Corrigendum to The Cryosphere, 9, 197–215, 2015 www.the-cryosphere.net/9/197/2015/doi:10.5194/tc-9-197-2015-corrigendum © Author(s) 2016. CC Attribution 3.0 License.

Corrigendum to

"Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt" published in The Cryosphere, 9, 197–215, 2015

T. Dunse¹, T. Schellenberger¹, J. O. Hagen¹, A. Kääb¹, T. V. Schuler¹, and C. H. Reijmer²

Correspondence to: T. Dunse (thorben.dunse@geo.uio.no)

Published: 5 January 2017

Table A1 of our article "Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt" (The Cryosphere, 9, 197–215, 2015) does not provide the observed maximum velocities over Basin-3 (as the label of the right column suggests), but instead the threshold values used to filter the displacement maps in an initial phase of the manuscript preparation. Furthermore, the repetition cycle t_3 starts at 11 May 2012 instead of 30 April 2012.

On the next page of this corrigendum we list the correct date and the accurate maximum velocities of Basin-3.

Maximum velocities from Table A1 appear in one sentence at the end of Sect. 4.2, for January 2013 and May 2013, and should read 18.8 and 14.7 m d $^{-1}$, respectively, instead of the specified 20.0 and 15.2 m d $^{-1}$.

¹Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway ²Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands

Table 1. TerraSAR-X acquisitions of Basin-3 and repeat-pass period and maximum velocities of inferred velocity maps.

ID of	Repeat-pass	Start and end-date	Maximum velocity
period	period (days)	Start and one date	$(m d^{-1})$
	period (days)		(111 0)
t_1	11	19 Apr 2012–30 Apr 2012	3.2
t_2	11	30 Apr 2012–11 May 2012	3.0
t_3	88	11 May 2012-7 Aug 2012	4.0
t_4	11	7 Aug 2012–18 Aug 2012	5.4
<i>t</i> ₅	11	18 Aug 2012–29 Aug 2012	5.6
t_6	44	29 Aug 2012-12 Oct 2012	5.6
t7	11	12 Oct 2012–23 Oct 2012	12.5
t_8	11	23 Oct 2012-3 Nov 2012	14.4
t ₉	22	3 Nov 2012-25 Nov 2012	16.5
t_{10}	11	25 Nov 2012-6 Dec 2012	17.1
t_{11}	22	6 Dec 2012–28 Dec 2012	17.8
t_{12}	11	28 Dec 2012-8 Jan 2013	18.8
<i>t</i> ₁₃	22	8 Jan 2013–30 Jan 2013	18.1
t_{14}	11	30 Jan 2013-10 Feb 2013	17.7
<i>t</i> ₁₅	22	10 Feb 2013-4 Mar 2013	17.0
<i>t</i> ₁₆	11	4 Mar 2013–15 Mar 2013	16.2
t_{17}	22	15 Mar 2013-6 Apr 2013	15.5
<i>t</i> ₁₈	11	6 Apr 2013–17 Apr 2013	15.4
<i>t</i> ₁₉	22	17 Apr 2013–9 May 2013	14.7
t_{20}	11	16 Aug 2013–27 Aug 2013	15.8
t_{21}	11	12 Nov 2013–23 Nov 2013	12.5