad range of scales of a
magnitude of 100 times median step length or larger (Vis-
wanathan et al. 2011). This fact supports the hypothesis
that an individual may have some kind of cognitive ca-
pacity to switch between modes that lead to a power law
of step lengths by ignoring potentially direction-inter-
rupting events during the execution of long steps (Cole
1995; Bartumeus and Levin 2008; Gautestad and Mysterud
2010a). Markov the robot could, for example, have an
additional “foraging” rule that made it ignorant of food
patches for a power-law-distributed time span (many small
intervals and some occasional large intervals) that was
drawn randomly from one execution interval to the next
(Benhamou 2007; Gautestad 2012a, 2012b). Other IW
look-alike processes are summarized in “Power-Law Step-
Length Distributions from Origins Other than Lévy Walk”
in the appendix, available online.

Determining how to differentiate between various clas-
ses of movement based on, for example, distribution of
step lengths has been chronically difficult. Below I report
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one additional hurdle, which I describe by way of simu-
lations and propose to resolve by use of a specific data
collection practice. This aspect indicates that some of the
controversy in the field of BM/LW studies may be rooted
in a statistical artifact linked to an observer-introduced
variant of the mean free path property described above.

Lévy Walk and Optimal Foraging: The Controversy

Since Cole’s (1995) and Viswanathan et al.’s (1996) sem-
inal papers on IW of the taxonomically distant fruit flies
(Drosophila melanogaster) and wandering albatrosses (Di-
omedea exulans), mechanistic-stochastic' modeling of an-
imal space use has gained increased focus, in particular in
theoretical research on optimal foraging rules (Viswana-
than et al. 1999; Bartumeus et al. 2005). However, some
controversy has emerged as model predictions have been
confronted with real data. Are the actual data showing LW
or not? For example, the conclusion of LW compliance
based on the original albatross movement series was based
on serious flaws in the data analysis (Edwards et al. 2007),
but in a ping-pong manner, weakness in this analysis has
also been pointed out and LW in albatross movement
resupported (Sims et al. 2012). Other data sets from a
wide variety of species and taxa have also supported LW
(see review in Viswanathan et al. [2011]).

The LW issue also extends to data collected at small
scales, for example, insect movement studied by cameras
or by other means. The movement of the black bean aphid
(Aphis fabae) was, similarly to the albatross data, first clas-
sified as LW compliant and then reclassified as BM. While
Mashanova et al. (2010) found evidence for movement in
accordance to a truncated LW, Petrovskii et al. (2011)
concluded that the apparent scale-free space-use pattern
emerged from a population of fast and slow movers (rep-
resented by small and large N respectively), that is, an LW
look-alike pattern from a composite (“mixed”) BM-like
distribution of move lengths at the population level. When
the individual differences were accounted for by normal-
izing bout lengths in a given track relative to the mean
track length, individual aphids seemed to move in close

' Mechanistic modeling implies generation of a fine-grained movement
path, based on a given algorithm for successive spatial displacements. If this
algorithm involves one or more elements of stochastic rules, for example,
some degree of random direction for the next move, the mechanism may be
called mechanistic stochastic (as opposed to mechanistic deterministic). How-
ever, these two variants (on a continuum) are both mimicking movement at
the detailed, behavior-explicit “micro” scale. In contrast, the meso- and macro-
scale level of statistical mechanics regards space-use pattern that emerges from
an animal’s successive displacements at microscale when successive locations
are resampled at substantially larger intervals (lag). Hence, the pattern be-
comes statistical regardless of the degree of stochasticity/determinism in the
behavioral algorithm at microscale.

agreement with an exponential function rather than a
power law or truncated power law (Petrovskii et al. 2011).

So far the IW-BM controversy has focused mainly on
statistical issues: what models to include in the test for
movement-class compliance (power law, truncated power
law where constant (8 is limited to a given range of L,
exponential model, and other model variants) and what
statistical method to apply to distinguish between them
(Sims et al. 2007; Edwards 2011). For example, Boyer et
al. (2008) questioned Edwards et al.’s (2007) reclassifica-
tion of the albatross data as non-Lévy by showing how a
truncated LW model (power law in the low- to mid-range
of step lengths and exponential in the extreme tail) seemed
to fit the data even after adjusting for the flaws reported
by Edwards et al. (2007). Sims et al.’s (2012) analyses, both
of original and additional data sets, also reaffirmed LW in
albatross movement.

Confusion has also arisen after it has been shown how
intermittent behavior (i.e., a mixture of fine- and coarser-
grained scale-specific movement; a composite BM) may
produce step-length distributions that appear power law—
like and thus reflect LW in disguise (Benhamou 2007, 2008;
Reynolds 2008). However, methods have been proposed
to distinguish between a true scale-free process and a com-
posite scale-specific process (BM with varying ') by study-
ing the effect from changing ¢, in addition to charac-
terizing the statistical pattern per se at a given t,,, (Plank
and Codling 2009, 2011; Gautestad 20124, 2012b).

In studies of the step-length distribution F(L;), the re-
spective lengths (or time intervals; see below) are either
calculated as successive distances between significant
change of direction or collected from sampling successive
spatial positions at constant time intervals (Sims et al.
2008, 2012; Reynolds and Rhodes 2009; Bartumeus et al.
2010; Humphries et al. 2010; Viswanathan et al. 2011).
The fixed-sampling-interval method works out since an
LW path is scale free (fractal like BM, but with a smaller
fractal dimension) and thus looks the same from different
temporal resolutions (Reynolds 2008). However, too high
a frequency of data collection (implying smaller intervals)
may lead to oversampling; many successive fixes on a rel-
atively straight-line move sequence will influence the slope
in the distribution F(L,) artificially over some range of L;
at these fine-grained resolutions (Turchin 1998; Dai et al.
2007; Gonzalez et al. 2008).

Observational lag . may, in fact, critically determine
the shape of the observed step-length distribution and thus
the degree of compliance with power-law or Poisson dis-
tribution, if the animal shows site fidelity driven by long-
term memory of previously visited patches (Gautestad and
Mysterud 2005; Gautestad 2011, 2012b). In this case, un-
dersampling is the critical issue, in contrast to the issue
of oversampling referred to above. An LW-like power-law

This content downloaded from 129.240.128.126 on August 15, 2017 07:22:54 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



distribution becomes masked due to influence from a mix-
ture with non-power-law distribution of intermediate re-
turn events in the interval between successive relocations
at scale t,..

In short, the BM-LW issue is extremely complex. How-
ever, much confusion is bound to surface if a given analysis
has not taken into account the distinction among mech-

anistic scale (t,,, < t’), statistical-mechanical scale (¢, >

'), and couilini between temioral and siatial scales. As

Bacenty subjective rules of thumb for how to define a step
length from a path that is sampled at high frequency (very
small ;) may have contributed to the LW controversy.

Subjective Step Classification Rules May
Corrupt a Power-Law Pattern

In the reclassification studies of wandering albatrosses and
black bean aphids referred to above, the researchers did not
study the respective step-length distributions directly. In-
stead, they calculated step durations (time intervals between
successive moves) as a replacement for spatial lengths, under
the apparently logical and widely accepted assumption that
spatial move lengths and temporal intervals are proportional
on average (Cole 1995; Johnson et al. 2002). Hence, a con-
stant movement speed may be assumed, and long intervals
(bout duration) should translate to proportionally long bout
lengths in spatial terms (“bout” is jargon that may be trans-
lated as “step” or “move length,” since it regards the issue
of defining where successive steps have their start and stop
points; see “The Step-Length Challenge” in the appendix,
available online.

Unfortunately there is a glitch in this assumption if a
specific kind of observer-induced (i.e., subjective) rule for
bout termination is applied. For example, in the case of
albatrosses (Edwards et al. 2007), flight duration was de-
fined as the time interval when the apparatus (a saltwater-
immersion logger) attached to one of the legs was dry for
at least a defined minimum of time (30 s). The duration
was determined terminated at the first instance of wet
conditions. In addition to removing the shortest bouts,
this procedure may have contributed to premature ter-
mination of long bouts. If the bird, during a relatively long
and unidirectional stretch of movement, had swiftly landed
at the surface to get a better perception of the local food
condition, two intermediate-distance flight durations
would have been recorded instead of one large interval
(from the spatial perspective). With respect to the black
bean aphids, bout duration was defined as movement of
at least 3 s in which the speed exceeded 0.3 mm/s at every
second (Mashanova et al. 2010; Petrovskii et al. 2011).
Again, a subjective rule is imposed on the definition of a
move length from the perspective of bout duration, as
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opposed to an objectively defined temporal resolution (a
fixed t,).

Exploring Subjective Bout Termination Rules

The consequences for the test of LW versus truncated LW
or BM may be dire. For example, consider the simulated
LW track in figure 1. The overall pattern of movement
shows the typical mixture of many small and a few long
steps, which, from the spatial perspective, adheres to a
power-law distribution of L with exponent 8 = 2 (given
by the simulation conditions). A complementary distri-
bution of bout durations, where a bout is defined as the
time interval from one uncorrelated redirection event to
the next, under the assumption of a constant movement
speed, would give the same result. However, consider re-
placing this system-specific (objective) definition of bout
termination with a subjective bout termination rule,
whereby a given bout is terminated if the average move-
ment rate (speed) along the path falls below a critical
minimum during a trailing time window of, for example,
three consecutive high-frequency relocations. If the critical
net displacement was set to 12 length units during 3%,
a sequence of three steps of length 5 + 5 + 5 would trigger
a bout termination if the resultant vector (sum of the three
vectors of length 5 units each) had a length shorter than
12. This would happen, for example, if one of the steps
was moving the individual backward relative to the other
two driving it forward. From a practical perspective, this
reduced speed may seem feasible as a definition of
“resting,” or practically stopping to move (similar to bout
definition for the black bean aphid movement and equiv-
alent to the data logger reporting that the albatross is
getting its foot wet). One such event is marked in figure
1, and it lasts for about 70 time increments (0.7% of total
track duration). However, when zooming in to this spa-
tiotemporal window, it becomes obvious that, from a fine-
grained perspective, the individual has continued explor-
ing its local patch.

In statistical-mechanical terms, the respective bout ter-
mination rules for albatrosses and aphids mean that a
“virtual” mean free path (i.e., the distance or time interval
between successive interrupts of a move) may have been
unintentionally invoked by the introduction of the bout
termination rule, leading to a potentially premature in-
terrupt of successive move intervals. While the mean free
path in physical terms regards real interrupts such as col-
lisions between gas molecules, the actual move termination
rule defined here regards an observer-dependent kind of
interrupt (on the observed pattern, not the underlying
physics). However, in statistical-mechanical terms, the ef-
fect may be similar. Critically, if the observer-invoked
mean free path has a finer “mesh” (resolution) than the
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physical mean free path (i.e., if the frequency of rule-
induced events from the virtual field is higher than the
actual step-length truncation from environmental events),
the interrupts may critically influence the model fitting of
the distribution of bout durations. For example, if Markov
the robot moves in a terrain that invokes the direction-
changing rule every 10 m on average (i.e., t' = 10 s, if it
moves 1 m/s), collecting fixes at intervals #,, > 10 s will
produce a negative exponential step-length function of
observed fixes, as already described. However, consider an
upgraded robot, where the movement algorithm allows for
circumventing temporary obstacles in deciding which di-
rection to move after scanning the environment within
sight of its built-in camera. For example, a tree trunk or
a hole in the ground may invoke a temporary zigzag while
still holding the target active. Obviously, a subjective step
definition rule that either fires a step termination event if
the zigzag includes a sharp angle or if the time to target
becomes larger than the defined limit (owing to zigzag-
ging) would lead to a higher sample size of steps than if
such a rule did not exist and a fixed t,,, were used instead.
Small steps would have been inflated at the expense of
medium and large steps, hence, a finer-grained mesh (finer
mean free path) resulting from subjective rules.

In “Statistical-Mechanical Aspects of GPS Data” (fig. A3)
in the appendix, available online, the LW path has been
extended to a larger path, and the above-mentioned bout
termination rule has been invoked in three variants of
strength. The result for one of these conditions is seen in
figure 2, showing distribution of bout duration. Three as-
pects stand out. First, the expected LW pattern (power law)
is absent. Instead, a negative exponential distribution of
bout durations is seen, demonstrating an apparent but false
compliance with a BM process, if proportionality between
bout duration and bout length is assumed. Second, this
compliance with the negative exponential function becomes
stronger (larger R?) for the rule variant that produces the
largest frequency of bout terminations (as expected, since
interference from the “virtual” mean free path was stronger).
Third, the rule that led to the fewest number of steps (and
thus the largest step intervals on average) showed a some-
what elongated tail relative to expectation from a negative
exponential function. Hence, a less intrusive step termi-
nation rule led to a tendency for a transition toward the
true LW pattern, characterized by a power law rather than
a negative exponential. This transition is expected, since less
intrusive step termination conditions lead to step samples
collected at larger time intervals on average. This also im-
plied many intermediate “unobserved” steps, as required
for a statistical-mechanical level of observation, and thus
more closely resembles the true relationship of proportion-
ality between #,,, and median step length for the underlying
LW series.

In figure 3, the distribution of moves is displayed from
the spatial perspective: net displacements of respective step
lengths. In this case, an LW pattern is visible owing to the
power-law compliance. A power law (linear function un-
der double-log plotting) is seen for both the original LW
series and a subsampled series 1 : 140 original size, whether
the latter regards the first part of the original series
(tpe = 1 time unit) or a 1:140 subset where fixes are
sampled uniformly (leading to a larger ¢,  and thus a right-
shifted plot; see below). Most interestingly, a power law
of step lengths is also seen for the series resulting from
the “strongest” subjective bout termination rule producing
the largest set of steps (average step length of ca. 140 spatial
units, and average time interval 122 units), despite this
condition’s best fit to an exponential distribution of time
intervals (fig. 2). By applying the parallel shift method to
test for true scale-free movement (Gautestad 2012b), the
underlying LW process is additionally supported: the re-
gression line for an approximately equal sample size of
moves (1 : 122 of full series) right shifts in accordance with
what should be expected from proportionality between net
displacement length and the fixed or average time interval
for observing the displacements. A composite BM process
would have right shifted the distribution of similar-sized
samples of steps proportionally with the square root of
this difference in ¢, between the 1 : 140 sample from the
original series and the 1:122 sample from the subjective
condition 3 series in figure 2 (i.e., half the length shown
by the dashed PS line in figure 3 owing to log-transformed
scales). Thus, LW-characteristic superdiffusion rather than
BM-characteristic classical diffusion is verified when
studying step-length distribution directly, rather than as-
suming proportionality between step duration and step
length, even when a subjective bout definition rule is
applied.

With reference to Petrovskii et al.’s (2011) reclassifi-
cation of Mashanova et al’s (2010) black bean aphid
movement as being BM-like rather than LW-like, the
power-law patterns in figure 3 do not result from the
lumping together of a population of BM-compatible track
intervals of great and small characteristic movement speed
(these IW look-alike variants are distinguishable by the
parallel shift method; in fig. 3, the dashed PS line would
have been half as long). Due to the property of the path
of true self-similarity, splitting an LW path into smaller
sections and rescaling each section according to the overall
average bout length (sensu fig. 1 in Petrovskii et al. [2011])
will not influence double-log linearity and the estimate of
B significantly. In contrast, the subjective bout duration
rule that was simulated here, which is qualitatively similar
to the protocol proposed by Petrovskii et al. (2011), leads
erroneously to a BM-like pattern with respect to the dis-
tribution of bout durations. A spatial analysis of net spatial
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Figure 2: Under the same boundary conditions set in figure 1, a “virtual” mean free path owing to subjectively defined move-length
interrupts, based on a critical minimum movement rate (speed) over the last three steps, was added in a subsequent simulation series of
length 10° steps. If the net displacement was below the defined minimum, the step series was terminated. Bout duration was defined as
the interval (in number of time increments) from the starting point at the previous termination point. The three conditions were 3.2, 3.3,
and 3.5 length units per three time increments (conditions 1, 2, and 3, respectively). Condition 3 imposed a higher frequency of bout
terminations (8,255 bouts in total), leading to shorter bout durations and, hence, shorter distances moved during a given bout, than
conditions 1 and 2 (885 and 2,543 bouts, respectively). Bouts of 5 step lengths or fewer were excluded from the analysis. The distribution
of bout durations was compliant with a Poisson process (negative exponential function), as shown by the blue (condition 1), green (condition
2), and red (condition 3) exponential regression lines. The three conditions show a transition from clear exponential form (condition 3)
toward some elongation of the tail under condition 1. Observe the double-log-transformed axes. Power-law compliance would have shown
a linear regression fit under double-log transformation. An exponential function produces linear fit on semilog plotting (inset; logarithms
on Y-axis only).

displacements (fig. 3) was necessary to reveal the true LW  bag of conflicting signals and messages. In the present
pattern, which was additionally strengthened by the par-  context of space use, in order to properly decide if a given
allel shift test. animal has related to its environment in a BM or IW
manner, or whether BM is observed as a consequence of

studying a true LW, but this is hidden by choosing ¢, >

Discussion t', one should make sure that ¢, is varied sufficiently to

One of the main messages of this note is the importance reveal such mean free path—influenced transitions. Un-
of making a clear distinction between an individual’s in- fortunately, the present example of choosing subjective
teractions with its environment at microscales (via a high- ~move termination rules for step-length collection illus-
frequency sampling of fixes), in contrast to how these trates the common choice to study the path close to
processes appear at physical mesoscales (a lower-frequency ¢, = t', where ¢ represents an observer’s subjectively in-
sampling). The BM-LW continuum belongs to the latter troduced mean free path. This “artificial” disturbance field
level of observation. If one tunes an FM radio to a fre- on long step lengths may mask the true mean free path

quency between two stations, one may experience a mixed that is experienced by the individual.
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Figure 3: In the spatial domain (net bout lengths rather than complementary bout duration), power-law compliance of step-length
distribution is characterized for the original series (N = 10° steps; dashed line, black circles; 8 = 2), the distribution of step lengths of the
first 1: 140 part of the total series (blue triangles; #,,, = 1), and a similarly sized sample 1 : 140 of the original series (uniformly sampled;
open triangles; £, = 140). The two latter samples are included to show the expected parallel shift of the fitted regression line of magnitude
140 length units when median step length increases as a consequence of a 140-times-larger t.,.. Sample size is kept constant on magnitude
10°/140 = 7,143 between the two sampling variants to avoid sample-size issues of power-law distributions. The parallel shift is marked by
the dashed, green line labeled “PS.” The observed shift verifies superdiffusion of similar rate, that is, that bout length increases approximately
proportionally with bout duration. A parallel shift of similar magnitude is seen in the step-length distribution from the subjective bout
definition under condition 3 (red circles), which resulted in a median net step length of 139.2 ~ 140 length units. The largest bins were
moderately influenced by the intrinsic step-length truncation (see fig. 1 legend; L, is marked by a vertical, gray dashed line). Close to this
limit a somewhat steeper slope is observed. Bins were geometrically scaled and respective frequencies width-adjusted (normalized), in
accordance with Sims et al. (2007).

Variants of rules have been proposed, whereby a move
is terminated on the basis of directional autocorrelation

As shown by simulation experiments on correlated ran-
dom walks and related variants (Plank and Codling 2009;

Codling and Plank 2011), subjective rules to define step
lengths in a manner that indirectly mimics mean free path
influence may even fool sophisticated statistical protocols
for LW tests, such as the maximum likelihood estimation
method (Edwards et al. 2007). Hence, in a complementary
manner to this analysis, where LW may be wrongly clas-
sified as BM, the theoretical study of Codling and Plank
(2011) shows how BM-originating paths may wrongly be
classified as LW. Both issues are connected to the physical
concept of mean free path (in this case, artificially intro-
duced by subjective step-length rules). Applying temporal
bout duration to represent spatial step length in an IW-
BM model-fitting context is thus problematic.

along the fine-resolution movement path (Turchin 1998;
Reynolds and Rhodes 2009). However, this approach still
implies a subjective definition of the rule “strength” (based
on degree of autocorrelation and spatial trailing length
over which the movement angle is measured). Hence, a
third approach, more in compliance with a statistical-
mechanical framework, may be more representative of the
underlying process: using a fixed lag to sample successive
displacements (Johnson et al. 2002; Marell et al. 2002;
Morales et al. 2004; Gautestad and Mysterud 2005). This
approach creates a more coherent and physical link be-
tween the spatial and temporal domain, since distance
moved per time unit translates to movement rate. In the
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case of LW, this rate scales self-similarly over a range of
ths (Gautestad 2012b) and thus maintains the power-law
property of the data at different resolutions. With reference
to the scale-free nature of LW, observing a given trail at
a sufficiently coarse temporal resolution to avoid oversam-
pling but also to avoid undersampling (both situations
lead to predictable qualitative changes in the distribution
and are thus testable), an optimal distribution of step
lengths for an LW-BM test may be achieved.

In some instances, subjectively defined move termina-
tion rules may have been adopted because the methods
applied for tracking movement are themselves not error
free owing to the resolution power of the positioning in-
struments. One may then be forced to apply such rules as
a means to avoid “false movement,” in which case an
individual did not, in fact, move. However, the method
proposed here, using fixed ¢, instead of collecting sub-
jectively defined step lengths, is less prone to such mea-
surement error. While positioning noise may trigger false
steps under subjective rule conditions, the fixed ft,,
method only adds a specific variance to the respective
interfix distances. For the smallest steps, this superimposed
variance may be substantial (but normally negligible for
the larger ones), but it will not inflate the number of steps
considered in the analysis. Contrary to the condition of
subjective rules, this number is given by the product of
t..,, and the total sampling period. Hence, if measurement
noise is less than the spatial scale for the smallest bin L,
for j = 1, the result is not influenced. When studying the
step-length distribution F(L)), it is the right-end tail that
is under consideration. L, is thus normally set somewhat
larger than the magnitude of the median step length (or
the analysis starts from these larger scales). Implicitly, mea-
surement error should not be an issue at these scales.

The explicit consideration of subjective mean path in-
troduction and observer-defined lag for data collection
illustrates how a statistical-mechanical approach may pro-
vide a constructive direction forward (Gautestad and Mys-
terud 2010a; Petrovskii et al. 2011; Gautestad 2012b) in a
field that currently seems to be spinning deeper and deeper
into endless discussions about statistical patterns and
problematic sampling protocols. Statistical mechanics pro-
vides a more coherent and explicit link between a statistical
pattern and the dynamics of the underlying process at finer
spatiotemporal resolutions than the level at which data are
collected and analyzed.
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