STATISTICAL RESEARCE REPORTS
 No 9
 Institute of Mathematics
 October
 1977
 University of Oslo

GRADUATION BY MOVING AVERAGES
by

Ornulf Borgan*
*Currently at Laboratory of Actuarial Mathematics University of Copenhagen

Suminary

The stochastic variables $X_{1}, X_{2}, \ldots, X_{N}$ are observed values of a given quantity at \mathbb{N} distinct points of time. A diagram of $\left\{X_{t}\right\}$, plotted against t, will have quite a ragged apperance。 We assume, however, that the "real" quantity follows a. "smooth" curve, and that any irregularities of the observed curve are due to accidential circumstances. Therefore, we want to graduate $\left\{X_{t}\right\}$ to get a "smoother" curve.

There exists quite a lot of granduation methods. In the present report we discuss graduation by moving averages. This is a more than hundred years old method which estimates the actual quantity by

$$
\hat{\xi}_{t}=\sum_{\nu=\alpha}^{\beta} r_{\nu} X_{t}-\tau+\nu
$$

for $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, N+\tau-\beta$, where $\alpha \leq \tau \leq \beta$ and the weights $r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}$ are known numbers. Two important problems in moving average graduation are how to choose the "best possible" weights $r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}$ and the "best possible" centre τ for given range (α, β) 。

In this report we discuss these problems, and we give a criterion for judging the properties of moving averages. Furthermore, we derive moving averages which are optimal according to this criterion under general assumptions. When the X_{t} 's are uncorrelated and have equal variance, cur optimal moving averages generalize two well known optimal moving averages: The minimum-variance and the mini$m u n-R_{z}$ moving averages. These are constructed to minimize $\sum_{\nu} r_{V}^{2}$ and $\sum_{\nu}\left(\Delta^{z} r_{\nu}\right)^{2}$, respeciively, under certain constraints. Here Δ is the usual difference operator.

For the situation with uncorrelated observations with equal
variance, we thoroughly discuss the optimal moving averages theoretically and by means of Monte Carlo experiments. These investigations indicate that our generalization of the well-known optimal moving averages is not only of theoretical, but also of practical interest。

1. Introduction 1
2. The general theory of graduation by moving average 8
3. Optimal moving averages 19
4. Optimal moving averages when the observations are uncorrelated and have equal variance 28
5. Comparison of different moving averages 47
6. Concluding ramarks 58
Acknowledgements 62
References 63
Appendix A - Proof of lemma 3.5. 66
Appendix B - Figures 69
Appendix C - Tables of noving averages 76

INSTITUTE OF MATHEMATICS

University of Oslo

Corrections to Statistical Research Report No.9 1977 Graduation by moving averages, by Ørnulf Borgan

Page	Line	Old version	New version
1	$6 \downarrow$	Therfore, we want to	Therefore, we want to
7	$2 \downarrow$	$\tau=N+\tau-\beta+1, N+\tau-\beta+2, \ldots, N$	$t=N+\tau-\beta+1, N+\tau-\beta+2, \ldots, N$
12	5ψ	contant with the risk	content with the risk
13	$1 \uparrow$	$r_{\beta} z^{\beta-\alpha}+r_{\beta-1}+z^{\beta-\alpha-1}+\ldots$	$r_{\beta} z^{\beta-\alpha}+r_{\beta-1} z^{\beta-\alpha-1}+\ldots$
15	$1 \uparrow$	will make the form	will make the term
17	$2 \downarrow$	$\sigma_{t-z+\nu+z, t-z+\mu+z}$	${ }^{\sigma} t-\tau+v+z, t-\tau+\mu+z$
17	$4 \uparrow$	$\begin{aligned} & N-\tau-\beta-z \\ & t=\tau-\alpha+1 \end{aligned}$	$\begin{aligned} & N+\tau-\beta-z \\ & t=\tau-\alpha+\hat{i} \end{aligned}$
18	$5 *$	$\sum_{\sim}=\sigma^{2}{ }_{\sim}$	$\underset{\sim}{\Sigma}=\sigma^{2} I$
27	$2 \downarrow$	$\sum_{z=0}^{k} a_{z}(-1)^{z}\left(\begin{array}{c} \delta^{2 z_{r \alpha}} \\ \vdots \\ \delta^{2 z_{r \beta}} \end{array}\right)$	$\sum_{z=0}^{k} a_{z}(-1)^{z}\left(\begin{array}{c} \delta^{2} z_{r_{\alpha}^{*}}^{*} \\ 0 \\ \vdots \\ \delta z_{r_{\beta}}^{*} \end{array}\right)$
28	$11 \downarrow$	minimum $-\mathrm{R}_{2}$ moving averages	minimum $-R_{z}$ moving averages
28	7 个	$\tilde{\sim}=\left(\tilde{r}_{\beta}, \tilde{r}_{-\beta+1}, \cdots, \tilde{r}_{-\alpha}\right)^{p}$	$\underset{\sim}{\tilde{n}}=\left(\tilde{r}_{-\beta}, \tilde{r}_{-\beta+1}, \ldots, \tilde{r}_{-\alpha}\right)^{\prime}$
29	7 个	$\sum_{j=1}^{p} \sum_{m=0}^{h_{j}^{-1}} \rho_{j m} t^{m} C_{j}^{-t}$	$\sum_{j=1}^{p} \sum_{j=0}^{-1} \rho_{j m} t^{m} c_{j}^{-t}$

Page 30	Line	Old version			New version		
	$8 \downarrow$	Exeptions			Exceptions		
35	$6 \uparrow$	$\alpha+\beta c_{1}^{t}+\gamma c_{z}^{t}$			$\alpha+\beta c_{1}^{t}+\gamma c_{2}^{t}$		
37	$10 \uparrow$	$\mathrm{m}=1,2,3,4$			$\mathrm{m}=1,2,3,4,5$		
44	$2 \uparrow$	$c=1.0$			$c=1.10$		
47	$8 \uparrow$	$\sum_{z=0}^{k} a_{z}\binom{2 z}{z} R_{z}^{2}$			$\sum_{z=0}^{K} a_{z}\left(\begin{array}{c} 2 z \end{array}\right) R_{z}^{2}$		
50	$3 \downarrow$. 0939	. 0153	. 0158	. 0939	. 0513	. 0158
50	12*	$\left(a_{0}, a_{1}\right)=(0.25,0.70)$			$\left(a_{0}, a_{1}\right)=(0.25,0.75$		
51	$2 \uparrow$	$t=0.1, \ldots, 100$			$t=0,1, \ldots, 100$		
52a	$2 \downarrow$	$\xi_{t}=0.0001 t^{3}-0.02 t+t$			$\xi_{t}=0.0001 t^{3}-0.02 t^{2}+t$		
54	$2 \downarrow$	of lenght 21			of length 21		
66	7 个	$\left(\tau^{\prime}(1), \tau^{\prime}(2)(\underset{\sim}{\mathbb{A}})\left(A^{\prime}{ }_{\sim}^{\theta}\right.\right.$			$\left(\tau^{\prime}(1), \tau^{\prime}(2)\right)(\underset{\sim}{\mathbb{D}}){\underset{\sim}{A}}^{A} \underset{\sim}{\theta}$		

1. INTRODUCTION
1.A. We have stochastic variables $X_{1}, X_{2}, \ldots, X_{N}$, which are observations of a given quantity at \mathbb{N} different points of time. A diagram of $\left\{X_{t}\right\}$, plotted against t, will have quite a ragged appearance. We assume, however, that $\xi_{t}=E X_{t}$ follows a smooth curve as a function of t 。 Therfore, we want to graduate $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ to get a smoother curve. Or in other words: We want to estimate the sequence $\left\{\xi_{t}\right\}$ 。

The situation described above arises e.g. in demography and actuarial science where one wants to graduate vital rates like mortality and fertility rates.
1.B. There exists quite a lot of graduation methods. Miller (1946, p.7) groups them into graphical methods, interpolation methods, difference-equation methods, analytic graduation and graduation by moving averages. Most of these methods have, at least originally, been developed by intuitive and heuristic reasoning and by experience with the methods in practical work. The statistical properties of some of the methods have later on been investigated. Hoem (1972) discusses analytic graduation and gives references to several other works on different graduation methods.
1.C. In this report we will discuss moving average as a graduation method - This method estimates ξ_{t} by

$$
\begin{equation*}
\hat{\tilde{\zeta}}_{t}=\sum_{\nu=\alpha}^{\beta} r_{\nu} X_{t-\tau+\nu} \tag{1.1}
\end{equation*}
$$

[^0]for $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, N+\tau-\beta$, where $\alpha \leq \tau \leq \beta$ and the weights $r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}$ are known real numbers.

In connection with (1.1) we define: The moving average is centralized if $\tau-\alpha=\beta-\tau$. It is symmetric if we in addition have $r_{\tau-\nu}=r_{\tau+\nu}$ for all ν 。 (α, β) is called the range of the moving average and τ its centre. The length of the moving average is $\quad 1=\beta-\alpha+1$. Finally the moving average (1.1) is said to be exact for a function φ if

$$
\begin{equation*}
\varphi(t)=\sum_{\nu=\alpha}^{\beta} r_{\nu} \varphi(t-\tau+\nu) \tag{1,2}
\end{equation*}
$$

for $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, \mathbb{N}+\tau-\beta$ 。
1.D. Noving averages have been used for more than a hundred years to graduate mortality tables. Historically we have three different types of moving averages: The summation formulas, the minimum-variance and the minimum- R_{z} moving averages.

The summation formulas were developed, chiefly by British actuaries, in the years 1870 to 1910. At that time the available calculating equipment was very primitive and, consequently, it was computationally very advantageous to employ more additions and fewer multiplications. Therefore, these moving averages are obtained by superimposing several unweighted summations, together with an adjustment to make the formulas exact for cubics. The probably most celebrated of these moving averages is the Spencer's 21-term formula. This may be given by:

$$
\begin{align*}
\hat{\xi}_{t} & =\frac{1}{350}\left(-X_{t-10}-3 X_{t-9}-5 X_{t-8}-5 X_{t-7}-2 X_{t-6}\right. \tag{1.3}\\
& +6 X_{t-5}+18 X_{t-4}+33 X_{t-3}+47 X_{t-2}+57 X_{t-1} \\
& \left.+60 X_{t}+\cdots\right)
\end{align*}
$$

where the dots indicate that the moving average is symmetric. For a thorough discussion of the Spencer's formula and the summation formulas in general we refer to Whittaker and Robinson (1924,pp.288-290).

The American E.I. De Forest did in the years 1870-80, inde-pendent of the British actuaries, a series of works on graduation. These works were published in obscure places and therefore were little noticed or used until attention was drawn to them by Wolfenden (1924). De Forest constructed moving averages, exact for cubics, which minimize

$$
\begin{equation*}
R_{z}^{2}=\binom{2 z}{z}^{-1} \sum_{\nu=\alpha-z}^{\beta}\left(\Delta^{z} r_{v}\right)^{2} \tag{1.4}
\end{equation*}
$$

for $z=0$ and $z=4$. Here Δ is the usual difference operator and we use the convention that $r_{\nu}=0$ for $\nu<\alpha$ or $\nu>\beta$. (A motivation for minimizing R_{z}^{2} is given by Miller, 1946, pp.31-33.) Independent of De Forest, Hardy later on suggested that one might construct moving averages which minimize R_{0}^{2}, R_{2}^{2} or R_{j}^{2} (see Wolfenden, 1924, p.108).

In a series of important works Sheppard (1913, 1914a, 1914b, 1914c , 1915, 1921) followed Hardy's suggestion. He found moving averages, exact for polynomials of given degree, that minimize R_{o}^{2}, and he showed the close connection between these moving averages and the method of least squares. (We shall have a closer look at this in chapter 3.) Furthermore, Sheppard found general expressions for moving averages, exact for polynomials of given degree, which minimize R_{2}^{2} and R_{3}^{2}. But, as Hardy, he did not find these moving averages "convenient for practical purposes" (Sheppard, 1915, p.151) because of their complex form.

While De Forest, Hardy and Sheppard all discussed both moving
averages that minimize R_{0}^{2} and moving averages that minimize R_{z}^{2} for $z>0$, this is not the case for many later authors. Most European authors after Sheppard only discuss moving averages that minimize R_{0}^{2}. This historical division between these moving averages makes it convenient to look upon them as two different types of moving averages. We will denote the moving averages which minimize R_{0}^{2} and R_{z}^{2}, for $z>0$, for minimum-variance and minimum-R moving averages respectively. (In some comections, however, we will say minimum- R_{o} moving averages for the minimum-variance moving averages.)

The minimum-variance moving averages have been given a thorough statistical treatment by many authors. Among important works from the last decades we may mention Kendall (1946), Jecklin and Strickler (1954), Weichselberger (1964), Sverdrup (1967) and Anderson (1971). To day the statistical theory of these moving averages are well developed. It is based on the method of least squares. Furthermore, the minimum-variance moving averages are constructed not only exact for polynomials, but also for other functions.

While the minimum $-R_{z}$ moving averages are little used and discussed in Europe, they are much in use in IJorth-America. These moving averages are, as far as the present author knows*,

[^1]up to now only constructed exact for polynomials, and their theory is in little extent expressed in statistical terms. Important contributions to the theory of the minimum- R_{z} moving averages are in the Jast decades given e.g. by Greville (1947, 1957, 1966, 1972, 1974) and Pollard (1971a, 1971b)。

An interesting attempt to combine the philosophy behind the minimum-variance and the minimum- R_{z} moving averages is given by Michalup (1956). He finds the symmetric moving averages of length up to 9 , exact for cubics, which minimize $A R_{o}^{2}+B R_{3}^{2}$ for given A and B.
I.E. One main problein in graduation by moving average is the following: What is the "best" choise of the weights $r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}$? Close related to this is the question how we "best" possible may choose the centre T for given range (α, β) 。

To answer these questions we have to know what to mean by "best". Thus, we have to ask the fundamental question: What is the purpose of the graduation? We discuss this question in Chapter 2, and we try to answer it by defining a loss function for judging the graduation. The risk, i.e. the expected loss, consists of two components. One depends on the trend $\left\{\xi_{t}\right\}$ and the other on the erratic component $V_{t}=X_{t}-\xi_{t}{ }^{*}$. These two quantities are studied separately. In connection with the first we also discuss for which functions a moving average is exact.

Irı Chapter 3 we show how we may find moving averages, exact

[^2]Por a given function, which minimize the second component of the risk among moving averages with given range and centre. In the case where the observations are uncorrelated with equal variance, moving averages that are optimal in this sense generalize the minimum-variance and the minimum- R_{Z} moving averages.

The important case where $X_{1}, X_{2}, \ldots, X_{N}$ are uncorrelated with equal variance is thoroughly discusses in Chapter 4. We give a short review of the known theory of the minimum-variance and the minimum- R_{z} moving averages and find some new results for these. It is worth mentioning that we construct minimum- R_{z} moving averages exact for other functions than polynomials** Further, in this chapter we find moving averages that generalize Michalup's (1956) results. In connection with the actual moving averages we also discuss different choices of the centre. Previously, as far as the present author knows, such a discussion is only done for minimum-variance moving averages exact for polynomials (see Wejchselberger, 1964, Kockelkorn and Ruiger, 1974).

In Chapter 5 we compare different moving averages theoretically and by means of Monte Carlo experiments. These investigations seem to imply that our generalization of the well-known optimal moving averages not only is of theoretical, but also practical interest. In this chapter we also find the interesting result that Spencer's 21-terms formula (1.3) is approximately equal to the corresponding minimum- R_{5} moving average.

By graduation with the moving average (1.1) we only get estimates $\tilde{\xi}_{t}$ for the central values $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, \mathbb{N}+\tau-\beta$. * See footnote on page 4.

Therefore, an important problem is how we may ind estimates for the end values $t=1,2, \ldots, T-\alpha$ and $T=N+T-\beta+1, N+T-\beta+2, \ldots, N$ 。 This problem is not considered in this report. In the last chapter we conment upon this and some other unsolved problems.

As seen in the historical review in the preceeding paragraph, there does not exist a unified statistical theory for moving average as a graduation method. In addition to the new results we give in this report, we hope this work also will give a contribution to such a theory.
2. THE GENERAI THEORY OF GRADUATION BY MOVING AVERAGES. 2.A. In this chapter we first clarify our statistical model. Then we discuss the fundamental question: What is the purpose of graduating the sequence $\left\{X_{t}\right\}$? This discussion justifies that the građuation of sequence of observations may be judged by the loss function (2.4). The risk, i.e. the expected loss, consists of two components, depending on the trend and the erratic component respectively. These two components are studied separately. In this connection we also discuss for which functions a moving average is exact.
2.B. We observe a given quantity at \mathbb{N} different points of time. The observed values are $X_{1}, X_{2}, \ldots, X_{N}$. We suppose that the moments of first and second order exist, and we define

$$
\begin{aligned}
& \underset{\sim}{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\prime} \\
& E=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)^{\prime} \\
& \underset{\sim}{\Sigma}=\operatorname{Covm}(\underset{\sim}{X})=E(\underset{\sim}{X}-\underset{\sim}{\mid})(\underset{\sim}{X}-\underset{\sim}{\mid})^{\prime} \cdot
\end{aligned}
$$

Here the prime denotes a transpose. We do not specify the model any further.

We let $\underset{\sim}{V}=\underset{\sim}{X}-\underset{\sim}{\xi}$ denote the erratic component. Then, of course, $E V=\underset{\sim}{0}$ and $\operatorname{Covm}(\underset{\sim}{V})=\underset{\sim}{\sum}$ 。

In connection with the moving average (1.1) we introduce the vector

$$
\begin{equation*}
\underset{\sim}{r}=\left(r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}\right)^{\prime} \tag{2.1}
\end{equation*}
$$

and the $(N-\beta+\alpha) \times N$ matrix

In this report we will only discuss how to estimate ξ_{t} for the central values $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, I T+\tau-\beta$. Therefore if we define:

$$
\hat{\tilde{\xi}}_{\sim}=\left(\hat{\xi}_{T-\alpha+1}, \hat{\xi}_{T-\alpha+2}, \cdots, \hat{\bar{\xi}}_{N+\tau-\beta}\right)^{\prime}
$$

we have:
(2.3) $\quad \underset{\sim}{\hat{C}}=\underset{\sim}{R V}=\underset{\sim}{R E}+\underset{\sim}{R V}$.

We will in the sequel feel free to also denote (2.1) and (2.2) a moving average.
2.C. As seen in Paragraph 1.D., thereare in the literature different opinions of the purpose of graduating a sequence of observations by moving average. The two main points of view are reflected in the two most used criteria for optimal moving averages: Minimize R_{0}^{2} or minimize R_{z}^{2} usually with $z=3$, under certain constraints. These optimal moving averages are constructed to give as good "fit" and "smoothness", respectively, as possible. Michalup (1956) tries to balance these two requirements.

The present author believes that different requirements must be taken into account when graduating. We want $\hat{\xi}_{t}$ to be a good estimator for ξ_{t} for each t, that the sequences $\left\{\hat{\xi}_{t}\right\}$ and $\left\{\xi_{t}\right\}$ shall have nearly the same gradients and curvatures etc. Altogether we want the sequence $\left\{\hat{\xi}_{t}\right\}$ of estimates to agree with the sequence $\left\{\xi_{t}\right\}$ of means in a general way. How successfully this is obtained may be measured by the quantities $\left(\Delta^{Z_{\bar{\xi}}^{*}}{ }_{t}-\Delta_{Z_{t}}^{Z_{t}}\right)^{2} ; t=\tau-\alpha+1, \tau-\alpha+2, \ldots, I N+\tau-\beta-z$, $z=0,1,2, \ldots$. Small values for $z=0$ indicate good "rit", small values for $z=1$ good reproduction of the gradient etc.

From this discussion it follows that we may judge the graduation of a sequence of observations by a loss function of the form

$$
\sum_{z=0}^{K} \sum_{t=\tau-\alpha+1}^{N T+-\beta-z} a_{t z}\left(\Delta^{Z_{\tilde{\xi}}} \hat{\eta}_{t}-\Delta^{Z_{\xi}}\right)^{2}
$$

where $K \leq \mathbb{N}-\beta+\alpha-1$ and the weights $a_{t z}$ are non-negative real numbers. In this report we will only consider the case where the $a_{t z}$'s are equal independent of t. Then, if we put $a_{z}=\sum_{t} a_{t z}$, the loss function may be written
where $\underset{\sim}{a}=\left(a_{0}, a_{1}, \ldots, a_{K}\right)$ is a_{K} vector of non-negative real numbers. We will always let $\sum_{z=0}^{K} a_{z}=1$. We note that the choice of $\underset{\sim}{a}$ depends on what we aim at by the graduation: a_{0} is the weight for the "Sit", a_{1} for the gradient, a_{2} for the curvature, a_{z} for the "smoothness", etc.

It is or interest to note that in the case of analytic
graduation a loss function as described above is of no use. In this case the requirements leading to (2.4) is apriori satisfied by the choice of graduation function.

We will give (2.4) in matrix notation. Introduce the $(\mathrm{I}-\beta+\alpha) \times \mathbb{N}$ matrix

$$
\left.\underset{\sim}{B}={\underset{\sim}{0}}^{(N-\beta+\alpha) \times(T-\alpha)}{\underset{\sim}{I}}^{(\mathbb{N}-\beta+\alpha)}{\underset{\sim}{0}}^{(\mathbb{N}-\beta+\alpha) \times(\beta-\infty)}\right),
$$

where $\underset{\sim}{0^{m \times n}}$ is the $m \times n$ zero matrix and ${\underset{\sim}{\sim}}_{\sim}^{n}$ is the $n \times n$ identity matrix, and the $(N-\beta+\alpha-z) \times(N-\beta+\alpha)$ matrix

Then we find
and the loss function (2.4) may be written

$$
\begin{equation*}
\left.\mathrm{T}_{\underset{\sim}{a}}(\underset{\sim}{\xi}, \hat{\tilde{\xi}})=(\underset{\sim}{\hat{\xi}}-\underset{\sim}{B} \xi) \cdot{\underset{\sim}{a}}_{\mathbb{T}}^{(\underset{\sim}{\hat{\xi}}-\mathrm{B} \xi}\right), \tag{2.5}
\end{equation*}
$$

where $\underset{\sim}{\sim}$ a is the $(\mathbb{N}-\beta+\alpha) \times(\mathbb{N}-\beta+\alpha)$ matrix (2.6) $\quad \stackrel{T}{\sim}{ }_{a}=\sum_{Z=0}^{K} \frac{a_{z}}{N-\beta+\alpha-Z}{\underset{\sim}{Z}}_{Z}^{\prime}{\underset{\sim}{Z}}_{z}$.

It is easy to prove that ${\underset{\sim}{a}}^{(s)}$ non-negative definite and
positive definite if and only if $a_{0}>0$ 。
If the trend $\left\{\xi_{t}\right\}$ was known, we could judge the graduation of a sequence of observations by the loss function (2.4) or (2.5). Since this is usually not the case we have to be contant with the risk, i.e. the expected loss. Thus, we want to graduate the sequence of observations such that the risk (2.7) $\quad r\left(\underset{\sim}{\xi}, \sum, \underset{\sim}{R}\right)=E T_{\sim}(\underset{\sim}{\xi}, \underset{\sim}{\xi})$ is as small as possible.

By (2.3) and $E V=\underset{\sim}{\sim}$ we find

where $\mathbb{W}=R V$. This shows that the risk consists of two components. One depends on how the moving average operates on the trend, the other on how it operates on the erratic component.

In the succeeding paragraphs we shall study these two components more in detail.
2.D. In this paragraph we will have a closer look at the first term in the risk function (2.8). Since $\underset{\sim}{\underset{\sim}{\sim}} \underset{a}{ }$ is positive definite for $a_{0}>0$, a necessary and sufficient
 a is

$$
\underset{\sim}{R} \underset{\sim}{\xi}=\text { B }
$$

or equivalently

$$
\xi_{t}=\sum_{\nu=\alpha}^{B} r_{\nu} \xi_{t-\tau+\nu}
$$

for $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, \mathbb{N}+\tau-\beta$. That is, the moving average has to be exact for the trend $\left\{\xi_{t}\right\}$. Thus, we want to study for which functions a given moving average is exact, and which moving averages that are exact for a given function (or rather class of functions). Since these questions are studied extensively, in the literature (see e.g. Elphinstone, 1951, Jecklin and Strickler, 1954, and Sverdurp, 1967) we will here only give a brief review of the most important results.

By (1.2) the moving average (1.1) is exact for a function φ if and only if
(2.9) $\quad r_{\beta} \varphi(t-\tau+\beta)+r_{\beta-1} \varphi(t-\tau+\beta-1)+\ldots+\left(r_{\tau}-1\right) \varphi(t)+\ldots+r_{\alpha} \varphi(t-\tau+\alpha)=0$
for $t=T-\alpha+1, T-\alpha+2, \ldots, N T T-\beta$. This shows that a moving average is exact for φ if and only if $\{\varphi(t)\}$, for integervalued t, is a solution of the homogeneous linear difference equation (2.9). Hence, by the theory of linear difference equations (see e.g. Henrici, 1964, pp. 137-140) we get the following well-known result:

Theorem 2.10: The moving average (1.1) is exact for a function φ if and only if φ for all integer-valued t may be written
(2.11) $\quad \varphi(t)=\sum_{j=1}^{p} \sum_{m=0}^{h_{j}^{-1}} \theta_{j m} t^{m_{c}} c_{j}^{t}$,
where $c_{1}, c_{2}, \ldots, c_{p}$ are the (real or complex) distinct roots of the characteristic equation
(2.12) $\quad r_{\beta} z^{\beta-\alpha}+r_{\beta-1}+z^{\beta-\alpha-1}+\ldots+\left(r_{\tau}-1\right) z^{\tau-\alpha}+\ldots+r_{\alpha}=0$
with multiplicity $h_{1}, h_{2}, \ldots, h_{p}$ respectively and the $\theta_{j m}{ }^{\prime}$ s are unknown parameters.

This theorem characterizes the functions for which
a given moving average is exact. We will
now show that if φ is of the form (2.11) for arbitrary $c_{1}, c_{2}, \ldots, c_{p}, h_{1}, h_{2}, \ldots, h_{p}$ we can always find a moving average that is exact for φ, and we will find which conditions the moving average has to fulfil for this to be true. The following lemma is useful.

Lemma 2.13: A moving average $\underset{\sim}{r}=\left(r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}\right)^{\prime}$ with range (α, β) and centre τ is exact for $t^{m} c^{\dot{j}}$ if and only if
(2.14) $\sum_{\nu=\alpha}^{\beta} r \nu^{\nu^{n}} c^{\nu}=\tau^{n} c^{\top}$
for $n=0,1, \ldots, m$.
Proof: By (1.2) $\underset{\sim}{x}$ is exact for $t^{m} c^{t}$ if and only if

$$
t^{m} c_{c}^{t}=\sum_{\nu=\alpha}^{\beta} I_{\nu}(t-\tau+\nu)^{m_{c}} c^{t-\tau+\nu},
$$

or equivalently

$$
c^{\top} t^{m}=\sum_{\nu=\alpha}^{\beta} r_{\nu}(t-\tau+\nu)^{m} m^{\nu}=\sum_{j=0}^{m}\left(\frac{m}{j}\right)\left\{\sum_{\nu=\alpha}^{\beta} r_{\nu}(\nu-\tau)^{m-j_{c} \nu}\right\}_{t}^{j}
$$

for $t=\tau-\alpha+1, \tau-\alpha+2, \ldots, N+\tau-\beta$. If we compare the coefficients of t^{j} for $j=0,1, \ldots, m$ this gives

$$
\sum_{\nu=\alpha}^{\beta} r_{\nu}(\nu-T)^{k_{c} \nu}=\delta_{k o} c^{\top} \text { for } k=0,1, \ldots, m,
$$

where $\delta_{i j}$ is the Kronecker delta symbol. This is again equivalent to

$$
\sum_{\nu=\alpha}^{\beta} r_{\nu} \nu^{n_{c}} c^{\nu}=\tau^{n} c^{\top} \text { for } n=0,1, \ldots, m
$$

From this lemma we immediately find:
Theorem 2.15: Let $c_{1}, c_{2}, \ldots, c_{p}$ be distinct real or complex numbers and $h_{1}, h_{2}, \ldots, h_{p}$ integers. Suppose the real function φ for integer-valued t may be written

$$
\begin{equation*}
\varphi(t)=\sum_{j=1}^{p} \sum_{m=0}^{h_{j}^{-1}} \theta_{j m} t^{m} c_{j}^{t}, \tag{2.16}
\end{equation*}
$$

where the ${ }^{j}{ }_{j m}$'s are unknown parameters. Then a moving average $\underset{\sim}{r}=\left(r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}\right)^{\prime}$ with range (α, β) and centre T is exact for φ if and only if

$$
\begin{align*}
& \sum_{\nu=\alpha}^{\beta} r_{\nu} \nu^{n} c_{j}{ }^{\nu}=r^{n_{c}}{ }_{j}{ }^{\top} \tag{2.17}\\
& \text { for } n=0,1, \ldots, h_{j}-1 ; j=1,2, \ldots, p .
\end{align*}
$$

Further we find:
Coroliary 2.18: Suppose φ is of the form (2.16). Then there exist non-trivial moving averages of length $I \geq \sum_{j=1}^{p} h_{j}+1$ which are exact for φ.
Proof: The trivial moving average given by $r_{T}=1$ and $r_{\nu}=0$ for $\nu \neq \tau$ is exact for all iunctions. If we exclude this, a moving average with range (α, β) and centre T is exact for φ if and only if it satisfies the $\sum_{j=1}^{p} h_{j}$ Inear independent equations (2.17). These may always befulfilled for a moving average of length $I=\beta-\alpha+1 \geq \sum_{j=1}^{p} h_{j}+1$.

By Theorem 2.10 and Corollary 2.18 there exists a moving average, exact for a function φ, if and only if φ may be given by (2.16) for suitable c_{j} 's and $h_{j}{ }^{\prime} s$. Now any trend $\left\{\xi_{t}\right\}$ may be given in this way if only $\sum_{j=1}^{p} h_{j}$ is large enough. However, this is of little practical interest because then, by Corollary 2.18, only very long moving averages are exact for φ. This in turn will make the form $E \underset{\sim}{N} \underset{\sim}{\mathbb{T}} \underset{\sim}{W}$
in the risk function (2.8) very large. Hence, in general, the first term in the risk function (2.8) will not vanish completely. Suppose, however, that the trend for each interval (indexed by t) of length 1 may be given approximately by

$$
\xi_{t+\mu} \simeq \sum_{j=1}^{p} \sum_{m=0}^{h_{j}^{-1}} \theta_{j m}^{(t)}(t+\mu)^{m_{c}}{ }_{j}^{t+\mu l}
$$

where the coefficients are allowed to depend on the actual interval. If we then construct the moving average exact for the class of functions given by (2.16), the term
 We will then denote the class of functions (2.16) a basis for the moving average.

We note that more than one class of functions may be used to approximate a given trend $\left\{\xi_{t}\right\}$. We may, for example, approximate the trend with a linear function on each interval of length 5, with a polynomial of degree two on each interval of length 9 or with a polynomial of degree three on each interval of length 13. The best of these choices of basis is the one that minimizes the risk function (2.8).
2.E. We will now find an expression for the term EWNW in the risk function (2.8). We have under the usual assumption $r_{\nu}=0$ for $\nu<\alpha$ or $\nu>\beta$:

$$
\begin{aligned}
& \Delta_{W_{W}}=\sum_{j=0}^{z}\binom{z}{j}(-1)^{z-j_{W}}{ }_{t+j}=(-1)^{z} \sum_{j=0}^{z} \sum_{\nu}\binom{z}{j}(-1)^{j} r_{\nu-j} V_{t-\tau+\nu} \\
& =(-1)^{z} \sum_{\nu=\alpha-z}^{\beta}\left(\Delta^{Z} r_{\nu}\right) V_{t-\tau+\nu+z} .
\end{aligned}
$$

Hence
(2.19) $E W \cdot T W=\sum_{Z=0}^{K} \frac{a_{Z}}{N T-\beta+\alpha-Z} \sum_{t=T-\alpha+1}^{N+\tau-\beta-z} E\left(\Delta^{Z_{W}}\right)^{2}$

$$
=\sum_{z=0}^{K} \frac{a_{z}}{\mathbb{N}-\beta+\alpha-z} \sum_{t=T-\alpha+1}^{N+\beta-z} \sum_{\nu \mu} \sum^{N}\left(\Delta^{Z} r_{\nu}\right)\left(\Delta^{Z} I_{\mu}\right) \sigma_{t-z+\nu+z, t-z+\mu+z},
$$

where $\sum_{\sim}=\left\{\sigma_{i j}\right\}$. If we introduce
(2.20) $\quad \sum_{t z}=\left\{\sigma_{i j j}\right\}_{i, j=t-\tau+\alpha}^{t-\tau+\beta+z}$
and the $(1+z) \times I$ matrix

$$
\underset{\sim}{\Delta} \underset{\sim}{r}=\left(\Delta^{z_{r_{\alpha-z}}}, \Delta^{z} r_{\alpha+1-z}, \ldots, \Delta^{z_{r_{\beta}}}\right)^{\prime}
$$

and by (2.19)

$$
\begin{aligned}
& \text { EW' } \underset{\sim}{\sim} a_{a}^{W}=\sum_{z=0}^{K} \frac{a_{z}}{N-\beta+\alpha-z} \sum_{t=\tau-\alpha+1}^{N+\tau-\beta-z}\left(\Delta_{z} \frac{r}{\sim}\right) \cdot \sum_{i_{z}}\left(\Delta_{z} \frac{r}{N}\right)
\end{aligned}
$$

Thus we have proved:
Theorem 2.22: The term $E W^{\prime} \underset{\sim}{T} \underset{\sim}{W}$ in the risk function (2.9) is given by

where ${\underset{\sim}{\sim}}_{\underset{a}{S}, \Sigma}$ is the $I \times 1$ matrix

We further have by (2.19) and the preceding theorem:
Corollary 2.25: If $\sum=\sigma^{Z} I$, where I is the identity matrix, we have

where R_{z}^{2} is given by (1.4) and $\underset{\sim}{\underset{\sim}{S}} \underset{a}{ }$ is the $I \times I$ matrix (2.27) $\quad{\underset{\sim}{\sim}}_{a}=\sum_{Z=0}^{K} a_{z} \Delta_{z}^{\prime}{\underset{\sim}{z}}$.

Thus, if the observations are uncorrelated and have equal variance σ^{2}, the quantities R_{z}^{2} enter in a simple way in (2.26). We will have a closer look at this in Chapter 3.
3. OPTIMAL MOVING AVERAGES.
3.A. In the preceding chapter we found that we will perform the graduation such that the risk (2.8) is minimized. Therefore, the question is whether we can find a moving average which does this. This problem is a very complicated one since it involves a simultaneous choice of length, centre, basis and weights for the moving average. Because of this we instead find moving averages which are optimal in the sense that they minimize $E \underset{\sim}{N} \underset{\sim}{N}$, in the class of moving averages with given range, centre and basis. In this chapter we see how this can be done and how these optimal moving averages generalize the minimum-variance and minimun- R_{z} moving averages.
3.B. Let now $\underset{\sim}{\sum}=\sigma^{2} \underset{\sim}{\mathcal{C}}$, where $\underset{\sim}{\mathcal{C}}$ is a known positive definit matrix, and suppose the trend in each interval of length I may be given approximately by

$$
\xi_{t+\mu} \simeq \sum_{j=1}^{p} \sum_{m=0}^{h_{j}^{-1}} \theta \sum_{j m}^{(t)}(t+\mu)^{m} c_{j}^{t+\mu},
$$

where $c_{1}, c_{2}, \ldots, c_{p}$ are distinct real or complex numbers and $h_{1}, h_{2}, \ldots, h_{p}$ are integers. The coefficients $\theta_{j m}^{(t)}$ may depend on the actual interval (compare Paragraph 2.D.). Then, if we choose φ given by (2.16) as basis for the moving average and restrict ourselves to moving averages of length I, the term
 we want to find a moving average that is optimal in the sense that it minimizes the term EW' $\overbrace{a} \underset{\sim}{W}$ in the risk (2.8) in the class of moving averages of given length 1 , given centre τ and basis φ.

We may now write for the basis
(3.1) $\quad \varphi(t)=\sum_{i=1}^{m} \theta_{i} A_{i}(t)$,
where $m=\sum_{j=1}^{p} h_{j}$, the $A_{i}(t)^{\prime}$ s are of the form $t^{m} c_{j}^{t}$ and the θ_{i} 's are unknown parameters. Then, according to Theorem 2.15, a moving average with range (α, β) and centre τ is exact for φ if and only if

$$
\begin{equation*}
\sum_{\nu=\alpha}^{\beta} I_{\nu} A_{i}(\nu)=A_{i}(\tau) ; i=1,2, \ldots, m . \tag{3.2}
\end{equation*}
$$

We now introduce the vectors

$$
\begin{aligned}
& \underset{\sim}{X}(t)=\left(X_{t-\tau+\alpha}, X_{t-\tau+\alpha+1}, \cdots, X_{t-\tau+\beta}\right)^{\prime} \\
& \underset{\sim}{A}(\nu)=\left(A_{1}(\nu), A_{2}(\nu), \ldots, A_{m}(\nu)\right)^{\prime}
\end{aligned}
$$

and the $m \times I$ matrix

$$
\underset{\sim}{A}=(A(\alpha), \underset{\sim}{A}(\alpha+1), \ldots, A(\beta)) .
$$

The constraints (3.2) may then be given equivalently by (3.3) ${\underset{\sim}{\mathcal{P}}}^{\prime}{\underset{\sim}{A}}^{\prime} \underset{\sim}{\theta}={\underset{\sim}{A}}^{\prime}(T) \underset{\sim}{\theta}$ for all $\underset{\sim}{\theta} \in R^{\text {In }}$.

Furthermore, by Theorem 2.22

 Thus, we have to minimize $\underset{\sim}{\mathcal{I}} \underset{\sim}{\mathcal{S}} \underset{\sim}{x}, \mathrm{C} \underset{\sim}{\sim}$ under the constraint (3.3). This problem is solved by the following lemmas.

Lemma 3.5: Let A be a $m \times I$ matrix of rank $m(m<I)$ and let $\underset{\sim}{S}$ be a positive definite $I \times 1$ matrix. Then there
 $\underset{\sim}{x} \in \mathbb{R}^{1}$ under the constraint

$$
\mathbb{I}^{\prime} A^{\prime} \underset{\sim}{\theta}={\underset{\sim}{c}}^{\prime} \underset{\sim}{\theta} \text { for all } \underset{\sim}{\theta} \in \mathbb{R}^{\text {in }} \text {. }
$$

where $\underset{\sim}{c} \in \mathbb{R}^{m}$ is a known vector. ${\underset{\sim}{\sim}}_{\sim}^{*}$ is given by:

$$
{\underset{\sim}{*}}^{*}={\underset{\sim}{S}}^{-1} A^{\prime}\left(A_{\sim} S^{-1}{\underset{\sim}{A}}^{3}\right)^{-1} \underset{\sim}{C} .
$$

A proof of this lemma is given in Appendix A. *
Lemma 3.6: The $I \times I$ matrix $\mathcal{S}_{a, C}$ is positive definite.
 positive definite because $\underset{\sim}{\mathcal{C}}$ is positive definite. Furthermore,

 only if $\underset{\sim}{\underset{\sim}{x}} \underset{\sim}{x} \underset{\sim}{0}$, which is equivalent to $\underset{\sim}{x}=\underset{\sim}{0}$. Thus we have
and equal to zero if and only if $\mathbb{N}^{\prime}\left(\Delta_{Z}^{\prime} \mathcal{C}_{t}, \Delta_{Z}\right) x=0$ for all z such that $a_{z}>0$ and all t. Therefore, ${\underset{\sim}{c}}^{\prime} S_{a}, C \underset{\sim}{X}=0$ if and only if $\underset{\sim}{X}=0$, and the lemma is proved.

If we combine Lemma 3.5 and 3.6 we get the following main result:

Theorem 3.7: Suppose $\underset{\sim}{\sum}=\sigma^{2} \underset{\sim}{\mathcal{C}}$, where $\underset{\sim}{\mathcal{\sim}}$ is a known positive definite matrix. Then there exists a unique moving average ${\underset{\sim}{r}}_{\sim}^{*}=\left(r_{\alpha}^{*}, r_{\alpha+1}^{*}, \ldots, r_{\beta}^{*}\right)$ which minimizes EW $\sim_{\sim}^{\sim}{\underset{\sim}{N}}_{\sim}^{W}$ in the class of moving averages with range (α, β), centre τ

* By using a result of Gerber (1977), it is possible to give an easier proof of Lemma 3.5, compare footnote on page 4.
and basis 0 given by (3.1). ${\underset{\sim}{r}}^{*}$ is given by

3.C. We will investigate somewhat closer the case where $X_{1}, X_{2}, \ldots, X_{N}$ are uncorrelated observations with variances equal to σ^{2}, i.e. $\underset{\sim}{\mathbb{C}}=\underset{\sim}{I}$ in the preceding paragraph. Then, by Corollary 2.25, ${\underset{\sim}{\sim}}_{\sim}^{*}$ given by (3.8) with $\underset{\sim}{\underset{\sim}{S}}, \mathrm{C}=\underset{\sim}{\mathbb{N}_{\mathrm{a}}}$, where \mathbb{S}_{a} is given by (2.27), is the unique moving average which minimizes

$$
\sum_{z=0}^{K} a_{z}\binom{2 z}{z} R_{z}^{2}
$$

in the class of moving averages with range (α, β), centre τ and basis φ as above. We find that $a_{0}=1$ gives the minimum-variance and $a_{z}=1$, for $z>0$, the minimum $-R_{z}$ moving average. (Remember that $a_{i} \geq 0$ and $\sum_{i=1} a_{i}=1$). Hence the optimal moving averages given in Theorem 3.7. generalize the well known optimal moving averages. The theorem also gives a generalization or Michalup's moving average, which we get for $a_{0}+a_{3}=1$.

We will have a thorough discussion of the case with uncorrelated observations with equal variance in the next chapter.
3.D. Theorem 3.7 gives moving averages which are optimal in the sense that they minimize EWMN $\underset{\sim}{\sim}$ in the class of moving averages with given range (α, β), centre τ and basis cp given by (3.1). It is now of interest to find the value (s) of $\tau, \alpha \leq \tau \leq \beta$, which minimize EW'TNW $\underset{\sim}{W}$. A value of T with this property will be called an optimal centre for moving averages with range (α, β) and basis φ as above.

The following corollary to Theorem 3.7 is of interest when we will find optimal centres.
 where $\underset{\sim}{r}$ is a moving average with range (α, β), centre τ and basis φ given by (3.1), is

$$
{\underset{\sim}{S}}_{a, C}(\tau){\underset{\sim}{n}}^{*}={\underset{\sim}{A}}^{\prime}(\tau)\left(\text { AS }^{-1}, C, A^{\prime}\right)^{-1} \underset{\sim}{A}(\tau),
$$

where $\mathbb{S}_{\mathrm{a}, \mathrm{C}}(T)$ is the $(T-\alpha+1)$-th column- (or row-) vector in the $I \times I$ matrix $\mathcal{S}_{a, C}$, and $\underset{\sim}{x^{*}}$ is the optimal moving average given in Theorem 3.7.
 by $\underset{\sim}{\sim}$ 룽 given by (3.8). Now we have
and the corollary is proved.
By this corollary $\tau^{*}, a \leq \tau^{*}<\beta$, is an optimal centre for moving averages with range (α, β) and basis φ as above if and only if

$$
{\underset{\sim}{A}}^{\prime}\left(\tau^{*}\right)\left(\underset{\sim}{A} S_{a}^{-1}, C \underset{\sim}{A}\right)^{-1} \underset{\sim}{A}\left(\tau^{*}\right)=\min _{\tau=0, \ldots, B^{A}}^{A^{\prime}}(\tau)\left({\underset{\sim}{A}}_{\sim}^{A}, C, C \underset{\sim}{A}\right)^{-1} \underset{\sim}{A}(\tau) .
$$

In the case $\underset{\sim}{\mathcal{\sim}}=\underset{\sim}{I}$ Corollary 3.9 shows that the minimum value of $\sum_{z=0}^{K} a_{z}\binom{2 z}{z} R_{z}^{2}$ is
(3.10) ${\underset{\sim}{\sim}}_{a}(\tau){\underset{\sim}{\sim}}^{*}=\sum_{z=0}^{K} a_{z}(-1)^{z} \delta^{2 z} r_{T}^{*}$.

This follows from (2.27) and the fact that

(3.10) generalizes Sheppard's (1912) result that for the minimumvariance moving averages we have $r_{T}^{*}=R_{0}^{2}$, and Grevillés (1947) result that for the minimum- R_{z} moving averages we have $(-1)^{z_{\delta}} 2 z_{r_{T}} *=\binom{2 z}{z} R_{z}^{2}$.

We will have a closer look at the choice of optimal centres for the case $\underset{\sim}{\mathcal{C}}=\underset{\sim}{I}$ in the next chapter.
3.E. It was known already by Sheppard (1912) that the smoothed values one gets by the minimum-variance moving averages are equivalent to the values one gets by the method of least squares (See e.g. Sverdrup, 1967, pp.347-351, for a thorough discussion of this.) Greville (1947, p.258) has generalized this result to the minimum- R_{z} moving averages.

Sheppard's result may be generalized also to the optimal moving averages given in theorem 3.7.

Theorem 3.12: Let $\underset{\sim}{\theta}$ be the $\underset{\sim}{\theta} \in \mathbb{R}^{m}$ which minimizes

$$
\left(\underset{\sim}{X}(t)-A_{\sim}^{\prime} \underset{\sim}{\theta}\right) \cdot{\underset{\sim}{N}}_{a, C}^{-1}\left(\underset{\sim}{X}(t)-A_{\sim}^{A} \underset{\sim}{\theta}\right) .
$$

Then we have

$$
\tilde{\xi}_{t}={\underset{\sim}{r}}^{\prime \prime} \underset{\sim}{X}(t)=A^{\prime}(T) \underset{\sim}{\hat{\theta}}
$$

Proof: It is well known (see e.g. Scheffe, 1959, pp.19-21) that

$$
\ddot{\sim}=\left(A S_{a}^{-1}, C A^{\prime}\right)^{-1}{\underset{\sim}{A}}^{A} S_{a}^{-1}, C \frac{X}{\sim}(t) .
$$

Thus, by (3.8), we have
3.F. We complete this chapter of the general theory of optimal moving averages by to useful corollaries to Theorem 3.7.

Corollary 3.13: $x=\left(r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}\right)$ is the unique optimal moving average given in Theorem 3.7. if and only if $\underset{\sim}{\sim}$ satisfies the following conditions:
i) There exists $\underset{\sim}{\underset{\sim}{\theta}} \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
{\underset{\sim}{S}}_{a,} C^{r} & =A_{\sim}^{\prime}{\underset{\sim}{\theta}}^{\theta} \\
\text { ii) }{\underset{\sim}{r}}^{\prime} A^{\prime} \underset{\sim}{\theta} & =A^{\prime}(\tau) \underset{\sim}{\theta} \text { for a.l1 } \underset{\sim}{\theta} \in \mathbb{R}^{m} .
\end{aligned}
$$

Proof: The necessity of the two conditions is trivial. We have to prove that they are sufficient. Suppose that i) and ii) are satisfied. Then there exists $\underset{\sim}{\underset{\sim}{1}} \in \mathbb{R}^{\text {mn }}$ such that

$$
\underset{\sim}{x}={\underset{\sim}{\sim}}_{a, C}^{-1} \subset \stackrel{A_{\sim}^{i \theta}}{\sim} 1 .
$$

We will find ${\underset{\sim}{\sim}}_{1}$. Prom ii) we have

$$
\underset{\sim}{\theta} A_{\sim}^{A} S_{a, C}^{-1} \underset{\sim}{A^{\prime}} \stackrel{\theta}{\sim}=A_{\sim}^{A}(\tau) \underset{\sim}{\theta}
$$

for all $\underset{\sim}{\theta} \in \mathbb{R}^{m}$, or equivalently

$$
{\underset{\sim}{~}}_{\sim}^{1}{\underset{\sim}{A} S_{a}^{-1}, C}_{A^{\prime}}^{\sim} A^{\prime}(T) .
$$

Thus, we have

$$
\underset{\sim}{\theta} \dot{1}=A_{\sim}^{\prime}(T)\left(A_{\sim}^{-1}, C A^{\prime}\right)^{-1}
$$

and

This proves that the conditions are sufficient.
Corollary 3.14: Let \mathcal{F} be the class of sequences $\left\{x_{\nu}\right\}$ which are solutions of the linear difference equation

$$
\begin{equation*}
\sum_{z=0}^{K} a_{z}(-1)^{2} \delta^{2 z} x_{\nu}=\sum_{i=1}^{m} \theta_{i} A_{i}(\nu) \tag{3.15}
\end{equation*}
$$

for some $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$. Suppose there exists a sequence $\left\{x_{v}^{*}\right\} \in \mathcal{G}$ such that

$$
\begin{aligned}
r_{\nu}^{*}=0 \text { for } \nu & =\alpha-K, \alpha-K+1, \ldots, \alpha-1, \\
& \text { and } \nu
\end{aligned}=\beta+1, \beta+2, \ldots, \beta+K, ~ l
$$

and

$$
\sum_{\nu=\alpha}^{\beta} I_{\nu}^{*} A_{i}(\nu)=A_{i}(\tau) \quad \text { for } i=1,2, \ldots, m
$$

Then $\underset{\sim}{r} r^{*}=\left(r_{\alpha}^{*}, r_{a+1}^{*}, \ldots, r_{B}^{*}\right)^{\prime}$ is the optimal moving average with range (α, β), centre τ and basis φ given by (3.1) for the case $\sum=\sigma^{2} I$.
Proof: It is sufficient to prove that ${\underset{\sim}{*}}^{*}$ satisfies i) and ii) in Corollary 3.13. Condition ii) is satisfied by assumption. Further, by (3.11) and $r_{\nu}^{*}=0$ for $\nu=\alpha-K, \ldots, \alpha-1, \beta+1, \ldots, \beta+K$, we find

$$
\begin{aligned}
& \underset{\sim}{S_{i}}{\underset{\sim}{r}}^{*}=\sum_{z=0}^{K} a_{z} \Delta_{z}^{i}{\underset{\sim}{\sim}}_{z}{\underset{\sim}{r}}^{*} \\
& =\sum_{z=0}^{\mathbb{K}} a_{Z}(-1)^{z}\left(\begin{array}{c}
\delta^{2 z_{r} \alpha} \\
\dot{a} \\
\delta^{2} z_{r \beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
\sum_{i=1}^{m} \theta_{1 i} A_{i}(\alpha) \\
\vdots \\
\sum_{i=1}^{m} \theta_{1 i} A_{i}(\beta)
\end{array}\right)=A_{\sim}^{a}{ }_{\sim}^{\theta} 1
\end{aligned}
$$

for some $\stackrel{\theta_{\sim}}{\sim}=\left(\theta_{11}, \theta_{12}, \ldots, \theta_{1 m}\right)$. Thus, $\left.i\right)$ is satisfied and the corollary is proved.
4. OPTIMAI NOVING AVERAGES WHEN THE OBSERVATIONS ARE UNCORRBIATED AITD HAVE IRQUAL VARIANCES.
4.A. In this chapter we use the general theory from the preceding chapter to find optimal moving averages when the observations are uncorrelated and have equal variances.

First we give some general results for this case. Then we give a brief review of some well known results for minimumvariance and minimun- R_{r} moving averages. We also find some new results. Of special interest is perhaps the discussion of optinal centres for minimum- R_{z} moving averages and that we find minimum- R_{2} roving averages exact for other functions than polynomials.* At last we discuss how we can construct optimal moving averages when more than one a_{z} in the loss function (2.4) is positive.

Throughout the chapter we assume $\sum=\sigma^{2} I$.
4.B. Suppose we have given a moving average $\underset{\sim}{r^{*}}=\left(r_{\alpha}^{*}, r_{\alpha+1}^{*}, \ldots, r_{\beta}^{*}\right)$ ' with range (α, β) and centre τ. Then we can define a new moving average $\underset{\sim}{\tilde{r}}=\left(\tilde{r}_{\beta}, \tilde{r}_{-\beta+1}, \ldots, \tilde{r}_{-\alpha}\right)$ ' with range $(-\beta,-\alpha)$ and centre $-\tau$ by
(4.1) $\quad \tilde{r}_{-\nu}=r_{\nu}^{*} ; \nu=\alpha, \alpha+1, \ldots, \beta$.

We will investigate the connection between these two moving averages.

We first give two lemmas

[^3]Lemma 4.2: Let $\underset{\sim}{r}{ }^{*}$ and $\underset{\sim}{\tilde{m}}$ be the moving averages given by (4.1). Then we have

$$
\sum_{\nu=\alpha-z}^{B}\left(\Delta^{z} r_{\nu}^{*}\right)^{2}=\sum_{\mu=-\beta-z}^{-\alpha}\left(\Delta^{z \tilde{r}_{\mu}}\right)^{2}
$$

for $z=0,1,2, \ldots$, where as usual $r_{\nu}^{*}=0$ for $\nu<\alpha$ or $\nu>\beta$ and $\tilde{r}_{\mu}=0$ for $\mu<-\beta$ or $\mu>-\alpha$.

Ierma 4.3: Let ${\underset{\sim}{r}}^{*}$ and $\underset{\sim}{\underset{\sim}{r}}$ be the moving averages given by (4.1). Then ${\underset{\sim}{r}}^{*}$ is exact for $t^{m}{ }^{t}$ if and only if $\underset{\sim}{\sim}$ is exact for $t^{m^{-}} \mathrm{c}^{-t}$.

The proofs of these Iemas are straightforward. (Compare, however, Lema 2.13 for the proof of Lema 4.3.) From these lemas and Corollaxy 2.25 we imediately have:

Theorem 4.4: Let $\underset{\sim}{r}=\left(r_{\alpha}^{*}, r_{\alpha+1}^{*}, \ldots, r_{\beta}^{*}\right)$, be the optimal moving average with range (α, β), centre τ and basis

$$
\varphi(t)=\sum_{j=1}^{p} \sum_{j n=0}^{h_{j}-1} \theta_{j m} t^{m_{C}}{ }_{j}^{t}
$$

Then $\underset{\sim}{r}=\left(\tilde{r}_{-\beta}, \tilde{r}_{-\beta+1}, \ldots, \tilde{r}_{-\alpha}\right)^{\prime}$ given by (4.1) is the optimal moving average with range $(-\beta,-\alpha)$, centre $-\tau$ and basis

$$
\Psi(t)=\sum_{j=1}^{p} \sum_{m=0}^{h_{j}-1} \rho_{j m} t^{m_{C}}{ }_{j}^{-t},
$$

and the two moving averages have the same value of

$$
\sum_{z=0}^{K} a_{z}\binom{2 z}{z} R_{z}^{2}
$$

Especially for optimal moving averages with range ($-\mathrm{k}, \mathrm{k}$) and polynomials as basis, the theorem shows that we by (4.1) easily can find those with centre $\tau<0$ from those with centre $\tau>0$. Thus, we may in this case concentrate on finding opti-
mal moving averages with centres $\tau \geq 0$. Furthermore, we see that if τ^{*} is an optimal centre, then $-\tau^{*}$ also is an optimal centre. At last, by letting $T=0$, we see that an optimal centralized moving average, exact for polynomials, is symmetric.
4.C. The minimum-variance moving averages, exact for polynomials, have been well known for a long time and are studied extensively in the Iiterature, compare Paragraph 1.D. Most authors, however, only discuss the centralized case. Exeptions are Greville (1947), Weichselberger (1964), Pollard (1971b) and Kockelkorn and Riiger (1974).

Weichselberger (1964) gives a thorough discussion of how one may find the minimum-variance moving averages of zange $(-k, k)$, centre τ and polynomials of degree m as basis, and he gives explicit formulas for the weights $x_{\nu T}^{(m)}$ for m up to five. (The formula Weichselberger gives for $m=5$ is somewhat wrong. The correct formula is given by Borgan, 1976, p. 84.) Weichselberger also discusses how one may find optimal centres. His result is that for $m=0$ all centres are equally good, for $m=1 \tau^{*}=0$ is the optimal centre and for $m=2$ the optimal centres are τ^{*} and $-\tau^{*}$, where $\tau^{*}=\left[\frac{(2 k+1)^{2}+1}{20}\right]$ or $\tau^{*}=\left[\sqrt{\frac{(2 k+1)^{2}+1}{20}}\right]+1$ depending on which gives the smallest value of $r_{T}^{(2)}$ (see Weichselberger, 1964, p. 223) . Trom this and numeric computations he conjectures that $\tau^{*}=0$ is the optimal centre when m is odd, while this is not the case for m even. Iater on Kockelkom and Riiger (1974, p. 326) have proved that $\tau^{*}=0$ is the optimal centre for $m=3$. Numeric computations by the present author for $m=4,5, \ldots, 9$ also indicates that Weichselberger's conjecture is true (see Borgan;

1976, pp. 84 - 87). We have, however, not succeeded in proving any general results in this direction.

In Table 4.20 we have given the optimal centres $\tau^{*} \geq 0$ for $m=2,4$ and different values of k. In Appendix C we give the weights of the centralized minimurn-variance moving averages, exact for cubics, for $k=3,4, \ldots, 10$. We also give the values of R_{z}^{2} for $z=0,1,2,3,4$ for the actual moving averages. More tables for the minimum-variance moving averages, exact for polynorials are given in Borgan (1976, Appendix B).
4.D. We will in this report also see how we may find minimum-variance moving averages when the basis has exponential terms, i.e. at least one $c_{j} \neq 1$ in (2.16). This problem was first discussed thoroughly by Jecklin and Strickler (1954). They, however, only discuss the centralized case. We will also see how we may find the optimal centres. We illustrate the technique by two examples:

The most used function for analytic graduation of mortality rates for adult ages, is the Gompertz-Makeham's formula (see e.g. Hoem, 1972, p. 569) :

$$
\alpha+\beta c^{t}
$$

where $\beta>0, c>1$ and $\alpha>-\beta c t_{\text {min }}$. For mortality rates c is usually close to 1.1. We will see how we may construct minimum-variance moving averages with this function as basis.

It is convenient here to use range (1,I) and centre
$\tau, 1 \leq \tau \leq 1$. By Corollary 3.13 the weights $r_{\nu T}$ for the minimum-variance moving averase are given uniquely by:

$$
r_{\nu_{T}}=a_{T}+b_{T} c^{\nu} ; \nu=1,2, \ldots, I,
$$

where a_{T} and b_{T} are found from the equations:

$$
\sum_{\nu=1}^{I} r_{\nu T}=1, \sum_{\nu=1}^{I} r_{\nu T} c^{\nu}=c^{\top}
$$

or equivalently

$$
a_{T} 1+b_{T} \sum_{\nu=1}^{I} c^{\nu}=1
$$

(4.5)

$$
a_{T} \sum_{\nu=1}^{I} c^{\nu}+b_{T} \sum_{\nu=1}^{I} c^{2 \nu}=c^{\top} .
$$

If we solve these equations for a_{τ} and b_{τ} and substitute the expression for $r_{\nu T}$, we find:
(4.6) $\quad r_{\nu \tau}=\frac{(1-c)\left[1-c^{21}-\left(c^{\tau-1}+c^{\nu-1}\right)\left(1-c^{I}\right)(1+c)+1 c^{\top+\nu-2}\left(1-c^{2}\right)\right]}{1\left(1-c^{2 I}\right)(1-c)-\left(1-c^{1}\right)^{2}(1+c)}$.

By the remark succeeding Corollary 3.9 the optimal centre τ^{*} is the value of τ which minimizes $r_{T f}$ 。 If we consider τ as a continuous variable we may differentiate $r_{\tau T}$ with respect to τ 。 We find:

$$
\frac{d r_{\tau T}}{d T}=\frac{2\left(1-c^{2}\right) c^{T-1} \log c\left[1 c^{T-1}(1-c)-\left(1-c^{I}\right)\right]}{1\left(1-c^{2 I}\right)(1-c)-\left(1-c^{1}\right)^{2}(1+c)},
$$

and hence $\frac{d r_{\tau T}}{d T}=0$ for
(4.7) $\quad T^{\#}=1+\frac{\log \frac{1-c^{1}}{1(1-c)}}{\log c}$.

Discussion of the sign of $\frac{d r \tau T}{d \tau}$ shows that $\tau^{\not \#_{i}^{\prime \prime}}$ is the value of T that minimizes $r_{\tau T}$. Thus the optimal centre is
$\tau^{*}=\left[\tau^{\text {H }}\right]$ or $\tau^{*}=\left[\tau^{H}\right]+1$ depending on which gives the smallest value or $r_{T}{ }^{*} T^{*}$ 。

1	5	7	9	11	13	15	17	19	21
1.06	3.1	4.1	5.2	6.3	7.4	8.5	9.7	10.9	12.1
1.08									
1.10	3.1	4.2	5.3	6.4	7.5	8.7	9.9	11.1	12.4
1.12	3.1	4.2	5.3	6.5	7.7	8.9	10.1	11.4	12.7
1.14	3.1	4.2	5.4	6.6	7.8	9.0	10.3	11.6	13.0

Table 4.8: The value of $T^{F_{i}^{\prime}}$ given in (4.7) for different values of c and I.

Table 4.8 gives $T^{\#}$ for different values of c and 1 . We see that for small values of c and I the centralized moving averages are optimal. If c or 1 (or both) increases the optimal centres also increase.

Jecklin and Strickler (1954, pp. 144 and 155) have given the centralized minimu-variance moving averages of length 5,7,9,11 and 13 when $c=1.10$. The optimal centres in this case are given in Table 4.23. (In the table we use range ($-k, k$) . Hence, to get the optimal centres corresponding to range (1,I) we have to add $k+1$ to the values given in the table.) We find that the centralized moving averages are best for $I=5,7,9,11$. For $I=13$, however, the optimal centre is $\tau^{*}=8$, and the corresponding moving average is

$$
\begin{aligned}
& (.06728, .06837, .06957, .07088, .07233, .07392, .07567, \\
& .07760, .07972, .08205, .08462, .08744, .09054),
\end{aligned}
$$

while the centralized minimum-variance moving average of length 13 is

$$
\begin{aligned}
& (.09467, .09267, .09047, .08804, .08538, .08245, .07922, \\
& .07567, .07177, .06743, .06276, .05756, .05185) .
\end{aligned}
$$

We notice that the weights for $T=8$ is strictly increasing and for $T=7$ (i.e. the centralized case) strictly decreasing. This is due to the following:

The weights are generally given by $r_{\nu T}=a_{T}+b_{T} c^{\nu}$, where a_{T} and b_{T} are the solutions of (4.5). Some computations now give

$$
\begin{array}{rlll}
& <0 & \text { for } & \tau<\tau^{\#} \\
\mathrm{~b}_{\mathrm{T}} & =0 & \text { for } & \tau=\tau^{\#} \\
& >0 & \text { for } & \tau>\tau^{\#},
\end{array}
$$

where $\tau^{\hbar_{j}}$ is given by (4.7). Thus, the weights $x_{\nu T}$ are strictly increasing if $\tau>\tau^{\#}$ and strictly decreasing if $T<\tau^{\#}$ 。 In the case considered above we find from Iable $4.8 T^{\#}=7.7$.

In Appendix C we have given the weights $r_{\nu T}{ }^{*}$ corresponding to the optimal centre τ^{*} for $I=7,9, \ldots, 21$ when $c=1.10$ (Also in the appendix we use range $(-k, k)$). We also give τ^{*} and the values of R_{z}^{2} for $z=0,1,2,3,4$ for the actual moving averages.

Jecklin and Strickler (1954, p.151) also give the centralized minimum-variance moving average of length 7 with basis $\alpha+\beta c^{t}+\delta t$ when $c=1.10$. We will have a closer look at this case. Then consider moving averages with range ($1, I$), centre τ and basis
as given above. By Corollary 3.13 the weights $r_{\nu T}$ of the minimu-variance moving average are given uniquely by
(4.9) $\quad r_{\nu T}=a_{T}+b_{T} c^{\nu}+a_{T} \nu ; \quad \nu=1,2, \ldots, I$,
where a_{T}, b_{T} and a_{T} are the solutjons of the equations

$$
a_{T} \mathcal{I}+b_{T} \sum_{\nu}^{\nu}+a_{T} \sum_{\nu}=1
$$

(4.10) $\quad a_{\tau} \sum_{\nu} c^{\nu}+b_{\tau} \sum_{\nu} c^{2 \nu}+a_{\tau} \sum_{\nu} \nu c^{\nu}=c^{\top}$

$$
a_{T} \sum_{\nu} \nu+b_{\tau} \sum_{\nu} \nu c^{\nu}+a_{\tau} \sum_{\nu} \nu^{2}=\tau .
$$

From (4.9) and (4.10) we easily find the minimum-variance moving average for different values of c, I and T. From this we may also find the optimal centre τ^{*}. For example for $I=7$ and $c=1.10$, which is the case Jecklin and Strickler (1954) consider, we find the optimal centre $\tau^{*}=3$ and the corresponding moving average

$$
(.0895, .2082, .2722, .2760, .2135, .0781,-.1375),
$$

while the centralized minimu-variance moving average ($\tau=4$) is

$$
(-.0853, .1343, .2760, .3321, .2940, .1523,-.1034) .
$$

We note that the technique used above also will give minimum-variance moving averages with basis for example $\alpha+\beta c_{1}{ }^{t}+\gamma c_{z}{ }^{t}$ or $\alpha+\beta c^{t}+\gamma t+\delta t^{2}$. In each case we only have to solve a system of linear equations similar to (4.10). This is easily done with modern computing equipment.
4.E. The minimum-R R_{z} moving averages, exact for polynomials, are discussed e.g. by Greville (1947, 1972) and Pollard (1971a, 1971b). Like most authors Greville (1972) and Pollard
(1971a) only discuss the centralized case. A treatment of the non-centralized case is given by Greville (1947) and Pollard (1971b). By different techniques they find non-centralized minimum- R_{z} moving averages exact for polynomials. Greville (1947, p. 257) find a general expression for the minimurn-R z_{z} moving average with range $(0, n-1)$, centre τ and polynomial of degree m as basis. In Greville (1948, pp. 13-30) he uses this to give tables of the minimum $-\mathrm{R}_{3}$ and $-\mathrm{R}_{4}$ moving averages of different lengths and centres when $m=3$ 。 Pollard (1971b) uses a technique similar to that we will give below.

Neither Greville (1947) nor Pollard (1971b), however, discuss optimal centres in connection with the non-centralized moving averages. As far as the present author knows, the only example in the literature of a non-centralized minimum- R_{z} moving average that is better than the corresponding centralized one is given by Greville (1974, pp. 395-396). (In this connection we exclude the minimum- R_{o} or minimum-variance moving averages, compare Paragraph 4.C.) We will see below that a non-centralized moving average usually is best when we use polynomials of even degree as basis.

We now proceed to see how we may find the minimurn $-R_{z}$ moving averages, exact for polynomials, from the theory given in Chapter 3. The following theorem, which is a generalization of a theorem of Greville (1972, p.9) and a result of Pollard (1971b, p.8), is an easy consequence of Corollary 3.14 and the theory of linear difference equations (see e.g. Henrici; 1964, pp. 137-140).

$$
\begin{align*}
& \text { Theorem 4.11: The minimum- } R_{z} \text { moving average of range } \\
& (\alpha, \beta) \text {, centre } T \text { and polynomials of degree } m \text { as basis is } \\
& \text { given uniquely by } \\
& (4.12) \quad r_{\nu T}(m)=c_{o T}+c_{1 \tau} \nu+\ldots+c_{2 z+m, \tau^{\nu} \nu^{2 z+m} ;} \\
& \nu=\alpha, \alpha+1, \ldots, \beta \text {, where the } c_{i T} \text { 's are given by } \\
& (4.13) \quad r_{\nu T}(m)=0 \text { for } \nu=\alpha-z, \ldots, \alpha-1 \tag{4.13}
\end{align*}
$$

and
(4.14) $\sum_{\nu=\alpha}^{\beta} r_{\nu T}^{(m)} \nu^{p}=T^{p} ; p=0,1, \ldots, m$.

This theorem gives us a procedure for computing the minimum- R_{z} moving average of range (α, β), centre τ and polynomials of degree m as basis. We first find the $c_{i r}$'s as solutions of the $2 z+m+1$ Iinear equations (4.13) and (4.14) and thereafter the weights $r_{\nu T}(m)$ by (4.12).

By this method we have computed the minimum- R_{z} moving averages of range $(-k, k)$ for $z=1,2,3,4 ; m=1,2,3,4 ; k=3,4, \ldots, 10$ and all centres $T \geq 0$. Those with centres $T<0$ are found by the remark succeeaing Theorem 4.4. Also in this case we want to find the optimal centre (or centres) τ^{*}, i.e. the value of τ which minimizes $R_{z}^{2}=(-1)^{z} \delta^{2 z} r_{\tau}(\underline{m})$ (compare (3.10)). The Figures $4.15-4.19$ show how R_{3}^{2} varies with τ for the minimum- R_{3} moving averages for $m=1,2,3,4,5$ when $k=10$. The figures also give the weights $r_{\nu T}^{(m)}$ corresponding to the optimal centre $\tau^{*} \geq 0$. (Similar figures for $z=1,2,4$ are given in Borgan, 1976, Appendix A.)

As for the minimum-variance moving averages the optimal centre is $T^{*}=0$ for $m=1,3,5$ (for the values of k and z we have considered). However, for $m=2,4$ the centralized moving averages are not the best. Table 4.20 gives the optimal centres $\tau^{*} \geq 0$ in these cases for different values of z and k.

In Appendix C we have given the weights of the centralized minimum $-R_{z}$ moving averages, exact for cubies, for $k=3,4, \ldots, 10$ and $z=1,2,3,4$. We also given the values of R_{z}^{2} for $z=$ $0,1,2,3,4$ for the actual moving averages. More tables for the minimum- R_{z} moving averages, exact for polynomials, are given in Borgan (1976, Appendix B).

Figure 4.15: $10^{3} \cdot R_{3}^{2}$ as a function of T for the minimum- R_{3} moving averages with range $(-10,10)$ and polynomials of degree one as basis (dotted line) and the weights $r_{\text {vo }}(1)$ corresponding to the optimal centre (drawn line).

Figure 4.16: $10^{3} \cdot R_{3}^{2}$ as a function of T for the minimum $-R_{3}$ moving averages with range $(-10,10)$ and polynomials of degree two as basis (dotted line) and the weights r_{v} (2) corresponding to the optimal centre (drawn line).

Figure 4.17: $10^{3} \cdot R_{3}^{2}$ as a function of T for the minimum $-R_{3}$ moving averages with range $(-10,10)$ and polynomials of degree three as basis (dotted line) and the weights $r_{\nu}^{(3)}$ corresponding to the optimal centre (drawn line).

Figure 4.18: $10^{3} \cdot R_{3}^{2}$ as a sunction of T for the minimum- R_{3} moving averages with range $(-10,10)$ and polynomials of degree four as basis (dotted line) and the weights $r_{v 2}^{(4)}$ corresponding to the optimal centre (drawn line).

Figure 4.19: $10^{3} \cdot \mathrm{R}_{3}^{2}$ as a function of T for the mintmum- F_{3}
moving averages with range $(-10,10)$ and polynomials of degree five as basis (dotted Iine) and the weights $\mathrm{r}_{\mathrm{y}}(5)$ corresponding to the optimal centre (drawn line).

z	0		1		2		3		4	
	2	4	2	4	2	4	2	4	2	4
3				1		1	1	1		1
4	2	1	2	1	2	1	2	1		1
5	2			1	2	1	2	1		1
6	3	2	3	2	2	2	2	2		1
7	3			2		2	3	2		2
8						2	3	2	3	2
9		3			3	2	3	2		2
10					4	3				2

Table 4.20: The optimal centres $\tau^{*} \geq 0$ for the minimum- R_{Z} moving averages of range $(-k, k)$ and polynomial of degree m ar basis.
4.F. In this paragraph we will see how we may find minimumR_{z} moving averages with oxponential basis. As an example we shall find the minimum- R_{r} moving averages exact for GompertzMakeham's function. Other exponential bases inay be treated in a similar way.

We will use the same technique as in the preceding paragraph. From Corollary 3.14 and the theory of linear difference equations wo find that the minimum- R_{z} moving average with range $(-k, k)$, centre τ and Gompertz-Makeham's fommula, $\alpha+\beta c^{t}$, as basis is given by
(4.21) $r_{\nu T}=c_{0 \tau}+c_{1 \tau} \nu+\ldots+c_{2 z, \tau} \nu^{2 z}+c_{2 z+1, \tau} c^{\nu}$,
where the $c_{i \tau}$'s are the unique solutions of the equations

$$
\sum_{\nu=-k}^{k} r_{\nu T}=1
$$

(4.22) $\sum_{\nu=-k}^{k} r_{\nu \tau} c^{\nu}=c^{\top}$

$$
r_{\nu T}=0 ; \nu= \pm(k+1), \pm(k+2), \ldots, \pm(k+z) .
$$

Thus, we may find the actual minimum- R_{z} moving averages from (4.21) and (4.22) for different values of c, k and T.

We have computed the minimum- R_{z} moving averages for $z=1,2,3,4$ and $k=3,4, \ldots, 10$ when $c=1.10$ for all centres. The optimal centres in these cases are given in Table 4.23. We note that the centralized moving averages not are the best in general. Figure 4.24 shows how R_{Z}^{2} varies with τ for $z=1$ and $k=5$. The figure also gives the weights $r_{\text {vo }}$ corresponding to the optimal centre $\tau^{*}=0$. (Similar figures for $z=2,3,4$ are given in Borgan, 1976, pp. 113-114). In Appendix C we have given the weights $r_{\nu T}{ }^{*}$ corresponaing to the optinal centre τ^{*} for $z=1,2,3,4$ and $k=3,4, \ldots, 10$ when $c=1.10$. We also give τ^{*} and the values of R_{z}^{2} for $z=0,1,2,3,4$ for the actual moving averages.

k	0	1	2	z	
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	1	0	0	0	0
7	1	1	0	0	0
8	1	1	1	0	0
9	1	1	1	1	1
10	2	1	1	1	1

Table 4.23: Optimal centres for minimum R_{z} moving averages with range $(-k, k)$ and basis $\alpha+\beta(1.1)^{t}$.

Figure 4.24: $10 \cdot R_{1}^{2}$ as a function of T for the minimum- R_{1} moving averages with range $(-5,5)$ and basis $\alpha+\beta(1.1)^{t}$ (dotted line) and the weights $r_{\text {vo }}$ corresponding to the optimal centre (drawn line).
4.G. The only example in the literature on moving averages which minimize $\sum_{z=0}^{K} a_{z}\binom{2 z}{z} R_{z}^{2}$ when more than one a_{z} is positive is given by Michalup (1956). He finds the symmetric moving averages of length 5,7 and 9, exact for cubics, which minimize $A R_{0}^{2}+B R_{j}^{2}$. In this paragraph we will discuss how we in general may find the optimal moving averages when more than one a_{z} is positive. It is convenient to discuss the cases $a_{0}+a_{1}=1$ and $a_{z}>0$ for some $z \geq 2$ separately.

When $a_{0}+a_{1}=1$ and $a_{0}, a_{1}>0$ we may find the optimal moving averages by Corollary 3.14. The linear difference equation (3.15) may now be written (4.25) $\left(a_{0}-a_{1} \delta^{2}\right) x_{\nu}=\sum_{i=1}^{m} \theta_{i} A_{i}(\nu)$.

Some simple computation shows that the corresponding homogenous equation has the general solution

$$
c_{1} z_{1}^{\nu}+c_{2} z_{2}^{\nu}
$$

where

$$
(4.26) \quad z_{1,2}=\frac{1}{2}\left(1+\frac{1}{a_{1}} \pm \sqrt{\left.\frac{2}{a_{1}}+\frac{1}{a_{1}^{2}}-3\right)} .\right.
$$

Thus, the optimal moving average with range ($-k, k$) , centre τ and polynomials of degree m as basis is given by
 where the $c_{i \tau}$'s are given by:

$$
\begin{aligned}
& \sum_{\nu=-k}^{k} r_{\nu \tau}^{(m)} \nu^{p}=\tau^{p} ; p=0,1, \ldots, m \\
& r_{\nu \tau}^{(m)}=0 ; \nu= \pm(k+1) .
\end{aligned}
$$

Further, the optimal moving average with range ($-\mathrm{k}, \mathrm{k}$) , centre T and $\alpha+\beta c^{t}$ as basis is given by $\left(a_{1} \neq c /\left(c^{2}-c+1\right)\right)$ (4.28) $r_{\nu T}=c_{O T}+c_{1 T} c^{\nu}+c_{2 T^{2}}{ }^{\nu}+c_{3 T} z_{2}{ }^{\nu}$, where the $c_{i \tau}$'s now are giver by

$$
\begin{aligned}
& \sum_{\nu=-k}^{k} r_{\nu T}=1 \\
& \sum_{\nu=-k}^{k} r_{\nu T} c^{\nu}=c^{\top} \\
& r_{\nu T}=0 ; \nu= \pm(k+1)
\end{aligned}
$$

We have computed the moving averages given by (4.27) for different values of a_{1}, k and m. As for the minimum-variance and minimum $-\mathrm{R}_{\mathrm{z}}$ moving averages the optimaj centre is $T^{*}=0$ for $m=1,3,5$ (for the values of k and a_{1} we have considered) while the centralized moving averages not are the best for $m=2,4$. In Appendix C we have given the weights corresponding to the optimal centre $\tau^{*}=0$ for $k=3,4, \ldots, 10$ when $m=3$ and $a_{1}=0.75$. We have also given the values of R_{z}^{2} for $z=0,1,2,3,4$ for the actual moving averages. Similar tables for $m=1,2,4,5$ are given in Borgan (1976, Appendix B).

We have also computed the moving averages given by (4.28) for different values of a_{1} and k when $c=1.0$. In Appendix C we have given the weights $r_{\nu T}{ }^{*}$ corresponding to the
optimal centre T^{*} for $k=3,4, \ldots, 10$ when $a_{1}=0.75$. We have also given T^{*} and the values of \mathbb{R}_{z}^{2} for $z=0,1,2,3,4$ for the moving averages.

The technique used above is not useable in general when $a_{z}>0$ for some $z \geq 2$. This is due to the fact that we usually not are able to find the general solution of the linear homogenous difference equation

$$
\sum_{z=0}^{K} a_{z}(-1)^{z} \delta^{2 z} x_{v}=0
$$

corresponding to (3.15).
Therefore, in this case, we have to find the optimal moving averages directly by Theorem 3.7. According to this theorem the optimal moving average with range (α, β), centre τ and basis $\sum_{i=1}^{m} \theta_{i} A_{i}(t)$ is given uniquely by (4.29) $X^{*}={\underset{\sim}{S}}_{a}^{-1} \underset{\sim}{A^{\prime}}\left(\underset{\sim}{A}{\underset{\sim}{S}}_{a}^{-1}{\underset{\sim}{A}}^{\prime}\right)^{-1} \underset{\sim}{A}(T)$,
where ${\underset{\sim}{S}}_{\text {a }}$ is given by (2.27) and A and $A(T)$ are given in paragraph 3.B.

By means of modern electronic computors the optimal moving averages may be computed directly from (4.29) with high accuracy ${ }^{*}$.

We have found the moving averages with range ($-k, k$), centre τ and polynomials of degree m as basis which minimize $\sum_{z=0}^{K} a_{z}\binom{2 z}{z} R_{z}^{2}$ for different values of k, T, m and

* When CDC CYBER 74, University of Oslo, was used minimurn $-R_{z}$ moving averages computed as described in the paragraphs 4.E. ${ }^{Z}$ and 4.F. and directly by (4.29) agreed in all 6 decimals. given.
$a_{0}, a_{1}, \ldots, a_{K}$. Also in these cases we find that $\tau^{*}=0$ is the optimal centre when $m=1,3,5$, while the centralized moving averages not are the best for $m=2,4$. In Appenaix C we have given the weights corresponding to the optimal centre $\tau^{*}=0$ for $k=3,4, \ldots, 10$ when $m=3$ and $\left(a_{0}, a_{3}\right)=$ (0.10, 0.90). We have also given the values of R_{z}^{2} for $z=0,1,2,3,4$ for the actual moving averages. Similar tables for $m=1,2,4,5$ and for other values of the a_{z} 's are given by Borgan (1976, Appendix B).

We have also computed the optimal moving averages with range $(-k, k)$, centre τ and Gompertz-Makeham's formula, $\alpha+\beta c^{t}$, with $c=1.10$, as basis for different values of k, T and $a_{0}, a_{1}, \ldots, a_{K}$. In Appendix C we have given the weights $r_{\nu T}{ }^{*}$ corresponding to the optimal centre T^{*} for $k=3,4, \ldots, 10$ when $\left(a_{0}, a_{3}\right)=(0.25,0.75)$. We have also given τ^{*} and the values of R_{z}^{2} for $z=0,1,2,3,4$ for the actual moving averages. Tables for other values of the a_{z} 's are given by Borgan (1976, Appendix B).
5. CONPARISON OF DIFFERENT MOVING AVERAGES.
5.A. In this chapter we discuss a sort of "robustness" of different moving averages when the observations are uncorrelated and have equal variance. That is, we discuss how given moving averages perform according to different criteria of optimality (i.c. different values of the a_{z} 's in (2.4)). For this purpose we introduce the R_{z}-efficiency defined in Paragraph 5.B, and we use this and Monte-Carlo experiments to compare different optimal moving averages, exact for cubics, of length 21 and different optimal moving averages of length 11 with Gompertz-Makcham's function as basis. The first moving averages are also compared with the Spencer 21-term formula, which is found to be approximately equal to the corresponding minimumR_{5} moving average.
5.B. In Paragraph 2.C. we found that a_{0} in the loss function (2.4) is a weight for the "fit", a_{1} a weight for the "gradient", $a_{2} a$ weight for the "curvature", etc. Furthermore, when $\sum=\sigma^{2} I$ we have by (2.26):

$$
E W^{\prime}{ }_{\sim}^{N} a_{a} W=\sigma^{2} \sum_{z=0}^{k} a_{z}\binom{2 z}{z} R_{z}^{2} .
$$

Thus, if we have a reasonable choice of the basis, the quantities $R_{z}^{2}, z=0,1,2, \ldots$ measure how a moving average reproduces different properties of the trend $\left\{\xi_{t}\right\}$. A measure of the relative size of R_{z}^{2} for a given moving average is now the R_{z}-efficiency defined by:

Definition 5.1: Let $\underset{\sim}{r}=\left(r_{\alpha}, r_{\alpha+1}, \ldots, r_{\beta}\right)$ be a moving average with range (α, β), centre T and given basis, and let
${\underset{\sim}{r}}^{*}=\left(r_{\alpha}^{*}, r_{\alpha+1}^{*}, \ldots, r_{\beta}^{*}\right)^{\prime}$ be the minimum- R_{z} moving average with the same range and basis and optimal centre T^{*} 。

Then the R_{z}-efficiency of \mathbb{Z} is given by

$$
\begin{equation*}
e_{z}(\underset{\sim}{r})=\frac{\sum_{\nu=\alpha-z}^{\beta}\left(\Delta^{z} r_{\nu}^{*}\right)^{2}}{\sum_{\nu=\alpha-z}^{\beta}\left(\Delta^{z_{r}} r_{\nu}\right)^{2}} \tag{5.2}
\end{equation*}
$$

The R_{z}-efficiency defined by (5.2) generalizes the "errorreducing efficiency" and the "smootming efficiency" defined by Pollard (1971a, p. 22). These correspond to $\sqrt{e_{0}(r)}$ and $\sqrt{e_{3}(r)}$ respectively.
5.C. We will compare different centralized moving averages, exact for cubics, of length 21. The actual moving averages are the minimu-variance moving average, the minimum- R_{z} moving averages for $z=1,2,3,4$, the optimal moving averages for $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ and $\left(a_{0}, a_{3}\right)=(0.1,0.9)$, and the Spencer's 21-term formula (1.3). The weights r_{ν} of these moving averages are given in Figure 5.3.

The figure shows that the curve for the weights of the Spencer's 21-term formula has the same shape as the curve for the minimurn- R_{z} moving averages for $z=1,2,3,4$, but it is more peaked. Because of this we have also compared the Spencer's 21-term formula with the centralized

Figure 5.3: The weights of different centralized moving averages, exact for cubics, of length 21.
minimum- R_{5} moving average, exact for cubics, of length 21. The weights of these two moving averages are given in Table 5.4. We find that the two moving averages are approximately equal.

We will now have a closer look at the R_{z}-efficiencies of the different moving averages. These are given in Table 5.5. First we note that the R_{z}-efficiencies for the minimum-variance moving average are very low for $z>0$. This indicates that this moving

ν	0	± 1	± 2	± 3	± 4	± 5	± 6	± 7	± 8	± 9	± 10
Spencer	.1714	.1629	.1343	.0943	.0514	.0171	-.0057	-.014	-.0143	-.0086	-.0029
${\text { min }-R_{5}}$.1745	.1638	.1346	.0939	.0153	.0158	-.0069	-.0157	$-.01494-.0077$	-.0022	

Table 5.4: The weights of Spencer's 21-term formula and the corresponding minimum- R_{5} moving average.

	0	1	2	3
Min-var	1.000	0.533	0.065	0.007
Min-R1	0.937	1.000	0.587	0.112
$\mathrm{Min}-\mathrm{R}_{2}$	0.866	0.877	1.000	0.635
$\operatorname{Min}-\mathrm{R}_{3}$	0.813	0.736	0.856	1.000
$\mathrm{Min}^{\left(\mathrm{R}_{4}\right.}$	0.774	0.633	0.681	0.850
$\left(a_{0}, a_{1}\right)=(0.25,0.70)$	0.971	0.933	0.306	0.048
$\left(a_{0}, a_{3}\right)=(0.10,0.90)$	0.891	0.913	0.898	0.500
Spencer	0.751	0.577	0.576	0.591

Table 5.5: $\quad R_{z}$-efficiencies for some centralized moving averages, exact for cubics, of length 21.
average will perform unsatisfactorily if we are interested in estimating the trend $\left\{\xi_{t}\right\}$ as a sequence, and not only in getting a good estimate of ξ_{t} for each t. We get significantly higher R_{1} - and R_{2}-efficiencies, and only slightly lower R_{o}-efficiencies, if we use the optimal moving average with $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ instead of the minimum-variance moving averages. Thus, we will expect the optimal moving average with $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ to give nearly as good "fit" as the minimum-variance moving average, and much better reproduction of the gradient and the
curvature of the trend $\left\{\xi_{t}\right\}$. The same conclusions are valid for the minimum- R_{1} moving average, which has somewhat lower $R_{0}{ }^{-}$ efficiency and higher R_{1} - and R_{2}-efficiencies. Summed up, the minimum-variance moving average is little "robust" to other criteria of optimality, while the other two moving averages are more "robust"。

Greville (1972) and Pollard (1971a, p.22) claim that the minimum- R_{3} moving average is the best for "smoothing" purposes. Table 5.5 shows that this moving average has rather low values for the R_{0} - and R_{1}-efficiencies. Thus, oven if this moving average will produce a "smooth" curve, we will expect it to give a rather bad "fit" and especially an unsatisfactory reproduction of the gradient. If we instead use the optimal moving average with $\left(a_{0}, a_{3}\right)=(0.1,0.9)$ we get a reasonable high R_{3}-efficiency and much better values of the $R_{0}-$ and R_{1}-efficiencies.

Further, we see from Table 5.5 that our objections against the minimum- R_{3} moving average are even more valid for the minimum- R_{4} moving average and Spencer's 21-term formula.

To see how the actual moving averages perform in practical work, and to test our reasoning above, we have done some MonteCarlo experiments. On an electronic computer (CDC 3300, University of Oslo) we have generated independent and nomally distributed "observations" $X_{0}, X_{1}, \ldots, X_{100}$ with equal variance σ^{2} and

$$
\xi_{t}=E X_{t}=0.0001 t^{3}-0.02 t^{2}+t
$$

$t=0.1, \ldots, 100$. Then we have graduated these "observations" by the moving averages given above. Results for a randomly
drawn experiment when $\sigma=1.5$ are given in Figure $5.6 \mathrm{a}-\mathrm{h}$ 。
The Monte Carlo experiments confirm the conclusions we gave from the discussion of the R_{z}-efficiencies. Typically the minimum-variance moving average produces a somewhat ragged curve, while the minimum $-R_{3}$ and R_{4} moving averages and the Spencer's 21-term formula give "smooth" curves that badly follow the trend $\left\{\xi_{t}\right\}$. By eyeball-inspection the minimum- R_{1} moving average and the optimal moving averages with $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ and $\left(a_{0}, a_{3}\right)=(0.1,0.9)$ give the best results if the purpose of the graduation is more than estimating ξ_{t} for each t.

Figure 5.6.a: Independent normally distributed "observations" with expected value $\xi_{t}=0.0001 t^{3}-0.02 t+t$ (drawn Iine) and standard deviation 1.5 graduated by means of the centralized minimum-variance moving average, exact for cubics, of length 21 (dotted line).

Figure 5.6.b: Graduated by means of the centralized minimum- R_{1} moving average, exact for cubics, of length 21.

Figure 5.6.c: Graduated by means of the centralized minimum $-R_{2}$ moving average, exact for cubics, of length 21.

Figure 5.6.d: Graduated by means of the centralized minimum- R_{3} moving average, exact for cubics, of length 21.

Figure 5.6.e: Graduated by means of the centralized minimum $-R_{4}$ moving average, exact for cubics, of lenght 21.

Figure 5.6.f: Graduated by means of the centralized optimal moving average with $\left(a_{0}, a_{1}\right)=(0.25,0.75)$, exact for cubics, of length 21.

Figure 5.6.g: Graduated by means of the centralized optimal moving average with $\left(a_{0}, a_{3}\right)=(0.1,0.9)$, exact for cubics, of length 21.

Figure 5.6.h: Graduated by means of Spencer's 21-term formula.
5.D. We will also compare different centralized moving averages of length 11 with basis $\alpha+\beta(1.1)^{t}$. The actual moving averages are the minimum-variance moving average, the minimum- R_{z} moving
averages for $z=1,2,3,4$ and the optimal moving averages for $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ and $\left(a_{0}, a_{3}\right)=(0.25,0.75)$. The weights of these moving averages are given in Figure 5.7.

Figure 5.7: The weights of different centralized moving averages of length 11 with basis $\alpha+\beta(1.1)^{t}$.

Moving average	0	1	2	3
Min-var.	1.000	0.442	0.065	0.011
Min-R	0.902	1.000	0.585	0.153
Min-R	0.816	0.852	1.000	0.680
$M i n-R_{3}$	0.760	0.700	0.851	1.000
$M i n-R_{4}$	0.722	0.600	0.677	0.858
$\left(a_{0}, a_{1}\right)=(0.25,0.75)$	0.951	0.913	0.309	0.067
$\left(a_{0}, a_{3}\right)=(0.25,0.75)$	0.870	0.933	0.785	0.374

Table 5.8: R_{z}-efficiencies for some centralized moving averages of length 11 with basis $\alpha+\beta(1.1)^{t}$.

As in Paragraph 5.C we will study the R_{z}-efficiencies for the actual moving averages. These are given in Table 5.8. We find a high resemblance between the R_{2}-efficiencies of Table 5.5 and Table 5.8. In this case as well the R_{z}-efficiencies for the minimun-variance moving average are very low for $z>0$, and for the minimum- R_{z}, noving average rather low for $z=0$ and $z=1$. The optimal moving averages with more than one $a_{z}>0$ give intermediate values for the R_{z}-efficiencies.

Also in this case we have made some Monte Carlo experiments. On an electronic computer we have generated independent and normally distributed "observations" $X_{30}, X_{31}, \ldots, X_{70}$ with equal variance σ^{2} and expected values

$$
\xi_{t}=0.9+0.044(1.1)^{t} .
$$

Then we have graduated these "observations" by the moving averages given above. Results for a randomly drawn experiment when $\sigma=2.0$ are given in Appendix B.

The Monte Carlo experiments give results similar to those given in Paragraph 5.C. In this case as well the minimum-variance moving average gives a somewhat ragged curve, while the minimum $-R_{3}$ and $-R_{4}$ moving averages produce "smooth" curves that do not follow the trend $\left\{\zeta_{t}\right\}$ too well. Only in this situation the rapidly increasing trend to some extent eliminates the difference between the actual moving averages. By eyeballinspection the minimum- R_{1} moving average and the optimal moving averages for $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ and $\left(a_{0}, a_{3}\right)=(0.25,0.75)$ give the best result if the purpose of the graduation is more than estimating ξ_{t} for each t.
6. CONCLIDING REMARKS.
6.A. In the present report we have discussed how to choose the weights r_{ν} for a moving average, and we have found optimal moving averages which generalize the well-known minimum-variance and minimum- R_{z} moving averages. Furthermore, the comparison of the different moving averages in Chapter 5 indicates that our generalization of the usual criteria of optimality is not only or theoretical, but also of practical interest.

However, many problems remain to be solved. We have only discussed in detail the situation with uncorrelated observations with equal variance. A more thorough discussion of other co-variance-structures would be of interest e.g. in connection with graduation of mortality tables. Iven when the observations are uncorrelated and have equal variance, several problems are unsolved. The most important of these are:
i) By numeric methods we have found the optimal centre(s) for all the situations we have considered. Analytically we have only been able to do this in some situations for the minimum-variance moving averages. The numeric computa. tions, however, indicate that Weichselberger's conjecture (see page 30) is true, not only for the minimum-variance, but for the optimal moving averages in general. Hence, our conjecture is: When the observations are uncorrelated and have equal variance the optimal centre is $T^{*}=0$ for all optimal moving averages of range $(-k, k)$ and with polynomials of odd degree as basis.
ii) For graduation of mortality tables it seems natural to use the Gompertz-Maheham's function as basis. For most
other situations there does not exist a natural basis. Therefore, one problem is to find a rule for choosing between different bases.
iii) A given trend may be approximated by polynomials of different degrees over intervals of different lengths. Hence, polynomials of different degrees may be used as basis when we graduate by moving averages. It is of interest to find which degree of the polynomials that give the best result. Kockelkorn and Rüger (1974, pp.327-328) discuss this problem for the minimum-variance moving averages. They compute which lengths of moving averages with optimal centre, exact for polynomials of different degrees, that give the same value of $\mathbb{E W} \xrightarrow{T} \underset{\sim}{W}=r_{T T}^{(m)}$ (compare Paragraph 4.C). From this they conclude that polynomials of first and third degree as basis should be preferred to polynomials of second degree. For example, the minimum-variance moving averages, exact for polynomials of first, second and third degree, of lengths 7, 13 and $15-17$ respectively, have approximately the same value of $r_{T T}^{(m)}$. The corresponding values for the minimum- R_{1} moving averages are $7,11-13$ and 15 and for the minimum- R_{2} and $-R_{3}$ moving averages 7,11 and 13. Mhese, and similar computations, indicate that it is convenient to use polynomials of third degree as basis. This is, in fact, also usvally done in practical work. There are, however, necessary to investigate this problem more closely.
iv) By the moving average (1.1) we do not get estimates of ξ_{t} for the end values of t, i.e. for $t=1,2, \ldots, T-\alpha$
and $t=N+T-\beta+1, \ldots, N$. Quite a lot of methods to solve this problem have been proposed in the Iiterature. References to such works are given e.g. by Weichselberger (1964, pp.208-214). By all the proposed methods one estimates ξ_{t} for the end values by a linear combination of the $X_{t}{ }^{\prime}$ s, but the weights are now allowed to depend on t. Thus, the problem is to find which weights to use for the different end values. According to the discussion in Paragraph 2.C. it is in this case natural to judge the graduation by a loss function of the form
where now $\underset{\sim}{\underset{\xi}{\hat{g}}}=\left(\hat{\xi}_{1}, \hat{\xi}_{2}, \ldots, \hat{\xi}_{\text {II }}\right)$ and $\underset{\sim}{a}=\left(a_{0}, a_{1}, \ldots, a_{\text {KI }}\right)$ is a vector of non-negative real numbers such that
$\sum_{\Omega=0} a_{z}=1$. The criterion of optimality given in Paragraph 3.B is easily generalized to the present situation. For $a_{0}=1$ the method proposed by Weichselberger (1964) is optimal. By this method one uses the usual minimum-variance moving average with optimal centre for the central values of t, and for the end values one uses the minimum-variance moving average with the one of the possible centres T that minimjze $r_{\tau T}$ For $a_{z}=1$ Greville (1947) proposed, analogous to the method given above, to estimate ξ_{t} for the end values of t by non-centralized minimum- R_{3} moving averages. As Greville (1972, pp. 17-18) himself points out, this does not give a correct solution of the end value problem. When $a_{z}>0$ for some $z>0$ in (6.1) it is not easy to find the optimal method for estimating
${ }^{\prime}{ }_{t}$ for the end values. The difficulty is that we do not get a result analogous to (2.19) when the weights in the moving averages may depend on t. Therefore, we do not know how to get an optimal solution of the end value problem according to (6.1) when $a_{z}>0$ for some $z>0$. 6.B. To conclude the report we will point out that there exists quite a lot of graduation methods in addition to graduation by moving averages (compare Paragraph 1.B). In many situations some of these are probably better graduation methods than moving average graduation. The last method, however, has the advantage that it is easy to use, and that it requires only little apriori knowledge of the trend and the distribution of the X_{t} 's. In this respect graduation by moving averages is a robust method similar to the non-parametric methods.

$A C E N O W E D G E M E N T S$

The present report is a revised version of the author's Cand. Real. Thesis from the Institute of Mathematics, University of Oslo. The work on the thesis was done under the supervision of Professor Jan M. Hoem. I want to thank Hoem for his valuable assistance and helpful suggestions during the work on the thesis.

I also want to thank Knut Liestøl for his assistance with the Monte Carlo experiments and Ragnar \mathbb{H} Norberg for reading and giving helpful comments to the present version of the report.

At last I want to thank Ellen Bergh-Smith for typing the report.

REFRRENCES

[1] Anderson, T.W. (1958): "An Introduction to multivariate Statistical analysis". Wiley, New Yorir.
[2] (1971): "Mhe statistical analysis of tjme series ${ }^{\text {B }}$. Wiley, New York.
[3] Borgan, Ø. (1976): "Glatting med glidende gjennomsnitt" (In Norwegian). Cand.Real. Thesis, Inst. of Math. Univ. of Oslo.
[4] Elphinstone, M.D.W. (1951): "Summation and other methods or graduationi. Trans. Pac. Act. 20: 15-57.
[5] Gerber, H. (1977): "Applications of linear algebra in graduation and other disciplines of actuarial sciences". Unpubl. ms., Dept. of Math., Univ. of Mich., Annarbor.
[6] Greville, T.N.T. (1947): "Actuarial note: Adjusted average graduation formulas of maximum smoothness ${ }^{\text {fi }}$ Record Am. Inst. Act. 36(2): 249-264.
[7] (1948): Mctuarial note: Tables of coefficients in adjusted average graduation formulas of maximum smoothness". Record Am. Inst. Act. 37(1): 11-30.
[8] (1957): "On smoothing a finite table: A matrix approach: J. Soc. Industr. Appl. Math. 5(3): 137-154.
[9] (1966): "On stabjlity of linear smoothing formulas" SIAM J. Numer. Anal. 3(1): 157-170.
[10] (1972): "Part V. "Supplementary study note on graduation". Preprint, Univ. of Wisconsin.
[11] Greville, T.N.E. (1974): "On a problen of E.I. De Forest in iterated smoothing". SIAM.J. Math. Anal. 5(3): 376m398.
 Wiley, ITew York.
[13] Hoem, J.M. (1972): "On the statistical theory of anaIytic graduation" Proc. 6th. Berkley Symp. Math. Statist. Probab. 1:569-600.
[14] Jecklin, H. and Strickler, P. (1954): WWahrscheinlickeittheoretische Begrindung mechanischen Ausgleichung und deren praktische Anwendungr. Mitteilungen. 54(2): 125-161.
[15] Kendall, M.G. (1945): MThe advanced theory of statistics, II'. Grifisin, Iondon.
[16] Kockelkorn, U, and Ruger, B. (1974): Mie Schätzung der glatten Komponente von Zeitreichen ohne Saisonfigur mit Hilre gleitender Durchschnitte bei Verwendung von polynomen ersten bis dritten Grades". Blatter Deutschen Ver. Versich. Math. 11(3): 319-329.
[17] Michalup, E. (1956): MEntwicklung und Weiterbildung Von mechanischen Ausgleichungsformeln". Stat. Viertel. jahresschrift. 9(2): 64-69。
[18] Miller, M.D. (1946): "Elements of graduation". Acturial Society of America, New York.
[19] Pollard, J.H. (1971a): "On optimal errorreducing formula and optimal smoothing formula. Preprint, Macquarie University.
[20] (1971b): "Non-symetric graduation formula". Pなéprint, Nacquarie University.
[21] Scheffe, H. (1959): "The Analysis of Variance", Wiley, New York.
[22] Sheppard, W.F. (1913): MReduction of errors by means of negligible differences". Proc. 5th. Int. Congr. Math. 2: 348-334.
[23] (1914a): "Fitting of polynomial by method of least squares. (Solution in teims of differences or sums)". Proc. Iondon Math. Soc. 13(2): 97-108.
[24] (1914b): "Graduation by reduction of mean square of error (I) ${ }^{\circ}$. JoInst. Act. 48(2): 171-185.
[25] (1914c): "Graduation by reduction of mean square of error (II)". J. Inst. Act. 48(4): 390-412.
[26] (1915): "Graduation by reduction of mean square of error (III)". J. Inst. Act. 49(2): 148-157.
[27] (1921): "Reduction of error by linear compounding?. Philosophical Trans. Royal Soc. Iondon. Ser. A. 221: 199-237.
[28] Sverdrup, E. (1967): "Laws and chance variations, Vol. I", North-Holland, Amsterdain.
[29] Weichselberger, K (1964): ẅ̈̈ber eine Theorie der g.eitende Durchschnitte und verschiedene Anwendungen dieser Theorie". Metrika. E(2): 185-230.
[30] Whittaker, E.T. and Robinson, G. (1924): PThe calculus of observations". Blackie and Son, Iondon.
[31] Wolfenden, H.F. (1924): "On the development of formulae for graduation by linear compounding. With special reference to the work of Erastus L. De Forest". Irans. Am. Soc. Act. 26: 81-121.

APPENDIX A - PROOR OF IENTMA 3.5.

We will prove:
Lemma 3.5: Let A be a $m \times I$ matrix of rank $m(m<1)$ and let $\underset{\sim}{S}$ be a positive definite $I \times I$ matrix. Then there exists a unique $\underset{\sim}{r} * \in \mathbb{R}^{I}$ which minimizes $\underset{\sim}{r} \underset{\sim}{x}$ among all $\underset{\sim}{r} \in \mathbb{R}^{2}$ under the constraint
(A.1) $\underset{\sim}{\sim}{\underset{\sim}{A}}^{\prime} \underset{\sim}{\theta}={\underset{\sim}{c}}^{\prime} \underset{\sim}{\theta}$ for all $\underset{\sim}{\theta} \in \mathbb{R}^{m}$,
where $\underset{\sim}{c} \in \mathbb{R}^{m}$ is a known vector. ${\underset{\sim}{r}}^{*}$ is given by
(A.2) $\quad \underset{\sim}{M^{*}}={\underset{\sim}{S}}^{-1} A^{\prime}\left(\underset{\sim}{A} S^{-1} A^{\prime}\right)^{-1} \underset{\sim}{c}$.

Proof: Suppose first that $\underset{\sim}{\mathbb{S}}$ is the identity matrix. Since ${\underset{\sim}{A}}^{\prime}$ is a $1 \times m$ matrix of rank m, there exists a $I \times(I-m)$ matrix $\underset{\sim}{B}$ ' such that (${\underset{\sim}{A}}^{\prime},{\underset{\sim}{B}}^{\prime}$) is non-singular $I \times I$ matrix. Hence, any $\underset{\sim}{x} \in \mathbb{R}^{1}$ may be given by $\underset{\sim}{f}=$ \left. (${\underset{\sim}{\prime}}^{\prime},{\underset{\sim}{B}}^{\prime}\right)_{\sim}^{\sim}$ for a $\tau \in \mathbb{R}^{I}$. Write now $\underset{\sim}{T}=\left(\mathcal{I}^{\prime}(1) \cdot \mathcal{T}(2)^{\prime}\right)^{\prime}$, where $\tilde{\sim}_{(1)} \in \mathbb{R}^{\mathrm{m}}$ and $\mathcal{I}_{(2)} \in \mathbb{R}^{\text {In }}$. If $\underset{\sim}{\sim}=\left(A^{\prime}, B^{\prime}\right) \tau$ is to satisfy the constraint (A.1), we have

$$
{\underset{\sim}{r}}^{\prime}{\underset{\sim}{A}}^{\prime} \underset{\sim}{\theta}=\left(\tau \sim(1), \stackrel{\tau}{\sim}(2)(\underset{\sim}{\mathcal{A}}) A_{\sim}^{A} \stackrel{\theta}{\sim}={\underset{\sim}{c}}^{\prime} \stackrel{\theta}{\sim} \text { for all } \underset{\sim}{\theta} \in \mathbb{R}^{m}\right. \text {, }
$$

or

Especially for $\underset{\sim}{\theta}=\underset{\sim}{\sim}(1)$ this gives:
(A.3) $\sim^{\top}(1) \stackrel{A^{\prime} A}{\sim} \sim(1)+\tau(2)$ BA $_{\sim}^{\sim} \sim(1)=\varepsilon^{\prime} \sim(1)$.

We now concentrate on finding the $\mathbb{I}_{\sim} \in \mathbb{R}^{I}$ which minimizes $\underset{\sim}{\perp} \underset{\sim}{\sim}$ under the constraint ($\mathrm{A}, 3$). We rind using (A. 3):

$$
\begin{aligned}
& {\underset{\sim}{r}}^{i} \underset{\sim}{\sim}=\left(\tau^{\prime}(1), \tau(2)(\underset{\sim}{\vec{B}})\left(A^{\prime},{\underset{\sim}{B}}^{B}\right)\left(\frac{T}{\sim}(1)\right)\right. \\
& =2 \mathcal{C}^{\prime} I(1)+I(2) \mathcal{B P}^{\prime} I(2)-I(1) A A^{\prime} I(1) .
\end{aligned}
$$

We will minimize this expression with respect to $工$ 。 Now $\underset{\sim}{B B}$ is positive definite since $\underset{\sim}{E}$ is of full rank． Thus，the minimizing value of $\underset{\sim}{\sim}(2)$ is $\underset{\sim}{\sim}(2)=\underset{\sim}{0}$ 。 Further，we have to minimize

$$
\begin{aligned}
Q(\tau(1)) & =2 \underset{\sim}{C^{\prime} i} \sim(1)-\mathcal{I}^{\prime}(1) A^{\prime}{ }^{\prime} \tau(1) \\
& =2 \sum_{i=1}^{m} c_{i} \tau_{i}-\sum_{i, j}{ }^{\top} i^{\top} j\left(A A^{\prime}\right)_{i . j}
\end{aligned}
$$

with respect to $\underset{\sim}{\sim}(1)=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right)^{\prime}$ ．Here $\left(A A^{\prime}\right)_{i j}$ is the（i，j）－th element of $A A^{\prime}$ ．Partial differentiation of $Q(\underset{\sim}{\sim}(1))$ with respect to $\tau_{j} ; j=1,2, \ldots, m$ ，gives：

$$
\frac{\partial Q(I(1))}{\partial T_{j}}=2 c_{j}-2 \sum_{i=1}^{m} \tau_{i}\left(A A^{i}\right)_{i j} \cdot
$$

This gives the following equations for the minimizing values $\tau_{1}^{*}, \tau_{2}^{*}, \ldots, \tau_{m}^{*}$ ：

$$
\sum_{i=1}^{m} \tau_{i}^{*}\left(A^{\prime}\right)_{i j}=c_{j} ; j=1,2, \ldots, m .
$$

In matrix notation this may be written

$$
\operatorname{AA}^{\prime} T^{*}(1)=0 \cdot
$$

Since $\underset{\sim}{A}$ is of full rank $\underset{\sim}{A}{ }^{\prime}$ is non－singular and we have

$$
\tau^{*}(1)=\left(A A^{\prime}\right)^{-1} \underset{\sim}{c} .
$$

This shows that

$$
\underset{\sim}{X^{*}}=\left(A^{\prime}, B^{\prime}\right) \tau^{*}=A^{\prime} I^{*}(1)=A^{\prime}\left(A A^{\prime}\right)^{-1} \underset{\sim}{C}
$$

is the wique vector $\underset{\sim}{\sim} \in \mathbb{R}^{l}$ which minimizes ${\underset{\sim}{N}}_{\sim}^{\sim}$ under the constraint (A.3). Now $\underset{\sim}{\sim}$ * satisfyes the constraint (A.1) and the lemma is proved for the case $\underset{\sim}{S}=I$.

Let now \mathbb{S} be any positive definite matrix. Then there exists a non-singular matrix $\underset{\sim}{p}$ such that $\underset{\sim}{P}{ }^{\prime} \underset{\sim}{S P}=I$ (see e.g. Anderson, 1958, p. 339) . We have $\underset{\sim}{S}=\left(\underset{\sim}{P} P^{p}\right)^{-1}$. Introduce for each $\underset{\sim}{r} \in \mathbb{R}^{\mathcal{I}} \underset{\sim}{\underset{\sim}{\sim}}={\underset{\sim}{P}}^{-1} \underset{\sim}{r}$. We then find

$$
{\underset{\sim}{r}}^{\prime} \underset{\sim}{S}={\underset{\sim}{r}}^{\prime}(\underset{\sim}{P P})^{-1} \underset{\sim}{r}=\left({\underset{\sim}{P}}^{-1} \underset{\sim}{r}\right)^{\prime}\left({\underset{\sim}{P}}^{-1} \underset{\sim}{r}\right)=\underset{\sim}{r} \stackrel{\rightharpoonup}{r} .
$$

The constraint (A.1) may now be written

for all $\underset{\sim}{\theta} \in \mathbb{R}^{m}$. Since $\underset{\sim}{A P}$ is a $m \times 1$ matrix of full rank we have by what we have just proved, that there exists a unique $\underset{\sim}{\sim}{ }_{\sim}^{\sim} \in \mathbb{R}^{l}$ which minimizes $\underset{\sim}{\sim} \underset{\sim}{\sim}$ under the constraint (A.4) $\stackrel{\underset{\sim}{\underset{\sim}{r}}}{\sim}$ is given by

$$
\underset{\sim}{\underset{\sim}{*}}=(\underset{\sim}{A P})^{\prime}\left(\underset{\sim}{A P P^{\prime}} A^{\prime}\right)^{-1} \underset{\sim}{c}={\underset{\sim}{P}}^{\prime} A^{\prime}\left({\underset{\sim}{A}}^{-1} A^{\prime}\right)^{-1} \underset{\sim}{c} .
$$

Thus, there exists a unique $\underset{\sim}{r}{ }^{*} \in \mathbb{R}^{I}$ which minimizes $\underset{\sim}{\mathbb{P}_{\sim}^{\prime S x}}$ under the constraint (A.1), and this $\underset{\sim}{r^{*}}$ is given by

APPENDIX B - PIGURES

This appendix contains results for one of the Monte Carlo experiments described in Paragraph 5.D.

Figure B.1: Independent normally distributed "observations" with expected values $\bar{\xi}_{t}=0.9+0.044 \cdot(1.1)^{t}$ (drawn line) and standard deviation 2.0 graduated by the centralized minimum-variance moving average of leng.th 11 and with basis $\alpha+\beta(1.1)^{t}$.

Figure B.2: Graduated by the centralized minimum- R_{1} moving average of length 11 and with basis $\alpha+\beta(1.1)^{t}$.

Figure B.3: Graduated by the centralized minimum $-R_{2}$ moving average of length 11 and with basis $\alpha+\beta(1.1)^{t}$.

Figure B.4: Graduated by the centralized minimum- R_{3} moving average of length 11 and with basis $\alpha+\beta(1.1)^{t}$.

Figure B. 5: Graduated by the centralized minimum- R_{4} moving average of length 11 and with basis $\alpha+\beta(1.1)^{t}$.

Figure B.6: Graduated by the centralized optimal moving average with $\left(a_{0}, a_{1}\right)=(0.25,0.75)$ of length 11 and with basis $\alpha+\beta(1.1)^{t}$.

Figure B.7: Graduated by the centralized optimal moving average with $\left(a_{0}, a_{3}\right)=(0.25,0.75)$ of length 11 and with basis $\alpha+\beta(1.1)^{t}$.

APPBNDIX C - TABLES OF MOVING AVERAGES.

In this appendix we give tables of moving averages which are optimal when the observations are uncorrelated and have equaI variance (compare Chapter 4).

For different values of $a_{0}, a_{1}, \ldots, a_{K}$ in the loss function (2.4) and for polynomials of third degree and for Gompertz-Makeham's function, $\alpha+\beta(1.1)^{t}$, as ba,sis we give optimal moving averages of range $(-k, k) ; k=3,4, \ldots, 10$; and with optimal centre T^{*}. For the actual moving averages we also give the length, $I=2 \mathrm{k}+1$, the optimal centre τ^{*} and the values of R_{z}^{2} for $z=0.1,2,3,4$ (RO, R1, R2, R3 and R4 in the tables). The values of the a_{z} 's are $a_{0}=1$ (minimu-variance), $a_{z}=1$ for $z=1,2,3,4$ (mini-murn-R $\left.R_{z}\right),\left(a_{0}, a_{1}\right)=(0.25,0.75),\left(a_{0}, a_{3}\right)=(0.1,0.9)$ (for polynomials of third degree as basis) and $\left(a_{0}, a_{3}\right)=(0.25,0.75)$ (for Gompertz-Makeham's function as basis).

More tables of optimal moving averages are given by Borgan (1976, Appendix B).
Table 1: Minimum-variance moving averages, exact for cubics,

Table 3: Minimum= R_{2} moving averages, exact for cubics, of range $(-k, k)$ and optimal centre T^{*}.

Table 4: Minimum $-R_{3}$ moving averages, exact for cubics, of range $(-k, k)$ and optimal centre τ^{*}.

Table 6: Optimal moving averages, exact for cubics, with range $(-k, k)$ and optimal centre T^{*} when $\left(a_{0}, a_{1}\right)=(0.25,0.75)$.

Table 7 ：

3										
\％	70－390020	$50-38092$	70－3666E	70－3 $910 L^{\circ}$	C0＊ $0^{\circ} \mathrm{E}$ ¢		20－310\％1	$\angle U=3 \varepsilon E T L$		年d
\％	＊ $0=3 \pm 62^{4} 9$	y0－ 12949°	E0． $3520 \times$	$80-322610$		$20 \cdots 3 \leqslant 60 T$	20－35LEど	1U－35TET＊		E．d
\％	20－31092	$E 0-35 t 8 \varepsilon^{\circ}$	CO－Jt929	$20-39110$	$20 \times 96 \% 12$	20 0．j90劣少	10－305010	10－39662		$2 d$
is	$20-35685$	20×3758	20－3y254＊	$10-310110$	10－359910	$10-19892^{\circ}$				Id
20	00． 1102 \％	00－325ET	00＋392ct	$00+32+20^{\circ}$	$00 \times 48002^{\circ}$	00－30¢E2	00．392be	$100+3895 \varepsilon^{\circ}$		0 d
is	0	0	0	0	0	0	0	0		，
\％	SEDOT0								－	01
3	EE9120＊	$520210-$							－	6
品	70 LTO	668ट己0	$\angle 4 \angle E 10 \cdots$						－	8
＊	019200°	$608020-$	795y ${ }^{\circ} 0$	$109910{ }^{\circ}$						1
管	$\pm 19410^{\circ}$	198000°	865110°	469920°	563120°				－	4
ir	$026 L y 0^{\circ}$	COZTEO	025010°	$665110^{\circ} \mathrm{m}$	505620°	$610620{ }^{\circ}$			－	5
6	204210°	B22890	592250	EOLOE0	699200°	$109920{ }^{\circ}$	862150°		－	4
4	$56610{ }^{\circ}$	606201	894660°	t16880	689690°	$026 \angle 50^{\circ}$	EL2600	ctyb890	－	E
4	ESL6\％${ }^{\circ}$	TETOET	89 ± 661		yty $288 y^{\text {d }}$	LTLZy ${ }^{\circ}$	6878 ${ }^{6}$	581090°	，	2
啫	OSCOE1＊	091Lt\％	8S8991＊	15918 ${ }^{\circ}$	EsITIe	$\mathrm{CSELE}^{\text {c }}$	681992°	$\angle E L 62^{\circ}$	－	1
2）	LGYEE1	616251	$15 \angle S \angle 1^{\circ}$	64.8202^{*}	689 yE2	990522＊	92L62E	ちEUくTか＊	－	0
5	USEOE1．	09124\％	898991＊	179481	$\varepsilon \operatorname{cos12}$	29ELE2	681992°	$\angle E L E G 2^{\circ}$	\％	Im
\％	csiblt ${ }^{\circ}$	TETOET	E976EL	6t89 5		412 ${ }^{\text {¢ }}$	6896！${ }^{\circ}$	481090°	－	$\mathrm{c}^{\text {max }}$
媛	566101	606201	E91660	7 76880°	689540°	$026 \angle E 0^{\circ}$	CL2500	c\＄6890 ${ }^{\circ}$	，	$\varepsilon \cdots$
－	$205420{ }^{\circ}$	822890	554250	EOLOE0 ${ }^{\circ}$	698200°	109920%	¢621步0＊		＊	早
4\％	020150＊	2021E0＊	U2E010．	$665110{ }^{\circ} \mathrm{m}$	$505420{ }^{\circ}$	$610620 \sim$			，	5
\％	\％ 192100°	458000°	665410°	$169920^{\circ} \mathrm{m}$	G62r20＊＊				＊	Y
4	$019400^{\circ}-$	605020°	t95tr $0^{\circ} \mathrm{o}$	109910\％					－	Lo
＊	\％0L120＊＊	658220	LLLET0＇						－	8
年	EE9120 ${ }^{\circ}$	520210%								กo
曾	12	61	48	S1	E1	T I	6	i	－	
\＄									－	
							\％6\％			

Table 8：Minimum－variance moving averages of range（ $-k, k$ ） optimal centre τ^{*} and basis $\alpha+\beta(1.1)^{t}$ ．

，			$?$	9	11	13	15	17	19	21	4
＊	－10	－								.044572	4
\％	－ 9	－							.057330	． 044721	＊
＂	-4	－						． 060678	． 057053	． 044885	4
＇	－ 7	－					． 064090	． 060544	． 056747	． 045065	\％
＂	－6	＊				－067282	． 064320	.060396	． 056412	． 045263	2
\％	－5	－			.109150	． 068370	． 064574	． 060234	.056042	． 045481	4
＊	－4	－		． 129695	． 106486	－ 069566	． 064852	． 060056	． 055636	． 045720	\％
＊	－3	－	.161498	.126042	． 103555	． 070882	.065159	． 059860	． 055180	.045984	＊
it	-2	－	． 156252	． 122025	－100332	0.072330	． 065497	． 059645	.054697	－046974	\％
\％	-1	－	． 150481	． 117606	． 006785	．073923	． 065868	． 059408	． 054156	． 046593	4
＊	0	－	． 144133	． 112745	． 092894	． 0.07567 仵	.066276	． 059147	.053561	－046944	\％
\％	1	－	.137150	． 107398	－08，8594	.077601	.066725	． 058860	． 052906	．047320	\％
4	2	－	.129468	． 101516	．083874	． 079721	．067219	． 058544	.052186	． 047754	s
＊	3	－	.121019	． 095046	－078682	－092053	.067963	． 058197	． 051394	．048221	4
4	4	－		．087928	．072970	． 084617	． 068361	.057815	． 050523	． 048735	4
＊	5	－			－066698	－097439	.069018	.057395	． 049564	． 049300	＂
\％	6	－				.090542	.069741	． 056933	．048510	． 049721	＊
4	7	－					． 070537	． 056424	． 047350	． 050605	4
\％	8	－						.055865	.046075	． 051357	4
S	9	－							． 044672	． 052184	＊
is	10	－								－ 053094	＊
			－•••••	$\cdots \cdots \cdots$	$\cdots \cdots$	＊＊＊＊				－．．．．	
4	L	－	0	0	0	1	1	1	1	2	里
4	Q0	－	－1441E＋00	．1127E＊00	－92日RE－01	． $7760 \mathrm{E}-01$	．6673E－01	$.5886 E-01$	． $5291 E-01$	． 4775 －－ 0 －	
3	F1	－	．2050E－01	．1239E－01	－8277E－02	． 63978 moz	－ $4543 E-02$	－ $3402 \mathrm{E}-02$	． $2647 E=02$	． $2405 E-12$	＊
\％	P2	－	．1353E－01	． $1744 \mathrm{E}-02$	． $56195=02$	－4313E－02	． $3042 \mathrm{E}-02$	．2260E－02	． 1746 E－02	． $1616 E-02$	\％
\cdots	R3		． $1216 \mathrm{E}-\mathrm{nl}$	． $73162-02$	－496日F－0？	－3月84E－02	．2730E－n2	．2034E－02	．1570E－02	． $1455 \mathrm{~F}-07$	＊
if	Pd	＊	．1157E．01	－ $4965 E=02$	． 46.3 CEO 02	． 370015 Coz	．260日Em0？	$.1937 E-0 ?$	．1495E－02	－ 13866008	is
S											3

Table 9: Minimum-R, moving averages of range ($-k, k$), optimal centre T^{*} and basis $\alpha+\beta(1.1)^{t}$.

it									－	
管	$50-709+1$	90－10 492°	50－3t629	$50-36256$			E0entucl	c． $10-3 L+5 \square^{\circ}$	＊	
\％	$50-7210^{\circ}$	c00 JESS力	$50-3+668^{\circ}$	＋10－7594 0°	＋ $0 \times .17898$		E0－3t $1 \mathrm{co}^{\circ}$	と． $0=38$－${ }^{\text {b }}$	\cdots	E H
4	70－70641	to－ 39708	＋0－32525		E0－Jts26＊	C0w 3 T少C．${ }^{\text {c }}$		くU－3L22	－	24
	E0－3991L	$E O=30676^{\circ}$	20－30TET	20－ 2e $^{\text {a }}$	20－308 ${ }^{\circ}{ }^{\circ}$	$20 \cdots 1962{ }^{\circ}$	20－30614＇	IU－JESEI＊	－	1.9
	$10-78529$	10－． $0^{\circ 9989}$	10－3SE9	10－35898	10－78486	00＋36ET1．	00．359E1	00＋ 7 189	－	0 d
	＊＊＊＊＊		－＊＊＊		－＊＊＊＊	＊＊＊	＊＊＊＊＊＊＊＊＊）	－＊＊＊		－
$\%$	1	I	1	0	0	0	0	U	－	－1．
	$\cdots \cdots \cdots$	－＊＊＊＊	－＊＊＊＊	－＊＊＊	－＊＊＊＊＊	－．．	－．	－－．．		－
is	644700								－	01
4	599210°	899400°							－	6
is	2TL220．		T1 6600°						－	8
4	96LEEO	256060	650590°	599700°					－	L
\％	中005＊0．		964250°	中10610	＋920100				－	9
如	085950	OBE S 0°	668090°	$9 力 5980$	y5tyc00	$26+910^{\circ}$			－	5
葹	908790°	$B \angle 10 \angle 0^{\circ}$	886540°	65E゙y 50	$199150{ }^{\circ}$		$9 力 00<00^{\circ}$		．	\dagger
14	16telo	209640°	$9+2960$	168840°	$9 \angle E 940^{\circ}$	$8.50 \angle L 0^{\circ}$	2ELT 10°	$00 \angle 150^{\circ}$	－	E
3	086210°	181980	$8 \pm 6960^{\circ}$	889060°	822600＊	208801	682011	TEEET	－	2
物	2E1180	$29 * 680^{\circ}$	669660	690101	560 610	209EET＊	998591．	22bS日t	－	1
＊	626180	219680°	894860°	692311	9「少Lせ	SLす」tro	$\angle \pm E 5^{\circ}$	W93912＊	－	0
is	290080°	256980°	Et9660＊		BStyelo	$9689{ }^{9}$	$\angle T 2 T L T *$		－	T
\％	$980540{ }^{\circ}$	962080°	LLサ力80＊	E＊680］	サEG61T＊	ザき1E1＊	サع日2サ1。	サ216ヶ10	－	2
3	459690	$1 \angle G 1 \angle 0^{\circ}$	$9+7210^{\circ}$	510160°	122101	0多E已010	少 $2 \rightarrow 960^{\circ}$	$\angle 26890^{\circ}$	－	E
	255190°	668090°	907850°	t 12640°	8 ± 5920	478790＊	992150		－	＋10
4	100290	$1688 \% 0^{\circ}$	1976年号	$9 E E \angle 0^{\circ}$	2L1970	y 58920°			－	Co
晾		$\angle E E 9 E 0^{\circ}$	926820°	\dagger ¢ $\mathrm{T}^{\circ} 0^{\circ}$	EESO10				－	9
草	084080	عE1サ20	$86 \angle 510^{\circ}$	\dagger ¢EET0＊					＊	10
38	107020°	2L2E［0＊	$62 \angle 500^{\circ}$						－	8
4	LTT0	$8 E 8 \geqslant 00^{\circ}$							－	6
	160700								\cdots	01
	$\cdots \cdots \cdots$	$\cdots \cdots{ }^{*}$		$\cdots \cdots$		$\cdots \cdots \cdots$	$\cdots \cdots$	－．．－		
供	12	61	41	$5!$	El	II	6	4	－	
易									－	

Table 11: Minimum $-\mathrm{R}_{3}$ moving averages of range ($\infty \mathrm{k}, \mathrm{k}$), optimal centre τ^{*} and basis $\alpha+\beta(1,1)^{t}$

Table 13: Optimal moving averages of range ($-k, k$), optimal centre τ^{*} and basis $\alpha+\beta(1.1)^{t}$ when $\left(a_{0}, a_{1}\right)=$ (0.25, 0.75) 。

Optimal moving averages of range $(-k, k)$, optimal
centre T^{*} and basis $\alpha+\beta(1.1)^{t}$ when $\left(a_{0}, a_{3}\right)=$
$(0.25,0.75)$.

[^0]: * Moving averages are also used in other connections, e.g. to eliminate the periodic component in time series analysis. Such uses of moving averages are not the subject of this report.

[^1]: * When the manuscript of this report was ready for typing, the authors attention was drawn to a paper by Gerber (1977). He shows how one may construct mininum- R_{z} moving averages exact for other functions than polynomials. For this purpose he minimizes a quadratic form analogous to what we do in chapter 3 in this report. For the minimization Gerber uses a result similar to our lemma 3. 5. However, even if some of the results given in this report, are similar to results given by Gerber, his work does not change the main ideas in this report. Therefore, we have not found it necessary to rewrite the manuscript.

[^2]: * The terms trend and erratic component are used according to Sverdrup (1967).

[^3]: * See rootnote on page 4.

