
A Faceted Search Index for
Graph Queries
Research report no. 469

Vidar N. Klungre

28 July 2017

ISBN: 978-82-7368-434-9

ISSN: 0806-3036

A Faceted Search Index for Graph Queries

Vidar N. Klungre

University of Oslo

Abstract. This report explains the details of a configurable index struc-
ture that allows to perform efficiently the kinds of filtering operations
required to implement faceted search over RDF data. Unlike previous
systems, it is designed to scale gracefully to both very large datasets and
complex queries. In return, it compromises some precision in comput-
ing sets of available facet values, but it does so in a highly configurable
manner.

Keywords: Faceted search, RDF, Index, Visual Query Interface

1 Introduction

Faceted search [5] is a popular search and exploration paradigm which allows
users to apply search filters to multiple orthogonal dimensions (facets) of the
data, often in combination with free text search, in order to find relevant in-
formation. Since the facets are independent, filters can be added, removed or
modified in any preferred order, and every time this is done, the system immedi-
ately updates the list of results, giving the user instant feedback. Furthermore,
the system counts for each facet the occurrences of different values appearing
in the result set, telling the user which values it is interesting to filter on, and
how large the result set will become if one such filter is added. To support this
functionality, the system needs fast access to the underlying data. This is of-
ten provided by search engines like Lucene1 or Sphinx2 which provide better
performance for the queries required by faceted search than RDB-based imple-
mentations.

Faceted search has also been extended to semantics-based data, e.g. in Sem-
Facet [1] and Rhizomer [3]. In these systems, datatype properties are treated
as facets, but they also include some ability to query the graph structure via
object properties. Combining faceted search with graph queries results in more
expressive queries, but implementing faceted search also becomes computation-
ally harder. The challenging task is to update the set of available values for the
facets after each user interaction. The straightforward way of computing this set
involves evaluating a query of similar complexity to the whole query built so far,
and that needs to be done for each facet. For queries with large graph patterns,

1 https://lucene.apache.org/
2 http://sphinxsearch.com/

2

and large datasets, this can become too time consuming for an interactive sys-
tem. The usual approach of using a search engine style index will not help, since
these engines do not support graph queries.

We implemented this new functionality as part of OptiqueVQS [4], an ontology-
based visual query system (VQS), intended for users with little IT expertise.
OptiqueVQS combines graph querying with filtering on datatype properties.
However, in previous versions of OptiqueVQS, the available values for each facet
have been static, determined entirely by a suitably annotated ontology, and did
not depend on the underlying data. Neither did they change in reaction to the
filters on other facets. This new version adds a server side component that reads
data from a SPARQL endpoint and stores information needed for efficient faceted
search in a scalable index. This index, instead of the original SPARQL endpoint,
is queried in reaction to user interactions to update the interface.

Even though the system has been implemented in OptiqueVQS, the theory
of this paper can be applied to other similar VQSs.

The remaining part of this paper is structured as follows: Section 2 gives the
prerequisites for all the work of the paper, Section 3 describes how the underlying
resources and the configuration is represented, Sections 4 and 5 describe how the
index is constructed and used respectively, Section 6 discuss the different ways of
representing the index, Section 7 describes a data compression technique which
can be used on the index, Section 8 analyzes the correctness of the system,
Section 9 describes the implementation, while Section 10 wraps up the paper
and presents future work.

2 Prerequisites

2.1 Graphs

As a prerequisite for our theoretical work, we are going to introduce a certain
type of graphs, called RDF*-graphs. These graphs are a slight simplification of
RDF graphs that we will use to describe data, ontologies, queries, and system
configurations to the extent needed in this work.

Definition 1 (RDF*-graph) An RDF*-graph is a directed labeled multigraph
with two types of nodes. It is defined by a triple G = (C,D, P), where C and
D are the two disjoint sets of nodes and P is the set of edges (representing
properties), and where none of the nodes in D have outgoing edges.

Example 1 Fig. 1 shows an example of a navigation graph (a type of RDF*-
graph) where the set C is represented by blue circles, while D is represented
by green rectangles, a color convention we will use for all graphs in this paper.
Notice that none of the edges are leaving any rectangular node, as required by
the definition of RDF*-graphs.

With this example, we get an intuition of what C and D aim to represent:
The set C is meant to represent items related to concepts, like concepts and

3

Order Product Supplier

StringInteger

pName
sName

city
priceid

suppliedBy

hasSupplierpartOf

hasPart

Fig. 1. The navigation graph GN describing the sales domain with orders, products
and suppliers together with relevant properties.

individuals, and it will be used to define graph structures in e.g. queries, while
the set D on the other hand, aims to represent everything related to datatypes
and data values. Unlike RDF, RDF* does not have blank nodes.

The edges of the RDF*-graph, P , are used to represents properties. Since
properties are directional and have a unique URI, we use edges which are direc-
tional and labeled with the same URI as the property it is representing. Fur-
thermore, since resources can have multiple properties between them, we define
the RDF*-graphs we use to be a multigraphs.

Finally we have added the requirement that none of the nodes in T can have
outgoing edges. This is a natural requirement related to the fact that subjects
cannot be literals in RDF-graphs.

The RDF*-graph does not specify explicitly whether an edge represents an
object property or a datatype property, but we can easily detect the type by
looking at the head of the edge. If the head is contained in C, the edge represents
an object property, otherwise, a datatype property.

In the following sections we will define special types of graphs, like paths and
trees, in addition to homomorphism in the context of RDF*-graphs.

2.2 Paths

In general, a path in a graph is used to describe a sequence of nodes that can
be visited in the order defined by the sequence. We use the same definition for
paths in RDF*-graphs, by ignoring the distinction between C and D.

Definition 2 (Path) A path in an RDF*-graph G = (C,D, P) is a sequence
P = (v1, e1 . . . vk−1, ek−1, vk) where vi ∈ C ∪ D, ei ∈ P and ei connects vi to
vi+1 for all i.

Def. 2 does not require the elements of the sequence to be distinct, so paths
with repeating edges or nodes are allowed. This however, does not change the
fact that P defines a valid RDF*-graph, made by the nodes and edges included
in the path sequence after duplicates has been removed.

4

Since a path is defined to be a sequence, we can reuse the definition of
sequence prefixes to define path prefixes.

Definition 3 (Path Prefix) Let P = (v1, e1 . . . vk−1, ek−1, vk) be a path in an
RDF*-graph. A path P ′ = (v′1, e

′
1 . . . v

′
l−1, e

′
l−1, v

′
l) is a prefix of P if l ≤ k and

vi = v′i ∀i ≤ l

ei = e′i ∀i ≤ l − 1.

Given any path P, we let prefix(P) denote the set of all prefixes of P.

Example 2 The path

P = (Product, suppliedBy, Supplier, hasSupplier, Product, pName, String)

is an example of a path in the RDF*-graph GN defined in Example 1. It has four
prefixes, including itself, so prefix(P) = {P1,P2,P3,P4} where

P1 = (Product)

P2 = (Product, suppliedBy, Supplier)

P3 = (Product, suppliedBy, Supplier, hasSupplier, Product)

P4 = (Product, suppliedBy, Supplier, hasSupplier, Product, pName, String).

2.3 Trees

When we refer to trees in this paper and in the context of RDF*-graphs, we
mean rooted, directed trees.

Definition 4 (Tree) A tree is an RDF*-graph G = (C,D, P) which is con-
nected and contains no cycles, even when direction of the edges is ignored. One
specific node r ∈ C is called the root of the tree, and all edges must be directed
away from r.

Since trees do not allow cycles, there is not more than one edge between each
pair of nodes, and self-loops do not exist. Furthermore, since all of the edges are
directed away from the root, each branch of the tree defines a path. Given a tree
G we let branches(G) denote the set of all branches of G.

Example 3 Let GQ1 and GQ2 be the two trees in Fig. 2 and Fig. 3 respectively.
Then branches(GQ1

) = {P1,P2,P3}, where

P1 = (?p1, suppliedBy, ?s1, sName, ?str1)

P2 = (?p1, unitPrice, ?int1)

P3 = (?p1, partOf, ?o1, id, ?int2).

branches(GQ2) contains all of the branches in branches(GQ1) in addition to

P4 = (?p1, suppliedBy, ?s1, city, ?str2).

5

?p1

?s1

?str1

?int1

?o1

?int2

suppliedBy

sName

price

partOf

id

Fig. 2. Query graph GQ1 .

?p1

?s1

?str1

?str2

?int1

?o1

?int2

suppliedBy

sName

city

price

partOf

id

Fig. 3. Query graph GQ2 .

2.4 Homomorphisms

We will introduce several different RDF*-graphs in this paper, all of which will
use the same set of properties, and have similar structure. We need to formally
define a similarity relationship between them, and we will use homomorphisms
to do so:

Definition 5 (Homomorphism) Let G1 = (C1, D1, P1) and G2 = (C2, D2, P2)
be two RDF*-graphs. A homomorphism from G1 to G2 is a function h : C1∪D1 →
C2 ∪D2 where

h(c1) ∈ C2 ∀c1 ∈ C1 (1)

h(d1) ∈ D2 ∀d1 ∈ D1 (2)

and

v1
l−→ w1 ∈ P1 ⇒ h(v1)

l−→ h(w1) ∈ P2 (3)

If h is a homomorphism between G1 and G2, we say that G1 is homomorphic to
G2.

Equations 1 and 2 from Def. 5 ensure that the two types of nodes are not
interchanged, i.e., that h maps elements from C1 to C2, and elements from D1 to
D2. Equation 3, on the other hand, ensures that each edge in the source graph
has a corresponding edge in the target graph with the same label. Even though
homomorphisms are only defined for nodes in the source graph, each edge will
also have a corresponding edge in the target graph due to Equation 3. This
means that we can apply homomorphisms to subgraphs of the source graph, and
obtain a well-defined subgraph of the target graph (after removing duplicates).

6

Example 4 Let GQ1
be the graph in Fig. 2, and GN be the navigation graph

in Fig. 1. Then GQ1
is homomorphic to GN , because there is a homomorphism

h1 : GQ1 → GN defined by

h1(?p1) = Product

h1(?s1) = Supplier

h1(?o1) = Order

h1(?str1) = String

h1(?int1) = Integer

h1(?int2) = Integer.

Since some of the homomorphisms are obvious from the context and the
structure of our graphs, we will often omit to write them out explicitly.

Finally, if a homomorphism is bijective and its inverse is also a homomor-
phism, it is an isomorphism:

Definition 6 (Isomorphism) Let G1 = (C1, D1, P1) and G2 = (C2, D2, P2) be
two RDF*-graphs. An isomorphism from G1 to G2 is a bijective homomorphism
whose inverse function is also a graph homomorphism

3 System Configuration

3.1 Navigation graph

Instead of working directly with the ontology, we assume that the VQS has access
to a simplified graph version of it, called the navigation graph. This graph is
constructed by the VQS itself, based on a selected subset of the ontology axioms.
It describes how to navigate between concepts during the query construction
process in order to make meaningful queries, i.e., queries which do not conflict
with the ontology or the data. Furthermore, since it defines which queries the
system can construct, it defines how the data must be structured in order to
be accessible by the VQS. There is no definite way to construct the navigation
graph, different VQSs do it differently, but the domain and range axioms are
usually central in the process, since they dictate the type of variables reached
through properties.

OptiqueVQS [4], Semfacet [1] and Rizomer [3] are all VQSs which utilizes
some kind of navigation graph. Another approach to selecting available naviga-
tion possibilities is described in [2].

In this paper we are not concerned with how the different VQSs construct
their navigation graphs, we just assume that the graph exists.

Definition 7 (Navigation graph) A navigation graph GN = (CN , DN , PN)
is an RDF*-graph where CN and DN represent concepts and datatypes respec-
tively.

The distinction between concepts and datatypes in the navigation graph is
important since our goal is to combine faceted search with graphs. The concepts
and the properties between them (object properties) allow us to define the graph
structure, while the properties from concepts to datatypes (datatype properties)
corresponds to the actual facets, which give access to the data values.

7

Example 5 Fig. 1 shows an example of a navigation graph GN with three con-
cepts (Product, Supplier, Order) and two datatypes (String, Integer). If we look
closer at the edges of this graph, we see that none of the edges leaves a datatype,
which is required by the definition. Furthermore we see that each object property
is displayed together with its inverse. It is not necessary from the point of view of
our index to include the inverse of every object property, but adding them adds
flexibility to the user during query construction, since it allows users navigate
both back and forth between concepts during query construction.

3.2 Data sources

Each VQS setup must contain an underlying data source, which is used to answer
queries constructed by the users. If querying over this is too time consuming
to support the interactive UI, we need a faster data source, which is why we
introduce the facet index. We will now define a concept of data source which
covers both the underlying data source, and the facet index, and which works
well with the navigation graph we just defined.

The actual data of the source is assumed to be stored in an RDF*-graph
(data graph) consisting of individuals and data values connected by relevant
properties. Furthermore, in order to be queryable, it has to be homomorphic to
the navigation graph.

Definition 8 (Data source) Let GN = (CN , DN , PN) be a navigation graph.
A data source of GN is a pair D = (GD, hD) where GD = (CD, DD, PD) is an
RDF*-graph (data graph) and hD is a homomorphism from GD to GN . The sets
CD and DD represent individuals and data values respectively.

The homomorphism hD maps individuals to concepts, and data values to
data types, so it is in fact a typing function. In RDF/RDFS, individuals may be
members of multiple concepts, but the homomorphisms we use do not support
this. Extending the homomorphism definition to allow multiple types is future
work.

Example 6 Fig. 4 shows an example of a data graph GD containing seven in-
dividuals and 12 data values. The data graph is homomorphic to the navigation
graph GN from Example 5 as proved by the homomorphism hD defined below,
and hence the pair D = (GD, hD) is a valid data source of GN .

8

p1

Exotic Water
pName

2
price

s1

Exotic Liquids

sName

London
city

Dublin

city

p2

Chai

pName

9

price

o1

id1

id

o2

id2

id

p3

GH Milk

pName

3

price

s2

Greenhill Farms

sName

suppliedBy

hasSupplier

partOf

hasPart

partOf

hasPart

suppliedBy

hasSupplier

partOf

hasPart

suppliedBy

hasSupplier

Fig. 4. The data graph GD matching the navigation graph from Example 5.

hD(p1) = Product

hD(p2) = Product

hD(p3) = Product

hD(s1) = Supplier

hD(s2) = Supplier

hD(o1) = Order

hD(o2) = Order

hD(id1) = Integer

hD(id2) = Integer

hD(Water) = String

hD(GHMilk) = String

hD(Chai) = String

hD(ExoticLiquids) = String

hD(GreenhillFarms) = String

hD(London) = String

hD(Dublin) = String

hD(2) = Integer

hD(3) = Integer

hD(9) = Integer

3.3 Queries

In this paper, we consider SPARQL queries with only one tree-shaped graph
pattern and typed query variables, i.e., each query variable must be mapped to
exactly one specific concept or datatype in the given navigation graph. The main
reason for this restriction is that OptiqueVQS only supports the construction of
such queries for the time being.

Based on the types of the variables, we can distinguish concept variables
and datatype variables, which are variables typed to concepts and datatypes
respectively.

9

Datatype variables may also be restricted by filters, but we are not concerned
with the details of these filters, only which values a certain variable can hold.
To incorporate this information into a query, we include a filter function, which
returns a set of allowed values for each datatype variable.

Definition 9 (Filter Function) Let D be a set of datatype variables, and let
each datatype variable d have a corresponding datatype td. A filter function F of
D takes a datatype variable d ∈ D as input, and returns a set of data values of
type td.

The special filter function F∗ returns the infinite set of all possible values,
for every datatype variable. In other words, it is the filter function without any
restrictions, which we will use for queries without filters.

Definition 10 (Query) Let GN = (CN , DN , PN) be a navigation graph. A
query over GN is a triple Q = (GQ, hQ,FQ) where GQ = (CQ, DQ, PQ) is a tree-
shaped RDF*-graph (query graph), hQ is a homomorphism from GQ to GN , and
FQ is a filter function of DQ. The sets CQ and DQ represent concept variables
and datatype variables respectively, while the root of GQ, r, is called the root
variable, and hQ(r) is called the root concept.

Note that the notions of root variable, concept variables and datatype vari-
ables are not defined in SPARQL, but something we introduce in our work.

Example 7 Fig. 2 shows the query graph GQ1
, consisting of three concept vari-

ables (?p1, ?s1 and ?o1) and three datatype variables (?str1, ?int1 and ?int2),
with ?p1 as the root variable. Combined with the homomorphism from Example 4
and a suitable filter function FQ1 , we get a query Q1 = (GQ1 , hQ1 ,FQ1) over the
navigation graph GN from Example 5.

If we use the restrictionless filter function by setting FQ1
= F∗, we get a

query without any restrictions, so all the three datatype variables can technically
take any value belonging to the datatype of the variable. However, we can also set
query restrictions by defining a filter function for all datatype variables d ∈ D
which restrict e.g. ?int1:

F(d) =

{
{n ∈ N | n < 5} if d =?int1

F∗(d) otherwise

If FQ1
= F , the query Q1 is only allowed to assign integers smaller than 5

to ?int1.
Fig. 3 shows another query graph GQ2 , which together with the obvious ho-

momorphism hQ2 and a suitable filter function FQ2 makes the query Q2 =
(GQ2

, hQ2
,FQ2

).

Given a query Q and a data source over a navigation graph, we can execute
the query over the data source, i.e., find all possible assignments to the set of
variables in Q that respect the structure and filters of Q.

10

Definition 11 (Query Answers) Let GN be a navigation graph, D = (GD, hD)
a data source over GN , and Q = (GQ, hQ,FQ) = ((CQ, DQ, PQ), hQ,FQ) a query
over GN . The answers of Q over D, Ans(Q,D), is the the set of all homomor-
phisms a from GQ to GD such that

hQ(v) = hD(a(v)) (4)

and
a(v) ∈ FQ(v) (5)

for each query variable v ∈ CQ ∪DQ.

Equation 4 and the requirement that a must be a homomorphism ensures
that the assignment a preserves the correct structure and type of any query
variable, while Equation 5 guarantees that the filters are also satisfied.

It is worth noting that the assignment function a may assign the same indi-
vidual or data value in GD to multiple variables. This is exactly how SPARQL
query answering is done, so this is a desirable property.

The answer function returns a set of homomorphisms, not the assigned values.
To get data we can actually use, we need another query answer function that
includes which of the query variables we want access to.

Definition 12 (Projected Query Answers) Let GN be a navigation graph,
D = (GD, hD) a data source over GN , Q = (GQ, hQ,FQ) = ((CQ, DQ, PQ), hQ)
a query over GN and v ∈ CQ ∪ DQ a query variable of Q. The answers of Q
over D, projeted onto v, denoted Ansv(Q,D) is given by

Ansv(Q,D) = {h(v) | h ∈ Ans(Q,D)} (6)

There may be several homomorphisms mapping v to the same individual or
data value, but since we consider Ansv(Q,D) to be a set, duplicates are removed,
and we are left with only distinct values.

Example 8 If we execute Q1 from Example 7 over the data source D from
Example 6 we get Ans(Q1,D) = {h1, h2, h3} where

h1(?p1) = p2

h1(?s1) = s1

h1(?o1) = o1

h1(?int1) = 9

h1(?int2) = id1

h1(?str1) =

Exotic Liquids

h2(?p1) = p2

h2(?s1) = s1

h2(?o1) = o2

h2(?int1) = 9

h2(?int2) = id2

h2(?str1) =

Exotic Liquids

h3(?p1) = p3

h3(?s1) = s2

h3(?o1) = o2

h3(?int1) = 3

h3(?int2) = id2

h3(?str1) =

Greenhill Farms

However, if we e.g. want to only get the distinct values ?int1 can be assigned
to, we use the projected query answer function:

Ans?int1(Q1,D) = {3, 9}

11

The next thing we have to define is what a query looks like after we prune
it with respect to another query, i.e., after we remove all the nodes which does
not have a corresponding node in the second query. The result of this pruning
is almost like a graph intersection where the variable names and filters from the
first query is kept.

Definition 13 (Query Pruning) Let Q1 = (GQ1 , hQ1 ,FQ1) and Q2 = (GQ2 , hQ2 ,FQ2)
be two queries over the navigation graph GN = (CN , DN , PN). The pruning of
Q1 with respect of Q2, denoted prune(Q1,Q2) is given by

prune(Q1,Q2) = (G, hQ1
,FQ1

)

where G is the largest subtree of GQ1
containing the root of GQ1

, such that there
exist an isomorphism f from G to a subtree of GQ2

which satisfies

hQ1
(v) = hQ2

(f(v)).

There may be cases where there are several subgraphs of GQ1 which are
largest, but of the same size. If so, we select the subgraph containing datatype
variables with the most restrictive filters.

The last definition we need for queries is describing how new query variables
can be appended already existing queries. Our query extension function adds a
variable v of type c to the root variable r, by adding a property with label l:

Definition 14 (Query extension) Let GN = (CN , DN , PN) be a navigation
graph and Q = (GQ, hQ,FQ) = ((CQ, DQ, PQ), hQ,FQ) a query over GN with
root variable r. The extension of Q where r is l-related to v of type c is denoted
extend(Q, l, v, c) and defined as:

extend(Q, l, v, c) = (Gex, hex,Fex) = ((Cex, Dex, Pex), hex,Fex)

where

Cex =

{
CQ ∪ {v} if c ∈ CN

CQ if c ∈ DN

Dex =

{
DQ ∪ {v} if c ∈ DN

DQ if c ∈ CN

Pex = PQ ∪ {r
l−→ v}

hex(w) =

{
c if w = v

hQ(w) otherwise

Fex(w) =

{
F∗(w) if w = v

FQ(w) otherwise

12

3.4 Configuration

The facet index we are going to build will consist of several concept indices, one
for each concept in the given navigation graph. Given a concept c, its concept in-
dex will only include instances of c, and data located in a certain neighbourhood
of it. In order to define this neighbourhood, we need a configuration structure
in the form of a query. We call this the concept configuration of c, and it will
be used both when building the index as an offline process, and when using the
index during a query session.

Definition 15 (Concept Configuration) Let GN = (CN , DN , PN) be a nav-
igation graph with a concept c ∈ CN . A concept configuration of c over GN is
a query Cc = (GCc , hCc ,FCc) = ((CCc , DCc , PCc), hCc ,FCc) over GN satisfying the
following three criteria:

1. hCc(r) = c, where r is the root of GCc .
2. FCc = F∗.
3. For every pair of edges e1 = v

l−→ w1 ∈ PCc and e2 = v
l−→ w2 ∈ PCc ,

hCc(w1) = hCc(w2)⇒ e1 = e2

The first requirement of Def. 15 states that the root of the query must be
of type c, which makes sense since we want to define a neighbourhood around
c. Then the branches of Cc define how far the neighbourhood should go in each
direction. The second requirement states that the filter function must accept
all values, i.e., there can not be any restrictions to any of the query variables.
Finally the third requirement limits the structure of the concept configuration
graph by only allowing structurally different branches. I.e., none of the nodes
can have two outgoing edges with the same label to two different other nodes.

Example 9 Fig. 5 shows two concept configuration graphs GC1Prod
and GC1Prod

,
which together with their obvious homomorphisms and F∗ makes two possible
concept configurations for the product concept:

C1
Prod = (GC1Prod

, hC1Prod
,F∗)

C2
Prod = (GC2Prod

, hC2Prod
,F∗)

The concept configuration of c describes how the system should behave when
c is in focus, so in order to describe how the system should be working as a whole,
we need one concept configuration for each concept, which is why we introduce
the index configuration:

Definition 16 (Index Configuration) Let GN = (CN , DN , PN) be a navi-
gation graph. An index configuration over GN is a function Z defined for all
concepts c ∈ CN which returns Cc, the concept configuration of c.

Z : c 7→ Cc

13

?p1

?s1

?str1

?str2

?str3

?int1

int

suppliedBy

sName

city

pName

price

Fig. 5. Concept configuration graph
GC1

Prod
.

?p1

?s1

?str1

?str2

?str3

?int1

?o1

suppliedBy

sName

city

pName

price

partOf

Fig. 6. Concept configuration graph
GC2

Prod
.

The index configuration is just a collection of all concept configurations,
defined as a function in order to give easy access to the configuration of any
given concept.

4 Index Construction

Index construction is a process which has to be carried out every time the un-
derlying data source changes. The process may be time-consuming, so ideally
updates should be infrequent, and happen during time periods when the user
traffic is low, e.g., during night. Incremental updates of the index are a topic for
future work.

To construct the index, the system needs access to the navigation graph
GN = (CN , DN , PN), a corresponding data source D, and an index configuration
Z. Using this, it will create one concept index D̄c for each concept c ∈ CN , each
one defined by the concept configuration Cc = Z(c). Since the Cc defines the
relevant neighbourhood around c, we populate D̄c with all the instances of c in
addition all the data covered by Cc, i.e., all nodes which can be reached by c
through a path which corresponds to a branch in Cc, or a prefix of it.

Definition 17 (Concept Index) Let GN = (CN , DN , PN) be a navigation
graph with a concept c ∈ CN , D = (GD, hD) a data source over GN , and
Cc = (GCc , hCc ,F∗) a concept configuration of c over GN . The concept index
of c defined by Cc over D, denoted buildIndex(Cc,D) is defined by

14

buildIndex(Cc,D) = D̄c = (GD̄c
, hD),

where

GD̄c
=

⋃
P∈branches(GCc)

 ⋃
P′∈prefix(P)

 ⋃
h∈Ans((P′,hCc ,F∗),D)

h(P ′)

 . (7)

The two first unions of Equation 7 range over all path prefixes P ′ of each
branch of Cc, while the last union collects all the data we get when the query
defined by P ′ is executed over D. The data returned by all the different versions
of P ′ overlaps a lot, but since we apply a graph union over the results, duplicates
are removed. The final result is therefore the subgraph of D consisting of all the
instances of c together with their corresponding neighbourhoods.

Example 10 If we consider the data source D from Example 6 and the con-
cept configuration C1

Prod from Example 9, the resulting concept index D̄1
Prod =

buildIndex(C1
Prod,D) is displayed in Fig. 7.

The concept index shows three different products p1, p2 and p3 and their
corresponding neighbourhoods which are all isomorphic to either the full concept
configuration graph or a pruned version of it. Product p3 for example, does not
include the city of its supplier, because this data is missing, however, its neigh-
bourhood is still included in the concept index, just separated from the rest of the
graph. p1 and p2 on the other hand both have fully populated neighbourhoods, but
since they share a common supplier s1, their neighbourhoods are merged together.

Another thing worth noting is the fact that all properties labeled hasSupplier
have been removed, since only the inverse suppliedBy is included in the configu-
ration.

If we instead consider the concept configuration C2
Prod from Example 9, the

resulting concept index D̄2
Prod = buildIndex(C2

Prod,D) is displayed in Fig. 8.
Notice how orders connected to products are now present in the graph, but not
their ids.

With one concept index for each concept, we can now combine them into the
final facet index.

Definition 18 (Facet Index) Let GN = (CN , DN , PN) be a navigation graph,
D a data source of GN , and Z a index configuration over GN . The facet index
defined by Z over D is a function D̄ defined for all concepts c ∈ CN which
returns D̄c, the concept index of c defined by Z(c) over D.

D̄ : c 7→ D̄c (8)

15

p1

Exotic Water
pName

2
price

s1

Exotic Liquids

sName

London
city

Dublin

city

p2

Chai

pName

9

price

p3

GH Milk

pName

3

price

s2

Greenhill Farms

sName

suppliedBy

suppliedBy

suppliedBy

Fig. 7. Concept index D̄1
Prod for the product concept defined by the concept configu-

ration C1
Prod.

p1

Exotic Water
pName

2
price

s1

Exotic Liquids

sName

London
city

Dublin

city

p2

Chai

pName

9

price

o1

o2

p3

GH Milk

pName

3

price

s2

Greenhill Farms

sName

suppliedBy

partOf

partOf

suppliedBy

partOf

suppliedBy

Fig. 8. Concept index D̄2
Prod for the product concept defined by the concept configu-

ration C2
Prod.

16

5 Index Usage

After the index has been created, it is ready to provide faceted search support
during query sessions. The task we want to use the index for is to calculate facet
suggestions for each relevant properties every time the user modifies the query
or the focus variable, so we define a function suggest which does this.

Definition 19 (Facet Value Suggestion) Let GN = (DN , CN , PN) be a nav-
igation graph, Q a query over GN with root concept c, D a data source of GN , Z
an index configuration over GN , D̄ the facet index of D defined by Z and p ∈ PN
a local property. Furthermore let D̄c = D̄(c) and Cc = Z(c). The list of suggested
values for p given Cc, D̄c and Q, denoted suggest(Cc, D̄c,Q, p) is given by

suggest(Cc, D̄c,Q, p) = Ansv(Qex, D̄c)

where

Qex = extend(prune(Q, Cc), p, v).

The standard way of calculating facet value suggestions is to extend the
partial query with each relevant property by using the extend function, and run
each extended query over the data source. suggest does the exact same thing,
but it first prunes the query with respect to Cc to avoid querying for data that
is not included in the concept index.

Example 11 Assume we have created the concept index D̄1
Prod from Example 10

based on the product concept configuration C1
Prod from Example 9. We will now

calculate suggested values for the local property pName, given different queries
from Example 7.

Q =(GQ1 , hQ1 ,F) ⇒

suggest(C1
Prod, D̄1

Prod,Q, pName) = {Exotic Water,GH Milk} (9)

Q =(GQ1 , hQ1 ,F
∗) ⇒

suggest(C1
Prod, D̄1

Prod,Q, pName) = {Exotic Water,GH Milk,Chai} (10)

Q =(GQ2 , hQ2 ,F
∗) ⇒

suggest(C1
Prod, D̄1

Prod,Q, pName) = {Exotic Water,Chai} (11)

However, if we instead used another concept configuration C2
Prod during index

construction, resulting in the more extensive concept index D̄c, we get different
results for all of the queries.

Q = (GQ1 , hQ1 ,F) ⇒ suggest(C2
Prod, D̄2

Prod,Q, pName) = {GH Milk} (12)

Q = (GQ1 , hQ1 ,F
∗) ⇒ suggest(C2

Prod, D̄2
Prod,Q, pName) = {GH Milk,Chai} (13)

Q = (GQ2 , hQ2 ,F
∗) ⇒ suggest(C2

Prod, D̄2
Prod,Q, pName) = {Chai} (14)

17

For all of the three first queries, the part of the query related to orders (?o1
and ?int2) is removed in the pruning process, since there are no orders in C1

Prod,
hence the result includes Exotic Water even though that product is not included
in any orders. Equation 9 returns all products except for Chai, since its price
is too high for the filter, but when this filter is removed in Equation 10, all
products are returned. In Equation 11, the query asks for suppliers with a city,
so GH Milk is removed from the result since its supplier has no registered city.
The three remaining equations display the results for the same three queries just
with a more extensive concept index. In these cases only ?int2 is removed in the
pruning process, while ?o1 is kept. Hence products must be part of an order in
order to be returned.

6 Index Representation

Even though the facet index is stored as data graph in the description of our
system, it is also possible to store the index in a tabular and more denormalized
format. Doing this will in general require more space, but it will also reduce the
data retrieval time, since time-consuming joins are not required anymore.

Instead of storing each concept index as a graph, each concept and its cor-
responding concept index is represented by a table. Each column of this table
represents one specific query variable in the concept configuration, and each line
represents one possible assignment to the query variables, showing combinations
of values which can occur. The variables are also optional, so NULL values will
occur if data is missing, i.e., if there is no possible assignment for a specific
variable in the concept configuration.

Example 12 Table 1 shows what the concept index D̄1
Prod looks like in tabular

format. This table is fairly straightforward, since each product gets one row in
the table, however, it is interesting to see how data related to the supplier s1 is
duplicated in column ?s1, ?str1 and ?str2, since both p1 and p2 are supplied by
it.

?p1 ?s1 ?str1 ?str2 ?str3 ?int1

p1 s1 Exotic Liquids London Exotic Water 2
p2 s1 Exotic Liquids London Chai 9
p3 s1 Greenhill Farms NULL GH Milk 3

Table 1. Table representation of the concept index D̄2
Prod

Table 2 shows what the concept index D̄2
Prod looks like in tabular format. This

concept index is larger than D̄1
Prod, and if we compare to table 1 we see that the

number of columns has increased by one, while the number of rows has increased
by four. p1 is represented twice, since its supplier is located in two different cities.

18

The same is true for p2, but in addition it is also part of two different orders,
so there are 2× 2 = 4 possible variable assignments rooted in p2. This gives an
idea of how fast the size of the index grows when more than one value can take
multiple data values.

The NULLs appearing in both tables indicate that values are missing, com-
pared to what the concept configuration allows. To make sure that rows like these
are not omitted, the SPARQL query which actually populates the tables must
contain one OPTIONAL clause for each variable and its descendants. This can
result in rows where large parts of the columns contain NULLs. In fact, if an
individual is disconnected from all other nodes in the data graph, all columns
except for the root columns will contain NULLs.

?p1 ?s1 ?str1 ?str2 ?str3 ?int1 ?o1

p1 s1 Exotic Liquids London Exotic Water 2 NULL
p1 s1 Exotic Liquids Dublin Exotic Water 2 NULL

p2 s1 Exotic Liquids London Chai 9 o1
p2 s1 Exotic Liquids London Chai 9 o2
p2 s1 Exotic Liquids Dublin Chai 9 o1
p2 s1 Exotic Liquids Dublin Chai 9 o2

p3 s2 Greenhill Farms NULL GH Milk 3 o2

Table 2. Table representation of the concept index D̄2
Prod

In order to use these table-based concept indices when calculating sugges-
tions, the system must transform the pruned and extended SPARQL query into
a query over the tables, using e.g. SQL. Filters applied to variables in the query
are then transformed into filters over single columns, which is a common pattern
in e.g. SQL.

The method presented, which describes how the data is flattened into tables
is related to how dedicated search engines like Lucene stores the data in order
to optimize data retrieval.

7 Existential Variables

As seen in Table 2, the memory footprint increases very quickly when the data
contains multiple values or individuals which all can be assigned to the same
variable. We can avoid this problem by introducing what we call existential
variables in the configuration. The idea is to reduce the data size by not storing
all possible assignment values of existential variables, but rather just store a
boolean value which indicates whether such a value is present or not.

Table 3 shows what the tabular representation of the concept index D̄2
Prod

would look like if the variable ?o1 was set to be existential. p2 now only spans
over two rows, compared to the four in the original table. The number of rows

19

?p1 ?s1 ?str1 ?str2 ?str3 ?int1 ?o1

p1 s1 Exotic Liquids London Exotic Water 2 0
p1 s1 Exotic Liquids Dublin Exotic Water 2 0

p2 s1 Exotic Liquids London Chai 9 1
p2 s1 Exotic Liquids Dublin Chai 9 1

p3 s2 Greenhill Farms NULL GH Milk 3 1

Table 3. Table representation of the concept index D̄2
Prod if ?o1 is an existential

variable.

has been reduced by a factor of two, which equals number of orders p2 is a part
of.

However, the introduction of existential variables limits the system: Users
cannot add value filters to variables which are existential, nor can they get
lists of suggested values for the variable. But what the users can do is to add
existential filters and ask whether values for a variable exist.

We are still in the early stages of using existential variables, but so far it
seems promising to use the feature on concept variables rather than on datatype
variables. The reason for this is because the VQSs rarely support filters on con-
cept variables, since that would require the user to know the URI of specific
individuals. In fact, if we take a look at Table 3, it still contains all of the
interesting data, i.e. data values from Table 2.

8 Correctness Analysis

The overall quality of the suggested values given to the user depends on the
relationship between the facet index and the original data source, (defined by
the index configuration,) and the partial query the user works on. If the concept
configuration is large enough to cover the entire partial query, it means that the
index contains enough data to compute the correct suggestion values, i.e. the
same values one would get by querying the underlying data source. However,
the interesting case is when the partial query is not fully covered by the con-
cept configuration, so that the query has to be pruned in order to reduce it to
something that fits the data. Will the values suggested by the system be useful?

Assume we have a partial query Q with a concept variable ?v of type c that
is p-related to a datatype variable ?d, and we want to add a filter on ?d. We ask
the system for suggested values, and expect it to return positive and negative
suggestions. Positive suggestions are data values which if applied as a filter to
?d return non-empty answers, while negative suggestions return nothing.

We assume that the system knows about all possible data values that are p-
related to an instance of type c, i.e. all values a such that there exist an individual

i of type c and i
p−→ a is an edge in the underlying data source D. The set of all

such values, denoted SD, is the universe of values in the dataset, and hence no
suggested value should be outside SD.

20

If the system had unlimited time, it could extend Q directly to get Qex, and
execute it over D, to get the set of positive suggestions Sp. However, this is not
the case, and the system has to use the subindex D̄c to calculate suggestion
values. Even though D̄c is smaller than the original data source, it is required
that it contains all individuals and their p-relations to values in SD. Hence, since
the pruned and extended query Q′ex, made by our system, is less restrictive than
Qex, our system will calculate a set of positive suggestions S′p which is larger
than Sp. However, since Sn = SD \Sp and S′n = SD \S′p, we know that S′n < Sn.

To sum up, this means that any negative suggestion from our system is indeed
going to be negative, while a positive suggestion may not necessary be so. This
means that the user has to query over the original data source in order to figure
out whether a positive suggestion is is actually positive.

With a decent size of the concept configuration, it is also likely that users
will accept the positive suggestions given to them, since it may require too much
knowledge about the data, and too much reasoning to prove that the value is
indeed negative.

9 Implementation

A prototype of the system described in this paper has been implemented as a
module in the backend of OptiqueVQS. The system works as intended, and it
aids the user during query construction by suggesting filter values for relevant
properties. The facet index is stored in a relational database in the tabular
format described in Section 6. A screenshot of the system in action is displayed
in figure 9.

Fig. 9. Screenshot showing OptiqueVQS using the implemented faceted search func-
tionality. Coffee and Tea are suggested values, while Juice is not.

21

10 Conclusions and Future Work

This paper defines a theoretical framework, and a detailed description of how to
construct and use a scalable and highly configurable index structure to support
faceted search over general RDF graphs.

The work is still ongoing, and several possible improvements/extensions have
been suggested. Some of the improvements are implementation tasks, like e.g.
moving the data over to a dedicated search engine like Lucene in order to speed
up the system, while other tasks are larger scientific problems:

1. One limitation of our system is that individuals can only belong to one
concept. We would like to extend the homomorphism definition in order to
support individuals of more than one type.

2. Another interesting extension to the system is subclass axioms. Is is possible
to add subclass relationships between concepts? Can one reuse the concept
index of the subclasses instead of constructing a separate concept index for
the superconcept.

3. Explore how the size of the indexes can be reduced without sacrificing too
many features. The use of existential variables and bucketing techniques are
possible solutions.

4. The configuration determines a compromise between index size and accuracy
of facet value suggestions. User studies are needed to assess the impact of
the accuracy of the suggestions on the perceived usability of the system.

References

1. Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Šarūnas Marciuška,
and Dmitriy Zheleznyakov. Faceted search over RDF-based knowledge graphs. Web
Semantics: Science, Services and Agents on the World Wide Web, 37:55–74, 2016.

2. Sean Bechhofer and Ian Horrocks. Driving user interfaces from fact. In DL2000,
International Workshop on Description Logics, 2000.

3. Josep Maria Brunetti, Roberto Garćıa, and Sören Auer. From overview to facets
and pivoting for interactive exploration of semantic web data. International Journal
on Semantic Web and Information Systems (IJSWIS), 9(1):1–20, 2013.

4. Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz, Guillermo Vega-Gorgojo, and
Ian Horrocks. Experiencing OptiqueVQS: a multi-paradigm and ontology-based
visual query system for end users. Universal Access in the Information Society,
15(1):129–152, 2016.

5. Daniel Tunkelang. Faceted search. Synthesis lectures on information concepts,
retrieval, and services, 1(1):1–80, 2009.

