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Abstract

Personalizing the user experience on the web is important for news
or product recommendations, online advertising and other domains.
Users increasingly expect personalized experiences, and personalization
technologies allow publishers to create more appealing digital products
that they can charge for or otherwise monetize. On the web users are
generally anonymous and the majority of traffic comes from users that
haven’t logged in or otherwise authenticated themselves. For this reason,
one of the big challenges for personalization is the fact that the same
user will often access websites from several different devices (e.g., PCs,
mobile phones, or tablets) and the websites have problems discerning if
the requests come from the same user or not. The problem of identifying
users across multiple devices is known as cross-device tracking, and has
not been extensively researched yet. In this project we carried out a number
of experiments with cross-device tracking techniques based on applying
machine learning to real-world traffic data. We extracted labelled datasets
from traffic logs, applied both supervised classifiers and unsupervised
clustering techniques to the data, focusing on minimizing the number of
false connections, and evaluated them using the standard binary recall and
precision metrics. Some of the resulting models performed well enough for
practical applications, although important issues remain unsolved, such as
how to make sure that a model performs well after applying it to the data
from a new website.
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Chapter 1

Introduction

The way people surf the Internet today is considerably different from what
it was just a few years ago. The number of devices with Internet access
per user is constantly increasing: apart from PCs people now have tablets,
mobile phones, and e-books that they can use to go online. According to a
recent UiO policy [36], students are not even allowed to wear wrist watches
during exams for the same reason: smart watches can have Internet access.
Another significant point is that, according to the survey in [53], 90% of
the users sometimes use several different devices to complete the same
task. For instance, browsing interesting events in town, finding tickets
and buying them can be performed from three different devices. Of the
entire digital display advertising budget over 63% is predicted to be spent
on mobile display in the next three years [54], which can also be indirect
evidence of how actively people use their smart phones. As a consequence,
user’s online activities become spread across multiple devices, making it
harder for websites to recognize them as the same person.

The reason why websites want to recognize the same user behind
several devices is that it is important for personalization: tailoring
recommendations, online ads, or search results to fit the specific user, based
on their preference, search history, etc. Typical examples of personalization
include recommended videos on YouTube, different search results on
Google when you are logged into your account and when you are not, and
being shown an advertisement from an online store after having searched
for its products. Since one consumer can use several devices, recognizing
them across device would allow the website to have a more complete
profile of its visitors, thus improving the quality of personalization.

Personalization can be beneficial for both the consumer and the content
provider. The consumers get the results that better fit their needs:
personalization is one of the ways to avoid getting lost in the enormous
amounts of data available on the Web nowadays. The content providers, in
their turn, can make their websites more appealing, increase the number
of page views and improve click-through rates on ads by making sure
users see ads about something they might be interested in. The last
reason is quite possibly the most important one, since digital advertising
market is huge and rapidly growing: a total of 86 billion dollars is
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predicted to be spent on digital advertising in the US in 2020, for the
first time replacing TV as the biggest advertising category [54]. Applying
personalization techniques to newspaper websites has been known to
considerably improve different performance measures such as engagement
rate1, CTR2 on recommendations, or conversion rate3 [38].

The challenge of connecting several devices that have accessed a
website to the same user is known as cross-device tracking. The simple
solution is to make the user log in to the website on every device: it
is nothing new and has existed for a long time, because some services
require user authentication regardless of whether their providers pursue
the goal of cross-device tracking or not. Such services include e-mail, social
networks, and similar cases. This solution is called “deterministic”, as
opposed to “probabilistic”, which is based on machine learning, doesn’t
require a login and is therefore preferable to deterministic. See Section
2.2 for more details on both strategies. Both terms—”deterministic” and
”probabilistic”—refer to the ways of controlling and exploiting web traffic
between the user and the website. There is at least one more exotic and
less ethical type of tracking, also referred to as ”cross-device tracking”: it
was first developed by a company named SilverEdge, and it makes use of
the physical proximity of the devices to each other [34]. One device emits a
noise on an inaudible frequency, which is picked up by an app on another
device, which allows it to make a connection between the two devices. The
technology came to be known as ”audio beacons”. This type of tracking,
though it attracted the attention of the media and raised awareness of the
problem itself, is not discussed in this thesis.

Even though traffic-based cross-device tracking is a relatively new
field, there already is a range of companies that offer their services in
probabilistic cross-device tracking: Drawbridge, Tapad, Adbrain, etc.
There are, however, very few scientific works published on the topic.

This thesis is based on a research project about probabilistic cross-
device tracking. It is organized as follows: Chapter 2 (”Cross-device track-
ing: background”) provides an overview of what cross-device tracking is,
the main methods and strategies, discussion of previous research on the
topic, and mentions some technical and ethical challenges raised by the
problem. Chapter 3 (”Cross-device tracking: the project”) describes in de-
tail attempts to implement a cross-device tracking algorithm using web
traffic data: constructing the dataset, feature engineering, training, eval-
uation, etc. It deals with both supervised and unsupervised machine learn-
ing methods. Finally, Chapter 4 (”Discussion and conclusions”) summar-
izes the results of the project and proposes directions for further work.

1Engagement rate: average amount of time spent by a user, actively interacting with the
webpage.

2CTR (click-through rate): percentage of users who click on a specific link among all the
users who see it on a page

3Conversion rate: percentage of users who become paying subscribers.

2



Chapter 2

Background

This chapter gives an overview of cross-device tracking: the motivation for
it, common approaches to solving it, previous research, as well as technical
challenges and ethical concerns that it raises.

2.1 Motivation

As was mentioned in the introduction, cross-device tracking is crucial
for personalization purposes, i.e. it is important to be able to utilize the
available information about the user across all devices they own. However,
it is not the only application. A survey in [10] lists what marketers can do
with the help of cross-device tracking, which include:

Impression capping. Not only can advertisement be personalized better,
but it can also be ensured that one user is not shown the same ad
more than a certain number of times across all of their devices.

Conversion uplift. Marketers can better understand which media chan-
nels are worth investing more into, so that more users become per-
manent subscribers.

Better understanding of the audience. When the users’ identities are not
split into pieces over multiple devices, it is possible to get more
accurate statistics of the audience, research audience segments and
so on.

From a more scientific perspective, research into cross-device tracking
can contribute to answering more theoretical, but nevertheless important
questions about the relationship between an individual and the Internet,
such as:

• Is anonymity on the Internet possible, or are we defined by our online
activity well enough to be recognized regardless of the physical
device we are using?

• If it is the latter, how much information is needed to successfully
match two online footprints, and what kind of information is most
useful for that?
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• How should cross-device tracking be performed to respect the
privacy of the users?

2.2 Strategies

There are two main strategies for cross-device tracking: deterministic and
probabilistic. Deterministic cross-device tracking is done with a unique
identifier, or login, that a user has to get to access the website. The
website then requires users to login on every device, browser or app
that they use. One of the most popular and accessible tools for this is
Google Analytics, which can link devices either making use of the IDs
the website assigns to its visitors, or of their Google accounts, provided
they have it and are logged in. Of course, this method is not faultless:
both accounts and devices can sometimes be shared by several people;
but despite the occasional exceptions, it is a simple and effective way to
identify users across devices. However, there are obvious disadvantages:
not all websites are able to urge their visitors to get and use a login. Logins
are common for online stores, forums, social networks and other types
of web pages whose require exact identification of the user to function,
but are not as common, for example, for news sites or product landing
pages. Even though most newspaper websites provide an option of getting
an account, making it mandatory is not desirable because this can lead
to fewer readers. There are, of course, exceptions, such as, for instance,
the Wall Street Journal, where unregistered users get very limited access to
content, but as it is a business-focused newspaper, it is directed at a specific
audience. When loggin in is not mandatory, it can be hard to motivate
users to register and, most importantly, identify themselves every time they
access the website. Some incentives that publishers use for that purpose
include making a part of the content only accessible after logging in (Rebulic
[45]), allowing comments only from registered users (Bergens Tidende) or
providing the option to share the content via social networks (almost any
online publisher).

The alternative to the deterministic approach is probabilistic cross-
device tracking. It involves building a model that would try to predict
whether two devices that have accessed the website belong to the same
user, based on session information such as time, location, viewed content,
etc. The model is usually built with the help of machine learning methods
(see Section 2.3. The obvious disadvantage, compared to the deterministic
approach, is the uncertainty: these methods estimate the probability of two
devices belonging to the same user based on the model they have from
previous data, but they can’t guarantee a 100% correct answer. Another
disadvantage is the complexity of this solution. While it requires no effort
on the part of the user, the website operator has to create a prediction
model using the data they have. As the existing solutions are normally
based on supervised machine learning (see Section 2.5 for related works),
they need a big enough sample of training data first. Such data can be
expensive and hard to obtain in sufficient amounts. Besides, the resulting

4



Deterministic Probabilistic

Advantages Exact predictions Login not required

Simple and fast

Disadvantages Login required Not 100% accurate

Complex and takes time

Table 2.1: Comparison of deterministic and probabilistic cross-device
tracking.

predictive model can be quite complex itself, so an additional challenge for
probabilistic cross-device tracking is to make sure the model can be used
efficiently. All challenges considered, it is quite difficult for the website
owner to create the necessary software themselves, so there are a number
of companies that offer their services in cross-device tracking, combining
both approaches.

Table 2.1 summarizes the differences between the two mentioned
strategies.

As shown in this Section, deterministic cross-device tracking is quite
straightforward to implement, so this thesis is going to focus on the
probabilistic approach instead. For convenience, further on the term
”cross-device tracking” refers to ”probabilistic cross-device tracking”.

2.3 Methodology

Most good known solutions are based on supervised machine learning, as
described below in Section 2.5. Indeed, cross-device tracking is a task that
has to do with recognizing patterns in big samples of data with unknown
distributions and properties, which makes it a suitable target for machine
learning algorithms.

Arthur Lee Samuel, a pioneer of machine learning, defined it as
”programming of a digital computer to behave in a way which, if done by
human beings or animals, would be described as involving the process of
learning. [. . . ] Programming computers to learn from experience should
eventually eliminate the need for much of the detailed programming
effort” [48]. In other words, machine learning is a set of techniques
for programming computers to analyze data and infer conclusions from
examples rather than explicitly programming a list of instructions. It
is widely used in bioinformatics, information retrieval, natural language
processing and many other domains.

The common preprocessing step for any type of machine learning
is the way data is represented. Every instance of the input data has
to be made into a vector of values, where each position in the vector
corresponds to a variable, or feature. Features are some properties of
the instances that might be useful for solving the task. With modern
hardware the number of such properties can be quite high: in image
processing it is not unusual to have tens of thousands of features. It is
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not obvious in advance what information about the instances is useful and
what is not, so selecting and constructing features is a separate subfield of
machine learning called feature engineering. After that a machine learning
algorithm, taking feature vectors as input, analyzes them and somehow
models the distribution of the data.

There are three main strategies for machine learning:

1. Supervised. A supervised learning algorithm takes as input a set of
labelled instances (training set), i.e. a set of feature vectors, each with
a corresponding label. The label is the value of a dependent variable
that we want to predict. It then tries to fit the data into a previously
chosen mathematical model by optimizing its parameters. The model
with the correct parameters is then used to predict the label for new,
unlabelled instances. The set of unlabelled instances used to test
the model and evaluate its performance is, respectively, called the
test set. This method was used by all the authors of the articles
described in Section 2.5. The term ”classification” is often used
synonymously with ”supervised learning”, although technically it
stands for both regression and classification. The difference is that
during classification the predicted variable is discrete, its values being
two or more labels corresponding to the classes, while a regression
algorithm predicts a continuous variable. A model that was created
using a classification algorithm, and even the algorithm itself, is often
referred to as a ”classifier”.

There exists a great number of machine learning libraries for different
programming languages and environments, and each one provides
the most common classifiers, such as Naïve Bayes, support vector
machines, decision trees, etc. Classifiers differ in how they model
data, what kind of datasets they are best suited for, what limitations
they have, as well as in time and memory efficiency. Choosing
the right algorithm is the next important decision after feature
engineering. The basic principles for several classifiers, used in this
project, are described in Section 3.3.4.2.

The biggest disadvantage of supervised learning, for our problem as
well as many others, is the need for a labelled training set. Acquiring
such a set can be expensive and time-consuming, or sometimes even
impossible, because the data is too scarce. The process of extracting
the training set for the present project is described in detail in 3.3.1.1.

2. Unsupervised. Unlike supervised learning, it does not require
labels. A typical task for unsupervised learning is arranging data
into clusters based on their feature values. Common algorithms,
also provided by most machine learning libraries, include k-means
and agglomerative clustering. The main idea of any unsupervised
learning method is to introduce a metric on instances in order to be
able to compute how close two instances are to each other. Since
instances already are numerical vectors, it is natural to look at them
as points in a k-dimensional vector space, where k is the number of
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Classified as a match Classified as non-match

Actual match True positives False negatives

Actual non-match False positives True negatives

Table 2.2: Confusion matrix for cross-device tracking.

features, and then apply any common geometrical metric like, for
example, Euclidean or cosine distance.

There was not much work involving unsupervised learning in the
course of this project. Some experiments with this approach are
described in Chapter 3.4.

3. Semi-supervised. When there are no or few labelled instances
available, certain techniques can be used to augment the training
set. The authors of [16] added a semi-supervised component to their
solutions. However, neither we, nor any of the authors of related
works report data shortage. On the contrary, most of them mention
how they had to downsize the number of data points and introduce
limitations to make the problem more tractable. We briefly discuss
possible semi-supervised approaches in Section 3.4.2.

2.4 Evaluation

2.4.1 Confusion matrix

Whatever approach is chosen for performing cross-device tracking, the
output of the system would normally be in the form of a set of pairs of
user identifiers that, according to the system, belong to the same person
(or a “match”). These pairs make up the first class of instances. All other
possible pairs, not included in the result set, constitute the second class.
Most evaluation metrics are based on the confusion matrix, which is a table
where the columns represent classes, predicted by the system, and the rows
represent actual classes of the instances in the test set. The value of the
cell (m, n) is the number of instances from class m which got attributed
by the system to class n. For binary classification problems such as cross-
device tracking the size of the confusion matrix is 2× 2. For convenience we
will call the matching class ”positive” and the non-matching – ”negative”.
Table 2.2 shows what the confusion matrix for cross-device tracking looks
like.

True positives are the instances that were correctly attributed to the
positive class, i.e. appeared in the result set; true negatives are the instances
that were not a match and were not in the results; false positives are the
pairs in the results set that are not actually a match; false negatives are the
pairs that should have been in the result set, but were not discovered by
the system.
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2.4.2 Precision, recall, F-score and accuracy

The most common classification evaluation metrics are accuracy, precision,
recall and F1-score. The formulas for the metrics are as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 · Precision + Recall
Precision · Recall

Although some systems report very high accuracy [17, 46], it is not the
most suitable metric for cross-device tracking. The problem with accuracy
is that the device graph is not too dense, and the size of the negative
class is much larger than the positive class, unless the negative class is
artificially downsized (no such downsizing was mentioned in the reports).
For instance, if there are N mobile phones and N desktop computers, and
each phone is connected to exactly one computer, the positive class contains
only N pairs, while the negative class contains N(N − 1) pairs. In this case
the system that blindly assigns every pair to the negative class achieves
accuracy = N(N − 1)/[N(N − 1) + N] = N − 1/N, which is > 90% for
every N > 10.

The more appropriate metrics for cross-device tracking are recall and
precision, since they are directed at the positive class. According to [10],
some companies create two versions of their systems, one with high recall
and another with high precision. High recall systems are more useful for
reaching and targeting individual users, while high precision helps analyze
the audience more accurately. F1-score represents the trade-off between
recall and precision.

The F1-score is the basic version of the F-score, which weighs precision
and recall equally. That is why the subscript 1 is often omitted, and the
metric is referred to as just the F-score. For cases when we wish to give
more weight to either precision or recall, there exists a more general version
of the F-score, with an adjustable coefficient β :

Fβ-score = (1 + β2) · precsion · recall
(β2 · precision) · recall

2.4.3 ROC and AUC

All the metrics above are defined on the assumption that the output of
the classifier is binary: one of the two class labels. But underlying this
output is normally a score, or a probability, based on which the label is
decided. By default the threshold for the score to assign an instance to one
of two classes lies at 0.5 (provided the score is normalized to the interval
from 0 to 1, which is usually the case). By moving the threshold we can
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change the sensitivity of the classifier, i.e. make the trade-off between recall
and precision favor one of those metrics more (see Section 3.3.4.3.7). For
example, if the threshold is increased, then the model is required to be
more certain to assign an instance to the positive class, which leads to better
precision, but lower recall. It should be noted that this pattern is only true
if the model is more or less calibrated (see Section 3.3.4.3.5).

By moving the threshold and changing the sensitivity of the classifier
we can draw a curve of how the true positive rate depends on the false
positive rate. True positive rate is the same as recall, and false positive rate
is defined as follows:

FPR =
FP

FP + TN
This curve is called Receiver Operating Characteristic curve. Figure 2.1

is an example of such a curve.

Figure 2.1: An example of ROC curve for a Gradient Boosted Tree-based
classifier, trained and tested on a randomly drawn and split subsample of
instances collected over one-month period from WSJ.

Naturally, the curve includes points with coordinates (0, 0) and (1, 1):
(0, 0) corresponds to the threshold 1.0, when everything is assigned to the
negative class, and (1, 1) corresponds to the threshold 0.0, when everything
is assigned to the positive class. If the curve is a straight line between
those two points, then at any given threshold the classifier assigns positive
and negative instances to the two classes in equal proportions, i.e. the
distribution of actual positive and negative instances is the same in both
classes. That kind of behavior is as useful as random guessing, so a good
ROC curve should lie above the line TPR = FPR, like in Figure 2.1. The
curve can help choose the optimal decision threshold: sometimes it is is
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more important to minimize FPR, other times high TPR is the main goal.
When the dimensions are equally important, there is more than one way
to choose a good threshold: for instance, taking the one corresponding to
the point on the curve that is closest to (0, 1), or the one that maximizes
2 + TPR− FPR (the Youden index [58]).

The curve itself gives useful insights into the relation between different
types of errors of the classifier, but it is a sequence of numbers, unlike the
previously described metrics. If a single numeric score based on the ROC
curve is needed, then the area under the curve (AUC) is used, i.e. the
integral of the ROC curve over the interval (0, 1). The bigger the AUC
value, the better; for random guessing its value is 0.5.

2.5 Related work

As was mentioned in the introduction, there is not a lot of scientific
literature on cross-device tracking. It is partially due to the fact that the
problem itself is relatively new, since it only appeared when people started
actively using several devices with Internet access.

There are some areas of research that are loosely related to cross-
device tracking and could be considered its predecessors, since they pursue
similar goals and share much of the same methodology. For instance,
a great number of articles was published on producing media content
recommendations and personalized web user experience. Exploiting the
trail the user leaves by showing their interest in online content was used
in recommendation systems as old as Tapestry, an article about which
came out in 1992 [21], or Siteseer [47], which incorporated both content-
based filtering (based on similarity between the content of the item and
of the user profile) and collaborative filtering (recommending items that
similar users liked). Later most works in recommendation started using
machine learning techniques, both supervised and unsupervised, like
Naïve Bayes classification for constructing user profiles [40], Probabilistic
Latent Semantic Analysis for discovering audience segments [57], k-means
clustering for expanding the previously established audience segments
[44], and so on. Among the most recent studies machine learning is the
prevalent methodology, and the focus is often on its particular aspects like
efficiency or feature engineering.

The fact that there are very few articles on cross-device tracking
itself could also be due to the commercial benefits of selling cross-device
tracking software. Tapad, one of the companies that specialize in it,
has a patent application for a cross-device tracking method combining
probabilistic and deterministic approaches [33]. Another such company,
Drawbridge, was granted a patent on their cross-device technology in 2016
[52]. A whitepaper has been released by Adbrain, who also provides
cross-device solutions, describing various aspects of cross-device tracking
from the marketer’s point of view [10]. Drawbridge has also organized a
competition in recognizing cross-device connections [25].
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Drawbridge competition

The competition in cross-device tracking, that more than 300 teams took
part in, was hosted by Kaggle [25]. Some of the participants have published
articles on the methods they used to address the task, which are likely the
first computer science articles on the topic: two of the authors mentioned
that they had not been able to find any research papers on cross-device
tracking [16] [15]. The data provided to the participants consisted of
several tables with information about mobile phone identifiers (referred to
as “devices” in the competition description), computer identifiers (referred
to as “cookies”), and IP addresses. That information included individual
properties of each device and cookie, such as model or browser, the IP
addresses where they appeared, websites that they visited, etc. All personal
identifiers in the dataset were fabricated so that they would not cause
any privacy violations. The dataset also included an identifier called the
”Drawbridge handle”, which was the same for devices and cookies if and
only if they were indeed from the same user. The test set was similar, but
it didn’t provide information about the Drawbridge handle for devices.
The task of the competition was therefore to create a model for predicting
which cookies come from the same user as the given device, based on the
dataset provided for training. Later the model would be evaluated on the
test set, which included a list of 61156 devices to find matching cookies for.
The main evaluation metric for the competition was mean F0.5-score, which
combines precision and recall (more about evaluation in 2.4).

Several articles have been published by the teams who were in the top
10 on the competition leaderboard. All of them used supervised machine
learning methods, and most teams treated the task as a classification
problem, where the items for classification were pairs in the form
(device, cookie), and each of them belonged to one of the two classes: ”from
the same user” or ”not from the same user” (see Figure 2.2) [16, 27, 28, 30].

Figure 2.2: Cross-device tracking as a classification problem.

The winning team used triples (device, cookie, IP address) instead of pairs,
but they did not consider this to be the decisive factor for their performance
[56]. Instead of a ”strict” classification all the teams used probabilistic
classification, assigning a probability to the fact that an item belongs to a
class, rather than strictly attributing it to one class. One team formulated
the problem as regression, which is essentially the same as probabilistic
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classification [50]. Two teams chose a slightly different approach and used
ranking models as their final solution. Ranking models differ subtly from
classification, although they require similar training data. Let Sd be the set
of cookies that have been via some data preprocessing chosen as possible
matches for the device d. A ranking model finds the correct ordering on
Sd, such that the first cookie is the most probable candidate. For [55] the
ranking model was the reason they won the competition, according to the
author of the article.

Building the prediction model was the core stage of solving the task.
[16], [30], [28] and [55] used very similar algorithms based on gradient
boosting (see below) and even utilized the same implementation, provided
by XGBoost library. The differences in the performance are therefore
influenced not only by the choice of the algorithm, but by how the details
are handled when the algorithm is applied to the data.

The data provided by Drawbridge was not specifically tailored for clas-
sification: it contained tables with information on individual devices, cook-
ies and IP addresses, which meant that the first step for the participants
would be creating the training set for the prediction model. As the training
data contained over 140K devices and 2M cookies, the set of all possible
pairs would have been too large to train a model, so it had to be downsized
first. [16], [30], [50] and [28] report reducing the number of device-cookie
pairs in the training set to approximately 3.66M, 1.11M, 900K and 700K
correspondingly. Such reductions, or pruning, of the data can also be used
later during testing to determine which cookies are good candidates for
a given device, because computing the probability of a match with every
one of the 2M cookies would take too much time and be inapplicable in
real-life situations. Common methods for pruning are based on the idea
that matching devices and cookies have to share IP addresses (for short,
IPs), and, according to [15], 99.90% of them do. Thus disregarding all other
cookies as candidates for the given device leads to a very slight drop of re-
call, but a big advantage in processing time. Another reduction method is
getting rid of cellular IPs [15, 27, 28, 55], which are very unreliable for user
tracking [11], and IPs that have too many devices or cookies that use them
(likely from publicly used networks) [15, 16].

Another important subtask is feature engineering. The participating
teams proposed a wide variety of features for representing device-cookie
pairs. Apart from the basic device and cookie properties available from
the provided tables,—like device type, OS, or browser,—most solutions
also used IP-based features: how many IPs are shared by the cookie and
the device, the average values of the properties of those IPs, etc. Some
of the authors also propose to aggregate features based on the relations
between items in the training set, which are generally more difficult for
a classifier to pick up. For instance, [28] add to the list of features the
cosine similarity between the device and the cookie vector, containing the
properties of their common IPs. They also proposed a tf–idf weighting
scheme for finding the feature values that are most characteristic of a class.
[30] created a new feature for every IP-property available in the dataset:
they first computed the sum of values of this property over all IPs linked to
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the cookie, then over all IPs linked both to the cookie and the device, and
then used the ratio between the two sums as the feature value. According
to the article, this type of features raised the F-score by about 10%. The
IP-based features were found more useful than those based on the website
history [30]. One of the teams even dropped the features not related to IP
address and performed the tracking based solely on the IP footprint of the
users [15]. The number of features also varies considerably, from 38 in [27]
to in 699 [55].

The choice of the loss function also influenced the results. The
optimization in gradient boosting is performed through minimizing a loss
function, which penalizes the model for training instances that do not fit,
given model parameters. The main difference between binary classification
and ranking is the loss function. The function for ranking is more lenient in
that it does not penalize discrepancies in scores between different devices,
only between cookies from the same device candidate set. In other words,
even if the system scores a non-matching pair (device1, cookie1) higher than
a matching pair (device2, cookie2), it does not influence the performance, as
long as the ranking inside the candidate sets for both devices is correct.

Finally, after defining the set of candidate cookies for a device and
computing the probability that any of them are a match, the system has
to decide on the threshold for that probability to attribute a cookie to the
same user as the device. For that the participants used empirical thresholds
[27], lists of rules [28] and even ensembles of trained predictors [15].

Beside the common subtasks listed above some of the participants
employed additional techniques commonly used to improve the results
in machine learning: bagging, or training several models and averaging
them in order to avoid overfitting and make the model more robust [16]
[30], and semi-supervised learning, i.e. augmenting the training set by the
items from the development set with an unmistakably high probability of
a match [16]].

2.6 Challenges

There are several common challenges that have to be met to successfully
create a cross-device tracking system. First of all, the solutions described in
Section 2.5 all use supervised machine learning, but that requires a labelled
training set. One way to create the training set is to use the login data for
verifying that two devices belong to the same user. However, this data
can be scarce or not representative in case the system is being built on a
smaller scale than Drawbridge. Another way is to apply semi-supervised
and unsupervised learning. The former was used to increase the training
set in [16], while on the latter no research has been published so far. The
construction of the training set for our project is described in detail in
Section 3.3.1.

The second important problem is that even if there is enough login data
from some websites to construct a training set, it is not every website that
has enough traffic from logged-in users to make a separate training set. It
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means that the same model that has been trained on whatever source or
sources had enough data, has to be used for other sources as well, that
had not been included into the training set. It is a well-known problem
in machine learning that training data and production or test data might
have some differences, known as covariate shift or dataset shift, if they are
from different sources. See Section 3.3.4.5 for the results of transferring the
model to a new source.

Next, unlike some problems where machine learning is involved only
because labelling instances manually is expensive and time-consuming, in
cross-device tracking it is strictly speaking impossible. The training set that
we obtain in this project is built through a heuristic that employs registered
users, but how data is distributed and how the model performs on the
traffic from unregistered users is impossible to know.

Finally, there is the matter of scalability: for real-life applications it is no
less important than the performance of the system. Even if the algorithm
for determining whether a pair is a match is efficient, the number of pairs
it is applied to has to be reduced to make the whole system efficient as
well. Several ways of pruning are mentioned in Section 2.5, but the highest-
scoring team in the Drawbridge competition still reported that processing
the test set took > 8 hours even on powerful hardware [55].

2.7 Ethical concerns

Both personalization in general and cross-device tracking in particular
have given rise to ethical and legal concerns in the past several years. At a
TED conference in 2011 Eli Pariser, political and internet activist, talked
about how the personalization of search results and news feeds creates
informational bubbles around individual users so that they get different
results for the same queries and ultimately get a different picture of the
world around them [39]. In 2012 an article came out about how the online
preferences of the users, namely ”likes” on Facebook, could help predict
personal details like sexual orientation or political views with very good
accuracy [29]. One of the authors of the article, Michal Kosinski, even
expressed his concerns in an interview that a project based on his research
might have played a role in the 2016 US elections, allowing to target voters
by their predicted psychometric profiles instead of just demographics [22].
In 2015 a Federal Trade Commission workshop was held in the USA on
the subject of cross-device tracking, the main point of which was that such
techniques are not at all controllable by the user. This primarily concerns
probabilistic tracking and audio beacons, since in those cases it is totally
invisible to consumers. The FTC issued warnings to some developers who
used user-tracking software without an explicit opt-out option [20]. Yet the
privacy issues around cross-device tracking are still not widely discussed
or regulated, and it is not clear who in this case is responsible for the
privacy and safety of the users’ personal data [14].
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Chapter 3

The project

This chapter describes a series of experiments on cross-device tracking
that have been carried out for this MSc project. They apply cross-device
tracking theory to real-life web traffic data, making use of both supervised
and unsupervised machine learning methods.

3.1 Goals

The main goal of the project is to create a probabilistic cross-device tracking
model that would identify some of the devices that belong to the same
user in the stream of traffic data from a website. Ideally the model has
to perform well on different websites, including the ones that did not
contribute to the training set. It is not necessary to achieve complete
coverage, i.e. identify every matching pair, but the identification should
be reliable, i.e. false positives are more undesirable than false negatives.
In other words, the project focuses more on precision than on recall: if
a system manages to identify every tenth pair of devices belonging to
the same person, but does it with high precision, it would mean that the
goal was achieved. The intermediate goals include finding ways to adapt
common traffic data to cross-device tracking, comparing how suitable
different media websites are for building a cross-device tracking model,
and other possible insights into the problem.

3.2 Data sources

The data for the project was provided by Cxense. It comes from a particular
type of websites: online newspapers and magazines. It is raw traffic
data, which consists of information about ”events”, i.e. clicks on the web
pages, from a number of media websites for the time period of one or two
months. To get a good idea of how the problem varies from source to source
we took three newspapers with quite different geographical profiles. For
convenience we’ll use abbreviations for them:

1. WSJ. An international newspaper written mostly in English with more
than 100 million page views and millions of online readers per month
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across the world;

2. ELP. A Spanish-language newspaper, that has fewer clients than WSJ,
but is still read internationally, mostly in Spain and South America,
with close to 100 millions page views per month;

3. WFP. A smaller regional English-language newspaper with about 8
million page views and 900 000 readers per month.

It should be noted, of course, that we do not know the exact number
of readers, mainly because we cannot yet track them across devices: we
can only count the cookies. The number of page views is therefore a more
reliable metric.

Raw event logs record visits to the website in chronological order. Each
such event has a number of properties that are stored in its fields, such
as: the exact time the event happened, the address of the webpage that
was visited, the browser that was used, and many others. One of the
most important fields for the experiment was the unique device identifier,
or device_id, which is in fact the first-party cookie. This identifier is a
relatively safe way to find all the events made from the same physical
device-browser combination. There are some exceptions to that, such
as a user who deletes their cookies, but they were not addressed in the
experiments for several reasons: first, for a popular media website there is
no shortage of data even when the identification of devices is not complete;
second, deleting the cookies signals about the unwillingness to get tracked,
and should be respected at least to some extent.

3.3 Supervised learning

This section describes experiments on solving the cross-device tracking
problem with supervised machine learning, namely classification. This is
the only method used in the previous works on the topic, and it constitutes
the bigger part of this project as well.

3.3.1 Preprocessing

3.3.1.1 Creating the training set

Since the data was not specifically tailored for making a cross-device
tracker, the first step of the experiment was data preprocessing. Prepro-
cessing is essentially a sequence of filters to get rid of unusable and incon-
venient data. Figure 3.1 shows the outline of this step, as well as how much
was eliminated by every filter.

First, we can only use the events from users who have a login: no matter
what machine learning algorithms are used, supervised or unsupervised,
they need to be evaluated, which means that for every prediction made by
the algorithm on our data we have to be able to tell if the prediction is true
or not. That is done through an identifier that corresponds to the login and
is recorded in every event that happened from a registered user.
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Figure 3.1: The steps of preprocessing from raw logs to a set of pairs ready
for training. The data is taken from WSJ for one month.
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From some devices several logins were used: it could be a public
computer, or a device that is used by several members of the household,
yet each of them has their own account. Whatever the reason is, there
are relatively few such cases: Figure 3.1 shows that for WSJ out of almost
two million device_ids only 31 160 devices are shared. Since the main
concern of cross-device tracking models in this project is precision, and
not complete coverage (see Section 3.1), all events from those devices were
removed from the dataset.

What interests us most is the opposite situation: the cases when one
login has been seen with several different device_ids. That is when cross-
device tracking can be applied. Two devices are considered to belong to the
same user if the same login has been used on both of them. However, there
are some exceptions to that, and not any such case is usable. Some logins
have been seen on over a thousand different devices: they might belong to
a user who clears cookies, or uses incognito mode all the time, or it could be
a corporate account, or the combination of those factors. Fortunately, such
cases are also very rare: if a one-month period is considered, most logins
have only been used from one device. Figure 3.2 shows how quickly the
number of logins drops as we increase the number of device_ids, connected
to them. The higher the number of device_ids, the less realistic it is that the
login is used privately by one person, so for further work it was decided
to cut the number of devices at 10. Even with a relatively small number of
devices that used the login there is still a possibility that the account is used
by more than one person, especially if the subscription is not free, but there
is no apparent way to correct this, so we have to accept some noise in the
dataset.

In order to get from event-based to device-based representation one has
to group the events by device_ids. Here we introduce the first substantial
restriction: device_ids with less than k events are not included in the
training data, where k is a small positive number normally between 5 and
10. This has made the results considerably better, since a lot of features
are based on correlations between event sequences for the two devices (see
Section 3.3.2)1.

For a supervised approach we need to get from individual devices to
labelled pairs. We have already made sure that each device_id is connected
to exactly one login, so the data can be grouped by logins. It would then be
represented by a number of sets of device_ids, where the device_ids in the
same set share the same login. Supervised learning, as described in Section
2.2, requires a training set with examples of all classes. In our case there are
two such classes: positive, made up of pairs of devices that share the same
login, and negative, made up of pairs that don’t. Section 2.5 mentions two
slightly different approaches to what an instance of the training set should
look like: a pair (device1, device2) or a triple (device1, device2, IP address).
Triples increase both training time and the number of possible instances,
so the former approach will be used.

1For technical reasons this step was performed later in the program, after the pairing
step, as it is shown in Figure 3.1
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Figure 3.2: The distribution of logins based on how many devices they have
been used on. The data is for one month of traffic on WSJ.

Obtaining the positive pairs is fairly straightforward: from every set of
device_ids that share a login one simply takes all distinct pairs of elements.
When constructing the set of negative pairs, the most straightforward way
would be to take all possible pairs of device_ids where the first and the
second element came from two different sets. However, such a negative set
would be much larger than the positive set, and the classification problems
are often more difficult with heavily unbalanced classes [31]. We therefore
introduce another restriction on all pairs in the training set: they have
to share at least one IP address, i.e. the two devices have to have been
seen from the same IP address at least once. The same restriction was
used during data preprocessing by several Drawbridge participants. After
applying it, the ratio of classes in our data ranged from around 1:5 (five
times as many negative instances as positive) to, surprisingly, 4:1 (four
times more positive instances than negative). These ratios are not ideal,
but much less heavily skewed than before the restriction. Table 3.1 shows
how many instances are left to work with from one month after all the
preprocessing steps.

It should be noted that these class ratios do not give us much
information on how the classes are distributed in the data in general. All
that can be concluded is that the ratios are like this among registered users,
since they were the only ones considered in the training set. In practice,
however, new instances would be taken from the set of all users, registered
or unregistered, and the real distribution of classes might differ from the
one in the training set.

Lastly, since we have all possible combinations of device types in the
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WSJ WFP ELP

Positive class size 110 934 13 858 3 181

Negative class size 590 607 31 500 757

Class ratio 0.18 0.44 4.2

(positive:negaitve)

Table 3.1: Number of positive and negative pairs for all three sources for a
one-month period.

training set, the two device_ids inside each pair are sorted by their device
type. That allows to avoid a needless distinction between pairs where the
first device is a phone and the second device is a computer, and pairs where
the first device is a computer, and the second device is a phone.

3.3.1.2 IP-tables

Efficient checking whether two device_ids have been seen from a common
IP address requires storing indices for what devices have been using which
IP addresses. They had to be built prior to extracting device pairs, and even
though they take up a lot of memory, it pays off, since those indices are later
useful at the feature extraction step. The Figures 3.4 and 3.3 give some idea
about the distribution of values in both indices. They have the same shapes
as Figure 3.2: the most common value is 1, and then the frequency drops
rapidly.

Figure 3.3: The distribution of devices based on how many IPs they have
been seen on. The data is for one month of traffic on WSJ.
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Figure 3.4: The distribution of IP addresses based on how many devices
have used them. The data is for one month of traffic on WSJ.

Another preprocessing step involving IP addresses is getting rid of IPs
used for big public networks, such as in the subway, or in a university. Such
addresses do not provide reliable evidence that two devices using them are
connected, and eliminating them helps narrow down the dataset. Strictly
speaking, we do not know which IP addresses fall into that category, so
we use a rough heuristic: all IP addresses with more than N devices seen
on them are considered to be too uninformative, where N is typically
an integer between 10 and 50. The numbers may seem high, but it is
necessary to remember that device_ids are not device identifiers, but rather
individual browser identifiers. If a household has two people, each of
whom has two devices with two browsers, and a friend, who visited them
during the processed time period, and they all accessed the website at least
once, then the total number of device_ids recorded by the website from
the household IP address is 9. If there are more people in the house, or
if they sometimes clear cookies, or if it is not a household, but an office,
that number would get higher. Later in this paper such IP addresses are
sometimes referred to as “public”, even though technically any address
accessible over the Internet is public. In our case “public” stands for
“used by the public”. The primary goal of filtering out widely used IPs
is to reduce the number of possible matches. One of the restrictions for
including a pair into the training set was that the two devices share a
common IP address. Therefore, if we remove very “popular” IPs from the
data, we get fewer potential matches to check. For that purpose it is not
essential to have a very exact mechanism of removing “public” addresses,
and our heuristic is enough. Very few IPs are “public”—about 0.003% for
WSJ, for instance,— but since they are frequent, they are responsible for a
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larger portion of traffic.

3.3.1.3 Environment

The amount of data from logged in users can vary, but for a popular website
with heavy traffic it can be very large. In this project a month of raw log
data from WSJ in json format took approximately 70 Gb of space. The
necessary structures often don’t fit into memory, and one of the ways of
dealing with that is using parallel computing. All data processing and
feature extracting was done on an Apache Spark cluster set up by Cxense.

Apache Spark operates on the so-called RDDs, or Resilient Distributed
Datasets. RDDs are collections of items split into partitions that are
processed in parallel on different machines. The specifics of how RDDs
work lead to some challenges for efficient sorting and transforming the raw
logs into a dataset, but they are not described in detail here.

3.3.2 Features

Choosing the right features when using machine learning is a a key success
factor. One of the most popular recent trends is ”deep learning”, which
normally stands for multi-layered neural networks. Those algorithms
work best in combination with a very large number of features that occur
naturally in the data, but are very low-level, i.e. the values of one separate
feature do not correlate well with the class, rank or cluster of the instance.
A typical example is image processing: with digital images as instances,
the most natural way to represent them as numerical vectors is by using
the color characteristics of the pixels. The dimensionality will be extremely
high, and to the naked eye each individual feature will not give any useful
information about the contents or the class of the picture. However, when
such feature values are used as input to a multi-layer neural network,
it can extract higher-level features from them after several layers. This
process is called ”representational learning”, or ”feature learning”, and it
is much more effective than manual feature engineering in tasks like image
or speech processing.

Though representational learning has been proven useful in many
areas and even has become a buzzword in recent years, the nature of
our problem makes it difficult to use this type of learning. An instance
in our case is represented by two sequences of events, often not very
long ones, where each event has a relatively small (compared to image-
processing magnitudes) number of different fields with non-homogenous
values (string, numeric, and Boolean). In addition, there is evidence (see
Section 2.5) that the class or the score of the instance correlates with some
easily definable properties like similarity between sets of IP addresses.

That is why our approach to choosing features is almost a direct
opposite of what is normally paired with deep learning. We have a
relatively small number of manually crafted features that involved a time-
consuming feature-extraction step. There were 25 features used in total in
the experiments:
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1. Individual features. The first thing that comes to mind when trying
to answer the question whether the two devices are from the same
user is their geographical location. Clearly, a pair where one device
is from Australia, and the other one is from France is most probably
not a match. Same logic is applied to the language of the browser.
Another piece of information that might be important, though it is
not obvious how exactly it correlates with the class labels, is the type
of the device: mobile phone, computer, or tablet. These two kinds
of features make up the first group. All these features are Boolean:
six one-hot-encoded2 features, for each device in the pair, for each of
the three types of devices, plus four features that indicate whether
the browser language, the region, the city and the device type are the
same for both devices in the pair.

A hypothetical example of a training instance consisting of two
devices, A and B, is shown in Table 3.2. Table 3.3 provides additional
information on all the IP addresses, which will be needed later for
some types of features.

Device A Device B

Type mobile pc

Region Manitoba Manitoba

City Winnipeg Winnipeg

Language English English

IPs of events made by
the device

1.1.1.1, 2.2.2.2, 1.1.1.1,
1.1.1.1, 2.2.2.2, 3.3.3.3,
4.4.4.4

1.1.1.1, 1.1.1.1, 2.2.2.2,
3.3.3.3, 3.3.3.3, 5.5.5.5,
6.6.6.6, 7.7.7.7

Table 3.2: A hypothetical training instance. One device is a phone, the other
one is a computer. They are both located in Winnipeg, Manitoba. Device
A has 7 events from 4 different IP addresses, device B has 8 events from 6
different IP addresses.

Concerning the location, it should be noted that it can vary from event
to event, at least for mobile devices and tablets, so we record the most
frequent location, trying to determine the ”home base” of the user.
The nuances of the user’s moving around are meant to be captured in
the next group of features, which are based on IP addresses.

2One-hot encoding is a simple way of representing categorical features (i.e. non-numeric
ones) as numbers. Consider a feature for the operating system of a phone. Let’s assume it
can take three values: ”iOS”, ”Android” or ”Windows Mobile”. It would not be correct to
encode those three values as numbers 1, 2, 3, since that implies some sort of quantifiable
relationship between the three values. Instead we can transform this feature into three
numerical features, by the number of possible values of the original categorical feature.
Each of the three new features answers the question ”does the instance have value X?”.
The first feature takes value 1 for the devices on iOS, and 0 – for all others, the second
and the third features will behave similarly, but with Android and Windows Mobile
correspondingly.
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1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5 6.6.6.6 7.7.7.7

Number
of devices
seen from
this IP

3 10
(“public”)

2 1 1 4 3

Table 3.3: Number of devices seen from the IP addresses from the example
in table 3.2. IP address 2.2.2.2 will be considered “public” in this example.

Feature name Feature value

sameLanguage 1

sameRegion 1

sameCity 1

sameType 0

mobile1 1

mobile2 0

pc1 1

pc2 2

tablet1 0

tablet2 0

Table 3.4: Values of individual features for the example in table 3.2.

Table 3.4 shows what the values of the individual features will be for
the example 3.2. For instance, ”tablet1” has value 0, since the second
device is a computer, not a tablet, and ”sameLang” is 1, since both
devices have the same browser language.

2. IP-based features. Each of the two devices in a pair has a set of IP
addresses that it has accessed the website from. This next group of
features includes information about how IP addresses were shared by
the two devices, namely, several similarity measures between the two
sets of IPs. One would expect that the more similar IP ”footprints”
are, the better the chances that the devices are a match.

Let A and B be the sets of IP addresses for the first and the second
device in the pair correspondingly, and let P be the set of “public”
IPs (see Section 3.3.1.2 for what had been defined as a “public” IP for
the experiments). Table 3.5 lists all the features with descriptions and
values for the example 3.2.

3. Event- and IP-based features. Understandably, the range of numbers
of common IP addresses is not very big: in one or two months period
a user might not have moved around a lot, so a great majority of pairs,
both negative and positive, have only 1 shared IP address, which was
the minimum required to get into the training set. Figure 3.5 shows
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Name Description Definition Value for

the example 3.2

number-of-IPs-1 Number of IPs in the
first set.

|A| 4

number-of-IPs-2 Number of IPs in the
second set.

|B| 6

common-Ips Number of common
IPs in the two sets.

|A ∩ B| 3

common-IPs-non-
public

Number of common
IPs in the two sets,
excluding the “pub-
lic” IPs.

|A ∩ B \ P| 2

common-IPs-
weighed

Same as common-
Ips, but weiged by
how many other
devices have been
seen on this address,
i.e. by the degree of
publicity.

∑x∈A∩B
1

f (x) , where
f (x) is the number
of device_ids seen
from the IP address
x

0.93

common-IPs-non-
public-weighed

Same as common-
Ips-Non-Public, but
weighed by the
degree of publicity.

∑x∈A∩B\P
1

f (x) , where
f (x) is the number of
device_ids seen from
the IP address x

0.83

dice Dice coefficient 2|A∩B|
|A|+|B| 0.6

jaccard Jaccard coefficient |A∩B|
|A∪B| 3/7

overlap Overlap coefficient |A∩B|
min(|A|,|B|) 0.75

common-IP-ratio1 Ratio of common IPs
to total number of
IPs for the first set.

|A∩B|
|A| 0.75

common-IP-ratio2 Ratio of common IPs
to total number of
IPs for the second
set.

|A∩B|
|B| 0.5

Table 3.5: IP-based features.
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how many IP addresses are normally shared between the two devices
in the pair: in the positive class there are relatively more pairs with
several common IPs, but most of the times it is only one.

However, there is a big difference between a pair where two devices
have shared an IP once in the past month or regularly: intuitively
the second case is more likely to be a match. This group of features
is similar to the previous one, but instead of counting every IP once,
they are counted proportionally to how many times the device was
seen from them.

Let E(X, d) be a function that takes a set of IP addresses X and
a device_id d as arguments and returns a set of events made by
that device_id from any IP address in X. Let d1 and d2 be the two
devices in a pair, let A and B be the sets of IP addresses for d1 and
d2 correspondingly, and let P be the set of “public” IPs, like in the
previous example. Table 3.6 lists all features in this group.

Name Description Definition Value for ex-
ample in table 3.2

common-IP-
events-1

Ratio of events
from common IPs
to total number
of events from
both devices.

|E(A∩B,d1)+E(A∩B,d2)|
|E(A,d1)|+|E(B,d2)|

6+5
7+8 = 0.73

common-IP-
events-non-
public-1

Same as the pre-
vious feature, but
without “public”
IP addresses.

|E(A∩B\P,d1)+E(A∩B\P,d2)|
|E(A\P,d1)|+|E(B\P,d2)|

4+4
5+7 = 0.67

common-IP-
events-2

Sum of ratios
of events from
common IPs to
total number of
events over the
two devices.

|E(A∩B,d1)|
|E(A,d1)| + |E(A∩B,d2)|

|E(B,d2)|
6
7 +

5
8 = 1.48

common-IP-
events-non-
public-2

Same as the pre-
vious feature, but
without “public”
IP addresses.

|E(A∩B\P,d1)|
|E(A\P,d1)| + |E(A∩B\P,d2)|

|E(B\P,d2)|
4
5 + 47 = 1.37

Table 3.6: Event- and IP-based features.

3.3.3 Differences in problem setup from the previous work

Like in all the articles from the Drawbridge competition, our data was not
specifically tailored for cross-device tracking and required preprocessing
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Figure 3.5: The distribution of training pairs by the number of common IPs
between the devices in the pair. The data is for one month of traffic on WFP.

and feature engineering. The main differences from the previous works
were as follows:

1. In the Drawbridge competition the two devices in the pair had to be a
mobile device and a computer, while we did not put any restrictions
on the type of the devices. In practice the coverage is better without
this kind of limitations. We did try, however, to train several different
classifiers for different types of pairs: phones + computers, phones
+ tablets, and tablets + computers (see Section 3.3.4.3.4), but did not
retain this separation for most of the experiments.

2. Most properties in the Drawbridge tables were renamed (f. ex.
”Anonymous_c2”), and only a few names were preserved, such as
device type, OS, browser, etc. It was done to protect the anonymity
of the users whose device information was included into the dataset,
and also, presumably, to protect the knowledge about what features
can be used for cross-device tracking. As a result, it is unclear what
other properties of devices and IPs proved to be informative in the
competition, apart from the basic ones, like country, OS, and browser.

3. Presumably, the Drawbridge dataset contained information across a
number of different websites, which not only means more data, but
also gives an opportunity to track a user more consistently. In our
case, unfortunately, all identifiers were limited to one source, i.e. even
if the same device accessed two or three of the sources that were used
in the experiment, it would not be possible to track it.
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4. The Drawbridge dataset contained tables with cooccurrences of
devices, IPs, and their properties, while our data is in the form of
traffic logs. It opens a possibility for using time stamps in feature
engineering: for instance, the hours of the day when both devices
are active, or some measure of similarity between two sequences of
timestamps. Such features were not in the scope of this project.

3.3.4 Training a classifier

After the training set was complete, we used several algorithms to make
sense of the data, like it was shown in Figure 2.2. The overall goal, as stated
in Section 3.1, was to find matches that are certain enough to document
them as devices belonging to the same person. The following sections
describe fitting a classifier on the training set.

3.3.4.1 Environment

Most of the experiments were written with the help of the Python library
scikit-learn [49]. Even though the datasets are initially very large and
require parallel computing, they can be transformed into numpy arrays
after feature extraction step is complete, and all instances are represented
with numerical vectors. Numpy arrays are memory-efficient, and even the
biggest dataset in the experiments could be trained on in memory. Apache
Spark also has libraries for machine learning, but for several reasons scikit-
learn is more practical: it is on average more flexible than Spark libraries,
has a wider range of available algorithms, and works faster.

3.3.4.2 Baseline experiments

During supervised learning a dataset is divided into a training and a test
set, which do not intersect. Then the training is performed on the training
set, and the evaluation—on the test set. However, there is one more distinct
set required when building a classifier: a development set. The system
is usually not made in one go, and after the first attempt the researchers
introduce various new ways to improve the performance. Some of such
potentially improving methods are discussed later in this chapter. Each of
them has to be evaluated to see if it really makes the system better. This can
be done on the test set, but then the combination of the techniques chosen
as the most improving ones is ”tailored” to this test set. To get more reliable
results and to understand whether these techniques really help, or whether
they just happened to be optimal for that particular test set, we split the
testing phase into two: first, the development phase, and then—the test
phase itself. The development phase is evaluating all the versions of the
classifier in search for the best one. The set that the evaluation is performed
on is called the development set. Then, after we are finished with building
the classifier, we can test it on completely fresh data that was not used
previously and did not affect any choices of modules or parameters of the
system. That is the actual testing phrase, and the results of the evaluation
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on the test set are more reliable that way. This is performed in Section
3.3.4.4.

Out of the dataset produced by the preprocessing step 20% of instances
from each source are withheld for final testing. The remaining instances are
split into a training set and a development set (see Table 3.7).

Training set size (%) Development set size
(%)

Test set (%)

60 20 20

Table 3.7: Relative sizes of the train set, development set, and test set.

At first we followed a simple pipeline for classification to obtain a
baseline. We trained a classifier using off-the-shelf algorithms without any
scaling, feature selection, class sampling, etc., then evaluated them on the
development set from the same source it that they have been trained on.
We do not try to transfer a model to a different source for evaluation until
Section 3.3.4.5. Table 3.8 lists the properties of the first experiments.

Algorithm Main parameters

Naive Bayes Smoothing: Laplace

Logistic regression Max. Iterations, if not converged: 100

Optimizer: liblinear

Random forest Draw subsamples with replacement: True

Tree split quality measure: Gini impurity

Min. leaf size: 1 instance

Min. number of instances to split a node: 2

Number of trees: 10

Support vector machine Kernel coefficient: 1/(number of features)

Kernel: radial basis function

Gradient tree boosting Learning rate: 0.1

Loss function: deviance

Max. tree depth: 3

Min. leaf size: 1 instance

Min. number of instances to split a node: 2

Number of trees: 50

Table 3.8: Properties of the baseline experiments with different algorithms
from scikit-learn.

Gradient tree boosting (GTB) [3] was used in most of the works in
the Drawbridge competition, and turned out to often produce the best
results in our experiments as well. Its concept is described in 2.5. Other
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algorithms were tested, such as logistic regression, Naive Bayes, random
forest, support vector machines. We will not describe each algorithm in
detail, only the core ideas that they are based on.

Naive Bayes method [7] is a classification algorithm that calculates
conditional probabilities of each feature value depending on the class
labels. It is simple, efficient, and widely used, but has a number of
limitations: it operates under the assumptions that a) the classes are
linearly separable b) the features are independent of each other and
c) continuous feature values are distributed normally (in scikit-learn
implementation). Logistic regression [1] is another probabilistic classifier,
but, unlike Naïve Bayes it does not have the limitations b) and c). It models
the probabilities by a logistic function to which it learns the parameters
during training. Support vector machine [6] is a kernel-based classifier, i.e.
it separates the classes by finding a decision boundary plane that is as far
as possible from the instances closest to it. Finally, random forest [2] is an
ensemble of predictors called decision trees. A decision tree attempts to
split the dataset by some feature value in every node and have a label in
every leaf, so that if an instance starts to “walk” down the tree from the
root to a leaf, according to its feature values, it finishes in a leaf with the
right label. In a random forest classifier each decision tree is trained on a
random subsample of the dataset, and then the trees ”vote” on the label of
each new instance.

In Table 3.8 only the basic parameters are listed, and their values are the
default values suggested for the given classifier with our type of dataset.
These and other parameters, some of them implementation specific, were
optimized later, during the tuning stage (see Section 3.3.4.3.6).

Tables 3.9 - 3.11 show the results of the baseline experiments for all three
sources.

Recall Precision F-score Accuracy

Naive Bayes 0.83 0.47 0.60 0.79

Logistic Regression 0.65 0.78 0.71 0.90

Support vector machine 0.62 0.81 0.70 0.90

Random Forest 0.77 0.78 0.78 0.91

Gradient Tree Boosting 0.80 0.76 0.78 0.91

Table 3.9: The results of the baseline experiments on WSJ.

The results differ considerably for the three sources. Overall, it is clear
that WFP is more problematic for all classifiers, while ELP is the easiest.
A possible explanation is that WFP is a small regional newspaper, and the
differences between positive and negative pairs are not that big. As for
ELP, it is the only source with the reverse class size ratio, i.e. there are a
lot more positive pairs than negative, so the fraction of false positives is
lower because the negative class is small, and not necessarily because the
classifier is very well fit. Recall is also good, possibly because classifiers
often tend to favor the majority class (see more details in Section 3.3.4.3.1).
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Recall Precision F-score Accuracy

Naive Bayes 0.84 0.51 0.64 0.71

Logistic Regression 0.61 0.62 0.61 0.77

Support vector machine 0.49 0.69 0.57 0.78

Random Forest 0.60 0.67 0.63 0.79

Gradient Tree Boosting 0.58 0.67 0.65 0.80

Table 3.10: The results of the baseline experiments on WFP.

Recall Precision F-score Accuracy

Naive Bayes 0.83 0.86 0.84 0.75

Logistic Regression 0.97 0.88 0.92 0.87

Support vector machine 0.98 0.87 0.92 0.87

Random Forest 0.96 0.91 0.93 0.89

Gradient Tree Boosting 0.96 0.91 0.93 0.89

Table 3.11: The results of the baseline experiments on ELP.

Gradient tree boosting produces the best results for all the sources,
closely followed or matched by random forest, then come support vector
machines and logistic regression. Naive Bayes performs worse, especially
when it comes to precision, which is the most important metric for us, so it
is dropped from further experiments.

3.3.4.3 Improving over the baseline

Training on the data from WSJ achieved results that are considerably better
than random guessing, but are not nearly good enough to create links
between devices based solely on this classifier. There are several common
ways to improve classification results, as well as some less common ones
which are suitable for the problem at hand:

• dealing with class imbalance;

• scaling;

• feature selection;

• separating instances by device types;

• calibration;

• tuning;

• moving the decision threshold;

• combining classifiers.
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Throughout this section we provide tables with results to show how
these methods affect the system performance. Each table is accompanied
by a summary of whether the method helped, and if so, for which of the
algorithms. In the cases when it wasn’t clear whether the improvement was
statistically significant, we performed the two–sample t–test to compare the
values of some evaluation metric. If we are interested in precision, then the
two samples are the two sets of positive predictions from the two versions
of the model. Both samples contain values 1 (for true positives) and 0 (for
false positives). Their sample means thus correspond to the two precisions.
The null hypothesis is that both samples come from the same distribution,
i.e. that the models are equally precise. Since we have large datasets, in
most cases even a 1% increase is statistically significant.

The methods that helped are kept and applied in all the following
experiments, i.e. every new section builds upon the previous methods,
and the results shown in the tables are the best results so far. We assume
that all the methods are fairly independent of each other, and that it does
not matter what order they are applied in: for instance, if scaling and
features selection separately prove to be useful, then applying them both
at the same time is not going to decrease the performance of the classifier
compared to when we include only one of them.

3.3.4.3.1 Dealing with class imbalance

As shown in Table 3.1, positive and negative classes in our problem are
not of the same size. Even though what is usually referred to as ”class
imbalance” has lead to a great amount of research in the recent years,
it is difficult to find a clear definition of what is the exact or, at least,
an approximate ratio of classes, starting from which the dataset can be
considered ”imbalanced”. This is a quote from an extensive review on the
class imbalance problem [23, p. 1264]:

”Technically speaking, any data set that exhibits an unequal
distribution between its classes can be considered imbalanced.
However, the common understanding in the community is that
imbalanced data correspond to data sets exhibiting significant,
and in some cases extreme imbalances. Specifically, this form
of imbalance is referred to as a between-class imbalance; not
uncommon are between class imbalances on the order of 100:1,
1000:1, and 10000:1, where in each case, one class severely
outrepresents another”.

Our case is hardly extreme, since in none of the experiments has the
ratio of the classes been less than 1:10. However, even if applying the
methods for dealing with class imbalance is not absolutely essential for us,
it is still worth exploring what kind of effect they have on performance.

To understand why imbalanced classes might be problematic for a
classifier, we have to remember that the overall goal for most classification
algorithms is optimizing accuracy [42]. That means that for a highly
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skewed distribution of classes the classifier is inclined to be biased in
favor of the majority class. Research suggests, however, that not all
algorithms are equally prone to suffering from imbalanced data: support
vector machines and other kernel-based methods are relatively unaffected
by it [26]. The reason for that advantage is that Support Vector Machines
rely only on the instances closest to the class boundary (the support
vectors) and largely ignore the general distribution of instances. If a
different algorithm is used, there are two main strategies to deal with class
imbalance: sampling and cost-sensitive learning.

Sampling is artificially making the classes equal in size by either du-
plicating some instances in the minority class (over-sampling) or downs-
izing the majority class (under-sampling). Both have their disadvantages:
oversampling can lead to overfitting based on some attributes that now
happen in the dataset more often, and undersampling can remove valu-
able information about the majority class [31]. In [18] the authors state that
undersampling produces superior improvements in classifier performance,
plus we have a relatively big number of data points for both classes (at least
several thousand, except for the negative class in ELP), so we chose to focus
on undersampling instead of oversampling. Cost-sensitive learning is try-
ing to take into consideration different costs of mistakes of different types
while training, and it has not been applied here.

Tables 3.12 - 3.14 show what happens when a classifier trained on a
dataset with 1:1 class ratio is evaluated on the development set with the
natural class ratio.

Recall Precision F-score Accuracy

Logistic regression 0.89 0.55 0.68 0.84

Support vector machine 0.91 0.54 0.68 0.83

Random forest 0.91 0.68 0.78 0.90

Gradient tree boosting 0.92 0.67 0.77 0.90

Table 3.12: The results of testing on the normal class proportions after
training on an undersampled training set with equal size classes (WSJ).

First, the results are very different from the baseline, even for SVM,
which was supposed to be relatively unaffected by disbalanced classes.

Recall Precision F-score Accuracy

Logistic regression 0.81 0.55 0.66 0.75

Support vector machine 0.86 0.54 0.66 0.73

Random forest 0.82 0.57 0.67 0.76

Gradient tree boosting 0.87 0.56 0.68 0.75

Table 3.13: The results of testing on the normal class proportions after
training on an undersampled training set with equal size classes (WFP).
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Recall Precision F-score Accuracy

Logistic regression 0.86 0.89 0.88 0.80

Support vector machine 0.86 0.89 0.87 0.80

Random forest 0.85 0.93 0.88 0.82

Gradient tree boosting 0.87 0.93 0.90 0.84

Table 3.14: The results of testing on the normal class proportions after
training on an undersampled training set with equal size classes (ELP).

Second, the classifiers predictably produce better recall, but precision drops
significantly. It happens because a sampling strategy changes the class ratio
in the training set, but the class ratio in the development set remains the
same. A lot of algorithms take into account the class distribution, either
explicitly, like logistic regression, or implicitly, like tree-based classifiers.
If before the sampling a classifier might be more inclined to produce
too many false negatives, after the sampling there appears the opposite
problem: the classifier predicts too many instances as positive, because
it overestimates how probable a positive instance is. With ELP it is the
other way round: the positive class has been downsized during training,
so now the classifiers underestimate the probability of the positive class,
which leads to a drop in recall.

Good recall values would have been a positive thing if we had a
radical class imbalance and the positive class had been ignored before
undersampling. However, that was not our case: recall in the baseline
experiments was not far behind precision. Moreover, high precision is more
valuable for us than high recall. Therefore, the undesirable rise in false
positives after undersampling clearly outweighs the gain in recall. This
step is dropped and is not used in any of the following sections.

3.3.4.3.2 Scaling

While it is not always essential, some algorithms (for example, certain
types of SVM) might not work correctly if the features have a widely
different mean and standard deviation [24]. It is therefore common practice
to scale the data beforehand, so that every feature has a zero mean and a
unit standard deviation. To achieve that, first the standard deviation and
mean are estimated from all the values of a given feature, and then every
value is decreased by the mean and divided by the standard deviation:

xscaled =
x− x

σx

where x is the random variable that takes the feature values, x is the
sample mean, and σx is the sample standard deviation, both estimated from
the training set.

There are other scaling techniques, like mapping all the values of a
feature to an interval [0, 1]. Most of our features are Boolean or some sort of
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similarity measure between zero and one, which means this type of scaling
would not make much difference.

The hypothesis is that support vector machines get better with scaling
[9], while tree-based methods are unaffected due to how they are built: each
decision in a tree answers a question ”is feature_value(x) > threshold?”, so
the scale those values are located on is not important. Tables 3.15 - 3.17
show the performance for algorithms with standard scaling. Our results
match the expectations: SVM does better with scaling, while gradient tree
boosting and random forest are not different from the baseline. For logistic
regression the improvement is not significant, but with stochastic average
gradient descent, that is being used for logistic regression in scikit-learn,
scaling is important for fast convergence [9].

Recall Precision F-score Accuracy

Logistic regression 0.65 0.78 0.71 0.90

Support vector machine 0.73 0.79 0.76 0.91

Random forest 0.77 0.78 0.78 0.91

Gradient tree boosting 0.81 0.78 0.79 0.92

Table 3.15: The results after applying standard scaling (WSJ).

Recall Precision F-score Accuracy

Logistic regression 0.62 0.62 0.62 0.77

Support vector machine 0.55 0.68 0.61 0.79

Random forest 0.58 0.66 0.62 0.79

Gradient tree boosting 0.62 0.67 0.65 0.80

Table 3.16: The results after applying standard scaling (WFP).

Recall Precision F-score Accuracy

Logistic regression 0.98 0.88 0.93 0.87

Support vector machine 0.98 0.88 0.93 0.88

Random forest 0.95 0.91 0.93 0.89

Gradient tree boosting 0.96 0.91 0.93 0.89

Table 3.17: The results after applying standard scaling (ELP).

Scaling is kept for support vector machines and logistic regression in
the following experiments and dropped for the other two algorithms.
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3.3.4.3.3 Feature selection

Feature selection is reducing the dimensionality of the input space by
eliminating some of the features. It is often used for problems with very
high dimensionality: for example, in text processing, where features are
words, there can be hundreds of thousands of features, depending on the
dataset, and that might cause problems for the classifier. First of all, it is
more time- and memory-consuming to work with very long input vectors,
and second—not all words are important for classification, so reducing the
number of features to several thousand eliminates a lot of noise and usually
improves the results. There is also the danger of overfitting: if the number
of instances is not very big, compared to the number of features, then the
classifier might learn a very complex decision boundary that separates the
classes perfectly in this particular dataset, but doesn’t work too well for
new instances from the same general sample (see Section 3.3.4.5.4 for more
details). Another way to deal with numerous raw features is to use neural
networks (see Section 3.3.2).

Scikit-learn provides several ways to select the best features [4]. The
most simple method is variance thresholding, i.e. removing all features
whose variance is too low. The threshold in this case is a fixed value
specified manually. In case we want to eliminate features by comparing
them to other features instead of a fixed threshold, we can use a selector
that only leaves the best N or N% of the features by performing a statistical
test of independence: for instance, the chi-square test. The features that are
most likely to be independent of the class are then removed.

Cross-device tracking is a new field, and all the features used in this
project were based more on an educated guess than on a solid body of
related research, so there is no way of estimating in advance how useful
the features are. However, there are only 25 of them, and they involve a
higher level of feature engineering than the “raw” features in text or image
processing. Overfitting is therefore not a problem, and trying to remove
any of the features is highly unlikely to improve performance.

It is also important to remember that not all features in our set are
independant: those that are in the same group often correlate (same-
region and same-city, IP-dice and IP-Jaccard). Figure 3.6 demonstrates the
correlation between two highly informative features and, quite possibly,
the most correlated ones, based on chi-square test. Both of them are based
on the IP history of the devices, with only a slight difference in averaging
the values from the two devices in the pair. Strong correlations mean,
among other things, that features in the same group are likely to have
similar degree of usefulness, so if an N-best selector picks one feature from
a group, it will most probably pick at least several more from the same
group. But since they are heavily dependant, it does not necessarily mean
picking them together will contribute much more to the performance than
picking just one of them. In fact, none of the reductions of the feature set
proved to be beneficial, so feature selection is not used further.
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Figure 3.6: A random subset of WSJ dataset plotted in two features
estimated as the most useful ones by the chi-square criterion. Pearson
correlation coefficient = 0.97

3.3.4.3.4 Separating instances by device types

One of the limitations in the Drawbridge competition that has been
lifted in this work was the types of the devices in the dataset. We have
three types of devices: tablet, pc and mobile; all combinations of types
have been included into training set. It would not be surprising if different
pair types formed distinct and somewhat dissimilar clusters inside the
positive class, which would make it less homogenous and, possibly, harder
to learn. To see if reintroducing this limitation is useful, we tried training
and evaluating separately on different types of pairs.

There are six possible types of pairs: tablet+pc, pc+mobile, mo-
bile+tablet, mobile+mobile, tablet+tablet and pc+pc. Table 3.18 shows how
many pairs of each type there are for two of the sources, as well as the class
ratios for each subset. ELP was not included, because it had the smallest
dataset, so after splitting it into six parts it was problematic to get a training
and a development set big enough to produce good results and evaluate
them reliably.

The biggest class contains pairs of computers, which does not seem
to fit the intuition of how people use the same login from their own
private devices. It could stem from a lot of users clearing cookies or using
different browsers. It might also be a sign that even after filtering out logins
used by too many different devices during preprocessing, we still did not
completely eliminate corporate accounts.

Class ratios are never extreme: the biggest disbalance is for the pairs
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Number of instances Class ratio (positive : negative)

WSJ WFP WSJ WFP

tablet+tablet 23221 4269 1.67 1.06

tablet+mobile 48407 4108 0.15 0.23

tablet+pc 71561 7513 0.24 0.25

mobile+mobile 143855 4974 0.09 0.35

mobile+pc 157263 9121 0.15 0.30

pc+pc 397234 15373 0.30 0.63

Table 3.18: Training set divided by the types of devices in the pairs.

of phones in the WSJ dataset, where there are approximately ten times as
many negative instances as positive. Other than that the distributions are
no more skewed than before separating by device types.

Tables 3.19 - 3.20 show the results of training and evaluating on the pairs
of the same type.

Tablet + phone Phone + PC PC + tablet

R P F A R P F A R P F A

LR 0.69 0.83 0.76 0.94 0.56 0.75 0.64 0.91 0.73 0.81 0.77 0.92

SVM 0.75 0.84 0.79 0.95 0.63 0.79 0.70 0.93 0.82 0.84 0.83 0.94

RF 0.78 0.85 0.81 0.95 0.72 0.79 0.75 0.93 0.82 0.85 0.84 0.94

GBT 0.79 0.83 0.81 0.95 0.75 0.78 0.76 0.94 0.85 0.84 0.84 0.94

Tablet+tablet Phone + phone PC + PC

R P F A R P F A R P F A

LR 0.94 0.93 0.94 0.92 0.70 0.86 0.77 0.96 0.57 0.77 0.66 0.86

SVM 0.96 0.93 0.95 0.93 0.70 0.88 0.78 0.97 0.66 0.76 0.71 0.87

RF 0.96 0.94 0.95 0.94 0.77 0.89 0.83 0.97 0.79 0.73 0.76 0.88

GBT 0.97 0.94 0.95 0.94 0.78 0.88 0.83 0.97 0.80 0.73 0.76 0.88

Table 3.19: Results for training and testing on data from WSJ, separately for
each device type. R is recall, P is precision, F is F-score, A is accuracy. LR
is logistic regression, SVM is support vector machine, RF is random forest,
GBT is gradient tree boosting.

It appears that some types are better separable than others. Some of
the differences can be explained by the fact that class ratios are different:
pairs of tablets in both classes are more likely to be a match, so the
scores are higher for the positive class. However, the peculiarly bad
results for the upper half of Table 3.20 are caused by something other
than class imbalance, because the class ratio is normal for all three cases:
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Tablet + phone Phone + PC PC + tablet

R P F A R P F A R P F A

LR 0.03 0.32 0.05 0.79 0.21 0.51 0.30 0.76 0.1 0.45 0.2 0.79

SVM 0.05 0.58 0.08 0.80 0.15 0.55 0.24 0.76 0 0 0 0.79

RF 0.30 0.54 0.38 0.81 0.31 0.56 0.40 0.77 0.56 0.32 0.41 0.80

GBT 0.31 0.55 0.39 0.81 0.34 0.54 0.42 0.77 0.35 0.58 0.44 0.81

Tablet+tablet Phone + phone PC + PC

R P F A R P F A R P F A

LR 0.82 0.73 0.77 0.75 0.55 0.69 0.61 0.81 0.77 0.68 0.72 0.77

SVM 0.84 0.74 0.79 0.76 0.63 0.70 0.67 0.83 0.71 0.70 0.70 0.77

RF 0.80 0.78 0.79 0.78 0.56 0.73 0.64 0.83 0.75 0.71 0.73 0.79

GBT 0.82 0.78 0.80 0.78 0.62 0.74 0.67 0.84 0.75 0.71 0.73 0.79

Table 3.20: Results for training and testing on data from WFP, separately for
each device type. R is recall, P is precision, F is F-score, A is accuracy. LR
is logistic regression, SVM is support vector machine, RF is random forest,
GBT is gradient tree boosting.

approximately 1:3 to 1:4. The most remarkable thing is that classifiers
performed well on pairs of mobile phones, despite the class ratio for WSJ
for this type being lower than usual.

Overall this separation is not particularly useful: it almost does not
affect WSJ and lowers performance on WFP, which is the most problematic
dataset. Even though some types seem better separable, there is not enough
data to state with certainty that some types of pairs are universally easier
to classify, regardless of the source. This method might be useful at some
point in future research, on more extensive and better filtered data, but it is
not applied in the rest of this project.

3.3.4.3.5 Calibration

Class labels are normally not the only output of a classifier: they
are usually decided based on a numerical score, that roughly stands for
how certain the label is. Some classifiers are probability-based (Logistic
Regression), others operate in terms of weights or scores (support vector
machines). It would not be correct to interpret such scores directly as
probabilities or levels of confidence, even if they are scaled to lie in the
interval [0, 1], because SVM, gradient boosting and other maximum-margin
methods (i.e. methods that score instances by the distance from the class
boundary) are not naturally well-calibrated [5]. That means that even
though the class boundary produced by the classifier can be good (in
other words, the classifier discriminates well), the exact scores it assigns to
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Figure 3.7: Calibration curve for gradient tree boosting before and after
calibration.

instances do not correspond to the probabilities of their labels. The way to
deal with it, in case it is necessary to operate with immediate probabilities,
is to calibrate the classifier on new data, unseen during training.

Visually calibration can be represented by a calibration curve: it plots
the fraction of true positives against probabilities, i.e. for every probability
interval it shows how many positive predictions with probabilities within
that interval were actually correct. In Figure 3.7 the more straight line
shows how a well-calibrated classifier works: among the predictions with
probability around N%, the fraction of true positives is about N%. A
gradient tree boosting model without calibration produces a sigmoid-
shaped curve, which is typical for uncalibrated models [37].

Scikit-learn provides an option for most classifiers to transform their
scores into probability estimates. In order for threshold–moving to work
correctly (Section 3.3.4.3.7), we have to check that all the models are
properly calibrated. If they are not, scikit-learn allows explicitly adding
calibration by one of two methods: Platt scaling and isotonic regression.
Platt scaling was developed for turning the output scores of the SVMs
into real probabilities [41]. Isotonic regression is a more general method
first applied to Naïve bayes and decision trees [59]. Both methods have
been thoroughly tested in combination with various machine learning
algorithms in [37].

The classifiers that have scored highest so far in the experiments are
tree-based: random forest classifier and gradient tree boosting. For random
forest calibration problems usually appear close to 0 and 1. According to
[37], the difficulties near 0 and 1 happen because in order for an instance
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to get 0 score, all the trees that are being averaged have to produce the 0
score. That does not happen often because of the variance of the trees. The
authors also conclude that random forest is still relatively well-calibrated,
unlike maximum-margin methods, where the mass of predictions is even
stronger shifted from 0 and 1 towards the middle of the interval. We leave
the default scikit-learn calibration in place for both tree-based algorithms,
because their probability estimates look fine on the calibration curves (see
Figures 3.7 and 3.8). We will, however, explicitly apply isotonic regression
later, in Section 3.3.4.5.4, when due to a dataset shift the default calibration
method is not enough.

Figure 3.8: Calibration curve for the calibrated random forest classifier.

As for support vector machines, Platt scaling, used in scikit-learn by
default, is clearly inferior to isotonic regression in our case (see Figure 3.9).
For all the following experiments we switch to isotonic regression for
calibrating support vector machines.

3.3.4.3.6 Tuning

Every algorithm has a number of hyper-parameters like, for instance,
the function to optimize, the number of iterations (for iterative algorithms),
the depth of trees (for tree-based classifiers), and so on. The default values,
provided for the hyper-parameters by the library they are taken from, are
not necessarily the best for every given dataset, so the hyper-parameters
should be optimized, or tuned. The most straight-forward way to do that
is to check how good the results are for every combination of parameter
values. To do it faster and avoid overfitting, each combination of parameter
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Figure 3.9: Calibration curves for SVM with different calibration methods.

values is tried out on a relatively small subsample of the training set, like
it is done in cross-validation. In case a hyper-parameter has continuous
values instead of categorical or integer, the interval in which the values
lie is divided into several equal parts, and the points at the beginnings
of all parts are taken as possible values. For instance, to tune a hyper-
parameter that lies between one and zero we can take values 0, 0.1, 0.2,
0.3, . . . 0.9, 1.0. In scikit-learn this type of tuning is implemented in the
class GridSearchCV [8]. For the evaluation metric to optimize we chose
precision, and not accuracy, since it fits our goal better. Table 3.21 shows
how the main parameters of the classifiers changed, compared to their
values in the baseline experiment for WSJ.

The optimized parameters were estimated through 3-fold cross-

Optimized parameters

Logistic regression -

Support vector machine Kernel coefficient: 1

Random forest Tree split quality measure: entropy

Number of trees: 10

Gradient tree boosting Loss function: exponential

Max. tree depth: 10

Number of iterations: 200

Table 3.21: Basic classifier parameters after tuning for WSJ.
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validation on the training set. In some cases moving the value of a para-
meter further continues to be beneficial, but we have to stop because of
time concerns. That is the situation with maximum tree depth for gradient
boosting and some other parameters. In the following Sections all classifi-
ers are tuned, if not written otherwise.

It should be noted that tuning hyper-parameters is not only to be used
with the classifier itself: it is applicable to other modules of the system as
well, such as feature selection, where we need an optimal threshold or the
number of features to keep. Those tuning procedures are done in every
case when it is necessary, but for conciseness and better readability the
intermediate results before tuning are not explicitly mentioned here for any
other modules than the classifier itself.

3.3.4.3.7 Moving the decision threshold

To improve the results of the classifier we can make use of the scores
of the instances. As was mentioned in Section 3.3.4.3.5, most algorithms
output scores, which either roughly correspond to probabilities of assigned
labels, or can be calibrated to do so.

Normally the threshold for assigning an instance to a class is at 0.5 (like
it was in all our previous experiments), but after the classifying is done,
that threshold can be adjusted manually to be, for example, 0.9, to extract
only the instances that were classified as positive with >0.9 certainty. It
influences the trade-off between precision and recall, which is illustrated
by Figure 3.10: every threshold corresponds to some recall and precision
values, and as precision increases, recall drops. Our goal is therefore to
find a point on the horizontal axis where precision is adequately high, but
recall is not yet so low that the system would almost never make positive
predictions.

Tables 3.22 - 3.24 provide the results after adjusting the probability
threshold for all the sources.

Overall this method is very helpful: in most cases at least one of
the classifiers—typically, gradient boosting—is well fit and calibrated
enough so that the higher the threshold, the fewer false positives, and
we can reach a very good precision, while keeping acceptable recall:
for instance, using a gradient boosting classifier on WSJ with decision
threshold 0.95 we successfully identified approximately every sixths match
in the development set, and only 4% of those pairs were false positives
(lowest row in Table 3.22. WFP is somewhat more difficult: the 0.95-
threshold corresponds to a slightly lower precision (0.95) and very low
recall (0.05). However, it is a significant improvement over the previous
results on this dataset.

Numbers for ELP are technically high, but the constant value of
precision at 0.91, while the threshold is being moved up 15%, shows that
even though there are few false positives, they get a very high score, and
such misclassifications are hard to eliminate.

Moving the decision threshold is kept in all the following experiments
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Figure 3.10: An example of precision and recall curves, depending on
different decision thresholds.

Threshold Recall Precision F-score Accuracy

Logistic
regression

0.8 0.32 0.87 0.47 0.86

0.9 0.17 0.90 0.29 0.84

0.95 0.07 0.91 0.13 0.82

SVM

0.8 0.33 0.87 0.48 0.86

0.9 0.15 0.90 0.26 0.84

0.95 0.01 0.95 0.02 0.81

Random
forest

0.8 0.45 0.87 0.59 0.88

0.9 0.23 0.92 0.37 0.85

0.95 0.17 0.93 0.29 0.84

Gradient
tree
boosting

0.8 0.44 0.88 0.79 0.92

0.9 0.23 0.94 0.37 0.85

0.95 0.15 0.96 0.25 0.84

Table 3.22: Evaluating with different decision thresholds (WSJ).
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Threshold Recall Precision F-score Accuracy

Logistic
regression

0.8 0.01 0.71 0.02 0.70

0.9 - - - -

0.95 - - - -

SVM

0.8 0.01 0.75 0.02 0.70

0.9 0.001 1.0 0.002 0.70

0.95 0.0003 1.0 0.0007 0.70

Random
forest

0.8 0.22 0.85 0.36 0.76

0.9 0.10 0.91 0.18 0.73

0.95 0.06 0.91 0.11 0.72

Gradient
tree
boosting

0.8 0.25 0.84 0.39 0.76

0.9 0.09 0.91 0.16 0.72

0.95 0.05 0.94 0.09 0.71

Table 3.23: Evaluating with different decision thresholds (WFP).

Threshold Recall Precision F-score Accuracy

Logistic
regression

0.8 0.84 0.90 0.87 0.79

0.9 0.50 0.94 0.65 0.57

0.95 0.17 0.95 0.29 0.32

SVM

0.8 0.93 0.89 0.90 0.85

0.9 0.36 0.94 0.53 0.47

0.95 0.05 1.0 0.09 0.23

Random
forest

0.8 0.88 0.93 0.90 0.84

0.9 0.70 0.93 0.80 0.72

0.95 0.51 0.93 0.66 0.57

Gradient
tree
boosting

0.8 0.95 0.91 0.93 0.89

0.9 0.93 0.91 0.92 0.87

0.95 0.83 0.91 0.87 0.80

Table 3.24: Evaluating with different decision thresholds (ELP).
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Recall Precision F-score Accuracy

Random forest + Gradient
tree boosting + SVM (average
score)

0.80 0.79 0.79 0.92

Random forest + Gradient
tree boosting + SVM (AND)

0.72 0.87 0.79 0.93

Random forest + Gradient
tree boosting + SVM (voting)

0.79 0.79 0.79 0.92

Table 3.25: Evaluating three strategies for combining classifiers (WSJ).

in all the cases when it is possible, i.e. when doing so provides a good
precision-recall trade-off point.

3.3.4.3.8 Combining classifiers

One can train several classifiers and somehow combine their predic-
tions to get better results. Before classifying instances in two classes every
algorithms assigns some score to the instance. This score can be a distance
to something the decision boundary (as in SVM), or an actual probability
(Naïve Bayes), or some other type of measuring class membership. The
scores can be averaged for several independently trained classifiers, or the
classifiers can ”vote” on the class label to assign to each instance. A Boolean
function can also determine the output label: e.g., an instance can be as-
signed to the positive class if and only if all the classifiers in the ensemble
predicted it to be positive (AND-function).

There also exist more advanced ways of combining classifiers, for
example, through ROC convex hull (ROCCH-hybrid classifier). An
example of an ROC curve is shown in Section 2.4. In our experiments we try
to move the decision threshold after the model is already trained. The idea
of ROCCH-hybrid is to change models depending on what threshold we
want to use. That is, we can keep a classifier for each threshold, according
to which point of the ROC convex hull corresponds to the optimal ROC
angle (see [43] for more details). However, later one of the authors of
the method reported that it can be outperformed by a simple AND/OR
combination of classifiers [19], so we did not try out the ROCCH approach
in this project.

Combining several classifiers seems to only be useful, when all of
them produce similarly good results; otherwise a poor predictor ruins the
performance of the better ones, unless it is a majority voting scheme. We
first provide the results with the decision threshold at its normal value of
0.5. Tables 3.25 - 3.27 show three different ways of combining predictors:
averaging their scores, taking AND-function of their predictions and
majority voting.

Overall, a combination of classifiers tends to work a little better
than each one of them individually. The AND-combination of classifiers
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Recall Precision F-score Accuracy

Random forest + Gradient
tree boosting + SVM (average
score)

0.59 0.69 0.64 0.80

Random forest + Gradient
tree boosting + SVM (AND)

0.49 0.74 0.59 0.79

Random forest + Gradient
tree boosting + Support vec-
tor machine (voting)

0.60 0.68 0.64 0.80

Table 3.26: Evaluating three strategies for combining classifiers (WFP).

Recall Precision F-score Accuracy

Random forest + Gradient
tree boosting + SVM (average
score)

0.97 0.89 0.93 0.88

Random forest + Gradient
tree boosting + SVM (AND)

0.96 0.91 0.93 0.90

Random forest + Gradient
tree boosting + Support vec-
tor machine (voting)

0.97 0.91 0.94 0.90

Table 3.27: Evaluating three strategies for combining classifiers (ELP).
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Recall Precision F-score Accuracy

Average

threshold = 0.8 0.38 0.90 0.54 0.87

threshold = 0.9 0.18 0.95 0.30 0.84

threshold = 0.95 0.07 0.99 0.14 0.82

AND

threshold = 0.8 0.25 0.91 0.39 0.85

threshold = 0.9 0.08 0.97 0.15 0.82

threshold = 0.95 0.01 1.0 0.02 0.80

Voting

threshold = 0.8 0.40 0.90 0.55 0.87

threshold = 0.9 0.22 0.94 0.36 0.85

threshold = 0.95 0.15 0.95 0.25 0.83

Table 3.28: The results for three classifier ensembles with different decision
thresholds (WSJ).

Recall Precision F-score Accuracy

Average

threshold = 0.8 0.10 0.92 0.19 0.73

threshold = 0.9 0.003 0.91 0.007 0.70

threshold = 0.95 0.001 1.0 0.002 0.70

AND

threshold = 0.8 0.01 0.82 0.01 0.70

threshold = 0.9 - - - 0.70

threshold = 0.95 - - - 0.70

Voting

threshold = 0.8 0.20 0.88 0.32 0.75

threshold = 0.9 0.07 0.95 0.13 0.72

threshold = 0.95 0.04 0.96 0.07 0.71

Table 3.29: The results for three classifier ensembles with different decision
thresholds (WFP).

produces a good increase in precision for two of the three sources (WFP
and WSJ), even though for WFP it is accompanied by a decrease in recall.

Now these classifier ensembles can be combined with the previous
step—moving the decision threshold. For averaging it is simply moving
the threshold for the average score; for conjunction and voting the
thresholds are moved for each of the classifiers individually before
combining their predictions. Tables 3.28-3.30 show the results for different
thresholds, using the ensembles on the three sources.

For all the sources combining classifiers and moving the threshold
produces better results that just moving the threshold for one strong
classifier. WFP is still the most problematic dataset, but the system reaches
almost the same performance on it as on WSJ with the voting scheme.
The voting scheme also appears to be the best ensemble for ELP. As for
WSJ, other combination schemes are slightly better, but, focusing more on
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Recall Precision F-score Accuracy

Average

threshold = 0.8 0.92 0.92 0.92 0.87

threshold = 0.9 0.76 0.92 0.83 0.76

threshold = 0.95 0.29 0.92 0.44 0.40

AND

threshold = 0.8 0.84 0.93 0.89 0.82

threshold = 0.9 0.27 0.94 0.42 0.39

threshold = 0.95 0.02 1.0 0.05 0.21

Voting

threshold = 0.8 0.93 0.91 0.92 0.87

threshold = 0.9 0.81 0.93 0.87 0.80

threshold = 0.95 0.58 0.95 0.72 0.63

Table 3.30: The results for three classifier ensembles with different decision
thresholds (ELP).

the difficult WFP dataset, we choose the voting scheme with the decision
threshold at 0.95 as the best option so far.

3.3.4.4 Final evaluation

We have described a number of techniques that were tried out to improve
the baseline model. They were all evaluated on the development set, and
some were kept for further use, while others were discarded. Our main
goal was optimizing precision and not letting recall drop so low that the
system would make almost no positive predictions at all. The best model
so far is a combination of three classifiers: random forest, gradient boosted
trees and a support vector machine with standard scaling and calibrated by
isotonic regression. Each of the classifiers has a shifted decision threshold,
i.e. it only predicts a positive instance when the probability of the positive
class is higher than 0.95. The final prediction is a majority vote of the three
predictors, i.e. the instance is assigned a positive label if and only if at least
two classifiers out of three predicted it.

Table 3.31 contains the results of testing this model on the proper test
set, which does not include any instances used during model selection.
Tuning, threshold moving and deciding which modules to keep and which
ones to omit can all be looked upon as hyper-parameter optimization. That
means it is important to test the optimized model on a fresh test set, just
like learning classifier parameters and evaluating it has to be done on two
distinct datasets.

The results are slightly lower, but similar to the ones we got on the
development set, which is exactly what was expected.

3.3.4.5 Transferring the model

The ensemble of classifiers constructed in the previous Section gives good
results, when it is trained and tested on the data from the same website.
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Recall Precision F-score Accuracy

WSJ 0.15 0.94 0.24 0.83

WFP 0.04 0.97 0.07 0.70

ELP 0.53 0.92 0.67 0.58

Table 3.31: The results of testing the final model on a fresh dataset for all
three sources.

Recall Precision F-score Accuracy

Trained on WSJ, tested on
WFP

0.16 0.64 0.25 0.72

Trained on WSJ tested on ELP 0.11 0.94 0.19 0.27

Trained on WFP, tested on
WSJ

0.02 0.66 0.04 0.80

Trained on WFP, tested on
ELP

0.007 1.0 0.01 0.20

Trained on ELP, tested on WSJ 0.45 0.68 0.54 0.85

Trained on ELP, tested on
WFP

0.36 0.60 0.45 0.72

Table 3.32: The results for training the model on one source and evaluating
on another.

However, the reason that probabilistic cross-device tracking is researched
at all is the possibility to use it on websites that do not have logins. That
means training a model on one or several websites that have logins and
then applying it to the ones that do not. Table 3.32 shows how the model
behaves when it has been trained on one source, and then tested on another
source, unseen during training.

The results drop drastically, and even though they stay above random
guessing, they become impossible to use without further refinement. While
low recall was expected, because that the decision threshold had been
set high, there is a big drop in precision as well, which makes the high
threshold unjustified.

These are several hypotheses for why the results are low:

1. All three sources have different class size ratios (see table 3.1).
Normally a classifier operates under the assumption that training and
test set have the same class distribution. The assumption is violated
here, which can be problematic (see 3.3.4.3.1). To test this hypothesis
we can use undersampling and retrain the model so that in each case
the class distributions for the training set and the test set are the same.
This is done in 3.3.4.5.1.

2. If undersampling does not bring the results close to what they
were before transferring the model, it means that the differences
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between the sources are not only in class sizes, but in feature value
distributions. This can be due to dataset shift or covariate shift, and
is explained and illustrated in Section3.3.4.5.2.

3. If there are differences in feature value distributions, it might be
caused by a specific group of features that behaves very differently
for different sources. In that case there would be a simple way to
fix it: removing that group of features would make the classifier
test slightly worse on the same distribution, but become more robust
to transferring to a different source. In 3.3.4.5.3 we look at feature
value distributions, as well as which features are most important for
different sources.

4. If the low results are not caused by any particular feature or group
of features, it is possible that something similar to overfitting takes
place. The classifier that we chose as the best one at the end of the
previous Section (see 3.3.4.4) produced high results due to learning
very precisely the distribution of the source it was trained on, so it is
ill-fit to classify a different source. To test it, we can see if any simpler
model is more robust to transferring (see 3.3.4.5.4).

3.3.4.5.1 Dealing with class ratios

As was mentioned in 3.3.4.3.7, most classifiers in one way or another
account for the probability of each class label. This unavoidably leads to
lower results if the class distributions of the training set and the test set
are different, especially in cases like ELP and WSJ, where the class ratios
are almost the opposite. To see if that is the biggest difference between the
sources, we undersample the training set to have the same class ratio as the
test set and retrain the classifier (table 3.33).

In some pairing undersampling made a great difference. For instance,
a classifier trained on an undersampled set from ELP works better on both
two other sources. Other transfers are still very problematic, like WSJ to
WFP. Overall, the model cannot be used on a different source even if class
distribution differences are taken into account.

3.3.4.5.2 Dataset shift and covariate shift

Apparently, there are more distinctions between the sources than the
different class distribution. In setups like this, when train and test data
have been collected using slightly different methods or sources,—in our
case, they come from different websites,—there might occur such problems
as a covariate shift or a dataset shift. A dataset shift is when the joint
distribution of input feature vectors and output labels changes between
training and test set. A lighter version of dataset shift is called covariate
shift: in that case it is only a distribution of some input values that change.
For an ideally fit classifier covariate shift would not be a problem: though
the distribution of feature values has changed, conditional probabilities of
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Recall Precision F-score Accuracy

trained: WSJ threshold 0.5 0.87 0.52 0.65 0.72

tested: WFP threshold 0.95 0.25 0.60 0.35 0.72

trained: WSJ threshold 0.5 0.97 0.86 0.91 0.85

tested: ELP threshold 0.95 0.80 0.92 0.86 0.78

trained:
WFP

threshold 0.5 0.38 0.76 0.51 0.85

tested: WSJ threshold 0.95 0.04 0.78 0.08 0.81

trained:
WFP

threshold 0.5 0.94 0.88 0.91 0.85

tested: ELP threshold 0.95 0.30 0.93 0.44 0.41

trained: ELP threshold 0.5 0.27 0.70 0.40 0.83

tested: WSJ threshold 0.95 0.08 0.73 0.15 0.81

trained: ELP threshold 0.5 0.50 0.54 0.52 0.71

tested: WFP threshold 0.95 0.10 0.81 0.18 0.72

Table 3.33: The results for training on a set, undersampled to fit the
distribution of the test set.

labels given feature values remain the same. However, in reality a model
does not always fit the true distribution perfectly: if it is misspecified,
covariate shift might render it suboptimal on the test set [51].

The most straightforward way to check if the data is shifted is to train a
classifier that would learn to separate two classes: training set and test set.
If feature value distributions are the same for both sets, then the classifier
is not going to be able to distinguish them any better than by random
guessing. The idea is illustrated by Figure 3.11.

Figure 3.11: Detecting dataset shift by classification.

The biggest drop in results occurred between WSJ, a global financial
newspaper, and a smaller regional all-purpose WFP. We tried to separate
them, making a set with equal number of instances from both sources.
Table 3.34 shows the results for such a classifier, trained to distinguish one
source from another. It clearly works better than random guessing. The
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Recall Precision F-score Accuracy

All features 0.85, 0.76 0.77, 0.84 0.81, 0.80 0.80

Without individual fea-
tures

0.79, 0.64 0.68, 0.75 0.73, 0.69 0.71

Table 3.34: Predicting the source of the instance. Precision and recall for
both classes.

most likely candidates to cause a covariate shift are individual features:
language and geographical characteristics are bound to differ, depending
on the newspaper. However, even after removing them from the vectors,
it is still possible to distinguish between the two sets better than randomly.
That means the differences between the sets lie deeper and concern the IP
history as well.

Dataset shifts can sometimes be fixed if the distribution after the shift is
known. Unfortunately, it would not be of particular use, if we wanted to
make a model that works for new unlabelled sources, since we wouldn’t
know the true input-output distributions without labels. Nevertheless,
in the next Section we look at features and their properties and try to
determine whether the cause of the shift can be removed on these datasets.

3.3.4.5.3 Feature value distributions

One possible explanation for why models cannot be transferred is that
because of different feature value distributions different features work well
for different sources. To check that one needs to be able to tell which
features are important in a given model.

Conceptually estimating feature importance is ranking features by how
important they are for the performance of the classifier. Since we used a
combination of several different classifiers, it would be more informative to
look at how important features are for them individually, rather than take
an average over all three. Gradient tree boosting produced good results
close to the voting ensemble, so we will demonstrate the most important
features for this algorithm alone.

One way to find out what features are important is to randomly reassign
the values for one feature and see how much the performance was lowered.
This method is also known as mean decrease accuracy, or mean error
increase, first proposed in [13]. Scikit-learn uses a different method for
tree-based algorithms: mean decrease impurity. Instead of measuring how
accuracy is improved by this feature, it measures the reduction of impurity
at the tree node that corresponds to the given feature. By definition,
impurity is the probability of a random instance to be labelled incorrectly if
the class label is assigned randomly according to the distribution of classes
(see [32] for more details on decision tree feature importance). This is done
for every tree in the model, and then the result for each feature are averaged
over all trees.
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Figure 3.12: Feature importance for gradient boosted trees classifier on the
three sources.

However, a graph of feature weights (Figure 3.12) seems to show that
the feature importance is similar for all three sources.

Moreover, the distributions of values depending on class label have
similar shapes and do not differ critically across websites. Figures 3.13 and
3.14 show the distribution of values for the most important feature as an
example. To be able to compare samples of several thousand and several
hundred thousand on the same graph, we scaled the values so that they lay
in the same interval.

The spike at 1.0 in Figure 3.14 is likely due to a certain number of
devices that have only been seen on one IP address. There was no
particular group of features that showed different behaviour for different
sources; therefore, the small variations in all feature value distributions
put together are enough to confuse a classifier trained on another source
and make it untransferable. These variations could be caused by a number
of reasons. Geographical profiles are different for the audience of a big
international newspaper and a smaller local one, which means the patterns
of IP sharing also differ. Variations in user behavior between regions of
the world, or in how traffic data is recorded and stored could also in
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Figure 3.13: Feature value distribution among positive instances for the
feature commonIpEvents1 for the three sources. Numbers are normalized
to lie in the same intervals for all three sources.

Figure 3.14: Feature value distribution among negative instances for the
feature commonIpEvents1 for the three sources. Numbers are normalized
to lie in the same intervals for all three sources.
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theory contribute to the distinctions between datasets, but those are just
speculations without a thorough analysis of each data source, which likely
requires more information than what was stored in the traffic logs.

3.3.4.5.4 Avoiding “overfitting”

Since there is no apparent way to remove the differences between
the datasets we can instead try to modify the classifier to make it more
transferable. One possible reason the performance after transferring to
another source is low can be similar in nature to overfitting.

There are two main types of erroneous behavior in classifiers: underfit-
ting (caused by high bias) and overfitting (caused by high variance). Un-
derfitting is when the algorithm fails to capture the relations in the data and
does not learn enough information to classify instances correctly. Over-
fitting is the opposite: the algorithm becomes too sensitive to noise and
variations in the data. As a result the model builds a very good bound-
ary between classes, so that it describes the training set well, but fails to fit
the distribution of the general sample. It usually happens when there are
few instances with a lot of features, so there are many ways to separate the
classes, and the most accurate boundary does not correspond to the real
distribution of instances. As a result, at test time an overfit model would
classify some instances falsely because it had focused on local variations
in the training data. Figure 3.15 is an illustration of how overfitting might
look like in 2-dimensional space.

When our model underperforms on a new source, it cannot be called
”overfitting” in the usual sense: first, when trained and tested on the
same website it can produce good results, second, instances from a
new source are not from the same general sample, and finally there
are no common conditions for overfitting like shortage of instances or
numerous features. The situation in general, however, does appear close
to overfitting: a distribution is learned quite well from a training set so that
the model cannot work on a different set with similar, but slightly different
distribution of feature values.

Table 3.35 compares performance of different classifiers trained on WSJ
and tested on WFP. The first two of them have been tuned and produce
better results when trained and tested on the same source. The second two
are not tuned and have a low number of estimators.

T
The results at decision threshold 0.5 are almost the same for all three

classifiers, but the advantage of the simple, un-tuned tree models with
relatively few estimators is that moving the threshold helps, i.e. false
positives are not distributed evenly, but are concentrated closer to the
boundary.

It is not possible, however, to raise the decision threshold higher than
0.85 for robust gradient boosting classifier, because then the number of
true positives become zero. It means that they are pushed closer toward
the class boundary than they should be, i.e. that the classifier is badly
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Recall Precision F-score Accuracy

Voting clas-
sifier

threshold 0.5 0.78 0.55 0.65 0.74

(SVM + RF +
GTB)

threshold 0.95 0.17 0.67 0.27 0.72

Gradient
tree boost-
ing,

threshold 0.5 0.78 0.55 0.65 0.74

100 estim-
ators, tree
depth 10

threshold 0.85 0.45 0.53 0.49 0.63

Random
forest,

threshold 0.5 0.78 0.55 0.65 0.74

50 estimators threshold 0.95 0.14 0.74 0.23 0.72

Gradient
tree boost-
ing,

threshold 0.5 0.74 0.56 0.64 0.74

20 iterations,
tree depth 5

threshold 0.85 0.06 0.82 0.12 0.71

Table 3.35: The results of several classifiers/classifier ensembles trained on
WSJ and tested on WFP.
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Figure 3.15: An example of overfitting. The dotted line represents
the proper boundary between classes; the continuous line illustrates the
behavior of an overfit classifier: it fits this particular set better, but will
most probably lead to more mistakes on new instances.

calibrated (see 3.3.4.3.5). Though the difference was hardly noticeable
before we tried transferring the model and decreasing the number of
iterations, now calibration appears necessary. It is possible that different
distributions lead not only to poorer performance, but also to poorer
calibration.

In the following sections we do not use the voting classifier and instead
switch to the robust version of gradient tree boosting with calibration
(lowest row in table 3.35).

3.3.4.5.5 Combining datasets

Another way to make the classifier learn more generally is to mix
data from different sources into the training set. It might help overcome
the slight differences between the websites and get better results for new
instances. Table 3.36 shows results for training on several sources and
testing on instances from sets included in training, as well as from unseen
sets. It should be noted that all mixed datasets have equal number of
instances from every source included in them, and as a result the training
sets that include ELP are smaller, since we have relatively few instances
from ELP.

Naturally, classification works better on instances from a source that
has been included into the training set. The threshold had been set at 0.85,
which is lower than before, because recall falls faster here than when the
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Recall Precision F-score Accuracy

Trained on:
WSJ+WFP+ELP

Tested on: WSJ 0.22 0.87 0.34 0.84

Tested on: WFP 0.18 0.66 0.30 0.73

Tested on: ELP 0.34 0.94 0.50 0.45

Trained on:
WSJ+WFP

Tested on: WSJ 0.04 0.98 0.08 0.82

Tested on: WFP 0.07 0.86 0.13 0.72

Tested on: ELP 0.03 1.0 0.05 0.21

Trained on:
WSJ+ELP

Tested on: WSJ 0.49 0.80 0.61 0.88

Tested on: WFP 0.48 0.61 0.53 0.75

Trained on: WFP+ELP Tested on: WSJ 0.04 0.73 0.08 0.81

Table 3.36: The results of a robust gradient boosting classifier trained on
data from several sources. The decision threshold is at 0.85.

model was tested on the same source. However, in most cases we could
move the threshold even higher, and still get a number of true positives,
because the classifier is properly calibrated now. But then recall would be
too low and make it impractical.

When the source has not been seen in the training set, WFP remains the
biggest problem, and the fact that it is classified worse than other sources
in the same situation leads to believe that these problems likely stem from
individual peculiarities of WFP dataset, and not from the transfer itself.

As for other sources, using a mixed training set is another step towards
a model that can be used in practice, but the performance is still in most
cases not high enough for that. It is possible that with a large number of
different sources combining them all in the training set would help more,
but this would not be an ideal solution: even if on a certain number of
sources the model works, there is no guarantee that the next website does
not have usage patterns slightly different from everything that has been
seen before. Unfortunately, it is not always easy to check whether it is the
case for the same reason that cross-device tracking is interesting at all: we
would need labelled data, i.e. login information, which does not exist in
sufficient amounts for a lot of media websites.

3.4 Unsupervised learning

The main problem with supervised learning in our experiments was that
the model is not transferable from one source to another. In other words,
the exact location of class boundaries can vary from source to source.
An unsupervised approach, however, would solve that problem: if there
were a way to infer the boundaries from the data directly, then we would
not need to rely on the labelled data that is not always available in
sufficient amounts. This Section briefly touches on unsupervised and semi-
supervised methods.
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3.4.1 Preprocessing

There are two possible strategies for preprocessing for unsupervised
learning. The first one is to follow the same steps as in supervised learning
to arrive at a set of pairs. We could then switch from a supervised algorithm
to an unsupervised one, and the goal would change from classification to
clustering. The set of pairs would need to be split into two clusters which
corresponded as well as possible to the positive and negative class. Since
we are not aiming for complete coverage, it would be enough to find some
cluster in the dataset that consisted of matching pairs with good precision.
This approach is described in Section 3.4.2.

Another strategy is to represent individual devices as vectors in
multidimensional space in a way that would make the devices from the
same user be closer to each other than from different users. This technique
is widely used in language processing, namely—distributional semantics.
The idea is to model words as vectors in a space, where the dimensions
are other words, that co-occur with them. One of the most famous systems,
exploiting this idea, is word2vec, developed in 2013 by Tomas Mikolov [35].

Figure 3.16 shows the preprocessing steps for the second strategy. It
starts in the same way as preprocessing for supervised learning, and
devices with few events and with several logins are filtered out. But then
instead of assembling devices into pairs we create a feature vector for each
individual device, where dimensions are IP addresses.

Since a great portion of information in classification turned out to
come from the features based on IPs, we can try to model a device by
its IP “context”, similar to how context words are used in distributional
semantics. Each IP address is a dimension, and an instance scores as much
on that dimension as many times that device_id has been seen from that
address. The number of dimensions is going to be large: the longer the
time period, the larger. However, the data is going to be very sparse, i.e.
most values on most dimensions are going to be zero, because most devices
have only been seen on a couple of IPs. Of course, those zeros are not stored
in the vectors. Both high dimensionality and sparseness are characteristic
of language processing as well. Finally, the feature vectors are transformed
to have unit length.

Intuitively this approach makes good sense: the bigger the overlap
between the addresses, the more likely it is that the devices are used by
the same person. Assuming it is a good representation of devices, we
can measure the distance between them to estimate how likely it is that
the devices are from the same user. This approach is further described in
Section 3.4.3.

3.4.2 Clustering pairs

It would be logical to assume that if it is possible to classify pairs for cross-
device tracking, then positive pairs are in some aspects closer to each other
than to negative ones. We could therefore try to cluster them into two
clusters and see if they correspond to the positive and negative class. But
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Figure 3.16: Steps of preprocessing for unsupervised learning.
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Figure 3.17: Expanding the set of matches through semi-supervised
learning.

there is a number of problems with that approach. First, since the model is
not aware of which variable it should split by, it is quite probable that there
are other properties that divide the dataset better, and the clusters will be
based on them, instead of on whether an instance is a match. Second, a
lot of clustering algorithms are poorly suited for the task, because they aim
at finding clusters with similar density, or of approximately equal sizes, or
make some other assumptions about the data distribution that we have no
way of estimating in advance, if the data is unlabelled.

We have tried to use several clustering algorithms, such as agglomerat-
ive clustering and K-means with K = 2, on the pairs in a completely unsu-
pervised way and see whether positive instances were clustered together,
but there was no correlation between clusters and class label. Instead, we
can use a semi-supervised approach with a k-nearest-neighbors algorithm.

K-nearest-neighbors is a technique used both in supervised and
unsupervised learning. The main idea is to find out which instances are
closest to each other in the multidimensional space, where dimensions are
features. It is explained in more detail in the next section (3.4.3). In the end,
we have information about how far all instances are from each other.

If a small number of labelled instances is available, it is possible to use
them as seeds to make the initialization of the algorithm less random and
more relevant to the variable we want to predict [12]. Suppose we have a
way of obtaining a small set of matching pairs (the seed set): whether it is
through logins, or after using a previously trained classifier, or through
some manually written heuristic. In order to expand this set we can
find which pairs are closest to the ones in the set. The idea is shown in
Figure 3.17.

The simplest way to find new matches is to take the nearest neighbor of
each instance in the seed set and label it as positive. Of course, it is difficult
to talk about recall in this situation: if the general set has thousands of pairs,
and the seed set that the algorithm starts with is, for example, 100 instances,
then by adding one nearest neighbor for each of those 100 instances we can
find at most 100 new positives. Instead we only measure precision, i.e.
what percentage of the newly found instances is in fact positive.

First we need to obtain the seeds. Taking a subset of 100 random
positive instances can produce very different results, depending on how
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representative the subset turned out to be. It is preferable to take the
pairs that are representative of the positive class and have a smaller chance
of being close to negative pairs. A good way to estimate the degree of
”positivity” for an instance is to use a trained classifier on it, so that it
returns a score or a probability that the instance belongs to the positive
class. In short, we trained a model on a training set, applied it to a different
labelled set and randomly chose a hundred true positive instances that got
a score over 0.9 from the model. These instances would be the seeds. We
then extracted the nearest neighbor for each seed, filtered out the cases
when the nearest neighbor already was one of the seeds, and computed
precision on the extracted neighbors.

Tables 3.37 - 3.38 compare results for taking the nearest neighbors of 100
random positive instances and of 100 instances that had received a high
score from a classifier. The numbers were averaged over five randomized
seed sets of each type. Since the results from ELP would not be very
informative, as it has a much bigger positive class than negative, we only
provide the results for WSJ and WFP.

Seeds Number of distinct
new instances among
the set of nearest
neighbors

Precision (fraction of
positives in the set of
the neighbors)

100 random positive
instances

98 0.52

100 positive instances
with >0.9 score from a
classifier

91 0.72

Table 3.37: Precision for positive pairs among the nearest neighbors of 100
seed instances from WSJ.

Seeds Number of distinct
new instances among
the set of nearest
neighbors

Precision (fraction of
positives in the set of
the neighbors)

100 random positive
instances

98 0.59

100 positive instances
with >0.9 score from a
classifier

97 0.86

Table 3.38: Precision for positive pairs among the nearest neighbors of 100
seed instances from WFP.

Choosing the more ”certain” instances of the positive class as seeds
predictably produces better results, though not high enough for a practical
application. Ideally we would like to repeat this extraction several times,
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but it will obviously stop finding positive pairs as soon as the set gets
closer to the class boundary, where the nearest neighbors are negative pairs.
That is why instead of taking the nearest neighbor we can set an absolute
threshold on the distance to the neighbors that we add to the positive set. In
that case we can also lift the limitation of one neighbor per seed and simply
add every instance that is inside the maximum allowed radius from any
seed. Tables 3.39 - 3.40 show the results for different maximum distances
for WSJ and WFP.

Number of distinct new in-
stances among the neigh-
bors in the radius

Precision (fraction of posit-
ives in the set of the neigh-
bors)

radius = 1 8121 0.59

radius = 0.5 5298 0.72

radius = 0.1 1785 0.90

Table 3.39: Number of neighbors of seed instances from WSJ in a fixed
radius and precision of positives among them.

Number of distinct new in-
stances among the neigh-
bors in the radius

Precision (fraction of posit-
ives in the set of the neigh-
bors)

radius = 1 1407 0.73

radius = 0.5 1206 0.76

radius = 0.1 670 0.82

Table 3.40: Number of neighbors of seed instances from WFP in a fixed
radius and precision of positives among them.

A small threshold provides better results than many supervised
methods have. It might be especially useful for WFP, which is not very
successfully classified the by supervised models. It is possible to repeat this
neighbor extraction more than one time on the same seed set, or on several
different ones. In the latter case we would find several different small
clusters of positive pairs, instead of expanding the same one further. In
this project we did not have the time to explore how performance changes
in those situations.

This semi-supervised technique can be combined with the classifiers
that were developed in the previous sections and have a high precision
and low recall. In that case it would not be difficult to obtain a small set
of representative positive seeds to expand with k-nearest-neighbors. It is
true that the need for a seed set makes the system more dependent on
labelled data, but the seed set does not need to be large. It can be extracted
as long as the website has a few registered users, possibly without even
involving machine learning, but some hand-written rules for picking the
more prototypical matches. The size of the seed set, the distance threshold
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and the hyper-parameters of the k-nearest-neighbors algorithm still have
to be tuned, but overall this approach looks promising, especially for
problematic datasets like WFP, where the classes are not well-separable.

3.4.3 Clustering devices

After following the preprocessing steps in Figure 3.16, we have a set of
devices, each represented by a long sparse vector, where the dimensions are
IP addresses. In order to compute how close they are to each other, we need
to determine what distance to use in this high-dimensional space. Popular
options include Euclidean distance and cosine distance, or similarity, as
it is usually called, because it is defined on a scale from zero to one,
where one corresponds to the points being closest. Cosine similarity is
usually preferred in language processing over Euclidean distance, because
it normalizes the vectors first, i.e. transforms them to be of unit length.
That way the words with similar meanings but very different frequencies
get a better score than unrelated words that are close in the Euclidean sense
only because they are both very rare.

This consideration is just as applicable to devices: the input from their
IP profiles should be more important than how frequently they were seen.

Figure 3.18: A toy example of three instances in 2-dimensional space.

Figure 3.18 shows a hypothetical example when using Euclidean
distance might lead to suboptimal results: suppose there are two IP
addresses in the set, and the vectors represent three devices. The left-
most vector (1, 5) has only been seen on IP address-1 once, possibly as
an isolated incident, while the other two vectors—(15, 5) and (30, 11)—
have used both addresses many times, yet (1, 5) is closer to (15, 5), than
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WSJ WFP

Number of devices 657 044 46 178

Number of >0 pair-wise similarities 1 683 886 102 734

Table 3.41: Number of devices with logins and >7 events for 1 month,
and number of pairs between them that have a >0 similarity (= at least 1
common IP address).

Precision for WSJ Precision for WFP

sim(d1, d2) > 0.95 0.85 0.78

1 nearest neighbor 0.69 0.60

Table 3.42: Precision of positives among closest pairs and pairs with >0.95
similarity for WSJ and WFP.

(30, 11) in Euclidean sense. Cosine similarity measures the cosine of the
angle between the vectors, ignoring their length, so it appears to be a more
sensible choice in our case than Euclidean distance.

Conceptually the next step is creating a matrix of size N × N, where
N is the number of devices in the dataset, and the values are pair-wise
similarities. Of course, only half of the table has to be stored, since the
similarity is a symmetric function, i.e. sim(A, B) = sim(B, A). With several
thousand devices it is still a huge number of values, but in practice we
need much less space. Since the vectors are very sparse and have 0 in
most dimensions, a large number of devices will not have any common
IP addresses, and so their similarity will be zero. There is no need to keep
those values either, in the same way as we did not include pairs without
common IPs during preprocessing for supervised learning. In the end
the number of values becomes manageable: Table 3.41 shows how many
non-zero similarities there are between devices after the preprocessing step
from WSJ and WFP.

Like when classifying pairs, there are two straight-forward ways to find
matches, making use either of absolute or relative similarities. The first
way is to choose a threshold and label any pair that is more similar as a
match, and the second way is to only label one (or more) nearest neighbor
as a match for every device. The results of both methods are shown in
Table 3.42. There is not much use in reporting recall, because this clustering
model works its way up from the individual devices to find some of the
positive instances, unlike a classifier, that has a general overview of the
data and is expected to pay attention to both classes. That is why only
precision is reported (the fraction of true positives among the uncovered
device pairs).

The task is easier for WSJ, and, just as in the previous section, an
absolute threshold works better than taking the first neighbor. An absolute
threshold has its short-comings too, one of which is related to what was
discussed in [55]: it is more difficult to establish a boundary between
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WSJ WFP

Fraction of devices
with min. 1 match
that have a match
among three closest
neighbors

0.91 0.83

Table 3.43: Precision among the devices that are known to have at least 1
match in the set.

classes that is applicable to every user, than to choose for each user
individually which candidate is most likely to be a match. Unsupervised
learning faces a similar situation: a user that moves around a lot might
have a relatively low similarity between his phone and his laptop, even
if they are each other’s closest neighbors. The second method solves this
problem by counting only the closest neighbor as a match. However, its
disadvantages appear to outweigh its benefits. First, it is guaranteed to
miss a lot of matches, since it is known in advance that some users have
more than two devices. Second, it leads to a certain number of false
positives, since a lot of users still only have one device. This last problem is
new compared to the supervised learning experiments, where the dataset
only consisted of devices that had at least one match.

Despite the problems described above, this setup—representing the
data in the IP-space—seems like a viable way to approach cross-device
tracking. Even though the devices without a pair can be a problem and
contribute to the number of false positives, in the cases when devices do
have a pair, that pair is normally among their three closest neighbors (see
Table 3.43). Overall, it is a promising approach, if it can be refined further,
because it avoids the problem of transferring the model from one source to
another.

To improve precision we can take a conjunction of the two methods, or
a more complicated combination of them, but due to time limitations it has
not been tried out in this project.

67



68



Chapter 4

Discussion and conclusions

4.1 Summary of results

In this project cross-device tracking has been approached as a classification
problem and as a clustering problem. For the supervised part we
constructed a training set consisting of two classes: the positive class, that
contains pairs of devices belonging to the same user, and the negative
class, with pairs that belong to different users. We then trained several
classifiers, enhancing them by feature scaling, tuning and other pre- and
post-processing modules. The most informative features proved to be the
ones related to IP ”footprints” of devices. The main evaluation metrics
were recall and precision of the positive class, with a much higher focus
on precision than on recall. Best performance was achieved by ensembles
from several different classifiers, and non-linear tree-based algorithms. The
main problem of supervised models is that they do not necessarily work
as well on data from a different website as the one where the training
set came from. Another important observation that can be drawn from
the classification experiments is how some websites are less suitable for
cross-device tracking with our methods than others, either because of their
geographical profile or for other reasons.

For the unsupervised and semi-supervised part we introduced a metric
on devices and on pairs. The unsupervised model worked with individual
devices: it used IP addresses as dimensions and represented devices
as vectors in the IP-space, similar to how words are represented in
distributional semantic models. It then counted close pairs of devices
as positive pairs. The semi-supervised model worked with pairs: it
started with a small number of known positive pairs and found the close
neighbors for each pair in the feature space. Both approaches received
less attention in this project than the supervised approach, but they appear
worth researching further, since they avoid the problem of transferring the
model from one website to another.

On the whole, only a supervised model trained and tested on the
data from the same website achieves results high enough for practical
applications on some of the data sources. Neither transferring a supervised
model nor using unsupervised (or semi-supervised) learning produces
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good precision with so few false positives that they can be overlooked. The
next Section provides suggestions on what could be done to improve them
further.

4.2 Further work

Some of the goals that had been set for this project have been achieved,
but there are still unsolved problems, especially regarding the differences
between datasets. In cross-device tracking, unlike other, more established
topics, there are no commonly used guidelines on how to represent the
data or what machine learning tools work best. As a result, there are a lot
of directions to go from this point, which have not been explored yet.

Optimizing the hyper-parameters of the system

There have been a lot of cases when a value had to be fixed based solely
on intuitive assessement. This includes the threshold to remove widely
used IP address, the minimum number of events for a device to be included
into the dataset, the time period that the traffic logs were taken from, etc. It
is possible to optimize those hyper-parameters of the system, although it is
costly both in terms of time and memory.

Feature engineering

The feature set that was used in the project has room for improvement.
We had 25 features, which is a rather small number, especially considering
some of them were highly correlated. A possibility that has not been
explored in this project at all is temporal features, which make use of the
time stamps from the events.

Expanding data

Our data had a number of significant limitations. For instance, every
identifier was limited to one website. If that restriction is lifted, then the
user’s timeline would be more complete, and the co-occurrences in their
internet history might also be helpful in finding matches. It might also be
worth processing more sources than just three. It would be challenging to
find a lot of sources with enough labelled data, and preprocessing them
would take a lot of time. But it might help find out how much sources
differ and whether a model trained on examples from dozens of various
sources would perform better on a new unseen one. Research into data
distributions might also help explain why on some sources classification
performs poorly, even when training and testing is done on the same
source, like in the case of WFP, and whether it is possible to recognize such
cases without access to labelled data.
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Unsupervised and semi-supervised methods

This project deals with supervised learning in more detail than
unsupervised and semi-supervised methods, due to the absence of earlier
research on applying those method to cross-device tracking, and time
constraints. Meanwhile those approaches seem promising. In our opinion,
they might be more promising, than the supervised methods, considering
how unsupervised models do not have to be transferred from one source
to another, and how they useful they are when labelled data is scarce.
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