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ABSTRACT

Aims. We investigated the gravitational effects of a scalar field within scalar-tensor gravity as an alternative to dark matter. Motivated
by chameleon, symmetron, and f (R)-gravity models, we studied a phenomenological scenario where the scalar field has both a
mass (i.e. interaction length) and a coupling constant to the ordinary matter that scale with the local properties of the considered
astrophysical system.
Methods. We analysed the feasibility of this scenario using the modified gravitational potential obtained in its context and applied it
to the galactic and hot gas/stellar dynamics in galaxy clusters and elliptical/spiral galaxies respectively. This is intended to be a first
step in assessing the viability of this new approach in the context of “alternative gravity” models.
Results. The main results are 1. the velocity dispersion of elliptical galaxies can be fitted remarkably well by the suggested scalar
field, with model significance similar to a classical Navarro-Frenk-White dark halo profile; 2. the analysis of the stellar dynamics
and the gas equilibrium in elliptical galaxies has shown that the scalar field can couple with ordinary matter with different strengths
(different coupling constants), producing and/or depending on the different clustering state of matter components; 3. elliptical and
spiral galaxies, combined with clusters of galaxies, show evident correlations among theory parameters, which suggest both the
general validity of our results on all scales and a way toward a possible unification of the theory for all types of the gravitational
systems we considered. All these results demonstrate that the proposed scalar field scenario can work fairly well as an alternative to
dark matter.
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1. Introduction

Dark matter and dark energy are nowadays widely accepted as
the main components of our Universe, although reliable clues
about their origin, nature, and properties are still missing. There
is a long list of possible dark matter candidates, ranging from
standard to sterile neutrinos, from axions to super-symmetric
candidates, from light to super-heavy scalar fields (see, e.g.
Bertone et al. 2005; Krauss 2006, and references therein), while
dark baryons seem to have a minor contribution. Concerning
the nature of dark energy, which is the largest component in
the mass-energy balance of the Universe with ≈69% from lat-
est Planck results (Planck Collaboration 2014), a coherent cos-
mological model explaining all the open issues and the related
observed phenomena still needs to be found.

These two dark ingredients are the pillars of the current cos-
mological concordance model, the Λ-cold dark matter (ΛCDM),
where Λ stands for the cosmological constant (Carroll et al.
1992; Sahni & Starobinski 2000), which is assumed to drive the
Universe expansion. This model provides a suitable fit to most
of the cosmological data (Planck Collaboration 2014; Sanchez
et al. 2006; Seljak et al. 2005; Tegmark et al. 2004), but it is

also well known that it is affected by many serious theoretical
problems that motivate the search for alternatives.

On a phenomenological ground, alternative models to dark
matter have proposed a modification of the gravitational acceler-
ation (Milgrom 1983) within the context of MOND, which only
later after his initial formulation was related to the context of the
relativistic gravitation theory (Bekenstein 2004, 2005; Sanders
2005). On a more theoretical basis, more general candidates for
the acceleration-driver counterpart have been proposed. Such
models range from scalar fields rolling down self-interaction po-
tentials to phantom fields, from phenomenological unified mod-
els of dark energy and dark matter to alternative theories of grav-
ity (Capozziello 2002; Koivisto & Mota 2006; Li et al. 2007;
Capozziello & Francaviglia 2008; Copeland et al. 2006; Manera
& Mota 2006; Mota 2008; Padmanabhan 2003; Peebles &
Rathra 2003; Koivisto et al. 2009; Capozziello & De Laurentis
2011).

Among all these approaches, in Mota et al. (2011, Paper I,
hereafter) we focussed on a particular scenario where a scalar
field might be used to unify the cosmological scale acceleration
of the Universe with the formation and dynamics of gravitational
structures by mimicking dark matter on astrophysical scales.
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Scalar fields play an important role in connecting cosmol-
ogy and particle physics (Binetruy 2006; Linde 2008). In partic-
ular, theories such as the chameleon fields (Khoury & Weltman
2004; Mota & Shaw 2006; Brax et al. 2004), f (R) gravity (Hu
& Sawicki 2007; Starobinsky 2007; Capozziello et al. 2003),
and symmetron models (Hinterbichler & Khoury 2010; Olive
& Pospelov 2008; Davis et al. 2012), all share the fundamental
ingredient of a scalar field, which couples to matter via grav-
itational interaction, and it is short-ranged in highly dense re-
gions and long-ranged in low-density regions. Such a scalar field
would be relatively light on cosmological scales, thus describ-
ing cosmological evolution without differentiating much from
the ΛCDM model, and at the same time, it would also be able
to satisfy local gravity constraints. Moreover, on different astro-
physical scales, the effect of the scalar field would be suppressed
or enhanced according to the local astrophysical density.

Starting from these broad properties, we propose a new pa-
rameterization for a massive scalar field theory where we in-
troduce a field mass (or an interaction length) and a coupling
constant with ordinary matter that may change with scale. Our
primary goal is to test whether this parameterization, based on
the chameleon or symmetron theories, can account for different
observational facts, regardless of the underlying physical mech-
anism producing such a scalar field. Some recent papers (Oyaizu
et al. 2008; Brax et al. 2012) analyse symmetron and f (R) grav-
ity theories (of which chameleon models are an extension) in the
context of structure formation, but they still consider the field as
a background cosmology ingredient. Here we propose a scaling
mechanism for which the field can explain both dark energy (on
cosmological scales) and dark matter (on astrophysical scales).

In Paper I we studied the feasibility for this scale-dependent
scalar field to work on different gravitational scales by using
various cosmological indicators: Type-Ia supernovae and their
Hubble diagram, low surface brightness spiral galaxies and their
rotation curves, clusters of galaxies and their mass profiles.

Here we want to go beyond Paper I, by extending our analy-
sis to elliptical galaxies and modelling their velocity dispersion
profiles. As we show in the following sections, this new test has
provided us with new evidence that has motivated a modification
of the original approach followed in Paper I and a new analysis
of the gravitational objects studied in that same work (namely,
spiral galaxies and clusters of galaxies). Finally we unify all the
results into a more general scheme.

The article is organized as follows. In Sect. 2 we give a brief
but exhaustive summary of all the main properties of the scalar
field theory and describe all the main hypothesis underlying our
work. In Sect. 3 we accurately describe the used astrophysical
data and the way we involved them in our analysis. In Sect. 4
we show results concerning elliptical galaxies, and in Sect. 5 we
discussion the implications for a unified picture of all the grav-
itational structures we have considered. Conclusions are drawn
in Sect. 6.

2. The scalar-tensor field theory

The most general action governing the dynamics of a scalar field
can be written as (Esposito-Farese & Polarski 2001):

S =
1

16πG∗

∫
d4x
√−g

{
F(φ)R − Z(φ)(∂φ)2 − V(φ)

}
−

∫
d4xLm(ψ(i)

m , g
i
μν), (1)

where g is the determinant of the metric gμν, R is the Ricci scalar,
ψ(i)

m are the various matter fields, Lm is the Lagrangian density
of ordinary matter, φ is the scalar field, F(φ) and Z(φ) are two
functions of the field that regulate its dynamics, and V(φ) is the
scalar field potential. Depending on the expression of the given
functions F(φ) and Z(φ) and of the potential V(φ), one can re-
cover general scalar field theories, such as the chameleon or the
symmetron mechanisms. The main consequence of this action
is easily seen when linear perturbations of matter are taken into
account. A wide class of theories leads to a perturbation equa-
tion like this (Davis et al. 2012; Brax et al. 2004; Bertschinger
& Zukin 2008):

δ̈m + 2Hδ̇′m =
3
2
ΩmH2 Geff

GN
δm, (2)

where the dots mean time derivative, k is the wave-number
length, a the scale factor, H the Hubble function, δm the mat-
ter density contrast, and Ωm the matter density parameter. The
quantity Geff can be interpreted as an effective gravitational con-
stant, because in general relativity the gravitational coupling GN
is a constant, while in many alternative theories of gravity the
strength of gravity can vary with time and place. A time-varying
gravitational coupling is a well known property of scalar-tensor
theories and a generic feature of all modified gravity theories
where the Newtonian potential and the spatial curvature poten-
tial are different (Bertschinger & Zukin 2008; Acquaviva et al.
2005; Clifton et al. 2005). Within the context of massive scalar
field models, it has the general expression (Gannouji et al. 2009):

Geff(a; β,m; k) = GN

⎛⎜⎜⎜⎜⎜⎜⎝1 + 2β2
k2

a2m2

1 + k2

a2m2

⎞⎟⎟⎟⎟⎟⎟⎠ , (3)

where β is the coupling constant of the scalar field with matter,
and if the field is at the minimum, the scalar field mass is m2 =
V,φφ. In particular, the term proportional to β2 results from the
scalar field-mediated force, which is negligible if the physical
length scale of the perturbation is much larger than the range of
the scalar field-mediated force, namely, if a/k � m−1. In this
case matter fluctuations grow as in general relativity.

Taking the inverse Fourier transform of Eq. (3), it is straight-
forward to obtain the corresponding expression of the gravita-
tional potential for a point mass distribution,ψ(r). Remembering
that a potential ∝ 1

r in real space yields a k−2 term in Fourier
space, we can recognise in Eq. (3) the point-like gravitational
potential per unit mass:

ψ(r) = −G
r

(
1 + 2β2e−mr

)
= −G

r

(
1 + 2β2e−r/L

)
, (4)

where m is the mass of the scalar field, L ∝ m−1 is the interac-
tion range of the scalar field, and β still is the coupling constant
between matter and the scalar field. The gravitational potential
given in Eq. (4) has been calculated for a point-like source, and
it has to be generalized to extended systems in a numerical way.
Depending on the particular gravitational system we consider,
we adopt different geometrical hypothesis: for cluster of galax-
ies and elliptical galaxies we adopt spherical symmetry, while
spiral galaxies are assumed to be thin disks.

The point-like potential can be split into two terms. The
Newtonian component for a point-like mass m is

ψN(r) = −Gm
r
, (5)
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and its extended integral is the well-known expression:

ΨN(r) = −GM(<r)
r

, (6)

where M(<r) is the mass enclosed in a sphere with radius r. The
correction term from the scalar field effect is

ψC(r) = −Gm
r

(
2β2e−

r
L

)
, (7)

whose extended integral is given by

ΨC(r) =
∫ ∞

0
r′2dr′

∫ π

0
sin θ′dθ′

∫ 2π

0
dω′ψC(r′), (8)

where the angular part is analytically derivable, while the radial
integral has to be numerically estimated once the mass density
is given. A fundamental difference between the corrected and
the Newtonian terms is that in the latter the matter outside the
spherical shell of radius r does not contribute to the potential,
while in the former the external mass distribution enters into the
potential integral, with a possible non-negligible contribution.

We also observe that a possible dependence of the coupling
constant with scale, i.e. β = β(r), should be considered when
evaluating the integral or the physical observable quantities that
we will define in subsequent sections. Since we do not know
what the possible analytical behaviour of β(r) is, we assume it is
a constant or that it depends weakly on the scale, i.e. dβ/dr ≈ 0,
as we will verify a posteriori.

2.1. Hypothesis

In this section we want to describe in more detail the main prop-
erties and requirements of our parametrization and the motiva-
tions behind our approach. In Paper I we assumed only one sin-
gle scalar field working at each considered gravitational scale
and/or object. In particular, we focussed on Type Ia supernovae,
clusters of galaxies and spiral galaxies. The scalar field was char-
acterized by interaction length L (or a mass), which should be
related to the dimension of the gravitating structure under exam,
and a coupling constant β that indicates the strength of the inter-
action between the field and the kind of matter that constitutes
the considered gravitational object. We worked under the hy-
pothesis that matter was only made up of the observed baryons
(hot gas and galaxies in clusters of galaxies; gas and stars in spi-
ral galaxies) with the scalar field generating a dynamical effect
similar to the classical dark matter. In practice, we replaced the
eventual new and exotic dark matter component with an effective
mass induced by the modified gravitational interaction from the
scalar field with ordinary matter.

First of all, we found that while Type Ia supernovae could
be theoretically used to detect an effective gravitational con-
stant Geff , because this can affect their light curves by chang-
ing both the thermonuclear energy release and the time scale of
stellar explosion, its effects are actually too weak to be clearly
detected with current data.

More interestingly, in Paper I we showed that both the ro-
tation curves of low surface brightness spiral galaxies and the
matter profiles in clusters of galaxies, obtained using only visi-
ble galactic, stellar, and gas mass components while substituting
dark matter with the proposed scalar field, can be fitted fairly
well within our alternative scenario. The interaction length val-
ues of the scalar field are in turn consistent with the character-
istic dimensions of the considered gravitational systems. On the

other hand, the coupling between the field and ordinary bary-
onic matter is convincingly well constrained in ranges that scale
quite well with the matter content of galaxies and/or clusters of
galaxies.

All these results seemed to point towards the possibility of
a unifying view of dark matter and dark energy via a scalar
field with the properties we have assumed, at least on galactic
and cluster scales. But it is important to stress that all these re-
sults from Paper I were obtained when assuming the coupling
constant β to be unique and fixed for all the intervening mass
components.

As we show in Sect. 4, this turns out not to be the case for
elliptical galaxies. For them we have to consider the possibility
that the scalar field coupling constant will have different values
depending on the different mass components of a galaxy. This
eventuality might have two implications: 1. we have separate
values for the coupling constants, one for each baryonic mass
component (i.e. stars and gas); or 2. we have only one coupling
constant but its measurement might be affected by the matter’s
clustering state.

It is possible to state that these two options do not conflict.
Indeed, in the first case, the scalar field theory predicts that the
field can couple in different ways with different kinds of matter
(Brax et al. 2004). This would mean that the scalar field can cou-
ple differently with ordinary matter (baryons, neutrinos, quarks,
and so on). In the second case, the different values could de-
pend on the clustered states of the matter and be a consequence
of a screening effect that can suppress the field effects and pro-
duce an apparent (measured), lower value of the coupling con-
stant β. Such a screening effect is called the thin-shell effect in
the chameleon theory, and a similar effect is also present in the
symmetron theory. It mainly affects gravitational systems where
the inner value of the scalar field is different from the back-
ground and also reflects in a difference between the inner and
the external matter densities (Brax et al. 2004; Capozziello &
Tsujikawa 2008; Davis et al. 2012).

We suggest carrying out a possible mixed scenario in order
to make the two options above coexist. We take the case of a
cluster of galaxies and consider the galaxies and the gas inside
it: if the scalar field scales with the density, we can argue that
there are two scalar fields, one driving the formation and the
dynamics of the cluster and another one driving the formation
and the dynamics of the galaxies inside it. We can think that all
the sub-structures inside the cluster experience the cluster-scale
scalar field, but as long as the systems evolve, there will be a
point where the (over-) densities representing the galaxies are
high enough to turn on the screening effect, which from then
on washes the cluster-scale scalar field effect out. This process
would result in a suppression of the coupling constant of the
cluster-scale scalar field with matter in galaxies, as long as the
latter ones can be considered as clustered small structures within
a larger structure.

In this picture, the diffuse hot gas in the cluster is spread
through the cluster scale and can be considered as having only
one typical scale, that of the cluster. This assumption is valid
provided that the hydrostatic equilibrium is realized. In this case,
the scalar field-gas coupling constant should contain information
about the cluster-scale scalar field. The same assumption cannot
be equally made for galaxy systems, such as spiral and elliptical
galaxies, where the gas can be strongly disturbed by local phe-
nomena (stellar winds, supernovae, radio jets by active nuclei,
etc.).
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Within this framework, the total gravitational potential can
be written in two equivalent ways. We can define

Ψ(r) = ΨN(r) + ΨC(r), (9)

if we want to highlight the separation between the correction
that the scalar field provides to the gravitational potential and
the classical Newtonian term. Alternatively, we can write

Ψ(r) = Ψstar(r) + Ψgas(r), (10)

where the suffix star refers to the stellar component in galaxies,
but it can be replaced by galaxy when writing the cluster poten-
tials. Each of the two terms is finally given by

Ψstar(r) = ΨN,star(r) + ΨC,star(r; βstar, L), (11)

and

Ψgas(r) = ΨN,gas(r) + ΨC,gas(r; βgas, L). (12)

We point out that the same scalar field, with mass ∝L−1, can
interact differently with ordinary matter, with two values for the
coupling constant, βstar and βgas, depending on their clustering
state.

Finally, we have to point out here that our approach is implic-
itly based on a static assumption for the gravitational structures
we are considering. Namely, we are ignoring that 1. the values of
the scalar field parameters could be subjected to temporal evo-
lution, so that an analysis of how perturbations and over-density
collapse work would be necessary; and 2. a dynamical analy-
sis under the influence of a scalar field should be performed to
verify the stability of such gravitational systems.

3. Elliptical galaxies: working model

As pointed out in Sect. 1, we want to extend the test of our scalar
field hypothesis on galactic scales with elliptical galaxies.

3.1. Preliminaries

While spiral galaxies easily have interpretable flat rotation
curves (that were one of the first historical proofs for dark mat-
ter), elliptical galaxies are pressure-supported systems domi-
nated by hot random motions. The orbital distribution of stars
is very difficult to model, and consequently the mass distribution
is highly uncertain because of the well known mass-anisotropy
degeneracy.

One way to gain insight into the internal dynamics is to use
the information stored in the line-of-sight velocity dispersion
as a function of position by solving the Jeans equation. Under
spherical symmetry and assuming no rotation, the only effec-
tive equation governing the galaxy equilibrium is the radial Jeans
equation:

d(� σ2
r )

dr
+ 2

βa

r
� σ2

r = −�
dΨ(r)

dr
, (13)

where �(r) is the luminosity density of the galaxy, σr(r) the ra-
dial velocity dispersion, and Ψ(r) the total gravitational poten-
tial. The anisotropy parameter βa is defined as

βa = 1 − σ
2
t

σ2
r

(14)

where σt is the one-dimensional tangential velocity dispersion
(defined as a combination of the two angular components of the

velocity dispersion tensor, σ2
t = (σ2

θ + σ
2
ϕ)/2), and σr is the

radial component. When σt = σr , the system is called isotropic
and βa = 0; when βa = 1 the system is fully radial anisotropic;
for βa → −∞, it is fully tangential.

In Eq. (13), the unknown quantities are the anisotropy pa-
rameter and the mass that generates the potential, while �(r) is
given by the tracer distribution. Thus, different combinations of
orbital anisotropy and radial distribution of the mass can produce
the same observed dispersion profile. This mass–anisotropy de-
generacy can be solved by using independent measurements for
the mass. One possibility for that is to use the information from
X-ray emission from the hot gas (Mathews & Brighenti 2003),
i.e. density and temperature, and to solve the hydrostatic balance
within the galaxy potential, provided that the gas is at the hydro-
static equilibrium, but this is not always true in elliptical galaxies
(Diehl & Statler 2007; Humphrey et al. 2006).

Despite all these modelling complications, Jeans analysis
has been extensively used in elliptical galaxies, taking strong
advantage of discrete kinematical tracers probing the gravita-
tional potential out to many effective radii (Reff). Globular clus-
ters (Puzia et al. 2004; Bergond et al. 2006; Romanowsky et al.
2009; Shen & Gebhardt 2010; Schuberth 2010; Woodley et al.
2010) or planetary nebulae (PNe, see, e.g. Napolitano et al. 2001,
2002; Mendez et al. 2001; Peng et al. 2004; Douglas et al.
2007; Coccato et al. 2009; Teodorescu et al. 2010; Napolitano
et al. 2011) have made it possible to extend kinematics up
to 5−7 Reff, from the ≈Reff achievable with only stellar observa-
tions. Furthermore, the analysis of satellites orbiting the galax-
ies could extend up to 50−500 kpc (�10 Reff) (Klypin & Prada
2009). However, globular clusters have classically been used as
mass tracers for bright galaxies, but their samples are too small
in ordinary elliptical galaxies. On the other hand, PNe have been
systematically used to map the mass profile of ellipticals (see e.g.
Romanowsky et al. 2003; Napolitano et al. 2009, 2011, N+11
hereafter, and references therein).

The selection of viable objects for our analysis was made
within the elliptical galaxy sample observed with the Planetary
Nebula Spectrograph (Douglas et al. 2002) and presented in
Coccato et al. (2009, C+09 hereafter), where stellar kinemat-
ics of the central regions are combined with PNe kinematics of
the galaxy regions outside the Reff . PNe data give strong hints
about the mass profiles of elliptical galaxies, but also put forward
many more questions. Nowadays, many alternative scenarios are
equally feasible. Two exemplary cases are Romanowsky et al.
(2003) and Dekel et al. (2005). In the former, using the PNe, the
galaxies velocity dispersion profiles are found to decline with
radius, and dynamical modelling of the data indicates the pres-
ence of little if any dark matter in these galaxies’ haloes; in the
latter, starting from disk-galaxy merger simulations, the lower-
than-expected velocities are in fact compatible with galaxy for-
mation in dark matter haloes, so it depends on inner dynamics
(elongated orbits) or on projection effects.

For our analysis, we are interested in galaxies that have both
extended (stellar and/or PNe) kinematics and published X-rays
observations (Fukazawa et al. 2006). We need both because we
want to explore the coupling of the scalar field with all the mass
components of the gravitational systems under examination.

Among the 16 galaxies reported in C+09, the only one that
had a complete dataset for our purpose is NGC 4374, since other
galaxies for which both long-slit and PNe kinematics were avail-
able, such as NGC 3377, NGC 3379, and NGC 4494, did not
have a reliable deprojected X-ray emitting gas density profile1.

1 Fukazawa (priv. comm.).
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Table 1. Elliptical galaxies.

Name Band μD D BT a(4)
s as m μs RLAST

(Mpc) (kpc) (kpc) (mag arcsec−2) (kpc)

NGC 4374 V 31.16 17.06 10.01 5.97 9.34 6.11 23.1 25.23 (34.07)

Notes. Column 1: Galaxy name. Column 2: photometric band. Column 3: modulus distance from Tonry et al. (2001) and shifted by −0.16 mag
as explained in Coccato et al. (2009). Column 4: distance of galaxy derived from modulus distance. Column 5: total B magnitude corrected for
extinction and redshift. Column 6: Sersic scale radius for an n = 4 profile (classical De Vaucouleurs profile). Column 7: Sersic scale radius
determined from the Sersic fit. Column 8: Sersic shape parameter. Column 9: Stellar surface brightness at as. Column 10: maximum distance from
the galaxy centre of PNe derived kinematics (maximum distance from the galaxy center of PNe detections).

All the required photometric properties of NGC 4374 are re-
ported in Table 1.

3.2. Line-of-sight velocity dispersion

The general solution to the Jeans equation, Eq. (13), is

�(r)σ2
r (r) =

1
f (r)

∫ ∞

r
f (s) �(s)

dΨ(s)
ds

ds, (15)

where the function f is the solution to

d ln f
d ln r

= 2βa(r). (16)

By projecting the velocity ellipsoid along the line of sight, one
can obtain the line-of-sight velocity dispersion, which is the
kinematical quantity observed and reported in C+09:

σ2
los(R) =

2
I(R)

[∫ ∞

R

� σ2
r r√

r2 − R2
dr − R2

∫ ∞

R

βa � σ
2
r

r
√

r2 − R2
dr

]
,

(17)

where R is the projected distance from the centre of the galaxy,
and I(R) the stellar surface brightness profile. To calculate the
line-of-sight velocity dispersion σlos, one needs two ingredients:
an analytical expression for the anisotropy function and the total
gravitational potential (which enters in σr).

Concerning the anisotropy function, the usual way of pro-
ceeding is to compare observations with profiles derived from
cosmological N-body simulations. Many models can be used:
the simplest isotropy (βa = 0); a constant anisotropy profile; the
Osipkov-Merritt model, but it provides a poor fit to the simula-
tions. We decided to work with the anisotropy model given in
Mamon & Lokas (2005a,b, 2006):

βa(r) =
1
2

r
r + ra

, (18)

where ra is a typical anisotropy length, assumed to be ra �
14 Reff. This value2 thus provides a good fit to the data from
dissipation-less cosmological N-body simulations (for a more
exhaustive discussion about reliable anisotropy models, see
Fig. 2 and Sect. 3.2 of Mamon & Lokas 2005b).

2 To be certain that our results are free of this particular choice, we
performed our analysis changing the length parameter ra from the cho-
sen best value, ra � 14Reff , to ra � 1.4Reff (as discussed in Mamon &
Lokas 2005b), spanning a wide range of values. We can conclude that
our results are completely unaffected by this choice.

3.3. Modelling galaxy components

Finally, to calculate the gravitational potential, we need to model
the galaxy components. In this case we have stars, hot gas, and
the central black hole.

The stellar luminosity density can be obtained by deproject-
ing the observed surface brightness profile I(R). Galaxies in our
sample are fitted with the mostly used Sersic profile:

I(R) = I0 exp

⎡⎢⎢⎢⎢⎢⎣−
(

R
as

)1/m⎤⎥⎥⎥⎥⎥⎦ , (19)

where I0 is the central surface brightness (in units of L� pc−2),
as the Sersic scale parameter (in kpc), and m the Sersic shape
parameter. The luminosity density can be obtained by the ap-
proximation first proposed in Prugniel & Simien (1994):

�(r) ≡ �1�̃(r/as), (20)

with

�̃(x) � x−p exp(−x1/m), (21)

�1 =
Ltot

4πm Γ[(3 − p)m]a3
s
, (22)

where function p is defined in Lima et al. (1999) as

p � 1.0 − 0.6097/m+ 0.05463/m2. (23)

The total galaxy luminosity (in solar units) in the V-band, where
observations for NGC4374 were performed, is

Ltot = 10−0.4(BT−μD−CBV−MB,�), (24)

where BT is the galaxy B-band apparent magnitude, MB,� the
Sun absolute magnitude in the B-band, CBV

3 galaxy color needed
to convert all luminosity parameters from the band B to the
band V , and μD the galaxy distance modulus (see Table 1). It
is worth stressing that we also need

I0 =
Ltot

2πm Γ[2m]a2
s

(25)

which appears in Eq. (17) through the surface brightness expres-
sion I(R) and the stellar mass-to-light ratio Y∗ in order to convert
the luminosity density into the mass density that enters in the
gravitational potential.

The central black hole is assumed to have a constant density
inside its typical size, the Schwarzschild radius rBH, which is

rBH =
2 GN MBH

c2
, (26)

3 It is obtained from the extragalactic database Hyperleda, http://
leda.univ-lyon1.fr/
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where of course GN is the Newton gravitational constant and c
the light velocity. The black hole mass MBH is obtained using
the relation that exists between a super massive black hole and
the host galaxy luminosity (Gultekin et al. 2009):

MBH = 108.95+1.11·log[10,Ltot/1011]. (27)

Its density is assumed to be nought outside rBH.
The gas profiles are assumed to follow the traditionally used

β-model4 (Cavaliere & Fusco-Femiano 1978):

ρgas(r) = ρgas
0

⎛⎜⎜⎜⎜⎜⎝1 +
(

r
ag

)2⎞⎟⎟⎟⎟⎟⎠
3βg/2

, (28)

where the central gas density, ρgas,0, the gas core length, ag, and
the constant βg are provided by Fukazawa et al. (2006), where
fitting mass profiles with hot gas X-ray emissions are derived.

We recall that in the classical Newtonian approach the total
dynamical mass is made of two counterparts, dark matter and
baryons (stars, gas, and black hole), so that

Mtot(r) =
r2

G
dΨN

dr

=
r2

G

(
dΨN,bar

dr
+

dΨN,DM

dr

)
= Mbar(r) + MDM(r), (29)

where ΨN is the Newtonian potential and

ΨN,DM ↔ ρDM (30)

ΨN,bar ↔ ρbar ∼ ρstar + ρgas + ρBH.

As we pointed out in Sect. 2, in our approach the total gravita-
tional potential is made of a Newtonian term and a corrective one

Ψ = ΨN + ΨC, (31)

so that the dynamical mass is

Mtot(r) =
r2

G
dΨ
dr

=
r2

G

(
dΨN

dr
+

dΨC

dr

)
= Mbar(r) + Meff(r), (32)

where

ΨN ↔ ρbar ∼ ρstar + ρgas + ρBH (33)

ΨC ↔ ρstar + ρgas + ρBH + field correction.

The effective mass Meff is therefore due to the modification of
gravity produced by the scalar field, instead of requiring a new
kind of matter, such as the dark one. Of course, the term ΨC has
contributions only from visible baryonic mass, i.e. stars, gas, and
black hole, plus correction induced by the scalar field.

By comparing Eqs. (29) and (32), it is straightforward to ob-
serve that if we want that the scalar field fits data as well as dark
matter, we need

Meff(r) ∼ MDM(r). (34)

For this reason we also realize a fit of our data in the classical
context of dark matter in order to compare the two approaches.

4 The β that appears here does not have any relation with the scalar
field coupling constant.

We use the classical Navarro-Frenk-White (NFW) model density
given by the relation (Navarro et al. 1996):

ρDM(r) = ρDM
0

(
r
ad

)−1 [
1 +

r
ad

]−2

· (35)

In Mamon & Lokas (2005b) more dark matter models are con-
sidered: the generalized NFW model introduced by Jing & Suto
(2000), with inner slope −3/2 instead of −1, as in the classi-
cal NFW profile; the convergent model of Navarro et al. (2004),
with an inner slope that is a power-law function of radius. We
have verified that using these two models does not give any sub-
stantial change in the general mass profiles and in the fitting of
velocity dispersion curves; thus, the classical NFW model is suf-
ficient for our requirements. Generally, one is used to convert the
quantities appearing in Eq. (35), i.e. (ρDM

0 , ad) in more useful
quantities which include the virial radius, rv, namely the radius
enclosing a mass whose mean density is ≈100 times the crit-
ical density of the Universe, and the concentration parameter,
cvir ≡ rv

ad
.

Finally, with all these ingredients, we are able to derive the
observed quantity, i.e. the line-of-sight velocity dispersion, σlos.
We underline here that the data we are considering are derived
from the sum in quadrature of two terms: the line-of-sight ve-
locity dispersion and the rotation velocity. The final quantity,√
σ2

los + v
2 (see N+11), is a more efficient indicator of the to-

tal kinetic energy and is essentially ≈σlos, because the rotation
velocity in NGC 4374 is not dynamically significant compared
to random motion, which is ∼50 km s−1 against a velocity dis-
persion of ∼200−250 km s−1.

Depending on the approach we consider, σlos will be a func-
tion of different sets of parameters. On one hand, in the classical
approach with an NFW density profile for the dark matter com-
ponent, it will be σlos = σlos(R; ρDM

0 , ad, Y∗). On the other hand,
when the modified gravity approach with a scalar field is consid-
ered, it will be σlos = σlos(R; β, L, Y∗). The statistical analysis to
search for the parameters values that best fit our working model
will be based on the minimization of the chi-square function,
defined as

χ2 =

N∑
j=1

(σlos,th(Ri; {θi}) − σlos,obs(Ri))2

σ2
i

(36)

where N is the number of data points, σ2
i are the

observationally-derived measurement variances, and {θi} is the
parameters theory vector, i.e., {θi} = {ρDM

0 , ad, Y∗} in the dark
matter approach and {θi} = {β, L, Y∗} in the scalar field approach.

To minimise the χ2 we use the Markov chain Monte Carlo
(MCMC) method and test its convergence with the method de-
scribed by Dunkley et al. (2005). The MCMC method makes it
possible to fix some priors on the fitting parameters. As a conser-
vative choice, we decided to leave them as free as possible: we
have β > 0 (given that in all the expressions above we always
have β2, we do not really have the possibility of distinguishing
between a positive or a negative value; moreover, the scalar field
theory predicts it to be positive), and L, ρDM

0 , ad, and Y∗ > 0 are
all positive definite quantities.

4. Elliptical galaxies: analysis and results

4.1. Mock galaxy test

To check the validity of our analysis and the degree to which
the observed velocity dispersion is fitted to derive clues about

A131, page 6 of 22



V. Salzano et al.: Scale-dependent scalar field as an alternative to dark matter

0.01 0.1 1 10 100

10

100

50

20

200

30

15

150

70

R �kpc�

Σ
lo

s
�k

m
�s
�

0.01 0.1 1 10 100

10

20

50

100

200

R �kpc�

V
ci

rc
�k

m
�s
�

Fig. 1. Mock elliptical galaxy analysis. Left panel: velocity dispersion profile; Right panel: circular velocity profile. Dark lines: solid − scalar field
with two coupling constants; dot-dashed − scalar field with one coupling constant; dashed − classical NFW dark matter profile. Light lines: dashed
− stellar velocity dispersion (circular velocity) in the classical dark matter approach; dotted − gas velocity dispersion (circular velocity) in the
classical dark matter approach; dot-dashed − dark matter velocity dispersion (circular velocity). Vertical lines: dotted − effective radius Reff , limit
achievable with only stellar photometry; dashed − 5−6 Reff , limit achievable with PNe reconstructed kinematics; solid: virial radius rvir.

the scalar field properties, we start by performing an ideal-case
study, using a mock galaxy with all its intrinsic quantities fixed
following the same prescriptions of Mamon & Lokas (2005b).

According to their prescriptions, we considered an elliptical
galaxy with a baryonic and a dark matter component charac-
terised by the following parameters:

– B-band luminosity L∗,B = 1.88× 1010 h−2
70 L� (where h70 = 1

if H0 ≡ 100 × h = 70 km s−1 Mpc−1), from which, using all
the relations given in Sect. 2 of Mamon & Lokas (2005b),
we obtained a Sersic shape parameter m = 3.12 and a Sersic
length as = 11.6 h−2

70 kpc;
– a typical stellar mass-to-light ratio Y∗ = 6.5;
– a total mass-to-light ratio Y = 100 corresponding to a virial

radius, rvir = 79 Reff and to a concentration parameter c =
9.70;

– a black hole to stellar mass ratio MBH/M∗ = 0.0015;
– a β-model for the gas component with index βg = −1.5 and

core radius rc = Reff/10.

Using Eq. (17), and assuming the dark matter halo described by
quantities in point 3 above, we obtain the total velocity disper-
sion of this mock galaxy, shown in the left-hand panel of Fig. 1.
This has a slightly decreasing trend with the radius, which even-
tually changes its slope outside 50−60 kpc, well beyond typical
radial coverage by PN kinematics.

Then we tried to recover (only in a qualitative way) the to-
tal velocity dispersion profile with a scalar field. As shown in
the left-hand panel of Fig. 1, the scalar field prediction with a
single coupling constant for all mass components and with the-
ory parameters β = 0.05 and L ≈ 1000 kpc does not match
the velocity dispersion profile of the dark matter case. The val-
ues for these two parameters are severely limited because the
velocity dispersion in the inner region is completely dominated
by the stellar component: it works like a sort of normalization
factor and strongly constrains the value that β can have. If we
give a value for β that is too different and higher than 0.05, we
will have a completely wrong velocity dispersion reconstruction.
In particular, in the scalar field approach, where no dark matter
is considered, the total velocity dispersion is almost equivalent
to the only-stellar velocity dispersion well beyond the radial ex-
tent of PNe measurements, eventually rising only after this limit.

Thus, we can conclude that a scalar field with only one coupling
constant cannot simulate a dark matter profile in a consistent and
sufficient way.

Things change drastically if one considers the possibility that
the scalar field has different coupling constants for each inter-
vening mass component. In this case, we have stars and gas, and
if we assume βstar = 0.05, βgas = 5.6, and the common length
L ≈ 90 kpc, it is possible to decouple the effects from any of
them. In fact, the model that includes two coupling constants
nicely reproduces the velocity dispersion profiles of the classical
case; i.e., the scalar field can mimic the profile of a NFW dark
halo.

In the right-hand panel of Fig. 1 we instead show the circu-
lar velocity curve, calculated from the relation v2

c = r dΨ/dr. We
can see how it is rather flat out to 100 kpc, clearly showing how
dominant is the dark matter in the total galaxy potential. The
latter property is what we expect to be able to reproduce with
the scalar field. We finally stress that if we had adopted the cir-
cular velocity as observational quantity (as done, for example,
for spiral galaxies), we would not have any chance of distin-
guishing between the two approaches, i.e., one or two coupling
constants for the scalar field with the baryonic matter. This is
clearly shown in the right-hand panel of Fig. 1 where we can see
how the two different cases for the scalar field give two equiv-
alent reproductions of the NFW profile, at least in the depicted
distance range: the two lines are indistinguishable since they per-
fectly overlap. This is an important issue to be considered when
evaluating results for spiral galaxies in the next sections.

4.2. Real data: NGC 4374

Starting from these preliminary considerations, we can move to
the analysis of a real system: NGC 4374 (see Table 1), which
is our test case for elliptical galaxy dynamics. This system has
been shown to possess a standard NFW halo profile (N+11), so it
will be important to see whether its dynamics can be interpreted
equally well with the scalar field potential.

We make use of the PNe sample discussed in N+11, which
we refer the reader to for more details on the PNe sample prop-
erties and on the derivation of the kinematical profiles we use in
our analysis. The PNe dispersion profile extends out to ≈5 Reff,
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Table 2. Elliptical galaxies: NFW dark matter.

χ2/d.o.f. ρDM
0 ad Y∗ cvir log Mvir rvir

(106 M�/kpc3) (kpc) (Y�) (M�) (kpc)

χ2
all 39.68/37 0.361+0.296

−0.240 316.37+693.01
−116.73 6.67+0.051

−0.056 4.01+1.22
−1.61 13.34+2.58

−0.54 1269.65+4016.29
−790.49

χ2
>0.09 29.63/33 0.402+0.393

−0.203 290.00+299.24
−119.81 6.66+0.060

−0.062 4.21+1.48
−1.16 14.02+1.31

−1.12 1221.66+2130.79
−702.81

χ2
>1 9.65/17 0.841+1.552

−0.506 179.61+200.67
−93.74 6.28+0.263

−0.282 5.83+3.23
−1.95 13.81+1.55

−1.49 1047.03+2397.70
−713.89

Notes. Column 1: χ2 type. Column 2: central NFW density. Column 3: NFW radius. Column 4: stellar mass-to-light ratio in the observation
photometric band. Column 5: NFW concentration parameter. Column 6: virial radius. Column 7: virial mass. Column 8: stellar mass-to-light ratio
in the B band.

which is a large enough distance to explore any deviation in
the galaxy dynamics from a pure Newtonian no-dark matter be-
haviour.

This galaxy has been also analysed in the context of f (R)
theories (Napolitano et al. 2012), where a Yukawa-like modifica-
tion of the gravitational potential is adopted as alternative to dark
matter. This approach is different from the one we are adopting
here, because the possibility of breaking the contribution of all
mass components (stars and gas) in the gravitational budget is
a peculiar feature of our theoretical scenario that cannot be in-
cluded in their physical model.

Before we go on with the dynamical model, we need to pay
some attention to the modelling of the stellar component, be-
cause in both cases (ΛCDM framework or scalar field), it is
the one that dominates the velocity dispersion profile in the in-
ner region, with lower uncertainties with respect to PNe data at
larger distances from the centre. This implies a stronger weight
on the global fit to the velocity dispersion. For NGC 4374 there
are different literature models of its stellar photometry (mainly
depending on the extension of the adopted datasets): a typical
De Vaucouleurs profile (a Sersic profile with index m = 4), with
Reff = 5.97 kpc (Cappellari et al. 2006); a Sersic profile with
Reff = 11.69 kpc and m = 7.98 (Kormendy et al. 2009); and a
Sersic profile with Reff = 9.34 kpc and m = 6.11 (N+11). The
first model has some problems for fitting data both at short and
very large distances from the centre, since the De Vaucouleurs
profile is not always able to describe all the intrinsic features
of an elliptical galaxy. The second model allows a better fit to
the stellar profile but fails to recover the behaviour of surface
brightness at small radii (R � 0.5 kpc). Finally, the third model
gives a very good fit of the stellar profile in a wider range than
the previous one, namely, 0.09 � R � 38 kpc, out to the dis-
tances covered by PNe observations. For this reason we decided
to adopt the model profile from N+11 in the following dynami-
cal analysis. Furthermore, we adopted two different approaches
in order to optimize the goodness of the surface brightness re-
construction: we considered, one after the other, all the available
data points and only data points with R > 0.09 kpc.

4.3. Dark matter

We started by using our model machinery, by assuming the stan-
dard Newton dynamics and a NFW dark halo, and by cross-
checking our results with the ones presented in N+11. Our re-
sults are in Table 2 and somehow differ with the results discussed
in their Sect. 3.5.1. Before we go into the details of this discrep-
ancy, we need to point out that there are some critical differences
between the two approaches. Here we use ae parametrized stellar
surface density, while in N+11 they use an interpolated function.
Furthermore, we assume here an anisotropy profile that is rather

different from the one constrained by N+11, where they have
also used the kurtosis information. These two main differences
can produce some substantial divergence in the modelling of the
very central data points, thus affecting the parameters that are
more sensitive to the small radii fit. For this reason, we repeated
the models, including all the kinematics data points and exclud-
ing the data at R > 0.09 kpc and R > 1 kpc, and finally found
substantial differences, as shown in Table 2.

In particular, we have obtained a lower value of the central
density ρDM

0 and a higher value for the NFW radius ad with
no statistically significant difference between the total and the
R > 0.09 cut sample. If, however, we consider the expected re-
lation between these two parameters derivable from a collision-
less ΛCDM universe with WMAP5 parameters (Eq. (13) and
the blue contours of Fig. 7 in N+11), we have correspondence
at 1σ level. The concentration parameter, c ≈ 4, matches the
lower limit of most of the cases shown in Table 2 of N+11 and,
in particular, with their assumed best reference model (i.e., an
adiabatically contracted NFW profile with an anisotropy distri-
bution that is different from the one adopted here, which should
result in a more concentrated dark matter density profile).

The virial radius is notably larger, while the virial mass is
perfectly consistent with their results even if showing a wider
confidence level extending primarily to higher values. If we
compare these results with Fig. 11 in N+11, we see that our value
for the parameters (cvir, log Mvir) fall in the region limited by
the results inferred from late-type galaxies dynamics and from
weak lensing of all type of galaxies and groups (Napolitano et al.
2009). In particular, the values coming from the r > 0.09 kpc
subsample match this last curve perfectly.

Concerning the luminous stellar counterpart, we found val-
ues that are slightly higher for the stellar mass-to-light ratio, Y∗ ≈
6.6, which is, however, perfectly compatible with a Salpeter ini-
tial mass function (Fig. 5 in N+11).

Looking at the left-hand panel of Fig. 2 we see how the stel-
lar component dominates the velocity dispersion profile only in
the very central regions (R � 1.0 kpc), with the black hole con-
tribution only important for very small scales and with the NFW
dark matter becoming dominant in the line-of-sight velocity dis-
persion profile at ≈10 kpc, which corresponds to ≈1−2 Reff.

When using only data with R > 1.0 kpc, we have been able to
recover results that are more similar to N+11 for what concerns
the NFW profile: a higher central density parameter for the dark
matter profile (even if it is again lower than the one measured
in N+11) and a lower value for the NFW length (but still higher
than N+11). The couple (cvir, log Mvir) is now compatible with
both the weak lensing inferred trend and with the relation de-
rived from WMAP5-based simulations. Finally, the virial radius
is now only a 30% higher than the value found in N+11.
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Fig. 2. Left panel: velocity dispersion curve of NGC4374. Dark lines: solid line is the total velocity dispersion in the scalar field approach, i.e.
scalar field + baryons; dot-dashed line is the total velocity dispersion in the classical approach, i.e. dark matter + baryons. Light lines: dashed line
is the stellar velocity dispersion in the NFW approach; dotted line is the dark matter velocity dispersion. Right panel: the same as before but on a
logarithmic scale.

Table 3. Elliptical galaxies: Scalar field.

χ2/d.o.f. βstar βgas βBH L Ystar

(kpc) (Y�)
χ2

all 38.16/34 0.100+0.229
−0.069 10.002+0.465

−0.528 0.644+0.079
−0.090 658.26+1328.51

−410.70 6.099+0.166
−0.992

χ2
>0.09 19.16/31 0.086+0.154

−0.065 11.089+0.648
−0.561 1.167+0.116

−0.125 183.18+2127.44
−96.40 5.633+0.220

−0.499

Notes. Column 1: χ2 type. Column 2: coupling constant of scalar field and star component. Column 3: coupling constant of scalar field and gas
component. Column 4: coupling constant of scalar field and black hole component. Column 5: Scalar field interaction length. Column 6: stellar
mass-to-light ratio in the related band.

4.4. Scalar field

If we now move to the scalar field alternative approach, it is clear
(right panel of Fig. 2) that this is as successful as the classical
dark matter approach for modelling the dispersion profile. The
greatest differences with respect to the NFW profile are found at
the very small radii, where the scalar field model shows a steeper
slope while the NFW one seems to reach a plateau, and in the
very outer region, where the scalar field model stays flatter than
the NFW profile. However more extended data would allow us to
adjust the two models better at the greatest distance and possibly
to recover better agreement also on shorter scales. However, as
seen by the χ2 results in Table 3, the best fit is also very good in
this case: while the NFW and the scalar field approaches are al-
most equivalent when all the data points are used, if we consider
the value of the reduced χ2 (with the NFW χ2 slightly smaller
than the scalar field one) for the best fit to the data points with
R > 0.09, the scalar field turns out to provide far better signifi-
cance of the fit with respect to the NFW model. In this case, the
stellar mass-to-light ratio is less than the NFW-based one, and
it is now more compatible with the Kroupa IMF (Kroupa 2001)
values found in N+11.

Even more importantly, the scalar field parameters turned out
to be consistent with what we argued for the double coupling-
constant hypothesis in Sect. 2.1. First, the stellar mass compo-
nent shows the lowest coupling constant among all the mass
components, even lower than the one related to the black hole.
As anticipated, this can be the consequence of the average ef-
fect of the screening action made by the scalar field on the stel-
lar component. The same does not happen to the black hole,
since this represents a singularity, and it is difficult to explain

the change in the field from inside to outside and the compar-
ison with its classical Newtonian force. Second, the coupling
constant that refers to the gas seems to be mostly correlated with
the galaxy gravitational potential and the scalar field mass.

To conclude, we stress that both the classical dark matter
and the scalar field approaches seem to be unable to describe
the small shoulder in the dispersion profile that is present at
R ≈ 10 kpc, precisely where the PNe data overlap the only stel-
lar kinematics. One may think that this can be a consequence
of some orbital anisotropy that is unaccounted for. In fact, this
mainly depends on the choice we made to use a parametric form
of the star density �(r) instead of a smoothed light profile as
in N+11 where it was possible to recover all the details of the
dispersion profile (with a low degree of radial anisotropy). This
means that the observed kinematics is somehow strongly sensi-
tive to the tracer space density distribution.

5. Unifying the scenario

The results obtained with the elliptical galaxy NGC 4374 are
not meant to have enough general application to drive any con-
clusion on the newly proposed multi-coupling constant scenario.
However, it is not surprising that the proper handling of phys-
ically more complex, multi-component systems like ellipticals
has opened new perspectives on the scalar field approach. If our
scenario is correct, this will in fact be made more evident on
gravitational systems where the evolutionary status is different
(as is the case of spiral galaxies, as we show in next sections) or
where matter shows very different phases. But a more detailed
analysis in this sense is not the purpose of our work and will be
developed in forthcoming papers.
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Fig. 3. Dark matter profile vs. radii for clusters of galaxies. Dashed line is the observationally derived estimation of dark matter; solid line is the
theoretical estimation for the effective dark matter component; dot-dashed lines are the 1σ confidence levels given by errors on fitting parameters
plus statistical errors on mass profiles.

Since we do not expect to extend the elliptical sample soon,
owing to the difficulty of finding galaxies both with extended
stellar (PNe) kinematics and with no faint gas profiles, in this
section we try to re-interpret the results of Paper I in terms of
the new evidence found for NGC 4374, i.e. the possibility of
disentangling the various mass components with respect to the
coupling constant with the scalar field. In this respect we aim to
draw a common scenario for all the gravitating systems (galax-
ies: spirals and ellipticals, and clusters) in a consistent way.

5.1. Clusters of galaxies

By comparing Fig. 3 with the corresponding figures in Paper I
(Figs. 3, 4 in that paper), we see that the new approach of using
the two mass components has allowed us to improve the model
fit in nine cases, especially at small radii. In one case (RXJ1159),
the new approach has produced a remarkable fit where the model

in Paper I failed completely. Only for three clusters has the mass
profile reconstruction not got any benefit by the two-component
approach, although the deviation of the best fit from the data is
never worse than at the 1σ confidence level.

Looking at Table 4 we can quantify the differences with
Paper I better: the interaction length diminishes slightly in most
of the objects, still staying compatible with typical cluster scales
(≈1 Mpc; see also Eq. (36)), while the coupling constant with
gas is generally larger than previous estimates. Two objects in
particular have very large coupling constant values, i.e. clusters
A262 and MKW4.

On the other hand, the coupling constant related to galax-
ies is always much lower than the one related to the gas (as ex-
pected from the discussion in Sect. 2.1), except for two cases, i.e.
clusters A133 and RXJ1159. It is interesting to note that among
all these exceptions, two (MKW4 and RXJ1159) are considered
more similar to groups than to real clusters of galaxies or even
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Fig. 3. continued.

as extended elliptical galaxies (Vikhlinin et al. 2005), thus for
all these systems, the argument adopted for normal clusters of
galaxies might not apply straightforwardly.

For the other two objects no particular features were found in
literature to explain the anomalies. We can only note that A262
seems to be as small as MKW4 (i.e. they share the same data
extension), and unlike the latter it is believed to be a normal
cluster of galaxies. A possible relation between the cluster scale
and the gas coupling constant is possible: if we think about this
last one as a concentration parameter, we can expect that smaller
structures exhibit a higher value for it. For A133 nothing peculiar
was found in the literature to justify the high value for the galaxy
coupling constant we found; we can only verify that the fit with
data is really good.

As in Paper I we want to find some relations among the scalar
field parameters and the physical properties of the considered
gravitational systems to establish whether this alternative sce-
nario can be a valid alternative to general relativity and dark
matter. First of all, in the right-hand panel of Fig. 4, we have
a relation between the interaction length, L, and the radius r500,

the distance from the centre corresponding to an over-density of
≈500 times relative to the critical density at the cluster redshift.
We prefer this quantity for the virial radius rvir used in Paper I,
because while the latter is derived using a relation coming from
cosmological simulations (Bryan & Norman 1998; Evrard et al.
1996) and thus depending on the gas-weighted average tempera-
ture of the cluster, the former is derived in (Vikhlinin et al. 2005)
directly from observational data by using the hydrostatic equilib-
rium equation. We have also verified that the two distances are
proportional, with r500 ∝ r1.039

vir .
The relation between the scalar field length L and the ra-

dius r500 is derived from an error weighted fit excluding the pre-
viously described four peculiar clusters (right panel of Fig. 4):

log L = (−1.59 ± 0.82) + (1.49 ± 0.27) log r500. (37)

We have also found a relation between L and the average gas-
weighted temperature 〈T 〉, left panel of Fig. 4:

log L = (2.45 ± 0.11) + (0.68 ± 0.17) log〈T 〉. (38)
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Fig. 4. Scalar field length plotted versus mean (gas-density weighted) cluster temperature and the radius r500 defined in the text.

Table 4. Clusters of galaxies: Scalar field.

βgal βgas L

(kpc)

A133 2.230+0.778
−1.080 2.645+0.202

−0.212 1289.18+145.62
−188.13

A262 0.117+0.308
−0.086 5.687+1.719

−1.099 73.628+33.572
−22.954

A383 0.107+0.337
−0.079 2.584+0.106

−0.125 547.703+84.917
−50.069

A478 0.129+0.415
−0.097 2.410+0.214

−0.165 802.668+292.035
−205.815

A907 0.435+3.472
−0.377 2.922+0.254

−2.500 523.430+693.474
−78.797

A1413 0.452+0.830
−0.390 2.501+0.064

−0.096 1305.87+76.33
−83.37

A1795 0.154+0.532
−0.118 2.568+0.207

−0.198 727.922+389.727
−174.47

A1991 0.184+0.635
−0.145 2.823+0.144

−0.138 532.531+76.564
−33.074

A2029 0.131+0.473
−0.096 2.516+0.210

−0.180 905.584+275.600
−271.873

A2390 0.147+0.390
−0.105 2.123+0.076

−0.083 1465.02+94.02
−104.32

MKW4 0.141+0.449
−0.106 7.169+2.554

−1.566 75.932+36.494
−25.118

RXJ1159 2.454+0.355
−0.273 3.206+0.124

−0.162 528.456+45.442
−27.393

Notes. Column 1: name of the cluster. Column 2: coupling constant
of scalar field and galaxy component. Column 3: coupling constant
of scalar field and gas component. Column 4: scalar field interaction
length.

As we pointed out in Paper I, a relation exists between the cluster
mass and average temperature, i.e.

MΔ/T
3/2 ∝ H0/H(z), (39)

where Δ is the over-density level relative to the critical density at
the cluster redshift, so that M180 = Mvir. With the previous phe-
nomenological expressions holding, this mass-temperature rela-
tion can be easily converted in

L0.27 ∝ H(z)/H0. (40)

In Fig. 5 we can verify that assuming a fiducial WMAP
quintessence model5, with Ωm = 0.259 and w = −1.12, and
assuming H0 = 72.4 km s−1 Mpc−1, the previous relation is
able to match the chosen fiducial model following the relation
H(z)/H0 = (0.169 ± 0.006)L0.27.

5 http://lambda.gsfc.nasa.gov/product/map/current/
parameters.cfm
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Fig. 5. Comparison between the Hubble function H(z) calculated from
the fiducial model described in the text and the Hubble function ob-
tained by the empirical relation H(z) ∝ L0.27. Error bars are calculated
from the errors on the interaction length L.

In Figs. 6 we also represent the scaled temperature profiles
versus the distance from the centre of any cluster scaled with re-
spect to the scalar field length obtained by the fit, showing the
same good reproduction of the self-similarity that characterizes
the classical dark matter approach. Moreover, as in Paper I, we
detected the absence of the subgroups that the clusters are di-
vided into depending on the mean temperature values (Vikhlinin
et al. 2005). The only exception with respect to Paper I is A133,
whose profile now appears to be shrunk, even if no peculiar ele-
ments have been found in the literature and no analysis problems
have been encountered.

5.2. LSB spiral galaxies

We now consider the case of spiral galaxies. Modelling these
systems involves the same number of parameters of elliptical
galaxies, i.e. the parameters associated to the scalar field and
the stellar mass-to-light ratio, Y∗. As discussed for the ellipti-
cal case, the latter parameter cannot vary arbitrarily but has to
be consistent with stellar population models. As for the spiral
systems sample adopted in this work, one can expect Y∗ to vary
in the range ≈0.5 and ≈2. We have decided to be conservative
and let the model parameters vary in the interval [0; 5] (for any
further and detailed description see Paper I).

Before we proceed to illustrate the results, we need to point
out that the two-component approach for the spiral galaxies
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Fig. 6. Temperature profiles for all clusters plotted as a function of distance from the centre and in units of the scalar field length L. The temperatures
are scaled to the mean (gas-density weighted) cluster temperature. Dashed line is for high temperature clusters (〈T 〉 > 5 keV); solid line is for
intermediate temperature clusters (2.5 < 〈T 〉 < 5 keV); dotted line is for low temperature clusters (〈T 〉 < 2.5 keV).

Table 5. Spiral galaxies: scalar field.

βstar βgas L Y∗
(kpc) (Y�)

UGC 1230 4.831+3.910
−2.243 1.167+0.159

−0.167 57.778+94.884
−23.604 0.201+0.474

−0.139

UGC 1281 0.283+2.620
−0.234 1.347+0.090

−0.077 7.687+13.748
−3.482 2.775+0.493

−2.574

UGC 3137 4.400+4.032
−1.884 1.970+0.021

−0.019 484.99+2106.55
−382.01 0.409+0.781

−0.294

UGC 3371 3.452+3.644
−1.985 1.726+0.316

−0.178 10.543+28.614
−6.046 0.350+1.283

−0.268

UGC 3851 1.243+2.258
−0.476 0.119+0.315

−0.086 2.203+3.199
−0.933 2.144+1.866

−1.806

UGC 4173 4.096+3.490
−2.389 0.700+0.368

−0.528 11.995+51.799
−7.377 0.201+0.657

−0.138

UGC 4278 3.479+3.347
−1.573 1.328+0.063

−0.062 96.241+102.113
−33.083 0.242+0.498

−0.176

UGC 4325 0.316+2.485
−0.268 2.838+0.407

−0.291 3.853+6.053
−1.901 2.924+1.420

−2.716

UGC 5721 0.180+0.512
−0.132 3.486+1.049

−0.459 1.454+0.567
−0.586 1.468+0.866

−1.116

UGC 7524 0.721+0.278
−0.222 1.462+0.292

−0.547 1.022+0.394
−0.156 5.395+1.356

−1.537

UGC 7603 0.092+0.204
−0.066 1.782+0.038

−0.037 31.176+105.046
−19.245 0.052+0.071

−0.035

UGC 8286 3.069+2.092
−0.923 2.169+0.073

−0.054 34.052+167.546
−25.431 0.161+0.151

−0.101

UGC 8837 0.124+0.327
−0.092 2.009+0.263

−0.189 2.460+6.386
−0.121 0.111+0.289

−0.082

UGC 9211 3.575+3.367
−1.883 1.579+0.439

−0.192 5.670+13.011
−2.933 0.280+0.858

−0.204

UGC 10310 0.122+0.582
−0.091 1.543+0.701

−0.278 3.450+9.622
−2.397 2.535+0.465

−1.234

Notes. Column 1: name of the LSB galaxy. Column 2: coupling con-
stant of scalar field and star component. Column 3: coupling constant
of scalar field and gas component. Column 4: scalar field interaction
length. Column 5: stellar mass-to-light ratio in the V-band.

suffer from some additional noise source with respect to the anal-
ysis performed in Paper I and can somehow affect the results. As
we have exhaustively discussed in Paper I, the gas data are very
noisy, and in some cases they can also show particular features
that are unavoidable due to intrinsic dynamical properties (i.e.
negative velocities due to counter rotating disks, large scatter
from non-circular motion, etc.). While these effects have been
mitigated in Paper I, where the use of stars and gas together al-
lowed the more circular velocity of stars to dilute the noisy fea-
tures of the gas, here the coupling of the gas component to the
scalar field might result in highly uncertain and irregular pro-
files. To improve the accuracy of the fit for the gas component,
we have tried in this work to obtain a more accurate fit of the gas

density. The result of this new analysis is evident in the smoother
trend of most of the galaxies.

The new models of the spiral rotation curves seem to give
results that are less clear than the one obtained for clusters in
the previous section (see Fig. 7). By decoupling the gas and the
star components, we do not gain much in the quality of the fits
(except slightly better agreement with the data of NGC 4173 and
NGC 9211, where the models are closer to the ones obtained in
Paper I). This is the consequence of the evidence shown in the
previous section when testing the method on elliptical galaxies.
We have seen that the effect of the decoupling of the mass com-
ponents does not show up in the circular velocity but only the
velocity dispersion. In the LSB analysis, since we are modelling
the circular velocity, we should expect a minimal improvement
by adding a further coupling constant, which implies that we
are limited to reliably decoupling the different mass components
in spiral galaxies because of the unsuitability of the dynamical
probe (the rotation curve).

We recall that this induced idea has to be considered with
caution, since elliptical and spiral galaxies are completely dif-
ferent gravitational structures from a dynamical point of view:
elliptical galaxies are dominated by random motions while spi-
ral galaxies are dominated by ordered (rotational) motions.
Moreover we can add another element that makes our global
results more homogeneous and consistent with each other: the
decoupling (with an effective improvement in fits) is given for
elliptical galaxies and clusters of galaxies, which are both hot
systems (i.e. dominated by random motions) and are supposed
to be virialized, whereas this does not happen for spiral galax-
ies. Thus it is possible that the possibility of decoupling the dif-
ferent mass components is related to the equilibrium reached in
those two kinds of gravitational structures, while in spiral galax-
ies stars and gas are again more strictly correlated. In that case,
we would also have a correlation of our scalar field analysis with
the evolutionary state of the gravitational objects; but to verify
this is beyond the scope of this paper.

For all these reasons we have proceeded with the star and gas
component decoupling approach also for LSB systems and we
have found we have a clear distinct behaviour for the coupling
constants. First of all, unsurprisingly the gas coupling constant
seems to be very similar to the only one coupling constant of
Paper I, and it is very well constrained in the range [1.1; 2.1] with
only four exceptions: UGC 3851, which has the lowest value
(as in Paper I); UGC 4173, which has a value below one, but
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Fig. 7. Rotation curves of LSB galaxies. Dots are velocities from data; solid line is the theoretical model, v2
c = r dΨ/dr.

still being compatible with the previous range at the highest 1σ
confidence limit; UGC 4325 and UGC 5721, which have higher
values. This means that the dominant coupling constant for LSBs
is the one from the gas component.

On the other hand, the stellar coupling constant shows dou-
ble behaviour: there are galaxies with βstar � 1 (UGC 1230,
UGC 3137, UGC 3371, UGC 3851, UGC 4173, UGC 4278,

UGC 8286, UGC 9211) and galaxies with βstar < 1 (UGC 5721,
UGC 7524, UGC 7603, UGC 8837, UGC 10310). Two systems
(UGC 1281 and UGC 4325) have βstar < 1, but their 1σ confi-
dence level is compatible with values�1.

The systems with the larger βstar are noticeably also the ones
with the lower stellar mass-to-light ratio. This is a warning for a
possible degeneracy working among these two parameters. Such
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Fig. 7. continued.

a degeneracy has already been discussed in Paper I where we
also noticed an anti-correlation between the Y∗ and the only
one β adopted. The choice to break down β into two coupling
constants ensures us that βgas is unaffected by any degeneracy,
while βstar is not. This is a major benefit we have gained by
adopting of the mass component decoupling approach, and we

could add that the main coupling constant one should rely on
is βgas. Interestingly, the gas status is really what makes the big
difference between cold and hot dynamical systems that corre-
spondingly possess cold and hot gas.

Concerning the best fit stellar mass-to-light ratios, we
have 11 of 15 galaxies compatible at 1σ level with the previously
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Fig. 8. Correlation among the scalar field coupling constants and the central surface brightness of spiral galaxies.
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Fig. 9. Correlation among scalar field coupling constants and the maximum stellar velocity.

prescribed range; one (UGC 7524) has a higher value; and three
(UGC 7603, UGC 8286, UGC 8837) have values below 0.5.
Among these three, the first two were peculiar in Paper I too,
even if they can be considered acceptable, and UGC 7603 in
particular still has the lowest value, Y∗ = 0.052. Only in two
cases (UGC 4325 and UGC 5721) do we have more compatible
values mainly due to their large errors. In general, in Paper I we
did obtain a better match of Y∗ with the prescribed range in 10
of 15 cases.

Finally, the interaction length shows a wider range than the
cluster galaxy case, and it is not as well constrained as in that
case. One particular case is UGC 3137: even in Paper I it was
one of the galaxies with the greatest interaction length, but now
it has a too high value, L ≈ 500 kpc, which is difficult to un-
derstand. Either way, by taking a look at its rotational profile,
we can see how it satisfies two main requirements: 1. it is the
second largest object in the sample (or, better, the second ob-
ject for which observations of the gas component were done up
to a larger distance from the centre); 2. it is the clearest case in
which it seems to have reached the expected plateau in the rota-
tion curve. Lacking more detailed, extended, and less disturbed
data for the galaxies in our sample we cannot conclude anything
but can only argue that in spiral galaxies, more than in clusters
and the elliptical galaxies, the degeneracy among parameters due
to limited extension of the data could be more important.

As in Paper I, we searched for possible scaling relations,
including for comparing our alternative approach with more

popular theories, like MOND (Swaters 2010). A correlation
among the gas coupling constant (probably more related to the
global gravitational structure properties than the star related pa-
rameter) and the extrapolated central disk surface brightness μ0,R
(reported in Table 3 of Paper I) is possible, see left-hand panel
of Fig. 8:

log βgas = (−0.32 ± 1.29) + (0.43 ± 0.96) logμ0,R, (41)

between the same quantity and the maximum rotational velocity,
see left-hand panel of Fig. 9:

log βgas = (−0.30 ± 0.28) + (0.30 ± 0.14) log Vmax. (42)

Excluding only peculiar cases with respect to βgas (UGC 3851,
UGC 4173, UGC 4325, UGC 5721), we can see that the dis-
persion around such relations is quite low. We also show in the
left-hand panel of Fig. 10 the relation between βgas and the total
gas mass of each galaxy:

log βgas = (0.20 ± 0.06) + (0.04 ± 0.04) log Mgas, (43)

clearly, the parameter is quite independent of such quantity, giv-
ing a further confirmation of our preliminary hypothesis dβ/dr ≈
0 (see Sect. 2). In the left-hand panel of Fig. 11, we show the re-
lation with the total baryonic (stars and gas) mass:

log βgas = (0.22 ± 0.06) + (0.03 ± 0.04) log Mbar, (44)

in this case, in the estimation of the stellar counterpart, we have
to take the stellar mass-to-light ration, Y∗, into account which is
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Fig. 10. Correlation among scalar field coupling constants and the gas mass.
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Fig. 11. Correlation among scalar field coupling constants and the total baryonic mass.

actually one of the fit parameters. No change is detected when
moving from the gas to the total baryonic.

This does not happen when considering the coupling con-
stant with stars. Since it is possible that a degeneracy between
the coupling constant and the stellar mass-to-light ratio is at
work, we more properly consider the quantity β2

star · Y∗ that ap-
pears in the stellar rotational contribution, finally having (right
panel of Fig. 8):

log β2
star · Y∗ = (−11.69 ± 1.71) + (9.01 ± 1.28) logμ0,R, (45)

and (right panel of Fig. 9)

log β2
star · Y∗ = (1.45 ± 2.44) + (−0.58 ± 1.27) log Vmax, (46)

which holds only for the galaxies with βstar � 1, while the others
show a more scattered distribution.

The relation between β2
star · Y∗ and Mgas or Mbar is less evi-

dent than the previous case. Taking a look at the right-hand pan-
els of Figs. 10, 11, we can only detect (more clearly in the Mbar
case) three subgroups: two galaxies in the bottom left-hand cor-
ner (UGC 7603 and UGC 8837), corresponding to very low val-
ues for both βstar and Y∗; four galaxies in the middle (UGC 1281,
UGC 4325, UGC 5721 and UGC 10310), corresponding to low
values of βstar; and an almost constant β2

star ·Y∗ group made of the
remaining objects. On the other hand, the length parameter, L,
does not show a clear ordered pattern when compared with the
same quantities as before.

An even more interesting relation to be tested here is the
well-known baryonic Tully-Fisher (BTF) relation (McGaugh
2012), which relates the total baryonic mass of spiral galaxies,
Mbar, to the maximum observed velocity, Vmax, which becomes
approximately flat in the outer regions, Vf , and is actually quan-
tified to be

Mbar = A · V4
f , (47)

with A = 47 ± 6 M� km−4 s4. To make the comparison with
our results clearer, we can rewrite the previous in the equivalent
expression:

log Vf = (1.582 ± 0.003) + 0.25 log Mbar. (48)

Since it is possible to verify from previously plotted rotational
curves, not all the galaxies in our sample seem to have reached
the flatness regime in the rotational curve, so that the Vf appear-
ing in the previous formulas will be more exactly Vmax for us,
i.e., the maximum velocity evaluated at the maximum distance
from the centre and available from the data.

In our alternative scenario, the total velocity can be written
as the sum of different terms:

V2
f,theo = V2

N,star + V2
N,gas + V2

C,star + V2
C,gas, (49)

where the suffixes N and C, as explained in previous sections,
are related to the (extended) Newtonian and corrective terms in
our gravitational potential model.
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Fig. 12. Baryonic Tully-Fisher relation for our galaxy sample: contributions from different velocity components.

If we first consider the quantity Vf,theo made up of VN,gas,
which is derived entirely from direct velocity observations;
VN,star, which mixes direct velocity observations and a fit param-
eter, Y∗ (which also enters in the calculation of Mbar); and V2

C,star

and V2
C,gas, which completely depend on our theoretical model,

we obtain

log Vf = (1.558 ± 0.030) + 0.25 log Mbar. (50)

They agree very well with the expected BTF relation. We can
also check that the BTF relation is verified for any of the com-
ponents of the total velocity (of course, we consider the max-
imum velocity for any of these). For the velocity term derived
from the stellar pseudo-Newtonian contribution to the gravita-
tional potential, we can identify two groups: galaxies with Y∗ > 2
give

log VN,star = (0.547 ± 0.067) + 0.25 log Mbar, (51)

and galaxies with Y∗ < 2 give

log VN,star = (1.232 ± 0.043) + 0.25 log Mbar. (52)

The velocity term from the gas pseudo-Newtonian contribution
(excluding UGC 4325) gives

log VN,gas = (1.132 ± 0.026) + 0.25 log Mbar. (53)

The velocity term from the corrective gas contribution (ex-
cluding UGC 5721, UGC 7603, UGC 8837, and UGC 10310)
gives

log VC,gas = (1.092 ± 0.064) + 0.25 log Mbar. (54)
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Fig. 13. Baryonic Tully-Fisher relation for our galaxy sample: total ro-
tational velocity.

The velocity term from the corrective stellar contribution (ex-
cluding UGC 3851) gives

log VC,star = (1.448 ± 0.051) + 0.25 log Mbar. (55)

All the previous relations are shown in Figs. 12, 13. It is interest-
ing to note that, for these last two quantities, if we relax the con-
dition for which the coefficient of Mbar has to be equal to 0.25,
and we leave it free, we obtain the values 0.037 and 0.033 re-
spectively, which are quite consistent with a scenario where the
contribution to the rotation curve coming from the effective mass
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Fig. 14. Correlation among the scalar field parameters Spirals are LSB spiral galaxies; filled squares are clusters of galaxies; filled circle is the
elliptical galaxy NGC 4374. The dashed line is the best fit for clusters only; dotted line is the best fit for spiral galaxies only; dot-dashed line is the
best fit for the total sample. Objects in brackets are the peculiar cases described in the text and not considered in the fits.

produced by the modified gravity of the chosen scalar field is
practically independent of the baryon mass (at least for the fam-
ily of spiral galaxies considered), so arguing in favour of a more
universal task for our mechanism.

5.3. Unified picture

In this section we qualitatively draw some conclusions from
the results that we have derived from the different gravitational
structures discussed above. In particular we refer to the new evi-
dence that a scalar field can mimic dark matter on different scales
by changing its properties depending on either the local physical
conditions, namely the matter density, or the matter status.

As in Paper I, we consider the relation among the scalar field
parameters and the gas density/mass of any structure in order to
check for a universal correlation among parameters on all scales,
from galaxies to galaxy clusters.

For galaxy clusters it is natural to check this because the gas
is the main contribution to the mass (under the assumption that
there is no dark matter, as in the current work). The same ar-
gument is not intuitive for galaxies, since gas is not the main
component on a galactic scale; however, because we have found
that the coupling constant of the gas with the scalar field can be
larger than the one of stars, this component turns out to have a
significant impact on the observational quantities too, sometimes
even greater than the stellar one.

We start by verifying how the scalar field parameters are cor-
related with each other. One of our main hypotheses is that the
coupling constants β are independent of the scale or, more pre-
cisely, that dβ/dr ∼ 0. We can verify a posteriori that this hy-
pothesis is satisfied quite well by taking a look at the top pane of
Fig. 14. Here a linear regression of the spiral galaxy parameters
gives

log βgas = (0.19 ± 0.05) + (0.04 ± 0.02) log L, (56)

for clusters of galaxies, we obtain

log βgas = (0.91 ± 0.18) − (0.17 ± 0.06) log L, (57)

and using all data together, we finally get

log βgas = (0.20 ± 0.05) + (0.06 ± 0.02) log L. (58)

We can verify how coherently each gravitational structure fam-
ily is located in parameter space: the clusters of galaxies lie in

a very well constrained region on the right-hand side of the left-
hand panel in Fig. 14. Spiral galaxies are on the opposite side
with a larger dispersion mainly due to the uncertainties on the
interaction length. The only elliptical galaxy that we have anal-
ysed is interestingly located right in between the spirals and the
galaxy cluster regions very close to the area where the small-
est clusters and/or group of galaxies are located. This evidence
suggests that the properties of the scalar field are related to the
dynamical properties of the gravitational systems, because cold
dynamical systems like spirals are clearly separated by hot dy-
namical systems (elliptical galaxies and galaxy clusters). This
result is interesting since the connection between dynamics (es-
pecially anisotropy of the orbits) and scalar field parameters has
also been found in other f (r) formulations (Napolitano et al.
2012).

For the coupling constant related to stars (in galaxies) and
galaxies (in clusters), in the right-hand panel of Fig. 14 we can
see a larger dispersion in the parameter space, but also a clear
segregation: the left half of the diagram is dominated by spiral
galaxies, the right half by clusters of galaxies, and the central
region populated by elliptical galaxies (although a larger sample
is required) and smaller clusters and/or group of galaxies.

We can eventually reach the same conclusion by looking at
the correlation between scalar field parameters and the gas den-
sity as in Fig. 15. When considering the top left and right panels
of this figure, we can see that the parameters do not distribute
randomly, but seem to follow a trend. For the interaction length,
the top left-hand corner is populated by clusters of galaxies, the
bottom right-hand one by spiral galaxies, and the centre possi-
bly by elliptical galaxies and group of galaxies, with a clear lin-
ear trend and a dispersion that is larger for spiral galaxies than
for clusters. A linear regression in the log-log space where the
interaction length L is the dependent variable gives, for spiral
galaxies:

log L = (10.29 ± 4.68) − (1.87 ± 0.96) logρgas, (59)

for clusters of galaxies,

log L = (5.94 ± 1.37) − (0.78 ± 0.35) logρgas, (60)

and for all systems together,

log L = (9.67 ± 1.04) − (1.74 ± 0.23) logρgas. (61)
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Fig. 15. Correlation among the scalar field parameters and the gas density. Spirals are LSB spiral galaxies; the filled squares are clusters of galaxies;
filled circle is the elliptical galaxy NGC 4374. Dashed line is the best fit only for clusters; the dotted line is the best fit for spiral galaxies only; the
dot-dashed line is the best fit for the total sample. Objects in brackets are the peculiar cases described in the text and not considered in the fits.

For the gas coupling constant, on the other hand, we have a linear
trend that is almost compatible with a constant βgas, thus con-
firming our previous hypothesis (dβ/dr ≈ 0). In particular, for
spiral galaxies we have

log βgas = (−0.31 ± 0.57) + (0.11 ± 0.12) logρgas, (62)

for clusters of galaxies we have

log βgas = (−0.04 ± 0.41) − (0.11 ± 0.10) logρgas, (63)

and for the total sample

log βgas = (1.01 ± 0.18) − (0.16 ± 0.04) logρgas. (64)

When considering the combination of βstar and Y∗ or βgal, the
large spread does not allow us to define a clear trend, and no
data regression is produced.

6. Conclusions and discussion

In this work we have investigated the dynamical properties of
several astrophysical systems from galaxies to clusters of galax-
ies, within the theoretical framework of scalar-tensor theories as
an alternative to the dark matter paradigm, and looked for obser-
vational signatures in galaxy kinematics and X-ray equilibrium.

The crucial ingredients of our work are some novel proper-
ties of the scalar field with respect to previous analyses (Paper I):
(i) a new parametrization of the theory where we introduced the

coupling of the scalar field with the different baryonic compo-
nents of the gravitational systems (stars and gas) and (ii) its mass
(or interaction length) that varies with scale.

This new parametrization with basically two coupling con-
stants allowed the scalar field to mimic dark matter, i.e. repro-
duces observations remarkably well without introducing a new
kind of matter but by modifying gravity.

Going into more detail on the results in the different astro-
physical tests that we performed here, results have shown that
(i) the velocity dispersion of elliptical galaxies can be fit by a
scalar field very well, even better than assuming a classical NFW
profile for the dark matter component; (ii) a scalar field can re-
produce the matter profile in clusters of galaxies fairly well, as
estimated by X-ray observations and without the need for any
additional dark matter; (iii) good fits to the rotation curves of
low surface brightness galaxies are obtained.

All these results show that the scalar field gravity theories
with the peculiar properties we assumed can be compatible with
a wide range of astrophysical tests and can be considered as a vi-
able alternative to dark matter. In particular, our results show the
possibility that the scalar field can couple with ordinary matter
with different strengths (different coupling constants) depending
on the clustering state of matter components in the considered
gravitational structures and that a possible correlation with the
evolutionary state of gravitational systems is possible. These re-
sults are extremely important when compared to the theoretical
scenario they are inspired by, namely the chameleon or the sym-
metron theory: they have so far only been considered only on

A131, page 20 of 22

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321061&pdf_id=15


V. Salzano et al.: Scale-dependent scalar field as an alternative to dark matter

cosmological scales, as possible explanations for dark energy.
We showed in this work that their properties also make them suit-
able for explaining astrophysical phenomena on smaller scales,
thus mimicking dark matter.

We point out that this work is part of a larger project where
we want to test our model and parametrization by using other
different cosmological and astrophysical probes, and its main
goal is to strengthen the idea that such a model can work as a
consistent unifying scenario for all the dark sectors.

A challenging but decisive test will be to treat the lensing
theory in the Newtonian and post-Newtonian formalism. A com-
prehensive and formally corrected approach, from the theoretical
point of view, is needed to fully test the theory against lensing
observables. In fact, by simply adopting the Newtonian limit and
the standard of general relativity, it is easily shown that the same
outcome of Einstein theory is obtained (Lubini et al. 2011). This
is straightforward because the Newtonian limit recovered from
general relativity does not take the further degrees of freedom
of alternative gravities into account. On the other hand, consid-
ering that alternative gravities usually contain further degrees of
freedom with respect to general relativity, a more accurate treat-
ment has to be adopted for the lensing problem. As shown in
Stabile & Stabile (2012), differences emerge as soon as as the
Newtonian and the post-Newtonian formalisms are fully consid-
ered assuming also the perturbation theory of more gravitational
degrees of freedom. In this perspective, differences between al-
ternative gravity and dark matter pictures could emerge giving
the signature for the final theory. For these reasons we searched
for and collected from literature data regarding the mass profiles
of clusters of galaxies, reconstructed by both strong and weak
lensing, and we will use them in the near future.

Moreover, on the astrophysical side, we will also explore the
possible correlations between classical models (NFW or gener-
alized NFW profiles) for dark matter and the effective contribu-
tion from our scalar field. Concerning spiral galaxies, it will be
interesting to verify if and how our model is able to reproduce
the universal rotation curve scenario (Persic et al. 1997; Salucci
2011).

After this preliminary analysis of the static properties of
gravitational structures, we will go deeper in our study of the
nature of a scalar field with the properties we considered in this
work by studying its influence on the formation and the evolu-
tion of the same structures. We will explore the non-linear effects
in clustering processes, and on the cosmological side, we will
study the feasibility of this model with the cosmic microwave
background radiation data and matter power spectrum features.
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