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Q. INTRODUCTION. 

A. Some general views about statistical inference. 

The principles of statistical induction will quite 
naturally deal with two questions. First, what kind of general 
rules should be used when formulating the a priori assumptions 
(the model) and the purpose (the decision situation) of a 
specific statistical investigation ? Second, with a given model 
and purpose what kind of general principles should be applied to 
derive the correct procedure for making a decision ? Any 
statistician working with practical statistical investigations 
has consciously or subconsciously adopted some kind of attitude 
to these questions. Not least for this reason is it important 
explicitely to be concerned with them. 

The two questions are closely related. Nevertheless it is 
important to keep them separated. Thus a general principle of 
statistical inference should not be motivated by arguing that only 
models of certain types can occur in practice, i.e. by referring 
to certain empirical results. The principles of inference and the 
empirical results must not be confused. 

The formulation of the model is of course a very important, 
and sometimes a very difficult, part of the process of statistical 
inference. Important contributions to the advancement of 
statistical science haveconsisted in demonstrating how problems 
and situations from certain fields of applications can be 
formulated stochastically. It is not only politics which is the 
art of that which is feasible. It is to a high degree the case of 
statistics. The model ought to be realistic, but it has to be 
admitted that the choice of the model is often made with a view 
to what could be done with it. 

We shall be concerned with the second of the two 
questions which has been outlined above, and since we shall not be 
concerned with economics, biology etc, our aim is to formulate 
principles which are meaningful relatively to "arbitrary" models. 
and decision problems. 

This question has attracted the attention of the 
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statisticians at least since the beginning of the 1920-th 
under the leadership of among others R.A. Fisher (7] and (s], Jerzy 
Neyman and E .s. Pearson [ 23) , Abraham Wald [29) and (30] and 
E.L. Lehmann in a number of papers, see in particular his 
monograph [22]. (R.A. Fisher himself would perhaps reject the 
present approach to the problem, as a "wooden attitude".) 

Our starting point is a model which is defined stochasti­
cally and a situation which is non-Bayes. In the now "classical" 
statistics it is perhaps the following principles which have 
attained prominence: ~· The principle of sufficiency.. b. 
Appraisal of a test by means of the power function, in particular 
the principle of unbiasedness in the power. £• The principle of 
invariance. d. Markov-estimation (minimal variance subject to 
mean unbiasedness). That the principle of unbiasedness in the 
power is considered so prominent may perhaps surprise somebody~. 
It will be substantiated below. 

In the situations where these principles are successful, }t 
is in some cases not so essential whether the situation is Bayes 
or non-Bayes, the results can be reformulated for Bayesian 
situations. However, by an extention of th~ principles to more 
general decision situations, difficulties arise which are the 
direct reasons for the revival of the Bayesian idea. It is outside 
the assignement alloted to me for this conference to deal with 
this idea. There is, however, a particular class of decision 
problems where the direct continuation of the non-Bayesian idea 
has been relatively successful, viz. the socalled "multiple test 
situations". Their special structure will be defined below. 

In order to limit the scope of these lectures, the title 
of which is indeed very ambitious, I shall treat the following 

subjects 
I. Sufficient statistics. 

II. Power unbiasedness. 
III. Multiple testing of hypothesis. 

Markov estimation and point estimation in general will only 

be treated occasionally. Non-parametric methods will only be 
touched upon to the extent to which iheyillustrate the principle9. 
In the last years there has taken place an important development 
in this field which could be said to be a direct continu3.tion of 
the "classical" statistical ideas. I am also aware of the 
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interesting discussion about the minimax principle which took 
place only a few years ago and the important contributions which 
were then made to the understanding of this principle. The 
necessity of limiting the subjects treated in these lectures is 
the only reason for not dealing with it. 

Both Neyman-Pearson und Fisher were hampered by the 
mathematical difficulties present at that time and it led them 
in some instances to be preoccupied with mathematical concepts 
which were inessential from a statistical point of view. In 
particular Neyman and Pearson insisted on mathematical rigor, 
which was not easy to live up to with the commonly accepted 
mathematical tools among statisticians. The general 
acceptance of measure theory was a relief in that respect. It 
made it possible for the statisticians to free themselves.from 
preoccupation with mathematics and concentrate on statistical 
ideas. Perhaps in no other field of statistics is this more 
pronounced than in the theory of sufficiency. 

B Conditional probability. 

After the clarification of the concept of conditional 
probability by A. Kolnogorov [13] some years passed before the 
statisticians realized to which extent it concerned them. Perhaps 
the first one was D. Blackwell [4]. We shall very briefly review 
some main results which we shall need. 

A statistician may indiscriminately undertake a very 
detailed description of the statistical data. On the other hand 
he may bring forth that only statements about the data of a 
certain type are of interest. Thus the starting point is a 
sigmafield ..A of subsets (statements) in the sample space J( of 
sample points x. A subsigmafield Jf 0 of JI. may be of special 
interest. Let P (A) be a probability measure over Jl. . Further­
more P (A Jv10 , x) for A e. A and x c. X is the conditional 
probability of A given "the most accurate description of x by 
means of statements from ...A-0 11 • It is defined as the almost uniqye 

~-measurable function of x which satisfies 

P (A n B) = ) P (A I JrS, x) ctP 
B 

( 1 ) 
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for all B E.A 0 • P(Al~,x) does always exist and is almost 
uniquely defined by (1 ). 

Let y = Y(x) be a measurable function from (JC,Jl.) into 
(~,.1,}) and let ../J. 0 be generated by Y(x), i.e. JJ.0 = v-1 (.'l,3) is 
the set of all AEJ/; of the form v- 1 (B) with Be~. Then 
P(A/tl't0 ,x) is a function of x only through Y{x) and is called 
the conditional probability of A given Y(x). 

P(Ajfi.0 ,x) will in general almost satisfy the fundamental 
relations of a probability measure. But the null-set of all x 
for which a relation does not hold will in general depend on the 
special sets which enter into the relation. If, however, X .is 
Euclidian and ./+ the Borel-class, then P(AtA0 ,x) can always be 
specified such that for any fixed x it is a probability measure 
over v4 . See Leh~ann (22J page 44. 

Let f{x) be integrable (X,...?,P), i.e. E.f(X) = Jf(x)dP 
exists. The conditional expectation E[f(x)f.A0 ,x] relatively to 
..40 is the almost unique Ji0 measurable function of x which 
satisfies 

~ f ( x) dP = ) E [ f ( x )l.4 0 , x] dP ( 2) 

B B 

for all B€./,70 • The conditional expectation of any integrable f 
does always exist and satisfies "almost" the usual rules of 
operations for unconditional expectations. Furthermore 

(3) 

In connection with a rigorous treatment of "conditioning" 
of tests and unbiased tests, the following results are important. 
If .X is Euclidian and ...4 the Borel class, then the conditional 
expectation can be specified as a proper expectation relatively to 
the conditional probability measure, such that 

(4) 

If in addition Jl.0 is generated by a statistic Y(x) into 
a Euclidian space, then there exists a null-set N (independent of 
f and g) such that for all x ~ N, we have 
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E (.g ( 'I ( x) )f ( x ) I y ( x ) ] = g ( y ( x ) ) E [ f ( x ) I y ( x u (5) 

for all f and g. Under the same condition we can introduce a 
conditional sample space for almost all y, i.e. 

a.e. (6) 
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I. SUFFICIENCY. 

A. Introductory survey. 

What kind of informations can we extract from the 

statistical data X and what is relevant about X in view of 

the purpose of the investigation ? It is natural to say that X 
(alone) gives no information about a parameter e if the 
probability distribution of X is independent of 8 This leads 
us to say that Z(x) gives no information about e in addition 

to what is contained in Y(x), if the conditional distribution 
of Z(x) given Y(x) is independent of 8 . If no Z(x) gives 
additional information about e when Y(x) is known, then 

Y(x) obviously contains all information about 8 , and is called 
sufficient. If Y is sufficient, then the decision making can 
be based on Y alone. If a statistician prefers some Z(x) any-
how, simply 
may get his 
from Y to 

because he "likes 11 the operating characteristic, he 

way. A suitable randomized experiment will bring him 
z. (In the case of point estimation the operating 

chrtracteristic is the sampling distribution of the estimate. The 
statistician does not want to commit himself to e.g. minimizing 
the variance. Example: x1, •.• , ·~ are independent normal ( 0 ,er); 

<S' unknown' y = L xj 2 ' z = L rx) ) . This is the classical 
definition of sufficiency. 

But the motivation above shows that also a decision 
theoretical definition of sufficiency is justified. If to .illlY 

decision situation about e and any decision procedure 6 
there exists a procedure d0 which depends only on Y and have 
the same operating characteristic as J then Y is said to 
be sufficient. 

The two definitions above are roughly equivalent. 

According to L. le Cam [ 16], Kolmogorov [14] has called attention 
to a third definition based on the Bcye5ian point of view. Y is 
sufficient if for .212.Y a priori probability distribution for e 
the a posteriori probability distribution of e is the same 
relatively to X as relatively to Y. 
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Both Fisher and Neyman had in mind minimal sufficiency 
when they talked about sufficiency. Assume that x1 , .•• ,Xn are 
Bernoulli variables, i.e. independent and such that 

:Pr(X. == 1) = p, Pr(X. == 0) = 1-p. Then Y == ~ x. is minimal 
l l L--- l 

sufficient in the sense that any g(Y) which does not have a 
unique inverse, is not sufficient. 

Neyman-Pearson [24) and Fisher were talking about specific 
sufficiency relatively to a certain parameter. Let 8 = (y,r), 
where j is the decision parameter, i.e. the parameter which the 
decision situation is concerned with, whereas t: is the nuisance 
parameter. If R(x) for any given r is minimal sufficient, then 
R{x) is specifically sufficient for p . Suppose e.g. that 
x1 , •.• ,xn are independent normal (t,Ci). Then X is specifically 
sufficient for !... • Whereas minimal sufficient statistics exist 
under very general conditio~ this is far from being true of 
specific sufficient statistics. Thus in the example just given 
no specific sufficient statistic exists for u . Because for any 

given l it is L(Xj-~) 2 which is the minimal sufficient 
statistic, but this is not a statistic if l. is unknown. 

It seems doubtful whether specific sufficiency in the sense 
taken above is an important concept in the decision theory. It is 
difficult to find any direct connection between this concept and 
decision functions. Consider e.g. Student 1 s situation with 
testing of !... = 0 (or constructing confidence interval for l. ) . 
Then X is specifically sufficient, but in order to perform the 
testing we have to consider 2::::(x.-x) 2 • It is of course 
(X, ~(Xj-x) 2 ) which is the mini~al sufficient statistic for 
the model. Fisher [9] was aware of the difficulty and introduced 

the concept of ancillary statistic. T(x) is ancillary if it 
jointly with the specific sufficient statistic R(x) is minimal 
sufficient and the probability distribution of T(x) only depend~ 
on the nuisance parameter "C'. Rao [25] and Basu (31 have proved 
some interesting mathematical properties about ancillary s~rtistics 

A very interesting approach from a statistical point/view, ' 
is due to D.A.S. Fraser [10). He does not need the concept of 
ancillary statistic, instead he adds to the above definition of 
spesific sufficiency the property that the distribution of R(x) 
shall be independent of the nuisance parameter. This is a rather 
restrictive property (X in the example above is then not 
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specifically sufficient). On the other hand he is then able to 
establish links with decision problems. He shows that by testings 
and point estimations concerning f , the statistician may limit 
himself to procedures depending on R(x) without loosing power 

or efficiency. 
Below we shall expand upon some, but not all, of the ideas 

which we have sketched above. 

B. The basic theory of sufficiency. 

Ne shall briefly outline the theory and we base our present­
ation on the paper by Halmos and Savage [ 11). Let SJ be a family 
of probability measures P for a random variable X over ()(,"4). 
A subsigmafield ..40 of -4 is sufficient for the family 9 if 

for all A E Jf there exists a Jl.0 - measurable function 'PA ( x) 
which for all P is the conditional probability relatively to 

v40 , i. e .. for which 

( 1 ) 

for all P ~ J''?. 
This definition is equivalent to a corresponding definition 

expressed by means of the conditional expectation of a function f. 
11 For all A E-JI-" is replaced by "for all (Jf,P) - integrable f". 

We shall limit ourself to families 9 which are 
dominated, by which we mean that there exists a sigmafinite 
measure ./'-"-- such that all P -':-SJ are absolutely continuous with 
respect to )A- • It is obvious that if such a ?°' exists, it can 

be chosen finite. 
From a practical point of view the limitation to dominated 

families seems to be unimportant. It can be proved (with some 

difficulty) that the following holds. 

Theorem 1. If the family of probability measures 5J is 
dominated, then there exists a (finite or countable) subfamily 
~· = {P1 ,P2 , •.• j of .9 such that for any A for which 
P. (A) = O; i = 1,2, ••. ; we also have P(A) = 0 for all P€ 9 · 

l 
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Such a 90 will be called a dense subfamily in 

seen that if a. 
l > o, La. = 

l 1 ' then 

TI =L: a. P. 
l l 

is a probability measure which is 0 if and only if P 

all P €: 9. TI will be called a dense measure for !? . 
not belong to .5J. 

9. It is 

( 2) 

is 0 for 

n need 

We have the following fundamental results about sufficient 

subsigmafields. 

Theorem 2.. Let .9 be a family of dominated probability 

measures over ('J(,.A) and denote by Tf a dense measure for .9. 
1~ subsigmafield A.-0 is sufficient if and only if for any P e:-9 
there exists a v40 -measurable function 9p ( x) such that 

dP = 9p ( x ) d 1T ( 3) 

Proof; By theorem 1 ( 3) is true with 9p ~-measurable. We have 

to prove that it is necessary and sufficient that 9p has an vl;0 -

measurable version. Suppose ~o suffisient. We can then find a 

'{JA(x} as in (1). vVe now have with A~Jt. and Bt.Ji. 0 ; 

TI (A (I B) = > a. p. (A n B) = > a. f '°AdP. = ( d>Ad ~ a. p. = 
· 1. l l j I ' 1. j I. '-- l 1. 

B B 

= 1cpA{x)diT, showing that cpA is the conditional probability 

also relatively to 77. Let E denote expectation relatively to 

TT and write 9p = E(gp/Jf0 ). Then we have for At.fi, 
remembering that 9p and ~A are ..J/0 measurable, 

jgpd\T = P(A) = ~ cpAdP = J <fA9pd1T = E f AgP = EE(q>AgPj._40 ] = 
A 

= E'fAE [9p\fi0 ] = EcpAgP = EgpE(IAlv40 ) = EE(§PIAIJ,20 ) = EgPIA = 

= j gpdTi , where IA denotes the indicator function for A. 

A 
We have proved that S 9pd\t = S gpdTI for all /-\. Hence 

9p = 9p a. e. , 
A A 

which shows that 9p can be specified as an ~1 -
0 
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measurable function .• - Suppose now that 9p in ( 3) is Jt 0 -

measurable. We then have for A f J) and BE-t.4 0 , 

P(f-\ n B) = J P(Atv%)dP. Let now on the other hand 

B 
Ti (A!.fi0 ,x) denote the conditional probability relatively to TI 
then P(A n B) = EIAIBgP = EgPIBE(IAt,-40 ) = EgPIB rJ(Af .fi.0 ) = 

= j11(A!..fl0 )gpd11 = ~TI(A\Jf0 )dP. Comparing the two expressions 

B B 
for P(A n B) we see that P(Aj..40 ,x) =1T(AJJJ0 ,x) a.e. (..40 ,P) • 

Hence we have obtained ( 1) with cp A = I\ (A I~). Thus JJ. 0 is 

suff isient Q.E.D. 

Theorem 3. Let !IJ be a family of probability measures 

over (X,.Jf) dominated by a sigmafinite measure/u.A subsigmafield 

.,..40 is sufficient for !? if and only if there exists an ..Ji -
measurable non-negative function h ( x) and for each P ~ 9 an 

~-measurable function 9p such that 

dP = gp(x)h(x)d)-'"' 

If this is true, then h(x) can always be chosen integrable. 

Proof: The necessity of (4) follows immediately from 

theorem 2 equation (3) and the fact that we can write 

d TT = h ( x ) d? . h ( x ) is integrable since 1T is finite • -

Suppose now that ( 4) holds. With Tf dense for .J1 we have 

( 4) 

dlT =) aidPi = h L aigp.d/-'- = hkd?- where k(x) ~ 0 and ...JJ. 0 r-
i 

measurable. Let N = { x!k(x) = o]. Then for x 6 N we have 

2.__ aigP. = o, hence 9p, = O, hence Pi(N) = o, hence 
l. l. 0 

P(N) = 0 and k(x) > 0 a.e • .Y • Thus we may write 

9p - - ( ( ( dP = gphdr= k khdf' = 9p dlj where gp x) = gp x)/k x) for 

x <t N. Hence JJ,,0 is sufficient by theorem 2. 

Suppose now that Jl. 0 is generated by a statistic Y(x) 

into (~,B), i.e. J'J-0 = Y- 1 (.93) = Lv- 1 (B).j Be .Jj}. It is then 

known that a real ...4-measurable function of x is __//. 0 

measurable if and only if f depends measurably on x only 

through Y(x). Hence a necessary and sufficient condition for JJ.~ 

to be sufficient is that 
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dP = fp(Y(x))h(x)dj->- (5) 

where fp is ,9.J measurable and h(x) is ...;t -measurable. This 

is the famous factorization theorem about sufficiency. If 

..,40 = Y .. 1 (.B) is suffisient we say briefly that the statistic 

Y(x) is sufficient. 

Returning to the general case of any subsigmafield J/ 0 

we have, regardless of whether .9 is dominated or not, 

Theorem 4. Let JJ.0 be sufficient for a family .9 of 

probability measures over the Borel class vf in the Euclidian 

space X . Then there exists a function \T (AIJi0 ,x) of A <::-..A­

and x E:X, which is .fl.0 -measurable for all A and a 

probability measure for all x, and which is a conditional 

probability for A relatively to ..40 for all P ~ 9. 
The truth of this theorem follows by going through the 

usual proof of the result that a conditional probability can 

always1Jspecified as a probability measure in the Euclidian case •. 
It is also a special case of theorem 11 below. 

c. Minimal sufficiency. Complete families of distributions. 

We shall go into more details in this section since the 

theory seems not to be so generally known. We refer to Bahadur (11. 
Let 9 be a family of probability measures over (:X,J\.) 

and let Jl 1 and ..1)2 be two subsigmufields • ..Jl. 1 is said to be 

almost a subsigmaf ield of Jt 2 ; .JJ1 c JJ 2 if to any A1 t. Jf 1 
a.e. .l 

there corresponds an A2 E J/ 2 such that P (( A1 -A~) V (A2 -A1 )j = 0 

for all P ~ 5J. The subsigmaf ields are equivalent if they are 

almost subsigmaf ields of each other; c-41 = ..4 2 • 
a.e. 

A sufficient subsigmaf ield ~O is said to be the most 

summary, or the minimal sufficient subsigmafield if it is almost 

a subsigmafield of any sufficient subsigmafield. If a statistic 

Y(x) generates such a subs:i@:lufield,then Y(x) is said to be a 

minimal sufficient subsigmafield. 
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Theorem 5. Let ~ be a dominated family of probabil~ty 
measures, let 'IT be dense for ...!? and dP = 9p ( x) dlr . Further­
more let !/ be the class of all sets of the form 
Ap{r) = t xJgp(x) ~ rj where P €:- 9 and 0 fr ( oo Then the 
least sigmafield .Jl.0 over Y is the most summary subsigmafield 
for 9. 

Proof: From the construction of ..A0 

gp(x) is e-40 -measurable. Hence by theorem 2 

Suppose now that ...4 1 is an arbitrary 
for Y. Then by theorem 2 there exists an 

measurable and such that dP = hp(x)dTT and 
( 11) . 

Define now K as the class of all A 

some (B-A)] = 0 for all 

it is seen that 
...40 is sufficient. 
sufficient sigmafield 
hp{x) which is ~ 1 -

thus hp = 9p a.e. 

G. ...A such that for 
p~,9. It is seen BE; ..41, P [U~-B) V 

that K is a sigmafield. But with Bp{r) = { x \ hp ( x) ~ r } we 

('\\)' have, since hp = 9p a.e. that 

has ~rr -measure 0 and hence P' -measure 0 for any P' f- 9 . 
Hence Ap(r) E K, i.e • ../10 c K since ,J;.0 is the least sigma­
field over all Ap(r). But from the construction of K it 
follows that K is almost a subsigmafield of . .)) 1 • Hence 

.fl.o C. ..fl 1 • Q. E • D. 
a.e. 

It is seen that in the first place theorem 5 says that for 
any dominated family of distributions there always exists a 
minimal sufficient subsigmafield. In the second place it gives a 
manner of constructing such fields and thus (if possible) minimal 
sufficient statistics. 

From theorem 5 it now easily follows 

Theorem 6. Let J = l P't: \I:~ 0} be a Darmois-Koopman 
family with s 

~t;.Y.(x) 
j-1 J J 

dP-r = A(t:) e - h(x)d;-,_ 

where )'- is sigmafinite. If {2. contains s linearly independent 
vectors then Y(x) = tY1(x), •.• ,Ys(x)} is a minimal sufficient 
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statistic for !}J, i.e. for r: . 

g~~PE!§_l• In Student's (a priori) situation the first 
two moments, taken together, is a minimal sufficient statistic~ 

§~~~Eb§-~· Under the Fisher-Behrens! null-nypothesis the 
components of X = (v1' ... ,v ,w1' ... ,w) are independent normal, 
EV i = EWj = ~ , var Vi = 0"1 2~ var Wj = qa'2 2 • The four statistics 

L V. , > W. , L V. 2 , L W. 2 taken together is then a 
.1 J .l J 2 

minimal sufficient statistic for the three parameters ~, 01 , a-2 2 . 
The construction of minimal sufficient statistics based on 

theorem 6 is rather inconvenient. The following result due to 
E.L. Lehmann and H. Scheffe [18) leads to a much easier manner 
of constructing minimal sufficient statistics. In this context 
we shall call any function Y(x) from (X,A) into a space 
(possibly abstract) 'y a statistic. No sigmafield is defined in 
~ and no requirement about measurability of Y is imposed. Let 

c#y be the class (sigmafield) of all sets in ..JI of the form 
Y- 1 (B) where BC~. Then Jl.y is said to be generated by y. 

The cont-2.1!£.§. of Y(x) is the sets of the form lxlY(x) = y}. To 
any partitioning of the space Jc. there corresponds a statistic 
Y(x) such that Y(x) has the sets in the partitioning as 
contours. 

Assume now that the family 9 of measures P over (JC,J?.) 

is dominated by a sigmafinite measure~' i.e. dP = fp{x)d,,µ.. 
A certain statistic Y0 is defined by defining its contours. A 
contour through x 0 ~ JC. is the set of all x for which there 

exists an h(x,x 0 ) f 0 such that 

(6) 

for all PE .9. Then Y0 is said to be contour constructed by 
means of 9. 

Theorem 7. Let 9 be a dominated family of probability 
measure P over a Borel-class ,..JI in the Euclidian space X 
and let Y0 be contour constructed by means of .Y"J. We then 
have: (l), Y0 is sufficient; (ii), Y0 is minimal sufficient 
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in the sense that given any sufficient statistic Y(x) there 
exists a function t( ) such that Y0 (x) = t(Y(x)) almost 
everywhere {r) and hence almost everywhere (.0), (iii),~y 

0 
is minimal sufficient in the sense defined earlier. 

(i) follows easily from the factorization condition (4). 
For the proof of (ii) the reader is refered to (18). It was shown 
by R.R. Bahadur (2] that two statistics Z(x) and Y(x) are such 
that Z{x) = t(Y(x)) almost everywhere ~) if and only if 
~Z is almost a subsigmafield of ~y• Furthermore it was shown 
that any subsigmaf ield is equivalent to a subsigmafield generated 
by a statistic. Hence the result (iii) says neither more nor less 
than (ii). (Both results of Bahadur assumes that (Jc,..4) is 
Euclidian-Borel.) 

The contour construction given above is very convenient 
to apply. As a matter of fact it amounts to "looking at the 
mathematical form of the probability density" and identifying the 
minimal sufficient statistic almost immediately. Thus theorem 6 
could have been proved by the contour construction method. 

. We shall now introduce the important concept of complete- _ 
2~~~~d~lfil~hb1sEo~r~6~~gnfr8'ilidtif!e 8fifrrlli~on\1l 1ai1?1 fl~~ ./TRI~ ~~s~ [18~ ·1 

convenient mathematical property of families of probability 
measures with which the statisticians are frequently dealing~·. 
These families are perhaps often pre~ed for just that reason. 
But completeness in itself cannot be said to constitute a funda­
mental idea in statistical inference. A family is said to be 
(boundedly) complete over a sigmafield ...40 if for any (bounded) 

.JI -measurable function f(x) for which \f{x)dP = Q for all 
o J is 

P ~ .. /-> , we have f ( x) = 0 a. e. (.9). Note that it ;usually not 
relatively to the original observations (fi) that a family is 
complete, but relatively to some statistic ( • .40 ). Thus if in 
theorem 6, (2 contains an open subset in the s-dimensional 
space, then the family of probability measures for Y(x) is 
complete; i.e. the family of probability measures is complete 
over the subsigmafield c.4'0 generated by Y(x). In this example 
Y(x) was also sufficient. In fact, there is an important 
connection between sufficiency and completeness (theorems 7 and 
8 below) which we shall now prove through some lemmas. 
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Ne shall call f(x) almost .,H1-measurable if there exists 
a sigmafield JJ2 equivalent to ...41 such that f (x) is ..JJ.2-

measurable. 

Lemma 1 • 

sigmaf ield JJ 0 , 

and furthermore 
a. e. (.9) • 

If 9 is (boundedly) complete over a sub­
g(x) is (bounded and) almost ~0-measurable, 
fg(x)dP = 0 for all Pt:-9, then g(x) = 0 

~E22f: Let cA' 1 be equivalent to ../,l0 and g ( x) --41-

measurable. Then there exists an h(x) which is -.-40 -measurable 
and equal to g(x) a.e. This is seen by first assuming that g 
is an indicator function and then extend to any integrable 
function g. Hence jh(x)dP = 0 for all P. Hence g = h = 0 

a.e. 

Lemma~. If c.A 1 and J 2 are sufficient subsigmaf ields 

such that for all A ~ J!i 

a.e. (P) for all P f:::..9,. then J/.1 and ....fl2 are equivalent. 

~E22f: We have in particular for A~ J,21 

p ( A j.fl2 ' x ) = p (A l-'1 ' x ) = IA(x) a.e. (7) 

hence P(A!J2 ,x) = 0 or a.e. Let now 

B = txjP(Al--42 ,x) = 1} ( 8) 

where P(A!v72 ,x) and hence B can be specified to be independent 

of P. Then B~ c.4 2 and I 8 (x) = IA(x) a.e. or 
P( (A-B) L' (B-A)) = O. 

Theorem 8. Suppose that there exists a minimal sufficient 
subsigmafield for 9 and that .!P is boundedly complete over a 
sufficient subsigmafield JJ. 0 •. Then ...40 is minimal sufficient 

for SD •. 



- 16 -

Theorem 9. If t.!..;~ is dominated and boundedl y complete 
ttver a sufficient subsigmaf ield rJJ. , then JJ0 is minimal 

ei. 0 sufficient for ~ 

Ef22f: Theorem 9 is an immediate consequence of the 
theorems 5 and 8. Hence it remains to prove theorem 8. 

Suppose that v?1 is minimal sufficient and let 

(9) 

V can be specified to be independent of P tG.:? since ~1 and 
~o are sufficient. Furthermore IV(x)J f 1 a.e., hence bounded 
and 

EV(x) = JV(x)dP = 0 for all P.t-..9> ( 10) 

Define now c{' as the class of all BE: J.l. for which there 
exists an A €.J/0 such that P[(A-B) U (B-A)] = 0 for all 
P~ 9. Then c/10 ' is a sigmafield and by the definition of ..,40 ', 

we have o.40 cc{'. On the other hand we see that c.4a 'c.. c.J,. 0 

almost by the definition of " c. almost". Hence .Jl. ' =JJ • But 
0 0 

from the definition of minimal sufficiency o.fl1c.cf/0 almost, 
henceo4 1 c~0 ' (without "almost"). Hence the last term in (9) 
is ~0 '-measurable, hence almost vl,?0 -measurable. Since the first 
term obviously is a.4'0 -measurable, it follows that V is almost 
~-measurable. Thus by lemma 1, V(x) = 0 a.e., and by lemma 2 

~o =..41 almost, Q.E.D. 
That vica versa minimal sufficiency does not imply 

completeness is easily seen by reference to the Behrens-Fisher 
nullhypothesis, see example 2 above. Here E(V-W) = 0 for all 
(~,u1 ,<J2 ) despite the fact that V ~ W a.e. 

It is common practice to say that a statistic Y is 
complete when the class of sampling distributions for Y, i.e. 
tPY- 1 IP€:: 8] , is complete. 

The following example shows that minimal sufficiency does 
not even imply boundedly completeness. 

Example 3. We shall utilize this example to illustrate 
the construction of minimal sufficient sigmaf ields by means of 
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theorem 5. The construction could also have been perfbrmed by 
applying theorem 7. 

Assume that X = ( X1 , X2 , • • • , Xn) 
independent, each uniformly distributed 
g > 0 is unknown. Let Y1 =min Xj, Y2 
the density of X can be written 

has components which are 

over (f'f+1 ), where 
=max x .. It is seen that 

J 

( 11 ) 

= 0 otherwise. 

From theorem 3 (see equation (4)) it follows that 
Y = (Y1 ,Y2 ) is sufficient. It is not boundedly c~mplete, since 

( 1 2) 

and \ Y2 -Y1 - g:~ \ t... 1 with probability 
introduce Pg (A) = ) fg dx 1 , ••• , dxn and 

1 for all ~ • Let us 
let g1 , ~2 ,... be the set 

A 
of all positive rational numbers. Then 

dense in .!fJ = l P 3 \ J > 0 ~ in the sense 
(see remark in connection with theorem 

LPgj\j = 1,2, ••• } is 
of abs~lute continuity 

/ . 
1). Then Tf(A)=Jl:idx 1 ~··,ctsi_ 

where 
D A. 

is dense for J and h is a h = L f 2-j 
f j 

probability density which is dense on the strip S (see figure). 

Obviously S (\ T g = l x \95' < ~} E:9°' (where bar denotes complimen­
tation and the letters on the figure represent inverse images in 
the X -spa.ce of the triangles etc. shown on the figure). Hence 

S = the strip= y (Tfj 11 S) f;. _fo0 , i.e. T~ = S-S r" T~ e..v4-0 , 

hence any rectsngle K c S can be expressed as 

Ta t1 Tb n Tc n TdE:-J.Jo (see figure). This shows that Jl.o 
consists of all sets [x j(y1 ,y2 ) ~ B} where B is a Borel-set 
in S. Thus (Y 1 , Y 2 ) is minimal sufficient for f . 

In the case n = 1 it is easily seen that X is minimal 
sufficient wh~reas E2f(X) = Ofbr all~ 1if f(x) is bounded and 
periodic with period 1 and such that 5 fdx = O. This is a 

0 
very simple example of the fact that minimal sufficiency does not 
imply bounded completeness. 
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In order to throw some light on the concept of ancillary 
statistics we shall give some theorems,mainly due to Basu [3]. 
A subsigmafield e!J.1 is called ancillary for :fJ if P(A) is 
independent of P t- .!? for all A E Jf 1 • (We can, if we like, 
think of !/) as being generated by varying the decision parameter, 
keeping the nuisance parameter fixec.) We omit the proofs, which 
are quite simple. 

Theorem 10. Assume that 9 is boundedl y complete over a 
sufficient sigmafield e-/0 and that c..41 is ancillary for .!?. 
Then c.# 1 and r:.Jl0 are independent. (If P(A0 n A1 ) = 

P(A0 )P(A1) for all A0 E:./J 0 and A 1 ~o.4 1 , then Jl 0 and Jl. 1 
are said to be independent .) 
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g~~~e!§~: x1 , ••• ,xn are independent normal (~,<r). The 
sample mean X is sufficient and complete for fixed ~, whereas 
the distribution of z = 2::(xj-x) 2 is independent of I:, • Hence 
Z and X are independent. We have another example if ~ = O. 
Then V = 2::: x12 is sufficient and complete whereas the 
distribution of the Student statistic T is independent ~f o . 
Hence V and T are stochastically independent when l., = O. 

The following theorem is a partial converse of theorem 10. 
In this connection we shall call two distributions P1 and P2 
singular if there exists a set NE c.-4 such that P1 (N) = o, 
P2 (N) = 1. 

Theorem 11. Assume that no two distributions of ..9J are 
singular, that 
field and that c.41 

.,A0 is a sufficient sigma­
i s independent of J 0 • Then J, is 

ancillary for .9. 

D. General decision theory and sufficiency. 

We shall first give a description of what is meant by a 
statistical decision problem. As usual (.l::,JJ.) will be the sample 
space for the observations X and .5J is the model, i.e. the 
family of probability distributions over the sample space • .f7J 
expresses the a pri&ri knowledge of the statistician. 

The statistical investigation shall result in a decision 
d. The purpose of the investigatien is defined by specifying a 
class Rd of decisions which a priori is feasible and of interest. 
We define a sigmafield fZJ in Rd which contains all one-point 
sets. 

A non-randomized decision function is a measurable function 
from the sample space to the decision space (Rd'~) which for 
all X ~JC gives the decision d ~ Rd to be taken. More 
generally we shall define a randomized decision function ~(Dlx) 
as a function from W x X to the interval [ 0, 1]. For each x 
it specifies the random mechanism according to which for any x 
we make a decision in Rd. It can be considered as the conditional 
probability distribution for d given x. Hence the 
unconditional distribution of d when P € c!? is true, is given 



- 20 -

by 

!3s(D,P) = Pr(d <;: D) = )S(Dlx)dP ( 13) 

This is the operating charactheristic for the decision function 
d . By studying this characteristic as a function of D and 

P we get an impression of how good £ is. When we are studying 
O in this manner we take into consideration that for each P 

there are some decisions d which are desirable and some not 
desirable. We could express this circumstance by introducing a 
loss function, but at present we shall refrain from doing that, 
since we shall obtain certain results which are independent of 
the loss function. 

By testing hypothesis the operating characteristic is 
given by the power function, by point estimation it is simply 
given by the s~mpling distribution of the point estimator. 

Two decision functionsare said to be equivalent if they 
have the same operating characteristic. 

The principle of sufficiency is now to the effect that 
if ~o is sufficient then cS'(D/x) should be ~0-measurable for 
each D. 

We have now the following useful result proved by 
Bahadur t._ 1 J. 

Theorem 12. Suppose Rd Euclidian, fiY the Borel class 
and let !? be an arbitrary class of probability measures P 
over ~. The following statements are the equivalent 

( i) cJ/0 is sufficient. 
(ii) For any ;-(D,x) defined for D E;fJJ and x t JC. 

which is a measure as a function of D and (o41,.?)-integrable 
as a function of x; there exists a ./Q(D,x} which is a measure 
as a function of D and (o10 ,.9)-integrable as a function of x 
and which is such that 

( 14) 

for all DE:-~· and Pt:. 9. 
The proof of this theorem is quite similar to Doob's proof 

of the existence of a conditional probability measure, see section 
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O. B above. As a matter of fact this r€sult appears as a special 
case of theorem 12 by letting 9 consist of one element P. 
Then every subsigmaf ield ~ is sufficient and the result 
follows immediately by letting ;;- = I 0 (x), (Rd,Q)) = (:¥:,.A.) and 
D = A E:Jl. 

Furthermore by letting ~(D,x) be a decision function 
S(D!x) we get 

Theorem 13. Suppose that Rd is Euclidian and fJ the 
Borel class. If and only if ~o is sufficient is it possible to 
replace an arbitrary decision function J(Df x) by an ~40 -
measurable decision function J0 (D!x) which is equivalent to J. 
so and ~ are related as J-Lo and r in ( 14). 

We now have for an arbitrary decision space 

Theorem 14. 
If and only if ...40 

arbitrary decision 
decision function 

Let X be Euclidian and .J/. the Borel class. 
is sufficient is it possible to replace an 

function 6(Djx) by an ..40 -measurable 
J0 (D Ix) which is equivalent to J . 

r;r99f: We have for the operating characteristic, since 
J,10 is sufficient 

( 15) 

for 'Tl E. f But from O. B (4) it now follows that the 
expectation inner expectation can be considered as a proper 

relatively to a conditional probability measure 
denote this conditional expectation by 60 (Djx) 

Tl (A \ cft.0 , x ) • We 

We now easily verify that 
measure as a function of 
based on the principle of 
follows from (15). 

and have then 

( 16) 

60 for all x is a probability 
D and consequently a decision function 
sufficiency. Its equivalence with ~ 

It is seen from theorems 12 and 13 that if either the 
decision space or the sample space is Euclidian, then nothing 
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is lost by using the principle of sufficiency, regardless of 
how the loss function in the decision problem is defined. 
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II. TESTS WITH OPTIMAL POWER. 

A. Introduction. 

Basic for the "classical" theory of testing hypothesis is 
the idea of fixing a certain level of significance i , which 
is the maximal (or upper bound of the) probability of falsely 
rejecting the hypothesis. The idea is well established in 
statistical applications, but should hardly ever be applied 
with strict consistency. The level is a price to be paid for 
high sensitivity (power). If the statistical situation is such 
that the "market" is deluged by sensitive tests, then the 
"buyer" (the statistician) will lower the price which he is 
willing to pay. The idea is formalized by Lehmann (2D • We shall, 
however, in these lectures adapt the attitude that we wish to 
maximize the power for a given level. 

There are certain simple situations, mainly where one 
wantsto test a "simple" (completely specified) hypothesis against 
one-parametric one-sided alternatives, where a uniformly most 
powerful test at a given level exists. If one or more of the 
assumptions just mentioned are not fulfilled, then a uniformly 
most powerful test will usual not exist (but this is not a 
general rule}, and in that case we shall be at loss what to do. 
In many cases we can, however, reduce the more complicated 
situation to a simpler situation by introducing some additional 
assumptions on the test methods. One resorts to one or more of 
the following devices: (jJ the test is conditioned, (ii) it is 
made unbiased in the power, (iii) it is made invariant. We 
shall below treat the two first possibilities. But first we are 
going to say something about the techniqueaf constructing tests 
with optimal power. 

B. 

f {x) 

space 

Neyman-Pearson constructed tests. 

Let (X,~,r) be a measure space, let f 1(x), ••• ,fm(x), 
(= fm+ 1(x)) be given real integrable functions over this 
and let c1 , ••• ,c be given constants. We denote by L). m 
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the clas~ of all test functions 8(x) over the measure space, 

i.e. measurable functions such that 0 f J(x) ~ 1. Furthermore 

C is the set of all S ~ 6 such that 

#e have the following classical result. 

Theorem 1. Suppose that ~o E C has the following 

property: There exist numbers k1 , ••• ,km such that 

c)o(x) 
m 

= 1 for all x with f (x) > L: k.f.(x) 
i=1 ]. ]. 

m 
c50 (x) = 0 for all x with f (x) <. ) k.f.(x) 

i=1 ]. ]. 

Then 

( 1 ) 

( 2) 

(3) 

for all J ~ c. For those i for which ki ~ o, replace 
"=" in ( 1) by 11 f 11 and call the new se°tJ equations ( 1)'. Then 

( 3) is true for any d E: 6 satisfying ( 1) '. 

Suppose now that .JC. is Euclidian. About the existence of 

a J0 the following could be said. The class of all test 

functions 

J1 '$2' ... 

a 8 E- .6 
0 

is "power-compact" in the sense that to any sequence 

E:6 there exists a subsequence 6 ,£ , ... f: 6 and 
n1 n2 

such that 

( J gdµ.. --·:> \ !» gdM J n. I _, 0 I 
J 

( 4) 

for any integrable g, hence in particular for 

g = f 1 , ••• ,fm+ 1 • Thus if C is non-empty, there exists a 

maximizing d0 e. C. 
As a matter of fact we can under general assumptions about 

c1 , ••• , om say something more, viz. that 80 must be "almost" 

Neyman-Pearson constructed. We denote by M the class of all 

points (\Sf 1dr, ••• ,fJfmdf} which is generated by varying 
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S in ~ • It is easily seen that M is convex. From the 
compactness property just mentioned it now follows that M is 
closed. 

The property about 60 which we have announced can now be 
formulated as follows. (See Lehmann (22] ). 

Theorem 2. Suppose that J( is Euclidian and that 
(c 1 , .•• ,cm) is an inner point in M. Then there exists a 

J0 'e: 0 which maximizes jSfdr· To any such '5'0 1 there exists 
a o0 E O which has the properties given in theorem 1 and such 
that it equals J0

1 almost everywhere 'J-)· 
By means of this theorem we can in certain situations 

prove the uniqueness of the Neyman-Pearson constructed tests, in 
other cases it can be used to ascertain that tests which are 
unbiased with a certain level can always be constructed. From our 
point of view it is perhaps more important that the theorem can 
be used to prove the non-existence of uniformly most powerful 
tests. 

c. Conditioning of tests. 

We shall later discuss the possibility of a general 
formulation of condi tiorning of tests. i\t present we shall take as 
a starting point that conditioning in certain situations can be 
justified intuitively. 

An important class of test situations is defined by the 
Darrnois-Koopmen class of distributions (see [61 and [15]). 
P is given by T,g 

""C = (T1, T2 , • • • , 'rs) o.nd S' vary independently. Without 
impairing generality we assume that \:' = 0 and ~ = 0 are 
a priori admissible and that A(O,O) = 1. The sample space 
(X.,Jl..) for the observations X is Euclidian. The functions 
and V are known a priori. We shall test the hypothesis 

( 5) 

Y. 
J 
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g = 0 against ~ > O. Thus ~ is the decision parameter 
whereas 7: is the nuisance parameter. In certain special cases 
of Darmois-Koopman classes it is natural to use conditional 
test given Y(x) = (Y1{x), ••• ,Y8 (x)) (see examples below). 

It is seen that (Y(x),V(x)) is a sufficient statistic 
relatively to the a priori situation. Hence without impairing 
the power we can limit ourself to consider tests which depend 
on the observations only through (Y,V) (see theorem 13 in 
I. D). Denote by F0 (y,v) the cumulative distribution function 
for (Y,V) when L= o, S = O. It then follows from (5) that 
the cumulative sampling function F- 0 (y,v) for an arbitrary 

(..I J 
(L,~) is given by 

s 
2::: (. y .+ov 
. -·1 J J .J 

dF~.y = A(~,~)eJ- dF 0 

Furthermore, denote by Fz,g ( v \ y) 
cumulative functions given Y = y. 

where 
oO 

I 

and F0 (vly) 
'de then get 

\ eSl v dF 0 ( v l y) 
v 

-oa 

(6) 

the conditional 

(7) 

Thus we have obtained a class of one-parametric alternatives 
and we shall test the §imple (completely specified) hypothesis 

J= o. 

Theorem 3. The a priori distribution of 
by ( 5) and we want to test 2 ~ 0 against g > 
a uniformly most powerful conditional test with 
consists in rejecting the null hypothesis when 

V(X) > c(Y(X)) 

and reject with probability l!(Y(X)) when 

X is given 
O. There exist$ 

level {.,, • It 

( 8) 
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V(X) = c (Y(X)) (9) 

and accept otherwise. c ( y) and If ( y) are given by 

( 10) 

It is obvious that this test also unconditionally has 
level l , but unconditionally nothing is said directly about 
its optimal properties. 

Example 1. x1,x2 are independent and Poisson 
distributed with parameters .A. 1 and .A2 , and the null 
hypothesis is A.2 ~ aA1 • By conditioning w.r.t. X = x1+x2 
it is seen that the testing can be carried out on a binomial 
distribution and that the test is conditionally optimal. 

Example 2. Consider a double dichotomic frequency table 
and testing of independence both under the assumption of 
multinomial distribution and under assumptions of two binomial 
distributions. By conditioning given the marginals it is seen 
from theorem 3, that the well-known hypergeometric testing is 
obtained. 

By double classification with more than two levels for 
at least one of the classifications we have a priori a Darmois 

Koopman familytof distribution of type (5) with ~V(x) 

replaced by .2:: o.V. (x); t ~ 2. Independence corresponds to 
. 1 ..)l l i= 

?1 = ••• = ~t = O. Conditional testing, given the marginals, 
leads to testing on the basis of the generalized hypergeometric 
distribution. The Neyman-Pearson constructed test will depend 
on the alternative ( g1 , .•• , ft) and it follows from theorem 2 
that no uniformly most powerful conditional test exists. Hence 
we have to be content with a compromise test, such as the chi­
square goodness of fit test. 

In the two examples given above it is perhaps felt that 

conditional testing is intuitively reasonable. The statistics 
on which the conditioning is based have precisely the property 
required of the "ancillary" statistic, viz. that they are 
important data to be taken into account when judging whether 
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(or only very slightly) 
there are significance, but that their distribution does not/ 
depend on the decision parameters. 

The following example is somewhat different and the 
intuitive feeling in favour of conditioning is perhaps missing. 

Example 3. x1, .•• ,x are independent normal (~,o') 
n 2 

and the null hypothesis is ~ f Ker against ~ > KJ-. Then 
n n 

V = 2:: X., Y = 2:: x. 2 form a set of sufficient statistics 
i=1 l i=1 l 

(~,~). Y is not ancillary for 4!u2 in this case since 
is eccentric chi-square distributed with n degrees of 

freedom and eccentricity )\.= ns2/cr2 • We consider conditional 
testing anyhow. We theotobta±'n again a one-parametric 

cond1 1ona ~ 2 

for 
Y/<$2 

situation, since the/distribution of V depends only on ~/er . 
Theorem 3 can be applied and we are led to a kind of conditional 
Student testing given 2.::: Xi 2 • This test is the uniformly 
most powerful test among all conditional tests. For K = 0 we 
have the usual Student hypothesis. In that case the Student 
statistic happens to be independent of Y and we have the 
ordinary unconditional Student test, which therefore is 
uniformly most powerful among all conditional tests. 

We have above discussed the situation in the case of 
some Darmois-Koopman families of distributions. We shall now 
consider the following non-parametric situation. 

We assume that it is a priori known that x1 , ••• ,xn are 
independent with probability density respectively 
f(x-ti9); i = 1,2, ••• ,n. The numbers t 1 ,t2 , ••• ,tn are 
a priori known and they are not all equal, but the functional 
form f and the scalar f are unknown. We shall test that 
x1 , .•• ,Xn are identically distributed, i.e. that~= O. Thus 
g is the decision parameter, whereas f is a nuisance 

"parameter 0 • We see that if t 1 = t,..., = ••. = t = o, 
L m 

tm+i = ••• = tn = 1, then we have a non-parametric two sample 
situation, where we want to test if the two samples are from 
the same population. 
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Let us consider the order statistic Y(X) = 
(Y1(x), •.. ,Yn(X)), where X = (x1 , ••• ,xn) and 
Y1 (X), ••• ,Yn(X) are x1 , ••• ,xn ordered in a non-decreasing 
sequence. The distribution of Y is not independent of J. 
Nevertheless, it is customary to recommend conditional testing 
given Y, i.e. 11 combinatorial 11 or "non-parametric 11 testing. 

For the density of x1 , ••• ,xn we write for short 

Let R(y) be the set of all n! permutations of 
y = ( y 1 , ••. , y n ) • We then have 

( 11 ) 

Pr[x = xlY = yJ = p(x-tg;f)/ ~ p(x'-t~;f) (12) 
x'~ R(y) 

provided x E R(y). Otherwise the same probability is o. 
(12) reduces to 1/nl when g = O. The conditionally most 
powerful test relatively to a given alternative (f ,~) can now 
be obtained by a Neyman-Pearson construction. We get the 
following test. For given y consider the n! quantities 
p ( x-ty ; f) obtained by varying x in R( y) • We arrange them 
in a non-increasing sequence and denote them by 
p( 1 ), ••• ,p(n!). The corresponding values of x are denoted by 
x ( 1 ) , .•• , x ( n ! ) . Determine k and 0 6. a' <.. 1 such that 

k+ '([ = n! [ • For any y the hypothesis is rejected if Y(X) = y 

and X is one of the points x( 1 ), ••• ,x(k). If Y(X) = y and 
X = x(k+ 1 ) the hypothesis is rejected with probability t. 
Otherwise the hypothesis is accepted. 

It is seen that the test depends on the special 
alternative (f,f)· Hence by theorem 2 there exists no 
uniformly most powerful non-parametric test (i.e. conditional 
test given Y). Thus also in this case we have to be content 
with some compromise test, such as e.g. the Wilcoxon test. 

o. Unbiased tests. 

As above we shall denote the sample point by X, the 
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sample space by (JC,fi) and the a priori family of distributions 

P over (Jc,:.4) by fP • Let .9H be a proper subfamily of .9 . 
A test of the hypothesis P €: ,;:;H is defined by 

o(x) = Pr(rejectionix = x). The power function is then 

/3(P,b) = Pr (rejection) = s~(x)dP. The level is 6 if 
p(P,b) L l for P ~y~H. The test is unbiased if in addition 

p ( P ,$) ~ l for PE .9 -~. We introduce some limit concept, 

lim P n = P, in f and denote by .... ~' the boundary points 
of Jl8 • Suppose now that for any ~ the power of J is a 

continuous function for all P cJU8 1 • Then unbiasedness implies 

§imilarity, Le. {3(P,¢) = l for Pt:. 9 8 1 • 

Consider in particular the Darmois-Koopman situation. 

Theorem 4. Assume that the situation is as has just 
been described and that 

distributions 
!l' ' H is a Darmois-Koopman family of 

dP_ 
l. 

r 
L -c-.Y.{x) 
·-1 J J = A(T)eJ- dP 

0 
( 13) 

obtained by varying L in a set ~ which contains an r­

dimensional iibox" (containing 'G= O). A test is then unbiased 
level ·IF 

if and only if it is a conditional/test relatively to Y(x), i.e. 
; 

( 14) 

or equivalently 

where E-,: denotes expectation re la ti vel y to Pz:. 
Thus it is seen that conditioning of tests in the 

exp.mples 1-3 (and in many other situations) is "justified" by 

the requirement of unbiasedness. This also applies to tests 

which cannot be justified by Fisher's ancillary principle, 

such as the test in example 3. 

We have a similar result about non-parametric situations. 

Theorem 5. Consider the non-parametric situation 
described in the last part of section c. f is known to be 

continuous almost everywhere, otherwise f is unknown. Then a 
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test is unbiased if and only if it is a combinatorial test, i.e. 
a conditional test relatively to the order statistics, i.e. 

Ld(x)=~n! ( 16) 

where the sum is over all permutatioreof the order statistic. 
The most powerful test relatively to a given alternative is 
the one given at the end of section C. 

By means of theorem 2 it now follows that in the non­
parametric situation there exists no uniformly most powerful 
unbiased test. 

We return to the Darmois-Koopman situation. We find from 
the theorems 3 and 4 

Theorem 6. Suppose that the distribution of X is 
a priori given by (5) and that we want to test ~ f 0 against 
g >O. The test given in theorem 3 is the uniformly most 

powerful unbiased test. 
From this theorem it follows that the tests in examples 

1, 2 (first part), 3 are uniformly most powerful unbiased. By 
application of the theorems 4 and 2 it follows that by doubly 
classified frequency tables with more than two levels for at 
least one of the classifications, there exists no uniformly 
most powerful test for the hypothesis of independence. 

The main content of the famous paper by Neyman and 
Pearson [23] is given in a somewhat generalized and modernized 
version in the theorems 4 and 6 above. But Neyman and Pearson 
didn't make use of the concept of unbiasednes (only similarity) 
and the connection with conditional testing was clarified later 
(see (27] and [19]). Furthermore Neyman and Pearson didn't 
expressedly deal with the Darmois-Koopman family, but this 
was implicit in their assumptions. 

E. Justification of conditioning. 

Conditioning of tests has worried statisticians through 
many years. It has been felt that tests cannot be conditioned 
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arbitrarily. Certain principles are needed. The example 2 
above is a classical example. Can we, without further ado, 
assume that the marginals are given non-random variables, 
regardless of whether they were chosen in advance in the 
statistical experiment or not ? (Usually they are not chosen 
in advance.) Another classical example is regression analysis 
(see example 5 below). Should the independent variables be taken 
as ngiven" ("fixed'') variables or as stochastic variables ? 

The problem can also be formulated as the problem of 
what is the "correct" sample space or as the problem of what 
is the "hypothetical repetitions 11 • 

If we are just looking for a definite rule, then we 
have got it in the principle of unbiasedness. It justifies in 
an elegant manner the tests in the examples 1,2 and 3 and in 
many other Poisson, multinomial and linear-normal situations. 
It also justifies combinatorial tests in non-parametric 
situations. However, in the cases where conditional tests seems 
intuitively reasonable (examples 1 and 2), one is not always 
convinced that the real motive is unbiasedness. Furthermore, 
in some cases one feels that the consequences of unbiasedness 

is not supported by intuition (example 3 above). 
The following example illustrates the situation. 

Example 4. The quantity ~ is to be measured in order 
to find out if L,= 0 or l, > O. The actual measurement is 
denoted by x. There are two instruments available. With 
instrument I X is normal (~,u1 ) and with instrument II X 
is normal (~,cr'2 ). Let Y(= I or II) be the brand of the 
instrument. One intends to call on an institution which is 
known to have one of the instruments and perform the measurement 
there. It seems obvious that one should assert that l,> 0 if 

the instrument is of brand I and X > 1 • 64a'1 or if the 
instrument is of brand II and X > 1.640"'2 (5 % level). 

This is conditional testing given Y and it is clearly 
very reasonable. However, it could be objected that we are in 
the 11 wrong 11 sample space. We should really consider the space 
for (X,Y). Suppose now that Pr(Y =I) = p and 
Pr(Y = II) = 1-p, where p is unknown. Thus we have a nuisance 
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parameter p in addition to the decision parameter S. .§.y 

2Qplying the principle of unbiasedness we are now easily led 
to the test given above. 

But suppose now that we obtained the additional 
information that when the institution purchased the instrument 
a coin was tossed and that the outcome determined which 
instrument to buy. Hence p = ~· This information ought to be 
quite irrelevant, since we are going to look at the instrument 
and observe of which brand it is. Thus conditional test should 
still be reasonable. 

But now this result could not be obtained from the 
principle of unbiasedness. This principle was only helpful 
when p was unknown. It is easily seen that the most powerful 
test relatively to the alternative l is to reject the 
hypothesis if and only if 

2 

X)~+cry K (17) 
2 t.. 

where K is determined from 

1-l l. cr.i 1 1L- t. G2 - 1 -G (- + - K )j + - 1 -G (- + - K) 
2 20"1 E.. 2 202 ~ 

= 0.05 ( 18) 

~nd where G is the gaussian integral. The test depends on t 
and there ±~ no uniformly most powerful test. (See also 
Cox (5]). 

Example 5. Suppose that in the conditional distribution 
given v1 , ••• ,vn we have that x1 , ••• ,xn are independent nor­
mal with variance d 2 and expectations Cl...+(!Ni; i = 1,2, ••• ,n, 
respectively. We want to test something about ~,p,rr. If either 
(l), nothing is known about the distribution of v1 , ••• ,vn or 
(ii) they are independent and identically distributed, or 
(iii) they are independent normal (v, ?') where v and C:: are 
unknown; then the situation is clear. Unbiasedness implies 
conditional testing given v1 , ••• ,v11 • If, however, (iv) 
v1 , ••• ,vn are independent normal(0,1), then conditional 
testing can not be justified by means of the principle of 
unbiasedness. There are obviously other reasons for 
conditioning. The distribution of v1 , ••• ,V11 depends in 
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neither of the situations (i), (ii), (iii) or (iv) onot ,f ,o-; 
but v1 , ••• ,vn are nevertheless important when judging 
significance. They play, according to Fisher, about the same 
role as the size n of the sample, and can therefore be taken 
as given. 

A precise formulation of a principle of conditioning 
has been suggested by Cox [5J who tried to connect it with the 
principle of sufficiency. 

We shall proceed in a different manner. 
First, it should be remarked that the formulations such as 

iithe distribution of the variables shall be independent of the 
decision parameter" is not precise. In exs.mple 1 it might 
perhaps be said that the distribution of X = x1+x2 is 
dependent of A1/). 2 through A. 1+). 2 =1l 2 (1+.A 1/;t 2 ). But the 
familX of distributions of X is the same regardless of how 
~ 1 /A 2 is specified, or whether it is specified at all. Further­
more the notiens "decision parameter" and "nuisance parameter" 

C" 
s are diffuse. In example 3 it is not the "whole 11 parameter (j.2 - K 

which is the decision parameter, only its sign. f ~ - Kf is 
. ~ nuisance. 

In order to condition given a statistic it seems 
reasonable to require that this statistic shall give us no 
intimation about whether the hypothesis is wrong or right. This 
requirement can be formulated as follows. As usual :fJ denotesthe 
a priori fa~ily of distributions, :J'>H , which is a proper sub­
family of J , c;.,;.fotes the family of distributions under the 
hypothesis and Jal t the family of distributions under the 
alternative. Let r.A 0 be a subsigmafield in the sam:Qle space 
(.!,A). P0 is the measure P confined to ~; and .... TH0 and 
TJO O O 

ar.e the families of all P generated by varying P in 
Ir,) alt 
JH and ~alt respectively. Now, one condition for conditioning 

• ~/J /(Jo (,){ o 
on a statistic Y J which generates uv.-0 J should be that -'H = ..... ,.alt. 

The merits of the principle of conditioning by 
ancillary statistics on the one hand side and of the principle 
unbiasedness in the power on the other, are compared in the 
following table of conditional tests which are and are not 
justified by the two principles. 
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Anc.princ. Ex.1 Ex.4 Ex.5(ii:i;) Ex.5(iv') 

Unb.. :Ex.1 Ex.2 Ex.3 Non.par. Ex.5(i:Li) 

rThat the definition above is not complete is seen from 
the following example due to Else Sandved [26). x1, ... ,Xn are 
independent normal with unknown expectation t and unknown 
variance d 2 • The hypothesis is ~ L 0 against S > O. Let 
X be the sample mean. Then (Ix{,~ (Xi-x) 2 ) is ancillary 
according to the ·. ition above. Conditioning with respect 
to this statistic is seen to lead to absurd testsJ 

In a general decision problem with an a priori family 
of distributions !/), a decision space Rd and a loss 
function L(P,d), the requirementof an ancillary subsigmafield 
Jlo is as follows. There exists a version P(A/ci0 ,x) of the 
conditional probability relatively to ~' such that L(P,d) 
depends on P only through P( • \...90 ,x). Expressed differently, 

l•;:;t P0 denote P restricted to eJf 0 and JJ 0 thS" t!atnily of all 

P0 generated by varyirtg P in fa If now P(·I~ ,x) is kept 
fixed and po varies in ,7J 0 , then L(P,d) should be ·goristant for 
all J p ( • ) = p ( • fc,40 'x) dP o. 
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III. MULTIPLE DECISION THEORY 

A. Introduction. 

Statistical theory has predominantly been preoccupied 
with the following two types of situations. 

(l). Testing hypothesis, i.e. choice between two 
decisions which can be either, 

(ii) • 
(iii) • 

~· Rejection or acceptance of the hypothesis H, 
Q• Rejection or not rejection of H. 
Point-estimation. 
Interval-estimation (of one parameter). 

Many methods with nice optimum properties have been 
developed for these situations. 

In practical statistics the situation is often more 
complicated. In connection with a specific statistical 

investigation it may be necessary to perform se~e.rt1il tests 
and point estimations. (We shall below only deal/I-testings and 
point estimations, not interval estimations.) We then have a 
multiple decision problem. If in such situations we are 
combining well-known tests and estimation methods, we are 
loosing control with what we are really doing. We don't know in 
which sense the combined method is good. (A more elementary 
error is to betray oneself with regard to the level of the 
comb.ined test.) One would perhaps be inclined to think that 
such a problem should be reconsidered from the very beginning, 
independentJyof which method would have been used isolated for 
each component problem. 

However, sometimes one feels that combining the 
recognized methods for the component problems is in some sense 
good, if there ~a a certain connection between the optimum 
properties which are required of the component methods on the 
one hand side and the multiple decision procedure on the other. 
This idea has been developed by E.L. Lehmann [20] and will be 
considered below. 

In classical statistics there has been a tendency to 
press any situation into a two-decision problem. The excuse for 
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doing so has been that it simplifies matter. But that is not 
always the case·. Bartlett's test for the equality of variances 
in several groups is relatively complicated and of doubtful 
value. Hartley's maximum F-test for pairwise comparison of 
variances is both simpler and seems to be based on a more 
reasonable way of posing the problem. It is rather peculiar that 
the statisticians have often had qualms of conscience when 
applying such methods. Thus H.O. Hartley (12} calls his method 
a "short-cut" test and J.N. Tukey (2s1 talks about "quick and 
dirty methods 1'. The practical intuition of the statistician 
leads him to feel that such methods are to be preferred and he 
attempts to justify this preference with the amount of 
computational work, despite the fact that this could obviously 
not be the motive. We shall below try to find the motive. 

B. Unbiasedness in the risk. 

We must first define the concept of unbiasedness in the 
risk. This is a concept which includes unbiasedness in the 
expectation (for a point estimate) and unbiasedness in the 
power (of a test) as special cases. (See Lehmann 87] .) 

Ne assume that the decision situation is as described in 
section I. D. Over a sample space (3(;,.A) is defined an a priori 
family n (above denoted by .9) of probability measures P. 
A decision space (Rd /ill) is given. The decision function 
J(Dlx) has .J£X0'> as domain. The operating characteristic 

of 8 is Ey5(DIX) = /35(D,P). 
Suppose now that L(P,d) is the loss inflicted by 

making a decision d when P is the true distribution of the 
sample point in the experiment. L could be said to measure 
the distance between the "true state of nature" P and the 
decision d. The risk is the expected distance when cf is 
applied, 

( 1 ) 

The distance to a "wrong" distribution P' is obviously 
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( 2) 

It is reasonable to require of 8 that it should be such that 
expected distance to a wrong distribution is at least egual to 
expected distance to a true distribution, i.e. 

r(P' ,P,'5) ~ r(P,b) (3) 

for all P' and PE U . In that case ..J is called unbiased 
in the risk. 

Example 1 • ~210!_§§!1~~!190· Let B = g(P) be a 
parameter, Rd= [g(P)jP"= .D.1, 

A ,-. 2 
L(P,d) = L(P,8) = (g(P)-8) ( 4) 

and let J(Dlx) = if D contains ~(x) and 
The requirement of unbiasedness in the risk of 6 
to unbiasedness in the expectation of the estimate 

O otherwise. 
then reduces ,... 
0( x) of e. 

Example 2. I§§!1og_bye~!b§§!~· Given uJ c::::... .fl_ • Let 

do = "do not reject Pt::.w", d1 = "P ~.0. -._.," and 

Rd = ldo 'd1} • Furthermore 

c if p ~ ~~ -w 
L(P,d0 ) = 

if p E; w 
( 5) 

( 0 if Pf:.0.-w 

L(P,d1 ) = L if p ~ w 

Then unbiasedness in the risk of £ reduces to unbiasedness 
in the power with level £ = b/(a+b). 

Example 3, JO!§fY§b_~§!1~s!120· An interval estimate is 
unbiased if the probability that it covers the true estimand is 
at least as great as the probability that it covers a wrong 
estimand. This can also be shown to be a special case of 
unbiasedness in the risk. 
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c. Optimality of combined use of statistical methods. 

For each 6 (in some indicator space) there is defined 
a test situation to the effect that P ~ ~a should be tested 
against P ~rt- 0 4 :::. w'lf- 1 • ThE: loss inflicted by erroneous 
rejections are a~ and bi respectively. We shall jointly 
make a decision for all ~ i.e. make a choice between sets 
of the type 

where c3{i~ is either -1 or 1. For fixed i the corre­
sponding sequence of d!i~ may result in .f1i being empty; 
i.e. a contradictory decision. We exclude those sequences. 

(6) 

The loss by making the decision p <=- nk when p G SL i 
is equal to the sum of the losses for each ¥ . This can 
formally be written as 

More generally we could give each term in (7) a weight and write 
instead of L. 

r 
Suppose now that there exist tests b0(x) 

and that we independently use these tests for all 
would result in a multiple decision procedure 

for all a 
(!/ • This 

"-jJi(x) =II ~[(1 +Jfi)(1 - ~~.(x))+(1 -'1fi2l')Jo<x)] (8) 
J' 0 

which is the probability of stating that PE: _(2.i when X = x. 
We now assume that 

with probability 
all i for which 

LW· (x) = 1 
i I l 

(9) 

1 for all P; where the sum is taken over 
.(Li is non-empty. From this assumption we 
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find that (8) is true if and only if 

= -21 2. - ( 1 -Jl . )\lr. ( x ) 
.l .l~ I .l 

( 10) 

almost everywhere. Thus it is seen that any arbitrary decision 
QfOCedure can be considered as constructed from a sequence of 
procedures J5 , i.e. as a multiple decision procedure. 

This result and (7) - (10) follow if the set of all ~ 
is countable. However, with the limitation to non-randomized 

r 
\I/. and o .... , the same result holds when the set of ¥ is non-
' .l Q 

countable. The relations (8), (9) and (10) will have to be 
replaced by the corresponding set relations. The limitation to 
non-randomized procedures is not serious since we may replace a 

randomized test with a non-randomized by supplementing the 
sample with an additional "observation", independent of the 
sample and with distribution independent of P E:. .0.... 

We find from (7) for the risk 

r(P ,1f) = ELik = ~ ~l ( 1 +!(i,r ys, ( P, b6 ) •/ ( 1...)fit)(1-fy ( P ,6,r) )b) 

= > r ~ ( p' bo ) ' ( 11 ) 

where j36 is the power function and r 5 the risk function for 
the component test. (Note that k is the random variable in 

ELik •) 
We now imagine that there 1s introduced a certain limit 

concept in Q and we denote by C'l the set of all boundary 
points for the set w. We have th'= following important 
connection between the optimality of each J~ and the 
.£.Qr re spending 31' • (Lehmann [20] ) 

Theorem 1 • Suppose that 

( i ) u n.l. = n' .0. n fi. = ¢ for i :/= j 
.l J 

and that the decision space consists of decisions 
d. = 11 P ~· .0. u. The decision problem can be decomposed in a 

.l .l 
finite number of test problems (t.Ji,fl-v.>4) with losses 

(a~,btJ). 
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(ii). For all ~, ~d"O is uniformly most powerful for 
P(; .0.-w,r and uniformly least powerful for P {: .....,4 among all 

60 which are similar with level t., 'I = br I ( a.r +bt) for 

P4: wg .. 
(iii). 8to is such that the corresponding "'-Vio given 

by (8) satisfies (9) .. 

(iv) • For all JK the power ESt(X) is continuous 
for p E: VJ6 • 

n. 
l 

~i~· 

(v). For any d"'o 
and an n k such that 

#Jiko if and only if 

and· P0 t: c..J50 there exist an 

P0e fl i fl .fi k and such that 

t=K'o· 

The.Q lfio is the uniformly least risky procedure among 
all procedures which are unbiased in the risk. 

The proof is relatively simple. It is obvious from (ii) 
and (11) that ~v. is at most as risky as any other procedure 

I lO 

the component tests of which are similar on ~i for all ~ • 
It then remains to prove that unbiasedness in the risk for 
the multiple procedure implies similarity of the component 
procedures, and this is a consequence of (v) and (11 ). 

t,he 
The finiteness of/number of components is needed to 

prove the last implication. This is, however, not so serious as 
it might seem, since it is only needed for that purpose and it 
is possible to prove the same implication in many important 
situations where the set of t is countable or a continuum. 

We have defined the problem as a choice between D. 
l 

defined by (6), hence a choice between strong statements. 
There exists no possibility of concluding the investigation 
with a more cautious statement if X should assume a value 
which makes a strong statement reckless. 

In order to make it possible to have a choice also 
between more or less strong statements, we can let the 
component test situations consist in a choice between 
rejecting a hypothesis and making no statement at all, i.e. a 

,,-.., -1 r o choice between P E: ~ 1.. - wis = w'5 and Pf: ~L = wt . Thus 
we have to replace Qi by 
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1 (JC. -1 } 
= n w 2 it 

t 0 

However, in this case f"2.' may not define the sequence 
( 1 . l -1 -1 

¥i =1<1tiiJ uniquely. Suppose e.g. that w~ c.. wJ • Then 

( 12} 

h . . -1 -1 -1 /'\ 0 t e intersections w% n c...03 and tiJ(f 11 wJ are identical. 
Hence if d( . .,.., = -1, we can choose ~. either 1 or -1. 

lo l~ 

Hence it follows that Lik given by (7} is not defined~ In 
that case we have however ""'s c. .:.J8 • A rejection of PE::. 4...J 't 
sh o u 1 d there f ore 1 ea d to re j e ct i on of P t- '4 ,, i • e • at'. . . = -1 • 

_., l~ 

We make it a general rule to eliminate from the list of 

sequences .;ii =ioti~} those for which there exists another 

sequence .atj= !ct,j~J with 4{j,r f *it for all (f • In 
addition we eliminate all sequences leading to an empty .f1. 1 • 

l 

A theorem corresponding to theorem 1 can now be proved 
when ~. is replaced by ['2. ', i.e. joint and independent use 

l l 

of uniformly most powerful similar tes~leads to a procedure 
which is least risky among all procedures which are unbiased 
in the risk. (See Lehmann [20] ) . 

Example 4 .• X1 ' ••• 'Xn are 
We want to 
set of all 
for which 

decide whether a ( ' 
p for which C) ~ 1 

0"'6 1. Then 

= w1 n "'-'2 = 

-1 = w 1 n w 2 
-1 

= ""1 () w 2 

).P\<r = 1}, 

=t p(() )> 1J 
=\_P(6"<1} 

We then get for the loss 

' k I 

~J 
1 G= 1 

2 ci > 1 

3 <f < 1 

independent normal (~ ,<l) • 

= ' > 1 • 

and by w2 

Q1 I ::: fl' 

= ~L 2' 

- ri ' 
- _!, "~3 

Denote by w1 
the set of all 

the 
p 

( 13) 
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where CT1 may have accent. 
The uniformly most powerful tests for w1 and w2 with 

levels b1/(a 1+b1 ) and b2/(a2+b2 ) are well-known. Let c1 
and c2 be the b 1/(a 1+b1 ) and a 2/(a2+b2 ) fractiles for the 
chi-square distribution with n-1 degrees of freedom. We are 
led to state that G <. 1 if Z = L_(Xi -5() 2 <.. c1 and () > 1 
if Z ) c2 • If c 1 < Z < c 2 we say nothing ( .n1 ') 
alternatively that cs'= 1 (.0 1). a. and b. are assumed 

l. l. 

such that c1 < c2 , otherwise assumption (9) would not be 
fulfilled. The procedure is the uniformly least risky among all 
procedures which are unbiased in the risk. 

Example 5. Suppose that x. ;~ = 1,2, •.• ,m; 
l.O', 

i = 1 ,2, ••• ,q; are independent normal, EX. = ~., 
2 ~ l. 

var Xi~ = 6' • For each pair (i,j) we want to decide whether 
~ i > l j , ~ i < L j or to make no statement , i. e • as far as it can 
be justified with the limited amount of information in the 

sample we want to order ~ 1 , ••• ,{q in an increasing sequence. 
Thus we don't want to commit ourself in advance to undertake a 
complete ordering of the means. We denote by x. the sample 
mean in group i and write s2 =(_j_1 )ic--(x1~-X~) 2 • Further~ q n- ~ - i. . 
more let v1 _ E denote the 1- E., fractile for the distribution 
of the Studentized range with q groups and n-q degrees of 
freedom. It is then recommended to make the three decisions 

- - s mentioned above according as xi -xj > rm v 1- t ' 

- - ( S 1- - \ L S X.-X. - r::iv 1 c' X.-x. - --;=..v 1 c• If this is done then 
i J ~m -~ l. J ~m -~ 

the probability of making a wrong statement when 
• C.1 = t.2 = ••• = t.q is equal to L • This also controls the 

probability of making an error in all other situations, since 
the probability of making a wrong statement when not all l. i 
are equal is at most E.. • 

It should be noted that to the given level ~ for tota+ 
control of error there corresponds a certain level i' in the· 
Student's test for deciding whether C· > ~ ., where i and j 

l J 
are selected in advance. J\ccordi~~ to this test it is stated 
that l. >l. if x.-x. '>t 1 (J.£. s, where t 1 c is the 

,1 J 1 J -c. m -'-
1 - t fractile of Student's { with n-q degrees of freedom. 

. distribut ·on 1 
Hence l' is given by t 1 _ £' = J2' v1 -E° Hence the method of 
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§tudentized range amounts to a joint use.~f Student's tests and 
these tests are for each i and j uniformly most powerful 
among all similar (and hence also unbiased) tests for the null 

h_ypothesis C,i ~ ~j" 

Let us now assume that for each (i,j) the loss by 

stating that l i > E,j when indeed ~ i !: t.,j, is aij and that 
the loss by making no statement when ~i) lj is bij" Assume 
furthermore that b .. = t'(a . . +b .. ). For any true ordering of lJ lJ lJ 
~ 1 , ••• ,~q and any of the possible outcomes by the use of the 
Studentized range method, we can now compute the total loss 
iof licted by making a wrong statement or refraining from making 
a statement. The risk is the expected value of this loss. By 
the optimum property just mentioned and by theorem 1 it now 
follows that the method of Studentized range is the uniformly 
least risky among all methods which are unbiased in the risk. 

Exampl~. By point estimation of a scalar parameter 
8= g(P) we have a choice between sets of the form 

Di = l P\ e = i}. Hlso this problem can be decomposed in 
classical test problems. As a matter of fact we only have to 

define 0J~ = t Pl 8 {; t}. It is then seen that 

_().. = n wi n 11 &)v- 1 

l t~i l ( i 0 

Let /.-\ "t be the region of acceptance of "'-'t • We find that 
joint use of A 0 for all ~ leads to the estimate 

"' e ( x) = inf ~ 

The loss by stating that 
k 

Lik = j atdt"-' 
i 

x E AZ! 

e = k when e = i is 
i 

Lik = J b'6d/­
k 

for k < i and k > i respectively. /A is an arbitrary 

measure. 

( 14) 

( 1 5) 

( 16) 
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The implication mentioned after theorem 1 can now be 
~ 

proved in this example and it follows that e is the least 
risky of all point estimates which are unbiased in the risk. 

If in particular at = b~ = 1, !'- = Lebesque-measure, 
we get Lik =Ii-kl. In that case the requirement of 
unbiasedness in the risk means unbiasedness in the median, i.e. 

" ~ the (population) median of S is 9 . Thus e uniformly 
minimizes the expected absolute error among all estimates which 
are unbiased in median. 

(~,o') 

If in particular x1 , ••• ,x 
,. n 

the point estimate F for 
I 

t __§_ 
~ = x - t, ... 

~ rn 

are independent normal 
l, is given by 

with the same notations as in example 5 and with t<f equal 

( 17) 

to the a5 /(a~+b4 ) fractile of Student's distribution. Certain 
restrictions on a~ and bt are needed which are fulfilled A 

if they are independent of a . We then se;_ that ( 17) gives {, 
explicitely, and if a 't = ba = 1, we get ~ = x. 

Example .'I· Assume in example 6 above that we ~ant to 
test ~ ~ L0 • If ~ > ~o we want a point estimate t. Assume 
also that a (J' and b >( are independent of 6 . By proceeding 
as in the examples 4 -6 we are led to Student's test, i.e. to ,..... 

reject the hypothesi~ if ~, given by (17), is greater than 

~o' in which case ~ should be used as estimate for l . 
If a a and b t depends on t , ( 9) will not always be 
satisfied. 
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