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0. INTRODUCTION TO CHAPTERS 1-8.

A non-sequential statistical experiment (or a sequential
experiment with given stopping rule) consists of three parts.
The first is a listing of the possible outcomes. This is the
sample space of the experiment. The next pert, the paranmeter
set, is a listing of possible explaining theories. Finally
there is the correspondence which to each explaining theory
assigns the chance mechanism governing the random outcomne.

These parts will, respectively, be formalized as: A measur-
able space (say (x,00)) , a set ® and a map (say 6 -> Py)
from this set to the set of probability measures on the measur-
able space. Combining the notations used in the three paran-
theses above we may write the experiment in the form:

z
G = (X,C‘Z,Pez e o)

Most papers on experiments have treated intrinsic problems
of experiments, i.e. the structure (x,(ﬂ,?e: ec@) is assumed
given and we investigate various derived or related structures.
We may here think of the general theories of sufficiency, com-
pleteness, and invariance or on particular decision problems.
The theory of sufficiency, however, indicates the need of a
theory where the objects are themselves experiments. This
become quite clear if we consider the equivalence (under various
regularity conditions) of *the "conditional expectation" defini-
tion of sufficiency and definitions (or criterions) for suffi-
ciency in terms of risk functions.

A theory of experiments should be a theory of the statisti-
cal information carried by the experiments. Otherwise stated:

an experiment should be identified with the statistical infor-
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mation it conteins, It appears, however, difficult to provide
a reasonable and explicit definition of statistical information,
We aveid this obstacle by asking the fundamental gquestion:

When does an experiment contain more information than
another?

Our tasks is then to

(i) Define "more informative than"

(ii) ©Provide criterions for "more informative than".

From a decision theoretical point of view the following

definition is natursl:
o @:
Let & and 2 be two experiments having the same para-
l/
meter set @ . Then we shall say that EZ is more informative
A
than ¥ if to any decision problem and any risk function
oo
. - . 3 . 3
which is obtainable in J° corresponds an everywhere smaller

risk function obtainable in & .
In this way we arrive at the partial ordering "being more

informative than" for experiments having the same parameter

set © . The concept cf sufficiency corresponds to the case
2 . - <
where (, 1s a2 sub experiment of ¥ .

I¥ is with this %ind of a definition, to he expected that
the ordering is not total. In fact we wmay, in general, expect
that two experiments having the same parameter set ¢ are not
comparable with respect to this ordering. Thus we are led to
the following generalization of the fundamental question:

How much do we loose, under the worst possible circum-
stances by using (& instead of 3;! ?

An answer to this problem may, as we shall see, be given by

a non negative number) the deficiency of E; with respect to g? .
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Closely associated to the notion of deficiency is a
distance for experiments or, equivalently, for the (undefined)
amounts of information carried by the experiments.

Finally we may restrict attention to certain types of
decision problems. This lead to deficiencies and distaunces
relative to the relevant type of decision problems.

The main results of these 8 chapters are the various bounds
and criterions for deficiencies.,

Here is an outline of the content.

Chapters 1-2 and appendices A-C contain various mathematical
tools, which are useful for the general theory, not only for
these first 8 chapters. Chapter 3 is a short introduction to
some of the main concepts of statistical decision theory.

Our investigation of statistical experiments begin in
chapter 4. The formal definitions of the deficiency & and
the definiency for k-decision problems Sy ¥k =1,2,... are
given here. Closely related are the distances A, Aps Dpsese o

Using a minimax argument we derive in chapter 5 three
criterions for deficiency. The first is a Baye's risk criterion,
the second is in terms of operational characteristics ( performance
functions) and the last is in terms of sublinear functions and

the functionals they define for experiments. It is shown that

any experiment is equivalent (i.e. A-equivalent) to a certain
experiment having the set of prior distributions as sample space.
This experiment is called the standard experiment of the given
experiment, Any standard experiment is uniquely defined by =
certain probability measure on the set of prior distributions,
the standard probability measures. It may be shown that the

distances Doy AB’ ... and p 2all define metrics on the set

of standard probability measures which all yield the usual
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weak topology for standard probability measures, This imply,
by a standard compactness argument, that the metrics are all
equivalent and equivalent to, for example, the Paul Levy
diagonal distance. The results in chapter 5 described so far
are all derived under the assumption of a finitle parameter set.
It is firally shown how problems on general parameter sets may,
provided the experiments are dominated, be reduced to the case
of finite parameter setis,

In some situations, general comparison may be reduced to
comparison by testing problems. This is, in particular, true
for dichotomies and in the case of sufficiency. Convergence,
in the case of a finite parameter set, may always be decided
by testing problems. ©Some of the basic results on compariscn by
testing problems are derived in chapter 6.

A very useful and reasonable criterion for deficiency is
the Markov kernel criterion., This criterion, which is closely
related to the operational characteristics criterion of chap-
ter 5, is the main topic of chapter 7. We restrict attention
to dominated experiments having, essentially, Huclidean sample
spaces., The last condition might easily have been avoided
provided we had replaced our Markov kernels by Markov cperators.

As stated above, the notion of "being more informative"
for experiments, generslizes the notion of sufficiency. Actu-
ally this may, as is shown in chapter 8, be turned around.
Chapter 8 provides an introduction to the theory of sufficiency.
In particular we show, for dominated experiments, the equival-
ence of "risk sufficiency" and "conditional expectation" suffi-

of the main results on pairwise sufficiency,

@

ciency. ©OSom

minimal sufficiency and completeness are derived.
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A review of some of our own research reports on the sub-

ject is given in appendix D.

These notes, i.e. chapters 1-8, are written in order to

(1) bring together, for easy reference, various bhackground
materisl (chapters 1-3) needed in introductory courses
on comparison of experiments, decision theory and related
subjects

(ii) provide a short introduction (chapters 4-8) to some of

the basic results on comparison of statistical experiments,

No new ideas or results are given here, - except for some
of Lindgvist's interesting examples. References are given only
sparingly and then somewhat biased towards our own interests.
Most of the basic results (and references) are, however, con-
tained in Blackwell [13, [2] and in Le Cam [21]. We refer the
reader to Sion [13a] for references on minimax theorems. The
notion of e-deficiency of one experiment relative to another
was given by Le Cam in [7]. This generalized the concept of
"being more informative" which was introduced by Bohnenblust,
Shapley and Sherman and may be found in Blackwell [1]. Standard
experiments and standard measures were used by Blackwell in
f17. Blackwell introduced slso, in his paper [2], comparison
for k decision problems. The hybrid of "e-deficiency for
k~decision problems" were treated by the author in [16].

We refer the reader to Le Cam [21] and Heyer [6] for
historical remarks and further reading.

Finally we want to express our gratitude to Ruth Backer
and Margrethe Bjerkeskaug who typed these notes.

Oslo January 1975

Erik N, Torgersen
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1. CONVEXITY

NOTATIONS AND TERMINOLOGY

EE is the set of k-tuples x = (Xq,...,Xk) where X seee¥

k.
are real numbers, The clements of R’

are called wvazctors

g

or points.

-

The inner product of two vectors x and y 1is defined by

k
<X’y> = X_:yi e
i=1 -

-

The norm of a vector =x is given by x| = {(x,=)% .

The line segment between two points x and y is the set

(x,y] = {(1-t)x + ty ¢+ ©t € [0,1]} .

The linear span of a set of vectors A 1is by definition the

get of all linear combinations of vectors in A and is
denoted [A] . It is the minimal linear space which con-
tains A4

;
) ) . X . k
A11 sets occurring in this chapter are assumed to be in R,

uniess otherwise stated.

DEFINITION 1.1

A Il

A set C is said to bhe convex if
X,y € C= [x,y, = C .,
A set A is said to be affine if

X,y € A => (1=-t)x + ty ¢ A for all + € R .

PROPOSITION 1.2

. . . k. R
(i) The collection of convex gets in R is closed under

arbitrary intersections.
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.. ) o . 1 .
(ii) The collection of affine sets in R is closed under

€]

arbitrary intersection

1 . - .
(iii) R® is both convex and affine.

Proof: The statements are easy consequences of the definitions.

PROPOSTITION 1.3

Given a set S, there existe a convex set K with the following

properties.
(i) Sck
(ii) if C is convex and S < C, then K < C .

K is thus the minimal convex set which contains S . The set

()
1]

K is denoted <(S) and is called the convex hull o

Proof: Put K =ni{C : C convex, S ¢ C} .

PROPOSITION 1.4

Given a set S, there exists a minimal affine set A which
contains S . The set A 1s denoted aff S and is called the

affine hull of S .

PROPOSITION 1.5

Let C be a convex set and let x seee s X, € C . If t,se0057T

1 - 1
are non-negative numbers such thatv z ti = 1 , then
i=1
r
3 tiXi € C s We call Ztixi a convex combination of the
i=1

points X1,..-,Xr .
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Proof: We use induction on r . If r =2 , the statement

follows frow the definition of convexity. Assume now that it

Il

is proved for T p-1 « Let XypeoesXy € C and

D
=20, X

_tyooe,-b
! P i=1

ti =1 o We have ti > 0 for at least one

i, and we may assume t_ > 0 ., Purther, we may assume t_ <1 .
P v P

(If t_ =1, then the statecment is trivial.)

g 1t
o= .
By the induction hypothesis, y = Z Tj%—xi € C , since
p__1 .tl B P i=1 P
L s =1 But ¥ t.x, = (1—tp)y + t.x_ € C , since

Z—l o LY s
i=1 p i=1 11 pp

y,xp € C . This proves our statement.

PROPOSITION 4.6

Let A Dbe an affine set and KyreeesXy, € A, If t1,...,tr
r T

are real numbers such that b3 ti = 1 , then by tiXi € A .
- i=1 i=1

We call z tiXi an arffine combination of the points
i=1

X,]s-oo,Xr [}

Proof: [fnalogous to prop. 1.5.

PROPOSITION 1.7

Tet S be an arbitrary set in RY .
Then
r r
(i) <S> = { Z tiXi:X,],.'.’}cre Sgt1,|oo,-tr2 O’ Z —ti= 1’r=1,2,.‘0}
i=1 i=1
. r r
(ii) affS:ii§1tixi:X1,..e,xr€ Sityreeest € R,izqti= 1,7=1,2,000}

i.e. {(8) is the set of convex combinations and aff S 1is the

set of affine combinations of points in S .



Proof: (i) Denote the set of comvex combination of points in

S, CS . C. 1is obviously a convex set containing S , and
[

hence <(8) < CS . The opposite inclusion follows from prop.

1.5.

The proof of (ii) is analogous.

PROPOSITION 1.8

Let A be an affine set and x € A . Then A-x = {y-xz:y € A}

is a linear subspace of R .
Proof: Let a-x, b-x € A-x . If a,t &are real numbers, then
a(a-x)+6(b=x) = ca+pb+(1-a-{)x-x € A-X

since oa+bb+(1~a-f)x is an affine combination of points in A .

PROPOSITION 1.9

Every affine set is a translation of a linear space, i.e. if A
is an affine set, we can write A = x+V , where x 1s an arbi-
trary point of 4 and V is a linear subspace of R~ .

Moreover, the space V 1s uniquely determined by 4 .

Proof: Let x € 4 and define V = A-x , The first part then

follows from prop. 1.8

“

Assume now X%y € L and put V1 = A—x1 y Vo o= A-Xz. To show

unigueness we have to show that V1 = V2 .

[ 13 g \ ol ...:_ > n 3 y .
7 € V1 e Then v1 a (1 for an a € A

Writing v, = (a—x1+x0)—xo we see that v, € V, . Hence
< <

Let v

1

vV, ¢V

y By syummetry, V2 - V1 and the proof is complete.

2 L]



PROPOSITION 1,10

Given a set S and a point 8, € S .

Then aff 8 = s +[S-s_ ] .

Prooft: By prop. 1.8, aff S—sO is a linear space, and since
S—so c aff S—so , 1t follows by the minimal property of

[8-s, ] that [S8-s ] c aff S-s_ .

t.x. , where Tt. =1 4

Let now a € aff . a =
e 7 - aff S, i.e. X3 i

hmB

1

i -
L
X,500e9%, € S o We can write a =s .+ & t.(x.-s_) , which shows
1 T c 4o 1710

that a € s _+[8-s_] .

DEFINITION 1.11

n

Let 4 Dbe an affine set and assume A = x+V for an x € A .
We define the dimension of A , denoted dim A , by dim A=dim V.
(V is uniquely determincd by prop. 1.9, so dim A is well-

defined.)

PROPOSITION .12

Let S be an arbitrary set. Then

(i) 0 € aff 8 => dim aff S = dim [S]

]

(ii) O ¢ aff 8 => dim aff S = dim [S]-1 .

Proof: (i) Assume O € aff S . We may then assume O € S ,
since neither aff S mnor [S] is influenced by this assumption.
From prop. 1,10 we now get aff S = [S] .

(ii) Assume O ¢ aff § =nd let s, € S . We contend that

[s] = [s, 1 [8-5,] (direct sum). OClearly, [S] = [s ]+[S-s_ ] .

It remains to show that [s 1n [8-s ] = {C] . Suppose
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s, € [S-s,] + Then by definition of [S-s ],

Il

<
»~

r
o) L‘ti(si‘-so) fOI‘ t1;.o|9—tr€ R a.nd s,lgttogsre S 9

i=1

and hence O = (1+Zti)so—2tisi . This shows that O is an
affine combination of points in S , i.e. O € aff S , which
gives a contradiction. Hence [SO] N [S-so] = {0} , and

dim[S] = dim[s  J+dim[S-s ] = 1+dim[S-s_] .

DEFINITION 1,13

k

If x € R and € >0 , the open ball with center at x and

radiug € ig defined to be the set

> £

in X 1is sai e an interi int of a set if
A point aid to b n interior point of t S

there exists an € > 0 such that N(x,¢) < S . The set of
interior points of S is called the interior of S and is de~
noted 8° . Clearly, 5° < 8. We say that S is open if

s =8 .

The closure of S 1is the set of points x in K such that
N(x,e) N S #@ for all € >0 . It is denoted S . Clearly,

ScS. S is said to be closed if S =8 ,

The boundary of S 1is defined by S-5° .

The following propositions are stated without prooIf:

PROPOSITION 1,14

If S is an arbitrary set, then

Il

s° = UlG : G open, G c s}

in

lf

S =n{F : P closed, F 2 8}
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PROPOSITION 1.15

Let S Dbe an arbitrary set and x a point in Rk -~ Then
x € § if and only if there is a sequence ixp} in S such

that x = lim x_ .
1

DEFINITION 1.16

Let A Dbe a set. We now introduce the concept '"relatively A,

If a € A, we define the open ball relatively A with center at

a and radius ¢ to be the set N(a,e) 1 A (where N(a,e) is

defined in 1.13). By use of the open ball relatively A we may

now generalize the concepts of 1.13.
For example, let L be a set and S < A . x € S 1is said to
be an interior point of S relatively A if there is an

€ >0 such that N(a,e)n Ac S .

PROPOSITION 1.17

Let C Dbe a convex setl, and let x € c° s ¥ € C + Then

°  (where [x,7] = {(1-t)x+ty : t ¢ (0,171 ).

[ny]—iy} .C. o

. 0 ; . ;
Proof: Since x ¢ C° , there is an € > 0 such that
N(x,e) € C .

Let =z

(1-0)x+8y for a ¢ € J0,1[ .
We have to prove that 2z & ¢® . We contend that

N(z,e(1-8)) < C .

Let z' € N(z,e¢(1-¢)) and choose x' = 126(2'—ey) . We find
ez b —r !
that x-x' = 37%3 , which implies ||x~x'l|= |Z1f < e .

Hence x' ¢ N(x,e) so x' € C .
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Since now 2z' = (1-¢)x'+0y , it follows that z' € C by con-
vexity of € . Hence N(z,¢(1-6)) € C and the proof is

complete,

COROLLARY 1.18

. o .
If C is convex, then C~ ig convex.

PROPOSITION 1.19

If C is convex, then C 1is convex.

Proof: ILet x,v € C and put z = (1-t)x+ty (0 <t <1) .

By prop. 1.15 there are sequences {Xn} and zyn} in C

A

such that x_ - -y
S h X X5 Ty Vo

We defin 7z = -t )x_ +ty
e define 1z (1-%) AT,

Now §zn} is a sequence in C , and hence 2z € C , since

Z, 2 % . (prope. 1.15).

PROPOSITION 1.20

Assume C € A , where A 1is an affine get and C 1is convex.
Let x Dbe an interior point of C relatively A and y ¢ C .
4

Then all points z € [x,y] , 2 # ¥y , are contained in the

interior of C relatively A .

Proof: Analogous to 1.17.

LEMMA 1.21

Assume C < A , A is affine and C ig convex., If O 1is an

—

interior point of € relatively A , then 0 ¢ C .



Cc A,

{a19-~*93~h§

Proof: Since A is closed,

a linear space. Let

Hence © < A

be a basis of A .

~

and A is

~

By the

assumptions there is an € > 0 such that N(0,e)n A< T .
We can find m > 0 such that
1 n Loy N
e yeeesma , =n & a” € N(0,e) , and we may therefore choose our
i=1 .
- 1 h el
basis of A go that a ye.e058 5, - & &~ C . By prop. 1.15
i=1
i
there are sequences {"p} i=1,e00,h , iyn} such that
. . h . T,
i i S . R
" - 3 ')f}_’l -z "'i}__'1a ? .z;n 9 &r:ﬂ_ t C ®

sufficiently large, x 1,...,1«:D

For n n

dent and thus constitute a2 bhasis of A .

bers tnl sc that

1. 1 h_ h
v.oo= x eet z
Y tn p Feee tn Xn o ot

Since Vo, 7 ~5at , 1t follows that tnl -

for sufficiently large n , tnl <0, i=
h i1 h i

y.- » t.7x =0 , Division by 1- = %

noi_ynm joq B

than 1) shows that O

points in C . It follows that O ¢ C .

PROPOSITION 1.22

are linearly indepen-

Hence there are num-

-1 as n = o0, Hence
1seeesn o We have

(which is now greater

may be written as a convex combination of

. ) s =0 0
Assume C cC A, C is convex and A is affine,. then, (8)7 = ¢,
where denotes interior relatively A .
Proof: TLet = € (G)° . Obviously OC-x is convex and A-x is
o . oA o _ =10 ~ =10 o
affine, and 0O-x € A-x . Since x € (C)° , ¢ € (C-x)". (C now

denotes interior relatively A-x .

We remark that the topologi-

cal properties of a setare not affected by a translation.)
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The preceding lemma yields O € C-x , i.e. x € C and hence
(6)° C C . Since (G)°  is open (relatively A) we have
(3)° < ¢® by prop. 1.14 . The opposite inclusion follows from

toc0C.

DEFINITION 1.23

k

A linear map 1:IRT - R 1s called a linear functional on Rk .

The set of all functionals on RY is called the dual-space of

Rk and is denoted Rk* .

From linear algebra we have the following theorem:

THEOREM 1.24

Amap 1 on Rk is a lincar functional if and only if there

exists & vector v € R~ such that 1(x) = (v,x) for all
X € Rk .

The vector v is uniquely determined by 1 .

Remark: If 1(f) = (v,x) is a linear functional, we say that

v represents 1 . In the following we will often use the same

symbol for the functional 1 and the vector in Rk which re-

presents 1

THEOREM 1.25

Let C Dbe a convex set, p £ C . Then there is a linear func-
tional 1 on RY such that inf 1(x) > 1(p) .
’ x&C

Proof: Define d(p,C) = infljx-p|| . There is a sequence {Xni
x€eC

in C such that HXn-pH - d(p,C) . We have
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HXnH(E HXn-pH + ol {Hxn—pH§ is a convergent sequence and
thus bounded. Hence ixn} is bounded and contains a conver-
gent subsequence §Xn~} .

J
Assume an » x, « Then x_ € C and clearly Ix -pll = alp,C) .
Let x € C and t € [0.1] . Then

tx+(1-t)xo € T and hence

tx+(1=t)x -pll = llx -pll « This is equivalent %o
. 2 | 2

on—p+b(x—xo)ﬂ > lix -pll

2

02 A .2
or HXO—pH2+4L<XO—p,x-xO>+c HK—XOH > on~pH2 .

Dividing by +t and letting t - 0O we get
(xo—p,x—xo> > 0 which gives
(x,=psx) = (x_-p, 0>z ~pl?
. ey - .
Define 1 € R by 1(x) = (xo-p,x> .

Then for x € G, 1(x) 2 1(p)+lx ~pi* > 1(p) .

THEOREM 1.26

%
Iet G be convex, p £ C° ., Then there exists 1 ¢ RE ,

1 #0 , such that 1(x) > 1(p) for all x € C .

Proof: If p ¢ C , we can use theorem 1.25. We may therefore
- ) - =10 . o o

assume p € C « By props. 1.22, p £ (C)° . Hence p 1is a

boundary point of € and there is a sequence X, 7P with

X, ¢ T . By theorem 1.25 we can for each n find a functional

ln such that

(1) ln(x) > ln(xn) for all x € T .
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By norming, we may assume HlnH = 1 . Since the unit sphere in
k. B . . s
R is compact, there is a subsequence 1n- which converges,
J

say to 1 , where |{|1|] =1 .

Koig
Since ln(xn) = £ 1 7x ~ we see that

i=1

kL.
lnu(Xn.) > 3 1tpt = 1(p) .
J J i=1

Hence, as a consequence of (1), 1(x) > 1(p) for all x € C .

THEOREM 1.27

Let Cc A, C convex and A affine.
Let p € A and assume p 1is not an interior point of C
relatively A .

Then there is 1 € Rk* auch that

(1) 1(x) > 1(p) for all =x ¢ C .

(ii) 1 4is not constant on A .

Proof: We may assume p € C . (If p ¢ T, then theorem 1.25
may be applied.) As in the preceding theorem; we observe that
P is not an interior point of C relatively A . Thus we can
find x € A-T , x. = P, and by theorem 1.25 we can find

1€ B so that 1 (x) >1 (x) forall xe C.

We decompose ln such that ln = UV, where u, € A-p ,

vh‘l_A—p . Then

ln(X) = (1_,x) = (un,x> + (vn,x)

= {u, X7 * (vn,x—p> + (v, ,P7 .



If x € A, then ln(x) = <un,x>+(vn,p> .

Since ln is not constvant on A , u, # 0 . By norming, we may

assume HunH = 1 ., There is now a subsequernce U, U,
J
where u € A-p and |jull =1 .
* i
Define 1 € RE by 1(x) =<u,x) « Let x € C .
- - N ~ s +7 ~ . . \
From ln(x) > in(ﬂn) it then follows that <un.,x> > <uﬁ.’an/ .

J
Hence, by letting njﬁ>d>, 1(x) > 1(p) and (i) is proved.
We can write u =a-p for an a € A . Now
1(a)-1(p) = 1(a~p) = 1(u) = ull® = 1 , and thus 1 is not con-

stant on A .

DEFINITION 1.28

=k . PO . .
A hyperplane in R~ is an affine set of dimeunsion k-1 .

PROPOSITION 1.29

A set A 1is a hyperplane if and only if there is 1 € RK* ’

1 #0, and a number » such that A = {x:1(x) =1} .

Proof: Assume A 1is a hyperplane. Then by prop. 1.9,

A =2a+V , where a € A and dim V = dim A = k-1 « Let w € Vd~,
w # 0 and define 1(x) = (w,x) . Put r = <w,a) . Then

1{(x) =1 <= {w,x) = {w,a) <= {(w,x-a) = 0 <=> x~-a & Wi-= v

<=>x € a+V = A ,

The "only if part of the prop. is then proved. Let now

1 ¢ gE¥ , 1 #0 , and a number r be given. Put A = {x:1(x)=r}.
(learly A # @ , since 1 is linear. Let a € A . Then

A = a+Ker(l) , which follows from the equivalences

1(x) =7 <=> 1(x-a) = 0 <=> x~a € Ker 1 .

Finally, dim A = dim Ker(l) = k-1 nd the proof is complete.
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Remark: Iet 1 # 0 Dbe a linear functional on Rk and let
A = {x:1(x) = r] Dbe a hyperplane. A divides the space RE
into closed half-spaces {(x:1(x) <z} and {x:1(x) >z} ,

o

lying on either side of the hyperplane A . If we replace the
inequality signs by strict inequalities, we obtain the open

half-spaces determined by A .

THEOREM 1.30 (weak separation of convex sets)

Let 01 and C2 be disjoint convex sets. Then there is

1 ¢ R guch that 1 #0 eand 1(x) > 1(y) for all x € G1 ,

y € C

2 ?
Proof: Define C,-0, = {x-y ¢ x € C;, ¥y € G, | &
Clearly, 01-60 ig convex and O ¢ C1—02 . By theorem 1.26 we

le¥

can find 1 € R* , 1 # 0 , so that

1(z) > 1(0) =0 for =z ¢ C,=C

17Co e Let now x € 01 s ¥ E 02 .

It follows that
1(x-y) >0 or 1(x)>1(y) .

Remark: Put r = inf 1(x) . Then the hyperplane

1601

A = {X:l(x) = r} is said to separate the sets 01 and 02 y
in the sencse that each of the two closed half-zvaces determined

by A contains one of the sets C1 and 02 .

THEOREM 1.3%1 (weak separation)

Let 01 and 02
IS
Then there exists 1 € Rf* such that
(i) 1(x) > 1(y) for all x € C, s ¥ €Cy

(ii) 1 is not constant on 4 .

be disjoint convex subsets of an affine set A .
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Proof: Choose a € A . The set

a+C -G, = latx~-y ¢+ x € C, » ¥y €0, |  is then a convex subset
of A (prop. 1.6)., Moreover, a ¢ a+ﬂ1—02 . The theorem now
follows from theorem 1.27 (analogous to the proof of theorem

1.30).

THEOREM 4:32 (strong separation)

Let 01 and 02

pact.(i.e. closed and bounded) and 02 is closed. Then therec

is 1 ¢ Rk* such that

be disjoint convex sets. Assume 01 is com-

sup 1(x) > inf 1(y) .
xEC1 y602

Proof: Define d(C1,02) = infilix-yl : x € C, » ¥ €GC, } o There

are sequcnces ixn} in C, and {yn} in C, such that

“XIl—yl’l“ - d(c1!02) ®

{xn} is bounded since C, is bounded.

We have |y ll < Ny -x I+l
{Hyn-XnH§ is a convergent sequence and thus bounded. Hence
%yn} is bounded.

Consequently there are subsequences

X, v oaud y, - w, with v €C ,weC, since 01 and
J J

62 are closed.

Since the norm is a continuous operation, d(C1,CQ) = ||v-wll .

PLlJC l(X) = <V—‘/‘L7,X> °

¢, = 1(x) > 1(v)

x € 0, => 1(x) < 1(w)

We asgsert that x

m
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We prove the first inequality, the other one follows in a simi-
lar way.

Let =z € C Then

-
tx+(1-t)v € ¢, for all t € [0.1]
Hence ||tx+(1-t)v=-wl| > ||[v-w]]

or Hv~w+t(x—v)”2 > [}v-—wH2
This is equivalent to

HV—WH2+2t<v—w,x—v>+t2Hx—vH2 > Hv—sz

Dividing by t and letting t = 0 wec get

(v=w,x=v) > O
or (v-w,x) > {v-w,Vv)

which is the same as 1(x) > 1(v) .

Moreover,
1(v)-1(r) = 1(v-w) = Hv-—wl}2 > 0
The theorem follows.

Remark: TLet 1(w) <r <1(v) . Then C, and G, are contained
in the open halfspaces determined by the hyperplane

A= {x : 1(x) =1} .

LEMMA 1.33

Let a be a real number. Lect X be a real random variable such
that X >a a.s: (almos®t surely) and such that EX exists.

fhen EX > a .
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THEOREM 1,34

Let € Dbe a convex set. Let X = (X1,...,Xk) be a random
vector such that X € C a.s. Assume further that E|X;| <=
i=1,.00,k and define EX = (EX;,...,BX ) .

Then EX € C .

Proof: We may assume C < A , where A 1is an affine set of
dimension h » We show the theorem by induction on h .

(i) h=1. Let c_,c

o € C, cy # Cy Then

1

A = i(1-t)co+tc : t € R

1

Consequently we may define a real random variable T by

X = (1—T)co+mc1

™

et I = {t : (1-—t)co+tc1 c ¢}

I is a convex subset of R and is thus an interval. Since
P(P € I) =1, lemma 1.33 gives IT € I . (The existence of
ET follows from the definition of T .)

We have EX = (1-ET)CO+ETC1 and hence EX € C .

(ii) Suppose the theorem is proved for dim A = 1,2,¢ee,0~1
and suppose dim A =h . Assume EX ¢ C . Then there is
1 ¢ RY such that

1(x) > 1(EX) for all x € C
and 1 is not constant on A .
With probability 1 we thus have 1(X) > 1(EX) . By taking ex-
pectation we see that equality holds, i.e. 1(X) = 1(EX) a.s,.
Tet now A' = {x ¢ x € 4,1(x) = 1(EX)]
A' is affine, and since 1 is not constant on A , A' is a

proper subset of A . Hence dim A' < dim A .
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Now X € A'n C a.s.
Since A' N C is a convex subset of A' , it follows from the
induction hypothesis that EX € A' n C & C which gives a con-

tradiction. Hence EX € C .

EXAMPLE 1.35

Assume X >0 a,s. Let O <1 <g and assume BX°® <o,
It follows easily that EX- <co ,

We will use the preceding theorem +to prove that
1 1

(Bx")* < (mx°)°
Proof: Let Y =X° , Z =X° . We shall show that

1 1
(EY)T < (E2)® .
Consider the set 4 = {(y,z) t ¥y >0, z > 0, y1/r < zT/S} .
4 is a convex set, since the curve defined by 3z = ys/r is a
convex curve. Now (Y,Z) € A a.s. and theorem 1.34 gives

(EY,EZ) € A .

DEFINITION 1.36

Let C be a convex set. A function £ ¢ C ~» IR is said to be

convex if for all x,,x, € C, & € [0,1] we have

£((1-0)x,+ox,) < (1-6)(xy )+6£(x,)

f is said to be concave if > holds.

PRCPOSITION 1.37 -

A function f ¢ C - R ig convex if and only if the set

D= {(x,5) : x€C, y¢R, £f(x) <yl is a convex subset of

Rk+1 .
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Proof: Assume f is convex. Let (X1,y1), (X?,yg) € D and
t € [0,1] . Then
((1-t )z +tx,, (1-t)y +ty,) € D

(1-2) (x5 )+t (x5,7,)

since f((1—t)zj+txz) §1(1—t)f(x1)+tf(xz).5 (1—t)y1+ty9 .

Hence D 1is convex.,
Assume now D is convex. Let X9, € C and t € [0,1] .

Clearly (X1,f(K1)), (Xg,f(xz)) € D . Hence

(1—t)(x1,f(x1))+t(x2,f(xg)) € D which immediately gives

fU-t)x,+tx,) < (1-1)2 () )+6E(x,)

The proof is now complete.

THECREM 1.38 (Jensen's Inequality)

Let C Dbe a convex set and £ a real convex function onn C .
Let X Dbe a random vector such that X ¢ C a.s., and assume
that EX exists,

Then f(EX) < Ef(X) .

Proof: Assume Ef(X) is finite. Let D be given as in prop.
1.37. Then (X,f(X)) € D a.s. By theorem 1.34 we get

(EX,Ef (X)) € D which yields the desired inequality.

If Ef(X) =c<o, the inequality is trivial. We now show that
Ef(X) is either finite or ©©, Since f is a convex function,
it may be proved Ifrom pron. 1.37 and the separation theorems
for convex sets, that there is a linear function 1 on Rk
such that £(x) > 1(x)+c for all x € C (c is a constant).

It follows that I () < {-1(x)-c| . Since EX exists,

F1(X) = 1(EX) is finite and hence Ef (X) <o,
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The last part of this chapter is devoted to sub-linear
functionals, which will be of great importance in the theory

of comparison of experiments.

DEFINITION 1,79

A function ¢ : R - R is called a sub-linear functional on

k i
.. \ . k
(1) y(x+y) <iv(x) + ¥(y) whenever =x=,7v € R
Iz

R

(ii) t(tx, = tv(x) for all xe€eR , t >0,

(The property (i) is called subadditivity, the property (ii)

is called positive homogenity. )

gggmgles:

The norm I!lxi| will define a sub-linear functional, as well as
1
. - §e . . .
gach linear functional on R ., The following statement is

easily proved:

PROPOSITION 1,40

. s ke
Let %, and VY, be sub linear fuunctionals on R~ and let
| <

¢ >0 . Then by Vs s Yy 7 Y5, ¥, are all sub-linear

.k (

functionals oan R™ . ( V denotes maximum. )

In particuler, if 11300,51 are linesr functionals, then

T

b= 11V°,,Vlr is a sub-linear functicnal.

-DEFINITION 1,41

. . . i
Y is the set of all sublinear fumctionals (on R~ ).

Yr is the subset of ¥ containing the functionsls which may

be defined as a maximum of r linear functionals.

We observe that Y, < ¥, cae C ¥ .

In
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PROPOSITION 1,42

Let & € ¥ o Then
(1) 4(0) =0
(i) ¢ 4is uniformly continuous on R .
(iii) ¥ is a convex function on RE |
Proof: (i) follows since §(tx) = ti(x) for t >0 .
Let x,y € Rk o Then
¢ - 4@ = vx -3 v y) - (@)

< y(x - y) -+ 4(y) - v(y)

k
—_ 1l - — r
= wgzﬂ(xi y;Je;)
_<_ \"‘C(X - y')e:>
i=1 1 1 a
Iy = 7 Lo Gty
= b X, = Y. iU ——— e. )
1, Ay, = 1 i Tt
1771
k
< igqlxi R HICPRRICTY

By interchanging x and y we get

k
l4(x) - ()| < =

l_qlzi ~ 75 hvCey) v oul-ey)

and (ii) follows.,
Let x,¥v € Rk , 0<0<1. Then
y((1-0x + oy) < ¥((1 ~ 9)x) & v(oy)
= (1 = 0y + ov(y)

which proves (iii).

PROPOSITION 1,43

Let ¢ : Rk - R . Then ¢ € ¥ if and only if ¢ 1is positive

homogenous (i.e. satisfies (ii) of Def. 1.%9) and convex.



Proof: It is encugh to prove that a positive homogenous and
convex function y is sub-additive. DLet %,y € Rk . Then
i (x + y) = 2v(Ex + %v)

<206(x) + () = (=) + ¥ (y) .

PROPOSITICN 1,44

k : - .
Let K <C R Dbe a compact convex set and define a functional

by bY ¢K(X) = sup {xX,y> . Then g € ¥ . Uxp 1is called the

vek

support functiocn of K .

Proof: Let x,,x, € R . Then

¢y(X4 + X,) = sup (x4 + Xg,y> < sup(xq,y>4-sup<x2,y>
- = veK vEK yEK

B CHRRNCS

If x € R and t >0, then Yy (tx) = Séﬁ (63,7
v

=t sup (x,v) = tﬁy(x} .
yEK >

LEMMA 1,45

K
Let a,;...,a_, € B . Then

.
s ( = 3, & c
Hagyee,ay(®) = T Gnayo €

r
3T = Z/‘tiai 5 t/Iaaco9tr “>_ O 9 Zt- = ‘l] o

Now, <(x,y) = (X,Ztiai> = Zti<x,ai> 5'V<X,ai) , which implies
(by a suitable choice of thyeeesty, ) that

T
sup (z,yy =V {x,2.) .
NSRS i=1 -



COROLLARY 1.46

VS Yr if and only if ¢ = I » where K is the convex hull

of a finite subset of Rk with at most r points.

DEFINITION 1,47

Let C Dbe a convex set. A point a € C is called an extreme
point of C if there do not exist two points 89985 € C such

that a = 3(a, + a,) .
{ Jal

LEMMA 1,45

emsom i e

- If a compact convex set has only finitely many extreme points,
then it is the convex hull of its extreme points.

Proof: See e.g. Blackwell and Girschick p. 38.

COROLLARY .49

y € ¥ if and only if § = ¢K , where K is a compact convex

set with at wost r extreme points.

We shall now prove that each § € ¥ is a supremum of linear
functionals and is of the form ¢ = §, for a compact convex set
K . i

LEMMA 1,50

Let C be a convex set which contains an open set and f£:C - R

a convex function. Let =x=° € ¢° . Then there is a point

cC € Rk such that f(x) z,f(xo) e xo,c> for all x € C .

Proof: TLet D = {(x,y) : x€C, yvy€R, f(x)<y}l. D is

2 convex subset of RE | by prop. 1.37. Now (x,f(x%) € D~D° .
)

By theorem 1.26 there ig a 1 € R , 1 #0C , such that

l(xovf(xo)) < 1(x,y) whenever (x,y) € D . We may write

was
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]

1(x,y) = by + {c,x) Zfor some b € R , c € RS
and thus we have

bf(x°) + (c,x°) < by + {c,x) for all (x,y) €D .

By letting y - o we conclude that b > O (this is necessary
for the inequality to hold). We also observe that b # 0 ,
since b = 0 would imply that x° be a boundary point of C .
For x € C we now have

bf(x®) + (e,x”) < bf(x) + (c,x)
and hence for each x € C ,
f(x) > a + (2,x-x°) for some a €R, ¢ € RE

: . . 0-
Since equality sign holds when x = x? , we have a = f(x and

the lemma follows.

LEMMA 11,51

Let ¢ € v and x° € RE . Then there exists c¢ € Rk such

that ¢(x) > (c,x) for all x € RE  and equality sign holds
o)

Proof: ¢ is convex by prop. 1.42. By lemma 1.50,
(1) I(x) >a + {c,x) , a €k, c¢€ RS
with equality sign for x = x~ .
If t >0, then y(tx) > a + {c,tx) and by the positive
homogenity,
(2) (=) Z_% + {c,x
By letting t - 22, we get
y(x) > <c,x) for all x € RE
It remains to prove that
(3)  $(&°) = (e, x%
© Lssume thst  4(x°) > {(¢,x°Y . Then by (1), a >0 . By letting

t @ 0 in (2), we observe, however, that we must have a < O .

Thig contradiction proves (3%).
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PROPOSITION 1,52

Let. § € ¥ . Then ¢ = lim § (pointwise) for a non-decreasing

sequence {¢r} with ¢ € ¥ .

Proof: It is enough to prove that each ¢ € ¥ may be expressed
as a supremum of countably many linear functionals. By lemma

1.517, for each ¥y € Rk there exists c(y) € Rk such that
(x) > (c(y),xy for all x € X ana
y(y) = {c(y),y?> . Consequently,

(3) y(x) = sup, (c(y),xy for all x € RE |

VER

-

. 1
Let S be a countable, dense subset of R~ (e.g. S = the set
of points with rational coordinates). We claim thet

(4) v(x) = sup (c(y),x) for all x € R

,Tj':
If x € 8, then $(x) = <c(x);x> , 80 (4) holds. The functions
on the right sides of (%) and (4) are both continuous in x .
Since a continuous mapping on a metric space is determined by
its values on a dense subset, it follows that (4) must hold for

any X € Ek . This completes the proof.

PROPOSTTION 1.53

et v € ¥ . Then ¢ = wK for a compact convex set K , i.e.
y 1is the support function of K .

Proof: Define K = {y:<{(y,x> < ¢(x) for all x € Rk}

(i) XK #£ @ : This is a consequence of lemma 1.57,

{(ii) K 1is convex and closed: For each fixed x € Rk s

(y,%x) < §(x) defines a closed half-space. It follows that K

is an intersection of closed half-spsces and thus closed and

ConveX.



(iii) ¥ is bounded: Let vy € K . Then
y; = <¥.e;0 < 4(ey)
=y; = {¥,-e;) £ §(-e;) and hence |
—¢(~ei) <y 2 w(ei) and boundedness follows.

(Iv) g =1v ¢ Let %% ¢ RX

o

By lemma 1.571 there exists yo € Rk such that

y(x) > (v°,x) for all x € RX
and equality holding for x = % .
Now yo € K and hence

1 (x7) = sup (x%,3) > (x%,57) = 9 (x%)

On the other hand

¢K(XO) = sup (x°,¥) < ¢(x°) Dby the definition of XK .

This completes the proof.

PROPOSITION 1,54

Let K,],K2 be compact, convex sets. Then Kq < K2 if and only
if Iy (x) < i (x) for all x .
1 2

Proof: The "only if'-part is trivieal by 1.44. Assume now that
Uy (x) < Vg (x) for all x , and suppose K, & K5 . Then there

1 2
is a point =z € K,I , z & K5 . Since Ké is closed, it follows
from theorem 1.25 that there exists ¢ # O such that

(c,z) > sup {c,y) = yp (c)
y€K2 2

Hence <{c,z) > b (¢) > {c,z) . The last inequality holds
/I

since z € K, . Our contradiction proves that X, ¢ K, .

COROLLARY 1,55

K

<, = KE if and only if qu = WKE . Thus there is a 1-1
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.
- J-{
correspondence between compact convex sets in R~ and sub-

linear functionals on Rk .

DEFINITION 71,56

If A,B are sets in Rk

and A a constant we define
A+B={a+b: a€ch, beB}

M = {xa : a € A}

PROPOSITION 1,57

Let Kq,Kg be compact convex sets and A > O . Then

Proof: FHasy consequences of the definition of $K .

EXAMPLE 1,58

We assume k =2 ., If K is a compact convex set, we define

e(x) = sup <(x,¥7

veK
We know that (x,y> = ||x|°|ly]l cos 5 , where 6 is the angle
between x and y . Now, if x| = 1, <{(x,y) = llyll cos 3

and  §p(x) = Sg%”yﬂ cos 6 and Yp(x) may be found geometrically
N
as follows from the figure,

\\ /’




EXAMPLE 1.59

Let K c R be defined by K={y : mexly,| <1} . We claim
2Ty

that  4p(x) = Tix, |

.}

his is a consequence of the following inequalities, whicn hold

for x € RS, y €K

(x,7) = izxiyi = E‘Xil RERE :%Ixi!

:L:/ano-,K‘o

Now, ({(x,y) = ;!Xi! if y, = sign oz
i

Define K' = {y : T|y.| <1} . Then ., (%) = max|x.| .
< ;1 K i i

This folléws from the inequalities.

(%, = §}€iyi = ;‘_Z'IXii lyil = m?{‘:xi[

and the fact that equality may be obtained by a suitable choice
of y .

We obgserve the duality between wK and ﬁK, (and hence by K
and X' ).

Many problems concerning compact convex sets or sublinear

functionals may be treated hy considering the dual sets or

functionals,
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2. GAME THEORY

DEFINITION 2.1

A two-person gero-sum game is a triple I = (A,B,M) where A

and B are arbitrary sets and M is a function from A X B to

[-o0,0] . The game involves two players, player I and player II.

The elements of A and B are called the (pure) sirategies of

player I and player II, respectively. We assume that the
players choose their strategies independently of each other and
simultaneously. If player I uses the strategy a € A and
player II uses the strategy b € B , then player II "pays"
player I an amount M(a,b) . The function M is called the
pay-off function of I, Obviously, the sum of gain and loss is

zero, as is irndicated in the term "two-person zero-sum',

EXAMPLES 2.2

(a) Roulette: The two players in the case of roulette (as in
many other hazard games) are the bank and the gambler. The

bank has 37 strategies: one of the numbers 0,1;e6e65%6 1is
chosen with equal probability by a roulette wheel.

By placing Jjetons on the roulette-table, the gambler chooses
certain combinations of the possible outcomes. This defines the
strategies of the gambler,

The payoff may be defined to be the loss of the gambler, i.e.

the difference between the gambled money and the amocunt payed out

by the bank.

(b) Many statistical problems may be regarded as two-person

zero-sum games., "'Nature" then takes the role of player I,
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choosing a parameter 6 € ® , where ©® is the space of para-
meters. Without knowing the choice of nature, the statistician
makes a decision d , which may for example be an estimate of

8 . As a consequence of the choices, the statistician "loosesg"
an amount M(€,d) . We call M the loss-function., In the
problem of estimating a real parameter 6 , the pay-off may be
given by (e—d)2 (quadratic loss). In practical statistics,
observations are available for the gstatistician. The strategies
are then decision procedures © which determine to each pos-
sible outcome X of an experiment, which decision &(X) to
make., The pay-off is defined to be the expected loss and is

called the risk-function.

(c) Finite_games. Assume that each player has a finite number
of strategies, i.eo A and B are finite sets. We may write
A= {a1,...,am}, B = §b1,...,bn} + If we define my; = M(a;,b.)
1 =150 J = 15060300 , then the pay~off function of our

came is given by the matrix {mij} with elements in [-oo0°] ,

Conversely, to each finite matrix {m..| with elements in

iy
[—UDfD] there corresponds a finite game. mij is then the pay-
off when player I uses strategy number 1 and player II uses

strategy number j .

(d) Mr. Smith tekes the train from the city to a suburban rail-
waystation every day. Some days he arrives home at 3 o'clock,
other days at 4 o'clock. His daughter Ann wants to meet him at
the station, but she is allowed to go there only once a day.

If she meets her father at the station at 3, he gives her 10
cents. If she meets him at 4, she gets 20 centgs. But if she

fails to meet him at the time she is at the station, she gets of
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course nothing. If we call Ann player I and Mr. Smith player
II, each playcr has two strategies: 3 o'clock and 4 o'clock.
In accordance with example (c), the pay-off is given by the

2 X 2-matrix <1o 0
0 20

In the following we consider a given game I ='(A,B,M) . Each
player of course wants to maximize his gain. Player I is then
interested in the behaviour of M(a ,b) as a function of D
for each fixed a, € A , whence player II is interested in

M(a,bo) as a function of a .

DEFINITION 2.3

Let a

4285 € A ., We say that 2y dominates a, if

M(a,,b) > M(a,,b) for all b € B.
If, more generally, A1 c A and A2 c A we say that §1 domi~

nates A2 if to each az € A2 there exists a1 € A1 such that

a dominates 85 If A1 dominates A , we say that A1 is

1
essentially complete.

Let b1,b2 € B . We say that 21 dominates b2 if
M(a,b1) 5:M(a,b2) for all a € A. If B,,B, ¢ B we say that
By_dominates B, if for all b, € B, there is b, € B, such
that b1 dominates b? .
DEFINITION 2,4
For each a € A we define MNi(a) = %ng M(a,b)

€

For each b € B we define M. -(b) = sup M(a,b)
Il ach
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Using the strategy a ¢ A , player I is certain to receive an
amount of at least MI(a) , and he is not guaranteed any larger
amount. MI(a) is thus a measure for the "goodness'" of each
strategy a € A and MI defines an ordering of the strategies
of player I,

MII(b) is the maximum loss of player II using strategy b .

and M defines an ordering of the strategies of player II.

1T

DEFINITION 2.5

We define V(I') = sup MI(a)
ach

and V(I') = inf My (b)
beB

V(I') 4is called the lower value of I ,

V(I') is called the upper value of I .

When no confusion can arise, we denote the lower value of T

by V and the upper value by 7.

DEFINITION 2.6

Assume that there is an a_ € A such that MI(ao) =V. a Iis

then the strategy that maximizes the minimal gain of player I

and is called a maximin strategy of player I.

Similarly, player II may minimize his maximal loss by using a

strategy b, such that MII(bO) =7V . b, is then called a

minimax strategy for player II.

If A is an infinite set it may happen that sup MI(a) will
ach

not be attained by a certain ay . Then we may find strategies
a € A such that MI(a) lies arbitrarily near ¥ .

Similarly for B .
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PROPOSITION 2,7

For all a ¢ A, b € B we have

MI(a) V<V < MII(b) .

4 1
Proof: Let & € A, b €B.

¥ 1 f 1 1
infM(a ,b) <M(a ,b ) < supl(a,b ) =M (b )

t
We have MI(a )
beB ach

i

It follows that

7
M.(a ) <inf M () =7 .
I bep 1T
t —

By teking supremum over a we get V <V ., The proposition

follows,

DEFINITION 2,8

A game T is said to have a value V(I') if V(I)=V(I)=V(T) .

We often write V instead of V() .

By using a maximin strategy (or a strategy that is approximately
a maximin strategy) player I is guaranteed a gain of at least

V . On the other hand, since player II may reduce his loss 1o
V , player I is not guaranteced more than 7V .

If now I has a value, i.e. ¥V =7V =V , and player I uses a
strategy a  for which MI(aO) =7V (or MI(ao) is approxi-~
mately equal to V) then a, is an unimprovable strategy for
player I, i.e. he is guaranteed an amount of V , and no other
strategy can guarantee him more,

Similarly for player II.
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EXAMPLE 2.9

In example 2.,2(d) we find that V=0, V = 10 . Thus this
game has no value. 4Ann is not guaranteed any money and Mr.

Smith may reduce his expense to 10 cents.

PROPOSITION 2,10

L game T hes a value and a, € A 1s a maximin strategy for
player I and bo € B 1is a minimex strategy for player II if

and only if
(1) M(ao,b) > M(ao,bo) > M(a,bo) for all a2 € 4, b €& B,
If one of these conditiongis satisfied, then V(') = M(ao,bo) )

Proof: Assume (1). Then inf M(a ,b) > sup M(a,b ) which is
b a

the same as ﬂI(aO) > MII(bO) .

By proposition 2.7 My(a ) = Myp(b,) and ¥ = v .

Assume now that V=7V =V and a,, b, are maximin and minimax
strategies, respectively, hen

M(a,,b) > Mi(a,) =V = MII(bO) > M(a,b,) .

Choose a =2a,, b =b, « Then V = M(ao,bo) and (1) follows.

EXAMPLE 2,11

Consider a finite game given by a matrix {mij§ « The inequali-
ty (1) of prop. 2.10 shows that the value of the game (if it
exists) is an element of the matrix that is a minimal element

of its row and a maximal element of its column. We call such

element a saddle point of the matrix {m..] . The number of the

ij
row then defines The maximin strategy of player I, while the

number of the column defines the minimax strategy of player II.
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-1 -2 3 0

If {mij} is given by
2 =1 0 6
\ 1 -4 5 -6
we observe that -1 1s a saddle point. Hence V = -1 and &,
1s a meximin strategy of player I, b2 is a minimax strategy

of player II.

DEFINITION 2.12

Let T = (4,B,M) be a game. We say that A is concave (rela-
tively I') if to each pair 8158, € A and each ¢ € [0,1]

there exists a € A guch that
(2) M(a,b) > (1—8)M(a1,b)+eM(a2,b) for all b € B .

If equality sign holds in (2) for all b € B, then A is said

to be affine (relatively I).

Lssume player I has a choice between the strategies a1 and

a and that he chooses a, with probability © . The ex-

o s
pression on the right side of (2) is then the expected gain,
given that player ITI uses strategy b . If A 1is concave, then
player I has a pure strategy a € A which gives at least as
large gain.,

Remark: Since M 1is assumed to be an extended real function,
the undefined case @ - ©

may occur in (2). This may be avoided if we for ecach b € B

restrict the function M(.,b) +to take at most one of the values
+ o and - <, However, in the sequel we will study games where

M is assumed to take at most one of the infinite values,
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Similar comments may be done in connection with definition 2.14

below.

PROPOSITION 2,13

et ! = (4,B,M) be a game and assume A is concave. Let

a1,...,a € A and

- €poeerf, 2 O, Z6; =1 . Then there exists

£

r
a € 4 such that M(a,b) > = 6,;M(a,,b) for all b e B. If
i=1

A is affine, then equality sign holds.

Proof: Induction.

DEFINITION 2,14

Let I = (A,B,M) be a game. We say that B is convex (rela-
tively T) if to each pair b,,b, € B and each 9 € [0,1]

there exists b € B such that
(3) M(a,b) < (1-6)M(a,b1)+431~i(a,b2) for all a € 4 .

If equality sign holds in (3) for all a € A , we say that B

is affine (relatively 1),

Convexity of B may be interpreted in a similar way as concav-

ity of A . We have the following analogue to prov, 2.13:

PROPOSITION 2.15

Let T = (4,B,M) be a game and assume B is convex. Let

b,sees;b, € B and Ggoesesfy, = O, Z6; =1 . Then there exists

-13

r
b € B such that M(a,b) < % 6,M(a,b,) for all a € 4.
i=1 -

If B is affine, then equality sign holds.
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DEFINITION 2,16

4 game T = (A,B,M) is said %o be concave-convex if A is
concave and B is convex (relatively I).

Remark: A sufficient condition for A +to be concave rel. T

is that A 1is a convex subset of an Fuclidean space Rk and
M(o,b) is a real concave function on A for each b € B .
Given a1,a2 € A and 9 € [0,1] according to definition 2.12,
we may put a = (1~G)a1+ga2 to satisfy (2).

Similarly, B is convex rel, I 1f B 1is a convex subset of
an FEuclidean space R and M(a,.) is a real convex function
on B for each a & A .

That the above conditions are not necessary, becomes clear from

the following example.

EXAMPLE 2,17

0 1

Lin easy computation showg that ' is concave-convex. Since O

Consider a finite game I given by the matrix (—2 4)

is a saddle point of the matrix, ' has a value V=0 . It
will be shown later that under certain conditions every concave-

convex game has a value (theorem 2.,35).

DEFINITION 2,18

Let X ©be an arbitrary set. A probability distribution over

X with finite support is a non-negative real function p de-

fined over X such that p(x) = 0 except for a finite number

of x€ X and T p(x) =1.
xeX
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DEFINITION 2,19

Let I = (4,B,M) Dbe a game. The randomization of I is the

game T#* = (A% ,B¥,M*) defined by the following:

I~

A* is the set of probability distributions over A with finite

support.

=

B*¥ is the set o

e

probability distributions over B with finite
support.
M#* is defined on A% X B¥ by

(4) wM*(a*,b¥) = = M(a,bla*(a)p*(b) for a% € A% , b¥ € B* ,
a,b

Remark: The sum occurring in (4) involves finitely many terms
different from zero, Thus no difficulties regarding convergence
and interchange of summations will arise. Wc note, however,
that the sum in (4) is well-defined only if M takes only one

of the wvalues +<¢w and - oo,

Assume player I (in the game T%) uses the strategj a¥ ¢ A% ,
In terms of the game T , this may be interpreted as if player
I chooses a strategy a ¢ A according to the probability dig-
tribution a¥ . If we adopt a similar interpretation of the

strategy b¥* ¢ B¥ , then it is seen from (4) that M*(a*,b*)

is the expected gain of player I in the game 1 .

In 2.1 we introduced the notion pure strategies for the elements
of A and B . The elements of A¥ and B¥* are called the

mixed strategics of the game 1 .



If we identify the strategy a € A with the strategy a¥* € A%
such that a*(a) =1 , a*¥(a') =0 for a' # a +then A may be
considered as a subset of A¥ , Similarly we may assume B ¢ B¥ .
We use the symbol a* for the elements of A% and the symbol

a for elements of A congidered as elements of A%

Similarly for the strategies of player II.

Obviously M¥(a,b) = M(a,b) for all a € A, b € B,
PROPOSITION 2,20
The randomization I% = (A% ,B¥%,M¥) of the game I = (4,B,M)

is a concave-convex game. In fact, AL¥ and B¥ are both

affine relatively I .

Proof: We ghow that A% 1ig affine., The proof that B¥ is
affine is similar.

Y

Let a1*9a2* € A¥ and let ¢ € [0,1] . Define a* by
¥ %
a¥(a) = (1—6):3,1 (a)+oa2 (a) for a € A,

learly, a¥%* ¢ A¥ .,

Let b¥ Dbe an arbitrary element of B¥ ., Then

M*(a%,b%) = % M(a,b)a*(a)b*(b)
a,b

£ M(a,b)[(1-0)al " (2)+02%" (2) Jo*(b)
a,o

Il

* D3t
= (1-o)mx (™, pe ) w277, %)
The affinity of A* now follows from definition 2.12.

Let now 1T and T% be as in definition 2.19.
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PROPOSITION 2.21

(i) MI*(a*) = inf M*(a*,b)
DEB

(ii) MII*(b*) = gup M*(a,b*)
ach

Proof: Since for all a¥ € A% , Db¥ € B¥* ,

M* (a%,b%) = (2 M(a,b)a*(a)Jox(b) = T M*(a¥,b)o*(b)
b b

<
'
a

> inf M¥(a¥*,Db)
b

it follows that lp*(a*) > inf IM*(a*,b) .
b
On the other hand, since B < B¥

MI*(a*) = in£ M*(a¥,b*) < inf M*(a*,b) .

Part (i) of the prop. follows. The proof of part (ii) is simi-~

lar,

COROLLARY 2,22

(i) TFor any a € 4 , MI*(a) = MI(a)

(ii) Por any b € B , MII*(b) = MII(b) .

Proof: The corollary follows from the preceding proposition

and the fact that M¥(a,b) = M(a,b) for all a ¢ A, b € B .

COROLLARY 2.253

() < ¥(r*) < V(I*) < T(T) .

Proof: From corcllary 2.22 and the fact that A € A% it

follows that



2:13

V(I*) = sup M.*(a*) > sup M-*(a) = sup M-(a) = V(I") .
- a% T T a7 a T -

In a similar way we get 7V(I'*) < V(T) .

COROLLARY 2.24

If T has a value V(I') , then I%* has a value V(I'*) and

v(r*) = v(T) .

Proof: DBasy consequence of corollary 2.23.

EXAMPLE 2.25

Let T be the game given in example 2.2 (d). We shall con-

struct the game I% , Ann's strategies are a, = "3 o'clock!
a, = "4 o'clock", Mr, Smith's strategies are b1 = "2 o'clock",
b2 = "4 o'cleock",

o

Each element a* of A% , being a probability distribution over
{a1,a2} , determines a number o = a*(ag) .

Conversely, to each number ¢ € [0,1] there corresponds a
strategy a¥ € A¥ guch that a*(az) = § . We may therefore
identify the set A% and the interval [0,1] . The strategy

a of A¥ now corresponds to ¢ =0 , a5 corresponds to § = 1

1
Similarly, B¥ and [0,1] are identified, D, corresponds

a4

to
O and b2 to 1 .

By the definition of M* wec compute
M*(0,m) = 10(1-0)(1-n)+20em = 300n-100-107+10 .

By prop. 2.21 (i)
20¢ if O

IN

<3

IN
Olf—

MI*(G> = min[M*(0,0),M*(0,1)] =
10-100  if

Wij—
IN
<O
IA
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This gives us

i 1y _ 20 _ /1
* = \4‘,_* = | * = = e =T f.’."s
v(T*) sup M*(0) = Mp*(z) = 5 = 63

in analogous computation (using prop. 2.21 (ii)) shows that

T(1 = -1. = -ga-q = l
V(I*) = MII*(B) = 5 63

Thus the randomized game I¥* has a value, V(I%) = 6% .

8 % s N = % are, respectively, maximin and minimax strategies.

Thus, the game T, Ann and Mr. Smith ought to choose 3 o'clock

with probability 2/3 and 4 o'clock with probability 1/3.

Remark, It is enough to consider a game I' from player I's
point of view., When T = (4,B,M) is given, we may namely
derive the game TI'= (B,4,M) , where it is given by

M(v,a) = -M(a,b) , a € A, b € B . Then, clearly,

@) = 7@, TE) = X

o~ . - . :
Hence [ has a wvalue if and only if I has a value, and we

observe that T =7 R

Let now I = (4,B,M) be a game, We will find conditions under

which ¥V =7 .
NOTATION.
Mzl =1{a:Mab) =1 ch, T€R,

THEEOREM 2,26

The following conditions are equivalent:
(1) ¥=7

(i1) for each 7 <7V we have N[M> 1) # 0 .
b



Proof:
(ii) = (i), Tet T <V . Then there is an a € A such thatb

M(a,b) > 7 for all b € B . Hence MN(a) = inf M(a,b) = 7 .
b

sup My(a) , it follows that ¥ > 7 . We may choose

il

Since V

=

T arbitraryanear V,s0 V>V and hence 7 =7,
(i) = (ii)s Let 7 <V . Then 7 <7V = sgp Ml(a) .
There is thus an a ¢ A such that
T < MI(a) = inf M(a,b) < M(a,b) for all b .
b
Hence a € [M > 7] for all b€ B, which implies RIS 0 .

THEOREM 2.27 (FUNDAMENTAL THEOREM ABOUT CONCAVE-CONVEX GAMES)

Let I = (4,B,M) Dbe a concave-convex game, where -« < M <oo
Let Db se.s,b € B and assume that MII(bi) =co implies
M(a,bi) > =0 for all a€ A. (If V<o or M ie finite,
this is no restriction.) Choose T <V . Then

m
nMzrl #0.
1=1 i

Proof: Dcfine S = i(M(a,b1),...,M(a,bm)) ta € Al .

Then 8§ < [-®@,0 . Put H= [r,00o[",

m
Suppose N [Mz 7} =@ . Then SN H=0.
i=1 i

et T={y : vy € [—OG,Cc[m and y <x for some X € S
(v < x 1is definegd componentwise ).

Clearly 8 ¢ T < [-o0,eo[™,

We state two lemmas:

Lemma 1.8

LGJC y1’t..’y—11€T, g,lytcoggnzo, Z§l=1 L4
nooi

Then by giy €T .
i=1



Proof: ILet = < xT for xT € 8 , i = 1,000,014

o o o . ;
Then X giyl < Z 5% . We may write le
=3 giM(ai,bj) . Since 4 is concave, it now follows

= M(ai,bj) so that
i
z éihj
from prop. 2.1% that there exists a € A such that
b} ;iM(ai,bj) < M(a,bj) = 25 for all j .

o i - 5
Hence Z g,x7 <z € 5 and the lemma follows.

Lemma 2:

Let T'=Tn R . Then T' is a convex non-empty subset of

R, Moreover, T' N H =0 .

n . ) )
Proof: Assume T N R° = @ , l1ec. each vector in S has at

least one component which is - , Then

m
Z M(a,bi) = -0 for all a ¢ A . Since B is convex (rela-
i=1

tively TI') there is b € B such that

1m
T M(a,b.) = ~c©  for all a .
i=1 -

Hence MII(%) = -, which implies V = - ,

This contradicts the fact that 7 <V . Thus T' #£ 0 .

T is convex hecause of lemma 1, so T' is convex. The last
part of the lemma follows from the definition of T and the

fact that Sn H=0 .

We now proceed with the proof of the theorem. Since H and T!
by lemma 2 are disjoint convex subsets of RE , it follows from
theorem 1.30 that there are numbers 11""’lm , not ail equal
to 0 , so that Zlixi > Zliyi whenever x € H, y € T' ,

If we fix y € T' and lct some X; 2, we observe that neces-
sarily li >0 for 1= 1yseasm .

We may assume Zli =1,




Since (TyeeesT) € H we have Zliyi < T for any y € T' .
Assume now Zliyﬁ <7 for ell y € 8 . Then there exists b

such that

M(a,b) i.ZliM(a,b;).g T for all a € A ,

which implies MN;(b) <7 and hence 7V <7 , which iz a contra-

dgiction.
> v e ~ . - o« ~ e
We may therefore find ¥ € 8-T' sguch that Zl.v. > T . Since
'I‘Jl
~J I - ) -~ . ~J l
y € 8-T' , y, =~ for some i . Put I = {iy., > —cof
<L

~

We observe that, since i ¢ I (i.e. v = -0 ) implies
1,=0,1 # 0 , and 1, # 0 for at least one i .
Let 0 <p <1 and put p, =1.,p for all i ¢ I.

Obviously Z P =D .
cT 1

i

I

) — 1= : — - o
Define p; = E:E%TT s, i £ I . Then i?lpi = 1-p and hence

By the convexity of B , there is b_ € B such that for all

1%

m
a€ h: Ma,b )< %p.Ma,b.)=p% liM(a,bi)
- L . i€l

1-0 e (-
PR )

If 31.M(e,by) <7, this yields
i

. 1-p -l e 5 1= .,‘
M(a,by) < BT+ oy i%IM(a?bi) £ DT + Ty iélmll(bi),.

If ZliM(a,bi)

\

T , then there is some 1 such that li =0

and M(a,b,) = -, i,e. 1/ I . Hence M(a,bp) = -,



It follows that for all a'é_A )

1 =1 A

M(a,b_ ) < pT + == 5 Mo-(b,) .
P m_”ifj-igl I i

Hence
- 1= 3
(5) 7 <V <up(b) SPT + 5y ig‘IMII(bi)
et 1 ¢ I.
Then ?i = -C0 , If we write ? = (Mcg’b1)"'°’M(g’bm)> then

M(a,bi) = - , Hence, by the assumptiors in the theorem,
MII(bi) <o , Thersfore, by letting p - 1 in (5), we ge%

T <V <7 which is a contradicticn.

THEOREM .28

Let T = (4,B,M) De a concave-convex game such that
- <M < and such that M is finite or 7V <o, uassume

there is a scquence {bpf in B such that

(6) inf M(a,b) = inf M(a,b.) for all a £ A .
. i
b i=1325e04

Assume further that to each sequence {an} in A there cxists

a € A such that
1iminan(an,b) < M(a,») for all b € B,

Then ' has a value.

Proof: By thecrem 2.27 we have, for 7 <7V,

m
ﬁ !::Mtz T]—b ?é@ m = 1923.00
i=1 i ,
m _
Choose a € N [ > le. e M= 1,25000 o

i=1 i



~

By the assumption, there i a € A such that
liminf M(a_,b) < M(a,b) Zfor all Db € B .

The proof is complete if we can show that M(a,b) > T for all

\I
-
s
o
=

b e B. By (6) it suffices to show that M(a,bi)

-

i=1,2.000 «» For m>1i we have M(am,oi) > 7 . It follows

that M(a,bi) > liminme(aq,bi) > T,

COROLLARY 2.29

Let T = (A,B,M) be a game satisfying the condition in the

0y

remark succeeding def. 2.16., Assume further that M is con-
tinuous in each variable and that A is closed and hounded.

Then I° has a value.

Proof: TFrom the theory of metric spaces we know that B has
a countable dense subset (which may here be taken as the set of
points in B with rational coordinates). By the continuity of

A, statement (6) of the thecrem

N

M(a,o) for each fixed a
is now satisfied.

Let {an} be a sequence in A . Since A is closed and
bounded, {an} has a subsequence {an.} which converges to a
point a € A . Now, since M(.,b) is continuous,
liminan(anyb) < lim M(an‘,b) = M(a,b) for each b € B . Thus
the assumptions of theoreg 2.28 arc satisfied, so that 1 has

a value.

To find weaker conditions under which a game has a value, wc
will use general topology. An introduction to the theory of
topological spaces, compactness etc. may be found in Royden:

Real Analysis.



DEFINITION 2,30

- ., ) aq .
Let X De a topological space. A collection 4 of sets in

X is said to have the finite intersection property (foi.p) if

N ; . a - .
any finite subcollection of & has a nonempty intersecuvicn.

Theorem 2.27 states that the family of subsets of A
(M > T]b , b € B, has the f.i.p.

ie have the following theorem concerning f.li.p.

THEOREM 2.31

A topological space X is compact if and only if every collect-

ion of closed sets with the f.i.p, has a nonempty intersection.

Proof: Royden: Ch. 9 prop. 1.

DEFINITION 2,32

An extended real-valued function f on a topological space is

called wupper semicontinuous if - < f <, and for each

a € R, the set i{x : f(x) <al is open.
We remark that the last condition is equivalent to

{x ¢« £f(x) >al is a closed set for each o € R .

LEMMA 2,33

Let {fi} s, 1 € I be a family of upper semicontinuous rfunctions

defined on a topolcgical space. Then f = inf fi is upper semi-
iel

continuous.
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Proof: Clearly -9~ < f <oz, HMoreover
{x ¢« f(x) <el = U {x fi(x) <@} is a union of open sets

and thus open.

LEMMA 2,34

Tet £ be an upper semicontinucus function deiined on a com-

pact topolcgical space X , Then L assumes its maximum;

i.e, there exists x_ € X such that sup f(x) = £(x )
° xeX ©
Proof: Royden Ch. 9 prop. 10.
- THECREM 2,35
et T = (A,B,11) be a concave-convex game; - < I <o,

Assume there is a topology on A such that A is compact and
M(o,b) is upper semicontinucus for each b € B . Then the

game 1 hag a value and player I has a maximin strategy.

Proof: Let T <7 . By def. 2.32, the sets [Mx 7] are
closed gets in A and hence compact, since 4 1s compact.
By theorem 2.27, the family [M > 7], , b€ B, has f.i.p. and
so by theorem 2.31 N[M > T]b # 0 . Theorem 2.26 now shows

b
that I has a value.
Since MI(a) = inf M(a,b), it follows from lemma 2.33 that My

b
is upper semicontinuous, and by lemma 2.3%4 we may find a, € A
such that MI(aO) = sup MI(a) =¥ . Hence a_ 1is & maximin
a

strategy.
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Assume I = (A,B,M) is & concave-convex game, such that

-2 <M <o, Ve will now find conditions on A and M to
assure the existence of a topology possessing1ﬂu§pr0perties
listed in Theorem 2.35. .

We will need the concept of a net, which is a generalization of
a sequence. The definitvion of and some properties of nets may
be found in Royden Ch., 8.

It suffices to consider the coarsest topology on A for which
the functions M(e,b), b € B are upper semicontinuous on A .
This is the topology T c¢n A generated by the sets

0 =ja€ed:Ma,b) <% ,DEB, tER. (Sets of this

b,t
form will have to be open by definition 2.32.)

LEMMA 2,36

A net {aa} in A converges to a point a € A in the topology

T 4if and only if

(7) limsupaM(aa,b) < M(a,b) for all b .

Proof: T'only if": Assume Ob t is a neighbourhood of a .

?
Then M(a,b) <t . There is o, such that o >a,  =>a, € ob’t
or equivalently o > o  => M(aa,b) <t . It follows that
1imsupaM(ab,b) <+t for all t and b such that M(a,b) <+t .

Consequently limsupaM(aa,b) < M(a,b) for all b .

"if"s The collection c¢f finite intersectione of Ob t—sets is
9

which

a base for T. Consider such a set Ob + n,..nob

17 rt by
contains the point a .

Then M(a,bi) <t 1= Treeesl o



By (7), for each i we have,
limsupmM(aa,bi) f.M(a,bi) <t

It then follows (from the definition of limsup) that there isg
a, such that o >a_  => M(aa,bi) < t; for each i, i.e.

a > Q == a Eo'b tﬂ..‘ﬂoq % °

1°°1 Dps by

PROPOSITION Z.37

A is compact in the topeclogy T if and only if to each net

{aa} in A there exists a € A such that

limiﬂfaM(aa,b) < M(a,b) for all b € B .

Proof: "only if': Assume A 1is compact, Then there is a sub-

net iagl of {aaf which converges to a point a € A,

i.e. by lemma 2.36, limSupﬂM(aB,b) < M(a,b) for all b . It

follows that
Liminf M(a ,b) g.liminfﬁm(aﬁ,b) < limsupﬁM(aB,b) < M(a,b) .

is a subnet of f{a_l .

The first inequality holds since f{a s

N
n"if"s  TLet {aq} be a net in A . The set R = [-c2,0] is a
compact set. Consequently i (the set of functions from 3

into R) is compact by Tychonoff's theorem (Royden Ch. 9 Th. 19).

For all a ¢ A, Mla,.) € TE , SO M(aa,o) defines & net in TS .

By the compactness of T there is a subnet {aﬁi such that

e ) ,‘l
M(ag,o) converges in R . Hence limBM(ab,b) exists for all
b € B . By the assumptions in the theorem, there exists a € A

such that

liminfBM(ap,b) < M(a,h) for all b .
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limsupBM(aC,b) = liminfSM(aﬁ,b) < M(a,b)

iees a8 converges to the point a in the topology T (lemma
2.36) . Hence A is compact, since each net in A contains a

convergent subnet.

COROLLARY 2.38

Let T' = (A,B,M) %be a concave-convex game with - <M <,

A - I

Assume that to each net {ao} in A there exists a € A su

(&)

i

that

liminfGM(aa,b)ls M(a,b) for all b € B,
Then 1° hag a value and player I has a maximin strategy.
Remark: The statement that ' has a value and player I heas
a meximin strategy a, € A, is equivalent to the following:

inf sup M(2,b) = sup inf M(a,b) = inf M(ao,b)
b a a b

EXAMPLE 2.39

Let T = (A,B,I1) ©De a game such that A = {a1,...,am} ,

-0 < M <2, We will prove that the randomized game I'* has
a value. (in example 2.25 we showed this for a simple 2 % 2
game,) An element a¥%* of A% may be identified with an
ordered m-tuple (91,...,em) where each 6, =0, T 6, =1,
such that a*é%) =6, 5 1=1,000,m

If we induce the standard topology on R on A% s, Then A¥
is compact (closed and bounded). Equation (4) in 2.19 shows

that for each fixed b¥ ¢ B¥ , M*(a%,b¥) is a linear combination



of 91"“’9m . Hence M*(o,b¥) is a continucus function on
A¥ for each fixed Db* . Since TI'* is concave-convex (prop.

2.20), theorem 2.35 gives the desired result.

DEFINITION 2,40

Let a, € A, b e B, We say that the strategy a, is optimal
for b if M(a_,b) > M(a,b) for 211 a ¢ A,
Let e >C . We say that a iz ge-optimal for b if

M(ao,b) > M(a,b)-e for al a€ A,

LEMMA 2,41

et T = (A,B,M) %be a game with value V , = < V. <o,
Assume that g is a maximin strategy for player I, i.e.
MI(aO) =7V . Then for ecach ¢ > 0 there exists a strategy

b, € B such that a, 1is e-optimal for Db .

Proof: V = inf MII(b) « Let € >0 . Then we can find D
"'"“ b

e
such that
Mpp(b )-e <7 .
Now M(ag,be) 5~M1(ao) = V which implies
M(ao,be) > MII(be)"e > M(a,be)—e for any a € 4 .

DEFINITION 2.42

~ 3
Denote by A the set of strategies for player I that are

e-optimal for a strategy be in B for all € >0 .

THREOREM 2.47%

et T = (4,B,M) be a concave-convex game with finite pay-off

function M . Assume



(i): There is a topology om A in which A ie a compact space
and the functions M(.,b) on A are upper semicomtinuous for

ecach b € B .

(ii): B is affine relatively 1 .

The condition (i) is, as is proved earlier, equivalent to
(1)': given any net {a&} ~in A there exists a € A such
that

liminfaM(aa,b) < M(a,b) for any b € B .

~J
Then A dominates A (see def. 2.3) .

S~

Proof: Tet a € A . We define the game

&~

I = (4,B,M) so that

»

M(a,b) = M(a,b)-M(a,b) a€h, bcB.

A straightforward computation, using the definition of concavity

e

and affinity, shows that A 1is concave ana B 1is affine rela-
~ »~
tively 1" . Thus the game I is concave-convex . By theorem

2.34 the game f has a value V and player I has a meximin
strategy 2 € A . Since Mi(a) =0 , we have V>0 . Further-

more,

o

v

Il
1l

MI(E) inf M(2,b) <o since M is finite., Hence
b

0 <« TV <o,

»n

We assert that & dominates a in the game T

Since 7 = ﬁI(E) >0 , it follows that ﬁ(&,b) > 0 for any

b € B, and consequently M(a,b) > M(;,b) for any b € B by
the definition of ﬂ .

~J ~J
The thecrem is proved if we can show that a € A .,

Given ¢ > O , there exists by lemma 2.40 b_ € B such that



N

o2

MCg,be) > M(a,be)-e for any a € 4 .

Since now M is finite, we can add M(é,be) to each side of
the inequality and get M(g,be) > M(a,be)—e for any a € L ,

proving that a el .

DEFINITION 2.44

Let ao € A . aC is said to be admissible iFf

M(a,b) > M(ao,b) for all b € B

implies M(a,b) = M(ao,b) for all b e B .,

COROLLARY 2445

Let the assumptions be as in theorem 2.42.

~J

If 2, is admissible, then & € A .

Proof: By theorem 2.42, there is 2 € & such that for any
b€ B, M2,b) > M(a_,b) . This implies that M(a,b) = M(a,b)

Tor any b € B , and then clearly a, € X .

The following exemple shows that the condition in theorem 2.42

that I°' be concave-convex cannot be ommitted.

EXAMPLE 2.46

Let I = (4,B,M) be given by

A=1[-1,1], B={-1,1 , M(a,b) = ab .

That B is not convex (and hence not affine) relatively I
follows easily from definition 2.14. We will show that 4 (as
defined in 2.42) is the set {-1,1} .

Let € >0 . A strategy 8, € A is then e-optimal for b € B

ir



a b > ab-¢ for all a ¢ A .

If b =1, then this is equivalent to a, = 1-€ .
If b = -1, we have a, = -1+€

Consequently, the only strategies in A that ere e=-optimal for

some b € B for any € > 0 are aj = 1 and a, = -1

These strategies are, in fact, by the definition optimal for
respectively b =1 ard b =-1 . Now & = [-1,1} . We will
show that A does not dominate A ., Let a =0, A strategy

ao dominates a =0 if

ab >0 forall b€ B, i.e. if

&, 20 and - a >0 which implies a, =0 . Hence no strate-

gy in A& dominates a =0 ,



%, BASTC ELEMENTS OF DECISION THEORY

DEFINITION 3.7

¢ o

An experiment & is given by Q5 = (x,CX;Pe : 5 €0) where

(x,Cl) is a measursble space and {PB: 9 €8} is a family of

probability measures on (x,0) « (x,(J) is the sauple space

and @ 1is the parameter set.

A - Ce o
Remark: ¥ may also be called a statistical model.

A statistician begins his study of a phenomenon by building up
a mathematical model which is believed to ‘ewplain’ what
‘happens. This model is given in the form of an experiment as

lefined above.

The next step is to perform an experiment and to make certain
decisions on the basis of the observations. A decision will
in general be a statement about the 'true’ parameter €@ . In
the theory of tests, we consider a2 null-hypothesis of the form
H:09¢ @O where @O is a subset of ©® . Two decisions are
possible: to reject or to accept the hypothesis (eventually
to reject or to "sey unothing'). If a real function g(8) of
the "true' parameter is to be estimated, then the set of
possible decisions will be & subset of the real line.

Ir addition to the set of decisions, the statistician will

need a rule which to each observed result tells him which

decision to make. Such a rule will be called a decision-rule,

DEFINITION 5.2

Y

. . . . {
A decision space is a measurable space (T,/4) . The elements

of T are called decizions. In the case of finite T ,,jb



3.2

is generally taken as the family of 211 subsets of T.

DEFINITION 5.5

Let fﬁ = (%, 00 1Py s 0 €8) be an experiment. A decision-rule

§ 1is a Narkov~kerne1 (see def. 12 of appendix B)

5(o|e) + A xx~ &

Remark: A decision-rule defines for each x€¥x a probability
distribution on the set of decisions (T,zﬁ) . The stetisti-
cian chooses a decision according to this distribution. Thus

we have a randomized decision-rule. However, it may in many

situations seem more satisfactorily to have a decision-rule
which to each observed x€yx defines exactly which decision

to make. Such a rule is called a non-randomized decision-rule.

We hove the following definition:

DEFINITION #.4

A decision-rule is said to be non-randomized if there is a

function ¢ :yx - T such that
6(slx) = Is(ﬁ(x)) for all SEE) x €Y

) = [1if y(x)€ES

i.e. 5(S 15
\ 0 if ((x) €8

Accordingly, 6(elx) is the probability distribution giving
mass 1 to the set ‘{i ¥)} < T , provided {y(x)} E,% .

W2 remark that /g in most cases is chosen so that each one
point set of T 1s measurable,

I (x) ; we have W_](S) € Cﬂ_ whenever

]

Since &(8|x) mq( )
S

S € }S . (This follows since &(8]°) dis required to be
CX~measurable), Hence & 1s always measurable, ¢(x) may

be interpreted as '"the decision to take when x 1s observed"
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EXAMPLE %.5

In 2 k-decision problem, (T,% ) is given by T=1{1,2,...,k},

z& is the family of all subsets of T . A decision rule &
is thus completely defined by the values &s({t}|x) , t €T,

x € x . We will in common write &(t]x) instead of &({t}|x) .
k
Note that ¥ &(t|x) =1 for all x €yx . If & is non-

randomized, then for each x € ¥ , 6(t|x) =1 for some t €T .

EXAMPLE 3.6

(a) Tet 8, © @ and suppose we want to test the hypothesis
H :6<E®O against SES@»@O . Our decision space will then con-
sist of two elements: ‘"“accept H" and "reject H', which we may
identify with the numbers 0O and 1 , respectively .
Thus T = {0,1] and our procedure is determined by

!

6(1%x} = Pr (reject | x is observed) = o¢(x)

6 (0 |x) V-p(x)

Il

The test 6 is non-randomized if & takes only the values O
and 1 . The set W = {x€yx :q¢(x) =1} is then the rejection

region and U = {x€y :9(x) = 0} is the acceptance region of

our test.

(b) Suppose now @ < R and we want to estimate the ‘'true’
parameter /5€® ., Now T 1is chosen as a subset of R and )3
maey be taken as the family of Borel-sets in T . The decision
procedure 6(S§X determines to each observed x a probability
distribution over T . A non-randomized decision rule is now
seen to be given by a measurable function ¥ :yx - R , which is

the same as what we are accustomed to call an estimator,



REMARK 3.7

The decisgioa-rule in definition 3.3 is a randomization "after x,
in the sense that the statistician first observes x and then
chooses a probebility distribution over T . Another way of
randomizing i1s the following: Let DO be the set of non-
randomized decision-rules and let DO* be a set of probability
measures over DO o

We may let the strategies of the statistician be the elements
of DO* , i1.e. the statisticien chooses a non-randomized de-
cizion-rule according to a probability distribution over DO o
Thus we have a randomization 'before x".

Asgume, for example, that x 1s finite with M elements, T
is finite with N elements. Let D be the set of randomized
decision rules. Then

dim D = M(N-1)

I
=

O
. e M,
dim D = -1
0
Comparing dim D and dim DO* , we observe that randomizing
“before x" gives rise to more strategies than randomizing
tafter x'. In quite general situations, however, the two ways

of randomizing are equivelent. See [20].

DEFINITION 3.5

stic

D
[

-

Let & be a decision-rule. The operational character
(abbreviated 0.C. ) of & is the function

OC6 :/ﬁ x & - R given LY

~ ~1 A < |

0c,4(813) = [8(8]m)Pg(ax) = P, 5(8)

(cee appendix B, def. 17).



5.5

ffor each 6 € @ | Peé is a probability distribution on
(T,/&) , which may be interpreted as ‘the expected decision

when the true parameter is 8 ",

EXAMPLE 3.9

Consider example 3.6 (e). We have
00, (116) = [8(1|x)P,(dx) = [p(x)Py(dx) which is seen to be

the power function of the test 6 . If & 1is non-randomized,

then 006(116) = PB(W) , where W 1s the rejection region.
In the non-rendomized situation of example 3.6 (b), we get

ocgg]e) = Py(¥ € 8) , which is the probability distribution
of ¥

We malke the following interesting observation: The power

function of a test "corresponds to" the probability distri-

bution of an estimator. Thus the power of a test is a more

“fundamental concept than the variance of an estimator.

Decigion theory may be considered as a two-person gewme,

"‘nmature” being player I and the statisticisn being vplayer II.

1

Their strategies are, resnectively, the parameter set 6 and

o

the set of decision-rules. The payv-off function of this game

it

is called the risk-function and is constructed from a losz-

function. These concepts are defined in the following:

DEFINITION 3.40

Let o = (XsCﬂ,Pe : 9 € 8) be an experiment and (T,/g) a

decision space. A loss--function is a real function

L,(t);8 €@, teT

which is measurable in 1+ for each 8§ € 8 .



N
@
0

The loss-function Le(t) mey be interpreted to define the

loss (or 'penalty') by taking decision + when 6 iz the
"true' parameter. Thus, if +t 1is precisely the right decision
to make when 6 1is the parameter, then it may seem reascnable

to let Ty(t) = O .

DEFINTTICN %.11

-
Let & end (T,}) be given as in definition 9, and let

Le(t); 8 €0, t €T be a loss-function. ILet & be a

decision-rule. The risk--function Ty of & 1is given by

[ N p
r(8) = JLe(b)océkdtle) , B €@
provided the integral exists.
By appendix B, we may write
ré(e) = P81y

EXAMPLE 3,712

Consider again ewample 3.6 (a). A lossg-function may be given

as follows:

_ (0 when 6 €0
Lol8) = la when @8 € @9@0
( _ /b when 6 € 6
Lq\e) ~ WO vhen 8§ € 0-@

Now, for @ € @O
(
r(8) = 00C (1]68) = bjedP

For ¢ € @«@O ,

. r .
rs(8) = a0Cs(0]6) = a(i-ipdP,)

A Irequently used loss-function in the situation of example

3.6 (b), is



L9<t> = C(t-—e)2 where (. is a constant.

Consider now the two-person zero-sum game (8,D,r) , where

€ 1is the parameter set, D is the set of randomized decision
rules and 1 1s a risk-function. The statistician (player II),
trying to find the "best' decision-rule, of course wishes to

minimize the risk. We shall mention here two useful principles.

DEFINITION 3.1% (THE MINIMAX PRINCIPLE)

A decision rule 6, € D 1is said to be minimax if

sup Ty (8) = inf sup ré(e)
9 ° 5 8

For further reflexiong about minimax rules, we refer to

chapter 2.

DEFINITION %.414 (THE BAYES PRINCIPLE)

The Bayes principle involves the notion of a distribution on

the parameter space @ called a prior distribution.

By the Bayes rislt of a decision rule & &€ D with respect to

a prior distribution A we shall mean the gquantity

r{A,8) = Eré(T) (provided the expectation exists)
where T 1is a random variable over € distributed according

to A . A decision rule 5, € D 1is said to be Bayes w.r.t.

the prior distribution A if r(A,8 ) = inf r(A,8)
o
The quantity inf »(A,8) is called minimum Bayes rigk

]
relative to the prior distribution A .

A rigorous treatment of statistical decision theory is found

in Ferguson [4]. Some special topice are treated in [15].



4, DEFICIENCIES

In this chapter we will give the basic definitions of
e~deficiency between two experiments with the same parameter

set © .,

DEFINITION 4,7

&Y

Let {
o~
¥

with the same parameter set € .

= (X,CESPQ : 6 € ©) and
(éiaCBsQe : 06 € @) Dbe experiments (see def. 2.1)

]

Let ¢ Dbe a reel function defined on ® with values €y 2 0
for gll 9 € ® ,

z . . - s N
We shell cay that (& is e-deficient relative to S{ for

k-decision problems if to each decision cpace (T,,&) where

1,

/5 containg 27 sets and to each bounded loss function

{Le(t) 19 €@, t €T} and to each decision-rule ¢ in @'
. moAy . . N

(relative to (T, ) ) there exists a decision-rule p in&

(relative to (T,)E) ) such that
(1) PapLy < QgoLy + eeHLeﬁ for all @& € ® where

HLGH = max L
t

Remark: A 2-decision problem will in the sequel be called

testing problem. We remark that in the definitiocn above, T

need not be a finite set. A k-decision problem arises €.g.
when T contains k elements and /& is the set of all subsets

of T , or when /%) is generated by a finite partition of T

in k parts. In the latter case, T itself may be infinite.

It is seen that a finite o -algebra always contains 2k sets,



for come natural number k .

A

Le 1s required to beﬂi) -measurable for each 6 € ® . Thus

for fixed 6 , L9<t> mey take only a finite number of values

X

(at most k ).
(1) may be replaced by

(2) P,pLy £ QuoLy + € |lLl for all & € € , where

8770 0 B

IZY = mext ||Lgl| = mex |T,(6)]
8 5,%

Clearly (1) implies (2). Assume then that (2) holds and let L
be a loss~function.. Then L' defined by L',(t) = Le(t)/HLeH
is also a loss-function and ||L'll = 1 . Substituting L' into

2) yields (1).

PROPOSITION £.,2

In definition 4.1, we may restrict ourselves to consider only
decision spaces T,Eﬁ) with T = {1,2,...,k} and /% con-

sisting of all subsets of T .

Proof: Suppose The conditions in def. 4.1 are satisfied, but

only for decision spaces of the above type.

:
%,

il

. .. . .
,,ﬁ]} be an arbitrary decision space with #/5'

Let (T

Then /&' 18 generated by a finite partition of T' containing
k sets, say T = {Tﬂ,,aa,Tk} (See e.g. [10] Prop I.2.1).

The idea of the proof is now to identify the element i & T

with the 1i-th component Ti of the partition cf

T',i = 1,06s9k o The proposition will then follow from the fact
that every A>'wmeasurable function on T' dis constant on each

Ti « The reader is recommended to work out the details of the

proof.
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DEFINITION 4,3

17

Let § and € be es in def. 4.1. We shall say that

b2 7
(o is e-deficient relative to @f if & is  e-deficient
A

relative to }‘ for k-~decision problems for kX = 1,2:5500000

Remexrl: he concept of é~deficiency of one experiment to
another was introduced by Le Cam in [7]. This generalized the
concept of ‘being more informative' which was introduced by
Bohenblust, Shapley and Shermen and may be found in Blackwell
[1]. '"Being more informative for k-decision problems" was
introduced by Blackwell [2]. In terms of e-deficiency these

concepts are defined as follows:

DEFTINITION 4.4

We shall say that é;Ais more informative than g: (for k-

\ e tmis £ L e P

decision problems) and write this ( > ( >3 ) if
k

is O-deficient relative to §7 (for k-decision problems).

Hemark: +~O-deficiency means e-deficiency when €y = O for

all 6 ¢ @ .,

DEFINITION 4.5

.7 -, L ~-
it )g z é (é > ana £ > g (3 i éf) , then we shall
1

o
o £ [
say that (& and § are equivalent exneleenLo (with respect

to k-decision problemz) and write this <£ ~ 3 ( ﬁ ~.t ) .
T ¢ & ]
k

What is the intuitive interpretation of e-deficiency?
Assume that the statistician may observe values from one of the
experiments éi and S: , but not from both. Which should he

(2 SN
choose? If <§ is more informative than , then regardless



1

which decision rule he chooses in ?T , there is a decision
4
rule in ( which yields lower (or equal) risk. Consequently

the experiment (& should bes preferred.

6 o™
If &, is e-deficient relative to ¥ oand e 15 smali for

8
each © , Tthen to each decision rule in 3:' there may be found
a decision rule in éz which is almost as "“good" as vhe first.
Thus only a small amount of information will get lost if we

122 Sj
observe < instead of .

The function € may be called a tolerance function.

PROPOSITION 4.6
e -
If ¢» 1is e-deficient relative to F for (k+1)-decision
_, e
problems, then é; is e-~deficient relative to & for k-

decision problems,

Proof: Bet T, = {1,...,k} . TLet Le(i),i = T,e00,K,0 € 8

L

be a loss-function and let o be a decision-rule in %
relative to Tk . We shall construct a decision~rule p in

I -
C’) such that

f

o is well-delined by the values o(ily), i € T

By defining o(k + 1]y)

considered as a decision rule in ~} relabtive to Tk‘ﬁ .
p i

By assumption, there is a rule p in (& relative to Tk+1

such that

(%) PgoL'y < QuoLg' - s,

and p(klx) = o(klx) + p(k + 1|x) for all x € ¥
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k s
Clearly Z p(iix) =1, 80 p 1is a decision-ruls in‘é;
i="1
relative to T, .
It remains to prove (3). TFor each 6 € & ,
N {l i1 ck
P.oL', = | * L' (: p(l!f)P (dx) = | z L (L)p(L|x)P (dy) E,pL
9 6 1 1 J 0 8
and QqaLe' = Q,SGL9 since o(k+1jy) = 0 for all y € 3} .
Finally HLS'H = HLGQ so (3) follows from (4)

PROPCSITION 4.7

If e, >2 for 211 6 ¢ € , then Ez is e-deficient relative

G~ 6 =
to § .
Proof: If L, ¢ and o are given, then for 6 € &
|Byply - QoL, | < !PepLel QoL | < IBgell gt + lagol bl
= P gl ¢ Rl Bl = 2UT,)

by prop. 15 of appendix B.

Let & and 5 ve given as before, and let

E; = (Ei,éz; Hy: 8¢ @) be another experiment. Assume that
éi is e-deficient relative to \§' (for k-decision problems)
and that gﬁ i8 mn-deficient relative to Qg} (for k-decision
problems). Then ég is (e +mn)-deficient relative to é; (for
k-decigion problems).
Proof: Let T, = f1,000,k} , let L, be a loss-function and

B

D
T a decision-rule in 5{ . By assumption there is & decision-
-

rule o in & such that Qgoly < HGTPB + MpliTgls 8 € @
Further more, there is a rule p in é; with

PR . |
PyoLy < QuoLy + eyllLyll 58 € ©



=
o
o))

Thus we have

e
PGpLe < HpThg + (e

and we are done.

st gl liTgll 50 €@

g
If & 1is e-deficient relative to ? (for k-decicsion

problems), then g is mn-deficient relative %o ? (for k-
decision problems) if Mg > €45 8 C)

Proof: Obvious.

DEFINITION 4.0

The deficiency of g relative to & (for k-decision

problems) is defined as infimum of all constants ¢ > 0 such
that é is e=deficient relative to ? (for k-decision
problems). It is denoted 6f€ ,37) (olr(b,ﬁ-v), .

Remark: In the above definition, we consider constant
functions e defined on © . The deficiency between 5 and
g:/ mey be interpreted as a measure for the maximal loss of
information by observing <€, instead of g: . By prop. #.7,
o(€,8) <2, 5 (E,§) <2

Note that in general 5(5 ,?) # 6(?,8) . We now define a

concept of distance between experiments.

DEFINITION 4,11

The digtance between g and g (w.r.t. k-decision problems)
: . & o~
is defined as A(é‘, ,?) = é(g,& )V 5(?,8)

(0, (&, 5) =8, (E,5) v 6, (5,8

Remark: The A~distence was introduced by Le Cam in [7].
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In the sequel, & s A , > , ~ occuring in a statement,
o ()7 20 &) (1)
will signify that the conclusions hold for &, A, >, ~ as

well as for 60 Dpes _l>{_, «1~

PROPOSITION 4.12

Let g 5 S' and g be experiments. Then
(1) sy .E) =0, 5y (E.T) 20

(11) 300y(€ .8 <8088 + 5 (8.0

Proof: (i) is trivial.

As for (ii), choose ¢ > a(k><8,§),

n > 5(1:)(?‘8) .

By lemma 4.8 and 4.9, 5 is (e + m)-deficient relative to G
<

(for k-dec. problems) so

o(£,.§) < m

Letting e | 5(8,?), n | a(ﬁ‘,g), (ii) follows.

PROPOSITION 4,13
(L) agy(E5E) =0, by (E.$) 20
Q1) 2 (E.85) = 0y (F 8D

(ii1) by (89D <20y (EL 8+ 5y (&L 6

Proof: (i) and (ii) eare essy consequences of the defini-

tions.

Furthermore, by prop. 4.12,
b0 (€540 = 3 65§ v 8§ E)

=< [6(k)(g,?) + 5(1{)(?991)] v [6(k)(g’§)+6(k)(¢’g)]

[l & 3DV (T ED1+ Lo F G v 4 6, 803
A(l{)(§,§)+A(k)(§v,§) which Proves (iii)

FA

L}
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Remark: This proposition shows that A(k) has the properties
of a semi-uwetric. However, mathematically we are not permitted
to talk about "the set of experiments . In chapter 5, we will
consider certain equivalence classes of experiments, which

will be seen to constitute a metric space.

PROPOSITION 4,14

@) 5 (.51 e(E,8) as x-
i1) 5,50 M ME.F) as k-

Proof: That 61{(833,") < 51{%_,‘(8‘,?)‘, k = 1,2,.0.. 1is a
consequence of prop. 4.6. Assume 61{(8,9) @ c, (c <2 by
prop. 4.6). Let € > c¢ . Now, ((':, is e-~deficient relative
to §7 for k-decision problems for each k¥ = 1,2,..., and
hence a(g,@“) <e .,

Letting ¢ L c we get 6(5 ,SL) <c¢ . It remains to prove
that 6(g ,?) > ¢ ., Choose n > t‘n(g,?) . It follows that
51:(5 ,§> <n forall -k, so ¢ <n . By letting n ¢6(€,§"),
this implies 6(}? ) >c .

(ii) follows easily from (i) .

PROPOSITION 4,15

548,50 = 2,06,5) <0

Proof: Let the decision space be (T$&) , where T = {1} ,

/& = {#,7} . Bach decision-rule ¢ in :ﬁ—k , being a Markov-
kernel, has the proverty o(1]y) =1 for all y € i’f . Thus,
if L

5 ig a loss-function,

QoL = J[ Ty (£)0(at]y)194(ay) = [L(1)Q(ay) = Ty(D)

lvg

Similarly, for any decision-rule p in g R PepLe = Le(q) .
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0~ o
It is seen that (¢ is O-deficient relative to 5% and con-
versely.
Remark: It follows that any two experiments are equivalent for
J-decision problems. However, this is a trivial decision-

problem, since there is only one possible decision to take.

REMARK 4.716

By 4.5 it follows thet
.) o
)& 2§ = 0085 <0

It will be proved in chapter 5 that equivalence holds in (5).

DEFINTTION 4.17

¢ & . e
If & and are experiments as given in 4.1, then the
; “
product of é% aﬂd.jt', denoted E kﬁi} is the experiment
(x =Y, O x (B 5 Py X Qg3 6 € 8)

. (7
where CY><Cg ie the product o-algebra on X X éf and

Pe b QB are product measures.

Remark: The above definition may easily be generalized to

products of arbitrery families {égt :t € T} of experiments.
NP “ :

We remark that if ¢, 1s the experiment of observing a random

variable X , and.~§7 is the experiment of observing a random

¢ a
variable Y which is independent of X , then £'7<\§' is the

experiment obtained by observing the pair (X,Y) .

REMARK 4,18

Meny of the results cn comparison of experiments may without
difficulties be generalized to situations where the basic mea-
sures are only required to be finite (signed) measures. Such

"experiments” are called pseudo experiments. They occur, for
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example, in the theory of local comparison of experiments.
They will, however, not be treated in this book. We refer

to [ J.
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5. CRITERIONS FOR DEFICIENCIES

We shell in this chapter mainly consider experiments with

n

: o
finite parameter set. Throughout the chapter, gi and .S’
will be experiments as defined in 4.71. Unless otherwise stated,
we assume that © = {1,...,8} . It is clear that any finite

perameter set {91,9,,,90} may be identified with the set

{/lsoooas} o

DEFINITION 5.7

We let P = ZPS , & = XP Then P and § are finite

g °
positive meagures and c%early Pe <P, QG << Q for all
B € @ ., By Radon-Nikodym's thecrem we can define

fe = dPe/dP » Bg = dQe/dQ , 6 €06

Finally, let f:yx - R° | g:yx - R° be defined by

f = (fq,a,,ﬁfs) y 8 = (gqao°°)gs>

PROPOSITION 5.2

We may assume fe, 8y 2 0 and

Zfe(x) =1 for all =x € Y
8

Tg,(y) = 1 for all y eY
: -

Proof: By R-N's theorem, the above conditions are valid almost
everywhere w.r.t. P (respectively Q ). By redefining the
f's and g's on a set of measure O , the conditions will
hold everywher=s,

REMARK 5.3

[S———

S(X)) defines a distribution

For each x € ¥ , (fq(x},,,aaf

over @ , This distribution is the posterior distribution
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given x , when the prior distribution is the uniform distri-

bution over @ . (Similarly for the g's ).

We now define what we shall mean by &Qg:) when ¢ is a
positive homogenous functionel. We begin with some motivation:
Let (y,) be a measurable space and P,§ bs probsbility
measures on (y,(J{) . To our experiment we may assign the

following quantities:

1

r
JJdeQ (the affinity of P and Q ).

1

f\/'w 2 .2 . .
W|dP=-aqQ~|  (the Hellinger-distance between P and Q ).

r -
APV dg
o
° ~ r ~
The zbove expressions are all of the form Jw(dP,dq) where
is a positive homogencus real function (i.e. y(tx,ty) =ty(x,y)

for t >0 X,y €R ) .

Cmy

We define y¥(dP,dQ) in the following way:

Let u be a non-negative measure on (7? such that P,Q << pu .

Define f and g by P(A) = jfdu , Q(A) = jgau (4 €(J) .
A

. ‘ . ro .

set  [4(aP,aq) = [¥(f,g)du .

As will be seen later, this definition is independent of our

choice of . It is often convenient to let u =P+Q .

a—
As an example, the affinityd P and ¢ equals E/fg du ,

which is large if f and g are large 'together’, i.e. P and

Q assigns large mass to the same sets (intuitively speaking).

DEFINITION 5,4
Let éi be an experiment and let ¢ Dbe a positive homogenous
function defined on R” 5

(i.e. §(tx) = t4(x) for t >0, =x € R°) .
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Juep,,...,ap,) is defined by

—
1

o~ =
= Jw(quoo,,lg)du

s
|

where w 1is a o-finite non-negative measure, P, << u
U

= aP,/dy 8 = 1y000,8

PROPOSITICN 5.5

¢(éi) is well-defined by def. 5.4, i.e. the quantity ¢(é§)
is independent of our choice of u .
In fact
v &)y - [ (£,000,5,)aP
where fq,ooe,fs and P are given in 5.7,
Proof: Let p be given as in def. 5.4.

Set f, = dr,/du 0 = 1,00.,8

9 8
How dap apP, /du ¥
£y = s - ﬂzgiédu -
e R gfe

Hence, by the positive homogenity of 4 ,

Mo x
J¢(11$0,,,1S)du

‘ £, Ty o
= Y(=yeee =)L ,dp
zf, nfy o

[§(£q,00. £ )5aP

| : [CIE PN JO TR

Il
il

8

The proposition follows.

EXAMPLE 5.6

il

Tet %X = {Ty000,v} Cﬁ

will then be given by a vector (piﬂ’°°°’Pir> with

class of subsets of x . Each Pi



ij >0, gpii = 1 . The experiment Z; is thus completely
J o

determined by the Markov matrix

b

[/pﬂﬂ seo Pap
{
’ e o o
P - ?21 Poy E
& | /
H
Pgq o= Dsr/

Let  be the counting measure on X (i.e. for any A S x ,

w(A) = number of elements in A). Clearly each P, << and

Thus, by definition 5.4,

. _ o= ¥ \a,
:(é) - J-&f(-‘.’.‘,aoa,fs>d'4t

B

M

LEPIGD IS S G D
g

.
]

r
='>: '\y(qu?'*""?p )

j="1 8

We now investigate the connection between w(gi) and Bayes

risks.

PROPOSITION 5.7

Let § €Y,  and let T_ = {1,...,k} be 2 decision space.

k
Then there is a loss function {L,{(t):6 € ® , t € T} such
that ¢(£§) eguals =g times the minimum Bayes risk relative
to the uniform distribution on ©® . Conversely, to each
decision space Tk and each loss function L on € x Tk
there corresponds a sublinear functional ¢ € Yk such that

\{;(g) hag the sbove property.



k
then V(x) = V
t=10

Proof: If 1§ € Yk R

II [RA RO}

Eb +%5 for some
)

g

coefficients ae9t o

We cdefine the loss function L by

Le(t> = -a e, telT.

8,t 7
By definition

v

]

[
:J’\\'!(f/l’ooogfs)dP

1]

X
f v % (= Ty (£))f  (x)P(ax)
it=1 921

Now, for any decision-rule p ,

e X [
R TCO N TR AR NN EIICIENICES
t=1 6=1

= - ZZLO(t)jp(tix}Pe(dX)

at

= - (t\(POP)Cb) = = ZPGPL
t 0

Purthermore,

GI RN

1
ZP.pL, = = Ir
9 670 S B

o (0) = =(Ay50)
is seen to be the Bayes risk of p w.r.t. the uniform distri-
bution A, on @ (see 3.1%).

By (1), r(Ao,p) > - %&(éf) for all p . However, equality

mass 1 *to

n

may be obtained in (1) if p for each x assign
the t for which maximum occurs. We leave to the reader to
verify the measurability of this p .
It follows that inf r(Ao,p) =—%¢(é;) and the first part of
the proposition foilows.
The last part follows by defining

k

y(x) = V

(n Le(t))xe for all x € B° ,
t=1 6= '

l 1w
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We are now in position to state and prove the fundamental

theorem on comparison of experiments with finite parameter setb.

We let our decision space be Tk = {1,000.,k} and we let /&1,
be the family of all subsets of Tk . By e, we shall mzan

the 0-th unity coordinate vector of R® s 0 = Ty000,8 &

THEOREM 5.0

The following conditions are all equivalent:
I

@
(i) C; is e-deficient relative to % for k-decision

problemns.
o
(ii) To each decision-rule o5 in J° (relative to Tk )

and to each loss function {Le(t) :8 €0, t ¢ Tk}
there corresponds a decision-rule p 1in é; (relative

to Tk ) so that

(O]

Y e il
9 = E%GGLQ * g‘ OiiLgll ©

YP pL

5 O
(iii) To each decision-rule ¢ in §f (relative to Ty )

there corresponds a decision-rule p in é: (relative

to T, ) so that

Poe ~ Qoll < ¢p por 211 s eo .

&
O UAER S egliCey) v 4(-ep)]

for any (s-dimensional) U € LT

3

Remark: The criterion (ii) is called the average risk

criterion for e-deficiency for k-decision problems. Dividing
all terms by s , we observe that (ii) is a statement about
Bayes risks relative to the uniform distribution on ® . The

criterion (iii) may be called the criterion for comparison by

operational characteristics (see 3.8).

The criterion (iv) is celled the Y-criterion. Equivalent
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formulations of the {-criterion will be considered in 5.73.
In order to prove the theorem, we will need the following
lemmas:

LAMA 5.9

Define a two-person zero-sum game LI by T = (J?,Ebgrq)
where ‘f =

Il <1} dis the set of loss functions on

1 3) is the set of decision~rules in

[

8 x Tk bounded by

0
G relative to T

k 9 d the pay-off function M is defined
2 £ D vy mae) =O§/‘(P9 o - QOLy ~ ¢llT,ll) for some

fixed o and ¢ .

Then T is concave-convex (see 2.16).

Proof: For cach fixed p , M(L,p) is a concave function of
L . This follows since POpLO and QGGLO are linear in L
and - |[Lyl is a conceve function of L . Thus, since cf is
a convex set, cﬁ is seen to be concaeve relative to T

(def. 2.12).

O - o :
Furthermore, N, ig convex (in fact affine) relative to T
since M(L,p) is a linear function in p for fixed I and
5) 18 a convex sct.

The lemma follows.

LEMMA 5.0

There exists a topology on g) for which g) is compact and
for which M(L,0) dis continous in p for each fixed T .
Proof: Consider first the set éﬁ of all measurable functions
from % to [0,1] . For each bhounded and measurable function

h on ¥ (i.e. for each h € L ®© (P) ) we define a functional

on é by



F,(8) = |n(x)8(0)P(ax) 5 6 € &

Furnish é; with the coarsest topology for which all the
‘

functionals Fh are continuous. We prove now that Z: is
compact in this topology. It is enough to prove thaet each net
{84} contains a convergent subnet. Since 0 < 8, <1 , each
net {84} is uniformly integrable. Hence, by the weak
compactness lemma (appendix C) there is a & and a subnet

{68} such that

‘_

Fh(68> - fh(X)G(X)P(dX) for each h € L (P) .
Clearly & mey be taken as a member of é: . Hence 66 - 5
in our topology, which proves that éi is compact,
Each decision-rule p € Q) may be identified with the vector-
valued function

(p(11°)senesnCelo)) €L, iie. De fk

1

§) is closed, since ED is the subset of (& * with component-

o~

functons with sum 1. Hence Q) is a closed subset of the
compact set ZZ k anG thus compact itself.

As regards the last assertion of the lemma, it is enough to
prove that for each 0 , ngLO is continous as a function of

P .
Now, ©P,pL

It

0 J‘ELO(t>p<t|X>PO\dX)

J

ELQ(t) [0 (]300£  ()P(ax)

Since {fo(x){ <1, and by the definition of the topology
on CD ,the weak compactness lemma asserts that for each {qx} convergng

to p , P,p L, converges to POpLO'° Continuity follows,
; v

Proof of theorem 5.8:

(1) => (ii) 1is trivial.

(ii) => (i): Assume (ii) holds, and let o be a given



\J1
\O

. . G\,
decision-rule in j’ o

Then
(2) sup inf Z(P.pL, - Q,0L, ~ e |IL.ll) <0
L.““ !</] n V) J 1§ } 1G] ; o=
° ” [P p /
which isg egquivalent to
(3) ¥

= sup inf M(L,p) < O .
L ¢

We will prove that V =V and that player II has a minimax
strategy p, . In order to do this, we shall make use cof
theoren 2,75, This theorsm, giving conditions for the existence
of a maxamin strategy for player I, maey of cource in a straight-

forward monner be extvended to a theorem concerning player II.

We note that [M(L,p)| <° for all L end p . By lemma 5.9
and lemma 5.710, theorem 2.35 yield what we want and hence there

Q
exists a op4 € X)) such thet by (3)

sup I"I(L,poi) =V =V <0, Hence

for any L such that [|Li <1 .
Dividing by ||L} , we conclude (4) holds for any finite loss

ol

function. We are now in pogition to deduce (1),

Choose €, € @ arbitrary, let {Lg(t> :0 €0, t € Tk} be
.
loss~function and let ¢ be a decision-rule in } .
(t) i 2 = 0
Define L' by L'y(%) (L (B0 if & = 6o
S0 if 0 #£ Co

Then, by the previous results, there exists a decision-rule
2

Py in ¢ such that (by (4) with I replaced by L' )
T < Q + e |l b,
(5) Pgopogg'o < QJUGOGLGO - eg LI’G !
N
(ii) => (4ii): Choose 0, € @ , Let 0 te a decision-rule in 3«

SO ©

By 9, there is =a o, in E such that C& IR e 0)(LO ) <
o} 0 o} o}



for each L such that HL6 <.
0
Hence, by def. 10 cof appendix B,

1Py py ~ Qg oll < ¢ and we are done.
e

o) o)
v} = V)

O o}

(4ii) => (i): Let L and o be given. By (iii) there is a

p such that for each 3 , |P,o - Q,0] < €, , which implies

0 e

shat |Pyel, - QupLy| < fiPge - Pl 1]l < e liLyll which implies
(i).

(ii) == (iv): Tet ¥ ¢ ¥, . Let the loss function I be

(6) ain T Pyel, < IR, BHLGH for each ¢ which implies
p B
(7) min TP_pL, < min £Q,0L, - Ze,||TL.ll or, by prop. 5.7
PR SFePtg MR TRgThy v il » DY PTO}
J

(multiplying each term by -1)

o8 | - /’{_,__\ -
(5) 1) 2 487 - Begny]

&

By the proof of prov. 5.7,

5(eg) = V(-Tg(k)), ¥(~e,)

I
o <
£

@D

—

ct
N

)

o

tleg) vV y(-ey) = Vi, ()1 = 1L, (iv) follows.
t U

Since (&), (7), (6) and (ii) are in fact equivalent,
(iv) => (ii) follows as well. The proof of our fundamental

theorem is thus complete,

COROLLARY 5.711

N
’.J
A
(o]
N
—
Y
-
TN
RN
~
N
s
N
i

&< -
0 <= ¢(E5) z_w(jij for 211 § € ¥(k)

]

-~
'._.
| o=}
~
>
~~
et
Lia'}
~
~~
v
-
¥
N
1]

0 <=> y(E) = y(§) rfor all y € ¥

k)

Procf: It suffices to prove (i). The version concerning 8y

is a direct concegquence of 5.8 (iv). In fact, if
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5k(53§') =0, and ¢ € ¥, then for any ¢ >0,
y(E) 2 1§ - 2[4 (eq) v y(-op)] . Hemce ¥(&) 2 4(¥) .

The opposite implication is trivial.

Assume now that 6(£,§) =0 . Then aku‘—f ) =0 for a1l
kX , by prop. 4.14 and hence ﬂ;(é) > w(ﬂ') for any

P EY, U YU cennnnn

Let ¢ € ¥ . Then ¢ = linm Uy where b, =2 ‘i"2 S eceosceo and
for all k (prop. 1.52).

‘l'k € EVk

By the monotone convergence theorem we have

i (E) - wE) , 0. (5 - vF), so from y () > 0 (F) it
follows that ﬂ;(é) > \*;(.?) .

Pinally, assume that WE) > y(¥) forall ye¥ . In

particular w(g‘) > §(§ ) for all y € Yy s ko= 1,2,00.
FCEIN 0
Hence ék(g,},—) =0 for all k , so that &(¢& ) =0 vy

prop. 4.14.

LEMMA 5.12

Let z!;,.“\vg €Y and let c¢c >0 . Then
{ ~
G400 (ED) = 54(E) + 108D
, ‘
(¥ )(E) = ci,(8)

Proof: Direct consequences of the definition of w(é) o

COROLLARY 5.13

The following conditions are equivalent:
(i) é is e-deficient relative to S’L for k-decision
problems.

(i1) ‘\U(g) > 1‘;(?) - %geg(w(ee) + \p(—ee)) for any ¢ € ¥ .

(iidi) \ir(g) > ﬂ;(?) - Zeeﬂg(ee) for each | € Yl’ such that
e A

§(-ep) = y(ey) 5 9 €0,
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Proof: Clearly (ii) => {3 (T 5.8 (iv)) Supp sle)
roof: early (ii) => (i) heorem 5.8 (iv)). uppose now
5.8(iv) holds. TLet 1§ € ¥y and define ¢' = ¢ + 1 where 1
is the linear functional given by

1(x) = 2oly(-e,) - w(e )Ix,. .
5 9 T8 6]

. Since Aq(g 7§~) =0, é% -1(5H

It is seen that ¢' ¢ YF
Ly
by 5.11. Hence, 5.5(iv) yields together with lemma 5.12
AN
y(E) 2 0§ - :eﬂwwﬁeq) v g(-e,)]
- A v] lw o
o}

But ‘?ji<ea) = qj<ee) + l(ee> = -2—[.i’

=
N
I
O]
w
N/
/‘\
\_,’
[
-

and ¢‘(uee) = #ly(-e, ) + ¢(e@,] go (ii) holds.
As is easzily verified, (ii) => {(iii). Assume now (iii), and
let ¢ and §' Dbe as before. BSince {'(e,) = w‘(wep) , (ii)

is derived from (iii).

CORQLLATY 5,14

[

Let Tf,> be the set of functions ¢ € Y<%> such that

\ ° [a) (™ A - ™
¢(~ee) = y(ee) s G5 € 0@ .and Zw(ee) =1 . Then A<1\(t,,jr)

may be writlten

A(k>(gsgj) = sup H"(g) - M.?)i

-

)

<

Proof: In 5.15 (iii) there is no restriction to consider only

¢t for which Zw(eg) =1 . Thus the present corollary follows
0

from 5.1% (iii) (by use of prop. 1.52).

EXAMPLE 5.15

Consider agsin example 5.56. Let y = é{ = {1,.0.,7} and let

Py = (p, J) , ng = (g, ;) be the matrices defining é; and
(& i ¥

[

Yy o Let ¢ €T (gee cor. 5.14). Then by prop. 1.42,
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, T r
e () - e(E)] =1 = 4( ) = T u(a )|
vig L ANNEPA B qus°°°sps-/ s Y Qpsoeeeslgq/
J'——': 8] J:/] ]
T
< o |y Docooos ) = 4(Q i e0e.a )]
= j:/‘i.(- 137 spsa) J<q1as ’*SJ>E
r S ] !
< T T opys - oasaivley)
521 ioq id ij i
T y(ey) T | |
= Zu(e.) T lp.. - q
=1 =1 +d
T
< max L {DPss = Q..l s
< me 3;‘4{*13 % - |

5]
The last inequality follows from the fact that S (e, ) =1
J U

Hence, by corollary 5.1,
T

N o s, e R {
(9/ t—(é 7§/\ = mika—:—ﬂipij - Liij!

Thus we have obbtained an upper bound for the A-distance. The
y~criterion is however, in mcs3t cases a2 useful tool for finding
_ b . [ PN

lower bounds. By cor. 5.714, A(C,93') > W (E) - w(§F)| for

any ¥ € T . We shsll use this property in the next example.

EXAMPLE 5.16

Let the situation be as in the examples 5.6 and 5.15. Assume
- 3 Q A '} T T T
that ©» =5 and Y = Cf = {1y:0.48} o Tt ¢, Dbe ths

-
experiment where the true valus of & 1s observed. Thus é;

)

is given by T, = identity matrix. This experiment conteins
O < -

T
(; N

all information about 6 .

~

(7
Let kS be an experiment given by a Markov matrix -~ where
pa
/]

1 _ gj .
all rows are equal to (=,...,=) . Intuitively, gives no

leal

information about 8 .
. . . 2 .»{L_\ . ~
We shell find an upper bound for A(&,9q') by applying to the

inequality (9).



T
For any i, % lp.. -aq .l =1p.. = q.|+ T ip;s - !
N i+ = NyPRES T =i
521 i iJ ii ii 34 J J
., 1 . 1
:|-—-S“-—} Z(_}_..:gk/lmz‘-):2«-§'
Jr/l 1J IS S
Define now ¢ by
/')
i(x) = = Vx, - “:]-ZX@ .
hw) 6 by} »Je
| .
Then § € ¥ q;(eg) = “J(--e@) ==, (e,) =1 go ¢ €T .
) S
Bv ex., 5.6 = T3 =
BJr [SPia j.,o \L(C7> = .L/"f(e@) L
J="
S
- o N Lo 1 2
1§5<?> = 2‘(?,00@95‘) "'Sb‘(‘c??”“"?-s—.\" =£’<]9°°°9/‘> g‘—/‘ °
,j:,). w2 [
- €= o A 2
Hence (&) - (¥ ) =2 - = =0 A({;ag') > 2 - =

Consequently, A( f—

°

wiru

ol o . 4 N
ince 6(((5,}) =0 , it follows that 6(\({-«, é’) =2 -

A
Let now g and ¢ be arbitrery experiments. Then, since
g is the maximal informative experiment, 6(% , 8 ) = f(?,#@: 0

[A
and since ¥  is the minimsl informative experiment,

P
oG, 5y - 5030, 8) -0

A N (,} éev i - i\:‘\ - ((L ‘é” L ‘27 é,e\ - D
Hence, b<d’ ~>f_6\8?k) ey, E) - 6(@, ) =2
and 6(}€,Q)52 -

wino

wliro njno

so  A(L ,9{)52—

(Compare this with prop. 4.7)

EXAMPLE 5.717

We chall give another example of the use of (9).

Consider =2 Markov-chain Xo‘,Xq,Mo . with stete space {1,2}

and transition metrix



5.15
Pz{[ B -8/ O<a<1, 0<B<1T, a=+p8#0,1,2

Let the initial state XO be our unknown parameter
6 (d.e. @ = {1,2} ) and let (, L, Dbe the expex riment obtained
‘.
-

by observing X _ . 1s then given by the matrix

n on
1 1 /B, 4 /7«
F' =3 o ) “ap (-8 )m"“ 2

Let Eim, be the exveriment given by the mabtrix

rd o A
A= lim PP oo B e
«irBlB a )
Then, by (9)
A({d7 ggJ < max %&i_ }‘4~a~ a = §~%Xﬁllﬂ m—B]n
CIN — a+B, o3 - o4 R
1(/:':' (9 . . . .
Thus ¢ . converges to G o With exponential speed. It will
Hoo© .
be shown in 7.1 that &(F_,6.) = [1-a-p|" .

-
Y

We state without proof a proposition on product experiments,.
The proof, which may be found in [16], makes use of the {¢-

criterion and Fubini's theorcm.

PROPOSITION 5,18

“ P~
“ . - 4 -
Let &, be e-deficient relative to ¥ ,, (for k-decision
(for

[

problems) and é,\ be en-deficient relative to 3}2
)

v

k~decision wnroblems). Then g} X (5~ 18 (eq €,

~

A~ .
deficient relative to g?q > J’O (for k-decision problems).
Remark: The statement is casily generalized to finite products

of experiments. It follows that

n w e n ¥ .
by mCin T b ) S ifq‘b(k)(éiﬁ}i)
oy n U n



In particulsr, it

84 >F . 5 1= "1y0..,0 , then

n n o
.gjz ﬂ'@
iz T i 2

This was proved by Blackwell in [1].

g .
We 127 g denote the experiment m g (If é is the

. - . . - . n 1is
experiment of observing s random variable X , tThen g
the experiment of observing independent, identically distributed

variables X,;...,4  with the same distribution as X o
L

) o . A
It follows tha g _?_g => gﬂ > 5_ Ho

That the converse is not trus, is shown in [16]. It is shown,

£

i |43
however, that tn ~§f“ > o~ §: .

I

As is noted in 4.1%, the class of experiments will not consti-
e 2 t in the strong mathematical sense. We shall n

tute a set in the st g mathemat 1 sense We shall now,
wever, show that we may le guivalent experiments

however, show th=t we may let egquivalent experiments be

represented by a standsord experiment, the class of which will

define a set and constitute a metric space under the metrics
A’AO’A%?QBDBBOD
Standard experiments were introduced by Blackwell in [ 1].
S .
Let K Tbe the subset of R~ defined by

-

- i g N -
K= x:x¢€ R, x, >0 for all o ,

DEFINITION 5.19

A standard evperiment is an experiment of the form

@ N o - q
(K, 983 ¢ 4 & @) where (Ej is the class of Borel-subsets
(

of K and CuS,J/dZSn is equal a.e. to the function ¢, on X
v no

o



5.17

defined by m@(x) =Xy 5 & = T,000,8 .
A standard measur S 1s a positive measure defined on
D r .
(X,8) such that |x8(dx) =1 for all 0§ € € .
PROPOSITION 5,20
Tet {K,63,80 : 8 € ®) Dbe a standard experiment. Then ZSB
0
¥
is a standard measure. Conversely, to each standard measure
S on (K,Qﬁ} there corresponds a unigue standard experiment
(2,8 Sy 6 =€) such that § = 8, .
6
- - £ .
Proof: Clearly dS, = x,diS, , 80 EXGQLSS = 1d5, =1 . This
proves the first assertion.
Let now & %be a standard measure on (Laég) and define for
_ r - -
each 0 € @ | SG bar SSCB) = JX®5<dX> : B & A N
B
definition of 8, 8,(K) . Furthermore,
r ‘ I . Ly .
ZSGCB) = z:j;-;ns(dx) = ;,v(df\ = S(8) ; BeQ3 , so S = zsa .
6 9p B 0
Uniqueness follows from the fact thet dS8,.,dS = x, a.e. must
J (¥}
hhold for each 0 .
Rewerk: If fi is a stendard experinent with standard measure
S , then it is seen that ¢(% ) = f@ds .
PROPOSTITION 5.271
Let ¢, Dbe an ewperiment, Then the experincnt
~
(€~ T @ ] ° = o\ . o D e \ L.
o= (X, 03,5, ¢ 9 € &) vhere 8y = Ppf ; 6 ee (f is
% 3 v}
given in 5.71) defines a stendard experinent.
Remaric: f is a function on vy which takes values in K .
T io) “‘/l . A 3 x o) g @ K 1
Hence *Of is well-defined =2s a measure on such that
a=-/]r -7
PC (B) = Po(f (B)) .



Proof: We prove that d4S /dZSG = X, &a.e. for all @ .

0% 6
Set S =Pt ., Clearly 8. = £P £ ' =P = § .
20 0
0 9
For any B ¢ 63 y
5,3 =2, (£ ®) = [ £ (x)P(ax)

s
£, GOT,(GIP(ax) = [, TP (6x)

J

x PrT 0 (ax)

6

.
|
A
B
where we have made use of the substitution formula for inte-
grals.

Hence dS./ds = x

; g 2e€e and the proof is complete.

DEFINITION 5.22

¢
Let ;Z be sn experiment. The the gstandard experiment of Cy

P

is the standard experiment gi defined in the preceding pro-
nosition. By proposition 5.20 and 5.21 the standerd experiment
f éz may be defined as the (unique) standard experiment with

=
standard measure Pf o

(@]

PROPOSITION 5.2%

Let EA be an experiment. Then
1) & - &

(ii) A<k>(éiaﬁ?

Proof: (i) follows from the fact that for a standard experiment,
£ (as defined in 5.1) maps each point of X into itself.

By corollary 5.11, (ii) is equivalent to ¢(§:) = m(éﬁ) for

sll § € ny)
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\J1

But ‘
(8 = [veGor@) = [seorr G = w(&) .

i

THEOREI. 5. 24

é: o
and ~§’ be ejpcrlmenuso Then
w85 0 £ -5

el
Proof: (<=) Assume & = §% . By propo ©.2% (4i),
w5y < a8 8y w BTy - wE,8) -0 s a(E.E)-0
(=>) Assume A(§:9§j) = C . Then A(? R‘ = O , since

A(((:: ’g\j\ = A<% ? / A< :7((:’) - A(i‘oé\-) o
&

Asgume that and E: have gtandard messures S and T

respectively. We have to orove that S =T .
Since 8§ and T are Borel-measures, it is enough to prove

for each continuous function h on K .

We shall do this by applying to Stone-Welerstrass theorem

(see e.g. [12] Ch. 7).

Let V be the set of all functions on K which are of the

form ¢1 ~ VY5 where {, and ¥, are sublinear functionals
S A AS

on R . By (10),

PR (o o <

(") vdT = {véS for &2ll1 v & V .,

J

Clearly,
12) v,v € V => uv € V
and v €V , c¢c &€R =>cv eV,

Define ¢ by ¥(x) = Zx., . Then V{(x) =1 for all =x € K ,
J



5.20

which shows that V contains each constant function on X .

Let V be the uniform closure of V , i.e. the set of functions

on K which are limits of uniformly convergent sequences of
members of V .

We will prove that V is an algebra of continous functions.
By (12),

u,v €V =>uw €V and v €T, ¢c €R =>cv €T .

It remains to prove that u,v € V == uv € V . Since

Guv = (u+v)2 - (u-nv)2 , it suffices to prove that v € V
implies v© € TV ,

From the identity §¢q - wzi =2y, Vi, - (¢1 + %4) it follows
that v € V => vl € V. Hence v €T => |v| € T which in
turn implies that uw,v € V => uVv ¢ .

Let now v € V . For each x € K ,

o)

sup LPav(x) - a™]

=}
[y

1

v(x)2

where sup is taken over all real numbers a . Since R is
separabel, it suffices to take the supremum over a countable

dense subset {aﬂ,ap,ooo,e,g} of R . Hence

o T 2
v =V [Laif ~ a; ]

Since for each i the function in the brackets is s member of

T, it follows that v- = lim v. where
n-—o0 n
n 2
_ w7 " - hvi
v, = vV [2a,v - & 1eV.,

i=1
V2 is continuous since v ig, so by Dinis theorem (theorem
7.1% of [121), the convergence v, o v2 is uniform. Hence

v ET .

Obviously V separates points and vanishes at no point of K ,

so by Stone-Weierstrass approximation theorem, V 1is exactly



the set of all continuous functions on X . From (11) it is

seen that
[‘ m £ S d . 37
JV(h = lvds for any v € V |
. d

which completes the proof.

COROLLARY 5.25

27

The set of stendard experiments is a metric space with metric

JAR

Proof: If f? and @ are standard experiments, then by

[

theorem 5.2%
15(%%. ) = O <=> é =\?

By prop. 4.17,

A(?e?:" = A(?s%)
l'-\(g9£> f_ A(éa?) o A(@?g)

REMARK 5.26

£ e
We shall see later (theorem 6.10) that if é and 3’ are

- A
experiments, then A2<€,§ ) =0 => A(é,¢'> =0 .
L ¢
Hence A2(€,§> = 0 <=> A;(‘Eja
. N ’b - .4%’
since Ag(g,ﬁ\f} <2 (t,?) S eee < A(E’:s’\’r) .

) =0 <=> ... <=> o(&,

-

=)

=0

Consequently A?"A5’“°° will also define metrics on the set

of standard experiments. It may be shown that they are all

equivalent and equivalent to A . Furthermore, it has becn

shown that A is equivalent to the Lévy-distance

A

°

(We

note that the Lévy-distance between distridution functions

n oo .
F and G on R is given by
A(F,G) =inf {h : h > 0O, F(xﬂ ~ DyesesX, = h) - h
7Xn} _<_ E‘<X/l - h,ooo,}{{_ﬂ -+ h) -+ l‘.i.

ISR
for all (X,],“o,xn) ERY ).
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The assertions are proved in [16].

Assume now that the parameter set € is not necessarily finite.
It turns out that problems on infinite parameter £2ts may
cccasionally be reduced to problems on finite parsmeter sets.

This problem is treated in the following theorem. IFirst we

need some notation.

NOTATTONS

P
Let é; = (X,Cﬁ;PG : 0 € @) be an eyperiment and let F Dbe a
subset of 8 ., We denote by ng the experiment
(x,Olip, = ¢ € F) .

-

If £ 1is a function defined on ® , then f{; is the re-

B

striction of f +to the subset F of & .

THECREM 5,27

I
. @
(X»C‘?; Pe : 0 €8) and F = (gag; QJO : 0 €

Let %i

be experinents (with arbitrary parameter set © ). Assume

@

')

o )
further that ¢, is dominated (sece def. 10 of eppendix A) and

=

let € be a non-negative function on &

\!/‘o
g ¥
Then is ¢=deficient relative to & (for k-decigion
s
problems) if and only if Gy is e} —deficient relative to

i)
ng (for *-decision problems) for ell finite, non-cmpty

subsets F cC @ .,

Proof: The "only if''-part is triviel by def., 4.7, Assume

therefore that the condition holds. Let T = {1,....k} and

i

let {Lg(t) : 9 €8, t el ! Dbea bounded loss function.

Let o Dbe a decision-rule in & . By def. 4.1, for each

finite, non-empty F < €& +there is a decision-rule Py in ﬁ;

such that
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(12)  Pyopby < QuoLy + CO”LGH for all 0 € F .,
Tet S be the family of finite subsets of F ., 8 1is easily

seen to be a directed get if we define

’ — ) w ~ { o & fTine
F, < F; <=>3.r F, T, , and hence {p, : F ¢ S} defines a
net (generalized sequence).
o

Next, since (& is dominated, there is a probability measure

m oon (x,O) such that Py <<m for all 0§ € @€ .Let Kb==d§/dﬂ
For each t € T, and each T , HpF(t!°)ﬁxD§ 1 .

Hence, by Remark 4. of appendix C, there is a subnet

{pFi(tL°) : P' € 8'1 e@nd a function o(tle) such that

) o . -
(1%) JpF,(th)hn(X am = lo(t|x)n,(x) m for each t €T, ,0 €6

J
bief
Since I pF(tlx) =1 for 21l F and x , it is seen that p
t="1
it
may be chosen such that T o(tix) =1 for all =x and
t=1

0 < p(tlx) <1 for all t € T,

decision-rule in . .

It remains to prove that

PopL, < Qa0Ly + ¢ ||Lyfl for all ¢ € @ .

et ¢ € © ., Thern 0 € F ' for some F_' € 5' and hence
o 0 o) o

by (12)

dnm  which by (13%)

and the »roof is complete.
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COROLLARY 5.28

c\./
Assume that g and ¥  are both dominated. Then
% O~ ?\_,
é ~ & 1f and only if E ~ S’F for all finite, non-empty

® e

subsets F of @

Moreover, g ~§V <=> é ~§: =D 00 <=2 éf«? o
5

N
<
Proof: The first assertion follows directly from the preceding
theorem. The last part fellows from Remark 5.26. In fact, the
o g g
result given in 5.26 implies that fj'F => for

any finite subset F € . iHence by the ebove result

S S

example 6.1% we show that 1t is not enough to require

In
Zg ? only for all strict subsets § of @ .

in

n

COROLLARY 5,29

&

Let gs ? and € be as in theorem 5.27. Then (& 1s ¢€-
o
deficient relative to < for k-decision problems if and only

1f to each decision-rule o g relative to Tl"" , There
Ly
is a decision-rule in g relative to Tk such that
HPOp - Q0 < e, for all 5 €@.

Proof: In the proof of theorem 5.27, the decision-rule o was
constructed independent of the lozs~function L . Hence for all
bounded loss-functions L and all 4 € © |

which implies [||P,p ~ Q.00 < ¢, for all o .



6. COMPARISON BY TES STING PROBLEMS

(See § 3 of Torgersen [16]).
2]
Let (& and Sf be defined as in 4.4 and let @ = {1,.0.,8} o

Theorem 5.13% applied to the case k = 2 yields:

THEOREM 6.1

= i}
t} ig e-deficient relative to for testing problems if

and only if

|| L S
HZda oll = UZQ;QQH - ZGGEQP{ for each vector a € R .
") O ]
(I I ie defined in def. 10 of appendix B).

Proof: Xach ¢ € Y, 1is of the form { = IL,,l \ 12 for some

. L. IS] . .
linear functionals lq,l on R~ . By the identity

~
Iy Vil =21, 4 1, + {1, = 1),

any ¢ € ¥, may be written in the form L,l 4 iLgl where

L,,0, € Y, o Since L(C,) L(Qv\ for each L € ¥, , theorem

5.1% (iii) states that it suffices to require

vE) = () -5 Zegi (o)

whenever ¢ = !L| with T € Y.

L may be written L(x) = Za.x, . Hence, if |T

N OJL{) { )
W) = 1

a,f iTP

(This is seen by splitting up the integrand in its onositive
and negative part).

Similarly, (&) = WZaC%J, .

(&)
m
&
]

The theorem follows since 4(e.) = ja,! ;



6.2

Theorem 6.1 has a geometric interpretation as follows. Let g
be an experiment. The set of all test functions in & (i.e.
measurable functions from x to [0,1)) will be denoted by fig
and V, schall denote the subset of [0,1]° consisting of all
vectorgyof the form

(jéqu,,ao,JédPS) where 6 Eléé ,
i.€. Vé is the set of available power functions. Finally,

put for

IS .
3, R ={z : %x. < z. < V. i =1,00e,5)
,y € 5 I[X,y] { i 223 = yl 9 9 95 J

Then we have:

COROLIARY 6,2

e . . iy : :
{5 18 e-deficient relative to iﬁ for testing problems if

and only if

Remark: If A,B c E® , we define A + B = {x+y:x€A,y € B}

Proof: By prop. 1.44, the support function of V, is given by

@
H, (a) = sup {a,y) = sup I a rédPﬁ = sup (3854, P
3 yev, sef, =1 200 sef o OO
< -

If p 1s a firnite signed measure on & measurable space

(x,(ﬂ) , then

lull = sup ?fdu = 2[ sup j£%1du ~ 2u(x)] = 2 sup FéQM - ()
Iel=t Il 0<8<1°
> { 1] N N
Hence sSuD }fédu = ”P’ln 7 J:L(X) .
5 ¢




Similarly, the support function of V &,is given by

]]ZaCQO“ + ¥a
‘g G0N 570 s
He (a) s ; a € R .

Finally, we shall derive the support function H of %IE_C ¢
V’ o
_ DS 1
For any a € R , ¥ € ZI[“Q,QJ we have

— s e
<a9Y> = gaoyo,i 2§1agl“®

where equality is obtained by choosing

Vo = %eo sign 8y B = 1y000,8 &

Hence H(a) = 1%fla a € B° .

> ™

9!~ 7

]

a

Theorem 6.7 now states that %; ig e-=def. relative to §f
if and only if

I{E (a) + H(a) > H§3(a) for all a € R° ;
which by prop. 71.54 and 1.57 is equivalent to the statement of

the corollary.

COROLLARY 6.3

& -
G is e-deficient relative to S’ for testing problems if

and only if for each testing problem H: 0 € ®o against
K:0 ¢ @~®O and each power function B? available in gf
there is a power function Sé available in éz such that
By (0) S 8g (0) +dey 5 0 €8,
Bp (0 2 Bg (0) ~ ey 5 0 €8-G .
Proof: Let B¥ be a power function in §} . Then there is

a 0 &€ Doge such that

f ' . .
75=(]6dQ,...,164Q,) € Ve , where Bg (0) = [saq, s0=1,....s.

By corollary 6.2, T G'Vg +-%I[m€ ] - Hence there is a
’Q

' € & such that for some 8q400053, where fa;| <1,

3

S
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(Joaqy,...,[saq) = (Jorap,,... Jo1ap) + #(aje,,annragey)

Define b by BE (8) = EéQdPQ 50D = T,..098 o
Then lﬁg (6) - B?.(C)I = %]aolea < e, for all 0 .

This statement clearly implies the corollary.

REMARK 6.4

Vg ig seen to have the following properties Vb c [0, 11°

Vg is gymmetric about (%,...,7) (This follows since 1-0 GQ%)
whenever & Et;g.), V  ig compact cnd convex eand 0 € V.,

It may be shown that if s = 2 , then every set with the above

properties is aV% . When s > 2 , however, this i1s no longer

true,

EXAMPIE 6.5

Let é; be an experiment such that ¥ = {1,2,3} , © = {1,2,3}.

Then é is determined by a Markov-matrix

?;ﬂfc 1 2 3
1 § o 4, L
2 Py G T
3 Pz 4z T3

A test function & on ¥ 1is given by a triple (64762965)
such that 0 <6, <13 1 =1,2,5 . Hence 'Vé is the subset
of R’ consisting of all points of the form

<P161 + a0t rqézv Doby T Gnby + 503, p564 + Q05 * r765>

It may be shown that V&i is the convex hull of the eight points
obtained when & is non-randomized (i.e. 61 =0 or 1 for
all 1 ).

By the symmetri property of Vﬁ'S . V? is a parallel-epiped

-]



[0}
°
\J1

in R’ . We get the following diagram:

/(qqsqg%)/
wflﬂ,,/””’Tqu¢25p7>

©,0,0) T —n

\fg is the parallel-epiped spenned by the vectors <pq?DD’D5) ,
(qq,qg,q%) and (fqugsrg> . If ~§‘ is another experiment with
%é = (19295> 9 e = {192,5} 9

S
/

= (% P2 Yo

k)

U

%z Bz Yzy

\N

i
then we may sketch VQ. in the same diagram and apply corollary

6.2 in order to compute deficiencies.

It is seen that gz? if and only if
2

<a'/|,a29a§> 3 (3/]93;,5-/) 3 (Y/I’Y?9Y5) € VE °
A similar example, with ¥ = {1,2} , © = {1,2} is given in

Blackwell and Girshick [3].



6.6

DEFINITION 6.6

An experiment é is called a dichotomy if #@ =2 (i.e.

s = 2 in our terminology).

THEOREM 6.7

Let é and ? be dichotomies. Then € is e-=-deficient
relative to gf if and only if %: is e-deficient relative to
?L for testing problems.

Proof: ©Since only the 'if"-part needs proof, suppose that éz
is e-deficient relative to é:‘ for 2-decision problems and
let ¥ € Yy . By definition of ¥y there are constants

CORRRERL and b1"°°9bk such that

k
k
w(zq,xg) =izq(aixq - bixg) .
Set li(Xq,Xg) = a;x; + biX, .

By resrranging we may assume that there is a r so that
r
(2) "L'(/l,Xg) = iqui(/"x‘?)

when x, > O , where the representation on the right is minimal
in the sense that for each 1 < r there is a Xy > 0 so that
li(ﬂ,xg) > lj(ﬂ,xg) for all Jj# i .

The functionals li(ﬂ,xg) = a.

+ biXB will define lines in

the plane with slope by . From the representation (2) it is
thus seen that bq,,.g,br are all distinct (equal bi's would
correspond to parallel lines). Thus we mey assume that
bq < b2 < sos < br . It follows that 84 7 8 > eee 7 2,

(this is easily seen from a diagram).

Furthermore, for any x, > O , it is seen that
.
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1(1,%5) = 1,(1,x5) + [1,(1,%5) - 1,(1,x,0]7
T cooocea + [lr(/),X2> = lr_/l</l9 }C2>]+

(where a =a Vv O ; a€R ) .

Hence if X > 0 , by the positive homogenity of 1§

+

t oeceses T [1I(X19Xg> - lr_q<X1’Xg)3

~ . . - - -
Let ¥ Ybe the sublinear functional which equals the right
side of (%) for all X sXs e
¥ is 2 sum of functionals which are maximum of two linear

functionals. Hence Y € Y, , and

(4> @(xq,xg) = 5(X1,X2) for all Xq9%5 2 0 .

We assert that
(5) $<“ei> Z.g(“ei> ;1= 1,2 .

In fact,

'Q}J(“e.’l) = f“;( ;./I 7O> = '-a,I ¥ (8./] = aq) s 08 o 0 (ar“’/‘ = ar>’(’
= “8/} a/} - 82 { oo 00 ar_/] - ar = o= El.r
s
whence w(meq) =V (—ai) > -a, .
i=71
Similarly,
¥ = e "'\'r - o - - — ’ “‘. - . — E
\!J( 62> - ‘I’ \07 1} - -b/l + (b/l .b;z) v e 6 o0& ¥ <br=-/} br)
= -by 0+ eeee + 0 = by,
o 3
whence y(-eg) =V (—bi, > -b, .
i="1
By assumption and by condition (ii) of 5.13,
E(eq> + @(‘eq> ﬁ(eg) + g(“62>

?(é) z,$(§?> - Q1 2 - €2 ] - )
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T (4)

y(8)

) ~ N
Jr¢<quf2)dp = j'l’(fqef?)dP = ‘L'(%?)

so by (5)

: $(eq ) + T(-e,) 1(es) + Y(-es)
vEr2 ) —ele I 2 e
(e,) + t(-e.) (es) + U(=e,)
2 W<§') €4 i 5 LS € s 2 .

and the theorem follows from 5.13,

REMARK 6.3

Ir % and ii are dichotomies, then theorem 6.1, corollary 6.2
and 6.5 give criterions for e-deficiency.

.
Theorem 6.7 states in particular that if é: and §7 are dic=-

hotomies, then
(8.8 =0 = aE,§)

We shall now prove this statement in the case of general
(finite) parameter set O .

The proof inveolves standard experiments (ch. 5) and we need the
succeeding lemns:

LEMMA 6.9

- i n
Let P and @ Dbe Borel probability measures on R~ such that

P(A) = Q(A) whenever A is a halfspace of RE (for definition
see 1.29). Then P =

°

<
Proof: We shall let JS(X) denote the distribution of the

random varisble X . Agssume that X has distribution P and
Y has distribution @ . We shall prove that af(X) = cﬁ(Y)

Let Xq5...,% and Y,,...,7 denote the coordinates of X

£
and Y vespectivelyo By assumption,
PloaX, teoo +8X% < =fK84V44n..+-a,Yg<<b) for any real numbers
i Im—

_____

Bqyeverdy b o Hence (a)&1+°°°}-akﬂ‘ = t"(a4Y44_°°°4"akYk)
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for any Bqyecesdy € R . Let Py and Gy denote the
characteristic functions of X and Y . Then

Ya L 1¥asY 4
CPX<a”]?°°°9aI’) l JXJ = Eel JS-J = CPY(a/l?"oa?aI’)
for all Bayoesqdy o
Hence i(X) = (,f (Y) by the uniqueness theorem for characteris-

tic functions.

THEOREM 6,10

Let éﬁ and Sf be experiments (with finite pareameter set).
Then Ag(g S)z =>A(€_ ff)=o°

Proof: Since Ag(% ?) < Aq\g ’é) + Ag(g $) o« 2(3‘,\) )
it follows from prop. 5.24 that we may assume that %’ and g&

are standard experiments. Suppose A2(€>;? ); =-O and iet =
v oo
and T be the standard measures of éf and & , respectively.
o e P r - _
Now, Az(é79§-) = 0 <=> '{(x)8(dar) =Vj¢<X>T<dX> for all § € ¥,

2ll x € B°

e

<
Define ¢ by V() =(Z a,x

-

;
Then j Zag O) (ax) = j(Zaex

We shall dlff rentiate w.r.t. a, . Let h #0 . Then

o
<ZaOXO + hx, ) - (Zaﬁxo)r
0 Yo nov
v o
J a— ' S(ax
+ N
(Za X, + hx, )~ (Ta.x. )
e 0 C L 070
= | 5 — T(dx) .
Since the integrand is dominated by |x, | when h - 0 , we may

V)

o
apply the dominated convergence theoren.

Let therefore h - O and consider the following cases:

ra,x, > 0 : Then X, + hx, >0 for h sufficiently smell,
0

076

o™
)

so the integrand converges to X, .
7
o
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Zaoxo <0 : For h sufficiently small, Zaexd 8 hXO < 0 and
¢

the integrand converges to O .

ra x, = 0 : The integrand is then equal to x, if h >0,
' N s./o

0 if h <O .
Let now h <O, h-0.

Then, if we take the limit,

f X, S(ax) = g X, T(dx)
o 2 Yo
280X0>O 2a0x0>0
0 6 -
Since dS5, = x, dS5 , this is equivalent to
e Yo
(6) 8, (Zayx, > 0) =T, (Za,x, > 0) .
%% o 070 075 070
We remark that SG and. TP assigns positive mass only to
o ‘o
subsets of K = {x : ZXO = 1} . Hence, for any b ,
S. (Ta.x. > D) = ¢ Ya, X, > bIx
0y 5 070 ' D”o(n 579 o)

= 8, (;(am - b)XO > 0) .

By (6), since 85000,8, are arbitrarily chosen,

>Db) = Too(gagxO > b) for any BseeesgyD o

Hence S = T, by lemma 4.9, and since Oo was arbitrary,

S =T.

]

Finally, this implies A(§§7§:) O . (theorem 5.24).

COROLLARY 6,17

a(E.§) =0 if and only if

| for all a ,...,a .

!
|
N =

Il = 222

Proof: Fasy consequence of theorem 6.1 and 6.10,

Remark: If é‘ and g- are equivalent, then it is seen that the
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.O\

normed linear spaces spsnned by P,] 5oos "Ps and Q,1 gooo ,QS

are isometric by the isometry EaOPO ~~3 Za,Q, .
v U

EXAMPLE 6,12

Consider again example 5.6, We have
Q

If 5’ is the experiment obtained from g by a permutation of
columng in P% , then (7) clearly implies that é’ ~3} .
Hence the inequality (9) of example 5.715 may possibly be im~

oroved by permuting the columns of Q? o

EXAMPLE 6.13 (Taken from [16]).

This example shows that in corollary 5.23 it is not enough to
reqguire éF ~ ?F for all F which are gtrict subsets of @
(ice. Pc®, F#@). Let ©® = {1,2,3}, Define

= (x, A ; Pﬂ’PZ’PB) ) ? = (x, O ; Q49Q29Q5) where
y = {1,2,3,4} , (= class of subsets, Q; =P, , Q =P,

.are given by the Markcv-matrix

and  P,,P, ’P5 and 03

n\\ X ] 2 3 L

P, +  + 0o 0

P i 2 a 2

2 5 5 B

P 12 2 1

3 6 [ Y [

2 . o

U € % T ©

3
Rather than é (1,2} we shall write éqg etc.

Clearly éﬁlg = ?/‘2 and ‘é 13 ~ ?}5 <g2'3 ~ ?25) since
¢ €. be obtained f ¥ thy
é,@ ( o3/ may be obtained from J 5 (¥ 25) by a per-



mutation of the columns (example 6.12).
(4
Hence f 7 ~,$’F for any strict subsets F C ©

However, from corollary 6.711 we see that § # 3}”, since

2y =By 2yl = 4% sna Yp, - By 4 Q) - 22

(The measure P,| - P2 4+ P5 is given by the vector

15 11 5 55y . 13,1, 5.5
("2’2';3 ‘?7_'!_‘9 2"?"9 - ‘éﬂ_“) and hence P,l - P + P., I! 2[| 24 ,2..2[. .;2_5 —
HPq - P, QBH is found in a similar way).

12



7. THE MARKOV KERNEL CRITERION

Corollary 5.29 gives a criterion for comparison of experiments
by operational characteristics. We considered there only
decision spaces of the form Tk = {1,.0.,k} - In this chapter
we shall investigate situations where the decision space has

a more peneral structure.

The following proposition tells us, in the case of experiments,

that certain decision spaces are abundant for comparison by

operational characteristics,

PROPOSITION 7.1

(A

Let 8=(X,OZ;PO:OE®) end & = \}8’ QO:OE@) be

xperinents znd let € Dve a non-negative function on © ., We

shall say that a decision space (T,)S) 18 admissible if to

-

.
each decigion-rule o0 1in 3} relative to {T,/&) there is a
o

decision~rule p in (> relative to (T, A ) such that

HPOp ~ QOGH <&, forall 0 €6,

Then:
(i) 1If (T9Jg) is admissible and S_ € }g , S_# @ , then

(SO,J% A SO) is admissible.

(ii) If <T5}E) is admissible and (T'e,é') is5 snother

bijection T - T' , then (T'a/g') iz a2dmisgsible.
n
i : ¢ ‘
Remark: /N A S is the o-algebra (SN S : 8 6/& } .
D O - U J

Proof: (ii) is clear, so suppose that (T,)&) is admissible
0
and @ # g, € jg . Let T be a probability measure on
S, /S5SN8 o
(s,, Ans)
Define a Markov-kernel vy : (/& A SO) x T - [0,1] .



~J
o
no

v(8lt) = I (¢) if t €5, , § e Aa S, -

I

v(8it) =T(8) ir t€s,, s¢€ Ans .
Let V be a probability measure on (T?)s) such that

V(SO) =1,

O .
(1) (W(8) = jyv(8l)vias) =, I (L)vias) = V(s n s ) = V(8)

Let &5 € )S A B . Then:
P r N\
! b
J o

S O

Define a Marlzov--kernel

..<2

A o8, ~ [0,1] by Y(8!t) = I(6) 3 v €8, , S c A .

If W
o€ ,ﬁ

(2) WY(s)

is a probability measure on }% A SO , then for any

]

f?(s!t)w(dt) = [ 1 temicat) = wisn s .

S
o

Let now ¢ be a decision-rule in 3;' relative to (So,/g A SO) o
Then 0o0Y is a decision-rule in j?‘ relative to (T,/&) , such
that by (2), (oV)(Sly) =o(sn 8 ly) forall sed, yey .
By assumption, there is a decision-rule p 1in relative to

(T, A) such that

HPOP - QQO?H f_ e[\l ; 3 6 @ o

By (1), (o¥)y = ¢ . TFinally, py 1is seen to be a decision-
q

rule in g relative to (SO, AN SO) . Now, for any 0 € ® ,

1Pyey = Qqoll = [IPyov ~ Quovvil < iPye ~ Q0¥ vl < ¢,

since Jlyll = 1 .

This completes the proof.

Remark: In 4.6 we proved that e-deficiency for (k + 1)-
decision problems implies e-deficiency for k-decision problems.

This iz a special case of the present proposition.



DEFINITION 7.2

A Polish space is a measurable space (TSA)) where T

(together with 2 metric d ) is a separabel complete metric
space and /& i3 the smallest o-algebra which contains all
open subsets of T . (The measurable sets are cailed Borel-
sets).

The Polish spaces may be ordered with respect to cardinality
into three classes:

(i) T 4is finite,

(ii) T 4dis infinite countable.

(iii) card T = card [0,1] .

LEITMA 7.2

Let T be a compact metric space (e.g. T = [0,1] ) and let

C(T) be the set of continuous real functions on T , provided
with the metric dist (f,g) = sug]f(t) - g(t)l . Then C(T)
is separabel and there exists geéensea countable subset 3{ of
¢(T) such that if

reqg ., f,gc¢ }6 then

r, |fl, £ - g, »f € X

Proof: Since C(T) 1is separabel, there exists a countable

dense subset LQ)EZ C(T) . We may assume that 0 € M% R

We shall now recussively define countable sets uﬂ,Mp,.ooo

[ee)
such that U/, =l ¢ .... ce(®) end et X = T U, .
i=0

}e is clearly dense and countable, Assume that (Qi is de-

fined. Then we put

U, .

i+

: E ‘| + R + e | }
rif, 4 Ty + Ty fB SR PP PP e@i, TysTpT5 € Ql

fana



It is easily verified that (ﬁo c (fq c Lﬂz S esoco and that

36 has the properties listed in the lemma.

In the proof of theorem 8.5 we will need the famous Riesz

Representation Theorem which is stated below. For a proof,

we refer to theorem 2,14 of [13].

THECREM 7.4

Let X be a locally compact Hausdorff space and let A be a

non-negative linear functional on C_(X) (the set of continous
>

real functions on X with compact support). Then there exists

a o-algebra Aﬂq in X which contains all Borel sets in X |

and there exists a2 unique non-negative measure y on |

which represents A in the sense that

A = Ifd' for every f € CC(X) .

THEOREM 7.5

Let é SR Pyt 0

be experiments end let ¢ be a non-negative function on 6 .

~J

m
@
p—

]

and §5= (M.@5 Q, : ¢ € @)

Assume further that EZ is dominated, Then

g: is e-deficient relative to §}
if end only if to each decision space (T,/g) where T is a
Borel-subset (i.e. measursble set) of a Polis space and /i
is the class of Borel-subsets of T , and to each decision-

Is

rale ¢ in 5;' (relative to (T,ﬁ;) ) there corresponds a
decision~-rule p in g (relative to (T,/b) ) such that

1 y ~
ﬂPQp - gooi ¢, forall €@,

P . - ] . P -
Froof: The "if"-part needs no proof, since the finite decision
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o
\J

spaces are included in the condition.
“only if': By prop. 7.1(i) it is enough to consider the
Polish space itself, Assume therefore that T is a compact

space (e.g. T = [0,1] ). Let {6 0b05000 } Dbe a countable

dense subset of T and define Tk = {tqaaoo,tk} s k= 1,2,000
Tet 1 = EE cyP, be a probability measure on (x,Jl) such
;‘).,j - .
o)

that €, < @ is countable and 1T >> P, for all 0 € @ (see
theoren 12 of appendix A). Let éf be given as in lemma 7.%.

For each fixed k , we define a '"projection" fk from T to

T If t € T, we define fk(t) = ti where ti is uniguely

k <
determined by the inegualities

A(t,6,)5000,d(t,t; ) > dlt,t,)

d(t,ti+q),a°,9d(t,tk) 3.d(t,ti)

(Intuitively, we let t; Dbe the member of T, which minimizes

the distance from + to ti )e

T ie measurable, since it is determined by a set of inequali-

k
_ties between continuous functions.

Since ([t,,b5,... } dis demse in T , d(£f,(t),t) ¢ O when
kX - o (the convergence is clearly monotone). Now

d(fk(t)?t) = dist (Tk,t) which is known to be continuous in
t . Thus, by Dini's lemma {(theorem 7.1% of [127)

d(fk(t)at) - 0 uniformly in +t . TLet now o be a decision-
rule in g? relative to (T,)&) . For esach k we define a

decision-rule © in gt relative to Tk by

k
c o =1, L -
Gk<tl ) = G(lk ({t)f=) 5 t e, .
By assumption, there is for each k a decision-rule Pic in
?; relative to Ty such that

“ o Y n { G, - 3
(%) HPOpk - Q§Oku < e, forall 7 €80 (corollary 5.29).

The rest of the proof will be devoted to constructing a decisiocn
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o
o

rule p on the tasis of the p, 's such that

HPOp - QOOH.E e, forell (¢ €0,

~

Let f € 3{ . Then for each X

r p
prc(£l°) = £(6)p (at]°) = Z)p1 STREDACHY)
J 5

)
-
ot

defines a function from Y to ‘R . f 1z bounded, sinc
is a continuous function on a compact space.

Hence, for fixed £ , the sequence p,\Lt )} is uniformly
bounded and uniformly integrable with respect to the pro-
bability measure I ,

By appendix C, there is a subsequence {pk‘<f§°)} which
converges weakly to a function p(f!°) (with respect to the
probability space (x, Ol ).

Since 5{ is countable we may apply Cantor's diagonal process
to obtain a subsequence {p,,,} such that pk,,(fl°)

converges weakly (1) to a function p(fie) for each f E‘M?o

Let f,g € ,6 s, &€ Q.. Then p has the following properties:

H
<
A

ge)
°©.
5
o
s
v
O
o
o)
o ]
[ )

whenever f > 0 .,

he first assertion. The others follow in a gimilar

By definition,

Dks|<f + 5’{0 ,? (fio/ pk,.(gl"
The left side converges weakly to o( £ + gl°) ;3 the right
side converges weakly to p(fl°) + p(gle) . Since for each
£, p(fle) is determined almost everywhere (0] , (i)

follows.
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Y

Since 3& is countable and §Q is countable, the subset N of
¥ where (i) - (iv) fail to hold for some f,g or = has
l-measure zero., Hence by redefining p on N , p may be

.

modified sc that (i) - (iv) are valid everywhere.

We shall now define p(f|°) for arbitrary f € C(T) .

We assert that |e(fix)] < ||f|l 5 £ € 3{ , X €% . Choose

Tr € Q@ such thaf | |
<l <t <ol <

Then p(flx) < p(rix) = rp(1|x) = r and similarly,

o(flx) > - .

Hence |p(fix)| <= for all = > ||f| .

The assertion follows by letting r - ||£|l .

Conseguently, the mapping £ - p(f]°) is a contraction. In
particular, each Cauchy-segqguence in 36 will be mepped into a
Cauchy-sequence of real functions on ¥ .

Let now g € C(T) . Then there is a sequence {fn} in 36

D

o

such that f - g .
n
lim p(fnix) for each x € ¥ .
g2
The limit exists, since {p(fq{x)} by the above remark is a
4

1]

We define p(glx)

Calchy-sequence in R . A straightforward verification also

°) . is independent of our

shows that the limit defining p(g
choice of . {fn} . Next, by the properties of limits of
functions, (i) - (iv) are seen to hold for arbitrary

f,g € C(T) , » R,

Hence, for each x € x , p(°lx) is a non-negative linear
functional on ¢(T) . By theorem 7.4, p(°lx) may be re-
presented by a non-negative measure p(elx) on a o-algebra
(MA 2_}& . p(elx) dis a probebility measure by property (iii).

Since p(fi¢) is a measurable function on yx for each
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f € ¢(T) , it follows that p(8|°) is measursble for each
S € )& . Hence p is a decision-rule in éz relative to
fg,&) and for any £ € C(T)
p(£]°) = j*‘kt)p(du! .
We may without ambiguity write p dinstead of 7 .
It remains to prove that

|Pyef - Q.of| < e lif] for all £ € 5t .

Since any member of C(T) eand hence any measurable function
cn T may be approximated by members of 3{ , this will imply
that

|Pypf ~ Quof| < e ||f|l for all bounded measurable functions

f on T and hence by def. 10 of appendix B,

For any f € ., D € 0,
|Pypf - Qof| < |Ppf = Pooyi i f]
+ {Pr\p'l;-'i Q,rd}r 1—L! !QOGI ||l - Q(\Of!

The second term on the right hand side is by (3) < e, P -
Hence it suffices to prove that the two remaining terms tend
to zerc as k'' - <o,

Fut h, = dPO/dH . Then

r | )
jp,e.(flx)PO(dx)i

L

[Byof ~ Byppi ] = | [o(2]2)P, (ax) -

- |

which tends to zero by weak compactness (consider the definition

Ly

p(£]2)h, (x)(Ax) ~ o1+ (£ ldn, (x)m(ax) |

of pJ.
For each vy , o (|y) = o(e|y)f~

(by the usual notation for induced measures).

Hence, by the well-~-known formula
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5f°XdP = Jrfd]?’”}{_/I , we get

(0, £)(x) = [2(t)o (atly) = £(2, (£))alat]y)
Finally,
1@;051:,,3? - rofi = lj(ck. I - Gf)anl
< Nloie = ot = |2, () = £(6))a(at] )|
< sup [2(e, 0 (8)) - £(8)]

which tends to zero when k'' - o sgince f is uniformly
continuous and d(fk(t),t) - 0 uniformly in t . The proof

18 now complete.

THEOREM 7.6 (THE MARKOV KERNEL CRITERION)

Let € = (v, Py : ) €€) and ? = (}JJ,@; Qy : 0 €0)
be experiments end let € be a non-negative function on 8 .
Assume urther that £y is dominabed and that Y is a Borel-
subset of a2 complete, separabel metric space and C% i3 the
class of Borel-subsets of Ej .
Then g; is e-~deficient relative to 5:( if and only if there-
exists a Markov-kernel M : CQ ®x x = L[0,1] such that

HPOM - Q@“.ﬁ €, for all C € 8 . 4
Proof: “if": Let (T,/g) be an arbitrary decision space and
let o be a decisien-rule in ﬁf relative to (T,/S) . Put
p =Moo . Then p 1is a decision-rule in é relative to
(T52>) end for sany 9 € @
12e = ol = IIPgHo - @0l < M - ) < ¢, -
‘only if': Put (T,A) = (4,) and let o(sly) = Ig(y)
for all S ¢ )S s ¥ E%ﬁ - Then QGG = QO .
By theorem 7.5 there is a Markov-kernel M :,& < x = [0,1] ,
ice. M :@xx = [0,1] such that [[PI - Quol| < ¢ .
The theoren follows.



REMARK, 7.7

We note that in the procf of the “if"-part, we did not make
use of the given structure of (53 9@> . However, the con-
clusion follwed from corollary 5.29, so we needed the —equire-
ment that % be dominated. It is proved in appendix B of [19]
N . R s . &

that if there exists a o-finite measure u on (3,6}) such
that u >>Q, for all & € & , then M mey be chosen so that

o>> POM for 211 0 € @ .

COROLLARY 7.8

Let g and §: be given as in theorem 7/.6. Then g > ? if
and only if there exists a Markov-kernel M on Cg K ¥ such
that

(4) PSM = QO for all 0 € @ .,

Remark: Statement (4) asserts that, if we observe the result
of experiment g and, when x € ¥ 1s observed we select

v € i‘f according to the distribution M(°|x) on ((\Lf,(B) , chen
the resulting experiment is (in some sense) identical with the
experiment @— . In other words, (4) states that é(} may be
duplicated from g with the z2id of e.g. a table of random
numbers.

Corollary 7.3 Thus implies that é is more informative than
) f\

~r

y Lo
& if and only if 3‘ may be duplicated from g o

EXAMPLE 7.9

. (\‘
Consider again example 5.6 and let \§~ = (f‘f,@); 6-\@ : 6 € @)
= \
be an experiment where g = {1,000,K}, @ = class of subsets
of Q‘:{ , 8 = {1,.00,8} and the Qy 's are given by the

Markov-natrix



U =l . Z/
: .

A Markov-kernel M : 63 xyx = [0,1] is now given by a (r ¥ k)

Markov-matrix M = (mij) where

M({J}ll)=ula 3 L= Moo,y d = Theee5k
For any 0 = 1560048
T T
Pl = (2 poimigyece, I Dyt )
i=1 i=1

If A = (ai ) ic a (m x n)-matrix, we define the norm of A ,

J
denoted ||Al , by

Hence, 1t i1s seen that if §§ and 8;’ are experiments as given
above, then
4
8(L, &) = inf [[BM ~ Qi
M G
where infimum is taken over all (r x k)-Markov matrices M .
Hence, for any such M ,
> g |
(5) 8(£,5) <l - q |
3 &
Thus the Marikov kernel criterion is useful in order to achieve

A .
upper bounds for 6(@,3’} or A(€7,§ﬁ) . (We remember from

example 5.15 that the {~criterion gives rise to lower bounds).
In particular, if k =r and M is the (r x r)-identity

matriz, then by (5),

e i L
R N L TR

This is the same result as was obtained in (§) of example 5.15.
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' 48
Finally, it follows that é ZE‘ if and only if there exists

a (r x k) Markov-matrix so that

EXAMPIE 7,10

There is given a population of 10 members. It is known that

5 of the members possess the property A, and that 5 possess the

property B, but the number of members having both properties

is not known. Furthermore, the members that have property A

are known and may easily be selected from the others. Two

sempling plans are proposed in order to obtain informatiqn

sbout the number of members having both properties.

(a) 3 of the 5 members with vroperty A are chosen at»random and
the number X having property B is noted.

(b) % of the 10 nembers of the population are chosen at random
end the number Y having both properties is noted.

The sampling plans (a) and (b) may be considered as finite

experiments %‘ and SE where 6 = {0,1,2,%,4,5} and the

parameber ¢ € @ is the number of members having both proper-

ties A and B.

For fixed O € © , X and Y are hypergeometric distributed, =o

2 -
the Markov-matrices defining ¥ and 5; are easily found:
NX__ 0 1 2 3
O 1 0] \J 0
2 7
1 & % 0o 0
B,= o 1 & _3
£ < w 1 1 Y
2 o -2 o 1
- 7 10 10 0
2
4 o o 2 &
5 >
5 0 O 0 d




0\1 O f 2 3
0 1 5 0 0
/ 2
| s 5 9 0
» 2 2 1
=2 T 15 715 O
} 35 63 21 1
7 120 420 20 720
L5 13 9
5 30 30 IO
N R
- - B
1 0O 0 0 \}
T z o 0
If we put M = | )
| 2 5 2
'3 § T O
‘ 15 5 4
\Z T2 T8 7))

then a simple computation shows that

Pgl"l =Q§ o
Hence %z is more informetive than j?/ , and we should prefer
the sampling plan (a) to the plan (b). This is reasonable from
the fact that the plan (a) takes into account the prior informa-

tion ; of knowing the elements having property A.

EXAMPLE 7,711

We return to examnle 5.17.

A

-
)

Clearly >

1

By example 7.9,

1l
1
a2

i
w

Let now M = (1ga qa ) and put p



a4

Then

v _ oo A f-a aln 1 [-ap+be ap-ba
ML= B = m+3( B ~B)p N @+B\—a6+ba aB—ba)

Hence

(6) [la - P = o=5l]-cp™ - ap + ba| v [-ge” + ap - bal]

We minimize the expression (6) with respect to y = ag - bDa .
A

By examining the graphs of the functions (of vy )

|-ap™ = v] ana |-8p™ + y| it is seen that minimum occurs

when vy = E%Q pn . Next, it is seen that numbers a,b with
0 <a,b <1 may be found such that a3 -~ ba = E%Q pn .
Substituting the actval M into (6) yields

g - P = o7

T
o
Hence & (! w%rg = |ol® = [1-a-p|"

Further examples on the use of the Markov kernel criterion

may be found in [5] and [12].
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8. SUFFICIENCY

We row turn to the concept of sufficiency. We shall give the

classical definition of sufficiency (CE-sufficiency) and the
definition of sufficiency in terms of eguivalent experiments

( A -~ sufficiency), as well as investigate the relation between
them, It will be proved that A - sufficiency is equivalent to
CE-sufficiency if the experiment is dominated.

It is assumed that the reader is familiar with the concent of
conditional expectation given a sub-o-algebra. We will, however,
give the definition. For a rigorous treatment, we refer to [9].
An introduction to the concept of sufficiency is given in [6]
and [147.

In this chapter, we will consideil experiments with arbitrary

paranzter set @ .

DEFTNTTION 5.7

Let (x,(M,P) be a probsbility space and let B be a sub-o-
algebra of Cﬂ o Let X be an Cﬂ—ﬂmasurable bounded, or non-

negative real function on Y . Then the conditional expectation

AT . .
of X pgiven QB is defined as the unicue (s.e.[P]) CB-—

&
measurable function E X such that

E%xap = [xap  for a11 B .

B B
the existence and uniqueness follow from Radon-Nikodym's
theorem),
If X = IA , Wwe may replace ‘expectation of X " by "probability

—~
(

: _ _ R _ @
of A " and write P (A) instead of E IA .



DEFINITION 8.2

Let gi = (X9CX;PQ : 0 € ® Dbe an experiment. Then a sub-o-

algebra @ of OZ is said to be CE-sufficient for g

corresponding to each A.EEC? there exists a CB ~measuvable
function Yj such that

63
P (4) = YA_ d.e., [P,] for all 0 € 0O .

0

8
v

This condition is equlvaLent to the following:
Ciwmeasurabie
To each bounded or non-negative¥real function on 7y there

corresponds a <8 -measurable function YZ such that
B 7 = YZ 8.6, [Pn] for all 9 € & ,

Remerk: CE stands for Conditional FExpectation. The essence

of the requirements is that the conditional probability of an

N

event A respectively conditional expectation of a random
variable Z ) may be specified (almost) independent of %he
(unknown) parameter 0 € @ .

If P is a probability-measure on a measurable space (¥, ()

and QB is a sub-c-algebra of Cj? , then ES denotes the

restriction of P to 63 R

DEFINITION &,5

Let gi = (x,(s; Pe : 0 € @) be an experiment and let & be
Van . @., .
a sub-o-algebra of \:Q . Define % = (x,ég; POCB : 0 € @)
- o
Then we say that 68 is A-sufficient for éz if éfmaé} .

[\

Remark: Cbvicusly é;.i Y& . (This follows from the fact that

CE ~-measurability implies C?-measu““bllity, so we can take
o =0 in def. 4.7.)

R T =2 .
Hence is a-sufficient for & if and only if & > .



803

" The o-algebra O? is interpreted as the set of events relative
to the experiment é . After the experimerit is performed, we
may for each A € Of decide whether the event A has occurred
Oor notv. Suppose now that @ c OZ and that we may only observe
which events B € @» that occur. This ccrresponds to observing
the experiment ? .« 1t turns out that if @ is A-sufficient,
then we lose no information by restricting attention to the

events B € @ . We say that ? defines a reduction of g .

PROPOSITION 3.4

If @ is CE-sufficient for g , then 8 is also A-sufficient,
for g .

Proof: TLet ? be as defined in 8.3. We must prove that
28 .

Let p be a decision-rule in g relative to the decision space

= {1,¢e0,k} « Define p on T, x¥x by
(“\.

k
o(tle) = Egbp(t;") for each t € Ty .,

Since QS is CE-sufficient, 'E may be .specified independent

of 0 . TFurthermore, p(t]le) is @mmeasufcable for each t .

Hence p 1is a decision-rule in & .o (L, (t) : o €0,

t € T} is a loss-function, then for any 0 € @

k-’
k .
Pyoly = Zan(t)gp(tl")dPn
\J tz v v 2

o)d_l:}

k &
£ L. (0)[E, ot .

t=1

r~ o — ~
i L;(t)Jp(tl )dPO = Pm}) pLG .

k

5

=7
Conseguently ? > g 5
Remark: It may be shown that in generzl, A-sufficiency will

not imply CE-~sufficiency. We shall now prove, however, that



the implication holds if é is dominated.,

LEMMA 8.5
Let (v,(Ol; P,Q) be an experiment and assume P >> Q .

Then EP@’ (aQ/aP) = dQg /dPg

Proof: Clearly Pgp >> S0 dQ@ /APy is well-defined.

g
By def. 8.1, for any B € (B we have
Q
"FEP' (dQ/dP)dP,g ( Q‘/dPXOP
B

i

bj‘-*—a We-—

i

dQ-Q(B) "‘C&@( ) °
The lemma follows.

LEMIA S.6

Let ((,O] P) be a probability space. Let X and Y be
random variables on (x,(J],P) such that cf (x) = i(Y) and

& £
X=E Y a.e., for a sub-o-algebra QB of O? . Assume further

that E|Y| <ooc. Then X =Y a.e.

Proof: Assume first that EY” < co

Then E(X-1)2 - EE® (v-1)2 - EE (Y---E8 )2
- warly - 5E®v? - @81
wE? v - EY2 - EX® =0

gince X and Y are identicelly distributed. Hence X =Y a.s.

Reject now the assumption that EY2 <, Let ¢ be a real
valued continuous, convex function defined on an interval I
such that Y € I a.s.

By assumption Ep(Y) = Ep(X)

By Jensen's inequality (which is valid also for conditional

expectations)



8.5

(1) BPe() 2 5=81) - 9@ e
Since EE6;¢(Y) = Bp(Y) = Bp(X) , equality must hold in (1), so
@ R .
E o) = pE"Y) = pX) a.s. |
fence (8 %)) = £ @) =L @) .
In particular
fa®vy - Loy
It follows that we may, without loss of generality, assume
Y>0.
Since the function o) defiﬁed by o(t) = - JE* is convex on
(0, we have
L - Lam
Hence, since E(Q?fﬁzz EY <> it follows from the first part of
the proof that
E@%(E? =V§T 8.5,
Finally,
7 -5%7 - 582 - 20 @B V2 - E® T2 1 aus.

The second last equality sign follows since (EW9V3?)2 is <3 -

measurable.

LEMMA 3.7

. R s .. © N > .
Assume that “¥ is A-sufficient for ¢, and that ¢, is domi-
nated. Let 1 Dbe given as in theorem 12 of appendix A and let
0 be a fixed member of 6 .
Then the experiments (dichotomies) (x,J(; P99ﬂ> and
(X,CB; Pﬁd3,ﬂ ) are equivalent.
Proof: By corollary 6.11 it suffices to prove that

(2) HaPO i by = HaPﬂﬁg + g I for 211 a,b € R .

8

We have 1 = c(0.)P, for some countable Subsetz{(%,ogooo}gg®

190

™

J



8.6

By corollary 6.11 and 8.2, for each n="12,6003%

|§aPO + b Iz o(oj)PO‘H = ||aP +b z c(o )P

J= J

Q@ OBH

(2) follows by letting n - .

PROPOSITION 8.8

Let é = (X,OZ,,Pn : 0 € ®) be a dominated experiment and let

m be a probability measure on (x,(f) such that

m= % c(0)P. for some countable subset ® < ® and so
OE@O 0 Q ==

that §C(O) =1 and 1w >> PD for all 0 € ® (the existence of
T 1is groved in theorem 12 of appendix 4),

Let Cg be a sub-o-algebra of CY o Then CB is A-sufficient
for é, 1f and onlv if

dPn/dﬂ may be specified Cg -measurable for each 7 € @ .

Proof: Assume first that (8 is A-sufficient. Pix 05 € @ .

Consider the equivalent experiments given in lemma 8.7. Let
> g

£, = dP,/dn , E,_}

[
9

d‘P-’J@ /am .
&

il

~

By lemma 8.5, fO =FE 7 £, .

It is readily verified that

(%) - dPO _ fS arm _ 1
d(PO+ﬂ) T AL, AP +) T+1 4

iy \i J

and that similar expressions hold if P,3 and m are replaced

b P and 1 .
3/ ﬁ(‘ (B

Since equivalent experiments have the same gtandard measure, it

. o o 2
follows from def. 5.22 that for any Borel-subset V € R™ ,

g
, —) €V
14, )

d 0

f{‘

N 4] /' A

(4‘) <PC + TT)((/}“:_fﬁ 9 /l+fr},> € V) = +1T )((’Lr‘\:
ol 1

(Rather than ((ﬁ:ﬁr‘ —-~O € V) we should write

\}



0
e
~J

fo(x) ' 4 .
{x € x :<1+fﬁ(xj ? 1+fn(Xj> SRR
Clearly, for any s € R ,
f. <s <—$ ( fg ’ ) € < oo, 5] L 1 o>
0 =" 7 ML, 1+fo T T+s d+g ? °

Thus (4) implies that
Py - ﬂ)(fo <s) = (Paﬁaﬂ WB)(?CEES) for all s € R
or equivalently

r o . | .
oo gy(Ea®, + m = jI<d§%S](iO)Q(PQ&§ frg) i SER.

r ~ o
Hence J@(fo)d(Po oMM = fm(fg>d(Pq63 ! ﬂdB) for any bounded,
Borel-measurable function o : R - R .

By (3),

lo(e)(1 + £, )dn = PG G ¥))ang

J

which is equivalent to

r

(e ar = [n(®, an

for all bounded, Borel-measurable functions h .

In particular, if h = IC for a Borel-set C c R , then we get
m(f, € C) = n@(fO €

Consequently £, and I, have the same distribution relative

c) = n(‘f‘O € Q) .

to the probability srpace (XaC?,ﬂ) .
&

Since ¥, = E f. it thus follows from lemma 8.6 thet

v

f = rf e.€Co

2}
7 f

. r~ . N\, -~ .
Hence, since I, 1is Gg=4neasurable, f, = dPO/dﬂ may be speci-
v [ B

fied C% -measurable.

Conversely, assume that fO = dP,/dn is CB ~-measurable for each

on

0 v .§ be given as in def. 8.3%. We cghall prove that

0 . Le
g~ &
€

Fc@®, F#0 . Clearly £, = fg a.,e. for all 0 .

. By corollary 5.23 it is enough to prove that
= ¢(§>F) for all § € ¥ and all finite subsets

¢
'.lr ¢



-

Let now T = {04,...,7,} and let § € ¥ be defined on R® .
Then, by def. 5.4, |

r P~ ~ -
W(€ ) = JK’(f 9°°°9fn am = !\‘)(fn ?°°°‘)f0 dr = ‘}5(}"1;1)
U ¥ i =

and we are done.

PROPOSITION 8,9

Let €, be a dominated experiment and assume that 68 is A~
7

sufficient for {; . Then 65 is CE-sufficient for éi

Procf: Let m be given as in prop. 3.7 and let

£, = dpy/ar ; © € © . For each 4 ¢ Ol , 1et

D/
g, = (A
Then for any - € 8 , B ¢ GB

« «»r@\.‘
JiAdPo = [n 7ot am .

B B |
By definition, jn (A)am = fz dm for all B ng
B B
Since fq is CB -measurable (prop. 8.8), it follows that
P ® ] P _
i (A)fodﬂ = JI&den
B B
r T
and hence |Y,aP, = I, dn = |I,dP, .
B B B
Since Y& 18 C% ~measurable, it now follows from definition
8.1 that
@ .
YA_ = Pr\ (A) a\oeo [PI‘\]
P J i

Iinally, since 0 was arbitrary, the proposition follows from

def. 8.2.

COROLLARY 3.10

If é = (x, (s Py 5 € ©)is a dominated experiment, then a



8.9

sub-c-algebra @ of 62 138 CE-gufficient if and conly 1f (B
is A-sufficient. Hence, in the case of dominated experiments,

we may without ambiguity use the term sufficiency instead of

CE-~ or A-~sufficiency.

DEFINITION 8.11

Let é and ? be given as in def. 8.3%. Then @ is said to

be pairwise sufficient for ¢ if

V&

E’{aqaoz} {94425)

for all pairs (01332) €0 %6 .,

PROPOSITION 8,12

Let g be a dominated experiment. Then @ is sufficient for
g if and only if Cg is pairwise sufficient for L@p .

Proof: It suffices to prove the "if"-part. We assume that

d kS

{04,053 77 {04,053
and we shall prove that g ~§’ .

for ell (04,0,) € @ % ®

By corollary 5.28 we may assume that © is finite, say

® = {/|s°° 5

1
J o

[Re RO IO}

Let w = ";T PO « By prop. 8.8 it is enough to prove that
A

.
o

dPO/dTr may be specified (B -measurable for 2 = 1,..0,8 &

For simplicity, we let 0 = 71 in the proof. Define

qu
g:;'(“'*"?m\"=h. 3 1 = Tg000e8 o
dz P/|+Pi; i

By assumption (and prop. 3.2), each h, may be specified @ -

measurable,



3.10

129 1
AN R
Clearly N € Q¥ , and P,(W) = 0 since P, (h, =0) =0
1 = T500055 o
Hence we may put dP/‘/dTT =0 on N,
We consider now 'NC = N [hi > 0] .
i="
By Radon-Nikodym,
; \
Ay + Py) 5 c
ao - = B—" on N
I 1
Hence
s da(P, + P.) S 5
Lt ts &= on NC.
i=1 1 i=1 74
But the left gide is equal %o
- PR \
d.(SP/] ! A,Pi,_ . dZ’Pi . sdn
= h ‘1——--— °
dP,] dP,‘ c‘_P,]
o ~
Hence %%’T = —;-Zi—» -1 on N’
i7i
dp |
so a-]-;ral = (g?%—- - ’l)-’/l on NC .
i
P, . c
Thus = 18 @ —~measurable, since on N it may be written
am

as a continuous function of @ -measurable functions.

We sum up the results obtained so far in the following Theorem:

THEOREM 38,713

/53
Let é = (X,Q,Pn : 0 € ®) be a dominated experiment. Let
. 0 : aoming
@ be a sub--c—~algebra of OZ and let m be given as in prop.
3.8. Then the following conditions are equivalent:
(1) ®  is CB-sufficient.

(i1) @ is p-sufficient.



(iii) dPO/dn may for each 5 € ® be specified CB -measurable.

(iv) @ is pairwise sufficient.

PROPOSITION 8,14

Let €, be an experiment and assume that u 1is a o-finite

H
'._I
e

measure such that u >> P, for all 0 € 0 .
Then a sub-o-algebra CB of C} is sufficient if and only if
| there exists a non-negative (:g—measurable function h and a
set {g‘O : 0 € 8} of non-negative CB -measurable functions
such that

dPo/du = hg, for all £ € @ .
Proof: Assume that 63 1s sufficient. Clearly u >> 1w , where

nm is given in prop. 8.8. Thus by the chain rule of Radon
Nikodym derivatives,
ar, dp
k) = gﬁl [ J— ..c.o I [ m
Tl v & for all 1 € 8 .,
Hence we may put h = dm/dp , which is obviouslycymmeasurableo

We put g, = dPO/dn ; 0 €08 , The 8, 's are QB~4neasurable

by theorem 8.13%.

Assume now that the condition of the proposition holds.

Then dn/du = 1 T c(9)g,
0€6, ’

and hence, for any 0 € @ ,

T /

an - T dm/anT < IAGEN
; \

which is 68 -measurable. Hence CB is sufficient,

DEFINITION 8,15

Let %i = (X,CD; P6 : 7 € @) be an experiment and let Ggq

and f%:G be sub-o-algebras of (:Y . We define an ordering <
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(5) for all B/l E@’I there exists }32 6@2 such that

PO(B/]‘ A B?_) =0 forall 0§ € ® ., ( A means symmetric
difference. )

It is easily verified that the condition (5) is egquivalent to
(6) for each (?) ,-measurable bounded (or non-negative) function
8 there 1s a @ 2-measurable bounded (or non-negative) func-
tion 8o such that

™
J'J['\, ’lg"l
(v}

= 0 for all ( € ®.

ggi

>

i.e. g, =g, a.e. (p.] for all € e .,

If @,] :@2 and {(‘%25@’} then we say that @,l a_nd@g

\ ™,
are eguivalent and write this @ 1 ~(B 5 e

< defines a partial ordering on the set of sub-o-algebras of

O/

1) @ <@ rora1 @ .

(i1) @/‘ f_@g and @2::- 5 => (ﬁ%qf’@E“
(1ii) @1 <3 o and @2 @ q = @; ~@ ooe

&

DEFINITION .16

Let g be an experiment. A o-algebra @o 1s said to be

&
mininal CE-sufficient for ¢ if @o is CE-sufficient for g

and @o < @ for all CE-sufficient o-algebras. .

PROPOSITION 8.17

Assume that g is dominated and let @O be the smallest



o-algebra such that the functions

dPO/dn are measurable for all 0 € O .

Then B | is minimal sufficient for £ .

Proof: CB() is 0uffiﬂienf by theorem 8.1%5. Let {ng 5 € @}
be é% —measurable versions of 4P /dﬂ .

Assume now that CB is sufficient for E; and let {ho : 0 € e}
be CB ~-measurable versions of QPG/dﬂ - We shall prove that
GB 0 = . It follows from Radon-Nikodym's theorem that

(7) hO =8, &.¢ (] for all o € @ ,

By definition, 630 is the smallest o-algebra containing all
sets of the form

Ao(r) = {x : gc(x) <r} for some r» €R, 0 €06,

Define Bo(r) = {x : hD(X> <r} ; r€R, 0 €O,

Then B, (r) € @ ana vy (7), m(h,(r) 6 B,(z)) = 0 for all =,0

It is easy to verify that the family sets BO ECBO stch that
there exists B € 6% with n(BO AB) =0 is a o-algebra.
Since this o-algebra contains the sets Aq(r) , it is equal

to CBO . Hence (5) of def. 8.15 implies that CBO < Qg

DEFINITION 8.18

Let g be an experiment.
A sub-o-algebra CB of CY is said to be boundedly complete if

for all bounded CB -measurable functions g

Eog =0 forall 7 €0 =g =0 sa.e. [PQ] for all 0 € ® .

PROPOSITION &.19

Let {; be an experiment,
Assume that GB ig CE-sufficient and boundedly complete.

If &7 is CE-sufficient and Q < (8 ; then @ g
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Proof: It suffices to prove that CB :Eéi .
Let B € Cg . By def. 3.2 there exists a é% ~measurable Y
such that

P;E(B) =Y a.e. [PO] for all » € € .
Set

C={x: Y(x) =1} . Clearly ¢ € Zf .
Since ff E.GB there is a CB -measurable function Z such
that Z2 =Y a.e. [Pn] ; 0 €8,
Z is bounded (a.e.) since Y is. Furthermore, for any
neEB®, P
= [yar, = P, (B)aP, = P, (B)

jZdPo

- r 3 — n
Henc J(IB - Z)dPO =0 for all ¢ .

D

Since CB is boundecly complete 1t follows that
IB =7 a.e. [PQJ for all o .

Hence Y =1 eCo [Pn] for all 9

B
so that PO(B 6 C) =0 forall 0 .

COROLLARY 8,20

Let gz be a dominated experiment.

Ir Cg is sufficient and boundedly complete, then X\ is minimal
sufficient.

Proof: Let éBo be given as in prov. 8.27. Then 690 < 6} .
By prop. 8.19, CBO ~'63 . The corollary follows,.

We shall now see that the concept of being more informative is
closely related to the concept of being sufficient for an
experiment,

é\' 3 - -
Let g and & be experiments satisfying the conditions of

yz
theorem 7.6. Assume further that éf'z.j:‘ .



Then there exists a Markov kernel M such that PM = QQ
for all 0 . We define an experiment

8 $(3,g,?0 : 0 € 8) where (59&) = (x,0D) x (3,@)
(i.e. Z = X % g and Z = x (R 1is the o-algebra generated
by the sets A xB ; A€ (l, Be€( ) and where B, =P, x M,

ice. B (4 xB) = [MBI0P,(ax)
{ : 8
‘ A
for all A € d , B 6‘8. , 0 €@ . (See lemma 14 of Appendix

‘B. )
We observe that

e,
B, (4 x 3 ) = _jm‘ﬁ )P, (ax) = P,(A)
A
B(xxB = MBlx)P (ax) = q,(B) forall nce0, 4e(Y, B Q.
X

The experiment g is thus seen to be equivalent to the
reduction of % obtained by replacing the o¢-algebra

é{j = d X @ by the sub-o-algebra Oz e {Qﬂd} . We denote
this experiment by % . »

Similarly, ?; is equivalent to the reduction of g obtained
by replacing 5 by {2,x} x (B . We call it @fﬂ .

g* and 5} * are seid to be marginals of the experiment (% )
and we observe that M defines the conditional distribution of

the second marginal, given the first marginal. We remark that

M is independent of 0 .

.

PROPOSITION 3.2

The gub-o-algebra GZX {@,[i:)(} is CE-sufficient in é .
‘Proof: By def. 3.2 we have te prove that to each C € OZ X @
there exists a OZX {@,qj } - measurable function YO such that

ng{@,qi}lc =Y 8.€. [?P] for all 0 € 6 .

C )
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First, let C=AxB; Ac(, BeB.
Then we will have

EOOZX{@’%}IAxB = I,M(B|*) a.e.

which is a function of x € x alone and hence is (}Z X {@,H -
measurable considered as a function on ¥ X Cg .

Moreover, it is independent of 0 . Hence (7) is satisfied for
all measurable sets C = A x B . Since the family of measursble
sets satisfying (7) will constitute a o-algebra, it follows

that (7) holds for all ¢ € (] x (B .

COROLLARY 8.22

-

Remark: Ioosely speaking, the relation g v gays that g

is sufficient for the experiment g having marginals é and

<.

PROPOSTTION 8.27%

4

Let G

and ? be experiments satisfying the conditions of

theorem 7.6,
‘ A
Azsume that S« and that

(
éz{Oﬂ?Jg} i? nﬂ} for all pairs <Qq902) €8x 0 .

Then % ?‘
Proof: From g ? it follows by prop. 8.21 that OZX {@, g}

is sufficient for % . Since {n and since
l/'g.

ié ~€ o $ 8 | it follows that

¥* -
g{n’]"““ g:{fms@g} for all pairs 04904~

qugg}

~ ~

. o 3 3+ . . . .
Hence, since E ~g y ? is pairwise equivalent to g

so the sub-o-algebra {0,%} x@ is pairwise sufifiicient for



m

17

g . Now g is dominated since §~ 8’ and é’ is dominated.

o~

By prop. 8,13 {0,x} x (¥ is sufficient for & , and hence
¥ = * g

? ~ g . But then S'\ ~ g and finally >~ g .

Remark: It may be shown that the preceding proposition will

remain valid if we remove the regquirements on (3,@) .



APPENDIX A

ESSENTIAY SUPREMUM OF A FAMILY OF RANDOM VARTABLES, WITH
APPLICATION TO DOMINATED EXPERIMENTS,

DEFINITION 1.

R &

An experiment & is given by (5 = (x,CK,Ib T 6 € ®) where

(x,OlL) 4is a measurable space and (P 6 € @) is a familv of

e
probability measures on (y,(l) .

DEFINITION 2.

Let (¢,0(,P) be a probability space. 4 random variable

(abbreviated r.v) is an Ol -measurable function
X : X - [—CU ;CO]a

Consider now a fixed probability space (x,(l,P) .

DEFINITION Z.

Iet X,Y be r.v's. We define X <Y a.s. (almost surely) to
meen P(X > 7Y) =0 . It is seen that < is a partial ordering

on the set of r.v's on (x;CX:P) .

DEFINITION 4.

Let {Xt 3 t € Tt be a family of r.v's. The r.v. Y is called

essential supgremunm for the family if

(i) X Y a.s. for all £t € T

A

t

(ii) X, £2 a.s. for all t € T implies Y <2 a.s,

It follows from (ii) that provided the essential supremum exists,
it is uniquely determined up to a P-equivalence.

We can thus write Y = ess sup Xt .
tel




A2

Remarlk: Assume the index set T 1is countable. Then Y = SupXt

is proved to be measurable and the verification of (i) and (ii)
is trivial. Thus an essential supremum alwaysg exists if our
family of r.v's is countable,

If T 1is not countable, the function Y = sup Xt may not be
' tel

measurable and thus not a r.v. The following theorem states,

however, that an esgential supremum still exists.

THEOREM 5.

To each family {Xt :t € P of r.v's there exists an essential
supremum.

Moreover, there is a countable subset TO of T such thav
ess sup Xt = Sup Xt SeSe
tel tel
0
Proof: Let & be a 1-1 mapping of [~ ,c0] onto [0,1]

(8 may for example be taken as
3(x) = (om)”

Let & be the set of finite, non-empty subsets of T .

o~
For each P €3 we define XF = max X,
teF Y

Clearly XF is a TV

m

Set a = sup E@(XP) . Then o € [0,1] . There is a sequence
3 .

o~
{Fn} in & such that Ee}(XF ) Q ¢ « We may without loss of
n
generality assume F1 c F2 C +es (which again impliesg
XF -<_ XF 5 CQ-Q) L[]

1 2
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If this is notv the case, we may namely put Gi = "E‘jU...UF:.L to

obtain X, = max(Xy sesesXp ) = Xy o Hence
i 1 i i

~ 2 ax (7 o (S ho
o > E@(XGi) > J@(AFi) so that ﬁw(XGi) la .

Let now T = UZF, ., T is countable, so Y = sup X, is a
- 70 i 0 t
=1 . tETO
TeVe

We observe that XF ? Y . We shall prove that Y = ess sup Xt o
i tel

Let t ©be an arbitrary, but fixed, element of T , Condition
(i) of def. 4 will follow if we show that X, <Y a.s.
_ T ) )
Clearly maA(XFi,xt) = XFiU{t} | max(¥,X,) .
Hence, by the monotone convergence theorem,

v = s . T A

On the other hand,

B8(Y) = 2e(QimXy ) = Blimg (X, ) = 1ime(¥y ) = a
| i Ti i

and hence

A%
Q

Eé(maX(Y,Xt))

It follows that

I

Eé(maX(Y,Xt)) o =E3(Y) , i.e.

B[ % (max(Y,X.))-2(¥)] = 0
Since the expression in the brackets is always nonQnegative,

we have

¢(max(Y,X.)) = &(Y) a.s.
is€e: maX(ny_t) =Y QeSe

which implies X, <Y a.s. and (i) of def. 4 is proved.
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Assume now i, < Z a.s, for all + &€ T ,
S

< Z ae.s. for all +t € T  which implies Y < 7%

Obviously X o

t
GQSQ

It follows that Y = egs sup Xt .
tel

LEMMA 6.

Assume X = ess sup X, o DLet Y be ar.v. such that ¥ >0 a.s.

Then XY = ess sup(XtY) QeSS
teT

Proof: From X, <X a.s. it follows that

t

XY <XY a.s. for all t €T .

t

By theorem 5 there ig a countable TO c T such that X = sup Xt
' tel
0

a.5., Hence XY = sup XtY SeSBe
tETO

Assume X, ¥ <2 a.s. for all tc¢T.

Then XY = sup XtY < Z a.s. and the procf is complete.
tel
o)

We state the celebrated theorem of Radon-~Nikcdyms:

THEOREM 7.

Let (x,Cﬂ,u) be a co=finite measure space and let v be a
measure defined on (3( which is absolutely continuocus WeTete U &
Then there is a measurable function £ : y - [0,%] such that
v(a) = [fap for a1l A e (L.

: A

If v is o-finite, then £ may be chosen to be finite.

f is called the Radon-Nikodym derivative of v we.r.t. p and

is denoted dv/du .
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DEFINITION &,

Two measures ¢ and v on a measurable space (v,(l) are said

to be equivalent if v << and p << v . We then write

Hoov e
The relation ~ 1is an equivalence relation on the set of mea-
gsures on x,CX) , and the equivalence classes consist of the

measures having the same null-sete.

I)E.M:IL\IA 9 °
Let p be a ou-finite measure on the measurable space (x,Cﬂ) 5
v # 0 . Then there is a probability measure P on (%,0l)

such that p ~ P ,

(o]
Proof: ILet 4 = I x, (disjoint union) with 0 <up(x ) <<
- n=1
e panx,, )
for each n . TFor A e{:ﬂ define P(4) = % —m—

n N/
n 1 2 }"L(/\.n)

P is easily seen to have the resquired properties.

DEFINITION 40,

M

Let é; = (x,Ol B, : 9 @)_ be an experiment. E; ig said to be
dominated 1f there is a o-finite measure u on (ﬂ, such that
Pe <<p forall 6 € ® , It follows from lemma 9 that o may

be assumed to be a probability measure.

' THEOREM 11.

Assume Eg is a dominated experiment. Then we can find a count-

able subset ®O of ® such that

PG(A) =0 for all g ¢ @O = PG(A) =0 for all 9§ € @ .



Proof: Assume Pe << P for all ¢ € @ and put £, =dPe/dP .

{f 0 € 8 may now be considered as a family of r.v's on the
probability space (x,((,P) and we can define

g = ess sup T

0 €d 6

By theorem 5, g = sup fe 2.5, for a countable subset 6,0 .
SISO
)

Assume now PQ(A) =0 forall 6 €0, .

We have P, (L) = jf@dp = jIALGdP . and hence

A

I,f, =0 a.s. [P] for all o €9 .

By lemma 6

ess sup I, f = I,ess sup £ = I,sup £, =sup I, f =0 a.s.,
gee | 8 ThTTgeg T 70 feca © seo, A70
which implies
IT.f, =0 a.s. for all ¢ € ® and hence

“ATH

P (4) = ledeP =0 forall o €@

THEOREM 12,

ﬂi_‘i
Tet £2 = (x,Cﬂ,PG ! 0 €0) be a dominated experiment. Then

= N co .
=, 1is dominated by a probability measure 1 given by

2
T = zc(e)Pe where c(g) >0 for all ¢ € & and zZc(p) = 1

8 0
(the set of 8's for which c(s) > 0 is countable).
Proof: Choose a countable subser @O C @ with the property

given in theoren 11. Let the elements of @, be ordered in a

Sequence 81,82,... .
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oo
Define T1(L) = I 2—nP6 (A) « ®© 1is now a prcbability measure
n=1 n

on 07, and clearly mw(A) =0 implies P, (L) =0 fFor all n ,
o

which again by the choice of @  implies P (A) = 0 for all

P ,
p € ® ., Hence 1 dominates (- and the proof is complete.



APPENDIX B

MEASURE-THEORETIC — COMPLEMENTS. MARKOV-KERNELS AND
ASSOCIATED BILINEAR FUNCTIONALS.

DEFINITION 1.

A family ég of subsets of a set x 1is called a 7m-system if

éz hag the following properties:

7
(m) el
(r2) ¢,0, e =>onc, b

We observe that a r1—-systein is closed under finite intersections.

) cO ] ) .
Example: Let R  Dbe the set of sequences in R . The product

w o, ,
c-algebra 03 is generated by the sets {(X1,X2,... )

< ~ = -~ _. ) ~ 5 3 -
X < 8y, Ky oy e, X< ar} (where BpseessBy € R) which con-

1
stitute a Tm-system.

DEFINITION 2.

;
A family &) of subsets of a set ¥ 1is called a A-pystem if

Q) has the following properties:

—~

o
-

&

-

(M) B el

02) e =109
(x3) D,,0, €) anda DD, = 8 = D,UD, cQ
o0

C ese => U Di € q) whenever D
i=1 ’

5N
(M) D, €D e

1 D

2 12ttt



Example: ZIet (x,0[) be a measurable space and P,Q proba-
bility measures on (%,Cf) .
Let ﬁ) =tDped : P(D) = QD) . Q) is a A-system.

We recall the definition of a o-algebra:

DEFINITION 3.

A family CX of subsets of a set x 1is said to be a o-algebra
in x if
(1) # el
(02) 4aeld = 1°cl
o0

(¢3) An E(X for n = 1,206 = U Ah € C%
n=1

DEFINITICON 4,

Let }Q be a family of subsets of a set ¥ .

We denote by o(¥), ﬂ(bf), x(AF) the smallest o-algebra,
T-system, A-system (respectively) containing 36 .

The existence of n(3) (A(¥)) follows as in the case of
o(¥) by taking the interéection of all m-systems (A-systems)

containing }e .

PROPOSITION 5,

Avfaﬁily . of sets is a o-algebra if and only if ¢ is botn
a A-gystem and a mn-system.

Proof: The "only if-part is trivial.

Assume_ég gsatisfies the requirements of a n-system and a
A~system.

(01) follows from (A1) and (A2)

(c2) is the same as (A2)
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It remains to show that (¢3) holds.
seee Dbe a sequence of sets in.&f . We Lave

= Anh,% cd vy (A2)

Let .A1,A2

A1 U A2 = A1 U (AZ—A1) . Now AE—A1

and (m2) . Since A, and A,-A, are disjoint, (\3) yields

1 1
A1 u A2 € 36 . By induction we conclude that
g1=Ag“Jmﬂiéﬁ for n=1,2,... . Clearly Dy gDy < ..
and by (M) U D €gl. (c3) follows since A = UD .,
. n n N n
n=1 n=1 n=1 .

LEMMA 6.

Let g} be a A-system and D1,D2 € 5) .

Then D, © D € <D

] = DZ—D

2 1

00f: (D.-T )¢ = (DD C)C¢ = p.C
Proof: (D2 31) (Dzr.D1 ) D, VD, .

But D1 < D, implies ijDZC = @ and the lemma follows from

2
(A3) and (A2) .

PROPOSITION 7.

Let 36 be en arbitrary family of subsets of x . Then
] “ )
() = ru(¥)) .

Proof: It suffices to prove that if a family é% is a ﬁ—systém,
then k(f?) is a o-algebra. It then follows that A(M(X))

is a gu-algebra and conscquently o(df) ¢ A(n(¥)) . The oppo-
site inclusion follows from the fact that we by forming )~ and
m-systems will not get outside the ov-algebra generated by'ée.
By prop. 5 it is enough to prove that x(ﬁi) is a m-system
whenever 8” is a Tt=system,

We first prove the following result:



(1) Dnoenf) zorany CefZ and De r(H) .
Let C, € E . Then@ = {D: Dn C, € }\(Zlyj)} is a A-system
containing [Z o (M), (M3) and (M) are easily verified. As
for (A2), assume D E‘@ s lees DN C, € k(g) . Then

p°n ¢, =0-D=C-(Dn C ). Since Dn C, SO, , lemza 6
applies and shows that D° n C, € &) end hence D° e@

& E@ since 5‘5 is a .ﬂ—system. Hence ?\(Z;) c @ g0

De AM{Z) dimplies D 6@ which.aga,in implies DN Cj € \(6) .
(1) follows. Finally, we will use (1) *to prove. that

D, N D, € x(g) for any D,,D, € ).("{'5) .

1
Let D, € M%&) and 2ot (5\)' = {D: DN D, € ;\(fj’)} .

1 .
. N \D ' ) ,
As in the case of L 9 is seen to be a A-gystem. IFrom

the above result it follows that 3 gj)' which implies
(B D .

Let now D, ¢ M) « Then D, € which is the same as
D, N D, € A(§) . Since D, and D, are chosen arbitrarily,

(m2) is satisfied and )\(8) is a Tm-system.

We give a few cxamples of the application of rm-systems and

A=systems to prove important measure-theoretic results,

EXAMPLE 8.,

Let P, Q be probabilitymeasures on a measurable space (x,G{) .
)

Assume O is generated by a mw-system fg (iees ol = a(5))

and that

P(C) = Q(C) for each C € ’6 o Then P =Q .

Proof: Let 5) = {D: P(D) = Q(D)} . By the example of def. 2,

~ :
L is a \-system containing 5 . Hence OZ = 0(8) = A1(5))

=MB) D .
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The second equality sign holds by prop. 7, the third holds since
82 is a fT~system.

The statement fcllows.

EXAMPLE 9, (Independence.)

Let (x,(f,P) be a probability space.

Two events C1,C2 € Cﬂ ‘are said to be independent if
P(c1 n 02) = P(Gq)P(CZ) . Two families Z? ,Q} 35677 are saiad
to be independent if ¢ Efﬁ , D 6&) = P(C N D) = P(C)P(D) .

e e Vi e B e e e s e

Let 3? = {Cy P(Cn D) = P(C)P(D) for all D eg} | « We observe
that ﬁ: is a A-gystem containing 82 . Hence (&) c @3 )

s0

(2) P(Cn D) = B(C)P(D) zor any CeNE),De D .

Tet now of = {D: P(C n D) = P(C)P(D) for all ¢ ¢ x(fﬁ)} .

¥ is a A-system and (I> c M by (2).

Hence x(Q)) < }6 and accordingly x(éﬁ) and k(ﬁ)) are inde-

pendent.

Remark: If &g and ﬁ), are m-systems, then o(&j) and c(g>)
are independent (prcope 7).

The above results are easily generalized to arbitrary collections
of families. We recall that if T is an index set, then the

/,
families ﬁ%'t ¢t t € T ars said to bhe independent if for every

finite set {t,,.0e,t } €T
4

A e @ A e @, =B nA) = 1 P(A)
1 Jt190ao,n .tn"‘ Yk “k;1 Ak ®

k=1
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DEFINITION 10.

Let W« Dbe a signed measure on a measurable space (x,CX) .
We define the norm of o Dby

Huell = sup ljfdp{ = sup jfdp
[ £l<1 Il £l <1

(the supremum is taken over all measurable real functions on

(x,Q) such that |5l = sup|f(x)] < 1)

C .
XER,

We observe that if 1w is a non-negative measure, then

Hell = w(x) o

DERINITICE 11,

et (x,N) Dbe a measurable space.

M (Cl) is the set of finite signed measures defined on CY (ise.

measures with finite norm).

ﬁ'(CX) is the set of boundcd measurable functions on (%, ) .

The spaces defined above are obvicusly lincecar spaces.

DEFINITION 12,

et (x,C0) , (ff,(B) be measurable spaces.

An Cﬂ—measurable measure ol 6; is a function g Ifrom 68 XX

to R such that
(i) for each = € % , p(o|x) Eum{(ﬂg)

and suplip (o |x)Il <2

*.rE'\/
<M i

(ii) for each B EC‘B, p(Ble) € f‘?(OE) .
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If p 1is non-negative and satisfies

p(Y |x) <1 for all x ¢y , then p is called a gub-Markov

/

kernel,
If p(e|x) is a probability measure for each =x € % , then op

is called a Markov-kernel.

Example: Tet v ELNI(QB) « If we define o : CB Xy =R by

p(B‘X>=V(B)9B€@ s X € X

then p 1s an C%-ﬁmasurable measurs o CB such that each
function p(Ble.)  is constant.

Markov kernelg may Dbe considered as conditional probabilities,

LEMMA 13,

Let (w,OX), (éi,da) be measurable spaces and o an O -neasur-
able measure on ﬁg .

Let ned (OxB) .,

Define g(x) = jh(x,y)p(dy\x) .

Then g € (Q1) .

Proof: TFor each x vy h(x,o) is 62 -neasurable. The inte-
gral defining g 1s thus well-defined for all =x .
Since h 1is bounded, |h| €M for some O <1l <co, Tow

lgGe) | = 1| BEE) o(ay ) | < #ilp (e i

by definition 10. The boundedness of g 1s now a conseguence

of definition 12(i). It remains to prove that g is measurable.
We prove that g is meagurable whenever h is an indicator
function. The lemma then follows by standard extension to simple

functions and monotone limits of simple functions.



td
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The collection §) of sets in CX X 03 such that the lemma holds

for h = I (the indicator function of D) is a )M-system:

(M) is trivially satisfied,

(r2) holds since

[T o Godetar =) = [La-Tp0e3) To (ay 1)

= p(t#{x)—JID(X,j)p(dy\X) , which is a measurable

function of x if D € 5} .

(A3) follows since D D2 €<> , D, D, =0 , implies

1° 1 2

(24): Assune D, € D, £ ... and that

g (x) = JID (x,y)p(dy|x) are measurable function for
n

cC

U D. .

l’l=192,--.. ) Set D= i

i=1

Obvicusly ID q ID . Application of the monotone convergence
n

theorem to the positive and negative part of the signed measure

fe

p(elx) yields g, (x) = |Ip(x,yleldylx) 5 x € ¥

which proves that D Eﬁ) s since the 1limit of a sequence of
mecasurable functions is measurable.
2 Cof oot B
Let C? be the set of rectangles A X B, A E(JZ, B elD.
. . - (’,\ e
It is now enough to prove that 5 < o)« If this is the case,
then since (» 1is a Tn=systemn,

AxB .. o(%) = 2w(B) = () <D

so the lemma holds for all ID ¢ D ECﬁ:KQQ .

Tet now C=Ax B, A ¢, BB . Define
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h(x,y) = IC(X,y) = IA(X)IB(y) . Then

r

JaGx,y)e(dy x) = fIA(X)IB(y)p(dyIX)

Il

g(x)

Il

IA(X)fp(dle) = I,(x)p(B|x)
B

which is a product of two measurable functions and hence -

measurable.

Thus B 55) .

NOTATTIONS

Let £ Dbe a measurable function on the measure space (x,O/[,p).

The following notations may all be used for the integral of =

WeTete M 2

J£an Jams Jreow(an)
f(u(dX))f(X) u(L) pf
fu (£)u

For C € ¥y ng. we define

G, = {y ef:_{_: (x,7) € ¢} , called the section of C WeTetse X o

From now on, let (,({) and (%{;,@) be given measurable
J

spaces.

LEMMA 14.

Let p Eul’é (Ol) and let p be an ;O/L-measurable measure on@ .

Define p X p on O?,/@ by



(2)  uxop(C) = jp(CXiX)M(dX ror ¢ el x@

Then p X p 1is the unique measure on CX x<§3 such that

(4) X p(h % B) = [p(Blx)u(ax)
A :

for each rectangle A X B € Ol x K .

Remark: If p(olx) is independent of x , then p may be con-

sidered as a measure on CB and in this case (3) is nothing but
]

the usual product measurc on Ol x GB .

(4) may then be written g > p(4 X B) = p(4)p(B) .

Proof: Let Ax BeClx® . Then (4 x B), = (

b

B if x € A
g i

Hence (4) follows from (3) by letting C = A X B,

Y

It now suffices to prove that w X p as defined in (3) is
finite signed measurs. The uniqueness will then follow by the
extension theofem for measures (see eg. Royden: Real Analysis
Ch. 12.2). Since p(CX]X) = IIC(X,y)p(dylx) , thie measurability
of p(CX[XQ follows from lemma 13.

Let C,,Chee. be a sequence of disjoint sets in (O x B .

1,
Since
(e @) [ow]
(uc.). = U (c,) ana
i=p 1 F i=1 F
C1X’02x”" are disjoint, we have
oo o @ o Cu
B p(ii10i) = Jp((iijGi)XEX)u(dX) = ji§1p(qng)p(dX) .
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~—~
b
A
1l
s
O
Py
o
N
™
p—
I

(U 6 13| < lip (e )i
i=1

suplip (o ||

h'e
e

In

so the dominated convergence theorem may be applicd to give

co »
wxp(UGCG,) = Jlim £ (z)u(ax) = 1imjf;(x)p(dx)
. i n n
i=1 n n
oo co
= a§1Jp(CiX |xu(ax) = i‘z=11u X p(C;)

PROPOSITION 15.

Let the situation be as in lemma 14 and let h edb (LU x®) .

Then

(5)  [na(u % p) = | [[nle,y)e(ay |x) Julax)

Proof: The expression on the right is well-defined by lemma 13.
By the preceding lemma, (5) holds for indicator functions. The
statement fcllows by standard extencsion to simple functions and

monotone limits of simple functions.

Remark: If p(e|x) is independent of x , then (5) states the

same as Fubini's theorem,

COROLLARY 16,

bxp e M(OLx®B) . In fact, e * ol < Ukl sup |lp (o Il

e

Proof: Iet h GUN((CXV<53 ) Nhil <1 .
Then



jhd(u X p) = j[fh(xyy)p(dY{X)]u(dX) < [jui] Sgpﬂp(oiX)H

L

by definition 10, since for each x €

)

| nGe,3)eay =) ] < lio (e

(again by def. 10).

DEFINITION 17,

et p e M (Ol) and let p be an Ol - measurable measure on
63 o We define dp on 63 by

r‘
|

bp(B) = X p(x X B) = |p(Blx)u(dx) for B¢ R .

Mp 1is obviously a measure, since u X p is .

Remark: If p(B{X) is considered as the conditional probability
of the event B , given x , and W 1is the probability distri-

bution of x , then wp is simply the unconditional probability.

PROPOSITICN 18,

(i) TLet £ Eg\’ (B) . Then

() (2) = [ £(r)e(ay | (ax)

(i1) Huell < lindlesupllp (e |l o Thus up e M @) .

L

Equality sign holds if p is a Markov-kernel and p > O ,

(iii) The mepping W = pp is a linear mapping LNI(Cﬂ) ~M@®B) .

Proof: By the definition of pp , (i) clearly holds if f is
an indicator function. (i) ig now proved by the standard exten-

sion procedure.
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The proof of the inequality in (ii) is similar to that of
corollary 17.
Assume now that p is a Markov kernel and p a non-negative

measure. Then po 1is obviously a non-negative measure, SO

ool = (up) (&) = fp(&}lX)u(dX) = lulax) = oy .

J
The linearity of the mapping p - up follows at once from the

definitione.

DEFINITION 1S.

Let g ¢ 3‘ (@) and let p be an OZ -measurable meagure on@ .

Define for each x £ ¥
(pg), = fg(y)p(dy|X)

Remark: If p 1is considcred as a conditicnal probability then

(pg)x ig the conditional expectation of g , given x .

PROPOSITION 20,

(1) pg e ¥ QU

(ii) The mepring g - pg is a linear mepping & (@) - (o) .

Proof: (i) follows from lemma 13,
The linearity of the mapping g - pg 1is obvious by definition

19,

PROPOSITION 21.

Let p € J4 (Cﬁ) s 8 € S: (63) and p be an ()(—measurable

measure on 63 e Then

(Lp)(g) = n(pg)
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Hence parantheses may be omitted and the expression ppg is

well-defined as a bilinecar functional in p and g .
Proof: u(pg) = Jr(pg)xu(dﬂ =J[Jg(y)p(dyIX)]u(dX) = (up)(g)
by prop. 19 (i).

Remark: Let p and p have the same meaning as in the remark
succeeding definiticns 17 and 19. Then prop. 21 states that the
expectation of g may be found either by integrating g w.r.t.
the unconditional probvability pdp or by integrating the con-
ditional expectation of g given x w.r.t. the probability

distribution p of x .
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THE WEAK COMPACTNESS LEMMIA.

DEFINITION 1

An indexed femily {6a : 2 € I} of real random variables on a

probsbility space (X,CY,P) is said to be uniformly integrable

S if

sup [ |6 |aP = 0 when ¢ - .

PROPOSITION 2

The family {6a} is'uniformly integrable if and only if the
following two conditions are satisfied:

(i) sup |ls ]aP <=
a ! e

(ii) To any € > O there is a mn_ > 0 such that

(1) PM) <n, = |[s,aP| <e forall acI.

A

L3

Proof: ~only if":

For a svitable ¢ >0 , sup | !6ai <1.

jléai _ E |5&l N j |8, <c + 1, so (1) follows.
[s l<c s |>c
o 1 T

Let ¢ > 0 &and choose ¢ so that
sup j [og] < e/2

% lo,l>c
Let A € CX . Then

|jaa| < ggr‘]aa! = JF o |+ JzP lo, | < cP(a) + e/2

A A ﬂﬂ{‘éa‘<c} An{ls,lzc]
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A

< —-.§__ I 1-\ ’
Choosing n. = 57 and P(4) < e  yields 1{6a1 < e¢ for any

a € 1. A

“if': Let e > 0 and choose 1 so that (1) holds., Then, if

P(A) <n, for any g € I ,

. r r r
(2) J‘éa! = iéal L léal
A Aﬂ{6@293 Aﬂ{6a<O}
o N O N -
£n{s 0} An{s <)

By the generalized Chebycheff's inequality,
N

l ]
Q.
P(Jo | 2 ¢) < —5* =<
so for some c¢ > O P(iéal >c) <n forall o €I by (i).

4

Hence, by letting A = {{6u1 > ¢} in (2), uniform integrability

18 proved.

THEOREM 5 (THE WEAK COMPACTNESS LEMMA)

Let <X,C19P> te a probability space end let {6a': a € I}
be a neb (generalized sequence) which is uniformly integrable.
Then there is a subnet {68} and an integrabel & so that

-

18 hdP - f@th for all h € L (P)

B
(i.e. for 211 (essentially) bounded measurable functions h ).
EEEEQ:. It is encugh tc consider non-negative §'s. Let

Ih|l = ess sup h ; h € QI§P) .

For each o € I we define a linear functionsl Fa on ngP)
oy

N
ba(h) = Jéahd‘

ow, [P ()| < nllle P < cofnf
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where ¢ = sup jéadP < oo by prop. 2.

Hence |[F !l <c for any a € I (i.e. Fa is continous).

and F_ € 1 [-clhnll , clinl]
% her (P)

oo
which is compact by Tychonoff's theorem (Royden Ch. 9).
Hence, there is a subnet {FBE so that
(3) Fe(h) - F(h) for all h € QI§P) for some functional F .
P is §bviously linear, since it is a (pointwise) limit of linear
functionals. Furthermore, ||F|| < c , since

F(a) € [=cllhj] , clhll] for each h .

Hence F i1s continuous.
Since the &'s are non-negative, it follows that F > O (i.e.
h >0 =>Fh) >0 ).
We will now prove that there is a 5 > 0O so that
(n) = EhSdP for all h € Lxﬂ?) » The lemma will then follow
from (3).
Define a set-function o on (jlt@f w(h) = F(IA) for all ALE(Y
~Clearly ¢ > 0 . By prop. 2 (ii), to any ¢ > O  there is a
n > 0 such that P(A) < n = EBBIA < e for all 3 .
This is equivalent to FS(IA> < é for 211 8 , which again
implies o(4) = F(IA) <e,
Hence
() P(A) <n => p(a) < ¢ .
This fact, together with the fact that « is finitely additive,
implies that o is o-additive.
Purthermore, o(yx) = F(1) = lim fég;g C .
Thus ¢ is a finite non-negative measure on (X,C?) and by (4),
o << D . _ .

By Radon-Nikodym's theorem there is a measurable function 5 >0

so that



F(Iy) = oy =

It follows that

r AY
{

Ehdw = (h8dP for any h € QxﬁP) .

J
Einally, we have to prove that

(5) F(n) = ‘e for all h € I_(P) .

By the definition of ¢ , (5) holds for indicaetor functions and
hence by linearity for simple functions.

Since I 1is continuous,

F(lim h) = 1lim F(h) and thus (5) follows from the fact that

each h ¢ I&;P) may be written as a segquence of simple functions.

REMARK 4

If we in add.ition reguire

supﬂéain < oo , then the lemma will hold for all hGELq{P)
o

(i.e. the set of measurable functions which are integrable
Welobe P ).
This is easily proved by epproximeting h € Lq(P) with

functions in LﬁﬁP} .

REMARK 5

The weak compactness lemma (snd the extension noted in remark 4)
has an analogue where '‘net’ is replaced by 'sequence” and
"subnet is replaced by "subsequence’. The proof of the
sequentiel version of the weak compactness lemma may be found
in [2] in the case where Ol is separchel (i.e. (}? = G(GB)

~
for a countable family Ciﬂ of subsets of % ) . The proof in

the general case is given in (177,
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REMARK. 6

Consider again theorem 3. We shall say that the subnet {55}

converges weakly to 8 if the conclusion of the theorem holds.

(Bimilarly for the sequential case.)
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- APPENDIX D

RESEARCH PAPERS. ABSTRACTS.

COMPARISON OF EXPERIMENTS WHEN THE PARAMETER EPACE IS I'INITE,
Bj E.lN. Torgersen.

Z. Wahrscheinlichkeitstheorie verw. Geb. 16, 219 - 249 (1970).
The convex function criterion for "being morevinformative' for
k-decision problems is generalized to a convex function
criterion for e-deficiency for k-descision problems. The
narticular case of comparison by testing problems is discussed.
A theorem of Blacltwell on comparison of dichotomies is general-
ized and a problem on products of experiments raised by
Blaclkwell is settled by counter-example., Pairwise comparison
of experiments and minimal combinations of experiments are
discusszed. The prcoblem of composing and decomposing experimenté
by wmixtures 1s treated. It is shown that any experiment with
finite parameter space is a mixture of complete éxperiﬁents,

and the complete experiments are characterized,

COMPARISON OF TRANSLATION EXPERIMENTS.
By E.N., Torgersen.

Ann, Math. Statist. 43, 1323 - 1399 (1972).

In this papef we treat the problem of comparison of translation
experiments. The ‘convolution divisibility” criterion for
“being more informative~ by Boll (Ph. D. dissertation, Stanford
Univ., 1955) is generalized to a 'emconvolutipn divisibility" |
criterion for e-deficiency. We alsco generalize the ‘“convolution

divisibility" criterion of V. Strassen (Ann. Math. Statist. 26,

42%, 1965) to a criterion for "e~convolution divisibility .
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It is shown, provided least favourable "e-factors' can be found,
how the deficiencies actually may be calculated. As an appli-
cation we determine the increase of information - as measured

by the deficiency -~ contained in zn additional nuwber of
observations for a few experiments (rectangular, exponential,
multivariate normal, one wey layout). Finally we consider the
problem of convergence for the pseudo distance introduced by
LeCam (1964) [7]. It is shown that convergence for this distance

o

ig topologically eguivalent to strong convergence of

ot

he

individual probebility measures up to a shiftv,

LCCAL COMPARISON OF EXPERIVMENTS WHEN THE PARAMETER SET IS ONE
DIMENSIONAL,
By E.N. Torgersen.
Statist. Research Report, Inst. of Math., Univ. of 0Oslo, No. 4,
1972,
This paper treats comparison of experiments within infinitesi-
mal neighbourhoods of a fixed point eo, in the parameter set.
If 5, is the deficiency in LeCam [7] within [o_-e, 5 1€l ,
then 66/26 -5 as e -0 provided strong derivatives exists.
Related to & is a pseudo metric Ao B is a “deficiency"
between pseudo experiments i.e. “experiments” where the basic
measures are not necessarily probability measures. Soms known
results on experiments are extended to pseudo experiments.
Vérious charaotérizations? deficiencies and pseudo distances
for the relevant pseudo experiments are oonsidered.. Particulari-
v interesting representations are: probability distributions
with exmectation zerc (this representation'convertslproducts to

convolutions), concave functions describing the relationship
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between size and slope for testing 0 = eo” against ”8:>GO” 9
and strongly unimodal distributions. Conditionsl sxpectation

- and factorization criterions for sufficiency are given.

LOCAL COMPARISON OF EXPERIMENTS.
By E.N. Torgersen.

Stetist. Research Report, Inst. of Math., Univ. of Osloc, No. 5,
1972.

In this paper we generalize most of the results in Research

0

Report No. 4, 1972 to the case of a finite dimensional parameter

set,

MIXTURE AND COMPLETENESS PROPERTIES OF DOMINATED PSEUDO
EXPERIMENTS.

By E.N. Torgersen.

Statist. kesearch Report, Inst. of Math., Univ. of bslo,'No, 7
1972,

In this paper we generalizes gsome of the results in section 4
in Tofgersem [16] to the case of dominated (pseudo) experiments.
Convex combinations of.(pseudo)_experiments are defined, and it
is shown that a (pseudo) experiment has the extreme point
property (for A equivalence) if and only if it admits a
boundedly complete and sufficient sub o algebras.

Dominated models for independent observations X,!,,.,...,,X.n ad-
nitting boundedly (Qr LP ) complete and sufficient statistics,
are considered, t is shown that a sub set - say Xq,o.o,Xm
where m < n - has the same property provided a certain
regularity condition is satisfied. This condition is auto-
métically satisfied when the observations are identically dis-

tributed. The proof - in the case of bounded completeness -
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utilizes the feact that products of experiments are distributive
W.r.t. mixtures. Somewhat more inveclved arguments are needed

for LU completeness.

COMPARISON OF LINEAR NORMAL EXPERIMENTS.
By Ole Havard Hansen and E.N. Torgersen.

Arm, Statist., Vol. 2, No. 2, 367 — %7%, 1974,

Consider independent and normally distributed random variables
Xq,aoeaXn such that O < Var Xi =07 3 1 ="1,e0.,k and
E(Xq,ooo,Xn)' = A'B where A' 1is a known n x k mnsatrix and

B = (Bq,a.a,sk)' is an unknown column matrix. [The prime
denotes transposition], The cases of known and totally unknown
52 are considered simultaneously. Denote the experiment ob-
tained by observing X,{,,M,X11 by é:A . Let A and B be
matrices of, respectively, dimensions n, X kX  and np X kK .
Then, if 62 is known, {(if 02 is unknown) é A is more in-
formative Than E:B if and only if AA' - BB' is non negative

definit (and n, > n,+rank(fAA' ~ BB') ).

I
o= D

ASYMPTOTIC BEHAVIOUR OF POWERS OF DICHOTCMIES.
By E.N., Torgersen.
Statist. Research Report, Inst. of Math., Univ. of 0Oslo, No. 6,

1974,

Consider random variables X,Y,... whose distributions are
known except for an unknown parameter o Dbelonging to a known
'twofpoint set. Let Xq’X29°°' and Yq,Y seoe Dbe independent
observations of, respectively, X and Y . How does the in-
formation yiélded by (Xq,Xzﬁ.ao,Xn} compare with the in-
formation yielded by (Y19Y2’°°°’Yn> when n is large?

Let &AQa. and Jdi denote, respectively, a totally informative
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and a totally uninformative experiment. Furthermore denote by
A the distance between experiments introduced by LeCam 1964.

Then, for any veriable X :

d .
1 - s, M1y < A(X,"Ma> < 2;:@%:%3

Combining this inequality with Chernoff's result on the expo-

nential rate of ﬂsvmptothue Baye's risk we find that

/A\(-l-qa f\scoor)-“- ) (Yzla*g-oeo’Y \> - IuaX(CX,VY)

provided the experiments defined by X and Y are not
equivalent. Here cX(cY) denote the grestest lower bound of
the Hellinger transform of X(Y) .
In order to obtain inequalities for concave approximations to
the kernel of the Hellinger trancform, we generalized the sub
linear function criterion as follows. Let (X,Cﬂ) and
(tjséB) be measurable spaces with, respéctively, probebility
measures P,,F, and Q,,3, . Suppose the dichotomy
éi:: CCXaCjD,(anPg)) is (eq,e,) deficient w.r.t.
= ((25’65>’(Q4’Q2)) . Then, for any convex function: ¢ on

00,11 ,

eqle" (1)-((1)-p(0))] + 62 (M) =p(0)) - o' O)}?_‘Lf@d(’l‘«s)

where S 1is the distribution of QP2 *q+P2 WeToTo
(P1+P2)/2 and T is the distribution of ng/d(Q/+Q9) WaTobo
(Q1+Q2)/2 . (It follows directly from the testing criterion
for comparison that it suffices, in order to verify (eq,eg)
deficiency, to consider functions ¢ of the form: X- |X-o0]

where 0 € JO,1[ .)



COMPARISCN OF EXPERIMENTS BY FACTORIZATION
By &.¥. Torgersen
Statist. Research Report, Imnst, of Math., Univ. of Oslo,

Weo. 3, 1974,

Consider random variables X,Y,... whose distributions are

known except for an unknown parameter 6 Tbelonging tc a known

finite set ©® . Identify each variable with the experiment it

defines and write X ~ Y 4if X and YT are equally informa-
tive. Ve give first, for givem X and Y , a functional
criterion for the existence of a Z , independent of X ,
such that Y ~ (X,Z2) . Combining this with a result on con-
sistent families of experiments, we prove that X vhas the
property that any more informative Y idis ~ (X,Z) for some
Z independent of X 1if and only if there is a L ~ X such
that:

(i) X 4is, with probability 1 , a non empty sub set
of © .
(ii) RBach 6 Dbelongs to some possible value of T .
(ii1) If U, # U, are possible values of X then

(iv) If U

r~

of X such that U;jn U, , £ @ 3 i=1,.00,n

= U1,U2,...,U are n possible values

n+1 n

then U5 £ 0 .
i
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