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ABSTRACT

In addition to primary fluctuations, cosmic microwave background (CMB) temperature maps contain a wealth of
additional information in the form of secondary anisotropies. However, secondary effects that can be identified
with individual objects, such as the thermal and kinetic Sunyaev—Zel’dovich (TSZ-KSZ) effects due to galaxy
clusters, are difficult to unambiguously disentangle from foreground contamination and the primary CMB. We
develop a Bayesian formalism to rigorously characterize anisotropies that are localized on the sky, taking the TSZ
and KSZ effects as an example. Using a Gibbs sampling scheme, we are able to efficiently sample from the joint
posterior distribution for a multi-component model of the sky with many thousands of correlated physical
parameters. The posterior can then be exactly marginalized to estimate the properties of the secondary anisotropies,
fully taking into account degeneracies with the other signals in the CMB map. We show that this method is
computationally tractable using a simple implementation based on the existing Commander component separation
code and discuss how other types of secondary anisotropy can be accommodated within our framework.
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1. INTRODUCTION

Observations of the temperature anisotropies of the cosmic
microwave background (CMB) radiation have been instru-
mental in providing high-precision measurements of important
cosmological quantities such as the age, geometry, and energy
content of the wuniverse. However, while the task of
characterizing the primary anisotropies may seem essentially
complete—as of the Planck 2013 data release, measurements of
the temperature autospectrum of the CMB are cosmic variance
dominated for multipoles ¢ < 1500 (Planck Collaboration
2014c)—a wealth of information remains to be picked out of
CMB temperature maps in the form of secondary anisotropies.

Secondary anisotropies are distortions of the primary CMB
signal due to inhomogeneities between the surface of last
scattering and the observer (Aghanim et al. 2008). Gravita-
tional effects such as weak lensing and the integrated Sachs—
Wolfe (ISW) effect have been strongly detected (Das
et al. 2011; Hernidndez-Monteagudo et al. 2014; Planck
Collaboration 2014b, 2014d), as have scattering phenomena
such as the thermal Sunyaev—Zel’dovich (TSZ) effect
(Birkinshaw et al. 1984; Shirokoff et al. 2011; Wilson et al.
2012; Planck Collaboration 2014e, 2014f). The kinetic
Sunyaev—Zel’dovich (KSZ) effect, caused by the Doppler
boosting of CMB photons scattered off ionized gas traveling
with a bulk peculiar velocity, has also recently been detected
(Hand et al. 2012; Sayers et al. 2013b). These effects variously
probe the spatial and temporal variations of the gravitational
potential, the density field, and the peculiar velocity field on
large scales, and can therefore furnish tests of dark energy,
modified gravity, and even the inflationary epoch by
constraining the geometry, expansion, and growth history of
the universe.

The secondary anisotropies are generally dominated by
foregrounds and the primary CMB, and so detecting and
characterizing them is a delicate process even with modern

high-resolution data. Detections of secondaries can be roughly
divided into two categories: localized on the sky (compact),
where anisotropies in a given direction can be identified as
being caused by a particular astrophysical object; and non-
localized (diffuse), where a secondary signal due to the
combination of many objects is detected statistically across a
larger region of the sky.

A number of different methods have been used to measure
non-local signals: fitting models to the angular power spectrum
(Fowler et al. 2010; Shirokoff et al. 2011); using some other
statistical property of the CMB map, such as higher-order (non-
Gaussian) moments, to separate off a given signal (Pierpaoli
et al. 2005; Wilson et al. 2012; Munshi et al. 2013); stacking
the signal from many directions to average down all but the
target signal (Granett et al. 2008; Diego & Partridge 2009;
Komatsu et al. 2011); and cross-correlating the CMB map with
tracers (e.g., galaxies) that are uncorrelated with all but the
target signal (Fosalba et al. 2003; Afshordi 2004; Giannantonio
et al. 2006; Ho et al. 2008; Hand et al. 2012; Sherwin et al.
2012; Hernindez-Monteagudo et al. 2014). These all allow
small secondary anisotropy signals to be picked out by
essentially combining the signal from all available pixels into
a single statistical quantity.

Detecting localized signals is often a more difficult prospect.
Because astrophysical objects typically subtend small angles on
the sky, only a limited number of pixels are available to provide
information about a given object, making it harder to attain a
sufficiently high signal-to-noise ratio (S/N) to obtain a
definitive detection. The limited amount of information also
makes it harder to disentangle other signals from the secondary
anisotropy, especially if they have similar frequency spectra or
shapes/angular sizes, and there are fewer options for averaging
down contaminating signals.

Previous approaches to this problem have tended to rely on a
combination of frequency information and angular filters
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matched to the size/shape of the secondary anisotropy to try
and pick out its signal, while rejecting or at least averaging
down other signals as much as possible (Aghanim et al. 2001;
Herranz et al. 2002, 2005; Forni & Aghanim 2005; Melin et al.
2006; Schifer and Bartelmann 2007; Feroz et al. 2009; Mak
et al. 2011; Atrio-Barandela et al. 2012; Carvalho et al. 2012;
Melin et al. 2012). Such methods may either be blind, applying
filters of a range of sizes over the entire map, or can apply
parameter estimation techniques to fit parametrized models to
the objects given prior information on their positions and/or
sizes. These methods work well if the secondary has a
distinctive spectrum and multi-frequency data are available, but
this is not always the case—the KSZ effect has the same flat
spectrum as the primary CMB, for example, and only a few
CMB experiments have more than one or two frequency bands.

Angular information is also valuable, but most filtering and
model fitting techniques are unable to blindly distinguish
between signals with similar angular structures. As such, the
estimated signal for an individual object will retain some level
of residual contamination from other fluctuating components.
One example of this is the contamination of the KSZ signal by
the primary CMB—primary anisotropies on the arcminute
scales characteristic of galaxy clusters cannot be fully removed
by a filter, and so will either bias the estimated signal or must
be treated as an effective source of noise, significantly
increasing the statistical errors (Aghanim et al. 2001; Herranz
et al. 2005; Feroz et al. 2009; Carvalho et al. 2012).

In this paper, we describe a novel method for characterizing
localized secondary anisotropies, based on applying Bayesian
inference to a physical parametric model of all relevant signals
on the sky. We use the Gibbs sampling technique to efficiently
reconstruct the joint posterior distribution of the full-sky model,
which typically involves many hundreds of thousands of
parameters for realistic data sets. With the posterior in hand, we
can then marginalize over all other parameters to produce
statistically robust, unbiased estimates of the properties of the
secondary anisotropies.

Importantly, because all of the signals that contribute to the
CMB map are explicitly modeled, degeneracies with local
fluctuations in other signals can be fully taken into account.
Instead of being treated as random noise, the fluctuations are
reconstructed from the data, allowing them to be cleanly
separated from the secondary signal in a statistical manner. For
the primary CMB, this is equivalent to performing a
constrained Gaussian realization of the anisotropies behind
the cluster. The uncertainties associated with this procedure are
automatically propagated in full by the Gibbs sampling
scheme.

The paper is organized as follows. In Section 2, we outline a
general Gibbs sampling scheme for estimating localized signals
in the presence of primary CMB anisotropies, various types of
foreground emission, and noise. We then specialize to a couple
of example secondary anisotropies, namely, the TSZ effect
(Section 3) and the KSZ effect (Section 4), and demonstrate a
simple proof-of-concept implementation of the SZ Gibbs
scheme in Section 5. Examples of other localized signals that
can be accommodated by our framework are discussed in
Section 6 and we conclude in Section 7.

2. GIBBS SAMPLING OF LOCALIZED SIGNALS

Gibbs sampling is a popular Monte Carlo technique for
performing Bayesian inference on complex parametric models.
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In this section, we outline a Gibbs sampling scheme for the
joint estimation of CMB anisotropies, galactic foregrounds, and
spatially localized signals from multi-frequency full-sky data.
This is based on the CMB analysis framework previously
described by Jewell et al. (2004), Wandelt et al. (2004),
Eriksen et al. (2004, 2008), which allows for straightforward
marginalization over both CMB and foreground signals by
sampling from the joint posterior distribution of all
components.

2.1. Data Model

We begin by defining a data model for an observation of the
sky at a given frequency,

Ncomp
dv)=B®) ) GiwTa; + n). ey

i=1

In this expression, d is a vector of observed values, dp(y), for
each pixel p and frequency v, and n denotes instrumental noise.
The signal components are broken down into a set of unknown
stochastic amplitudes (g;), an amplitude-to-sky projection
operator (7;), a frequency-dependent mixing operator (G;),
and an instrumental beam convolution operator (B). Note that
the index i runs over both signal types (CMB, foregrounds, SZ
amplitudes, etc.) and individual components within each signal
type (different SZ clusters, CMB harmonics, etc.).

Next, we specify the statistical properties of a; and n,(v). In
this paper, we assume the signal amplitudes and noise to be
Gaussian, having the covariance matrices § and N, respec-
tively. One is often interested in estimating the signal
covariance matrix from the data, and so in general S is
unknown and must be jointly estimated with the rest of the
model parameters. The basic structure of S can often be
specified a priori and parametrized in terms of a relatively small
number of free parameters. For example, an isotropic, Gaussian
CMB component will have a diagonal signal covariance matrix
with the CMB angular power spectrum coefficients C, along
the diagonal. The noise covariance matrix will be assumed to
be completely known, although in principle it could also be
specified using some parametric model.

To complete the data model, we must define an inventory of
relevant signal components and specify the properties of G and
T for each. Depending on the component, these can also be
modeled parametrically with free parameters to be estimated
from the data; for example, the frequency mixing matrix of a
galactic synchrotron component might take the form of a
power-law spectrum with an unknown spectral index. We will
make no assumptions about the statistical distributions
followed by these additional parameters for the time being;
as will soon become apparent, they are not generally Gaussian.

2.2. Posterior Mapping by Gibbs Sampling

Once the data model has been defined, the remaining
problem is to map out the full joint posterior distribution
P(a, S, G, T|d) (where it should be noted that we have im-
plicitly conditioned on the beam, B, and noise covariance, N).
The posterior is unlikely to take the form of a known analytic
distribution that can be sampled from directly, suggesting the
use of a Markov Chain Monte Carlo (MCMC) method to
obtain samples. Due to the extremelgf high dimensionality of
the problem (e.g., there are ({,.x + 1) parameters for the CMB
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Figure 1. Illustration of the iterative sampling procedure that forms the basis of
Gibbs sampling. The algorithm alternately samples from the conditional

distributions of the various parameters—P(a | b°), then P(b | a™") and so on.
Each sub-step is in an orthogonal direction in parameter space.

component alone), popular MCMC techniques like Metropo-
lis—Hastings and nested sampling are unsuitable, as they tend to
scale poorly with dimension (Allison & Dunkley 2014).
Maximum likelihood techniques are a possible alternative,
although these are by nature approximate, and thus fail to fully
propagate statistical uncertainty.

Instead, we will make use of the Gibbs sampling algorithm
(which is technically a special case of Metropolis—Hastings).
While it may not be possible to sample from the joint posterior
directly, it is often the case that it can be broken down into a set
of conditional distributions that are tractable. One can show
that iteratively sampling from the conditionals (Figure 1)
results in a set of samples that eventually converges to the joint
posterior. In other words, by breaking the sampling problem up
into a series of comparatively simpler steps, we can reconstruct
the full posterior distribution without recourse to approxima-
tions or any other “lossy” procedures. This holds even for
extremely high-dimensional parameter spaces if there are high-
dimensional joint conditionals that can be evaluated efficiently
(for example, if most parameters can be drawn from a
multivariate Gaussian distribution).

As shown in Figure 1, Gibbs samplers explore the parameter
space using a series of orthogonal sub-steps. This is inefficient
for parameters that are strongly correlated, for which the
optimum strategy would be to explore along the degeneracy
direction. As such, care must be taken to either avoid
parametrizations with degenerate parameters or to write down
joint conditionals for strongly correlated parameters that can be
evaluated directly. Otherwise, the chain will spend a long time
slowly exploring the strongly correlated subspace, and the
resulting MCMC chain will have a long correlation length,
resulting in fewer independent samples.

For our problem, the Gibbs scheme is

ait! — P(a|si, G, T, d) )
Si+l P(S|af+1, G, Ti d) 3)
Git! — P(G|ai+1’ Sitl i d) )

Ti+1 - P(Tlai+l, SH—I, GH—I’ d) (5)
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One can, of course, further subdivide the conditional sampling
steps using Bayes’ Theorem and other basic statistical relations
if necessary. In general, though, it is more efficient to
simultaneously sample as many parameters as possible in each
step, in order to reduce the correlation length of the chain.

For the remainder of this section, we will show how each of
these Gibbs steps can be sampled in practice. For a more
detailed discussion of the general properties of Gibbs sampling
techniques, see Gelfand & Smith (1990) and Casella &
George (1992).

Joint amplitude sampling. Under the assumption that the
likelihood is Gaussian, Equation (2) reduces to a single
multivariate Gaussian distribution for all @, meaning that the
amplitude parameters for all components (potentially hundreds
of thousands of them) can be sampled simultaneously.
Simplifying the notation for the signal to § = U - a with
U = BGT, one can see this by writing

P(ald,S,G,T)x P(dla, S, G, T)P(@|S, G, T)

Ll vaN-"d-U- 1 7r¢-1
x e 2(d Ua)N—'d Ua)_e 2aSa

o e’%(“"i)r(SilJfUTN*lU)(“"i). (6)

The distribution has covariance (S" + U'N"'U )71 and
(Wiener-filtered) mean

d=(s"+ UTN*IU)”UTN*ld. %)

We have suppressed sums over the frequency here; see Eriksen
et al. (2008) for a derivation of the above in the full multi-
frequency case.

Sampling from this distribution is conceptually straightfor-
ward: one first generates a pair of vectors of A (0, 1) random
variables (wp, w), and then solves the linear system Ma = b
for a, where

M=S"'+UN"U (8)

1
b=UN"'M+S 2w+ (U'N"0)2wn. 9)

In practice, solving this system is a significant computational
challenge, due to its high dimensionality and typically poor
conditioning of the matrix operator M. We discuss this more in
Section 5.2; see also Eriksen et al. (2008) for a detailed
discussion of this problem.

A useful feature of the joint amplitude sampling step is
marked by the presence of prior-dependent (S) terms in
Equations (8) and (9). These ensure that the solution is defined
even in regions where the data have been masked. Solving the
linear system therefore amounts to drawing a constrained
realization of the amplitudes that is statistically consistent with
the available data and other parameters of the data model. The
availability of “uncut” amplitude map samples simplifies
subsequent Gibbs steps that may rely on spherical harmonic
analysis, such as those involving angular power spectrum
estimation.
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Table 1
Signal Component Types, Defined by their Spectral and Spatial Dependence

Component Type Spectrum G (v) Spatial Dependence T Covariance S Amplitude a
CMB anisotropies 1 Yo (P) Crbp bt g
Spatial template (e.g., monopole/dipole) Ot Pre-defined template 7T(p) 00 A,
Pixel-based foreground fv; 6,) Oppr 00 Ay
Thermal SZ (clusters) xe* -1 Trsz (p, i), 0;) 00 A;

e* + 1
Kinetic SZ (clusters) 1 Txsz (p, i}, 0;) See Equation (29) v_}"s

Signal covariance. Equation (3) can be written as
P(S|d, G, a)x Pd|S, G, a)P(S|G, a) x P(S|G, a)
_P(S16)

=P(@a|G, S) P@|G)

x P(a|G, S)

_L,rg
2aSa

S|

_e€
(10)

This is an inverse Wishart distribution for S, assuming flat
priors for S and a. Prior knowledge of the form of S can be
used to further simplify Equation (10) to one of the special
cases of the inverse Wishart distribution.

Note that the dependence on the data, d, has dropped out of
Equation (10). This is because we are now conditioning on a,
which contains all of the information necessary to estimate S.

General parameters. For Equations (4) and (5), a simple
application of Bayes’ Theorem yields

P(G|d,a,S,T)x Pd|G,a,S, T)P(Gla, S, T)

- efé(de»a)TN"(dea) . P(G) (11)
P(T\d,a,S,G)x P@|T,a,S,GP(Tla,S,G)
x e 3@ Ua'N"@-Va) . p(T), (12)

In this very general notation, the above equations do not tell us
how to sample from these distributions and the priors for G and
T are left general. This is because the form of these terms
depends on the particular model chosen for each component. In
the following sections, we will consider specific examples
(summarized in Table 1), for which the above equations
simplify significantly .

2.3. CMB Component

The CMB signal, S, is a statistically isotropic field that can
be expanded in spherical harmonics, ¥, (A) (where 7 is a unit
vector direction in the sky), such that the signal in an individual
pixel p is

Sp =D Yo (itp)- (13)

m
We identify the coefficients ay, and spherical harmonic
operator Y, (i,) with the amplitudes (@) and projection
operator (T') for this component, respectively. The signal
covariance (S) is given in harmonic space by
(amarm) =S = Cebu s

which reduces Equation (10) to a set of inverse gamma
distributions, independent for each ¢. The mixing operator (G)

is the identity because the CMB frequency spectrum is very
close to blackbody, and so has a flat spectrum in brightness
temperature.

2.4. Extended Foreground Components and Offset Estimation

Galactic synchrotron, free—free, thermal dust emission, and
other extended foregrounds typically have complex spatial
structures that do not follow simple statistical distributions like
the CMB. As such, it is critical to include in the analysis some
frequency channels for which these signals dominate—say,
below 30 GHz for synchrotron/free—free or above 353 GHz for
dust. It is then straightforward to reconstruct these components
pixel-by-pixel, although a notable exception is spinning dust,
which does not dominate at any frequency (Planck Collabora-
tion 2014g) and is consequently subject to considerable
degeneracies.

For each component one must write down an explicit
parametrization of G(v), based on some small number of
parameters, 0,, per pixel. For example, synchrotron is often
modeled in terms of a power law in brightness temperature,
Jegnen @3 B5) = v, while thermal dust is well described by a
modified blackbody with free emissivity index and tempera-
ture. These parameters may then be samgled using Equa-
tion (11), which reduces to an effective x~ mapping of the
respective parameters.

In addition to foreground parameters, there are significant
uncertainties in the absolute offset and dipole terms of a given
CMB map. These degrees of freedom are easily described in
terms of four full-sky templates: one full-sky constant and three
orthogonal dipole modes, each with an unconstrained overall
linear amplitude. The appropriate sampling algorithm in this
case is the usual Gaussian given in Equation (6), with
G, V) = 6b,, S =0, and T listing the four monopole
and dipole templates.

2.5. Spatially Localized Components

In addition to separating foregrounds and other effects from
the primary CMB, we are also interested in detecting and
characterizing secondary anisotropies. We will concentrate on
the thermal and KSZ effects due to galaxy clusters in
subsequent sections, but for now the discussion is kept general.

Unlike extended foreground components, which are typi-
cally modeled as large coherent structures covering a sizeable
portion of the sky, many secondary anisotropies are associated
with discrete objects, and are therefore strongly localized. The
spatial distribution of the secondary anisotropy is best captured
by specifying a collection of spatial templates of limited size,
each centered around the location of an individual object. Each
localized template will have a separate amplitude associated
with it, although the amplitudes may be correlated between
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objects. The shapes and frequency spectra of the templates may
vary from object to object as well, so to account for this one
can define parametric spatial and spectral profiles with
parameters that can be tuned (or sampled) for each object
individually.

To define the model for this type of component, one must
also specify the number and positions of its constituent objects,
and basic information on the template for each object, such as
its angular size. This requires a source of prior information,
typically in the form of a catalog of objects. For SZ clusters, for
example, one could use a catalog of “candidate” clusters from a
blind SZ detection algorithm (see the appendix), or one of a
number of X-ray cluster catalogs. Clearly, the specification of
the component will only be as complete (and accurate) as the
catalog used, leading to issues with missing or duplicated
objects, position errors, and the like. We will return to these
problems later.

An object with index j, centered on direction 7i;, has the
projection operator

T;=T(p. A, 0] ), (14)

where T; is a parametric spatial profile shared by all objects of
this type of component, and OJ-T are the profile parameters for
the individual object. For localized signals, T; will typically be
zero beyond some given angular distance from 7, although this
is not compulsory.

Similarly, the frequency mixing operator is given by

G;=f (v 07), (15)

where f; is a shared parametric spectral function and OjG are the
spectral parameters for an individual object. Each object has a
single overall amplitude, a;. Correlations between amplitudes
are specified by a single signal covariance matrix for all
objects, i.e.,

Si: (ajak>. (16)

In the subsequent sections, we will consider the TSZ and
KSZ effects for galaxy clusters as two specific examples of
localized components.

2.6. Instrumental Properties

Finally, we note the ability of our framework to account for
uncertainty in the characterization of the instrument. Equa-
tion (1), and many of the expressions that follow, have been
derived under the assumptions of Gaussian instrumental noise,
linear beam convolution, and correct gain calibration. These
assumptions are reasonable for real instruments such as Planck,
although subject to some complications. The gain calibration is
typically uncertain, but can be accounted for by multiplying
Equation (1) by an additional (constant) parameter per
frequency channel and marginalizing over it.

The noise is typically well approximated as Gaussian but can
be correlated between neighboring pixels (e.g., for Planck).
The generalized framework presented above already accounts
for correlated Gaussian noise, but existing implementations of
the joint amplitude sampling step tend to assume uncorrelated
noise; the presence of off-diagonal components of the pixel-
space noise covariance matrix can significantly increase the
computational complexity of solving the linear system, making
it difficult to solve except for with low-resolution pixelizations.
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There is no reason why specialized linear solvers could not be
employed to make this more efficient for finer pixelizations,
however.

Similarly, one typically assumes symmetric beams that are
independent of frequency (Eriksen et al. 2004) and constant
with respect to position on the sky. Again, this is not a
necessary condition of our general framework, but is used to
increase the efficiency of the amplitude sampling step, which
relies on many evaluations of the beam-convolved signal model
—factoring the beam out as a constant can considerably reduce
the computational complexity of solving the linear system. The
need for frequency-independent (matched) beams has recently
been relaxed in a computationally efficient linear solver
(Seljebotn et al. 2014), which could in principle handle
asymmetric beams too. Position-dependent beams add an extra
layer of complexity, however. Marginalization over uncertain-
ties in symmetric beam profiles has been demonstrated within a
Gibbs sampling framework by sampling the coefficients of an
eigenmode expansion of the beam profile (e.g., Planck
Collaboration 2014c).

3. THERMAL SZ FROM GALAXY CLUSTERS

The thermal SZ effect is caused by the Compton scattering of
CMB photons by hot gas in the intergalactic medium (Sunyaev
& Zeldovich 1972). The CMB gains energy from the gas,
effectively leading to a shift in its spectrum along the affected
line of sight. This is manifested as an apparent decrement in the
CMB temperature at low frequencies (v < 217 GHz) and an
increment at higher frequencies, which distinguishes TSZ from
the flat-spectrum primary CMB signal. As free electrons
dominate the scattering, the magnitude of the shift depends
primarily on the integrated electron pressure along the line of
sight. In galaxy clusters, the thermal pressure can be related to
the cluster size and mass, and so the TSZ effect can be used as
a way of probing a cluster’s physical properties. This is useful
for understanding how structure forms, as well as providing
constraints on cosmological parameters such as the normal-
ization of the matter power spectrum (Battye & Weller 2003;
Allen et al. 2011). Another useful property of the TSZ effect is
that the surface brightness is constant as a function of redshift
(Sunyaev & Zeldovich 1972; Rephaeli 1995), making it
possible to detect clusters out to high redshift (z = 1).

We will assume here that a catalog of positions, angular
sizes, and redshifts of clusters has already been compiled from
a previous blind survey, so that our task is to accurately
characterize the clusters’ properties. This is particularly critical
for the most massive clusters, as some cosmological tests are
extremely sensitive to the location of the high-mass cut-off of
the cluster mass function (Matarrese et al. 2000). Note that
while blind detection algorithms are capable of providing some
information on cluster properties, they often rely on simplified
or approximate treatments of issues such as residual foreground
contamination, statistical error propagation, overlap between
clusters, and so on, so it is important to perform a more
specialized characterization post-detection.

3.1. Model Definition

Following the discussion in Section 2.5, we begin by
defining a parametric spatial template for the cluster TSZ
signal. The fractional temperature change due to the thermal SZ
effect along a line of sight is given by (Sunyaev & Zeldovich
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1972)
AT

- =fw)y(#) a7)

y(it) =

7[R, 1y, (18)

mec?
where P, is the electron pressure, [ is a distance along the line
of sight, and f (v) is the frequency spectrum,

et — 1

ex+1_

f(l/) =X 4; X = hl//kBTCMB, (19)
which can immediately be identified with the mixing
operator, G. In our model, we adopt the “universal” pressure
profile of Arnaud et al. (2010),

PO(MSOO/M*)QP(X)

(cs00x)'[ 1 + (es00x)°] @

R.(x) = Ps(2)

(20)

where x = r/Rspo and M, = 3 x 10"*h~'M,,. The pressure at
radius Rspp in a gravity-only self-similar model is (Nagai et al.
2007)

_ 8 2
Pso0(2) = 1.65 x 107k (2)3 (Msoo/M..)3h* keV cm™,

and the running of the mass scaling with radius is well fit by
o,(x) =022 (1 - 8x2/(1 + 8x3)). The normalization and
shape parameters of the universal profile have best-fit values of

[R), cs00, V> @, Bl = [8.403h‘%, 1.177,0.3081, 1.0510, 5.4905],
calibrated from the REXCESS sample of 33 local X-ray
clusters at small radii (Bohringer et al. 2007) and hydro-
dynamic simulations at large radii.

The pressure profile is fully specified once the characteristic
mass, radius, and redshift of the cluster are given. The TSZ
projection operator for a cluster j with pressure profile centered
about the direction 7 is then

%) = y(p. i1}, 0] ), 1)

where the full set of parameters for the spatial profile is
0" = {Msp, Rso0, 2, B, 500, 7> v, 3} We  further divide

these into two sets: 85 = {R), cs00, 7, o, 3} are the profile
“shape” parameters, which may be universal, and
0F = {Msn, Rsp, 2z} are the “physical” parameters, which
are different for each cluster.’” The TSZ profile for a typical
cluster is shown in Figure 2, as a function of frequency and
effective beam size.

For a sufficiently realistic model of the cluster spatial profile,
there should be no need for a separate amplitude degree of
freedom, a;, because Equations (17) and (20) would define a
complete mapping between the magnitude of the TSZ signal, y,
and physical cluster parameters such as Msgp and Rsgp.
However, we introduce a; in our model for a few reasons.
First, the mapping between the integrated SZ signal and
parameters such as the mass is often defined using a scaling
relation, which typically has an intrinsic scatter of

5 The profile depends only on the combination Ry = Rsqo/cs00 (apart from in
the mass scaling, c,), so these two parameters are degenerate for each cluster
unless c¢sgo is assumed to be universal.
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Figure 2. Temperature fluctuation due to thermal SZ (black/gray) and kinetic
SZ (red) at 150, 220, and 350 GHz, averaged over a circular top-hat aperture of

radius 6. The lines shown are for a “typical” SZ cluster at z = 0.1, with
Mspo = 10"*Mg, Rsoo = 1 Mpc, and line-of-sight velocity v - 4 = 400 kms™".
The gray band illustrates the approximate range of temperature fluctuations for

the primary CMB. We have defined 05090 = Rs00/D (2)-

log o ~ 10% (e.g., Planck Collaboration 2011a). The ampli-
tude parameter can be used to model this scatter.

It is also advantageous to be able to keep the cluster shapes
fixed for some applications, since the spatial templates are
time-consuming to compute. From Equation (20), one can see
that, assuming this profile is correct, there is an almost one-to-
one correspondence between a; and Msgy, the parameter of
most cosmological interest. The statistics of a; are also a good
proxy for detection significance. By holding the shape
parameters fixed but allowing a; to vary, we can therefore
obtain good estimates of these quantities with considerably
reduced computational expense.

Finally, despite being one of the more accurate models
available, the universal profile is still a simplification. Arnaud
etal. (2010) find the pressure profiles of the REXCESS clusters
to be scattered about the universal profile by up to a factor of
four at low radii, depending on how morphologically disturbed
the cluster is. The fit is claimed to be better than 25% at radii
greater than 0.2 Rsyy, however, although recent SZ observa-
tions have now found a significantly flatter mean pressure
profile at r > Rspp (Planck Collaboration 2013; Sayers et al.
2013a). Allowing a; to vary could at least help to reduce biases
in other components of the data model due to this sort of
modeling error (although one must be careful in choosing
which profile parameters are also allowed to vary, as some are
strongly degenerate with a;).

3.2. Amplitude Sampling

Sampling of the {a;} parameters proceeds jointly with all
other amplitude degrees of freedom, as described in Section 2.2,
but it is instructive to explicitly write out the linear system for
just the CMB and a localized TSZ component, which we will
now do.

From Section 2.2, the data model for a single frequency may
be written as d, = U, - a + n,,, where

a = (acws, arsz) (22)

U =B,(1 Y, f\Trs) (23)
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are symbolic block vectors of the amplitudes and (beam
convolved) mixing/projection operators for each component.
The TSZ amplitudes are given by the block vector
arsy = (ay, a, ---,ay) and the spatial templates by
Iis; =T = (T, I, ---Ty), where T; = T (p, i1}, 6;).

In this notation, the linear operator (8) can be written as
M=5"+Y,N " with

S,1 _ SEI\EIB

Stz
BIN;'B, B!N,'B,Tf (v)

N*l
fW)B,T)'N,'B, fw)(B,TYN,'B,Tf )|

We will set S5, = 0 in the rest of this paper, but include it
here for the sake of generality. The bottom right block of the
inverse noise operator contains the TSZ-TSZ term

(W) = ror(BT) N BT 0. 4

For j = k, this accounts for any overlap between clusters,
ensuring that neighboring clusters do not bias one another.
Finally, the right-hand side of the linear system (9) can be
written as

_1 _1
Serswo + Y, BI N, 'd, + No 2w,

b =

1 _1
S’ITS%wl + ny(l/)(Bl/T)T N;ldll + Nv zwy

where w are randomly drawn white noise maps.

In principle, there is a physical prior on the TSZ amplitudes:
aj > 0. This violates our assumption that all amplitude
parameters are Gaussian, without which we would be unable
to simultaneously sample large numbers of amplitudes
efficiently. To resolve this conflict, we choose a looser
interpretation of a;, treating it as a “diagnostic parameter” that
quantifies detection significance, and is allowed to go negative.

3.3. Sampling the Profile Parameters

The TSZ frequency spectrum is completely fixed, and so
there are no spectral parameters to sample. This leaves only the
parameters of the spatial profile, 87, defined above. The
conditional distribution for @7 is difficult to sample from
analytically due to the dependence of (21) on a numerical line-
of-sight integration, and the nonlinear functional form of the
pressure profile itself. As such, we fall back on the Metropolis—
Hastings algorithm to sample from Equation (12).° This is
tractable due to the reasonably small number of profile
parameters for each cluster, although sampling is relatively
slow because each proposal requires the cluster template to be
recalculated for a new set of parameters. The parameters should
strictly only be sampled one cluster at a time to preserve the
Gibbs scheme, which disallows parallelization of the sampling
algorithm.

® The shape parameter subspace, 65, could be sampled more directly by

precomputing a set of profiles on a grid of the {«, 3, v} parameters and then
rescaling the profiles with Rg, as necessary.
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A couple of approximations can be made to speed up
computations. The first involves assuming that all clusters share
the same shape parameters, 85 (but not the same physical
parameters, or ). In this case, the cluster profile recalculation
can be parallelized effectively and only one set of shape
parameters need be sampled per Gibbs iteration. The shape
parameters then represent some ‘“‘average” profile for the
ensemble of clusters.

The second involves approximating the likelihood for each
cluster to be independent of the profile parameters of any other
clusters, in which case sampling for each cluster can happen in
parallel. This is a good approximation unless clusters overlap.
A possible refinement of this method would be to sample in
parallel for all clusters except those that overlap by more than a
pre-defined amount, for which sampling would instead happen
sequentially.

3.4. Catalogs and Prior Information

While recent high-resolution, high-sensitivity CMB experi-
ments have greatly increased the number of clusters detected
using the SZ effect, the majority are detected only with
comparatively low S/N, or are barely resolved. The CMB data
alone are therefore insufficient to strongly constrain the
physical properties of most clusters, and we must look to other
data sets to provide additional information. Fortunately,
extensive cluster catalogs based on X-ray and galaxy redshift
surveys are available (e.g., Koester et al. 2007; Piffaretti et al.
2011), which can be used to put priors on some of the cluster
profile parameters, @7. Prior information is naturally incorpo-
rated into the Gibbs sampling procedure through the P (T') term
in Equation (12).

Most important from our perspective are the redshift,
characteristic mass (Msgg), and scale radius (Rs = Rs00/C500)
of the clusters. Without some prior information on these
parameters, the profile parameter sampling method of Sec-
tion 3.3 can be affected by strong degeneracies, depending on
exactly which set of parameters is being sampled. Composite
X-ray catalogs such as MCXC (Piffaretti et al. 2011) provide
good estimates of these parameters for ~1800 -clusters,
although it should be noted that the different selection functions
for SZ and X-ray surveys mean that not all SZ clusters are
present in the catalog. Also, the parameters are typically
estimated using scaling relations that are subject to systematic
uncertainties in calibration, and which may disagree between
SZ and X-ray observations (Planck Collaboration 2011a).

A further requirement for the catalogs used by our Gibbs
scheme is that they are free from duplicate entries. Equa-
tion (24) shows why this is the case—if cluster k is actually a
duplicate of j, then there will be a 100% overlap between them,
leading to large off-diagonal entries in the TSZ-TSZ block of
the linear operator. This can cause the system to become
degenerate, leading to ill-defined solutions.

3.5. Contamination from Compact Sources

Several other source populations are known to contaminate
the cluster TSZ signal. Infrared-emitting galaxies are a
particularly nefarious contaminant, as they are often embedded
in clusters but are typically not resolved by CMB experiments
(Addison et al. 2012; Hincks et al. 2013), making it difficult to
identify them and cleanly subtract their contribution to the
signal. Cold galactic sources in the Milky Way are also
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problematic, as they are sometimes found far from the galactic
plane and have similar angular sizes to clusters (Planck
Collaboration 2011b), making them susceptible to erroneous
identification as SZ sources at high frequencies where the TSZ
signal is a temperature increment.

While these objects are in principle distinguishable from the
TSZ effect by their different spectra (e.g., Montier et al. 2010;
Aghanim et al. 2014), failing to account for them in the data
model will result in some of their emission leaking into other
components. This happens because the sampling algorithm has
no way of identifying unmodeled components, and so simply
tries to find the best-fitting parameters of the incomplete model
to the more complicated data, biasing the recovered SZ
amplitudes and leaving residuals in other components such as
the CMB map. Unless the contaminants can somehow be
removed or masked, it is therefore necessary to have a
sufficiently flexible component specification for contaminants
of a signal, as well as the signal itself.

One possibility for dealing with this within our framework is
to add a second localized component with the same spatial
distribution as the clusters from the input catalog, but with a
different profile shape (e.g., the point source response in the
case of unresolved galaxies) and frequency spectrum. One can
then jointly sample the SZ and IR emission from each source,
which would robustly separate the two contributions assuming
a sufficient number of bands are available (auxiliary data from
IR surveys such as IRAS, SCUBA, Herschel, and the high-
frequency Planck HFI channels can also be used). This would
require a reasonably informed choice of the functional form of
the IR spectrum to prevent degeneracies with the SZ signal, but
would have the advantage of simultaneously characterizing the
IR sources. One could also use this information to reliably
distinguish cold galactic cores from true SZ clusters by means
of a Bayesian model selection analysis,” although we do not
consider this possibility further here.

4. KINETIC SZ AND PECULIAR VELOCITIES

The KSZ effect is also caused by the Compton scattering of
CMB photons, but this time it is the coherent (bulk) motions of
the scattering electrons with respect to the CMB that imprint
the signal, which is effectively just a Doppler shift. This has a
flat spectrum and is therefore not as readily distinguished from
the primary CMB as the thermal SZ effect.

One can use the KSZ effect to probe the cosmological
peculiar velocity field on large scales. This encodes a great deal
of information about the growth of structure in the universe,
and can be used to constrain dark energy and modifications to
General Relativity out to high redshift (Bhattacharya &
Kosowsky 2008a; Kosowsky & Bhattacharya 2009; Keisler
& Schmidt 2013). The KSZ effect is also sensitive to other
phenomena that would cause a CMB dipole to be seen in the
cluster rest frame, for example, in inhomogeneous cosmologi-
cal models that violate the Copernican Principle (Good-
man 1995; Garcia-Bellido & Haugblle 2008; Bull et al. 2012).

Because of the relative weakness of the signal and its lack of
a distinctive spectral signature, the KSZ effect is susceptible to
various systematic errors that can severely bias peculiar
velocity measurements (Aghanim et al. 2001; Bhattacharya &

7 We acknowledge the anonymous referee for this suggestion. Note that
similar ideas have also been used to probabilistically distinguish between
different supernova populations in contaminated Type Ia samples (Falck
et al. 2010).
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Kosowsky 2008b). The measured velocity is also degenerate
with the optical depth of the cluster (Sehgal et al. 2005), so
some way of independently determining this must be found.
Our proposed approach is well-suited to addressing these
difficult problems; through careful modeling, judicious use of
prior information, and rigorous propagation of errors, one can
break degeneracies and mitigate biases even for extremely
weak signals.

4.1. Model Definition

For a cluster with bulk peculiar velocity v, the fractional
temperature change due to the KSZ effect is (Sunyaev &
Zeldovich 1980)

ar_ —(v - Afe) T(n) (25)

7(#) = [orne(i, 1)d. (26)

The shape of the cluster’s KSZ emission is governed by the
electron number density, n.. We already have a well-motivated
parametric form for the electron pressure profile (Equa-
tion (20)), and so rather than choosing n,. independently, we
use the ideal gas law n.~ R/kpT. and a “universal”
temperature profile (Loken et al. 2002),

Rs00

2
T(r) = 11.2[R5—°°h]
Mpc

—1.6
1+0.75L] keV, (27)

to define an n, that is also a function of the TSZ shape
parameters defined in Section 3.1. By taking the TSZ and KSZ
profiles to be governed by the same set of parameters, we
explicitly take into account their common dependence on the
physical properties of the cluster; information gleaned from the
stronger TSZ signal helps break the degeneracy between the
peculiar velocity and optical depth. The projection operator for
the KSZ component is then

T8 (p) = —T(p, A, 0})/c, (28)

and the amplitude parameter is the bulk velocity projected
along the line of sight to the cluster, a; = v; - /i;. Since the
KSZ effect is just a temperature change along the line of sight,
it has a flat spectral dependence, and thus G = 1.

4.2. Velocity Correlations

In contrast with the TSZ case, we will not neglect the signal
covariance here. The peculiar velocities of clusters are
correlated over large scales with a covariance that can be
calculated from linear cosmological perturbation theory. While
individual cluster velocities are of little intrinsic interest,
velocity correlations can provide information on the growth of
structure, matter power spectrum, and other cosmological
parameters (Bhattacharya & Kosowsky 2007; Macaulay
et al. 2012).

The KSZ velocity covariance matrix is given by
(Gérski 1988; Macaulay et al. 2012)
k*dk
(Sis2) = [ 53 P (b) + 0265 29)
™



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 219:10 (14pp), 2015 July

where the first term on the right-hand side is the line-of-sight
velocity correlation from linear theory, ((v; - 7i;) (v - fix)), and
the second term is a nonlinear velocity dispersion modeled as
an uncorrelated noise term with variance o>. The window
function Fj, depends on the orientation of the pair of clusters
(j, k) with respect to the observer. Different (but equivalent)
expressions for Fj; are given by Dodelson (2003) and Ma et al.
(2011). The velocity power spectrum is related to the matter
power spectrum by

B, (k) = k(zj)k(zx)P(k, z = 0)/k2 (30)
k(z) = H@@)f (2)/( + 2)D(2), 31

where D (z) is the linear growth factor normalized to unity
today and f(z) = d log D/d log a is the growth rate.

4.3. Velocity Covariance Matrix Amplitude

Given a suitable choice of parametrization, the cosmological
functions that enter (30) can be constrained directly through the
Gibbs sampling procedure. As a simple illustration, consider a
parametrization that has only the overall amplitude of the
matter power spectrum, Aps, as a free parameter. Replacing
P (k) — ApsBiq (k) in (30), where Byq(k) is a fiducial power
spectrum, we can rewrite Equation (3) as

Aps — P(Aps|G, a, T, d) x P(Apslaksz) (32)

/18kszl . (33)

If we set o4 = 0, then the signal covariance matrix is simply
proportional to the fiducial linear theory velocity covariance
matrix, Sxsz = ApsSgd, and the pdf reduces to the inverse
gamma distribution,

I'Y(A; a, B) < exp(—B/A) / A>F!

o exp —%aTSgdla /APS]/(AP%/Z,/ISﬁM ),

(34)

[P
X exp _EaKSZSKSZaKSZ

where N is the number of clusters and o« = N/2 — 1. Efficient
direct sampling algorithms exist for this distribution (e.g.,
Eriksen et al. 2004 and references therein). We do not know of
a direct sampler for the general case, where o4 = 0, but an
alternative method is discussed in Section 5.4.

5. GIBBS SAMPLER IMPLEMENTATION

Implementing a numerical code to efficiently carry out the
sampling procedure described in previous sections is tractable
but challenging. In this section, we discuss the computational
difficulties associated with the proposed Gibbs sampling
scheme and suggest solutions for each of them. Our discussion
is partially based on a simple proof-of-concept implementation
for the TSZ effect built on top of the Commander CMB
component separation code (Eriksen et al. 2004, 2008). Com-
mander already implements a subset of the proposed Gibbs
scheme, and can be extended in a relatively modular fashion to
accommodate a localized TSZ component. It is optimized for
lower-resolution full-sky analyses, however, and lacks a
suitable solver for the high-resolution analysis needed for
TSZ clusters. We therefore use this code as a simple testbed
and defer full implementation to a later work.
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5.1. Full Gibbs Scheme for SZ

Combining results from the previous sections, a suitable
Gibbs scheme for the localized TSZ and KSZ signals from
galaxy clusters is

a! — P(a|C/. Afs, 6ic. 0. d) (35)
Citt — P(Crlaéifs ) (36)
AR — P(Apslais)) (37)
05" — P(Orcla’™", Ofg, 0%y, d) (38)
05" — P(Oszla™t!, 6i5, 044, d), (39)

where a = (acms, arG, arsz, axsz) are the amplitude para-
meters, Org are the foreground spectral parameters, and the
cluster shape parameters 6y are those of the universal pressure
profile defined in Section 3.1.

The Commander code already includes (35), (36), and (38).
The amplitude sampling step (35) must be generalized to
include the new SZ components, and steps (37) and (39) need
to be implemented from scratch. We focus only on (35) here,
deferring detailed implementation of the other steps for
later work.

5.2. Constrained Realization Solver

The computational complexity of the Gibbs scheme is
entirely dominated by the joint amplitude sampling step (35),
which involves solving a large linear system to draw a
constrained realization of all of the amplitude parameters—
potentially millions of them. For realistic CMB data with
millions of multi-frequency pixels, inhomogeneous noise, and
masked regions, there is a wide spread in the S/N per pixel. The
eigenvalues of the linear operator (8) therefore have a large
dynamic range, making the system poorly conditioned. This,
combined with its high dimensionality, results in unacceptably
slow convergence for most linear solvers. Without a compu-
tationally efficient global amplitude sampling step, the Gibbs
scheme is intractable, and so this issue is of central importance.

There are a number of ways to speed up the solution of the
linear system. Commander uses a preconditioned conjugate
gradient (PCG) solver, which works by multiplying both sides
of the system by a preconditioning matrix, @, and then solving
the resulting modified system, QMa = Qb. If one can design a
preconditioner such that @ ~ M~!, then the resulting modified
system will be well-conditioned, and if both Q and QM can be
evaluated quickly, it can be solved much faster. An efficient
preconditioner for the joint amplitude sampling problem was
described in Eriksen et al. (2004, 2008) and has been shown to
work well on masked, full-sky, low-noise, multi-frequency
foreground-contaminated CMB data up to ¢ ~ 200 (Planck
Collaboration 2014a), which is sufficient for foreground
component separation.

Higher-resolution methods are needed to sample SZ
amplitudes, however, as a typical cluster at z 2 0.1 subtends
only a few arcminutes. Increasing the angular resolution by
even a factor of 2—4 results in a considerable hardening of the
problem, as the number of pixels required increases as the
square. The noise is also higher at small scales, further
contributing to the poor conditioning of the system. The result
is that substantially more sophisticated solvers are required to
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Figure 3. Distribution of standard scores, ({(a;) — ajin)/0;, for the TSZ
amplitudes of 300 simulated clusters. The mean and standard deviation for each
cluster are calculated from a Gibbs chain with 575 samples, and the input
amplitudes are those used in the simulation.

make the problem tractable. One such method is the multi-level
algorithm described by Seljebotn et al. (2014). This is capable
of rapidly solving the amplitude sampling system up to
¢ ~ 2000, but has yet to be extended to multi-frequency data
with more than just the CMB plus noise.

An alternative is to reduce the complexity of the problem by
working in the flat-sky limit. This is suitable for experiments
such as ACT and SPT, which cover only a few thousand square
degrees; thus, while their angular resolution is higher, the total
number of pixels is typically smaller. Importantly, in the flat-
sky limit, one also benefits from being able to use Fast Fourier
Transforms instead of the slower and more cumbersome
spherical harmonic transforms.

To demonstrate the amplitude sampler, we apply the existing
Commander PCG solver to a basic full-sky simulation for three
frequency channels (143, 217, and 353 GHz), each of which
has a primary CMB component, TSZ signals for 300 clusters,
uncorrelated white noise, and instrumental beam effects. No
foreground contamination or masks are included. A Gaussian
CMB realization is drawn using the Planck best-fit angular
power spectrum (Planck Collaboration 2014c). The beam is
chosen to be a uniform 40 arcmin across all bands, and the
noise covariance for each channel is obtained by smoothing the
noise maps for the corresponding Planck HFI channels to the
same resolution. To compensate for the comparatively low
resolution of the simulation, we rescale the angular sizes of all
clusters by a factor of 7, roughly corresponding to the ratio
between the width of our chosen beam (40’) and the Planck
HFI beams (~5’-7"). Correspondingly, we scale the amplitudes
of the clusters by 1/72 in order to preserve their integrated flux,
and thus the S/N per cluster. The clusters are chosen to have the
angular distribution and physical properties of the entries with
the largest 5oy from the Planck SZ catalog (Planck Collabora-
tion 2014f), except for Virgo and Coma which are too large
after rescaling.

Figure 3 shows the distribution of cluster amplitudes
recovered by running the modified Commander Gibbs sampler
over the simulations. The standard scores (i.e., the recovered
TSZ amplitude minus the amplitude input into the simulation,
weighted by the standard deviation estimated from the Gibbs
chain) are consistent with the unit Gaussian distribution. This is
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Figure 4. Ratio of TSZ templates for an example cluster (fsoo ~ 30) after
beam convolution in spherical harmonic space and pixel space (Ngg. = 1024).
The ratio is shown as a function of angle from the center of the cluster,
normalized to 059, and the beam FWHM (Opwum =~ 14') is shown as a dotted
vertical line. Ringing artefacts are clearly visible.

what one would expect if the recovered amplitudes are
Gaussian-distributed and unbiased and the standard deviation
has been estimated correctly (in other words, that the statistical
uncertainty has been propagated correctly ). However, note that
this test has not yet been performed in the presence of other
non-Gaussian foregrounds, which will be required to more
stringently validate the algorithm before it is applied to real
CMB data.

5.3. Spatial Template Calculation

The SZ spatial templates for each cluster are calculated
according to Equations (17) and (25), both of which require
line-of-sight integrations. This can be computationally inten-
sive for high-resolution data, especially as the templates must
be recalculated several times during the shape-sampling Gibbs
step (39). Simple numerical techniques like spline interpolation
of the radial cluster profile and integrating for many clusters in
parallel can readily be used to speed up the process, however.

Once calculated, the templates must be convolved with the
instrumental beam in each band. While the convolution would
be fastest in the spherical harmonic domain, this tends to
introduce ringing artefacts and can bias the beam-convolved
template by a couple of percent at small radii where most of the
integrated signal originates (Figure 4). In turn, this biases the
SZ amplitudes. A much more accurate method is to perform the
convolution directly on a finer grid in pixel space (i.e., each
pixel is subdivided into 4 or 16 sub-pixels, the pixel-space
convolution is calculated, and then the result is averaged back
onto the coarser grid). This is considerably more expensive
than the spherical harmonic method, and so the beam-
convolved templates should be cached if possible. Fortunately,
the convolution can be done independently per cluster, per
band, making it easy to parallelize.

5.4. Velocity Covariance Matrix Amplitude

Current CMB experiments lack the sensitivity to detect the
KSZ effect from significant numbers of individual galaxy
clusters, and so only statistical detections (e.g., Hand
et al. 2012) will be possible for the foreseeable future. Our
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Figure 5. Marginal distributions of Apg from simulations with different signal-
to-noise ratios per cluster (for 300 clusters, 5000 samples). As the S/N
increases, the marginal distribution converges toward the theoretical inverse
gamma distribution for the given velocity covariance matrix (gray).

formalism suggests a natural quantity to use as a statistic: the
velocity covariance, defined in Section 4.2.

To investigate the properties of this statistic, we define a
simplified Gibbs scheme based on steps (35) and (37) where
only the cluster KSZ amplitudes and the velocity covariance
matrix amplitude are free parameters,

a «— P(a|Aps, d) (40)

Aps — P(Apslaksz). 41)
We simulate velocity data, d, for a range of S/N by drawing
Gaussian realizations of velocities with covariance Sksz and

adding white noise with covariance N = (S/N)~2 x diag(Sksz),
where S/N is an assumed signal-to-noise ratio per cluster, equal
for all clusters. The velocity covariance matrix is calculated for
the 813 clusters with confirmed redshifts in the Planck SZ catalog
(Planck Collaboration 2014f); a subset of these is taken when
fewer clusters are needed. For the sake of simplicity, the
nonlinear velocity dispersion, o, is set to zero in these
simulations; the qualitative picture stays the same for non-zero
0%, however.

One way of quantifying a detection of the KSZ effect is to
use the amplitude parametrization of the velocity covariance
matrix that was discussed in Section 4.3. One might expect that
a constraint on Apg that is inconsistent with zero at some
confidence level would count as a detection, but the velocity
covariance matrix must remain positive definite, and so Apg is
always greater than zero with 100% confidence. Furthermore,
the distribution of Apg will have finite variance even for perfect,
noise-free observations—a given (finite) set of correlated
peculiar velocities is always consistent with having been drawn
from a finite range of distributions with different Apg. Both of
these effects can be seen in Figure 5 where the marginal
distribution of Apg is plotted from simulations for 300 clusters
with varying S/N. As the noise decreases, the marginal
distribution rapidly approaches the ideal distribution for the
given Sksz. The width of the estimated distribution, approxi-
mated by the standard deviation, is shown in Figure 6 as a
function of both S/N and the number of clusters.
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Figure 6. Standard deviation of the velocity covariance matrix amplitude,
o (Aps), estimated from simulations, as a function of the number of clusters in
the catalog and the detection S/N for each cluster.

Therefore, a better way of quantifying detection significance
is to compare the estimated marginal distribution of Apg with
what would be expected in the ideal case. A useful measure of
the closeness of two distributions is the Kullback—Leibler
divergence (Kullback & Leibler 1951), also known as the
relative entropy or information gain. For a pair of normalized
discrete (binned) distributions, ,; and ¢;, this is

AS =3 p; log(pi/g); (42)

where the sum is over bins. Since AS is not invariant under
g; < p;, we specify that g; is the ideal reference distribution
here. As p approaches g, AS — 0, and so smaller AS denotes a
stronger detection. Note, however, that there is no definitive
value of AS corresponding to a null detection; any constraint
on the velocities, however weak, provides information on Aps,
and thus reduces AS.

In reality, o4 = 0, and so Equation (33) cannot be reduced
to the inverse gamma distribution. One can sample from the
more general distribution using a simple inversion sampling
algorithm: (1) evaluate Equation (33) over a grid of Apg
values; (2) integrate the result to find the cumulative
distribution function (cdf); (3) draw from the uniform
distribution, u <« U[0, 1]; and finally (4) draw Aps by
evaluating the (spline interpolated) inverse cdf at u, i.e.,
Aps + cdf~!(u). This method is sufficiently accurate as long
as the Apg grid is sufficiently dense and is also relatively
efficient; while each evaluation of Equation (33) requires an
expensive matrix inversion and determinant evaluation, these
are fast enough for matrices with a few thousand clusters or
smaller, and the evaluation over the grid can be performed in
parallel.

Another problem that arises is the long correlation length of
Gibbs chains in the low S/N limit. In this case, the sampler
spends most of its time exploring the joint prior, P (aksz, Aps),
and without good data to constrain the KSZ amplitudes, Apg is
degenerate with an overall scaling of all aksz. Because the
Gibbs scheme alternately samples from the conditional
distributions, it is unable to move directly along the degeneracy
direction, and so exploration of the joint prior is slow, hence
the highly correlated samples. This issue can be overcome by
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adapting the low signal-to-noise CMB sampling algorithm of
Jewell et al. (2009). This alternates between (1) sampling from
the standard conditional distributions and (2) an MCMC step
based on a deterministic rescaling of the amplitudes. The
MCMC step allows large jumps in Apg in the noise-dominated
regime, significantly speeding up exploration of the joint prior
space, but reduces to the standard sampling method in the
signal-dominated case.

6. APPLICATION TO OTHER LOCALIZED SIGNALS

The sampling scheme proposed in Section 2 is suitable for a
variety of other types of localized secondary anisotropy besides
the TSZ and KSZ effects. The only significant modification that
is needed is to choose a different parametric form for the spatial
profile and frequency dependence, and to source a different
catalog of positions and (optionally) other properties of the
target objects. In the remainder of this section, we briefly
outline some other types of secondary anisotropy that may
benefit from the careful statistical treatment provided by our
method.

6.1. ISW Effect

The ISW effect is a temperature change in the CMB caused
by the decay of gravitational potentials along the line of sight
as dark energy begins to dominate. The expected amplitude of
the ISW effect is predicted to be small compared with the
primary anisotropies, and so it is generally necessary to cross-
correlate CMB sky maps with tracers of large-scale structure
(LSS) in order to pick out the signal.

While interesting as an independent confirmation of the
existence of dark energy, there have also been recent claims of
a detection of the ISW effect in the direction of supervoids that
is anomalously large compared to ACDM predictions (Granett
et al. 2008; Papai et al. 2011; Nadathur et al. 2012; Flender
et al. 2013). The ISW effect due to a large supervoid could
potentially also explain the CMB cold spot (Kovécs
et al. 2014).

6.2. Topological Defects

Phase transitions associated with spontaneous symmetry
breaking in the early universe should give rise to topological
defects—the inhomogeneous boundaries between regions of
different vacuum states (Durrer 1999). Defects leave disconti-
nuities and other characteristic non-Gaussian patterns in the
CMB, with shapes that depend on the type of underlying
symmetry that was broken. Most theories predict that only a
few defects can be expected to be visible in the CMB, and so
have been invoked as possible explanations of rare anomalies
such as the cold spot (Cruz et al. 2005).

There have been a number of searches for evidence of
defects in the CMB, with varying degrees of success (Jeong &
Smoot 2005; Cruz et al. 2008; Feeney et al. 2012). In order to
claim that a detected anomaly is in fact the result of a
topological defect, a number of other potential explanations
must first be ruled out; for example, a claimed detection of a
cosmic texture may also be plausibly explained by the
existence of an intervening cluster or void. The measured
temperature profile of the anomaly can be used as part of a
Bayesian model comparison to try and distinguish between the
various options (Cruz et al. 2008).
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6.3. Signatures of Pre-inflationary Physics

A number of proposed models of pre-inflationary physics
suggest processes that can imprint patterns into the CMB that
are not expected in the standard (Gaussian and isotropic)
picture. These patterns typically take the form of circles,
concentric rings, or other simple geometric shapes in the CMB
temperature or its variance, superimposed on anisotropies that
are otherwise well described by a Gaussian random field.
Examples of models which predict such effects include the
following (Wehus & Eriksen 2011): bubble collisions in
multiverse scenarios (Feeney et al. 2013), cyclic cosmologies
where primordial black holes collide (Gurzadyan & Pen-
rose 2010), and models in which massive particles exist before
inflation (Fialkov et al. 2010). A closed spacetime topology
would also provide similar effects (Cornish et al. 1998).

Such theories normally predict a characteristic shape for the
patterns, and often impose other constraints, such as pairing of
the shapes or fixed concentricities. This makes it possible to
construct well-defined spatial profiles for the expected signal.

7. DISCUSSION

Secondary anisotropies of the CMB are a rich source of
cosmological information, if they can be detected and
characterized accurately. In this paper, we have described a
Bayesian method to rigorously and reliably disentangle
secondary signals in CMB temperature maps from other effects
while simultaneously providing accurate estimates of statistical
uncertainty. The basis of the method is a parametric physical
model of the microwave sky that includes primary and
secondary CMB anisotropies, foreground contamination, and
noise. One can then use a tailor-made Gibbs sampling scheme
to efficiently sample from the full joint posterior distribution for
the model, which may include many thousands, or even
millions, of parameters. After marginalizing over everything
else, one is left with a consistent statistical determination of the
secondary signal. Though computationally intensive, this
method has the key advantages of avoiding biases due to
degeneracies with other signals (by modeling them), and
correctly propagating uncertainties without relying on calibra-
tion against simulations or otherwise. The latter is particularly
important for secondaries that are only marginally detected
where inaccuracies in error estimates could make the difference
between claiming a detection or not.

While our proposed method guarantees statistical self-
consistency, its ability to accurately describe the actual data
depends on the suitability of the chosen model of the sky. As
we discussed in Section 3, the sampling framework is
extremely flexible, supporting the sampling of cluster shape
parameters and so on. It is therefore possible to arbitrarily
extend the sky model to be more realistic, incorporating effects
such as non-sphericity and non-thermal pressure support in
galaxy clusters for example. Introducing additional Gibbs steps
can lead to a significant increase in computational complexity,
and generally increases uncertainties by requiring more
parameters to be marginalized, so these downsides must be
weighed against any expected improvement in accuracy.

In Section 4, we gave an example of using our framework to
directly estimate a cosmological statistic—in this case, the
velocity covariance. The advantage of this method is that the
impact of foregrounds and the primary CMB can be folded
directly into the estimated uncertainty on the statistic, based
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solely on the available data. The alternative is to calibrate the
statistic off simulations, which can be computationally
intensive and may lack some effects that are present in the
real data. Mapping-out the full joint posterior distribution, as
we do, also has other advantages; one can marginalize over the
secondary signal to obtain rigorous estimates of some other
signal component. This is of particular interest in cases where
secondary anisotropies are both contaminants and interesting
signals in their own right—for example, the contamination of
the cosmic infrared background by the thermal SZ effect.
Though successful when applied to the CMB (Planck
Collaboration 2014a), blind component separation methods
are less likely to be useful for this sort of problem, as they tend
to mix together physical foregrounds, leaving only the primary
CMB behind after cleaning.

As discussed in Section 5, our Gibbs sampling method is
computationally intensive, and requires the use of some clever
algorithms to speed it up. We demonstrated the tools necessary
to make the method practical, but the next step is to construct a
full implementation. For the full sky, the best option is most
likely the multi-level solver of Seljebotn et al. (2014), but in
the near term a flat-sky version is a more straightforward
prospect. Full details of a flat-sky implementation, including
full numerical validation of the method, are deferred to a
forthcoming paper (T. Louis & P. Bull 2015, in preparation).

The focus of this paper has been on secondary anisotropies
of the CMB, such as the TSZ, KSZ and other effects listed in
Section 6, but one could also consider extending our Gibbs
sampling framework to additional data sets, such as surveys of
LSS. We have already considered a basic method of doing this
in our discussion of the SZ effect, where external cluster
catalogs were used to determine the positions of galaxy clusters
on CMB maps. A more sophisticated “combined” Gibbs
scheme could also sample parameters of the external cluster
survey, such as detection thresholds or selection functions,
or indeed any other quantity with statistical uncertainty
attached. One could even define a scheme that sampled
the density field reconstructed from galaxy redshift surveys
and then cross-correlated it with the CMB. These
possibilities are left for future work; we only wish to note
here that properly accounting for correlated (physical/nuisance)
parameters between disparate data sets is likely to become
more crucial as cross-correlation analyses become more
common, and that Gibbs sampling provides the flexibility to
tackle this problem.

We are grateful to G. Addison, R. Battye, T. Louis, E.
Macaulay, and M. Schammel for useful discussions, and to the
anonymous referee for a number of suggestions that have
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P.G.F. acknowledges support from Leverhulme, STFC,
BIPAC, and the Oxford Martin School. Part of the research
was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with NASA. Some
of the results in this paper have been derived using
the HEALPix software and analysis package (Gorski
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APPENDIX
BLIND DETECTION OF THE TSZ EFFECT

The Gibbs sampling framework outlined in Section 2 can
also be used to perform blind detections of clusters, using only
the frequency dependence of the thermal SZ effect. The most
suitable model for blind TSZ detection within our framework is
a pixel-based component (see Section 2.4) with a free
amplitude and fixed TSZ spectrum (Equation (19)) in each
pixel. One could also impose a signal covariance matrix based
on the TSZ angular power spectrum predicted from linear
theory and simulations, but for experiments with multiple
frequency channels there is generally enough data to make this
unnecessary.

While the spectrum of the TSZ effect is rather distinctive,
other foreground emission must nevertheless be included in the
data model as well. Otherwise, one runs the risk that a
substantial fraction of the unmodeled components could be
misidentified, causing significant contamination of the esti-
mated TSZ signal. The precise definition of these other
components will depend on the frequency coverage of the
experiment in question, but for the 70-350 GHz window,
where the TSZ signal is largest, the most important
contaminants are typically CO emission lines, free—free, and
thermal dust (Planck Collaboration 2014a). Contamination by
point sources is also an issue, and so either a point source mask
or a reliable cross-matching procedure is required as well.

With a data model in hand, one can then use a variation on
the Gibbs scheme of Section 2.2 to sample from the joint
posterior. A map of TSZ amplitudes is produced with each
Gibbs iteration by virtue of the first step in the scheme
(Equation (2)). Once the Gibbs chain has converged, each of
these maps will be a sample from the marginal distribution for
the TSZ component—that is, the CMB, galactic foregrounds,
and other model parameters are automatically marginalized in
these maps. This procedure directly propagates the uncertainty
associated with the component separation procedure in full, so
there is no need to perform simulations to estimate detection
significance and the like.

The TSZ marginal maps can then be processed using an
existing source finder or filtering technique to try and identify
clusters (e.g., Herranz et al. 2005). Estimates of the noise are
given by the standard deviation from the chain for each pixel,
and an effective signal map is given by the mean.
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