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0. 1 

0. INTRODUCTION TO CHAPTERS 1 ~8 ,, 

A non-sequential statistical experiment (or a sequential 

experiment with given stopping rule) consists of three parts. 

The first is a listing of the possible outcomes. This is the 

sample space of the experiment. The next p2rt, the parameter 

set, is a listing of possible explaining theories. Finally 

there is the correspondence which to each explaining theory 

assigns the chance mechanism governing the random outcome. 

These parts will, r2spectively, be formalized as: A measur-

able space (say (x,Ot)) , a set 8 and a map (say e -> P 8 ) 

from this set to the set of probability measures on the measur-

able space. Combining the notations used in the three paran-

theses above we may write the experiment in the form~ 

Most papers on experiments have treated intrinsic problems 

of experiments, i.e. the structure is assumed 

given and we investigate various derived or related structures. 

We may here think of the general theories of sufficiency, com-

pleteness, nnd invariance or on particular decision problems. 

The theory of sufficiency, however, indicates the need of a 

theory where tho objects are themselves experiments, This 

become quite clear if we consider the equivalence (under various 

regularity conditions) of the 11 conditional expectation" defini-

tion of sufficiency and definitions (or criterions) for suffi-

ciency in terms of risk functions. 

A theory of experiments should be a theory of the statisti-

cal information carried by the experiments. Otherwise stated: 

an experiment should be identified with the statistical infor-
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mation it contains. It appears, however, difficult to provide 

a reasonable and explicit definition of statistical information. 

We avoid this obstacle l)y asking the fundamental question: 

-\i\fhen does an experiment contain more information than 

another? 

Our tasks is then to 

( i) De fine n more inf orma ti ve than" 

and 

(ii) Provide criterions for "more informative than". 

From a decision theoretical point of view the following 

definition is natural: 
0 

Let G 

meter set 
!"'._ 

and 

El • 

:S:- be two experiments hs.,ving the same para-

~ Then we shall say that v is more informative 

than .J= if to any decision problem and any risk function 
~ 

which is obtaii12ble in Y corresponds an everywhere emaller 

risk function obtainable in ~ 
In this way we arrive at the partial ordering "being more 

informative than" for experiments having the same pctrameter 

set 

where 

tJ • 

~ 
G 

The concept cf sufficiency corresponds to the case 

is e, sub experiment of ~:' • 

It is with this kind of a definition 9 to be expected that 

the ordering is not total. In fact we may, in general, expect 

that two experiments having the same parameter set ® are not 

comparable with respect to this ordering. Thus we 2re led to 

the following generalization of the fundamental question: 

How much do we loose, under the worst possible circum­

stances by using t instead of t' 9 

An answer to this problem may, as we shall see, be given by 

a non negative number~ the deficiency of t with respect to ~ • 
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Closely associated to the notion of deficiency is a 

distance for experiments or 9 equivalently, for the (undefined) 

amounts of information carried by the experiments. 

Finally we may restrict attention to certain types of 

decision problems. This lead to deficiencies and distances 

relative to the relevant type of decision problems. 

The main results of these 8 chapters are the various bounds 

and criterions for deficiencies. 

Here is an outline of the content. 

Chapters 1-2 and appendices A-C contain various mathematical 

tools~ which are useful for the general theory, not only for 

these first 8 chapters. Chapter 3 is a short introduction to 

some of the main concepts of statistical decision theory. 

Our investigation of statistical experiments begin in 

chapter 4. The formal definitions of the deficiency o and 

the definiency for k-decision problems ok, k = 1,2, ••• are 

given here. Closely related are the distances 6, ~ 1 , 62 , •••• 

Using a minimax argument we derive in chapter 5 three 

criterions for deficiency. The first is a Baye's risk criterion, 

the second is in terms of operational characteristics (performance 

functions) and the last is in terms of sublinear functions and 

the functionals they define for experiments. It is shown that 

any experiment is equivalent (i.e. 6-equivalent) to a certain 

experiment having the set of prior distributions as sample space. 

This experiment is called the standard experiment of the given 

experiment. Any standard experiment is uniquely defined by a 

certain probability measure on the set of prior distributions, 

the standard probability measures. It may be shovn1 that the 

distances 62 , n3, ••• and 6 all define metrics on the set 

of standard probability measures which all yield the usual 



weak* topology for standard probability measures. This imply, 

by a standard compactness argument, that the metrics are all 

equivalent and equivalent to~ for example, the Paul Levy 

diagonal distance. The results in chapter 5 described so far 

are all derived under the assumption of a finite parameter set. 

It is finally shown how problems on general parameter sets may, 

provided the experiments are dorninated 1 be rec1uced to the case 

of finite parameter sets. 

In some situations, general comparison may be reduced to 

comparison by testing problems. This is, in particular, true 

for dichotomies and in the case of sufficiency. Convergence, 

in the case of a finite parameter set, may always be decided 

by testing problems. Some of the basic results on comparison by 

testing problems are derived in chapter 6. 

A very useful and reasonable criterion for deficiency is 

the Markov kernel criterion. This criterion, which is closely 

related to the operational characteristics criterion of chap­

ter 5, is the main topic of chapter 7. We restrict attention 

to dominated experiments having, essentially, Euclidean sample 

spaces. The last condition might easily have been avoided 

provided we had replaced our Markov kernels by Markov operators. 

As stated above, the notion of "being more informati.ve 11 

for experiments 9 generalizes the notion of sufficiency. Actu­

ally this may, as is shown in chapter 8, be turned around. 

Chapter 8 provides an introduction to the theory of sufficiency. 

In particular we show, for dominated experiments~ the equival­

ence of iirisk sufficiencyn and nconditional expectation" suffi­

ciency. Some of the main results on pairwise sufficiency, 

minimal sufficiency and completeness are derived. 
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A review of some of our own research reports on the sub-

ject is given in appendix Do 

These notes, i.e. chapters 1-8, are written in order to 

( . I l, bring together, fer easy reference, various background 

material (chapters 1-3) needed in introductory courses 

on comparison of experiments, decision theory and related 

subjects 

(ii) provide a short introduction (chapters 4-8) to some of 

the basic results on comparison of statistical experiments. 

No new ideas or results are given here, - except for some 

of Lindqvist 1 s interesting exaTiples. References are given only 

sparingly and then somewhat biased towards our own interests. 

Host of the basic :results (and references) are, hmvever, con-

tained in Blackwell [ 1], [ 2] and in Le Cam [21]. vle refer the 

reader to Sion [13a] for references on minimax theorems. The 

notion of €-deficiency of one experiment relative to another 

was given by Le Cam in [7]. This generalized the concept of 

"being more infor~1mtiven which was introa_uced 1Jy Bohnenblust, 

Shapley and ~1herma.n and may be found in Blackwell [ 1]. Standard 

experiments and standard m0asures were used by Blackwell in 

[1]. Blackwell introduced also, in his paper [2] 9 comparison 

for k decision problems. The hybrid of "e-deficiency for 

k-decision problems 11 were treated by the author in [16]. 

We refer the reader to Le Cam [21] and Heyer [6] for 

historical remarks and further reading. 

Finally ·we want to express our gratitude to Ruth :Backer 

and M&rgrethe Bjerkeskaug who typed these notes. 

Oslo January 1975 

Erik N. Torgersen 
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1. CONVEJ111 

NOTATIONS .AlJD TERHilJOLOGY 

~ is the set of k-tuples x = (x1 , ••• ~xl<;) ·where 
l.r 

ai·e real numbers~ The elements of R~'- · are called v2ctors 

or £Oints. 

The inner :2roduct of two vectors i( -'- and y is defined by 

k 
<x~y) = Z x.y. • . l l l 1::::- . 

1 

The no:rm of a vector x is given by llxll = <-- v" 2 x, _,~/ 

The line segme~G between two points x and y is the set 

The linear sp~ of a set of vectors .A is by definition the 

set of all linear combinations of vectors in .A and is 

denoted [A] • It is tho minimal linear space which con-

tains Ji. .. 

iJ.l sets occurring in this chapter are assumed to be in Rk , 

unless otherwise stated. 

DEFINITION 1. 1 

A set C is said to be convex if 
~ ... 

x,y E C => [x,yJ ::;:. C • 

A set A is said to be oJ:'fine if 

x, y E A => ( 1-t )x + ty E A for all t E R • 

PROPOSIT~ 

(i) The collection of convex sets in 

arbitrary intersections. 

k R is closed und..er 
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(ii) The collection of affine sets in is closed m1der 

arbitrary intersections. 

(iii) Rk is both convex anG. affine. 

Proof: The statements are easy consequences of the definitions. 

PROPOSITIOliLJ .]_ 

Given a set S, there exists a convex set K with the following 

propE:rties. 

(i) S c K 

(ii) if C is convex and S :::, C , then K c C 

K is thus the minimal convex set ·which contains S • The set 

K is denoted (S) aJ.1.d is called the convex hull of S • 

Proof: J?ut K = n { 0 ~ C convexjl S c cl 

Given a set S, there exists a minimal affine set A w·hich 

contains S • The set A is denoted aff S a.nr1 is called the 

affine hull of S • 

Proof: Put B affine, Sc Bl 

PROPOSITION 1.5 

Let C be a convex set and led; x 1 9 ••• ,xr E C • If 
r 

are non-negative nur11bers such that E t . = 1 , then 
. 1 l 1:::; 

r 
I t .x. E C ~ 

. 1 l l l= 

points 

We call Et.x. a convex combination of the 
l l 



Proof: We use induction on r • If r = 2 , the statement 

follows frow_ the def ini ti on of convexity. .t...ssrune no-w that it 

is proved for r = p-1 • Let x y 1 1 G e 0 '~~p E c and 

p 
t 1 t ~ •• 'tp > 0 1 L: t. = ·1 We have t. > 0 for at least one 

. 1 l l 
l= 

i and we may assume ..L. > 0 
' 

[., • p Further~ we may as SllliW tp < 1 

(If t = 1 p ' 
then the stat2ment 

By the induction hypothesisj y = 

is trivial.) 

p-1 ti 
2: ~x. E C . 1 1- [., l 

, sL""lce 

1 • But 
p 
~ t.x. = (1-t )y + 

. 1 l l p l= 

l= p 
p-·1 ti 

i~1 1-1; = 

y ,xp E C • This proves OUT statement. 

PROPOSITION '1 .; G 

Let A be an affine set and 

r 

t x E C p p 

If 

r 

, since 

are real nwJ1bers such that 

r 

L: t. = 1 , then 
. 1 l 1= 

I: t .x. E A • 
. 1 l l l= 

We call I: t .x. 
. ,. l l 
l=l 

~affine combination of tho points 

Proof: .Analogous to prop~ 1.5. 

PROPOSITION 1.7 

Let S be an ar-bi trary set in Rk • 
Then 

(i) (S) 
r 

=!I: t.x.:x1 , •••• x E 
i=1 1 1 · r 

r 
S,t1 , •• ~ ,tr2: O~ :S t;= 1,r=1,2, ••• j 

i=I .1. 

r r 
(ii) affS=l _I:1tixi:x1 ,.,.QfxrE S,t1 , ... ,trE R, 2:: ti= 1,r=1,2P .. } 

1= i""1. 

i.e. (S) is the set of convex combinations and aff S is the 

set of affine combinations of points in S .. 



Proof: (i) Denote the set of convex combination of points in 

S ~ c8 • Cn is obviously a convex set containing S 1 and 
0 

hence (S) c c8 • The opposite inclusion follows from prop. 

The proof of (ii) is analogous. 

PROPOSITION 1.8 --
Let A be an affine set 821d x E A • Then A-x = jy-x:y E Al 
is a linear subspace 01· Rk • 

Proof: Let a-x, b-x E .b.-x • If a, p &Te real numbers, theil 

a(a-x)+P(b-x) = aa+µb+(1-a-p)x-x E A-x 

since ~a+Pb+(1-a-p)x is an affine combination of points in A • 

PROPOSITION .J~ 

Every affine set is a translation of a linear spacej i.e. if A 

is an affine set, we can write A = x+V , where x is an arbi­

trary point of J:1 and V is a linear subspace of Rk 

Moreover~ the space V is uniquely determiJ.1.ed by A • 

Proof: Let x E A ancl define V == il.-x • Tho first part then 

follows from prop. 1.s. 
lLssume no·w x 1 , x 2 E A and put v1 = A-x1 ~ V 2 = li .. -x2 • To show 

uniqueness WO have to ShOVJ that V1 = V 2 

Let Then v = a"'.{ 1 - .. 1 for an a E A ., 

Writing v = 
1 

we see that Hence 

V1 ::::; V2 • By symmetry, V2 S:: V1 and the proof is complete. 



PROPOSITION 1®10 

Given a set S and a point s 0 E S • 

Then aff S = s 0 +[S-s 0 ] • 

Proof: ThJ prop. 198 ~ af f S-s is a 
-~ 0 

linear 

S-s c af f S-s ·+ follows by the minimo.l 
' 

lu 
0 - 0 

rs-s ] 
i. 0 

that [S-s 0 J c af f s-s 
0 • 

r 

space, and 

property of 

Let novr a E af f S , Le., a = I: t.x . vrhere 
• -1 l l 
l=1 

l 

since 

x x E S Vie can write 1, ••• , r .. a = s + I: t. (x.-s ) ~ which shovrn 
c . 1 l l 0 l= 

that a E s +r S-s ] o 
0 ... 0 

DEFINITION 1o11 

Let A be an affine set and assume A = x+V for an x E A • 

We define the dimension of A , denoted dim A , by dim_ A=dim V. 

(V is uniquely determinod by prop. 1.9, so dim A is well-

defined.) 

PROPOSITION i,!12 

Let s be an arbitrary set. Then 

(i) 0 E af f s => dim af f s = dim [SJ 

(ii) 0 rj_ af f s => dim af f s = dim [S]-1 • 

Proof: (i) Assume 0 E aff S • We may then assmne 0 E S , 

since neitrier aff S nor [SJ is influenced by th.is assumption. 

From prop. i .10 we now get aff S = [SJ • 

(ii) Assume 0 ~ aff S and let s 0 E S • We contend that 

[SJ= [s0 ]E8 [S-s 0 ] (clirect sum). Clearly, [SJ= [s 0 ]+[S-s 0 ] 

It remains to show that [ s 1 r: Is- s ] = l o j • 0 .J = 0 Suppose 
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so E [ S-s0 J • Then by definition of [S-s0 J ,, 
r 

"" = L: t.(s.-s ) for t1, ••• ,tr uo i=1 l l 0 
E R and s1, ••• ,sr E s 

' 
and hence 0 = (1 +Zt. )s -L:t .s. • l 0 l l 

This shows that 0 is an 

affine combination of points in S , i.e. 0 E aff S , which 

gives a contradiction. Hence [s 0 ] n [S-s 0 ] = !Ol and 

dim.[S] = dim[s 0 ]+dim(S-s 0 ] = 1+dim.[S-s0 ]. 

DEFINITION 1.13 

If x E Rk and e > 0 , the open ball with center at x and 

radius e ie defined to be the set 

N(x, e) = {y : lly-xJI < e J 

A point x is said to be an interior point of a set S if 

there exists an e > 0 such that N(x,e) ::=, S • The set of 

interior points of S is called the interi0r of S and is de-

noted s0 Clearly, s0 c S • We say that S is open if 

so = s • 

The closure of s is the set of points x in Rk such that 

N(x,e) n s I: 0 for all e > 0 • It is denoted s Clearly, 

s cs • s is said to be closed if s = s • 

The boundari of s is def incd by s-s0 • 

The following propositions are stated without proof: 

PROPOSITION 1 • 1 ~-

If s is an arbitrary set, then 

so = U!G . G open, Ge Sl • -
s = n !F F closed, F '.:) Sl 



PROPOSITION 1~15 

Let s be an arbitrary set and x a point in k R ~ 

I. 7 

Then 

x E S if and only if there is a sequence !x l in S such 

that x = lim x n 

DEFINITION 1.16 

n 

Let h be a set. We uow introduce the concoDt 11relativelv A:~ 0 
~ -" -

If a E A , we define the open ball relatiyel.;L_.h. with center at 

a and radius E: to be the set N(a, E:) 11 .A (where N(a~ e) is 

defined in 1.13). By use of the open ball relatively A we may 

now generalize t112 concepts of 1 .13. 

For example, let be a set and s c x E S is said to 

be an interio .. c point of S relatively A if there is an 

e > 0 such that N(a,s) n Ac S • 

PROPOSITION 1.17 

Let C be a conv2x set~ and lot x E c0 
1 y E C • Then: 

[x~yJ-!y\;: c0 (v.rhere [x,y] == !(1-t)x+ty t E (0,1Jl ). 

Proof: Since 0 x E C , ther·2 is an E: > 0 such that 

N(x, e) c C • 

Let z = (1-e)x+Sy for a o E ]0,1[ • 

We have to prove that z ::: c0 o We contend that 

N(z,e(1-e)) ~ C • 

Let 

that 

z 1 E N(z, c: ( 1-e)) and choose 

z-z 1 
x-x' = - , which implies 

1-0 

Hence x' E N(x,e) so x 1 E C • 

x' :::: _j_(z'-A1y) We find 1-8 J • 

!lx-x 1 !I:::: Ii z-z 1 II < e 
··j"'0..9 



Since now z 1 = (1-e)x 1 +sy , it follows that z E C by con-

vexity of C • Hence N(z,s(i-8)) c C and the proof is 
• = 

complete. 

COROLLARY 1.18 

If C . tl c0 i·~ is convex, 1en _ convex. 

PROPOSITION 1 a 'l 9 

If C is convex, then C is convex. 

Proof: Let x 1 y E C and put z = (-J-t)x+ty (0 ::; t < 1) 

By prop. 1o15 there are sequences !xnl and ~ y l 
l n in C 

such that Y -7 v • 
11 v 

We def inc z = (1-t)x +tv n n Jn 

Now l z } n 
is a sequence in C , and hence z E C , since 

PROPOSITIOH 1.20 

Assume C c A 1 where A is an affine set and C is convex, 

Let x be an. interior point of C relatively A and y E C 

Then all points z E [x,y] , z -/= y ~ are conta,ined in the 

interior of C relatively A • 

Proof: .AJ:1alogous to 1.17. 

LEMJvr._A 1 • 21 

Assmne C c .A i A is affine and C is convex. If 0 is an 

interior point of C relatively A , then 0 E C • 



Proof: Since A is closed, Cc A • Hence 0 ~ A and A is 

a linear spacee Let be a basis of A • By the 

assumptions there is an c > 0 such that N(O, c) r-i A c C @ 

We can find n > O such that 

h 
T1a1 , ••• 9 TJah ~ -11 I: a 1 E H(O~s) , and we may thE::refoI:'e choose our 

i=1 
basis of A so that 

-1 , h . 
~I ll ~ l r -c 
u t•••,a , - ~a c • By prop. ·1 .15 

i=1 
there are sequences lx1 } i = 1 ' ••• 'h 

h n 
i ai ai v-j_ x -7 Yn -7 - 2:: Yn E c n p -''"n ~ . 

i=1 

lYnl such that 

For n sufficiently large, v 1 h 
-'~n '• • • ~ xn are linearlv indeuen-u _. 

dent and thus constitute e, basis of A • Hence thore are num-

be rs t i SC that 
n 

Since i Yn .._,, -I:a , it follovrn that 

for sufficiently 
h . . 

y - I: t 1 x 1 = 0 n . 1 n n 
l= 

large i 
n , tn < 0 , i 

11 . 
Division by 1- ~ t 1 

i=1 n 

as Hence 

We have 

(which is now greater 

tha:n. 1) sllC'ws that 0 may be written as a convex combination of 

points in C o It follows that 0 E C • 

PROPOSITION i.22 

(n)o """' r<o Assu.me C c A , C is convex and A is affine. Then _ ~ - ~ 

where 0 denotes interior relatively A • 

(-c)o . Proof: Let z: E Q Obviously C-x is convex and A-x is 

affine, and C-x c A-x • Since .x E (c) 0 
9 0 E (C-:x) 0 • ( 0 now 

denotes interior relatively A-x • We remark that the topologi­

cal properties of a set are not affected by a translation.) 



J.10 

The preceding lemma yields O E C~x , i.e. x E C and hence 

(-c) 0 c C • Since (C) 0 is open (relatively A) ·we have 

(-c) 0 c c0 b 1 1 ' y prop~ • 'i· ~ The opposite inclusion follows from 

c ~ c . 

DEFINITION 1.23 

A linear map 1: IRk -? R is called a linear functional on R.1;: 

The set of all functionals on k R is called the dual . s_pac_g of 

Rk Rk* . c - and is denoted ~ 

From linear algebra we have the following theorem: 

THEOREM 1824 

A map 1 on is a line;ar functional if and only if there 
'~ 

exists a vector v E K'" such that 1 (x) = <v~x) for all 

x E Rk • 

The vector v is uniquely determined by l • 

Remark: If :i(:t) = (v,x) is a linear functional, we say that 

v represents 1 ..... . In the following we will often use the sanw 

symbol for the functional 1 and the vector in Rk which re-

presents l = 

THEOREM: 1 • 2 5 

Let C be a convex set, p i n Then there is a linear func-

tional l on such that inf 1 (x) > 1 (p) • 
xEC 

Proof: Def i:ne d (p, 0) = infllx-pll • There is a sequence 
xEC 

in C such that llxn-Pll -7 d (p, C) We have 

lx l n 



!Ix II < iJx -Pll + ilpll • l lix -Pll t is a convergent sequence and n -' n- n- l 

thus bounded. Hence lx l is bou..n.ded and contains a conver­n 

gent subsequence lx l w 
nj 

Assume ~,.. -7 -<:r T11e11 ~? E c and clearly J!x0 -Pll = d(p~C) _,.,_ -""o -'• n. 0 
J 

Let x E c and t ,- [O. 1 J Then \::: 

tx+(1-t)x0 E C and hence 

lf:t:x+(1-:-t)x0 -:pll 2: llx0 -pjj * This is equivalent to 

ll:x0 -p+t (x-z0 )!i 2 ~ llx0 -pli 2 

Dividing by t and letting t __,, 0 we get 

<x0 -p,x-x0 ) > O which gives 

(x -p,:x) > (x -P1p)+ilx -pJJ 2 a 
0 - l - 0 

lr* 
1 (:z) (x -p,x) Define 1 E RL by = • 0 

Then for x E a 
' 

l(x) 2: 1 (p )+llx0 -Pii 2 > 1 (p) 

THEOREM 1.26 

• 

Let C be convex, p ~ co • Then there exists 

1 -:/: 0 , such that 1 (x) 2:: 1 (p) for all x E C • 

k* 1 E R 1 

Proof: If p ~ C , \'le can use theorem. 1 • 25. We may therefore 

assume p EC • By prop. 1.22, p ~ (c) 0 • Hence p is a 

boundary point of C ancl there is a sequence xn -7 p with 

xn ~ C • By theorem 1.25 we can for each n fincl a fu:actional 

ln such that 

( 1 ) 1 (x) > 1 (x ) n n n 
for ci,ll. x E C • 

~ 



By norming~ we may assume Ill ii = 1 • n Since the unit sphere in 

Rk is compact, there is a subsequence ln. v.rhich converges~ 
J 

say to 1 , where lJ 111 = 1 • 

Since 1 (x ) = n n 
k 
-, 1 i i 
L.: - X . . 1 n 11 

l= 
we see that 

Hence, as a consequence of (1) 1 l(x) > l(p) for all x EC. 

THEOREM 1a27 

Let C c A C convex and A affine. 

Let p E A and assume p is not an interior point of C 

relatively A • 

Then there is 1 E Rk* such that 

( i) 1 (x) 2: l (p) for all x E C • 

(ii) 1 is not constant on A • 

Proof: We may asm.m1e p E C • (If p i C ~ then theorem 1"25 

may be applied.) As in the preceding theorem, we observe that 

p is not an interior point of C relatively A • Thus we can 

find x E A-C p x.~ _,, p , and by theorem 1. 25 n .LL 
can 

k* ln E R so that 

We decompose l n 

v ! A-p • Then n_. 

ln(x) > ln(xn) 

such that 1 = n 

for al1 x E C • 

u +v n n vihere 

find 
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Since 1 is not consta:nt on .A , n u ~ 0 n By norming, ·we may 

assume liu11 1l = 1 There is now a subsequence u -l> u 9 n. 

where u E A-p and !lull == 1 • 
J 

Define 1 E 
J.rlt-R' by l(x) = (u,x) Let x E C • 

From ln(x) > 1 (x ) n n it then follows that (u ,x) > (u. ,x . ) • 
nj nj nj 

Hence, by letting n ~co l(x) ?. l(p) and (i) is provedo . j , -

We can write u = a-p for an a E A $ Now 

l(a)-l(p) = l(a-g) = l(u) = lluil 2 = 1 aJ1d thus 1 is not con~-

stant on A • 

DEFINITION 1.28 

1-
A hyperplane in R.J'.'_ is an affine set of dime:nsion k-1 • 

PROPOSITION 1.29 

A set A is a hyperplane if and only if there is k* l E R , 

1 :/.: 0 and a mm1ber J::' such that A = lx:l(x) == rl 

Proof: Assrnne A is a hyperplane. Then by prope ·1. 9, 

A = a+V , vv-here a E A and. dim V = dim A = k-1 • Let w E vl , 
w I= 0 and define l(x) = (v1,x) • Put r = (w,a) • Then 

I 
l(x) = r <=> (w,x) = (w,a) <=> (w,x-a) :::::: 0 <=> x-a E W..i- = V 

<=> x E a+V = A • 

The "only if Ii part of the prop. is then proved. Ln+ G U now 

k* 
-!= 

, 
E R'" 1 0 and ..L 

' 
a nun.1ber r be given. Put A = lx:l(x)=rl. 

Clearly A ~ 0 1 since l is linear. Let a E A Then 

A = a+Ker(l) , which follows from the equi7alences 

l(x) = r <=> l(z-a) = 0 <=> x-a E Ker 1 • 

Finally, dim A = dim Ker(l) = k-1 and the proof is complete. 



Remark: Let 1 :/:: 0 be a linear functional on Rk and let 

A= Jx:l(x) = r! be a h:y-perplane~ A divides the space Rk 

into closed half-spaces and 

lying on either side of the hyperplane If we repl~ce the 

i:nequali ty sign.s by strict inequalities, we obtain the open 

half-spaces determined by A • 

THEOREM 1.30 (weak separation of convex sets) 

Let c 
1 and c2 be disjoint convex sets$ T~1en there is 

1 E Rk* such that 1 I= 0 and l(x) > l(y) for all x E 01 

y E c2 . 
P-..coof: Define x E c1 ) y E c2 l e 

Clearly, 

can find 

c1-c2 is convex and 

1 E Rk-K- , 1 /:: 0 , so 

0 i c1-c2 • :By theorem 1.26 wo 

that 

l(z) ~ 1(0) = 0 for z E c1-c2 • Let now x E c1 , y E c2 • 

It follows that 

l(x-y) > 0 or l(x) 2 l(y) • 

Remark: Put r =inf l(x) • Then the :hyperplane 
xEC1 

.A = lx:l(x) = rl is said to se·parate the 13ets c 1 
and C,., i 

c.. 

in the sense that each of the two closed half-zi)aces determined 

by .A contains one of ..L. l ' ul1-e se-cs and 

THEOI}EM 1. 31 (_y!.§ak sr:;para,tionl 

Let c 
1 

and c2 be disjoint convex subsets of an affine set A o 

1,-* 
Then there ex is ts l E R''" such that 

(i) l(x) 2: l(y) for all x E c1 , y E c2 • 

(ii) l is not constant on A • 
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Proof: Choose a E A • The set 

is then a convex subset 

of A (prop. 1.6). Moreover, a~ a+n1-c2 " Tho theorem now 

follows from theorem -i ~ 27 (analogous to the proof of theorem 

THEOREM i~ (st2°ong separation) 

Let 01 and 02 be disjoint convex sets. 

pact (i.e. closed and bounded) and c2 

is 1 E k* R SllC}1. that 

sup l(x) >inf l(y) • 
xEC1 yEC2 

Proof: De:f ine d(C1 ,c2 ) = ~ ·1f l I' y y 11 . 
.Ll 1tl-'~- . 

are sequences !x } in 
11 

c 
1 

and jyn! 

llxn-ynll -7 d(c1 ,c2 ) * 

lxnl is bounded since c1 is bounded. 

We have !Iv 11' < llv -x j,t +l!x II • ..>n• ~ n n '· n 

is 

v- E ~,.. 

in 

Assmne C_I is COE~-

closed. Then there 

c 
1 ~ y E 02 l c There 

02 such th'1. t 

!lly11-xn11 l is a convergent sequence and thus bounded. Hence 

~ y l is bounded. 
'n 

Consequently there are subsequE:nces 

x -> v 
n. 

J 
and v E C . 1 

c2 are closedo 

since c 1 
a:nd 

Since the norm is a continuous operation, d(C1 , c2 ) = llv-wll • 

Put l(x) = (v-w,x) ~ 

We assert that x E Ci =>· l(x) > l(v) 

JC E c2 => l(x) < l(w) -



We prove the first inequality, the other one follows in a simi-

lar way. 

Let x E o1 • Then 

tx+(1-t)v E c1 for all t E [0.1] 

Hence lltx+(1-t)v-wll 2 llv-wll 

or flv-w+t(x-v)!i 2 2: 1Jv-wl! 2 

This is equivalent to 

Dividing by t and letting t ~ 0 we get 

<v-w,x-v) 2: 0 

or (v-w,x) 2: (v-w~v) 

which is the same as l(x) ~ l(v) • 

Moreover, 

l(v)-l(w) = l(v-w) = llv-vvll 2 > 0 

The theorem follows. 

Remark: Let l(w) < r < l(v) • Then o1 and c2 are contained 

in the open halfspaces determined by the hyperplane 

A = !x : l(x) = rl • 

W1M.A 1. 33 

Let a be a real number. Let X be a real random variable such 

that X > a a.s: (almost surely) and such that EX exists. 

Then EX > a • 
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THEOREM 1.,34 

Let C be a convex seta Let be a random 

vector such that XE C a.,s. Assume further that EjXi\ <co 

i = 1,.e.,k and define EX= (EX1 y•&e,EXk) ~ 

Then EX E C • 

l?roof: We may assu,,"'Cle O :;:: A , where A is an affine set of 

dL'Tiension h $ We show the theorem by induction on h • 

( i ) h = 1 Q Let c 0 , c 1 E C , c 0 -/= c 1 • Th en 

A = l (1-t)c 0 +tc 1 : t E Rl 

Consequently vrn may def inG a real random variable T by 

X = (1-T)c 0 +Tc 1 

Let I = ! t : ( 1 - t ) c 0 + t c i E Cl • 
I is a convex subset of R and is thus an interva14 Since 

P(T E I) = 1 , lemma 1. 33 gives ET E I • (The existence of 

ET follows from the definition of T .) 

We have EX = (1-ET)c 0 +ETc 1 and hence EX E C o 

(ii) Suppose the theorem is proved for dim A= 1,2, ••• ,h-1 

and suppose dim A ::::: h • Assume EX ~ c • Then there is 

1 E Rk* such that 

l(x) ?; l(EX) for all x E c 

and 1 is not constant on A e 

With probability 1 we thus hav8 1 (X) 2: l (EX) • R>J taking ex-

pectation we see that equality holds, Le. 1 (X) = 1 (EX) a .. s. 

Let now A' = lx x E A, 1 (x) = 1 (EX) J 

A' is affine, a.nd since 1 is not constant on A , A1 is a 

proper subset of A • Hence dim A' <dim A • 
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Now X E A1 n C a.s. 

Since A' n C is a convex subset of A' 1t follows from the 

induction hypothesis that EX E A 1 r-1 C c C ·which gives a con-· 

tradiction. Hence EX E C • 

EX..4_MPLE 1 • 3 5 

Assume X > 0 a. s c Let 0 < :r· < s and assui1w EX8 <co • 

It follows easily that EXr <co • 

We will use the preceding theorem to p:r:'ove that 

Proof: Let y = xr ' z = XS We shall show that 
1 'j 

(EY)r < (EZ) 8 ~ 

Consider the set 

A is a convex set 1 

A= !(y,z) : y 2 O, z 2 O, y1/r ~ z1/sl • 

s/r since the curve defined by z = y is a 

convex curve. Now (Y, Z) E .A a. s. and theorem 1. 34 gives 

\EY ,EZ) E A ., 

DEFINITION 1.36 

Let C be a convex set. A function f : C __,, JR is said to lJe 

convex if for all x1 ,x2 E C , 8 E [O ~ 1 J we hswo 

f is said to be concave if > holds. 

PROPOSITIOH 1. 37 ' 

A function f : C __,, R is convex if and only if, the set 

D = l(x,y) : x E C, y ER, f(x) ~ yj is a convex subset of 

Rk+1 • 
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Proof: Assume f is convex. Let (x1,y1), (x~~ 1 y2 ) ED and 

t E [ 0, 1 J • Then 

(1-t)(x1 ,y1 )+t(x2 ,y2 ) = ((1-t)x1+tx2 ,(1-t)y1+ty2 ) ED 

since f((1-t)x1+tx2 ) < (1-t)f(x1 )+tf(x2 ) ~ (1-t)y1+ty2 g 

Hence D is convex. 

Assume now D is convex. Let x 1 ,x2 EC and t E LOY1J. 

Clearly (x11 f (:z1 ) ) ~ (x2 , f (x2 )) E D .. Hence 

The proof is now complete. 

THEOREIV[ 1. 38 (Jensen 1 s L1eguali ty) 

Let C be a convex set anJ f a real convex function 0n C 

Let 

that 

Then 

X be a random vector such that 

EX exists. 

f (EX) ::; Ef ( X) • 

X E C a.s. and assume 

Proof: Asswne Ef(X) is finite. Let D be given as in prop. 

1. 37. Then (X, f (X)) E D a. s. By theorem 1. )!;- \·re get 

(EX, Ef (X)) E D which yields the desired inequality. 

If Ef (X) = c.;. , the inequality is trivial. We no-w show that 

Ef (X) is either finite or Since is a convex function, 

it may be proved from pro11. 1.37 and the separation theorems 

-k for convex sets, that there is a linear function 1 on lf' 

such that .:t'(x) 2:: l(x)+c for all x E C (c is a constant). 

It follows that f-(x);:;; (-l(x)-cj • Since EX exists~ 

El (X) = 1 (EX) is finite and hence Ef- (X) < ro • 
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The last part of this chapter is devoted to .sub~linear 

functionals, which will be of great importa,.YJ.ce in the theor;y-

of comparison of ex:perimentsa 

DEFilUTION 1. ~·9 

A function is called a sub-linear flL~ctional on 
1~ R:>.. 

(i) 

i -P _-1.. 

•Cx i y) ~ ¢(x) + ¢(y) 

¢(tx) = t&(x) f~r all 

11.rhenever 

x E Dk 
l.L 

' 

x?y E nk 
EL 

t > 0 

(The property (i) is called .@_Ubadcli ti vi tJ:, the property (ii) 

is called positive homogenit_yo) 

1rl'le norm will define a sub-linear fux1ctional, as well as 

each linear fui~ctional on The following statement is 

easily proved: 

PROPOSITION 1.4-0 

Let and be sub linear f"L~.nctionals on Rk and let 

c > 0 c Then ~ 1 v ~- 2 , 1¥,1 + ~ 2 , c~,1 are all sub~linear 

functionals on Rk o ( v denotes msxirnD.mo) 

In particular, if 1 1 ,o•o,lr are linear functionals, then 

1~ == L 1 V. "" Vl is a sub-linear functional o 
I r 

DEFil\TITION 1.Li-1 

is the .set of all sublinear fm1ctionals (on 

'f is the subset of 1¥ containing the functiona.ls which may 
r 

be defined as a maxirm.llll of r linear' functionals. 

We observe that 1f1 c '¥ 2 c c 1:l' 



PROPO,SITION 'L42 

Let ~ E 1¥ o Then 

(i) ·~(O) = 0 

(ii) is unifrJrmly continuous on 

(iii) \jJ is a convex fw.1ction on Rk 

Proof: (i) f ollmrn since ¢ ( tx) = tw (x) for t > O o 

Let Then 

¢(x) - ~(y) - •Cx - y y) ~ ¢(y) 

k 
= ~(I: (x. ·- y. )e.) 

i=1 l l l 

k 
< I Ix. - y 1. l~Cel.) v •C-e.) 

. ~ l l 
l-= I 

By interchanging x and y we get 

and (ii) follows. 

Let x,y E Hk 0 < c < 1 o Then 

1\i ( e1 -O)x :- 8y) < 1lr ( ( 1 - G )x) " ~ ( Gy) 

= (1 - O)•(x) + G~(y) 

which proves (iii) .. 

PROPOSITION 'L43 

Let 11J : Hk .... R o Then ~ E 1¥ if and only if ~ is positive 

homogenous (ioe. satisfies (ii) of Def o 1.39) and convex. 
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Proof: It is enough to prove that a positive homogenous and 

E ,-,k Th convex function ,µ is sub--additiveo Let x,-y J..1. o en 

~ ( -u· 
' '.Ll... + y) :::: 21'1 ( -1.v y 2-"- r iv'\ 

2u ) 

< 2(f~(x) -, -Hr Cy)) = ·!f (x'l _!, ¢(y) 0 - --: -· ,/ 

PHOPOSITICN -1 o 41+ 

li-
Let K c R-'-'- be a compact .convex set and define a functional 

~K(x) = sup (x,y) • 
yEK 

Then ¢K is called the 

~port function of K o 

Proof: Let 

If 

Then 

= sup (x,,1 -:- x2 ;;;r) .:::. sup(x1 ,y) + sup(x2 ,y) 
yEK yEK yEK 

= ~1K(x,,) -i ~ 17 (x:i) 
I .t.\. "-

t > O , then sup (t:x,y) 
yEK 

= t sup ( x 9 :':' ) 

;yEK 
= t~rK(x) • . ..._ 

Let E Hk o Then 

Proof: By propo 1o7, 

r 
y ==I: t.a. ') t,,5000,tr > 0' rt.::: -1 0 

i=1 l l l 

Now, (x,y) = (x,I:t.a.) = I:t.(x,a.) < V(x,a.), which implies 
l l l l - l 

(by a suitable choice of 
r 
\T (-r ~ ) = v . _))._' C'._; 0 

i=1 ..L 
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COROLIJ>-ItY 1 o 46 

¢ E 'J!r if and only if 1\f = \jT.K , where K 1.s the convex hull 

f f . ·1-- b t f R_k .,h t t o· a inrue su .se o 1vrc a mos r point.s. 

DEFINITION ·1 o L!-'7 

Let C be a convex set o A point a E C is calL:;d an extreme ----
point of C if there do not exist two points a1 ,a2 E C such 

that a = r a')) • 
'--

LE1'1I1A 'l • L:-8 

If a compact convex set has only finitely m.::h-viy extreme points, 

then it is the convex hull of its extreme pointso 

Proof: See e.g. Blach'Well and Girschick Po 38. 

1jT E if r if 2-.nd only if ~ = 1\iv , where K is a compact convex 
l>. 

set with at m.o,st r ex:treme points. 

We shall now prove that each Ill E 1±' is a supremum of linear 

functionals and is of the form ~ = ~K for a compact convex set 
K 9 

LEMMA 1"50 

Let C be a convex set which contains an open set :Jnd f C - R 

a convex functiono Let 

,,., E Rk such that f (x) v 

Proof: Let D = [(x ,,.) 
. ~ J / 

b I f Rk 1 a convex su seT. o 

v-o 
_!~- E co 

" TheE 

> f(x0 ) ·-;- (x x -
x E c y c. R '-

bJr prop. '1 • 37. 

By theorem 1.26 there is a R(k-~ 1 ) 1~ 
1 E 

there J.s a point 

0 
~ c > for all c. c x .... • 

f (x) < y} D is -
Now 

1 I= 0 
' 

such that 

l(x0 ?f(x0 )) <:: l(x,y) v:henever (x,y) E D • We may write 
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l(x,y) =by + (c,x) for some b E R , c E ~ 

and thus we have 

bf(x0 ) -:- (c,x0 ) _::.by + (c,x) for all (x,y) E D .. 

By letting y - ro we conclude that b > 0 (this is necessary 

for the inequality to hald)o We also observe that" b I 0 , 

since b = 0 would impl;;r that x0 be a boundary p0int of C .. 

For x E C we now have 

bf(x0 ) + (c,x0 ) _::. bf(x) -,- (c,x) 

and hence for each x E C , 

f(x) > a + (c,x-x0 ) for some a E R , c E Rk 0 

Since equality sign holds when x = x0 , we have a = f (x0 ) and 

the lemma follows .. 

Let * E '±' and x0 E Rk .. Then there exists c E Rk such 

that w(x) ~ (c,x) for all x E ~ and equality sign holds 

for 0 x = x • 

Proof: ~ is convex by propo 1o42 .. By lemma 1.50, 
k ('1) w(x) > a + (c,x) a E D 

.l-L ' 
c E R 

with equality sign for x = x0 

If t > 0 , then w(tx) > a + (c,tx) and by the positive 

homogenity, 

(2) $(x) ~ ~ ~ (c,x) 

By letting t ..... ::o , we get 

$ (x) ?: ( c ,x) for all x E Rk .. 

It remains to prove that 

Assume that 'V (x0 ) > ( c, x0 ) Then by (1), a > 0 .. By letting 

t i 0 in (2)? we observe, h()wever, that we must have a < 0 • 

This contradiction proves (3) .. 



PROPOSITION 1o52 

Let ~ E ':l' .. Then 1\f = lim 1\f r 

sequence (*r} with ~r E ':l'r .. 

(pointwise) for a non-decreasing 

Proof: It is enough to prove that each * E ':l' may be expressed 

as a supremum of countably many linear functionalso By lemma 

1o51, for each y E ~ there exists c(y) E Rk such that 

~(x).:;:, (c(y),x) for all x E Rk and 

1\f (y) = (c(y),y) .. Consequently, 

(3) ~(x) = sup, (c(y),x) for all x E ~ o 
yERK 

Let S be a countable, dense subset of Rk (e.g.. S = the set 

of points with rational coordinates).. We claim that 

(4) \~(x) = sup (c(y),x) for all x E itr: 
yES 

If x E S , then ~ (x) = ( c (x), x) , so ( 4) holds.a The functions 

on the right sides of (3) and (4) are both continuous in x o 

Since a continuous mapping on a metric space is determined by 

its values on a dense subset? it follows that (L~) must hold for 

any x E If o This completes the proof .. 

PROPOSITION 1 .. 53 

Let ~ E ~ .. Then $ = wK for a compact convex set K , i .. e .. 

w is the support function of K .. 

Proof: Define K = (y : (y ,x) ~ 1\f (x) for a.11 x E Rk} 

(i) K I 0 This is a consequence of lemma 1 .. 51 .. 

(ii) K is convex and closed: For each fixed x E ·R-{ , 
(;)T,x) ~ ¢(x) defines a closed half-space.. It follows that K 

is an intersection of closed half-spaces and thus closed and 

convexo 



(iii) K is bounded: ·Let y E K • Then 

Y. = (y~e.) < w(e.) 
l l - . l 

-y. = (y,-e.) < w(-e.) and hence 
l l - l 

-i!J(-ei) ~Yi _::: 1jl(ei) and boundedness followso 

(iv) WK = tµ Let XO E Rk • 

By lemma 1.51 there exists yo E Rk 

iV(x) ~ (yo ,x) for all x E ~ 

and equality holding for x = x 0 
0 

Now y0 E K and hence 

~K(x0 ) =sun (x0 ,y) ~ (x0 ,y0 ) = ~(x0 ) 
yEK 

On the other hand 

such that 

~K(x0 ) =sup (x0 ,y) _::: w(x0 ) by the definition of Ko 
yEK 

This completes the proof. 

?ROPOSITION 1~ 

Let K1 ,K2 be compact, convex sets. Then K1 5:; K2 if and only 

if WK (x) ,::: WK (x) for all x o 

~1 2 

Proof: The '·only if"-part is trivial by 1.44. Assume now that 

wK1 (x) _:::. *K2 (x) for all x, and suppose K1 ¢ K2 • Then there 

is a point z E K1 , z t K2 • Since K2 is closed, it follows 

from theorem 1.25 that there exists c .J 0 such that 

(c,z) > sup (c,y) = WK (c) 
yEK2 2 

Hence (c,z) > WK (c) ~ (c,z) o The last inequality holds 
1 

since z E K1 • Our contradiction proves that K1 := K2 • 

COROLLARY 1.55· 

K1 = K2 if and only if Thus there is a 1-1 



correspondence between compact convex sets in 

linear functionals on Rk o 

k R and sub-

DEFINITION 1 .. _;56 

If A,B are sets in Rk and A a constant we define 

A + B = (a + b a EA b E B} 

A.A = (A.a. : a E A} 

PROPOSITION 1 .. 57 

Let K1 ,K2 be compact convex sets and A.> 0 .. Then 

tK K = tK + .K 1+ 2 1 .... 2 

Proo.f: Easy consequences of the definition of' *K • 

EXAMPLE '1 .. 58 

We assume k = 2 If K i.s a compact convex set, we define 

sup (x,y) 
yEK 

We know that (x,y) = l!xll 0 \IYI! cos 9 , where G is the angle 

between x and y 0 Now, if llx!I = 1 , (x,y) = l!Y\! cos 9 

and tK(x) = sup'ly'I cos 11 and tK(x) may be found geometrically 11 I. v 

yEK 
as follows from the figure .. 

> 
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~'W'IPjiE_ 'lo 59 

Let K c Hk be defined by K"" £y max\y. I < 1} a We claim 
i l 

that 

'I'his is a consequence of the following inequalities~ v:lJ.ici1 hold 

for 

(x,y) 

Now, 

Define 

y EK 

.:: ~ I xi I ! y i l .:: ~ I xi I 
l l 

if Y· l 
= sign JC 

l 

KI == [y ~jyil ~:S 1} Q 
Then 

l 

This follows from the inequalities. 

<x~y) = 2-:x.y. < 2:\x.1 jy. j < max\x. ! 
. l l . l l . l 
l l l 

i = 

~Ki (x) 

1~oQ&~k,e 

= maxlx. I e 

i l 

and the fact that equality may be obtained by a suitable choice 

of y .. 

We observe the duality betwee:c. ¢K and (and hence by K 

a -r I ) an_ Ji " 

Many proi)le:ms concerning compact convex sets or sublinear 

functionals may be treated by considering the dual sets or 

functionals o 
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2. GAME THEORY 

DEFINITION 2.1 

A tvvo-person zero-sum gar.'.!& is a triple r = (A,B,M) where A 

and B are arbitrary sets and M is a function from A >< B to 

[-co ,oo J • The garue involves two players, player I and plc::,yer II.. 

The elements of A and B are called the (pure) strategies of 

player I and player II, respectively. We assm11e that the 

players choose their strategiEs independently of each other and 

simultaneously. If player I uses the strategy a EA and 

player II uses the strategy b E B , then player II "pays" 

player I an amount M(a,b) • The fm1otion M is called the 

pay-off function of r • Obviously, the sum of gain and loss is 

zero~ as is indicated in the term 11 two-person zero-sum". 

EXAMPLES 2.2 

(a) ~2~~!~~: The two players in the case of roulette (as in 

many other hazard games) are the bank and the gambler. The 

bank has 37 strategies: one of the nun1bers 0,1, ••• ~36 is 

chosen with equal probability by a roulette wheel. 

By placing jetons on the roulette-table, the gambler chooses 

certain combinations of the possible outcomes. This definos the 

strategies of the gambler@ 

The payoff may be defined to be the loss of the gambler; Le. 

the difference between the gambled money and the amount payed out 

by the bank. 

(b) Many statistical pro1)lerns may be regarded as two-person 

zero-sum games. "Nature 11 then takes the role of player I, 
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choosing a parameter e E e , where ® is the space of para­

meters. Without :lrn.owing the choice of nature, the statistician 

makes a decision d , which may for exaillple be an estimate of 

6 • As a consequence of the choices, the statistician "looses" 

an runi:mnt M(8, d) • We call M the loss-function. In the 

problem of estimating a real parameter 8 , the pay-off may be 

given by (e-a) 2 (quadratic loss). In practical statistics, 

observations are available for the statistician. The strategies 

are then decision procedures 6 which determine . to each pos­

sible outcome X of an experiment, which decision 6(X) to 

make. The pay-off is defined to be the expected loss and is 

called the risk-fu....~ction. 

(c) !'~!!~!~-g~~~· Assume that each player has a finite number 

of strategies, i.e. A and B are finite sets. We may write 

A= la1 , ••• ,am}' B = jb1 , ••• ,bn} • If we define mij = M(ai,bj) 

i = 1, ••• ,m j = 1, ••• ,n , then the pay-off function of our 

game is given by the matrix lm .. } lJ with elements in [ ..co,co] • 

Conversely, to each finite matrix lm .. j lJ 
[-co,co] there corresponds a finite game. 

off when player I uses strategy number i 

strategy number j • 

with elements in 

m is then the pay-i j 

and player II uses 

(d) Mr. Smith takes the train .from the city to a suburba..."'1. rail-

waystation every day. Some days he arrives hone at 3 o'clock, 

other days at 4 o'clock. His daughter Ann wants to meet him at 

the station, but she is allowed to go there only ~ a day. 

If she meets her father at the station at 3, he gives her 10 

cents. If she meets him at 4, she gets 20 cents. But if she 

fails to meet him at the time she is at the station, she gets of 



course nothing. If we call Ann player I and Mr, Smith playei, 

II, each player has two strategies: 3 o'clock and 4 o'clock. 

In accordance with example (c), the pay-off is given by the 

2 x 2-matrix ·(10 0) 
0 20 

In the following we consider a given game r : (A,B,M) • Each 

player of course wants to maximize his gain. Player I is then 

interested in the behaviour of M(a0 ,b) as a function of b 

for each fixed a0 E A , whence player II is interested in 

M(a,b0 ) as a function of a • 

DEFINITION 2.3 

Let a1 ,a2 EA. 

M(a1 ,b) ~ M(a2,b) 

We say that £1 dominates 

for all b E B • 

If, more generally, A1 cA and A2 CA we - -
nates A2 if to each a2. E A2 there exists 

if 

say that 

a1 E A1 

a1 dominates a2 • If A1 dominates A , we say that 

essentiall~ comElete. 

Let b1 , b2 E B • We say that b1 dominates b2 if 

M(a,b1 ) ~M(a,b2 ) for all a E A • If B1,B2 SB we 

B1 dominates B2 if for all b2 E B2 there is b1 E 

that b1 dominates b2 • 

DEFINITION 2.4 

For each a E A we define MI(a) =inf M(a,b) 
bEB 

For each b E B we define MI1 (b) =sup M(a,b) 
aEA 

A1 do mi-

such that 

A1 is 

say that 

B1 such 
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Using the strategy a E A player I is ce:etain to receive an 

amount of at least M1 (a) 
' 

and he is not guaranteed any largei" 

amount. N1 (a) is thu..B a measure for the "goodness 11 of each 

strategy a E A and MI defines an orderi21g of the strategies 

of player Io 

M11 (b) is the maximum loss of player II using strategy b , 

and MII defines an ordering of the strategies of player IL 

DEFINITION 2.5 

We define y(r) = sup M (a) 
aEA I 

and v(r) = • -P 
MII(b) in_~ 

bEB 

y(r) is called the lower value of r 

v(r) is called the upper value of r 

When no confusion can arise, we denote the lower value of r 

by V and the upper value by V • 

DEFINITION 2~6 

Assume that there is an a 0 E A such that MI(a ) = V • 
0 -

then the strategy that maximizes the minimal gain of player I 

and is called a maximin strategy of player L 

Similarly~ player II .may minimize his rna:idmal loss by using a 

strategy b0 such that M11(b 0 ) = V • b0 is then called a 

minimax strategy for player II. 

If A is an infinite set it may happen that sup M1 (a) will 
aEA 

is 

not be attained by a certain a 0 0 
Then we may find strategies 

a E A such that M1 (a) lies arbitrarily near J:. • 

Similarly for B • 
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PROPOSITIOlT 2.7 

For all a E A , b E B we have 

I 

P-..coof: Let ~ E A , b E B • 

We have 
t f I I 

= infIVf(a , b) < M(a , b ) < supM(a, b ) 
bEB - - aEA 

I 

= MII(b ) 

It follows that 

t 

By taking supremurn over a we get V < V . The proposition 

follows. 

DEFINITION 2.8 

A game r is said to have a value v(r) jf y(r)=V(I')=V(r) • 

We often write V instead of V(r) • 

By using a maxirnin strategy (or a strategy that is approximately 

a maximin strategy) player I is guaranteed a gain of at least 

V • On the ot:her hand, since player II may reduce his loss to 

V , player I is not guaranteed more than V • 

If now r has a value, i.e. V = V = V , and player I uses a 

strategy a 0 for which M1 (a0 ) = V (or I·1I(a0 ) is approxi­

mately equal to V) then a 0 is an u_r1irnprovable strategy for 

player I, i.e" he is guaranteed an amount of V , and no other 

strategy can guarantee him more. 

Similarly for player II. 



EXAMPLE 2@9 

In example 2.2(d) we find that y = 0 ~ Ti= 10 • Thus this 

game has no value$ .Ann is not guaranteed any money and Mr. 

Smith may recluce his expense to 10 cents. 

PROPOSITION 2@10 

A game r has Q value and a 0 E A is a maxirnin strategy for 

player I and b E B 
0 

is a minilr12x strategy :for player II if 

and only if 

( 1 ) M(a0 ,b) > M(a ,b0 ) > M(a,b ) for all 
- 0 - 0 

If one of these oonditionsis satisfied, then V(l ) = M(a , b ) 
0 0 

Proof: Assmne (1)c Then inf M(a ~b) 
.b 0 

the same as I·Tr(a ) :> 11II(b ) • 
- 0 ~ 0 

By proposition 2.7 MI(a0 ) = MII(b0 ) 

>sup N(a,b 0 ) 
a 

and V = V @ 

which is 

Assume now that V = V = V and a b o~ o are maxir.ain and minimax 

strategies, respectively. Then 

Choose a = 

EXAMPLE 2.11 

b = b • 
0 

Then and (1) follows~ 

Consider a finite game given by a matrix lm .. ! • lJ The inequali-

ty (1) of prop. 2.10 shows that the value of the garne (if it 

exists) is an element of the matrix that is a minimal element 

of its row and a maximal element of its column. We call such 

element a saddle point of the matrix !m .. J • lJ The number of the 

row then defines the maximin strategy of player I, while the 

number of the column clef ines the minimax strategy of player II .. 



If is given by 
/ -1 r 

\ 2 

\ 1 

-2 3 

-1 0 

-4 5 

we observe that -1 is a saddle point. Hence V = -1 and a,., 
c:_ 

is a maximin strategy of player I, b 2 is a minimax strategy 

of player II. 

DEFINITION 2912 

Let r = (A,B,M) be a game. We say that A is concave (rela-

tively r) if to each pair a1,a2 EA and each 8 E [0,1] 

there exists a E A such that 

If equality sign holds in (2) for all b E B , then A is said 

to be affine (relatively I). 

Assume player I has a choice between the strategies a 1 and 

a 2 , and that he chooses a~ with probability e • 
'-

The ex-

pression on the :right side of (2) is then the expected gain, 

given that player II uses strategy b • If A is concave, then 

player I has a pure strategy a E A which gives at least as 

large gain. 

Remark: Since M is assumed to be an extended real function~ 

the undefined case co - co 

may occui~ in (2). This may be avoided if we for each b E B 

restrict the function M(a,b) to take at most one of the values 

+ co and - .;;"'" • However, in the sequel we will study games where 

JVI is assumed to take at most one of the infinite values. 
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Similar comments may be done in connection with definition 2.1~-

below. 

PROPOSITION 2.13 

Let I = (A,B,M) be a game and assume A is concave. Let 

e1 ••• ,e > o , Ee. = 1 • Then thc;re exists 

a E A such that 

l, - l 

r 
M(a,b) > E e.M(a.,b) 

- . 1 l l l= 

A is affine, then equality sign holds. 

P-£oof: Induction. 

DEFINITION 2.14 

for all b E B • If 

Let r = (A,B,M) be a game. We say that B is convex (rela­

tively r) if to each pair b1 ,b2 EB and each e E [0,1] 

there exists b E B such that 

(3) M(a, b) :;: ( 1-e )M(a, b1 )+eJ.VI(a, b2 ) for all a E A • 

If equality sign holds in (3) for all a E A , we say that B 

is affine (relatively r). 

Convexity of B may be interpreted in a similar way as concav-

ity of A • We have the following analogue to prop. 2.13: 

PROPOSITION 2.15 

Let r = (A,B,M) be a garne and assume B is convex. Let 

b1 , ••• ,br EB and 01, ••• ,er > 0 , Eei = 1 • Then there exists 

r 
M(a, b) < E 8 .M(a, b.) for all 

- . 1 l 1. 1.= 

such that a E A • b E B 

If B is affine, then equality sign holds. 



A game I' = (A~B,~1) is said to be concave-convex if A is 

concave and B is convex (relatively I)~ 

Remark: A sufficient condition for A to be concave rel~ r 

is that A is a convex subset of an Euclidean space Rk and 

M( Q, b) is a i~eal concave function on A for each b E B • 

Given a1,a2 EA and e E [0,1] according to definition 2ol2, 

we may put a= (1~c)a,1 +02,2 to satisfy (2). 

Sirn.ilarly ~ B is convex rel. I if B is a convex subset of 

an huclidean space R.111 and M(a, o) is a real convex function 

on B for each a E A • 

That the above conditions are not necessary~ becomes clear from 

the folluwing example. 

EX!-JVIPLE 2 • 1 7 

Consider a fillite game I' given by the matri:z 

L:n easy computation shows that r is concave-convex. Since 0 

is a saddle point of the matrix 1 r has a voJ.ue V = 0 It 

will be shovm later that under certain conditions every concave-

convex garile lws a value (theorem 2.35)* 

DEFINITION 2.,18 

Let X be an arbitrary set. A probability a_istribution over 

X with finite ,support is a non-negative real .f°lmction p de-

f'ined over X such that p (x) = 0 except for a finite number 

of x E X and I: p (x) = 1 • 
xEX 
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])EFINIT1IOJIT 2. 1 9 

Let I' = (1.1.,B,IJI) be a gwne. The ~domizallill of 1 is the 

game I'* = (A*sB* 9 M*) defined by the fol1o-wing: 

AX- is the set of probability distributions over A with finite 

support. 

B* is the set of probability distributions over B with finite 

support. 

M* is defined on A* )< B* bv 
<./ 

(t~) N*(a*~b*) = I: M(a,b)a*(a)b-*(b) for 2:* E k* j b.;:- EB·* • 
a 1 b 

Remark: The sum occurring in (4) i.nvolves finitely ma"ly terms 

different fi'cirn zc:;r·o. Thus no difficulties regarding convergence 

and interchange of smmnations will arise~ Wo note, however, 

that the S1)J:rt in ( 4) is wc;ll-def ined only if M takes only one 

of the values +er.::' and - oo 

Assume player I (in the game I'*) uses the strategy a* E A* .. 

In terms of the game r , this may be interpreted as if player 

I chooses a strategy a E A according to the :probability dis-

tribution a·* s If we adopt a similar interpretation of the 

strategy b* E :B* ~ thon it is seen i'rom (4) that TIL*(a·*-,b*) 

is the expected go..in of player I in the game l • 

In 2.1 we introduced the notion pure strategies for the elements 

of A and J3 • The elemf.::ntis of A* and :B* are callod the 

mixed strategies of the g.sune I • 



If we identify the strategy a E A ·w.i th the strategy a* E A* 

such that n*(a) = 1 s a*(a ) = 0 for a 1 f:. a, then A may be 

considered as a subset of A->'- & Similarly vre may assume B c B* 

We use the oy1:nbol a* for the elements of A* and the symbol 

for elements of A considered as elements of 

Similarly for the stTategies of player IL 

Obviously M*(a,b) = M(a,b) for all a E A , b E B • 

PROPOSITIOllJ 2 o 20 

T, 1 . -+- • -1··* = ( ,\ *. B*. M*) ne ranco:unza vlOn ..... , , 

is a concave-convex game. In fact, k~ and B~f- are both 

affine relatively r* @ 

Proof: We show that A* is affine. The proof that B* is 

affine is similar. 

Let 1* 2* a ,a E A-¥• and let 0 E [O, 1] • 

a*(a) = (1-G)a1*(a)+oa2*(a) for a E A • 

Clearly, a* E A* • 

Let b* be an arbi trm::y element of B* • Then 

M*(a*,b*) = E M(a,b)a*(a)b*(b) 
a,b 

1 * 2->t-= E M(a,b)[(1-c)a (a)+ea (a)]b*(b) 
a,b 

1* ,...,* = (1-o)M*(a ,b*)+GM*(aL',b*) 

The affinity of A* now follows from definition 2~12. 

Let now r and r* be as in definition 2.19~ 



PRO.POSITION 2. 21 

(i) MI*(a*) =inf M*(a*,b) 
bEB 

(ii) M11*(b*) =sup M*(a,b*) 
a EA 

Proof: Since for all a* E A* , b* E B* , 

M*(a*,b*) = L[l: M(a,b)a*(a)]b*(b) =I: M*(a*,b)b*(b) 
b a b 

it follows that M1*(a*) 

On the other hand., since 

>inf M*(a*,b) 
b 

>inf M*(a*,b) • 
b 

B c B* 

M1 * (a*) = inf M·* (a*, b*) ,::; inf M* (a*, b ) • 
b* b 

2 .12 

Part (i) of the prop. follows. The proof of part (ii) is simi-

lar. 

COROLLARY 2.22 

(i) For any a E • 
.li ' 

(ii) For any b E B ' Mrr*(b) = MII(b) • 

;!?roof: The corollary follows from the preceding proposition 

and the fact that M*(a,b) = M(a,b) for all a EA, b EB • 

COROLLARY 2.23 

y(r) < v(r*) ~ v(r*) s v(r) • 

Proof: From corollary 2.22 and the fact that Ac A* it 

follows that 



V(f*) = sup M1*(a*) 2: sup M1*(a) = sup M1 (a) = v(r) • 
a* a a 

In a similar way we get V(I'*) =:; v(r) • 

COROLLARY 2.24 

If r has a value v(r) , then f'* has a value V(I'*) and 

v(r*) = v(r) • 

Proof: Easy consequence of corollary 2.23. 

EXAMPLE 2.25 

Let r be the game given in sxample 2.2 (d). We shall con-

struct the game f'* • .Ann's strategies are a 1 = 11 3 o'clock" , 

a2 = "4 o'clock". Mr. Smith's strategies are b1 = 11 3 o'clock", 

b2 = 11 4 o'clock". 

Each element a* of A* , being a probability distribution over 

ja1 ,a2J , Qetermines a number G = a*(a2 ) • 

Conversely, to each number 8 E [0,1] there corresponds a 

strategy a* E A* such that a*(a ) = G • 2 We may therefore 

identify the set A* and the interval [0,1]. The strategy 

a1 of A* now co1"responds to 0 = 0 , a 2 corresponds to G = 1 

Similarly, B* and [0,1] are identified, b1 corresponds to 

0 and b2 to 1 • 

By the definition of M* we compute 

M*(o ,-r1) = 10(1-0 )(1-r1)+20011 = 3oon-100-1on+10 • 

By prop. 2 .. 21 (i) 

-- { 200 
M1*(:J) = min[M*(o ,o) ,M*(o, 1)] 

10-100 

if 0 ~ G <1 
- 3 

if 1 < 0 < 1 3 
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This gives us 

y(r*) -- -"-( ) 11r*C1) 20 ~ = sup Nr" e = ;::;;: 

3 -
0 

__; 

ll.n analogou,s computation (using prop~ 2.21 (ii)) shovm that 

-( ) (1) 20 0c1 V r-r, = MII * 3 = 3 = 3 

Thus the rand.omized gam.e I* has a vaJ_ue ~ 

1 1 8=-3·71--, , I - 3 are~ respectively, maxirnin and minimax strategies. 

Thus, the garr1e r, Ann and. Mr. Smith ought to choose 3 o'clock 

with probability 2/3 and 4 o'clock with probability 1/3. 

Hemark. It is enough to consider a go.me r f~com player P s 

point of view. vlhen r = (.A,B,M) is given, we m2,y namely 

derive the g:1me r"" (B,.A~M) , where M: is given by 

M(b,a) = -M(a 1 b) , a E A , b E B • Then, clearly, 

y('r) = -v(r) , v(l') = -y(r) • 

Hence r has a value if m1d only if I' has a value, c:md we 

observe that 

Let now r = (A,B,1'1) be a game. We will find condi.tion~: under 

which V = V .. 

NOTATION. 

M(a,b) > rl c A 3 T E R • 

THEOREM 2.26 

The following conditions are equivalent: 

(i) v = ""v 

(ii) for each T < V 1ve have n[M > T]b ~ 0 • 
b 



Proof: 

(ii) => (i)o Let 'T < V " Then ther·e is an a E A such that 

M(a,ll) > T for all b E B Hence M1 (a) =in.£ I-I(a 1 b) > 'f ® 

-b 

Since V = sup M1 (2.) it follows that V > 'T We may choose 
a 

'f arbitrary near V , so V > V and hence V = V ~ 
(i) => (ii)~ Let 'T < v Then 'T < v 

There is thus an a E A such that 

'T <M1 (a) =inf M(a,b) ::;rir(a,b) for all b. 
b 

Hence a E [M 2: 'T Jb foJ:: all b E B , ·which im1Jlies [~'12:T Jb f. 0 • 

THEOREM 2. 27 (FUU:-OAJ',IENTAL THl~OREr!J: P...BOUT CONCAVE-CONVEX GAMES) 

Let r = (A, B~ M) be a concave-convex game y where -co < M <co • 

Let b 1 , ••• , bm 1'.:: B and asm .. une that M11 (bi) =co implies 

M(a,b1 ) > _w for all a EA. (If V <oo or M ie finite 1 

this is no restriction.) Choose T < V. Then 

m 
n [M 2 T]b f. 0 • 

l=1 i 

Proof': Dc:fine S = ) (M(a~ b 1 ), e •• ,M(as b ) ) m 

Then S := [-co ,co f • Put R = [ T, o:> [m • 

m 

a E Aj • 

Suppose n [M 2 'T] = 0 ~ . 1 b. 
Then S n H = 0 • 

l= l 

Let T = jy : y E [-CD ,cc,(11 and y < x for some x E SJ 

(y ;:: x is defined componentwise)~ 

Clearly S '.:: T ~ [ _o..; , c.::i [m • 

We state tvv-o 1 emmas : 

Lemma t: 

Let i :n y , •• qy ET, 

Then 
n . 
I: s .;yl 

. 1 l l= 

t= rn : .l. • 



Proof: Let for __ i E 
_,\. S, i = 1, ••• ,n. 

Then )'\"'" i<°"F j_ 
.<!....J ':;i·Y '_J ~.Jc " - . ~ ]_ 

We may write x.i = H(a.~b.) 
J . l J so that 

= 2::: s.M(a.,b.) ~ 
l l J Since 1~ is concave~ it now folJ ows 

from prop. 2.13 that there exists a E A such that 

L: ~, .:M(a .. b.) < M(a. l:i.) = z for all J. 
·1 l' J - , J' j 

Hence I; r;ixi < z E S and the lemma follows. 

Lemma 2: 

Let T ' = T (l Rm Then T1 is a convex non-empty subset of 

If1 . Moreover, Tr n H = 0 • 

P--.coof: Assume 11 nRm=0, · i.e. each vector in s has at 

least one component which is -cu Then 

rn 
I: M(a, .b.) 

.. 1 l J_::::; 
= -CG for all 2 E A Since B is convex (rela-

tively I') "-' 
there is b E B such that 

rn. 
JVI(a,b) < 1 E M(a, b.) = -co for all a • 

- ill . 1 l l= 

Hence M11 (G) = -C0 9 which implies V =-CO 

This con tr3.dicts the fact that T < V • Thus T 1 /:: 0 • 

T is convex because of lern:ma 1 ~ so T 1 is convex. The last 

part of the lorn.ma follows from the def ini ti on of T and the 

fact that S n H = 0 • 

We no-w proceed with the proof of the theorem. Since H and T 1 

-nlil by lemma 2 are disjoint convex subsets of rt , it follows from 

theorem 1.30 that there are numbers 1 1 ~ ••• ~l , not a11 equal 
ill 

to 0 , so that I:l . L"~ • > I:l . y . whenever x E H , y E T 1 • 
l l - l l 

If we fix y E T1 and let ,some x. -7 co , we observe that neces­
l 

sarily 1. > 0 
l 

We may assume 

for 

2::1 . ::::: 1 • 
l 
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Since (T,.~.,T) EH we have 2::1 . v . < 'T for any y E T 1 • 
l..i l -

Assume now I:l . y. < T for all y E S * Then there ex is t.s b 
l l -~ 

such that 

M(a,b) for all a E A , 

which implies M11 (b) ;S T and hence V < r 9 'cJl1ich i,s a contra-

diction. 
rv 

We may therefore find y E S-Tr such that ~l.•yr. > 'T • Since 
l'l 

rv rv rv 
y E S-T 1 , y. =-cu lor some i . Put I = \i:y~ >-col 

l ~ 

We observe that~ since i i I (i. e • implies 

and 1. I= 0 
l 

for at least one i $ 

Let 0 < p < 1 and put 

Obviously I: p. = p • 
iEI 1 

p. = l.p· for all 
l J_ 

i E I 

Define , i rt I • Then and hence 

m 
E P~ = 1 1 P1· 2 0 • 

i=1 -'-

By the convexity of B ? there is b E B such that for all 
p 

m 
a E A : M(a,b ) < ~ p.M(a,b.) = p ~ l.M(a,b.) 

p - i=i l l iEI 1 1 

i-D ( ) + ID-tr~:(IJ~ 2: H 2~, b. • 
i~I 1 

If ~l~M(a,bi.) < T 
• J.. 

l 

this yie2-ds 

If 22liM(a, bi) > 'f ' 
then there is some i such that 1. = l 

and M(a,bi) = _er.::. ~ i.e. i r/ I ,..,. M(a, lJ ) = _CX) 
/-- .uence • p 

0 
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It follows that for all a E A 

Hence 

(5) 

Let i ~ I e 

r-.J 

Then y. 
l 

= _a::i .. 

lfJ:(a~ b.) = _..;c • Hence, by the assv.r:1ptio:ris in the theorem, 
l 

' ' ·cnen 

MII (bi) .::::: oo • Ther·efore, by letting p ...,, 1 in (5) ~ we get 

'T < V < T vrhj_ch is a contradiction. 

Let r = (A,B,M) be a concave-convex game such that 

-ex:· < M < o::::i and such that M is fL'1.ite or V <co • 1i.ssume 

there is a sGnuence 1b f in B such that 
':l ( 11' 

( 6) inf ?1(a~ b) = inf 111(a, b. ) for all a c A ~ 
• A 2 l b J_= l ' ' •• ~ 

Assume further that to each sequence lanl in A. there exists 

a E .A such that 

liminf IVI(a ,b) < M(a,b) for all b E B • 
n n -

Then· r has a value. 

Proof: By theorem 2.27 we have, for 'f < V , 

ill 

n [M 2: 'T Jb :/= 0 
i==1 i 

Il1 

Choose am E n [IYl 2: 'T Jb. NU m = 1 '2' e.. . 
i=i l 



By the assumption, there is a E A such that 

liminf M(a ~b) < (a,b) lor all b E B • m m -

The proof is com~olete if vrn can show that M(a, b) > 'T for all 

b E B • By (6) it suffices to show that M(a,bi) > T for 

i = 1,2 For rn > i we have M(a , b.) > T • m l 
It follo·1;m 

that M(a, b.) > liminf JVI(a __ , b.) > 'T • 
l- fil L.1. l-

Let r = (.A~ B,M) be a g2Jne se:;,tisfying the condition in the 

remark succeeding def. 2.16. Assume further that M is con-

tinuous in each variaule and that A is closed a:t1d 1Jounded. 

Then I' has a value. 

P-.. coof: F'..com the theory of metric spaces we k.-:tlov1 that B has 

a countable dense s1:i.b.:1et (which m2y here be taken as the set of 

points in B with rational coordinates). By the continuity of 

M(a, o) for each fixed a E A ~ statement (6) of the theorem 

is now satisfied. 

Let \a j ln be a sequence in A • Since A is closed and 

bounded, l0o l h2,S a subsequence la l which converges to a n . n .> 

H(ojb) 
J 

point a E A .. No-,v 9 since is continuous, 

liminfnM(an?b) < lim M(a ~b) = M(a,b) for each b E J3 • Thus 
nj 

the assumptions of theorem 2. 28 are satisfied, so thc:"t I has 

a value. 

To find weaker conditions under which a game has a value, we 

will use general topologye .An introduction to the theory of 

topological spaces, compactne:Js etc. may be fom1d in Roya.en: 

Real Analysis. 



2. 20. 

DEFINITION 2.30 

Let X be ~ topological space. A collection ~ of sets in 

X is said to have the finite intc::rsection ror;eJ:·t:z: (f. i.p) if 
l{r-' 

any finite subcollection of Y has a nonempty ii1tersec·~icn. 

Remark: 

Theorem 2.27 states that the family of subsets of .A j 

[M ~ T]b 9 b E B ' has the f.i.p. 

We h2V•3 the follo 1ding ~cheorem concerning f. Lp,. 

THEOREJYI 2. 31 

A topological space X is ~ if and only if every collect-

ion of closed sets with the f.,i.p, has a nonempty intersection. 

Proof: Royden: Ch. 9 prop. i. 

DEFINITION 2.32 

.Al1 extended real-valued function f on a topological space is 

a E R , the set Ix : f (x) < al is open. 

We remark that the last condition is equivalent to 

lx : f (x) ~ al is a closed set for each a E R • 

Let !f1 J , i E I be a family of upper semicontinuous functions 

defined on a topolcgical space. Then 

continuous. 

f == inf f. 
iEI 1 

is upper semi-
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Proof: Clearly -<X-· < f < o:· • ·Moreover 

!x : f (x) < a} = U lx : 
iEI 

f. (x) <al 
l 

is a union of open sets 

and thus open. 

LEMMA 2,34 

Let f be an upper semicontinuous function defined on a com-

pact topological space X • Then f asslliiles its maximlliil; 

i.e. there exists such that sup f(x) = f(x0 ) 

xEX 

Proof: Royden Ch. 9 prop. 10. 

Let r = (A, B,IJ) be a concave-convex game; -c..c' < M <co • 

Asslliile there is a topology on A such that A is compact and 

M( o, b) is upper semicontinuous for each b E B • Then the 

game r has a value and. player I has a rnaximin strategy. 

Proof: Let rr < V • By dGf. 2. 32, the sets [M 2: rr Jb are 

closed sets in A and hence compact, since i;. is compact. 

By theorem 2.27, the family [M 2: T]b , b E B , has f.i.p. and 

so by theorem 2.31 n[N?: rr]b '/= 0 • Theorem 2.26 now shows 
b 

that r has a value. 

Since =inf M(a,b)~ it follows from lemma 2.33 that 
b 

is upper semicontinuous, and by lemma 2.34 we may find a 0 E A· 

such that M1 (a0 ) = sup M1 (a) = V • Hence a0 is a maxi.min 
a 

strategy. 
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Assume is 8, concave-convex garn.e 9 such that 

-a-_) < M < cr..:i • We vrill no1J find conditions on A and M to 

assu.:re the existence of a topology :possessing the properties 

listed in theorem 2 .. 35. 

We will ne>:;d the concept of a ~' which is a generalization of 

a sequence. The definition of and some properties of nets may 

be found in Royden Ch. 8. 

It sufficea to consider the coarsest topology on A for which 

the functions are upper sem.icontinuous on A • 

This is the topology T c::..1 A generated by the sets 

Ob,t = )a EA : M(a,b) < tl , bf B ~ t ER. (Sets of this 

form will have to be open by definition 2.32.) 

LErlJIIIA 2 • 3 6 

A net in A converges to a point a E A in the topology 

T if and only if 

(7) limsup M(a ?b) ~ M(a,b) a. a for all b • 

Proof: rionly if 11: Assume Ob, t is a neighbourhood of a • 

Then M(a, b) < t There is 0:. 
0 

such that o. > a. 0 => ao. E Ob 1 t 

or equivalently a > ~ ;> M(a ,b) < t • 
0 0:. 

It f ollovrn that 

limsup M(a , b) < t for all t and b such that M(a~ ·b) < t • 
a o. 

Conseq_·uently limsupa.M(ao:., b) ::;: M(a, b) for all b • 

II if 11: The collection of finite intersections of 

a base for T. Consider such a set 

contains the point a • 

Then IVI(a, b.) < t. 
l 1 

i;:::: 1, •• ~,:c. 
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By (7), for each i vre have, 

limsup ~'l(a ~ b.) < M(a. b.) < t. 
-~ a i - · i i 

It then follO\'JS (from the definition of limsup) that there is 

such that a > a. => rr(a ~ b.) < t. o a 1 i 
for each i 1 i.e. 

PROPOSITION 2~37 

A is compact in the topology T if and only if to each net 

la I in A there exists a E A such that a 

liminf M(a , b) ::;; 1"1(a? b) for all b E B • a a 

Proof: "on2.y if": Assum.e A is compact. Then there is a sub-

net !a J of ! a ! w:J.1ich converges to a point a E A • 
~ a 

iee. by lernma 2.36j lJ.J:JSUP~:~~(a 8 ,b)::; M(a,b) fc·r all b • It 
1~· t 

follows that 

The first inequality holds since !a~l l is a subnet 0£ 

If if": Let la l be a net in A a • The set R = [-CO ,oo] is a 

compact set. Consequently KB (the set of functions from B 

into R) is compact by Tychonoff's theorem (Royd211 Ch ... 9 '11h. 19). 

For al 1 a E A , M (a, o ) E 

-B By the compactness of R 

-13 
M(a~, o) converges in R 

M(a , o) 
a. d0f'L11es a net in 

there is a subnet la0 j such that 
:--' 

-B R • 

Hence limPM(a[.) ~ b) exists for all 

b E B • By the assumptions in the theorem, there exj_sts a E A 

such that 
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But then 

i. e ~ aQ converges to the point a in the topology T (lemr.ua 
p 

2.36) • Hence A is compact~ since each net in A contains a 

convergent subnet. 

COROLLARY 2.38 

Let r = (A~B,M) be a concave-convex game with _o) < IvI <co • 

Assumo that to each net la l in A there exists a E A such 
c~ 

that 

liminf I1(a , b) < M(a, b) a a. - for l -, 
'1-L-L b E B Q 

Then r ha.s a value and player I has a maximin strategy. 

Remark: The ,statemei'J.t that l' has a value and player I has 

a maximin strategy a 0 E A , is equivalent to the following: 

inf sup M(a 1 b) = 
b a 

EXANPLE 2.3~ 

sup inf N(a~b) = 
2, b 

Let r = (A,B~H) be a game such that 

inf 
b 

M(a ,b) 
0 

A - Jo at -ir.:;....,, ••• ,y, 
I ill 

-CO < M <C::. .. We vlill prove that the randomized game I'* has 

a value. example 2~25 we showed this for a simple 2 >< 2 

game .• ) An element a* of A* may be identified with an 

ordered m-tuple ( e 1 !I ••• 'e_m) ·where 

such that a*~J = e·. , i = 1 1 ••• ,m • 
l 

each e. > o, L: ei. = -i , 
l = 

If we induce the standard topology on Rm on A* , then A* 

is compact (closecl and bounded)o Equation (4) in 2.19 shows 

that for each fixed b* c: B* , M*(a*, b*) is a linear· combination 
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of e 1 1 ••• , em • Hence M*( o ~ b*) is a continuo-~1s ftmction on 

A* for each fixed b-* Since r* is concav2-convex (prop~ 

2~20)~ theorem 2~35 gives the desired result. 

DEFINITION 2. ~-0 

Let We say that the strategy 

for b if H(a .b) > H(a.b) .. c •' ... for all a E A 

a 
0 

Let E: > 0 We say that a 
0 

is E:-optimal_ for b 

M(a ,b) > M(a,b)-e for a l a E A 
0 -

LEMJ:Vlii. 2 • 4- 1. 

if 

Let r = (.A,B,M) be a game with value V , -a::> < V <CC • 

Assume that a 0 is a maxim.in strategy for player I, i. e o 

M1 (a0 ) = V • Then for each e > 0 there exists a strategy 

b8 E B such that a 
Q 

is e-optimal fol' b 8 • 

Proof: V = inf M11 (b) @ Let e > 0 • 
b 

Then we ca.n find b e 

such that 

Now :M(a01 bE) 2~ ~11 (a0 ) = V which implies 

M(a0 :1bc) 2: IiI11 (b 8 )-e 2; IVI(a,bE:)-e for any a E A a 

DEFINITION 2. L~2 

Denote by A the set of strategies for player I th2.t are 

e-optimal for a strategy 

THEOREM 2o43 

b c in B for all E:: > 0 • 

Let r = (A:B,M) be a concav0-convex game ·with finite pay-off 

function M • Assun1e 



(i): The:ce is a topology on A in which .A i,s a compact space 

and the function:=~ M( o b) on .A are upper semicontinuous fo:;::-

each b E B • 

(ii) : B is aff LD.e rel a ti vcly I • 

The condition (i) is, as is proved. earlie~2~ eql.i.ivalent to 

( i) I : given any net [ aa. l in A there exists a E ' such .;-l 

that 

liminf M(a , b) .::; M(a,b) for any b E B • a. a. 
('...! 

(see 2.3) Then r. dominates A def. orl. 9 

Proof: Let a E f, _,.,, . We define the game 

.... .. 
r = (A,B,M) so that 

A A 

M(a,b) = M(a,b)-M(a,b) 

A straightforvmrd computation, using the definition of concavity 

and affinity, shows that .A is concave anci is affine rela.-
,,.. ,,. 

tively r • Thus the grune r is 
""' A 

2. 3L1- the game r has a value v 
r..J 

strategy ,.., 
o, 

more 5 

A A 

V = M1 (a) := 

0 < V <CO• 

E A • Since 

A 

inf M(a,h) 
b 

,.. ,,. 
M1 (a) ::::: 

since 

concave-convex • 

and player I has 
... 

0 
' 

we have V> 

is finite4 

We assert that a dominates a in the game r : 
A A 4 

By theorem 

a maximin 

0 • Further-

Hence 

Since Y = M1 ('a) > o , it follows that M(a, b) > G for any 
A 

b E B 9 and consequently M(a, b) 2: M(r::t, b) for m1y b E B by 

the definition of I1 • 

The theorem is proved if we can show that a E A • 

Given e > 0 , there exists by lemma 2.40 b8 E B such that 



A A. 

M(a, b 8 ) 2: M(a, b 8 )-s for any a E A • 
.,. 

Since nov1 M is finite, vre can add M(a~ bE.:) to each side of 

the inequality and get N(a~b8 ) 2: M(a,bE)-s .:i:'or any a EL , 
r..J r-v 

proving that a E A • 

DEFil'TITIOl\T 2. 44 

Let a0 E A • a is said to be admissible if c 

M(a,b) > M(a ,b) for all b EB 
- 0 

implies M(a,b) = M(a0 ~b) for all b EB • 

COROLLJJ\Y 2. ~-5 

Let the assumptions be as in theorem 2.420 

If Cl. 
0 

is admissible, then 
r-' 

a E A • 
0 

rv rv 
Proof: By theorem 2e4-2, there is a E Ji. such that for any 

b EB , M(a,b) > M(a 1 b) • This implies that M(a,b) = M(a0 ,b) 
- 0 

for any b E B , and then clearly a E A . 
0 

The followinz e:x:ampl e shows that the condition in theorem 2 e 42 

that r be concave-convex cannot be ormnitted. 

EXAMPLE 2 • !~ 6 

Let r = (A 1 B,M) be given by 

A= [-1,1], B = l-1,1l , M(a,b) =ab. 

That B is not convex (and hence not affine) relatively r 

.follows easily from definition 2. -14. We will show that lL Jas 

defined in 2.4-2) is the set l-1,1l . 

Let e > 0 • A strategy a 0 (-: A is then ~-optimal for b E B 

if 



If 

If b 

a b > ab-c for all a E A • 
0 

b = 1 ~ then this is equivalent 

= -1, we have a < -1+£ • 0 -
Consequently, the only strategies 

some b E B for an,- E: > 0 ,i r -
are 

to a 

in A 

a = 1 
0 

0 

·~~ 28 

> 1~e $ 

that ere 

and a = -1 • 
0 

These strategies are~ in fact 1 by the definition optimal for 

respectively b = 1 a~d b = -1 8 Now A = l-1, 1 l . We will 

show that A does not dornil'late A • Let a = 0. A strategy 

a 0 dominates a = 0 if 

a b 
0 

> 0 for all b E J3 1 i.e. if 

a > 0 and 
0 - a 

0 > 0 which implies a = 
0 

0 ~ Hence no strate-

gy in 'A dominates a = 0 • 



3. BAS!:C ELEl'IBl\TTS OJ_i1 DECISION THEOHY 

DEFINITION. ~:;o 1 

An experiment is given by where 

( x, GO is a measu:'~able space a..YJ.d (P,,: 8E8} 
ti 

is a f 2.mily of 

probability measure.s on Cx,OD 

Re1narlc: (3 
,~ ma~r also be called a statistical model o 

A statistician begins his study of a phenomenon by building up 

a mathematieal model which is believed to 'e}':-plain:' what 

happenso This model is given in the form of an experiment as 

defined above,, 

The ne::'.t step is to perform an experiment and to make certain 

decisions on the basis of the observations o A decisio:c1 will 

in general be a statement about the 'true' parameter· 8 o In 

the theory of test.s, we consider :i. null-hypothesis of the form 

H : 8 E ff:· where 8 is a subset of t9 o Two decisions are 
0 0 

possible: to reject or to accept the hJipothesis (eventually 

to reject or to "say nothing'')" If a real fur1ction g(8) of 

the ,;true' puram.eter is tc1 be estimated" then the set of 

po.ssible decisions will be a subset of the real line. 

In addition to the set of decision.s 9 the statistician will 

need a rule which to each observed result tell::::-: him which 

decision to make" Such a rule will be called a decision-rule. 

A decision ~pac~ is a measurable space The elements 

of T are called decisions. In the coso of finite 



is generally taken as the family of all subsets of 'I1o 

DEl!'INITION 3,, 3 

() 

Let ~ = ( x, 0{ 'JP 8 : G E G) be an experiment,, A decision-rule 

o is a Harkuv-kernel (see def o 12 of appendix B) 
Ii 

s:.(o lo)\ •J:, X"" _, f,' u \. • µ " /\, __ .... 

Remark: A decision-rule defines for each x Ex a probability 

distribution on the set of deci.sions (T, }.) ) o '.I.1he statisti-

cian chooses a decision according to this distributiono Thus 

vre hci.ve a randomized decision-ruleo However? it may in many 

situations seem. E1ore satisf'actoril;;r to have a decision--rule 

whi.ch to each observed x E x defines exactly v1hich decision 

to malceo Such a rule is called a non-randomized decision·-rule" 

':.Te h.::.tve the fallowing definition: 

DEJ?ThTJTION 3o4 

A decision-rule is said to be non-randomized if there is a 

function 1~ : Y ..... T such that 

o ( S ! x) = :.:::8 0 ( x) ) for all S E 1 ~ x E X 

i.eo 
J "l -i ~r--

0 (S \x) = 'Lo -~-" 
if 

y (x) ES 
¢ (x) % S 

Accortlingly, 6 ( 0 Ix) is the probability distribution giving 

mass 1 to the set 

We remark that h 
(~(x)} c T , provided £ ¢ (x)} 

in most cases is chose~ so that each one 

point set of T is measurableo 

Since o(Sjx) =I _1 (x) ; we have 
u; (S) 

(CL'his follows since o (S l 0 ) is required to be 

Ol-measurable). Hence 1~ is always meEwurable. 1¥ (x) may 

be interpreted as "the decision to t2Jrn when x is observed' o 



EXlLl"JPLE 3,, 5 

In a k-decision p:..::'oblem, (T' I~ ) is given by T= [1~2,.Q.,k}~ 

~ is the f a.mily of a_ll subsets of T Q A decision rule 6 

is thus completely defined by the values 6 ( {t J lx) , t E T , 

x E x • We will in common write 6 (t Ix) instead of 6 ([t} Ix) 
k 

Note that E o(tjx) = 1 for all x E x • If 6 is non­
t=1 

randomized~ then for each x E x 6(tjx) = 1 for some t E T • 

(a) Let 8 c B and suppo,se we want to test the hy-pothesi.s 
0 

H : 8 E (8)0 against 9 E 0>@0 • Our decision space will then con.-· 

sist of two elements: ;; accept H" and ·'re,ject H ·, which we may 

identify with the numbers 0 and 1 , respectively • 

Thus T = [0,1} and our procedure is determined by 

~ ( "'! l ~,. \ = U jA) Pr (reject \ x is observed) = cp(x) 

o(Olx) = ·1-cp(x) 

Th2 te,st 6 is non-randomized if o taltes only the values 0 

and /J 
' . 'l1he set W = {x Ex : cp(x) = 1} is then the rejectio.q_ 

re_gi_on and U = {x E x : cp(x) = 0} is the acceptance region of 

our testo 

(b) Suppose now 8 c R an.d we want to estimate the "true" 

parametei" 9 Ee 
I) 

Now T is chosen as a subset of H and /';) 

may be taken as the f a1nily of Borel-sets in T • The decision 

procedure 6(Sjx) determines to each observed a probability 

distribution over T o A non-randomized decision rule is now 

seen to be given by a_ mec.surable function ~ : x .... R 7 which is 

the same as what we are accustomed to call an estimatoro 



The decisio.o.~rule in definition 3., 3 is a randomization ''after x", 

in the sense that the statistician first o-oserves x and then 

chooses a probability distribution over T o Another wa.y of 

randomizing is the following: Let D0 be the set of non<., 

randomized decision~rules and let D * be a set of probability 
0 

measures over D 
0 

We ~1ay let the strategies of the statisticia11 be the elements 

of D0 ':< 5 ioe. the statistician chooses a non~randomized de·-, 

ci~:;ion--rule according to a pJ::obabili t;y distribution over 

Thus i'Je have a randomization 'before x". 

D 
0 

AssUJne, for example, that x is finite ·with I'I elements, T 

i,s finite with N elementB o Let D be the set of randomized 

decision rules. Then 

dim D = M(N-,,,1) 

1fo D = NM 
0 

CompEtring dim D and dim D * ~ we observe that randomizing 
0 

"before J(' gives rise to more strategies than randomizing 

'' aftei· X'' o In i;ui te general situations~ however, the two ways 

of randomizing are eguiv&lento See [20]. 

Let o be a decision .. -rule. The o·perational characteristic 

(abbreviated OoCo ) of 6 is the fUJ:1ction 

OC0 : hi x B _, R given by 

( l ' ['' rsl 'p ( ) ( oc6 S 1 8J = j6'-, 1xJ 8 dx. = P 8 o s) 

(see appendix B, defo 17). 



For each 8 E 8 i P 8 6 is a probability distribution on 

(T, /~) ~ which may be interpreted as ·the expected decision 

when the true par8Jlleter is 8 " 

Consider example 3"6 (e.)" We have 

r r 
00 0 (118) = j6C"l\x)P8(dx) = Jcp(x)P8 (dx) which is seen to be 

the J2_0wer fun_ction of the test 6 " If 6 is non--randomized, 

then OC0 ( 1 l 8) = P 9 (W) ~ where W i:s the rejection region. 

In the non-rendomized situation of example 3.6 (b), we get 

OC 0(Sl8) = P 8 (w ES) , which is the probability distribution 

of 

We .ULake the follov;ing interesting observBtion: The ;JoweI'._ 

_!unction of a test "corr·esponds to'' the probaLili ty ,di~tr·i·-

bution of an estimatoT. Thus the powe3:::__?J'. a test is 2, r.::iore 

· fundamental concept tZ-ian the variance o{ ~i~at.'.:?2> 

Decision theo:cy may be considered as a two .. -person game, 

11 nature' being playe:c I and the statisticis.n being player IIc 

Their strategies are~ Tesyecti vely ~ the parameter set e c.:md 

the set of deci,sion~-rules o Tlle :pc:.y~off fm1ction of this garrie 

is called the risk--function and is constructed f:rom <:~. loss--

functiono These concept.s are defined in the following: 

fl.ecisi:.n1 space" A loss--function is a real function 

Le ( t) ; 8 E e ~ t E T 

vfhich is measura.ble in_ t fnr ea.ch e E 81 o 



The loss-function L8(t) may be interpreted to define the 

loss (or 'l)enal ty') by taking decision t when 8 J_s the 

"t::-cuo' parameterq Thus~ if t is precisely the right decision 

to make '11vhen 8 is the parameter, then it TIJ.a3r seem res.scnable 

to let L9(t) = o . 

Let ~ and 

L 8 ( t) ; 8 E 9 

( G , 
T' /j ) be given as in definition 9, and let 

t E T be a loss-function. Let 6 be a 

decision~rule. The ::-cisl-c-function r 0 

r 0(e) = JL8(t)oc6(dt\e) , e E e 

provided the integral exists., 

By appendix B, we may write 

EXAM.PLE.3o12 

of is given by 

Consider again example 3.6 (a). A loss,-function may be given 

as follows: 

L ( 8 ) = _['O when 
0 la when 

p, = .. / --
LO 

when 
vrhen 

Now, for 8 E 8 : 
0 

For 8 r.: G~G 
- 0 ' 

8 E 80 
e E e-G 

0 

r,_(e) = aOC 0,(oje) == a("1-fcpdP) 
v " e 

A frequently used loss-function in the dituation of example 



') 

C( t-8 )'- where C is a constant,, 

Consider noi:r,r the tvm~person zero~sUID game ( 8J ~ D, r) , where 

8 is the parameter set, D is the set of randomized decision 

rules and r is a risk-function,, The statistician (player II), 

trying to find the ''best ' decision-rule, of course wishes to 

minimize the risk" We shall mc:mtion here two useful principles. 

DEFIJUTION 3@ 1~ (THE MININAX PRINCIPLE) 

A decision rule 6 c D is said to be 1nj_11imax if '-
0 ........._._;~-· -~ 

sup ro (8) = inf sup r 6 (e) 

8 
0 

6 e 

For ft..:rther reflexions about minimax rules, we refer to 

chapter 2c 

TJie Bayes principle involves the notion of a distribution on 

the parameter space 8l called a -orioi ... distribution. 

B;y the Ba.:.1·es. ris1c of a decision rule o E D with respect to 

a prior distribution /\. we shall mea:..11. the quantity 

i .. (A, o) = Er 6 (T) (provided the e:z::pectation exists) 

where T is a random variable over @ di:3tributec1 according 

to J\ • A decision :Lule 6 0 E D is said to be Ba;ye_i§_ Td. r· o t" 

the prior distribution J\ 

The quantity inf r(A?o) 
6 

relative to the prior distribution J, • 

A rigorous treatment of statistical decision theory is found 

in Ferguson [L.J-].. Some .special topics are treated in [-15]. 



4. DEFICIENCIES 

In this chapter we will give the basic definitions of 

E>-de.ficiency between two e:Arperiments with the same parameter 

set e . 

uith the E38.!l18 parameter set 8 • 

Let e be a. real f"Lmction defined on G with values e8 > 0 

for all 6 E 8 • 

We shall say that 

k-~,~ision l)r01)lens if to each deci,sion .space (T, /~) where 

1; t; . rJ~ t :1 +- l ' d d -, J:> t• J con~all1S C:. 3,3 S anct vO e&.C1 00Ul1. e J.OSS ..t.UilC lOn 

[L8(t) : e E 

(rels.tive to 

(relative to 

'IL'' l1 9il = 

8 ~- r 
v c 

(Cl\}J) 

(T,_h) 

max 
t 

1'} and to each decision-rule CJ 

\ 
) there exists a decision~rule p 

) suelJ. that 

for all 8 E 8 where 

in s---
r'° 

in~ 

Remark: A 2~-a_eci.sion problem will in the sequel be called 

need not be a finite set. A k-decision problem arises e.g. 

when T contains k elements and h is the set of all subsets 

of T , or when /) is generated. by a .f._:i,ni t:..~ parti tiq_n_ of T 

in parts., In the latter case~ T itself may be infiniteG 

It is seen that a finite o ~ algebra always contains 2k sets~ 



for some natural number k o 

X. is required to be /J -measurable for each e E e o Thus 

for fixed e , L8(t) may take only a finite number of values 

(at most k )o 

(1) may be replaced by 

(2) P 8pL8 .:::, Q8crL8 + e: 8!!Lll for all e E t8 , where 

II L ll = ma."'<= II L 9 ll = max IL 9 ( t ) l 
e e,t 

Clearly (1) implies (2)o Assume then that (2) holds end let L 

be a loss-functiono. Then L' defined by L' 9 (t) = L 9 (t)/llL9 1\ 

is also a loss-function and !IL' II = 1 o Substituting L' into 

(2) yields (1)o 

PROPOSITION 4o2 

In definition 4.1, we may restrict ourselves to consider only 

decision spe.ces (T, h) with T = [1,2, o o., ,k} and A con-

sisting of all subsets of 

Proof: Suppose the conditions in def. 4o1 are satisfied, but 

only for decision spaces of the above typeo 

Let CT I t, l \ 
'/,_, ) be ai.J. arbitrary decision sps.ce with J~ q I 2k Tf/J = a 

Then ~· is generated by a finite partition of T' containing 

k sets, say I'= [T,1,.oo,Tk} (See e.go [10] Prop Io2o1). 

The idea of the proof is now to identii'y the element i E T 

with the i-th component T. 
l 

of the partition of 

The proposition will then follow from the fact 

that every ~ '--measurable function on T' is consta..'1.t on each 

Ti o The reader is recommended to work out the details of the 

proof .. 



DEFINITION 4.,3 

Let ~ , S' and e: be as in def o 4 .. 1 . 

~ is e:-deficient relative to _t if 

We shall say that 
(:> 
& is e:-deficient 

relative to Y for k-decision problems for k = '1,2,3, ••••• 

Hemark: The concept of e:--deficiency of one e:x:periment to 

another was introduced by Le Cam in [7]. This generalized the 

concept of 'being more informative' which was introduced by 

Bohenblust, S'hapley and Sherman and may be found in Blackwell 

[ 1]. ,;Being more informative for k-decision problems" was 

introduced by Blackwell [2]. In terms of s-deficiency these 

concepts are defitled as follows: 

DEFilHTION 4. L~ 

We shall say that /;, is more informative than t' (for k·'" 

decisioI!....I?__roblem.s) and write this t 
is O·-deficient relative to t' (for 

> :t ( ~ > t ) if .~ 
k 

k-decision problems). 

Remark: "0-deficiency means e:-deficiency when e: 9 = 0 for 

all e E ED .. 

DEFINITION LI-. 5 

If 

say that fl 
c E > t' ) and s:- ?. t 

k 
( T ?_ l ) , then we shall 

k 
and - j:" are .~1!.i valent e292eriment.s (with respect 

to k-decision problems) and write this ~ ,.., ~ ( 13:,· ,..., y ) ., 
k 

What is the intuitive interpretation of e:-deficiency? 

Assume that the 

experiments t 
choose? If t 

statistician may observe values from one of the 

and r· ' but not from both. Which should he 

is more informative than S- , then regardless 



which decision rule he chooses in , there is a decision 
~ 

i~ule in G which yields luwer (or equal) risk. Consequently 

the ex:periment l should be pref erred. 
0 -~ 

If ~ is e~deficient relative to f o..nd e 8 is small for 

ec:~ch e ~ then to each decision rule in ~ there may be found 

a decision rule in l whic.h is almost as 11 gooct·· as ·che first. 

1rhus only a small amount of information will get lost if we 
0 (.~ 

observe G instead of ..:S:: • 

The function s may be called a tolerance function. 

P:HOPOSITION 4.6 

~ 
If L:::> is s--deficient relative to for (k: '1 )~decision 

pI"Jblems, is 
<",'-., 

s-deficient relative to .:Ir f n:c k-

decision problems. 

Proof: Set; Let L Cl.,) l0 ~ ~ 8 ~ 9 e ' . = . ' • • • ' ,,. , .... 

be a loss-~fru-iction and let a be a d . . 1 . Cr'-' ecision-ru e in .::,-

:relative to 
(.:) 

We shall construct a decision-rule p 

>-. v.> such ths.t 

Le'(i) = LB(i), i = 1, ••. ,k; e E 8 

cr iE:; well-de:'.:'ined bvu the v2.lues cr(i I y) j E T \T E ~ 
i ? - k~ d t:l 0 

By defining 0. (1, ·'-,;__ ' 1 l v)· = 0 ,._, for all y E C;j 
• ? 0 may be 

considered as a decision rule in relative to Tl~.,, • 
"\.·,- I p 

in 

By assumption, there is a rule . "'"" in (o relative to T 
k+1 

.such th2.t 

( 1.1.) ~) ~-L' < QeaLe' C' !IT ! II 
.t e P e 

----~ 
"911·ue ,, 

Define p(il:x:) == p(i\x) if i < k 

and p(klx) = ;J"(kjx) -: p(k ·,· 1 Ix) for all x Ex 



k 
Clearly ~ p(i!x) = 1 j so 

i ::::'1 
relative to Tk . 

,:;. 

p is a decision--rul e in ~ 

It remains to prove (3). For each 8 E S 

4- 5 

and !~eCYI18 I = Q8 a Le 

Finall-r 11 '1L~' '1i = PL 1: 

since a(k~11v) = n for all - I j t,/ '--
'U y E .: _ _., • 

- - J · (j I 11 8 ii so (3) follows from (4-) 

PROPOSITION 4-o? 

e 
for all 0 E 8 , then G is e-deficient relative 

Proc:.f: If L 5 a an.d p are given~ then for 8 E G 

= 1 \ p j l 11\r, , 1 ! :- \l Cl I\ 'lL L = 2 1,. i, L 8 ii 1· ·· e · iwe · ""G 1
• e" 

by prop. 1.~;, of s.ppe:ndix B" 

e - f·- -
Let ?:; ::w.ci ,.J be given as before, a.'1.d let 

G = (~jt,; H8 : 9 E 8) be .:mother e::A"fleriment. Assume that 

~ is €-deficient relative to J' (for k-decision problems) 
'('-' 

that ;;;- is '11-deficient relati 7e to (for k·--decis.ion 

problems) • . Then i is ( e + 11)-deficient relative to £ 
k~decision problems). 

Proof~ Let Tk = £'1; o ... ,k} , let L8 be a loss-function and 

'f a decision-rule in C . By assumption there is a decision-·· 
cJ 

rule a in Y such that Q9aL8 .:=: H8 TL8 1 ri 8!\L8!!; e E 8 

Further more, there is a rule p in E with 

P 8 pL8 < Q8aL8 ; s 8 iiI18 !\ ; e E e 



Thu.s we have 

and we are done. 

p ~ 
If G is e-deficient relative to J·- (for k-decieion 

problems) 9 then ~ is n-deficient relative to t' (for 

decision problems) if 11 8 > e 8 ; 8 E 8 

Proof: Obvious" 

DEFINITION L~. /iO 

r; 1-'--
The de:J;jciency of <o relo.ti ve to 0- (for k-decision 

k-

problem,s) is defined as infimum of all con.st ants e > 0 such 

~ e ~ thav G is e-deficient relative to ..T" (for k--decision 

problems)" I t i· s al enot8c3_ 6 ( f2 't ) 
'\..;, 'J 

Hemark: In the 2bove definition, we con.sider constant 

flll1-ctions e defined on S • The deficiency b~tween /J,, and 

~ may be interpreted a.s a measure for the maximal loss of 

information by observing [!, instead of _;:- • By prop" 4. 7, 

0 ( t ' y ) .:5. 2 ' 01/ c ~ t-) ~ 2 • 

Note that in general '6 ( i , ~) ;£ o ( f, t ) o We now define a 

concept of di,s-_tanc~ between experiments. 

c 
The distance between (, cuJ.d S:-' (w.r.t~ k--decision problems) 

is defined as oC(; ,~) v oCt, t,) 
= o1/ ~ , S:- ) v 6k ( S , &: ) ) 

Remark: The ti~dist2nce was introduced by Le Cam in [7]. 



In the sequel, o (k), ti (k) ~ (~), (k) occuring in a statement, 

will signif:y- that the conclusions hold for o, IJ,, ;::, ,...., as 

well as for ok' ~k' ~' ~ 
k k 

PROPOSITION 4o12 

Let C , ~ and b be experimentso Then 

c i ) o ck) c& , t ) = o , 6 ck/~ , S- ) ~ o 

(ii) o(k)C~ ,g).:: o(k)C~ ,t) + o(k)cf,g) G 

Proof: (i) is trivialo 

As for (ii), choose e > 6(k)( t ,,t), 
n > 6 (k) c} 's ) . 

By lemma 4., 3 and 4e 9, t is ( e + 11)-deficient relative to Q 
v 

(for k-deco problems) so 

e ') 6( ,Lf)<e-1-n 
C) -

Letting e l o ( t ~ t·), 11 i o ( .}:, S ) , (ii) follows a 

PROPOSITION 4a13 

(i) t;(k)Ct, c) = o, t;(k)C~ ,t) > o -

(ii) ~(k)cc:· ,~) = b(k)c~, t) 
(iii) t,(k)c £, g) ~ ~ck/G, $-) + tick) ct, g) 
Proof: (i) and (ii) are easy consequences of the defini-

tions~ 

Furthermore, by propc 4G12 9 

6.(k)cE ,§) = o(k)c ~, g) v c(k)cq ,~) 

< [6(k)( t? 'r) + o(k)c!-' g)] v [6(kfq ,t) + 6ckft,e)] 
< [ o(kf £, ~) v ~k)C ~' C) J + [ o(k)C ,t, g) v ~k)( ~, .t) J 

= c.(k) ( t 't) + ~(k) ct, §) which proves (iii) 



4.,8 

Remark: This proposition shows that 6(k) has the properties 

of a semi-10.et:cic, However, mathematically we are not permitted 

to talk about ''the set of e:Kperiments · o In chapter 5, we will 

consider certain equivalence classes of experiments, which 

will be seen to constitute a metric space. 

PROPOSITION L~., 14 
"""""'-~---· --· -·-· . 

(i) ( 0 0-) tf', re t) k 5k t 'J l o,(_,, as _, cc 

c. \ D. re ~) 11' 
6( ~ 't) as k _, •'JO ll) k\C , .... r I 

I 

Proof: That ok-: 'I ( t , ~), k = ,,., , 2,.". is a 

As suJne oh· ( C , ~ ) 1' c. , ( c < 2 by-

Now, ~ :::~ s-deficient relative 

consequence of prop. LJ-o6. 

prop. 4.6). Let e > c • 

to ~· for k-decision problems for each k = '1,2,.o., and 

hence < 8 • 

Letting c: .i c ·we get 

that o( t, ! ) > c 0 

6 ( t , 5- ) _s: c • It remains to prove 
e ,.... 

Choose 11 > Ci ( C , ..)- ) • It fallows that 

OJ.c(C '~) < 'tl for cell k ' so c < 11 • B;'T letting T] i 6(t 3f ), 
this implies 6 ( t , '.1:) > c • 

( . .; )' 
\l-'- follows easily from (i) • 

P~OPOSITION ~~L2. 

Proof: Let the decision space be 

h = [0,T} o Each decision--rule 

(T ~ ,..& ) , where T ( '1 "'1 = i. J ' 

0 

kernel~ ha.s the property c ( 1 ly) = '1 for all y E ~ • Thus, 

if L8 is a loss-fTu"lction~ 

Q8aL8 = JcJL9(t)cr(dt!y)JQ8(dy) = 

Similarly, for any decision-rule 

r 

jL8(1)Q8(dy) = L9(1) 

p in ~ 



() 
It is seen that G is O-a_eficient relative to and con~ 

versely., 

Hemark: It follows that any two experiments are equivalent for 

1-·decision problems c However 5 this is a trivial decision-

problem, since there is only one possible decision to takec 

B.Ei1'IARK L~ 0 '16 

By 4a5 it follows that 

'° ~- e9'-c 5 ) c (;) J => L\ ( k ) ( (., h~- ) = 0 

It will be proved in chapter 5 that equivalence holds in (5). 

DEFINITION 1+0 '17 

If E EU1-d s are experiments as given in Li• 1 , then the 

pro22:'.-ct of /!; 8-.YJ..d '~ ~ denoted c xf is the experiment 

C x >< ~ , <Y x ~ ; P 8 x Q8 ; e E e) 

where tJ x (£ i:3 the m:'oduct cr-algGbra on x x q p 
0 ax1d 

D ' Ci -' e ,, '-(,e are product mea_sui·es. 

Rems_rk: The above definition may easily be generalized to 

products of arbi trar:y families [gt : t E T} of experiments o 

',Je remark th.at if Ge is the experiment of observing a random 

variable X , and is the experiment of observing a random 

which is i~deJ)endent of 
k:I 9'-

th en t~ >< ~ variable y is the 

8A'"Periment obtained by observing the pair (X, Y) • 

REM.ARK 4 o ·18 

Many of the results on compari.son of sz:periments may without 

difficulties be generalized to situations where the basic mea-

sures are only required to be finite (signed) measureso Such 

,; eJqJeriments '' are called pseudo e:x:periments o They occur, for 



4.10 

example, in the theory of local comparison of experiments. 

They will, however, not be treated in this book. We refer 

to [ ]. 



5. CRITERIONS FOR DEFICIENCIES 

We shall in this chapter mainly consider ex:periments with 

finite parameter .set. Throughout the chapter, f!:. and Y 
will be ex-periments as defined in LL -1@ Unless otherwise stated, 

we assume that ® = ['1, ••• , s} • It is clear that any finite 

J?EFINITION,5.1 

1J 1 t p '°TI ('\ )'"[) ire e = ~9 ? 'cf,= ._..,1..8 0 

e ~ e 
Then P and Q are finite 

positive measures w"'ld clearly P 9 << P ~ Q8 << Q for all 

e E e . By Hadon-Nikod;ym Is theorem v.re can define 

be defined by 

We may assume f e ' gG > 0 ana -
l:f e (x) = 1 for all x E x 
8 

Zge (y) 1 all ~ = for y Ee 
8 

Proof: :Sy H.~N's theorem~ the above conditions are valid almost 

ever:71N"here 1i1T.r.t. P (respectively Q ). By redefining the 

f's and g's on a set of measure 0 , the conditions will 

hold ever;ywhere. 

For each x E x (f1 (x),.o.,f8 (x)) defines a distribution 

over e . This distribution is the posterior distribution 



given :;;: ~ when the prior distribution is the ~rm distri­

bution oveI' @ o (Similarly for the g' ,s ) o 

We now define what we shall mea,."1 by w Ct ) when ijr is a 

positive homogenous flmction&l. We begin with some motivation: 

Let Cx 1 00 1)e a measurable space and P,Q be probability 

measure,s on ( x, OD c To our ex-i:)eriment we may assig21 the 

following quantities: 
i" /~----.,. 

Jv dPdQ (the affini t;y of P and Q ) o 

fj-- -~ - ~I 
J I dPc ~ dct-1 (the Helling_er-clistance between P and Q ) • 

r 
idP v dQ 

cl 

The 2.bove expres3ions are all of the form s~(dP,dQ) where \~ 

is a :)ositive homogenou,s real function (i.e. ~(t:x 1 t;y) = t1¥(x,y) 

for t > 0 x,y E R ) • 

We define r11(dP5dQ) in the following vmy: 
J 

Let jJ. be a non~negative measure 011 01 such that P,Q << µ • 
( 

T\ f ' f d b p (A 1 I -"' 1 ve ine an g y _ , = J .L cµ , Q(A) = jgdµ (A E 0() . 
A A 

Set s~(dP,dQ) = J$(f ,g)dµ • 

As will be seen later 5 thi,s definition is independent of our 

choice of fl • It is often convenient to let µ == P + Q • 

As an example~ the affini t;y cf P m.d Q eg_uu.ls Jjf~ dµ , 

which is large if f and g are large 'togethei'" j i.e. P a;nd 

Q assigns large mass to the same sets (intuitively spealcing). 

DEFIJHTION 5.L!. 
-----~-· .-o-~- ...... -----

Let !!, be a..n experiment and let $ be a positive homogenous 

function defined on 

(i.e. ~(tx) = t$(x) for t > O , x E R8 ) • 



Then 

¢ ( t ) = J * (GP 1 , o •• , dP s) is defined by 

~ c e ) = s ~ c r 1 , 0 •• , f s ) dµ 

where µ is a a-finite non-negative measure, P8 << µ 

PROPOSITION 5~5 

~Cl) is well-defined by def. 5.1+, i.e. the quantity $(l1) 

is independent of our choice of µ • 

In fact 

1vCl) = JvCf1 , ••• ,f 8 )d.P 

where f 1 ," •• ,fs and P are given in 5.1. 

Proof: Let µ. be given as in def. 5.4. 

Set 

Now 

f = 8 

dPe dPe/dµ 
f e = 'dIT> 8 = dL:P 87dµ 

f e 
=-

r'f 
8 8 

Hence, by the positive homogenity of * , 

The proposition follows. 

EXAf1PLJ2_ 5 0 6 

Let x = ('1, •• o ,r} , Ol. = class of subsets of x • 
will then be given by a vector (p n ) with 

i 1 ' 0 
• • ' l:'ir 

Each P. 
l 



5.4 

p .. > 0 , ~ .. = 1 • The experiment 
lJ - j lJ 

is thus completely 

determined by the Markov matrix 

(P11 0 0 0 P1r \ 
p =I :21 P2I' I 

) & \ . 
:Ps1 Psr/ 

Let µ be the counting measure 

µ(A) = number of elements in 

fi(j) == Pij i = 1, ••• ,s; 

Thus, by definition 5.4, 

-(' 

= ~ -K1"1(j), •• °'!"s(j)) 
J=1 

A). 

j = 

on x (. 
,i Ct e. for any A~x 

Clearly each P. 
l 

<< µ and 

1, ••• ,r 

We now investigate the cormection between and Bayes 

risks. 

PROPO.SITION _.2.7 

Let W E '±'k and let T, = [ 1 , ••• , k} 
.r'C 

be a decision space. 

1.11hen there is a loss function [L9 ( t) : 6 E lfD , t E ir·} such 

' 

that w(~) eguals -s times the minimum Bayes risk relative 

to the uniform distribution on e • Conversely, to each 

decision space Tk and each loss fULJ.ction L on rE· >( Tk 

there corresponds a sublinear functional '1J E '±'k such that 

1jf ( [; ) has the above propert;y·. 



k s 
Proof: If then w(x) = V :S 8. -1-X 

t ='1 e ='1 e 5 l.I o 
coefficients ae ' 0 

'-c 
We define the loss function L by 

Le(t) = -ae,t 

By definition 

8 E ® 

.f::J r 
~(G) = J~I(f'1'"oo'f 8 )dP 

t E T 

k s 
= r V Z: (- L8(t))f 8(x)P(dx) 

't=1 9=1 

Now, for any decision-rule p , 

::burthennore, 

'1 ·1 
~ ~P0 pL~ = - :Sr (0) = r(l\ .n) 
S · d S 0 p O'~ 0 ...; 

for some 

is seen to be the Bayes risl:;: of p w. r. t" the uniform distri~ 

bution !\ on e (see 3.13). 
0 

By ('I), 1 ~ r(A .p) > - -~( ) for all 
O' - s· 

may be obtained in ( 1) if p for each 

p • However, equality 

assigns mass 

the t for which maximmn occuX'S. We leave to the reader to 

verify the measurability of this p • 
-1 ( 

It follows that inf r(l\ 0 , p) =-~w ( f: ) and the first part of .s ,,;? 

p 
the proposition follows. 

The last pa:rt follows by defining 

k s 
1jr(x) = V AE (- L8(t))x9 for all x E R8 • 

t='1 tJ=1 

to 



We are now in position to .state and prove the funda_ruental 

theo_:sem (~n cpmparison. of e:KPE?_E~ments wtth fini~a_r9meter set. 

We let oUI' decision space be Tk == [/1,. o o ,k} and we let }.;::i k: 

be the family of all subsets of Tk o 

the 0-th unity coordinate vector of 

By 0 

'"'8 we shall ma an 

0 = '1,o~o'}S o 

The following condi tiorLS are all equivalent: 
0 ~ 

(i) G i,s t:-deficient relative to ,::, for k-decision 

(ii) 

problerns. 

To each decision-rule in 

and to each loss function [L8(t) 

there corresponds a decision-rule 

to T, ) so that 
.K 

I:nP9pLO < ~QGoLO· + I:sl'.[L"\j " . ., e l;, u 
,__. u 

(iii) To each decision-rule a in 

there corresponds a decision~rule 

to 'I' ) k so that 

\!Pep~- QoSJI! ~ se for s.11 GE 9. 

(relative to 

G E n . ._, t 

p in & 

(relative to 

p in l 

Civ) tYCG) > wCY) - 2:s 0cyce,'") v ~c-e(.l)J e u ':J 

for any Cs-dimensional) ~ E ~k • 

T k 
) 

c Tk} '-

(relative 

'T' ) -k 

(relative 

Eemark: The criterion (ii) is called the average :r-isk 

c17iterion for €-deficiency for k-decision problemsG Dividing 

all terms by s ~ we observe that (ii) is a statement about 

Bayes risks relative to the unifo:cm distribution on @ • The 

criterion (iii) may -oe called_ the criterion for comparison b;z: 

pperational charaeteri.stics (see 3.8). 

The criter'ion (iv) is c8_lled the 1~-criterionc Equivalent 



formulations of the ~-criterion will be considered in 5o'13. 

In order to prove the theorem? we will need the followin_g 

le:m.mas: 

Define a two~person zero~sum game f by f = Cf , ~ , !1 ) 

where i. = [L : llLI\ < 1} is the set of loss fm1ctions on 

el ><. Tk bom1ded by + ·1 , 
G\ 
.V is the set of decision-,rules in 

relative to T k and the pay.-off function is defined 

on_ ! x :D for some 

fixed cr ru1d e • 

1.rhen r is concave-convex (see 2o16). 

Proof: For Gach fixed p ~ M(L~p) is a concave function of 

L • This follows since P:JpL0 and Q8crL0 are linear in L 

a.i1.d ~ \IL8 ll is a concave f1mction of L Thus, since [ is 

a convex set, ol is seen to 1-:ie concave relative to r 

(def . 2. 12 ) • 

(\) 
Furthermore, ¥>V is convex (in fact affine) relative to r 

since M(L, p) is a linear function in p for fixed L ru1d 

<}) i;::: a convex sot c 

The lemma follows. 

There exists a topology on for which is compact and 

for VJhich M(L, p) is continous in p for each fixed L o 

Proof: Consider first the set of all measurable functions 

from x to [0~1] ,, For each bonnded and measurable function 

h on X (ioe" for each h E L ::.o (P) ) we define a functional 

Fh on C by 



Fh ( 6) = jh(x) o (x)P( dx) ; 

Furr..ish b 
functionals 

1·ri th the coarsest topology for which all the 
f" 

F are continuous o We prove now that v 
h 

is 

compact in this topology. It is enough to· prove that each net 

contains a convergent subnet. Since 0 < 6~ < 1 , each 

net { 6 a,} is LLl'lif ormly integrable. Hence~ by the weak 

compactness leTIIma (appendix C) there is a 6 and a subnet 

{6 1 such that pl 

Fh ( 6 P) ... Jh(x) o (x)P( dx:) for each h E 1to(P) o 

Clearly o mc::.y be tal.\:en as a member of (; Hence 
t;? 

in our topology~ vv-hich proves that (c? is compaet. 

Each decision-rule p E 'J) may be identified with the vector-

valued flmction 

(p('1t"J7000,p(k! 0)) EGk ~ i.e. 1J.::~k 
9) is closed, since CU is the subset of (;;, k with ~omponent­

functionr~ with sum ~1. Hence ~ is a closed subset of the 

compact set G k anG. thu,s compe,ct itself. 

As regards the last assertion of the lemma, it i.s enough to 

prove that for each Cl , PJ pL 0 is continot1s as a function of 

p • 

Now, P 0pL0 == J~L0 (t)p(tlx)P0 (dx) 

== l:L r' ( t ) l p ( t I X) f O (:z:) P ( dx) 
t J cl 

Since !f 0 (x) I ~ ,.l , and by the definition of the topology 

on <j), the weak compactness lem.ma asserts that for each ~ conver§ng 

to converges to Continuity followso 

(i) => (ii) is trivialo 

(ii) => (i): Assume (ii) holds, o_nd let a be a given 



decision-rule in Y . 
Then 

which is equivalent to 

(3) V = sup inf M(L,p) < 0 
L P 

We will prove that V = V and that player II has a minimax 

strategy p0 • In order to do this, we shall make use of 

theorem 2.35. This theorem, giving conditions for the existence 

of a maxim.in strs_tegy for player I, may of course in a straight-

forward mer.mer be e:x:tended to a theorem concerning player II. 

We note that I M(L, p) I < ::o for all L and p • By lemma 5. 9 

and lemm.a 5. '10, theorem 2. 35 yield what we wa_nt and hence there 

eYists a p0 E 1) such that by (3) 

su~ M(L,p ) = V = V < 0 . 
J1:l!Ll1<'l 0 - -

f 0:2 any L such that J!L! 1 < /I : ii -

Hence 

Dividing by !IL\\ , we conclude (!~-) holds for arcy finite loss 

I'.) function. We are now in position to deduce \l • 

C1loose 80 E 8 arbitrary, let 

a loss-function and let a be 

Define L' by L 1 9(t) ={Leo(t) 
0 

{Le (t) : 0 E e ' t E Tk} 
~ 

a decision-rule in J 
if 8 = 80 

if e f. 00 

be 

Then? by the previous results, there exists a decision-rule 
0 

p0 in G such that (by (4) with L replaced by L' ) 

(ii) => (iii): Choose 

By (5), there is 2, p0 

0 
0 

. ~ in (.;I 

E 8 • Let 
y\ .. 

a l.B a decision-rule in ~ 

such that CEQ p 0 - ~ a) (L0 ) ,:: s0 • 
0 0 0 0 



for each L ,such that llLc
1 

!1 < 1 
uo 

Hence, by cef. 10 of appendix B, 

\\P3 po ·~ Qe 01! < E:" s_nd \Jie are r'Loneo 
11 - 'CJ 

0 0 0 

( . .. ) 
1_lll => ( -: ) . 

.... ..L .., Let L and CJ be gi ~reile -~ , ••• ) .J 1 . • Hy ~111 c~ere is a 

which implies 

(i) 0 

( j_ i ) => (iv) : Let Let the loss function L be 

given as in propo 5o7o By (ii) 

(
r\ 
0) :w.in a which implies 

p 

(7\ i. ) min 
p 

< mi· n. '>'Cl aL · " ~ 11 L ! 11 - "-'"Ge q -,- L;i::. ll ,1 ~I 
0 8 . ~ 8 o" U' 

rJr' by prop 0 

By the proof of prop. 5.7, 

V(-L8(t)), ~(-er) = 
~ d 

so 
LI 

(i·;r) follows. 

Since (C.) ~ (7), (6) and (ii) are in fact eguivale:r:.t 1 

(i 1r) => (ii) fallows as well. The proof of ouT fm1damental 

theorem is thus complete. 

(. ) 
\.l for ell ~\1 E !' 

f (k) 

( i.:) '· J_ 

Proof: I~ suffirP 0 tr nrove r~) .J - ...,.,.. _,,JJ J _ _;_- - . \.-1- 0 The version concerning ok 

is a direct con;:;eguence of 5. 2' (iv). In fact, if 



ok( C ~ s.-) = 0 ? and ¢ E if k then for any e: > O 

1\r(e);::. \¥(.~) -·· et[~(e 9 ) v w(~e 8 )J 0 Hence ¢( ) > o/(f-) • 
e 

The opposite implication is trivial. 

Assume now that 6 ( f , S:-) = o . Then 01J t ~f-) == o for all 
\.;? £~ 

k , by prop .. 4., 1L,L and hellCE: ~ ( e ) :::.. ~ct-) for any 

~ E '¥1 U 1±'2 U ••••••• 

Let w E '¥ • Then w = lim u; k where \fl 1 < ~ 2 .S • ., " •• ., • and 

~k e :l'k for all k (prop. 1 .. 52). 

By the monotone convergence theorem we have 

~kc~) ... ~r( t) ' ~1/ j:') - wcf) ? so from ~kct) > *kc~'} it 

follows tha_t ~ c& ) .::. ~ (.~~) . 
F'inally, assume that 1~C{,) > ~Ct) 

particular ·¥ ( g) > *ct) for all 

for all ~ E 'J! 0 In 

\~ E IJ.! k k = '1,2,.08 

Hence for a_ll so that KJ §:-6((; ' ) = 0 by 

Ii et ~-p -~2 E 1±' and let c > 0 . Then 

(~1~~2)(~) = w c r ) 1 \.? , 
-,· ut 2 Ce) 

(q r'\~ (~) (C\~1)(G,) = ~ 1 ' ., 

Proof: Direct consequences of the definition of 0 wee'/) • 

COROLLARY .2_.: 13 

The following conditions are equivalent: 

(i) t is e-deficient relative to f 
problems., 

(ii) ~ct) > --~ct) ·~ fl:e C~Ce ) -+ iVC-e )) 
8 e e e 

for k-decision 

for any 

~ E '¥,,. such that 
.h. 



Proof: Clearly (ii) => (i) ( 11-~' r:: " 11-eorem ) "o (iv)). Suppose now 

5o8(iv) holds,, Let 1!1 E "1 d " f. r r k an - ae ine ~ 1 == ~ + 1 where l 

is the linenT :functional given by 

It is seen that 111 1 E 1¥, 
" K 

.Since 
{) t.t-

61 c e ? j ) = o , 
by 5.1/1. Hencei 5oE;(iv) yields together with lem.ma 5o12 

·I· ( 9 ) ·"' ,,, r \::- ·i - ""' r ,!t 1 r e ) v ·11 ' r - e 11 ~ \...,_..,, ,,. -:,,i \.'J ·' ..:_,'-JA.t-''-' \ '!' ~ '· (',/._; 
- ei'o' d u 

Q 

and 

ns i·s ~~ni· 1 y veri.~i·ed. (i"~) --> .J_-\_, t;,clCJ _j_L • -~ , , ~ 

,. .. )' .., l :1 
S'.J \..ll no_,_a_s o 

( . .. \ 
\lJ.l; • Assume now (iii)~ 8JJ_d 

1 t d I I b - -· Si' _-_n_ c e 11!1 I ( e, ·'"- ~) -- 1\r I <. -- e n ,\ • ( l0 l0 

) e - ~\ an v e as be:r. ore. c.L y ". -- 'I' - 1 , 
L' _, 

is derived from (iii)a 

Let be the .se-c of f-i.;mctions such that 

'" ( -~e ) = ;!r ( e ) • 
" G y 8 ' 

9 E @ • and I:~ ( e 8 ) = ,1 • 
8 

Then 6(1, \ (G:~"' , f) 
~~) 

may be written 

6(k;et,f) -

Proof: In 5,, ·13 (iii) there is no re,striction to consic~er only 

~ for which I:u; ( e 9 ) '"" 1 o Thus the present corollary follows 
e 

from 5o 13 (iii) (by use of p:rop o /1o52)" 

(see cor., 

<:: be the matrices defining 0 

5a14). The~ by propo 1.42, 

and 



r 
:::= l I: 11; (p/1 . , • o,, D . ) 

"" ,,, ' I J- ,_ s,1 J= i .! 

r 
I: t ( n,,.

1
-" ~, o. 5p . ) -~ 

G .-1 -- J - SJ 
J=1 

< 

r 
< I: 

,j =1 

s 
I: 11.u .. -· a. -l\!r(e.) 

• _,, J.. l ,I ~l J ' l 
l= I ~ 

s r 
= :r 1v(e.) I: IP··~ q. -1 

i=1 l j=1 lJ lJ 

r 
< max I: b . . ~ q_. _, I " 

.; . _/) lJ lt.i 

..!- J-' 

1'he la.st inequality follows from the fact that 

Hence, b;f corollary 5o 1~:., 
o r 

( 9 ) t. ( t ~ \~ ) < max r: ! p . . ~ o . . i 
""' - i j =·1 l J -'-l J ' 

s 
I: ~(e.) 

. .. l 
l='i 

Thu.s 1.;'fe have obtained an u:ppe:r bound for the l.\-·cli stance o The 

\/·-criterion is, howeve:r·, in most case.s a m=;eful tool for finding 

lower bounds. By co:co 5o14, 6(t ,}-) > l 1¥(l) ~~CS)! for 

any ~ E I' o We .shc.11 use this pro:perty in the next example o 

EXAMPLE . 5 ~ '15 

Le-l~ the situation be ELS in the examples 506 and c:; '15 ./", Q • 0 Assume 

that and <~V [ '1 's] I1et t be r = "°' x == J --•.:l 

' 
e . c 0 

experiment where the true value of e is observedo 
~· ~-· ---'~·~-~-'-'"'"o-"" 

is given by :o:: identity matrix:o 

all information about 8 o 

Let be an erperiment given by a Markov matrix 

all rows Intui tivel;y; .}:-

information about 8 " 

th:; 
f O 

Thus G 

>,vhere 

gives no 

We shall find an upper bouncl for L'i(g, , S'::') b;y appl;:;:ring to the 

inequality ( 9). 



J:i'or any l 

Define now 

2 ·,~ (x) = -~ ' ~ / E3 

~; E 1f 

By ex. 

s 

Hence 

Consequently 9 

r 
" I "'"' j:1it-'j_j 

a~ ~ i = 
""lJ j 

h) .. 
I-'- ll 

-,-

s 2r1 - 1) = 2 - 2 
- \ s s - - + 

by 

1 
Vx~ - -~L:x 

·1· '"9 A. 8 ' ~ -

"I 

/j 1 = C' 11• (....:.. -1 
Q,~\.s']QOO~s·· 

6~ ( e ,,) = 1 
., 

oC:i.?~·) = o? it ro11ovrn that 

.so ~ E 1 o 

- 1 0 

T ' ..uF'G now g "P EJ.nd d"'-· be arbi trs.ry experiment.so Then, since 

is the maximal informative experiment? o ( t; 3 g ) = e(,~~-}f) = 0 
,;-.... 

a..'J.d sine e }- is the minimal infor:.nati ve e:x-periment? 

o<( 'C) - "(J/Z \:-) -_ 0 ,.:i -v ,_,...., -0. 

Hence , 6 ( <~ ? JE' ) _:: 6 ( g , s· ) + 

and 6 ( ~e' g ) < 2 - ; 

so 6 cc~ , ,}f) < 2 _ ; 

(Compare this 1di th prop. 4 o '?) 

2 - 2 
s 

We 3hall give anot2.'1er example of the use of ( 9) o 

Consider a Markov-chain with state space 

mid transition matrix 



f \ p I /1 ~·O'., CG 
:::: I s 1-~ J \ 

o <a< 1 , o < s < 1 , ~ + s I 0,1,2 
) 

Let the initial :Jtate x 
0 

be our lL."il:J1ow-r1 par2.met er 
0 G n be the experiment G @ = { ~ '2} ) ruid let 

I 

by observing Ck'.) is then given bv the matri:x: Yn <.l 

Let 

-1 r's rv ') 1 / g, a ) n = 1.-C I ( ··~p ('1~Cl-P) 
~+Pl~ a I -,-o;+s ,-~ "' 
I. 

G co be the ex1)eriment 

A = l' _yfl_ ~lill 

ro 

gi \T8Yl bv the matrix t.J --·-- - ,.... 

converges to G cc with e2'.yonential speodo 

be ,shovm in 7, ·1 ·1 that 

obteined 

It wil1 

·we state without proof a propo~;ition on product e:1..1_Jeriments. 

The proof;· which may be found in [·16], ms}:::es use of the ~-

criterion an.d Fubini 1 s thoorGJn0 

PHOPOSIFI:ION So -13 
-~~-~~--·--~~-""'-~'*="-,,,;:;'.~---

Let be c-deficient relative to ( -""o-~ J...' -'--

problems) ar1c1 

k-decision problems). 

e~-deficient relative to 

Th:n t.1 >< ~ 2 is ( s,1 

J;::.-CI ecision 

(for 

deficient relative to (for k-decision problems). 

Hemark: The statement is easily generalized to finite products 

of e1cperiments o It follow.s that 

~ tic, 'c ~. ~ t-. ) 
1. /• K 1 l l 
-=1 

8JJ.d 



In particular, 

~. > t. 
G i - "' i 

• +' 
l.L 

~e.> ~t . 
. 1Gi-. /Ii 
l= l=1 

This was proved by Blackwell in [ 1] • 

We 13t ~n denote the experiment (If is the 

experiment of observing a random variable X , then ~ n is 

the experiment of obsel'.:lring independent, identically distributed 

variables x,.,, ••• ,X with the same distribution as . n x ). 

It f ollow.s that t > t => ~ n ~ ~-n • 

That the converse is not true, is shown in [16]. It is shown, 

however, that 

As is noted J .. n 4. 13, the class of eJ...rperiments will not consti-

tute a set in the strong mathematical sense. We shall now, 

however, show th.s.t we may let equivalent experiments be 

i-·epresented by a stand.grd experiment, the class of which will 

define a set and constitute a metric space under the metrics 

Standard experiments were introduced by· Blackwell in [ 1 J. 

NOTA1I'ION 

Let K be the subset of Rs defined by 

( s 
K E s 0 all 2: XO 1 = Fe x R ' X~ > for e ' 

-- <' 

u 8 =·1 , j 

DEFINITION 5. 19 

A standard_e~iment is an experiment of the form 

(K,(£,s,, : 
d 

!\:; 
Q E @) where \.D is the class of Borel-subsets 

of K and dS 8 /d~S0 is equal a.e. to the function ere on 
v 

K 



defined by ~8 (x) = x 0 

A standard measure S is a positive measure defined on 

(K, ~ ) such that 
I' Jx9S(dx) = 1 for all 8 E 8 o 

8 E 8) be a standard experimento Then ZS8 
f) 

is a standard me a.sure a Conversely, to each standard measure 

S on (K,Qj) there corresponds a unique standard experiment 

(K, (2 ; s0 : 0 = 8) such that s = :s8 o 
8 

Proof: Clearly dB = e 
proves the first assertiono 

' so Jx~1 a.zs 8 1 0 This 

Let now 8 be a standard measure on (K,(f?) and define for 

each 8 E @ By 

definition of s /] 
' . Furthermore, 

r r 
~S 0 (B) = I\x0 S(dx) = JS(dx) = S(B) ; 
e v e"' ,, 

B B 
B E 63 , so S "'C" = L..0 8 • 

8 

Uniqueness follows from the fact that dS 9/dS = "",.. .i~e aoeo must 

hold for each 8 • 

If ~ is a st2.ndard experi::-.a.ent with standard measure 

S , then it is seen that 

PROPOSITION 5 ._E_l 

Let t be an exi;ieriment o Then the experin0n-t 

0 E ,,.. \ 
lb) uh ere D .p-1 

.J.. (\..L 
v 

given in 5~1) defines a stenc:iard experi.mento 

8 E 18 ( f is 

Remar~{: f is a function on x which takes values in K a 

Hence P 8f-'1 is well--defined 2.s a measure on 63 
P8f-1(B) = P8(f-1(B)) o 

such that 



Proof: We prove that :::: x 
8 

Set Clearly 

B'or any B E C°6 , 
S rB' ' 0 \. ) = P"(fo-'l(B)) = l f,,.,(x)P(dx) 

u f~4 (B) J 

for all 

Q 
).._) 0 

- f'x"IB(x)Pf·-'l (dx) 
J 'J 

r -1 
= \x8Pf (dx) 

B 

G o 

where we have made use of the substitution formula for inte~ 

grc::'cls. 

Hence dS.-/dS -- x 8. a. e. and the proof is complete. 
u 

R~F Il~ITIQlL?~_?.~. 

€:7 
(_;;i Let b . ' 

e sJ1 f~}qjerixner1~ o 

i~~ the standard experiment 

Dosition. By proposition 5.20 mld 5.2'1 the ~;tandc:rd e:x:periment 

af §: ma;y- 1x~ defined as the (m1iquc) stan.darcl experiment with 

etru10J:i_rd measure 

PH._GPQ.§_JZ-2.£0lI 5 "_2 3 
~o 

Let £ be c:u1 experiment. Then 
" 

(i) t = ~ 
" 

!O (0 
(ii) ll(k)(C,, G) = o 

Proof: ( i) f ollmv.s from the fact that for a st8ndard e:xperiment, 

f (as defined in 5. '1) ma:ps each point of K into i t,..self. 

By corollary 5. /11' (ii) is equi Valent to ~i c E) = ~r ( e ) for 

rl °1 I E \j)° 
cu _ _t_ 'if • (k) 0 



But 
(' 

J w (f (x) )P( dx) J i)J (x)Pf-1 (x) 

Let 
~ and ,.,) be ex:perimentso 

A ,,., 
Then 

G <:('-· 
<=> t_:., = .... ') 

Proof: Assume By propo 
A A A A 

t1 c t , ~-- ) < ;:, c ~ , G ) + 6 c c , ~ ) + ~ c! , s-) = o 
A 

( =>) As SUillG 6. ( ~ ~ y) = 0 0 Then 6 ( ~ '! ~ ..... ) = 

' .. ' \ll)' 

so 

0 ' since 

As sc:LIDe that and have [C:tanda:cd measu_-res s and 

respectively c We have: to TJI•ove that S = T o 

for all ~1 E 

T 

Since S and •r: are Borel··mee.sures; it is enough to p:cove 

-!:;hat 
(' 

jhclS 

for each continuous function h on K o 

We shall do t:1is by applying to Stone-Weierstrass theorem 

(see e.g. [12] Ch. 7)" 

Let V be the set of 211 fLL"lctions on K which are of the 

form y- 1 ~ v2 whei·e 

on R8 " By (10), 

·Ir 
'j' 1 and ;~ r;, are .::mblinear functionals 

(1'1) rvdT = ;·vc"S for s.J_l v i:: V • 
0 J .. 

Clearly~ 

(-'12\ \ ' ) u, v E V => u-:v E V 

and v E V c E R => CV E v 0 

Define ·~ by 11r(x) = :?::xr, Then •Cx) = 1 for all x E K , 
f:l J 



which shows that V contains each constant function on K • 

Let V be the u,._~iform closure of V , ioe. the set of functions 

on K which are limits of m1if·)rrn.ly convergent sequences of 

members of V • 

We will prove that V is an algebra of continous functions. 

By ( 12), 

u, v E V => u-:-v E V a._11d v E V c E R => CV E v 
It remains to prove that u? v E V => uv E V • Sine e 

4uv = (u-:-v) 2 - (u-v) 2 , it suffices to prove that v E V 

implies ? -
v~- E V • 

From the identit~.' 

that v E V => !vi E V • Hence v 
v -~ 2 

E v 
turn implies that u, v E V => uVv E T/ • 

Let now v E V • For each x E K 

sup 
e. 

Cw 1 ' -· -;- :;; ., ) 
L_ 

it follows 

=> !v! E v which in 

where sup is taken over all real nWllbers a • Since R is 

separ.stbol, it suffices to talrn the supremum over a countable 

dense subset [a~,a~,••@••••} of R • Hence 
. '-

~:c:, 2 -
1r = V [2e .. v ·-

. /] l 
l=1 

2 a. ] 
l 

Since for each i the fmiction in the brackets is a member of 

V , it follows that v 2 = lim v where n 

v n 

n_-00 

n 
= V [2a.v - ai2 J E V 

i='1 l 

v 2 is continuous since v is, so by Dinis theorem (theorem 

7.13 of ['12]), the 
") 

VL E v " 

convergence v 
n is uniform" Hence 

Obviously V sepa_rates points ,9nd vanishes at no point of K 

so by Stone·-WeierEJtrass approximation theorem, 'f/ is exactly 



5.21 

the set of all continuous functions on K • From (11) it is 

seen that 

fvdT = \vdS for a.D.y v E V 
J .J 

which completes the proof. 

COROLLARY 5.25 

The set of standard e:xperiments is a metric space with metric 

6 0 

Proof: If t and ~ are stand&rd experiments, then by 

theorem 5o23 

6 c e , ~) = o <=> ~ = t 

P..EJ:"fJi¥_ 5 • 26 

We shall see later (theorem 6.10) that if t and ~ are 

ex:periments ~ then 62( ~ 't) = 0 => t 0-QC ,.s-) = 0 .. 

Hence .62 ( t '!:) == 0 <:::> l\3 ( ~ 'S:"" ) ::: 0 <:::> 0 0 0 <=> 6( ~' f-) 
since ll2C~,$;) ~ 63Ct,~) < < .6( t' t) 0 -

= 

Consequently 62 ,63 , .... o will also define metrics on the set 

of standard experimentso It may be shown that they are all 

equivalent and equivalent to D. .. Furthermore, it has been 

shown that D. is equivalent to the Levy-distance A • (We 

note that the Le\ry-distance between distribl.ltion functions 

:B, and G on Rn is given by 

i\(F,G) =inf [h: h ~ O, F(x1 -- h, ••• ,xn - h) - h 

< G ( x,,, , • o .. , x ) < I!, ( x,,, · :- h , .... , x_,, + h) + h 
- I n - I .LJ. 

( ) ~n~ , 
for all x1 , ••• , xn E It J ) • 

0 



The assertions are proved in [16]. 

Asm.une now that the paraiueter set e is not necessarily finite. 

It turns out that problems on infinite parallleter c'?ts may 

occasionally be reduced to problems on finite .i:)2T8ID.eter sets. 

This FCOblem is treated in the follovling theorem. li..,:i.rst we 

need some notation. 

NOTATIONS 

0 
Let Y = /v (jl'I ,·n v \,~/\,'} t_~..r.G : CJ E 8) be an ex-periment and let F be a 

sub.set of 8 • We denote by €? 0 F the e:zcperi:ment 

ex t\7.p · G E F) • 
~Ve, 'J • 

If f i.s a function defined on lfiJ ~ then f IF is the re-

striction of f to the subset F of 

c111d : 0 E 8) 

be e:zperirw:nts (with 2.rbitre..ry parel1leter sec 8i ). Assume 
0 

further that (;, is ciolllinate(l (.see def. 10 of appendix A) and 

let s be a non-negative function on 8 

~ 
C,..I..~ 

(for Then , ~ s-def icient relative t;o .s li:=(iecisj_o11 ...!.... 1:) 

problems) if and only is 

~ ..:r F (for 

subsets 

Proof: The "only if·'~psrt is trivis.l by c1efo 4o1" Assume 

therefore that the condition holdsa Let and 

let 

Let 

[11,,(t) : 8 E 8 J t E T, 1 be a bounded lo.SS fu:1ctiono 

o- \Jbe a decision~rule i~- t- o By def" 4o/i~ for each 

finite~ non--empty J? c 8'. there is o. d.ecision--rule 
§:' 

in 0 

such that 



(12) POpFLO < QOcrLO -:- E; n !\ L~ \\ for all 0 E F 0 - U' b 

J_Jet s be the family of finite subse-ts of F 0 s is easily 

,'3een to be a directed set if we define 

F,,, < F 
I - 2 c:tnd hence r 

tPF defines a 

net (generalized sequence)o 
{o 

Next, since 0 is dominated, there is a probability measure 

n on Cx ,(]/_) such that P., << n for all 
~} 

') E @ 0 Let h = dP/dn 
~u u 

For e9.ch t E T k 
and each F 'I Ct! 0 , ii ,,:' 1 i PF Jii:::o..:. 0 

Hence, lJy Remark 4o of appendix C, there is 8. subnet 

: F 1 E QI ( 
u J and a function p(t!o) such that 

, /j 7' r (-t l )' ( ) " _, (,."!, (. -~ 1-_v-)11". (x)·. TI 1, 1 'J) , oF 1 , • Ix n" x 0.11 • v i ·"' , , , 
j' I U "' I• 

for each t E Tk , 3 E e o 

l~ 
Since 2::: pTi'( t lx) = 1 for all F and x , it is seen that p 

t=1 -
le 

may ~)e chosen such that L: p(t!x) = 1 for all x and 

o < p (t Ix) < 1 
'"""""' a ... ~ 

decision--rule in 

for 
{a 
r· 
\_::;· 

all 

It remains to prove that 

t='1 

x E X o Hence p is a 

Let 0 E 8 " '--'o Then G E 4' I 0 - J_ 0 i'or sc'file Ti' I E S' 
.L 0 and hence 

by (12) 

(14) P 0 PFvL,". 
0 VO 

< Q" oLr. 
i:;;o 'o 

E3uch that F 1 > F 1 

0 

But = 

conve:eges to 

Hence (14) irnplie.s that 

,. I' + 8 11 i\Lri I 
"o 'Jo 

for 2.ny 

P,., pL,., < C) oL CG r, Q ' 1L II + 8,r' !i 0 ' 
\.,.1 'J 

0 0 0 0 VO 0 

and the proof is complete. 



COROI1LARY 5. 28 

Assume that ~ and 
f\.-' 
::r- are both dominated. Then 

e t c '""' if and only if 
Q<) 

0 <,;\...., t F "' ~F for all finite? non-empty 
·~ .,,, 

subsets F of @ 
b 

\,2 0-(.,.. ~ ~~ t c- t I1oreover, G <=> ~ 

0 <=> 0 0 0 <=> rw J 
" 3 c.. 

Proof: The first assertion follow~:; directly from the preceding 

theorem" The last part follows from Remark 5.26. In fact, the 

re.sult given in 5.26 implies that t F:; s.~F => ~F ""} F for 
c__ 

an;y finite 
\0 f~ 

su'Jset F c Hence by the above result 

t J ==> 
2 

~ ~~--

In example 6. 13 we 

!;! 
"" ox1l-:~l for \_, F r-," _c 

COROLLARY 5.29 

Let t ~ ~ 0.nd 

show that • +-
lu is not enough to :requiJ:e 

all .·=:trict subsets Ir cf e 
-~--~~-

be as in theorem 5.27. Then is 
o.,_ 

deficient relative to J- for k--decision problems if and only 

if to each decision-~rulc; a in relative to i•1 

~'-lr " there 

is a decision-rule p in relative to Tk such that 

1\P I"! -~ (.) " 1:11 < c· fo•· --.1 1 '."j E rR •• I - 0 I"' -v '.) ~ - v G ~ c.. .L v 

Proof: In the proof of theorem 5. 27, the decisio'.J.~·rule p was 

constructed independent of the 102s·-fm1.ction L • Hence for all 

·1)ounded. loss-f~unctior1s L a.nd a.11 G E 9 

which implies 11 P " p ~ Q 0 " \ ! < E: " for a11 G • 
II \.) '\ - ,I - J 



6. '1 

6" C011P ARIDOI\T BY TEST IlKr PROBrF:ivrs 

(See § 3 of Torc;ersen ["J6])o 
0 

.~ Let t, and be defined as in Li-o /1 221-d let ,_, i 

Theorem 5o13 applied to the case k = 2 . l ~ ;yie.J..QS: 

TIIBOREI"l 6" '1 

f; 
G e-deficient relativo to for t_es~ing problems if 

a.rid only if 

\I,. r II > j L..2i... \~J 1, r~ 
"'""""' " ~~ i.Jn 1 i 8 - .) 

for each vector a E 

(II !! i ,s defined in def" 10 of appendix B). 

Proof: Each -~ E 1J.I ., is of the form qi = L 1 v 1,..., for some 
c·. i c::_ 

linea.r functio:nals s 
on R " By the identity 

a_r1y 1jJ E '¥ 2 may be written in the form L1 -: [L2 l whsre 
fa C\... 

L_,1 ,L2 E'~--i o 53ince L(t,)=L(~) :forsach LEY1 ,theorem 

5o'13 (iii) sta.tes that it suffices to require 

~ (,~ ) > ~1 ( ~) ~ I:e n 1\1 ( e,, ) 
8 \) :.) ' 

whenever 1jJ = ! L ! ~lith L E 'Y ... 1 " 

L m8.y be w-ritten L(x) Hence, if ~ = ILi 

(This is seen by :=;pli tting up the integra...rid in its ·oosi ti ve 

and negative ps.rt)" 

Similarly? ~ ( ~) = \I ~a 0 Qr)!! • 
u 

The theor8m follows sinc2 O E 8 



Theorem 6.1 has a geometric inte:cpretation as followso 

be a.n expe:;:-iment v The set of all test functions in t 
measurable functions from x to [0,1]) will be denoted 

Let t; 
(i.e. 

,0 
by Ue, 

and V W ,shall denote the subset of consistiLg of all 
C;; 

vectors of the form 

( J 6dP 1 , ••• , J ad.P 8 ) whore o E f:t 
i,,e. 7r, is the set .:>f available power functions. Finally, 

put for 

E Rs x,y - I[ 1 x,y.J 

Then we have: 

COil.OLIJlRY 6. 2 

= {z < z. < y. ~ 
l - l 

e-deficient relative to for testing problems if 

eilld only if 

v t 
• + 2 

Rem.ark: If A ,B c R0 , we define A -1- I3 = [x + ·y : x EA , y E B} 

Proof: By p:cop .. ·1.L~4? the ,support function of V 0 is given by 
(, 

sup f 5d:Za8P 0 
6Etf~°' 0 

·-
If µ is a finite signed meamire on c,_ mea,surable space 

Cx,OD , then 

l\1-1!\ = I 1, 

Hence 

r 
- 11~;i SUJ:l, i o_µ 

ll f!\<1 <) 
I ~-1 

SUD 

6 

ff _J-1 = 2 [ sup r7"Cl\.l - fµ (x) J = 

llf\\.si 

IJ we epply this to = ''a P µ Lr rr n , then 
,-·, ..) y 
_I 

for all 

2 sup I odµ - µ Cx) 
0<6<1 'J 



Similarly~ the support function of 

H ( ' l\LaoQoll + ~ao a E Rs 
j: a) - 2-

V t-- is given by 
... 

Finally, we shall derive the support functior:i. H of -} I[-e, 8 ] 
0 

For any s a E R , "'T E 1 I we hc0.V8 .; 2 [~e,e] -

where equali t:y is obtained -by choosing 

Hence H(a) 

sign a . 8 • 

Theorem 6. ·1 now states that t is s~def o relative to S:-
if and only if 

H ~ (a) : H (a) > HF' (a) for all a E Rs , 

which by prop. ·1o5L~ and 1. 57 is equivalent to the statement of 

the corollarv. 
" 

COROJ!LA~g:Y . 6. 3_ 

~ 
b is s~deficient relative to for te.sting problems if 

and only if for each testing problem 

K : 0 E G~® and each power function 
0 

H : 0 E 3 against 
0 

S available in t-' 
~ 

there is a power function µ,.,, available in t such that 

"' C; 

f) t (G) < 0 
f.J s:-

st (G) > f3t ~ 

( 0) +-

( " ' U) ·~ 

j_c 
2 '-'" 

J 

" 2€ C\ 
v 

8 E G 0 ~ 

G E 8-® 
0 

£:£_oof: Let Ss:- be a power f'Lmction in '.f' Then there is 
(, 

a 6 E t;~ such that 

I f s y 0=(j6dQ,1, ••• ,J6dQs) E Vt 1 i~here S.S" (0) = 6dQ0 ; G='i, ••• ,s. 

By corollary 6.2, Y5 E v + t I[ ~] Hence there i<=' a t . •=> 

f;~ 
-· 8 ' t. 

6' ..- such that for some where I ail < 1 I:: a 1 , o., • , a 
.s - ' 



6.4 

( 1· "'dQ j. 1' a~ Q ) - ( r !'. 1 dP J !'- ' dP ) · i r ~ "' a c \ J u 1 ' "' " . ' u s - J u 1 ~ c • < ' (J s -,- 2 \ c:l.1 c, 1 ' 0 " 0 ' s s J > 

Define 

Then I~ (G) -~ 
~ 

~~ (8) = Jo 1 d_FG ; 

r ~ ( o) I = t ! a 0 I e 0 < J_e .i·"'or all 
- 2 0 0 0 

This statement clearly implies the corollary. 

HEM.ARK 6. 4 

is seen to have the f'ollowing properties V0 c [0,1]s , 

V ~ is symmet;·ic about 
I';• 

t, ~. 6 
(This follows since 1-6 E(.?[: 

whenever 6 E (; 0 , ), V is co:cipo.ct C'.l1d co=:1vex and 0 E V 
c 

It may be shoVim that if s = 2 then every set ·with the above 

properties i.s aV t 
true. 

When s > 2 , however, this is no longer 

Let t be an experiment such that x = { ·1, 2, 3} 

Then t is determined by a Markov~-matrix 

", x 
G 

l 1 
I 
' 

2 

I 3 

such that 0 < 6 . < 1 
l ~-

1 2 7; 
_/ 

P1 q1 r1 

p,, 
'-

q/) 
c_ 

r,, 
,:;:__ 

P3 q, r 
~, 3 

i = 1,2,3 . Hence 
_,,. 

U.L 
3 R consisting of all noi::nts of the form 

v t is the subset 

It ma~y be shuw:n that V V! is the convex hull of the eight points 
G 

obtained when 6 is non~raiJ.dornizecl (i o e. 6. = 0 or 1 for 
l 

all i )o 

By the syrnmetri property of Vt 's , Vt is a parallel,~epiped 



Vt is the parallel~epiped spanned by the 7ectors (p'1,p2 ,p3 ) , 

(q'1,q2 ,q3) and (r'1,r2 ,r3) o If _s:..- is another experiment with 

~ = (-1,2,3) , e = {'1,2,3} , 

. I a. ~1 y \ . 
( 1 y: 1 r'-

S2 'qjt = \ ~2 
s, I 

' Cl ;z, Y3 / I _,, :J 

then we may sketch Vt;; in the same diagram and apply corollary 

6.2 in order to compute deficiencieso 

It is seen that t 2: _t- if and only if 
2 

(a '1 ' o.,2 ' a 3 ) ( P 'l ' f3 2 ' S 3 ) ' ( y '1 ' y 2 ' y 3 ) E Vt 

A similar example, with x = ['1,2} , @ = {'1,2} is given in 

Blackwell a_Yld Girshick [3] o 



An experiment t is called a dichotomy if #8 = 2 (L, eo 

s = 2 in our terminology)o 

~l1REORE1'1 6 Q 7 

Let t and t be dichotomiess Then t is e:-deficient 
"r· 
::r relative to if and only if ~ is e:-deficient relative 

for testing problems~ 

to 

Proof: Since only the 'if' -part need.:3 proof, suppose that t 
is e-deficient relative to S- for 2--decision problems and 

let '~r E 'l'k o By definition of 

Set li (x1 ,x2 ) = aix1 -1 bi x2 • 

~, there are constants 
L\: 

By rearranging we may assume that there is a r so that 

(2) 

when x') > 0 , where the representation on the right is minimal 
'-

in the sense that for each i < r there is a x2 > 0 so that 

li(1,x2 ) > lj(1,x2 ) for all j ~ i . 

The functionals li ('1 ~x2 ) "" ai + bix2 will define lines in 

the plane with slope b • G 

l 
From the represe:atation (2) it is 

thus seen that b'l,., .. o, br are all distinct (equal • I D. S 
l 

correspond to parallel lines)o Thus we may assume that 

b/1 < b2 < a., o < br • It follows that a1 > a2 > • o .. > ar 

(this is easily seen from a diagram)e 

ll'urthermore, for any x2 > 0 , it is seen that 

would 



'r ' /j ..,,,. ) 
~ \.. I '~"-2 

(where == a v 0 ·a ·E R ) .. _ 

Hence if by the positive homogenity of 

Let 
,...., 
~ be the sublinear functional which equals the rj_ght 

side of (3) for all x1 ,x2 o 

,,.._, 
\fr is c, sum of functionals ·which are maximUlll of two linear 

functionals~ Hence If E 'f 2 , <u1d 

( 4 \ ti< ( ~.- x ')· 
J "( ,~'1 ' 2 for all x'l ,xr; > 0 • 

' ,_ 

We assert that 

(5) w(~e.:) > '.Ji(--e.) 
J_ ~ • l' 

In fa.et, 

+ ( a/j - a,, r~ .L • o • o -f (a '1 
I ~ r-

whence 

Similarly, 

s 
V (-a.) > . /j l 

l=1 

-:- a a = r-·'J ~ ·e 

-a r 

c.= 3. )-+­
r 

fC-e 2 ) = ~co,-1) = -b,1 + Ct.1 - b~:rf- -1 + (b - b )+ i_,-1 r 

0 + 0 0 0. + 0 = -b'! 

s 
whence v ( -b . ) > -b /j 0 

• /J l - I 
l=1 

By as.SUillption and by condition (ii) of 5o 13, 



By (4) 

~ c E) = 
(' 

j~CLpf2 )dP = 

so b;y (5) 

~ct)> wCS=°) ~ e1~vCe1) ~ fC-e1) 

1\i ( e ,1 ) -:- ¢ ( ~ e 1 ) 
~ 8 ~~~-~- ~ -1 2 

~(e,...) + ·H-e,,) 
e,.., c: . c.. 

c_ 2 

and the theorem folloi:·TS from. 5o'13, 

REMARK 6 ~ G 

If t and .t-" e.re dic1.otomies 5 then theorem 6.1, corollary 6.2 

and 6.3 give criterions for s--d8ficiency. 

Theorem 60 7 states in particulErr· that if and g:- are die-

hotomj_ es 5 then 

We shall novv prove this statement in the ce.se of general 

(finite) parameter set e 0 

The proof invcl ves standard ex:periment,s ( cho 5) C:tnd vrn need the 

succeeding lemma: 

Let p and Q be Borel probability measures on such that 

P(A) = c~(A) whenever A is a halfspace of (for definition, 

S pC• 1 20) 
_,. '..J 0 .,/ 0 Then p = 'I "t 0 

Proof: We .shall let L(x) denote the distribution of the 

ra11dom variable "'\T 
A • Assume that X has distribution P and 

Y has distril:n1tion Q • ·we shall prove that J.. (X) = ,£ (Y) o 

Let and denote the coordinates of x 
an.d Y , res:pecti vely. By asm.IL"YJ.ption 5 

P( c:;,1X,1 -~- •• o + 9::Xl:: .:::. b) = :~(a,1 Y,1 + ... Q + akYl: < b) for any real numbers 
f (: 

a.1 , ~ *. ~EL1 ,.. 5 b • Hence ,-1~ (aJC1 + .... + a 1)i:1_) = -:1 (a/IY,1 +. ". + a1 Yk) 
...(~ '· '"' . I ..t\.. .1\.. . I ,:{ 



for any Let and 

characteristic functions of X a___nd Y 

for all a1 , ••• ,ar. 

0-, "i_ denote the 

Then 

Hence !.. (X) = J (Y) by the uniqueness theorem for characteris-

tic functions. 

THEOREM 6.10 

Let ~ and ~ be experiments (with finite parmu.eter set). 

Then 62 ( ~ ~ ~) = 0 => 6( t ,,t) = 0 • 

e.re sta.-ridard experiments o and let 

and respectively. 

Nov-r? for a:i_l ~ E 'f-:_:, 
'---

Define for all 

Let h f O o Then 

T( cL-«c) 

I 

.Since the integrand is dominated by Ix." when h .... 0 , vrn may 
Vo 

apply the dominated convergence theorem. 

Let therefore h - 0 and consider the following cases: 

r_!1_1J_lAil """ X J h"'' > 0 f Or }1 _ 0c.,-.. 0 r:i .- _ _,,__ 0 ._ -
0 . •J J 0 

sufficiently small, 

so the integrand comrerg8s to 



:L:a()x" < 0 ' u 

Let now h 

Then~ if we 

I V" 

,; 
..,t),..o 

l:anx(\>0 
0 ,_i u 

:B'or 

the 

The 

< 0 
' 

taJce 

S(dx) 
0 

h sufficiently small, l:aoxo 

integrand converges to 0 0 

integrand i.s then equal to x n 
''o 

0 

h ... 0 . 
the .., ~ .. ...J-

_llfill i.J' 

r· 
T(cb::) == I 

x" tj 

l:a 11 xn>O 
0 

n '• '"' 
v 

Since dSi, = x"' dS , this is equivalent to 
-o ''o 

(6) s0 (~aOKO > 0) 
0 u 

6~ '10 

hx < 0 
:) 

0 

if h > 0 

if h < 0 

!.iVe remark that Sr: and T n assigns positive mass only to 
jo o 

subsets of K = [x : :L:x0 = ·1} Hence, for any b , 

By (6) 7 since are arbitTarily chosen, 

al'ld 

e 

Hence by lemma 4 ° and since e.... 0 7 <) n ws..s arbitrary, 
"O 

S = T o 

Finally, this implies 6(~ 1 J:') = 0. (theorem 5a2/-i). 

COROLLAHY 6.'1~ 

;o ~ 
/:.( C •1J ) = Q if and only if 

for all 

Proof: Eas3r consequence o~ theorem 60 '1 and 60 '10., 

RerJ.ark: If t and _t· ere equivalent, then it is seen that the 



no:emed linear spaces spanned by p 1 J 0 0 0 ~ p s and Q,1 5 0 a 0 'Qs 

are isometric by the isometry 

EXPJ"iPLE 6 o 12 

Consider egain exrunple i::. ,­
,,,,1 o Oo We have 

If Y is the e:x-periment obtained from ~ b;y a permutation of 

columns in Pt , then (7) clearly implies that 

Hence the inequality (9) of example 5o 15 may possibly be im~-

:proved by permuting the colwnns of Qt' • 

~1PLE 6013 (Taken from [16])o 

This eXB.IUple shows that lil corollary 5.28 it is not enough 

require ~F C' for all F 11vhich are strict subsets of v F -~·~ 

(. 
\J..080 F c @ F' I= e ) 0 Let @ = ['1 ? 31 

' - ? ) " 
Define 

t = c x ~ a p "]' p 2 ~ p 3) , l=' = c x, a , Q1 , Q2, Q3) where 

x = [1,2?3,L~} (]l =class of subsets~ Q1 = P1 Q2 = p 2 

a11.d P1 ,P2 ,P3 and Q3 .are given by the Markov-matrix 

'-· x 1 ') :<:. Lj. 

" 
'- ./ 

0 ~. 
I 

1 p /) 
j 

2· t 0 0 
I 

I /1 3 1 3 p l I 
.. ~ 

3 8 7)"'"" 2 
I 

d (J 

'1 2 2 1 
P3 I -p b b ?"' 

! 0 t) 

I 

I " 1 1 2 Q:z, 
c'. 

6 b 6 6 ./ ! 

Rather than t {1 ~2} we shall write e 
G 12 etcc 

.r-.. 

t;o 

Clearly t 12 
;:::: t:-

,J 12 an.d t '13 
~ ~-/13 (~ 23 "-' j-= 23) since 

(, 

( f: r)~) :t 13 CS-23) t:13 may be obtained from by a per-
c.. 

8 



6,,12 

mutation of tb.e columns (example 6.12)o 
0 ("\_ 

Hence E F ~ i F for any strict subsets F c 8 

Hm·1ever ~ from corollary 6o11 we see that since 

(The 

1 ::; 
C2It~ 

measure p1 --
11 5 55 
24~ 24' 24) 

and 

p2 + P3 is 

and hence 

given by 

13 
= 12 

the vector 

J!P1 ~ p2 + P3\! '13 11 . 5 5 17 
= 211 + -zr + 271 + ~ = ,, ? ,- C:. -. c.. I ~ 

(l3 11 is found in a similar way)" 



L TIIB f'ULRKOV KEillfEL CRITERION 

Corollary 5o 29 gives a cri te:cion for comparison of e:x:periments 

by operational characteristicsa We considered there only 

decision spaces of the form In this chapter 

we shall investigate situations \JIThere the decision space h:iS 

a more general struc~ure. 

The fellowing proposition tells us, in the case of e:x:periments~ 

that certain decision spaces are abundant for comparison by 

operational c1::.aracteristics o 

PROPOSITION 7 o '1 

Let t = CxlJl; P 0 o E e) and i· = ~:j (rl; <1,,,_, : o E @) be 
.._j \) 

experiments Emel let e be a non.-negative function on e o We 

shall say that a decision space (T, ~ ~ is admissible if to 

each decision-rule 
~--...., 
..:r relative to '" ~{)\ 1 ll• 

\ ..1. ? ) there is a 

Then: 

(. ) .,l 

11- Q aq i J:-' oP - Q I 

If (T9 A) 
I 

(So'.!'::>/\ So) 

(ii) If ('T, };;.. ) 

in relative to 

< for all n E 8 /\ v 
u 

i c _..._, admissible and 

is admissibleo 

lS admissible and 

( 'T A )·. ~·.uc_1, ... . ? /.;._) ~ .J. that 

e 

s E /~ s I 0 then 
' r= ' 0 0 

rm 1 . U v ) 
\ ..L ~ ,";) is 

decision ,space such that there exists a bi-measurable 

bijection T _, ·:r 1 "· then ('I" , ,~' ) is eclmi,°:3Sible. 

Remark: 
G 
/~ /\ s 

0 
i.s the 

]?r9gf: (ii) is clear, 

and 0 J S E i Let 
, 0 <> 

(80 ? h /\ 8 0 ) o 

o-a1.o~ebr2 rs n s : s . 0 

so suppose that ('r, l, ) is admissible 

I' -be a probabili t;y measure on 

Define a Markov~kernel y 



y(S!t) = I 8(t) if t E s 
0 

s E A /\ s 
0 

0 

y(S!t) I'( s) . " "(; d s s E /\ s = ll )'.. ' 0 0 

Let v }"'ia ..,,,,._# a probability measure on (T' ~ ) such that 

V(S ) = 1 o 
0 

Let S E 1~ 1\ 
r1 
i:) 

0 
Then: 

( ·1 ) /'iT ) ( Q' ~vy u) ly(Sl,t)V(dt) =' T (t)Vfdt) = J J is \ . 
s 

Def inc a I1arlrnv--kernel 0 

v • 
I • 

~ 
J'c:> >~ s 

0 
.... [o,·1] by 

V(S n S ) 
0 

t E S 
0 

= V(S) 

If W is a probability measure on 

U.l 

)~ /\ S , then for any 
0 

E; E ~ 

(2) Wy(S) 

Let now a 

(' 

= \y(Slt)W(dt) 
·J • 

{" 

= 1 r 0 Ct ) w c d t ) = ·w C s n s0 ) Q 

J 0 

s 
0 

'('-· 
be a decision-rule in . .J relci.tive to 

Then ay 
/{'-

is e .. decision-rule in Y relative to such 

that by (2), (cry)(S!y) = cr(S n S0 ly) for all 

By assumption, there is a decision~ru1e p in 

(T? }<l) such that 

) E 8 o 

By ( 1 \ 
\_ j ? (cry)y = (j 

0 Finally? PY l,S seen to 

rule in ~ relative to (So' 
} /\ s ) Nm;.r' .:) 0 v 0 

since \lvi\ = 1 o 

This completes the proof., 

SE/~, y EZJ 

[, relative to 

be a decision-

for any 0 E l8J 
' 

Remark: In 4"6 we proved that E:-·cleficiency for (k + 1 )-

decision problems inplies e~deficiency for k~decision problems" 

1I'his is a special case o.f the present proposition., 



A PS2,l~~ s~~ is a measurable space (T 7 ) where T 

(together with a metric d ) is a separabel complete metric 

space and A is the smallest a-algebra which contain.s all 

open subsets of 'I.1 o (The measurable sets are called Borel~ 

sets). 

The Folisli. space.s may be ordered with respect to cardinality 

into three classes: 

(i) T is finiteo 

(ii) T is infinite cmmtablee 

(iii) card T = card [0~1] o 

Let :r be a co:opact metric space (eag. T = [0,1] ) and let 

C(T) be the set of continuous real functions on T ? provided 

with the metric dist (f ?g) = suplf(t) - g(t)! • Then C(T) 
tET 

is separabel and there exists a dense 7 countable subset Jt of 

C(T) such tt..at if 
'~ f) 

r E Q ') f ,g E dt then 

r~ j '"'I J_ i ? f' ·,- 0· 
o? J:f E d-e 

Proof: Since C(T) is sepa.rabel 7 there exists a countable 

dense subset LL c C(T) Q We may a.ssume that 0 t= tl o- ~ ·o e 

We shall now i·ecussi vely define count.sole sets U/1 ~ lt2 ? ........ 

such that () c tl,A c .... a Q c C(T) and let Je = U U . .. 
0- I- -~ ~ ·o l 

1.= 

}( is clearl:y denss and countable.. Assume that lQ . i.s de­
l 

f inedo Then we put 

( p [r.1L1 r2f 2 .p -t-
"""-i+1 = -i + r3 + "- 3 f/],f 2 ,f 7 ELl ., r,,,1 ,r;::i,r3 E Q} 

I :J l ·--



It is easily ve:rifieo. that U 0 c 1 c Ll 2 c 

';j{ has the properties listed in the lemmao 

and that 

In the pr,::JOf of theorem 805 we will need the famous Ri~ 

Re12._rest:ntation Th£2.~~eI£ which is stated below o For a proof~ 

we refer to theorem 2a14 of [13]. 

J_,et X be a locally compact Hausdorff space and let f, be a 

non-negative linear functional on C,.(X) (the set of continous 
v 

real function,s on X with compact support). 'llhen there exists 

a~e.lgebra f!fl~ in X which c:ontains all Borel sets in X a 

and there exists a ui--:tig_ue non-negative measure µ. on 

which represen.ts in the ,sense that 

f\.f = [fd}..t 
cl 

for every f E C (X) o 
c 

TI-IEOREM 7" 5 

Let -'vf-(}, - ,,,_,Vl' and So.__ 
- ( t\,J 1<::< • n; • r-. E q,) - .. \ ~\j)' ·q,.-, • •, '0 

• .,,, .._I 

be experiments and let s be a non~negative function on 1B • 

Assume further that t is dominated., Then 

s-deficient relative to 

if 8J'.ld only if to each decisi· or" PDa.ce I - - '-'"' - Cr? /~) where T is a 

Borel-sul>set (i.e., measurable set) of a Polish space and /~ 

is the class of Borel-subsets of T , and to each G.ecision-
o..., 

r 11le ,.,. i· _"_1_ (_,,. i'.,,., l"t · t t'm C • ) 
- v ·.....,. \.Leo..ive o 1...l?~). there corresponds a 

Y? 
decision-rule p in (..; (relative to (T ~ ,6) ) such that 

for aJ.l 1 E e " 

Proof: The ''if · -"··oart need;3 no f proo ? since the finite decision 



spaces are included in the condition. 

"only if•: By prop. 7.1(i) it is enough to consider the 

Polish space itself o Ass"Lme therefore that T is a compact 

dense subset of T 

-1·- \' p l - wC().i'-
J E8 ·~ v 

0 

be a probability measure on 

that 80 c 8 is com:itable and n >> PO for all 0 E 8 (,see 

theoreiil 12 of appendix .A). Let JC be given as in lemma 7.30 

For each fixed k , we define a 11 projection" f 1 from T to 
.K 

If t E T we define 

determined by the inequalities 

d(t,t1), ••• ?d(t,ti-1) > 

d(t,ti+1), ••• ,d(t,tk) > 

d(t,t.) 
l 

d(t,t.) 
l 

t. 
l 

where t. 
l 

is uniquely 

(Intuitively, v,re let ~-'-'. be the member of T which minimizes 
k 1. 

the distance fro.ill. t to t. ). 
l 

f 1 is measurable, since it is determined by a set of ineguali~ 
K 

ties betwesn continuous functionso 

~::;ince 

k _, co (the convergence is clearly monotone). Now 

d(f1T ( t)? t) = dist (T1 , t) which is known to be continuous in 
L~ ~-c 

t o Thus, by Dini 1 s lerD.t"Il8. (theorem 7o13 of [ 12]) 

def- (t) "+: )\ ..... 0 . f 1 . t k ,v uni orm_;z: in • Let now a be a decision-
\~ 0 

rule in j- relative to (T,,~) • For each k we define a 
(;\., 

ak in J-· relative decision-rule 

a(fk-1([t})j•) ; t 

By asm1mption, there is for each k 

~ relative to 2\;: such that 

E 'I', " 
K 

by 

a deci,sion~rule 

( 7 '1 \In Ci a 11 < c for al 1 Q E ® (corollar:v1 5.29)o :.J; .rCpk - r1..,~, kti ~ "'o . ~ · 

in 

The rest of the I>roof will be devoted to constructing a decision 



rule p on the basis of the 

Q0 cr\\ < e 0 for r:'-11 

Let f E Jl Then for each 

p1 is such that 
{ 

U E 8 ~ 

defines a function from x to R o f is bounded, since it 

is a continuous function on a compact spaceo 

Hence, for fixed f , the sequence [ p1r (f j 0 )} is ·0i"liforBly 
""'-

bou..nded and unif orm.1y integrable with respect to the pro~ 

bability measure IT " 

B;y appendix C~ there is a subsequence {pk 1 (fI 0 )} which 

converges wealdy to a fun.ction 

probability space (x,(Jl,D) )o 

o (f I 0 ) 
• i 

(with respect to the 

'of. C'I ., ~, 

DlllCt: • is C.)untable 11.re may appl;y Cs.ntor 1 s diagonal process 

to obtain a eubseq_u.ence such that 

converges weeldy (TI) to e_ function p (f j 0 ) for each f E }f " 
Let 'Then has the following propertie~ 

(. ) .. l 

r nJ --· 
(iv) p(f l 0 ) > 0 aoeo [TI] whenever f > 0 • 

We prove the first assertiono The others follow in a .similar 

V\78 .. y: 

E:;r definition~ 

The left side converges vreakly to ( .n p I :- o· I o ! b , the right 

side converge.s 1.'l!eakly to p (f I 0 ) + p (g ! 0 ) 9 Since for each 

f ~ p(f! 0 ) is determined almost everyvirhere [II] ~ (i) 

follows~ 



'fl) 
Since o ~ is countable and Q is cou._._11table? the subset N of 

x where (i) - (iv) fail to hold for some ~ -,- CF 
...L 'lb or r has 

Il~moasure zero" Hence by redefining p on N , p may be 

modified so that (i) (iv) are valid everywhere. 

We shall nmv define p (fl 0 ) for arbitrary f E C(T) o 

We assert that l p(f1,1 x)!, < \lf!i • f E _""P, _, I ii ~ (.)L x E X o 

r E Q such that 

-r < ~!\f 11·\ < f < 1\fl\ < r 11 - - I I 0 

Then p(f!x) < p(r!x) = rp(1jx) = r and similarly, 

p(f[x) > -r . 

Hence Ip (f !x) I < r for all r > \\fj\ • 

The assertion followB by lettiHg r _, \lf \l • 

Choose 

the mapping is a contractiono In 

particular? each Cauchy-sequence in will be mapped into a 

Cau.chy-sequence of real fw.-ictions on x • 

Let now g E C(T) Then there is a s0g_uence [f } n 
such that f ...., g • 

n 

We define p(gjx) = lim p(f \x) for each x E x 
~-co n 
.1.l 

in de 

The limit exists~ since [p(fnlx)} by the above remark: is a 

Caucli;;r-sequence in R • A straightforwEJrd verification also 

shows that the limit defining p(g! 0 ) is independent of our 

, . ...~ r ·"' , 
Cl'lOlCe 0.L . •..Ln j 0 Next~ by the properties of limits of 

functions, (i) - (iv) are seen to hold for arbitrar~r 

f ,g E C(T) , r ER" 

Hence, for each x Ex , p( 0 jx) is a non-negative linear 

functional on C(C[i)" By theorem 7o4·, p( 0 !x) may be re~ 

pre.sented by a non-negative mea.sure p( 0 Ix) on a a-algebra 

is a probability measure by property (iii) o 

Since p(fj 0 ) is a measurable function on x for each 



7 D 
oU 

f E C(T) , it follm·rn that ·p-cs l 0 ) is measurable f'o:r each 
~ 0 

S E ./~' H . ~ . . 1 . -r· 1 t· ' - ._, i ence p is a c1ecision--ru e J.n \.;;> re..c.a .ive ·co 

( T , }<l ) 211.d for any f E C ( T ) , 
r 

p cf I 0 ) = j f ct ) 13· c dt ! 0 ) 0 

We may without ambiguity write p instead of p o 

It remains to prove that 

IPopf ~ Q0af l < 11.pll for all f E :re 8 " 11-'- 0 

•J - v 

Since any member of C(T) a.nd hence any measurable function 

on T may be approximated by members of J[ this will imply 

that 

for all bounded measurable functions 

f on T &J.d hence by def Q 10 o.f appendix B, 

\/) 
For any f E ff\. ~ G E ®, 

+ lPno1 , ,f - Qr,cr1,., ,f! + IQ.80.,. 1 ,f ~ Q,,.af! 
j 0 I ..:.C J .... ~ ,- L... t; 

The second term on the right hand side is by ( 3) < <: 0 \\f \I o 
.J 

Hence it suffices to prove that the two remaining terms tend 

to zero as k 1 1 _, 00 0 

Then 

which tends to zero by weak compactness (consider the definition 

of p)o 

For each y, crk( 0 !y) = 0( 0 (y)fk-1 

(by the usual notation foT induced measures)e 

Hence~ by the well·-lmovm formula 



we get 

Finally, 

1Q0ak, 1f - Q0crfj = IJCak' ,f - af)dQ8 1 

< \\ak' ,f ~of\! :i: !IJCf(fk' ,(t)) - f(t))a(dt! 0 )\j 

< sup lf (fk, , ( t)) - f ( t) I 
t 

which tends to zero when k 1 ' __. co since f is uniformly 

continuous and d(f1 (t),t) __. 0 uniformly in t _.;;; The proof 

is now complete., 

THEOHEM 7 06 (THE nAFJCOV KElmEL CRITERION) 

Let t = ( X /J( ; PG : lJ E @) a_nd _}-- = c;j ,{5); Q0 : 0 E t8) 

be experiments and let 
0 

Assume further that G 

e be a non-negative function on ® " 

is dominated and that Zf ii:.:: a Borel~ 

subset of a complete, separabel metric space and 65 is the 

class of Borel-subsets of 'l( 
\,_,, 

Th8n t i.s €--deficient relative to l"' if a,_-vicl only if there 

exists a Markov-kernel l"I : CB ~< x ...., [0?1] such that 

\IP 0M -· Q0 11 .:S. e 0 for all c E ® 0 

Proof: "i.f'': Let (T,g) be an arbitrary decision space and 
Cr"-· l 

let a be a decision-rule in ..t- relative to (T, /,.) ) .. Put 

p = Ma a Then p is a decision--rule in t relative to 

(T' ,6 ) and for any 0 E 10 

JIPop - Q 11 = \IP 0I1a - O~all < l\P3l'1 ~ Qo\1 < 88 vo a Ii vl:'J 1 I - - 0 

"only· if 11 : Pu.t (T~ ~) = (\.{ ~" cJ ~ c ) and let a(S!;r) = 

for all iS c. /"' y E ~\ Then QP.0 = c '- u ' -ln ,. \] 

By theorem 7 o 5 there is a rfarkov-kernel 

ioeo M :&>-< X .... [o,-1] such that !!Pc:I-1 

M : /~ >< x -+ 

The theorem followsa 

IS(y) 

[0,1] 



We note that in the proof of the 'if"~pe,rt, vrn did not make 

u;3e of the given structure of CJ, 63) " However, the con­

clusion follwed from corollary 5.29, so we needed the =er;uire~ 
(, 

ment t:1at t; be dominated., It is proved in appendix B of [/19] 

that if there exist.s a 0-finite me'lsure 'I :'-"' Oil Cj ? (~b) such 

that >> (j for all 0 E 
,-. 

then r'I may be chosen so that µ ~" v 
~ r_,: 

µ >> P 0M for all 8 E ® • 

Let and}"' be given as in theorem 7.~. if 

and only if there exists a lviarkov-kernel M 

Then t 
on c£ x X such 

that 

Remark: ,Statement (LL) asserts that, if we observe the result 

of experiment t ru1d, ·when x E x is observed vrn select 

y E '0 according to the distribution 11( 0 !x) on (!J ,(}3) , then 

the resulting e:xperiment is (in some sense) identical vJi th the 

experiment In other wo:rds, ( LJ-) states that S may be 

~ duplicated from c.~ with the aid of e.g" a table of random 

numbers., 

Corollary· ? .J3 thus implies that t. is more infc)rmati ve than 

~/ ~ ~ .:r if ai.J..d only if 0 may be duplicated from G 

Considsr again exmnple 5.6 and let 1' J (\ .::r - - ( (\;, • C\ • 
- (_ ' ~:..1' '"GG • G E 8) 

be an ex-periment where = ['1, ••• ,k}, ~= cla,ss of subsets 

4..J of 1 
<...) 

B = ['l, ••• ~s} 2nd the Q,, 1 s are given by the 
\;) 

Markov ·-matrix 



A l'farkov-kernel r1 : <£ xx -• [0 1 1] is now given by a (r >' k) 

Markov-matrix M = (m .. ) where 
lJ 

M({j] ji) = ill. . 
lJ i = 

For an;y G - 1 , • o @ , s 

r r 
PnM = ( E p 0 ~m .. 1, ••• , : p 0 .m. 1r) 

v • /I ..Ll . 1 ll;. 
l= I l=· 

" ( ) 1:l.. = a .. 
lJ 

is a (m >< n)~matrix, we define the norm of 

denoted !IA\\ , by 

!\Al\ = max I: I a -1 I ., j lu 
.L 

.ll 7 

Hence, 
. _,__ ic• tLat if 

~ 
lu '"' seen (:, and ~ are experiments as given 

abo 1re, then 

o ( t ~ ~) =- inf 11 P~ M ~ Q""_ I J 

M c. ~ 

where infimum is taken over all (r >< k)~Markov matrices M • 

Hence, for any such M 

(5) o( t ,~-) _::. l!P- M ~ Q II 
~ !' 

Thus the MarI-::ov kernel criterion is useful in order to achieve 

or (We remember from 

example 5o15 that the 1jJ-c.riteri.on gives rise to lower bounds). 

In particular, if k -- r and 11 is the (r x r)-identity 

matrix? then by ( 5) , 

r 
= max I: Ip · · - q · · I 

• • /1 - lJ lJ 
l J= I 

'I'his is the same result as was obtained in (9) of example 5.'15. 



Finally, it follows that t ~ S- if &.'1d only if there exists 

a (r x k) Markov-matrix so that 

EXAMPLE 7o10 

There is given a population of 10 members o It is known tr ... at 

5 of the members possess the property A, and that 5 possess the 

property B, but the number of members having both properties 

is not r..nowno Furthermore, the members that have property A 

are knovm and may easily be selected from the otherso Two 

sampling plans are proposed in order to obtain information 

about the number of members having both propertieso 

(a) 3 of the 5 members with property A are chosen at random and 

the number X having property B is notedo 

(b) 3 of the 10 members of the populatlon are chosen at random 

and the nilmber Y having both properties is noted., 

The sampling plans (a) and (b) may be considered as finite 

experiments ~ and Y where lB = [0,1,2,3,4,5} and the 

parameter 3 E 9 is the number of members having both proper-

ties A and Bo 

For fixed 0 E 8 
' 

X and Y are hypergeometric distributed, so 

the :Markov-matrices defining ~ 8-'l'ld s are easily found: 

~x 0 "I 2 3 
(] i 

0 1 0 0 0 

1 2 3 0 0 5 5 
p~ = " 1 6 3 0 c. ·10 10 10 

3 c 3 6 1 
10 10 10 

4- 0 0 3 2 
5 ,. 

5 0 0 0 1 



~\~~--~9~_1_.~~-2. 
(\ i 1 J 0 0 .._} 

7 7, 
/I _/ 0 0 I 10 1~0 

r; '? 1 
Qt= 2 -~' 0 '15 15 15 

7 35 63 2'1 '1 
:_,J 120 120 120 120 
1+ 5 15 9 '1 

50 30 )0 -o.,n 
~)_; 

5 
1 5 5 /1 

12'" '12 i2 12 

/1 0 0 0 \ 

\ I 1 1 
I 

2 2 0 0 

I If we put r'I = ! 
I 2 5 2 
I 9 9 a 0 I 
l / ! 
\ 1i 

c:: 5 ,., 
_;' 

12' /f'5'" 12) 
\ '{_ 

then a simple comr:iutation shows that 

P0 M 
t, 

Hence t ~ 

i.s more informative than } ~ and we should pref er 

the sampling plan (a) to the plan (b)o This is reasonable from 

the fact that the plan (a) takes into accou_nt the prior informa-

ti on , of knowing the elements heving property· lL 

We return to example 
r 0 

Clearly G n _::. G 00 

By example 7e9, 

l. nf. !' f\r,'i T~\\ - \..till - r ii 
M 



Then 

Hence 

We minimize the expression (6) with ::i::espect to y -· ap ~ °'.Jo:. 

By examining the gra.phs of the func.tions (of y ) 

I n 
-ap y I an.d I-~ 1:P + y l it is seen that minimum occurs 

when y = J?_r p11 Noxt~ it is seen that numbers a~b vJith 

[3-a. n 
~p 

'-
0 < a?b < ·1 may be found such that a/3 .~ bci -
Substituting the actual M into (6) :yield:::. 

11Al'1 - i::P11 = I n1 
Ii .L ii p I 0 

Hence 0 ctro1 ~n) = IP In = 11~o:~p In 

Further examples on the use of the Markov kernel criterion 

ma:y be found in [5] ancl [1'3]. 



E3 o ""l 

c'3 ~ SUFFICIENG1Y 

We now turr.,_ to the concept of sufficiE:ncyo we shall give the 

classical defi:ni tion of sufficiency ( CE-su_fficiency) and the 

definition of sufficiency in terms of equivalent experiments 

( t;, -~ sufficiency), as well as investigate the relation between 

them.a It will be proved that D, - sufficiency is equivalent to 

CK~sufficiency if the experiment is dominated. 

It is assumed that the reader is familiar v·d .. th the conceDt of 

conditional expectation given a sub-0--algebrao We wil~ however~ 

give the definition. For a rigorous treatment, we refer to [9]. 

An introduction to the concept of sufficiency is given in [6] 

In this chap+; er~ we will consider experiments with arbitrary 

parar1J.3t er set G • 

DEFJNITION G.'1 

Let Cx?Ql?P) be a proba.bility space and let <53 be a sub-o-

algebra of Ol Let X be an Ol ~measurable bounded, or non-

negative real function on x . Then the conditional exi;iectation 

of X gi:v-en (~ is defined as the unique ( ao e o [P]) G ~ 
~ 

measurable function E X such that 
r 
\XdP for all B E (2 

B B 

(the existence and uniqueness follow from Hadon-Nikod;ym's 

theorem.). 

If Y I 1 .l. = A " v,re may rep ace 
6) 

A '1 and write P (A) of 

'e-x:pectation of X 
(£ 

instead of E Ir • 
_-:\. 

" by "probability 



DEFHJITION .3. 2 

Let t = Cx/Jl ;P.'\ 
u 

CB of 01 

8 E 8) be an experiment. Then a sub-·CJ­
'O 

is said to be CE~sufficiei1t for t; if algebra 

corresponding to each 1, 
J:-s.. EU there exists a G -measu~able 

function YA such that 

03 
PG (A) = y ao e.a ru J for all 8 E El -A i_J... (\ 

Q 

if'his condition is equivalent to the following: . a -measurable 
To each bounded or non-negati v~real fu..'1.ction on x there 

corresponds a <53 -measurable function Y Z such that 

t'B 
E9 Z = Yz a.e. [P0] for all 0 E ® • 

Remark: CE stands for Conditional Expectation,. The essence 

of the requirements is that the conditional proba-bilit:y of an 

event A (re.specti vely conditional expectation of a random 

variable Z ) may be specified (almost) independent of "'.;he 

/' ' 
1,_ l.rnlm.own) parameter 0 E G' o 

NOTATION 

If P is a probability-measure on a measurable space ( x ~ Q') 

and \iS is a sub-a-algebra of (T{ , then P(£ denotes the 

restriction of P to cB . 

Let tJ E e) be an e2..rperiment an.d let C2i be 

Define = Cx,63; p G E 8) o& 
for t if §; ~.~ L'.l~sufficient 

a sub~cr-algebra of OZ 
Then we say that ~ is 

Remark: Obviously ~ ,,;::, 

'2 · ~,meai:>urabili ty implies 

C-1.-
~ (Tl1is follows from the fact that 

() -measurabili ty, so we can take 

p = cr in def. 4.1.) 

Hence is 
6 

6-sufficient for (; EL.11d only if 



0 3 u. 

The a-algebra Q7 is interpreted as the set of events relative 

to the experiment t After the experiment is performed, we 

may for each A E CJt. decide whether the event A has occurred 

or not o Suppose now that ~ ~ 0/. and. that we may only observe 

which events B E Q3 that occuro This corresponds to observing 

the . experiment t" It turns out that if Q3 is .6-suffj_cient, 

then we lose no information by restricting attention to the 

events B E (£ We say that t" defines a reduction of t. o 

PROPOSITION 804 

If ~is CE-sufficient for t , then & is also .6-sufficient, 

for to 
Proof: Let S:: be as defined in 80 3. We must prove that 

t~t 
Let p be a decision-rule in t relative to the decision space 

T, = 
J.{ 

Since 

(1,o•o,k} o Define p on Tk x X cy 
G 

p(t{ 0 ) = E~ p(t! 0 ) for each t E Tk o 

CB is CE-sufficient, p may be. specified independent 

of 0 o Fur~hermore, p(t! 0 ) is (2 -measurable for each to 

Hence p is a decision-rule in ~ o If {L8 ( t) 0 E e 

t E Tk} is a loss-function, then for any 8 E lB 

le f 
P8pL8 = t:1L8(t)Jp(tlo)d.P8 

k & 
= t:1L8(t)JEo p(tj 0 )dP8 

k I"' 
= t~1LG(t)Jp(tio)dPO = Po&PLo • 

Consequently t-" ~ t 
Remark: It may be shown that in general, t,-sufficiency will 

not imply CE-sufficiency. We shall now prove, however, that 



the implication holds if {l is dominated~ 

Let Cx. 5 01_; P ~ Q) be an e1c_periment and a,ssume P >> Q, ., 

Then Ep 63 (dQ/dP) = dQ63 /~:8 

Proof: Clearly p(\3 >> Q<B 

any B E 63 
so d () /dP -"1::,(\3 , -63 is well-definedo 

By def. 8.1, for 

r ~ 
! E ( dCJ/ dP) clP."'.:', J p '.l) 

B 

The lemm.a follows" 

LEI1MA. 806 

we have 

= f (dQ/dP)dP 
J 

B 

= ja.Q == !,;;J,(B) = Q(2 (B) o 

B 

Let (x,CJl}P) be a probability spaceo Let X and Y be 

random variables on Cx,Ql,P) ,such that ! (X) = J~ (Y) a.11.d 

G ~ ~ x = E y ao e G for s. sub-a-~algebra G:) of V( 0 Assume further 

that E l'T l < (X) _:_.! .l. 0 Then X = Y a.,e,, 

1°!..SSume first that <co 

Then 
;::i t::_) ·') G r;? ') 

E(X-·Y)- = EE0.::i (Y-x)'-· = EE (Y-E-u Y)'-

Crl ( 63 2 ( 6.1 '2) = EVar Y =EE Y - E Y) 

=E(E& Y2-X2 ) = EY2 - EX2 = 0 

since X a11d Y are identicallzr distributedo Hence X = Y a .. s. 

Reject now the assumption that Let cp be a real 

valued continuous, convex function defined on an interval I 

such that Y E I a"s. 

By as,sumption Ecp(Y) = Ecp(X) • 

By Jensen 1 s inequality (which is valid also for conditional 

eJ...rpectations) 



( 1) 
<t> @ 

E ~(Y) > cp(E Y) = ~(X) a.s. 
t:'') 

EE l)j cp(Y) = Ecp(Y) = Eq:i(X) 9 equality must Since 
& (Q, 

E ;:;(Y) = ,.p(E·"-· Y) = cp(X) a.,s. 

Hence ! (E ~ cp(Y)) = J (cp(X)) = 1 (cp(Y)) 

In particular 

J (E~ Y::_:) = ! (Y:!:) " 

It follows that we may, without loss of generality, asswne 

y > 0 • 

Since the function defined by is convex on 

<CD it follows from the first part of 

the proof that 

E Z\1 fY· = \ff' 

Finally, 

x = E 8 Y = E6) Cfi') 2 = E 63 (E{'B lfi)2 = (E& lfj)2 = y a.s. 

~:he ,second last equality sign follows since (E&fY) 2 is G ~ 
measurable .. 

LEMMA 8.7 

rp ru·1d tba-c' ~ i· s domi· -Assm1e that <3 is ."I-sufficient for <:.::, ~ ~· 
nated. Let n be given as in theorem '12 of appendix A and let 

O be a fixed member of e . 

Then the experiment,s (dichotomies) (x/J/; P 0 ,n) and 

Cx,~; P 063 , n ) are equivalent. 

Proof: By corollary 6.1·1 it suffice.s to prove that 

( 2 ) I! aP 0 i b TI:! = I! a'P n (B -1 b n ca 11 f 0 r al 1 a ~ b E R 0 

We have n = for some countable subset= [ o1 , o2 ••• }~ ® 



:Sy corollary 6,,11 ai1d 
11 

ll aP + b I: c ( 0 · )P Jj 
0 -i --1 J 8 . 

u-· J 

(2) follows by letting 

PROPOSITION 8,,8 

O E G:D) be a dominated e::".'J)eriment and let 

TI be a probability medsure on ( x, U) ,such that 

TT = for some countable subset 9 c (8 
0 

and so 

that I:c ( r:) = 1 .... _,. and TI >> P 0 for all C E e (the existence of 
r, 
\) 

TT is _proved in theorem 12 of appendix A)" 

Let ('£ be a sub-a-algebra of Cfl. " Then Q5 is ti~sufficient 
for fr' if a_,_YJ.cl only if 

..._:; v 

dP 0/dn may be specified (3 -measurc:cble for each J E e " 

Proof: Assume first that Cb i,s £:,-sufficient Q Fix ') E @ • 

Conside:c the equivalent experiments given i:i.1 lemma 3. 7. Let 

f" = dP0/dn 
' f ~ = dP'.)~/dn '. 

By lemma 8.5, Io = E~ f' ,TT .,.. Ci 

It is readily verified that 

(3) 
dP,., f,., dn 1 v ·' 

d_(P 0+11) - ~ d(P" +TI) 
::::: 1..t.-P 

r. , -a 
" \) 

and that similar exi_,J1:essions hold if P 0 fu'"ld n are replaced 

and 

Since equivalent experiments have the same stanc1arcl :ineasure, it 

follows from def. 5.22 that for any Borel~subset V c n2 

( Ll. ~ ,) 

(Rather than 

f A 1 
E V) = G?"',<.) + n )((-'J~ ---) 

' '\,_D ljj ,,..,_, ? r-.,1 

J 'j -:-f r 1 '1 --J f (' . 
u ) 

f (\ '1 
((~ -~) E V) we should write 1+f_ '1-:f,., 

0 ') 

E V) 



Clearly, for any ,s E R 

s 1 -] x [~~ C:O> 
1+s · 1+s ' • 

Thus (4) implies that 

(P0 -, n)(f 0 _:: s) = (P8 G3 -; n66 )(f0 .:::. s) for all s ER 

or equ:.:..valently 

rr (-'" )d(P ·'- ) - rr (?{f )"(P T 
J <-a:::i, s J i o '- ·J · n -- J <-.aJ, s J o a oc>a s E R • 

Hence Jc;i(f 0 )d(P0 -: n) = Jc:p(fj)d(P'i 63 -; n63 ) 

Borel~measurable function cp : R _, R • 

for any bounded, 

By (3), 

rco ( f ) (/ii ' f ' <i I" ( 2 { ) ( ' 1 -.i J , 0, T 0) -11 = j cp l (• , I 

which is equivalent to 

Jh(f 0 )dn = J11cr 0 )dn 

for all bounded, Borel~measurable functjons h • 

In particular, if h = IC for a Borel-set C c R ? then we get 

n r. (f n E lb ,, C) = n(fo E C) 

Consequently f ii and rr, 
.) 

have the same distribution relative 
J 

to the rn'obabili ty .s:r:;ace ( x lJl. 'n) 0 

Since f 11 = E 6~f"· it thus folluws from lemma 8.6 thet 
,; '•..! 

f'"' = fc a .. e. 

Hence~ since f ~. is 6) -measurable, 

fied Ci) ·-·measurable. 

Conversely, assume that f ~ = 
:J 

dP(1/dn 
',_) 

is (£ -~measurable for 
'i\, 

0 0 Let s be given as in def. 8 0 3. We shall prove that 

~ "'t . By corollary 5.23 it is enough to prove that 

.1, ( t> .,..,,) = ·,\r ( y'-~) for all 1\r E \J:' and e.11 finite subsets ' \. (:;i J:I' y :r- J:i', 'r 

F ~ ® , F I 0 c Clearly f~ - r~ a.e. for all 0 • 

each 



8~8 

Let now F = [CJ 19 oe• ~JS} and let ljl E 1J! be defined on R8 

Then, by def o 5o4, 

and we are done. 

PHOPOSITION 8.9 

Let t be a dominateO. experiment and assume that \S6 is 

sufficient for Then ~ is CE-sufficient for f; 
Proof: Let n be given as in propo 807 and lee 

f 0 - d.Pr/drr r, E 8 Q For each A EU/ ? let 
·y ,, (!:,(A\ 

A = TT _f-1.J 0 

Then for any '.; E @ B E 63 

By definition? 
"06 
;TT (1',)dn -

·,} 
for all B E c2 . 

B B 

Since is (t; ~measurable (prop. 8.8), it follows that 

r 
j I,,~_f () dn 
B 

and hence JYAdJ?0 = JrAf )dn = 
r 

iL,dP0. ,J .n 

B B B 

Since is & --measurable; it now follows from definition 

E3. 1 that 

J3'inally, since r-i was arbitrary~ the proposition follows from 

COROLLARY 8.10 
.. = ... ·.--~~· --~·· ~-~ =-

O E 8) is a dominated experiment, then a 



sub-a-algebra ffi of <51_ is CE~sufficient if and only if d3 
is 6-sufficiento Hence, in .the case of dominated experiments? 

we may without ambiguity use the term ~ufficiensz instead of 

CE~ or 1:,-suf.ficiencyo 

DEFINITION 2.. 11 

~ . 0-
Let (~ and ::;- be given as in def., 8. 3o Then 63 is said to 

b . . ff" . . f @ i"f e pairiiVise su - icieffG or 0 

t [·" (; } ~ ~ ['' (\ } 
u1'''2 1 1 1 ''2 

for all pairs C01,J2) Ee x e . 

PROPOSITION 8012 

Let t be a dominated experiment. Then Cb is sufficient 

~ if and only if ~ is pairwise G uf -1='. • t; ' t? s _J_ icien" f'or (_7 

Proof': It suffices to prove the iiif '~:part. We assume that 

t S for all ( G 1 ? c; 2 ) E ® :< 9 (0A,0~} ~ (01102} 

and we shc:~ll,_prove that € ""t' 
By corollary 5&28 we may assume that ® is finite, say 

Let 
s 1 

TI=-2:P 0 s ri 0=1 -
By prop,, ELS it i.s enough to pJ=·ove that 

dP o/clTT may be specified CB -measurable for 0 = 1, 0 0 0 's 0 

For simplicity? we let J = 1 in the proof. Define 

i 

for 

By assumptj_on (and propo 308), each h. 
l 

may be specified Q3 ~ 
measurableo 



Let N 
s 
u [h. 

i=1 l 
OJ 

Clearly N E tSS , and P 1 (N) 0 since 

Hence we may put dP1 /dn = 0 on N o 

We consider now NC = 

By Radon.~Nikodym.1 

on 

Hence 

s d(P + P.) 
)'. 1. l= 

i:'1 dP '1 

.s 
n [h. > OJ • 

. 1 l l= 

on 

But the left side is equal to 

d(sP1 - ZP.) d \'TI 
dTT l £..,.Li 

a.P,,1 

Hence 

so 

Thus 

clP 
1 

crrr= 
dP 1 
dn-

= s dP1 

'1 ') 
=-2:~---'l 

.s. h. 
l l 

= s :-

on 

on 

s--
c1P1 

1\Tc 
l•l 

is 6j -~measurable? since on 

p ;1 (h. = 0) = 0 
I l 

it may be written 

as a continuous fm:1ction of c£ -measurable f-u.nctionsc 

We sum up the results obtained so far in the following theorem: 

THEOHEM 8" ~13 

Let €: = Cx/J ~P 0 c1 E ®) be a dominated experiment. Let 

('g be a sub-·a-algebra of OZ and let TT be given as in prop • 

.3.8. Then the following conditions are equivalent: 

(i) (:b is CE--sufficient. 

(ii) 61 is 6··-su.fficient. 



(iii) dP"' /dn nay for each 9 E G be specified Q3 -measurable. 
'J 

(iv) lb is pairwise sufficient,, 

PROPOSITION 8,, "l4. 

Let ~ be an experiment and assume that µ is Q 0-finite 

measure such that µ >> P 0 for all 0 E e . 
A) 

Then a sub-o~algebra \D of a is sufficient if and only· if 

there e:xists a non-negative (]-measurable function h and a 

set f CI' • 
l.b,1 • 

\j 
O E 8} of non-negative ~ -measurable functions 

such that 

d'D /dµ = hg 
L nf 0 for all Q E iBJ , 

"\ 

Proof: Assume thEtt ~ is sufficient,, Clearly µ >> n ., where 

TT is given in propo 808.. Thus 1Jy the chain rule of Radon 

Nikodyi~ derivatives, 

dP 0 dn 
dµ = dµ 

dP 
0 0 

dn 
for all 0 E 8 " 

Hence we may put h = dn/dµ which is obviously a -measurable" 

We put . G E 8 The 

by theorem 8.13. 

g 's 
0 

are cS3 -measurable 

Assw11e now that the condition of the proposition holds,, 

Then drr/dµ = .h I: c ( ri )g· 
\. 'j f\ 

nEG " 0 

and hence, for any O E e 

dPCl/dµ g.'.) 
=·~~= 

dTT; d\J. hZc UJlg 0 
0 . 

which is ~·measurable o · 

Let t = cx?Oh pl'.' : r, 
·' :J 

Hence 63 

E @) be an 

a11d (~ ~ be sub-cr~algebras of a 0 

c: 

is sufficient. 

e:-c_periment and let 65 '1 
I 

We define ru"l ordering < 



by 

& < 63 2 1 

/\ 
ildef 
.1 

v 

(5) for all B1 E 63 1 there exists B2 E CB 2 such that 

PO (B1 /J. B2) = 0 for all G E e o ( 6 means symmetric 

differenceo) 

It is easily verified that the condition (5) is equivalent to 

(6) .for each (ij 1 -measurable bounded (or non-negative) function 

g1 there is a (£ 2-measurable bounded (or non-negative) func-

ti on such that 

for all () E 8 

[P n] for all i 0 ea g/! = g2 

If t\) < (~ 
\j) ·1 ·~ ..).J 2 

!\) 1".\ 
and '.Jj ~, < Qf /, then we say that 

C - I 

rD (\) 
l..D1 "'JJ2 

< defines a pc:trtial ordering on the set of sub-0--algebras of 

Ol 
(i) ()) ~G for all G 
(ii) ca 1 <63 ~ and d3 2 

__.(] (/() <G 3 ' 7 => _l) 1 0 - c. - ? 

(iii) Qj'1 <Q and 01,, <& :=:> (~ ,_,63 ,_, 
- 2 1 \.~ /) "' c... - I c.. 

Let ~ be an experimento 
.-\:1 

A cr~algebra CD is said to be 
0 

minimal CE~.sufficient for E if 63 0 is CE~-sufficient for e 
and & < (55 for all CE~sufficient 0-algebra.s., CB. 

v 0 -

PROPOSITION 80'17 

p 
Assume that <; is dominated and let CB 0 be the smallest 



a-algebra such that the functions 

dPn/dn are measurable for all O E e . 
v 

Then (}3 0 is minimal sufficient for ~ 
Proof: 63 0 is sufficient by theorem 8."13. 

be & -measurable versions of dP 1'/dn • 

8.13 

Let (~ Q E 8} 

0 ~I P-
ASS Ufil e now that d3 is sufficient for [:, and let {ho :_ 8 E @} 

be 63 -measurable versions of aP0/dn • We shall prove that 

63 0 ~ 63 . It follows from Radon-Nikodym's theorem that 

(7) h 0 = g a.e. [n] for all o E e • e 
By definition, <£ is the smallest a-algebra containing all 

0 

sets of the form 

A0(r) = {x : g 0(x) < r} for some r E R , O E e . 

Define B0(r) = (x : h 0(x) < r} ; r E R , o E e 
Then B0(r) E 6j and by C7!, n(Ar./r) 1.::, B0(r)) = O for all r,O 

It is easy to verify that the family sets B0 E Q3 0 such that 

there exists B E Cb with n(B 6 B) = 0 is a cr-·algebra .. 
0 

Since this a-algebra contains the sets A0(r) , it is equal 

to 6j 0 .. Hence (5) of def. 8.15 implies that Q? 0 ~ Q3 

DEFINITION 8.'18 

Let ~ be an experiment .. 

A sub-a-algebra ~ of Cl is said to be boundedly complete if 

.for all bounded ~ -measurable functions g 

[P ,.J for all 8 E <B • 
;J 

PROPOSITION 8 .. '19 

Let t, be &"'1. experiment. 

Assume that & is CE-sufficient and boundedly complete. 

If {; is CE-sufficient and t ~ (}3 ; then d3 ,.., {; 



Proof: It suffices to prove that (}? :;:: 
~ p . 

Let B E l..J) " B;y def o 8.2 there exists a l:? ·-mea:?urable Y 

such that 

P,.,f!:, (B) = Y a"e,, [P/"1] for all G E S • 
~ 0 

Set 

C = [x : Y(x) = 1} o Clearly C E f: " 
Since f;: _::: 63 there is a CB -measurable filllction Z such 

that Z = Y a.e. [Pn] ; c E e 

Z is bounded (a.e.) since Y is. Furthermore~ for any 

Hence f (IB ~ Z)d.P n = 0 for all r' 
cl .J 

Since is boundec~ly complete it fallows that 

Hence Y = IB a~eo for all 

so that PO (B t:, C) = 0 for all 

COROLLli.RY 8" 20 

Let r 
<....? be a dominated erperiment. 

If 63 is sufficient and bolU'.ldedly complete, then <:g is minimal 

sufficient .. 

:)?roof_: Let (ti 0 be given as in prop. 8" 21., Then lg 0 5 63 
By propo EL 19, <J3 0 "' 63 The corollary follows. 

We shall n01t1 see that the concept of being more informative is 

closely related to the concept of being sufficient for an 

experiment. 

Let ~ and f lJe e:x:periments satisfying the conditions of 

theorem 7 .. 6. Assume further that @; ·;::, _s:::-



Then there exists a Markov kernel 

for all 0 o We define ru_-vi experiment 

~ - ( -7 ~ ,.., • v - 1-J ~ G 9 P 0 • 0 E 8) where 

such that == Q 
0 

( i" e" 3 = x >~ a and ~ = a x d3 is the a-algebra generated 

by the sets A x B A E Ql , J3 E Qj ) and where P !) = PO x I'1 ? 

ioe@ P0 (A x B) = JttCB!x)P'!(dx) 

A 

for all A E <JI. B ( <.J3. , Q E @ & (See le:rnrna 14 of Appendix 

B~) 

We observe that 

" = JMCB!x)P 0 (dx) == Q0 (B) P r;(X x B) for all ') E @, A Ea ~ B E CB 0 ,, 

x 

The experiment t is thus seen to be equivalent to the 
,_, 

reduction of t obtained by replacing the cr~algebra 

(,, = C5i x 63 by the ::mb-~cr~algebra 07 >< [O, ~ } ~ We denote 

this experi:w_ent by t -:~· o ,..,.,, 

.Similarly, ~ is equivalent to the reduction of @: obtained 

by replacing f;, by [0 ~ x} x 63 v.Je call it !:' ~:.- o 

~ .;~ a:rnd '('-- '" r::; ~ :.r are said to be ~~IB.~ of the experiment G ~ 

and we observe that r1 define,s the conditional distribution of 

the second marginal, given the first mc.~.rginal o We remark that 

]\ff 
~J_ is ind.ependent of rJ 0 

PROPOSI2.1ION [3 o 2-'1 
"""" =-

The sub~o~-algebra is CE~sufficient in 

PE.2.2.[: By def o (3 o 2 we have to prove that to each 

there exists a a X {0,;j } - measurable fU..'l'lCtion 

rp"'"' ] fo1~ a11 ·"··· E ,;:;. _ '-O - ~ __ v_ 

such that 



First, let C = A x B ? 01 A c l ? B E \)3 " 
Then we will have 

l . h . n t. ,.. 1 ~ 1 . /"'\} 'X. r0 Q tf 1 ~ WJ.lc.. is a Iunc ion OI x E x a one ana ience is Vl . i. , <J " 

measurable considered as a function on 

Moreover, it is independent of 0 a Hence (7) is satisfied for 

all measurable· sets C = A >< B 0 Since the family of measurable 

sets satisfying (7) will constitute a a-algebra~ it follows 

that (7) holds for all C E (] x ~ o 

COROLLl:1.RY 3 c 22 

trvt 
Remark: Loosely speaking, the relation ~ > }- says that t 
is sl£1,i,cien:t for the experiment 

,...., 

t having marginals §' ~:nd G a 

t. 

PROPOSITION 8023 

Let 2JJ.d .t be experiments satisfying the conditions of 

theorem 7060 

iL3SU1Il6 that t ;::_ r 8l'ld that. 

t [ 0 "· } ""'j:" r n " ·} for all pairs 
'1 ? '.) 2 1.· '1 ' ,; 2 

Then t,..., t 
Proof: From t .:::_ ~ it follows by :propo E:'o2'1 that (JI_ x {0,!J} 

. ff . . t f & s. f:> f;-· d . is su icien or u o ·ince (, r ,,.., ,... } ...... ....; r" n } an since 
\, I '1 ' i '") l \) '1 ? '• 2 

(:; -· P_ ~'" ' f--- -~- .y, c. t;, ·- (:, ..J rv y ' it fallows that 

,..., 

Hence, since is pairwise equivalent to t 
so the sub-a-algebra [0,x} x Q3 is pairwise sufficient for 



,,.., ,..., 

~,..., t t t Now t is dominated since and is dominatedo 
,...,, 

By prop. 8.,13 [0,x} xCB is sufficient for t , and hence 

t*,...,, ~ . But then S- -1< ,...,, f. and finally r-,...,, t c.;> 

Remark: It may be. shmv'll that the preceding proposition will 

remain valid if we remove the requirements on c'!j,Q3) 0 



A.PP:EN:DIX .A 

ESSENTTAL 8UPRErm;yr OF A FAMILY OF RANDOM VARIABLES~ WITH 

APPLICATION TO :DOMINATED EXJ?ERil1EN'.J:S& 

DEFINITION 1. 
\,-. 

.An ~~e_Iimep.t_ ~- is given by 
'l.p 

G = (x lJt , P 8 : e E e ) where 

(x, Qt) is a measurable space and (P8 : e E 8) is a fami13r of· 

probability measures on (x,C{) • 

DEFINITION 2. 

Let Cx~Ol~P) be a probability space. A random variable 

(abbreviated r. v) i.s an Ol -measurable function 

X • ,, _,, [-o.:- co ~J • i\ ~ .. 

ConsiC.er now a fix..=;d probability space (x 901, P) • 

DEFINITIOH 3. 

Let X,Y be r.v's. We define X < Y a.s. (almost surely) to 

mean P(X > Y) = 0 • It is seen that < is a partial 01.'dering 

on the set of r. vr s on (x,OL P) • 

DEFINITION 4. 

Let (x . 
; t ' t E Tl be a family of' r. v' s. 

essential_ supremmn for the family if 

(i) Xt < Y a.s. for all t E T 

The r.v. y is called 

(ii) Xt < Z a.s. for all t E T implies Y < Z a.s. 

It.follows from (ii) that provided the essential supremum existsj 

it is uniquely determined up to a P-equivalence. 

We can thUE! write Y = ess sup Xt • 
tET 



2 

Remark: Assume the index set T is cou,.11.table ~ Then Y = supX-i_ 
tET LI 

is proved to be measurable and. the verification of (i) and (ii) 

is trivial. Thus an essential supremrn:n always exists if our 

family of r.v's is com1table. 

If T is not countable~ the function Y = sup X 
ter t 

may not be 

measurable and thus not a l'. v. The followi.ng theorem state,s ~ 

however, that an essential supremum still exists~ 

s:1HEOREM 5. 

To each famil.y { Xt t E Tl · of r@v' s there exists an essen.t.ial 

supremum. 

Moreover, there is a cmn1table subset T0 0£ T such that 

ess sup Xt = sup X. a.s. 
tET tET0 ~ 

Proof': Let 9? be a 1-1 mapping of [-cu ,co] onto 

( \]? may for example be taken as 

x z2 
1 

Je 
- 2~ 

iJi (x) = (2ri)- 2 clz) • 
-CO 

,.,_. 
Let ":}- be the set of finite, non-empty subsets of 

'1 E'or each F E .:r we define XF = max X_,_ 
tEF LI 

Clearly XF is a r.v. 

[O, 1] 

rn ... . 

Set a.= sup E~(XF) • Then a. E [0,1]. There is a sequer::.cG 
F 

such that Ti'c, (X ) i\ 
.,!.;)<Si ·~ I ..t' ' n 

generality asstune F1 c F2 c ••• 

XF· ~ XF :;;. • •·•) • 
1 2 

We may without loss of 

(vvhich again implies 



If th:i.s is rwt the case~ we may namely put G 1 

obtain 

Et(XG.) ~ E~(XF.) 
l l 

Let now T 
0 

= U F . • 
•. -1 l l=i 

so that 

Hence 

.., .,. ( ~r ) /\ 
:£'..'±· AC' 

X· 
l 

0:. • 

is countable, so 

3 

= FAU@e~UF. 
I l 

Y = sup X+ 
tET " 

0 

to 

is a 

We observe that v 1 y 
L;_H' I • 
-i 

We shall prove that y = ess sup Xt o 

tET 

t be an arbitrary, but fixed, element of Let m 
..<.. • Condi tj_on 

(i) of def. 4 will follow if we show that Xt < Y a~s. 

Clearly max ( XF , X+ ) = X.,..,, u l _, ! 1 max ( Y, Xt ) • 
1 • v J:' • ( G 

l l 

Hence, by the monotone convergence theorem, 

On the other hanQ, 

E~(Y) = Eg,(J.irnXF_) 
l 

hence 

E~(max(Y,X, )) 2 a • 
T, 

It f"ollo·ws that 

= El .;,nif, rx ) ..L!_j'. ,...: F,, 
l 

= limif, (XF. ) 
l 

Since the expression in the brackets j_s always non-negative, 

we have 

which implies xt < y a.s .. and (i) of def. 4 is provedo 



Assume novr Xt < Z a~ s. for all t E T " 

Obviously Xt :::; Z a. s" fo:::.' all t E T which ir:1p2-ies Y < Z 
0 

a.s. 

It follows that Y = ess sup XL • 
tET u 

LEMJYIA 6. 

Assw11e X = ess sup Xt • Let Y be a r.v. such that Y > 0 aes. 
tET 

Then XY = ess sup(XtY) a.s. 
tET 

Proof: From Xt .::. X a~ s. it follovvs that 

XtY < XY a.s. for all t E T • 

By theorem 5 

a~s. Hence 

tl1ere is a countable 

XY = sup X Y a.s. 
ter.1 t 

0 

T c T 
0 

Assume x y < z 
t -

a.s. for all t E T • 

such that X 

Then XY =sup X_Y < Z 
tET t -

a.s. and the proof is complete. 
0 

We state the celebrated theorem of Radon-Nikodym: 

TJ-IEOREM 7 • 

= sup X 
J-ie:T t 
u~ 0 

Let (x, OL p) be a c-fini te measure space and let v be a 

measure defined on (.,)(_ vthich is absolutely continuous w.r.t~ p • 

Then there is a measurable function f : x -',! [O,co] such that 

\J (A) f' 
= J fdµ f o::c all 

A 

If \) is o-fini te, then f may be chosen to be finite. 

f is called the Radon-Nikodym derivative 01 \J w.r.t. µ and 

is denoted dv/dµ e 



DEFINITION 8~ 

T\No meaSl1res µ and v en a measurable space (x,OU · are said 

to be eguivalent if \) << p and µ << \J • We then wi·i te 

The relation is a-vi equivalence relation on the set of mea-

sures on (x,0) , and the equivalence classes consist of the 

measures having the saL1e null-sets. 

LEr-lt'IA 9. 

Let µ be a u-fini te measure on the measurable space (x,01J 9 

µ ¥ o ~ Than there is a probability measure P on (x,Cn) 
such that µ ~ P • 

Proof: Let (disjoint union) with o < u (x ) < oo 
I n 

for each n " For A Ea define P(A) = 

P is easily seen to have the required properties. 

DEFINITION 10. 

'e Let (9 = ( X , C~, , Pe : 8 E 0 ) be an experiment. i is said to be 

dominated if there is a a-finite measure ~'· on OL such that 

P8 << µ for all e E 8 • It follmrn from lermna 9 that µ may 

be assumed to be a probability measure. 

THEOHEM 11. 

Assume G is a dominated experiment. . Then vre can find a count-

able subset G 
0 

of 8 such that 

Pe (A) = O for all e E ® 0 => P 8 (A) = 0 for all e E e • 



Proof: Assume P8 << P fo:c all 8 E \0 anJ put 

{ f • r e , d may nuw be considered as a family of ::c.v's on the 

probability space (x~Ol,P) and we can define 

g = ess sup f 
8E8 -e 

By theorem 5~ g = sup f 8 
8EG\. 

aos. for a countable subset 

Assume now P8 (A) = 0 for all 8 E ® • 
0 

We have P8 (A) = Jf8dP = JIAf9dP , and hence 
A 

By lemma 6 

vrhich ir11plies 

THEOREM . 1 2 • 

[PJ for all 

== I 11 ess sup f 8 = 
i 8 Ee 

8 E !El • 
0 

@ C EJ e 
0 

a.s., 

"'£:' 
let (:;; = (x,CJl.~P8 : e E @) be a dominated experiment. Then 

:o 
G is dominated by a probability measure rr given by 

TI ::::::: 2.:c ( e )P 8 whe:ce c ( 8) >~ 0 for all (~ E 8 and 2=c ( 8 ) = 1 
e . e 

(the set of e's for Vihich c (e) > 0 is countable) .. 

Proof: Choose a countable subs er O 0 c r0 with the property 

given in theorem 11. Let the elements of be ordered in a 



TT is nuw a p::Lc·babi1i ty mea2ur.0 e 

on CJL and c:learly n(A) = 0 implies P8 (L.) = 0 for all n , 
n . 

which again by the choice of (tj) 
0 

implies P8 (A) = O for al1 
~ 

e c. e Hence TI dominates G '- @ and the proof is complete .. 



APPENIJIX B 

MELSUPJ!i-THEOP..ET IC c m~PLE;}VIEN':r s • 1\1A.HKO V-KEPJ'if.ELS AN]) 

ASSOCL'lTED BILINEAR FUNCTIONALS. 

DEFINI11ION 1 ~ 

A family fi of subsets of a set x is called a n-systeE]; if 

G has the following properties: 

( ) 0 b 
n1 E (!J 

( 'f'i-1?) C C r: ~1 -' C n C E p ,,_ 1 ' 2 - l9 _.,.,,. 1' 2 (!) 

We observe that a n-systsm is closed under finite intersections. -
~ample: 

co 
R be the set of' sequences i:n The product 

0 CD cr-algebra UV is generated by the sets 

x.1 < a 1 , x 2 < a 2 , ••• , xr < ar! (where a 1 , ••• , '\~ E R) wl:ti(~h con-

stitute a n-·system. 

IJEFINITIO:N 2 • 

.A family rv of subsets of a set x is called a >"-system if 
';'°"'., 

q) has the following properties: 

( M-) 
co 

=> U D. E <TJ whenever 
. 1 l l:::;; 

.. , 
])1 'D2' • es E ~) 



Example: Let (x, Ol.) be a measurable spe.ce and P, Q :i;:iro·ba-

bility measures on (x~OO . 
f:'\ 

Let ';{) 
{. ~ 

= tllEu: P(D) = Q(D)l is a 

We recall the definition of a a-algebra: 

DEFINITION 3. 

A family a of subsets of a set x is said to be a a-algebra 

in x if 

(01) 0 E Ol 

( cr 2 ) A E Q. => .Ac E a 
(o3) An E CJl 

DEFINITION 4!. 

co 
=> U A E 0( 

n=I n 

Let dt be a family of subsets of a set x • 

We denote by 0(){) 1 rr(~), )1.(.Jf) the smailest a-algebra, 

TT-system, /..-system (respectively) containing 'i! . 
The existence:' of n( dJ?) ( /.. ( ~)) follows as in the case of 

a ( .d{) by taJdng the intsrsoction of all rr-systems (A.- systems) 

containing .d-€ • 

PROPOSITION 5. 

A family ·£ of sets is a a-algebra if and only if ·;;e is both 

a A.-system and a n-system. 

The 11 only if 11-part is trivial. 

Assume £ satisfies the requirements of a n-system an.d a 

/..-system. 

(CJ 1 ) 

(cr 2) 

follows from (A.1) and 

is the same as (A.2) 

( A2) 



It remains to show that (c:3) holc1se 

Let A1 , A,,,.... be a seg_ueEce of sets in Je . We have 
. e, 

A1 u A2 A,! u (A2-A1) Now .A2-A1 Al1A.1 
c by ( i\2) = • = E 

and (n2) • Since A1 8.Jld .A2-A1 are disjoint~ (\3) yields 

A1 U A2 E M~ .. :By induction '\He conclude that 

U UA E "'tP ~ 1 2 Dn = A1 ".. C\./ I·or n = , y... . 
n co 

and by (\L1r) U J) E JC. (cs3) follov.rs 
n=-1 n 

LEI-'.IMA 6. 

Let V be a A.-system and D1 , D2 E q) . 
Then D1 S:: D2 => D2-D1 E \!) 

Proof: (D2-D1 ) 0 = (Dll D1 c) c = D2 °un1 • 

Clearly D1 S: D? :;:: • *. 
oo '<-v 

since u A = u D • n n 
n=1 n=1 . 

But n1 c D2 implies D/l D2 c = 0 and the lenuna follovm from 

( i\3) a.71d (f .. 2) • 

PROPOSITIOIT 7. 

Let dt be an arbitrary frunily of subisets of x . . Then 

~: It suffices to prove that if a family 15;, is a n-system? 

then A.(~) is a a-algebra. It then followr~ that A.(TT(~)) 

is a a-algebra and consequently o(Jt) ~ !c(nCd-e)). The oppo-

site inclusion follows from the fact that we by forming A.- and 

rr-systems will not get outsidG the 0-algebra generated by Je ~ 
By prope 5 it is enough to prove that A.(g) is a TI-system 

whenever ~ is a rr-system. 

We first prove the following result: 
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( 1 ) for any C. l/J 
ECJ and D E /, ( ) ~ 

L ' 00 IE .;tz ei:; ~ L:J Then = jD: D n 00 E !c((; )j is :1 A.-system 

containing /:; * (I, 1 ), 0<3) and 0.4) are easily ver if ie d. As 

for ( /\2)' assmne DE<j) ·~i.e. Dn 00 EA.(~~) Then 

applies and sho·ws that " Dv (l C' 
"'o E /,(~) and hence DC E 1) 

~ s: v since r; is 

. ., . 
L'1lp.!. l8S 

a rr-system. m~nce !-(~) 

D E V which again implies 

c © so -
]) (i c 

' 0 

( -i ) f 11 F · ·all · 11 ( 1 ) i.o r.' ro. v.e. that , o _,_ows. inc y, we 1H1 use . c,i .I:' 

D D ,... ' ( r,o \ i D1 • D2 E ' ( ~~ ) 1 n 2 c 1c Q,1 J or any , /\ .._,. 
0· c, 

Let D1 E A(c7 ) and JGt J) 1 = l D: D II D1 
<I: • 1';\ I As in the case of .J.;J , JJ is 8een to be a A.-system. 

(C' <i) 
the above result it follows that l£> :,:: 1J v which implies 

A.(~)~lJ'. 

From 

I1et now n2 E 'A. ( /:;) • Then n2 E <J) ' which is the same as 

D1 n D2 E A ( ~) • Since D1 and D2 are chosen arbitrarily, 

( n2) is satisfied and A ( [:}, ) is a TI-system. 

We give a few examples of the application of Ti-systems a..nd 

/,-systems to prove important measure-theoretic Tesul ts. 

EX.AMPLE 8. 

Let P? Q 

·Assume Cl 
and that 

be probabili tymeasures on a measurable space (x,Ol) " 

is generated by a n-system f§ (i.e. Ol = a ( f;;)) 

P(C) = Q(C) for each C E ~ • Then P = Q • 

Proof: 

(\', < 

dJ is a 

Let !D: P(D) = Q(D)l • 

/,_-system containing ff;' • 
By the example of def. ·2, 

Hence <Jl =; a (f:g) = A.(n( t;)) 
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The second equality sign holds by prop. 7~ the third holds since 

~ is a If-system .. 

The statement follows. 

EXAlVIPLE 9. (Independence.) 

Let (x,Q1 ~P) -be a probability space. 

Two events c1 , c2 E Ol a.re said to be i®©.,Pepden~ if 

P(c1 n c2 ) = P(c1 )P(c2 ) • Tvrn families !:; ,V ;:::, 0[ are said 

to be independent if c Ee ' DEV => P(C () D) = P(C)P(D) 6 

If So_ and (D 0 a::ce independent, then an.d 

;,dl)) are independent. 

Proof; Assm11e t:; and V are independent. 

Let S = { C: P(C n D) = P(C)P(D) for all D E 0 l . We observe 
(;'- 0 

that J- is a \-sys tern containLng 0 

so 

( 2 ) P ( C n D) = P ( C ) P ( D) i or a"vJ.y C 

Let now d-f! = {D: P(C fl D) = P(C)P(D) 

E 

Hence 

A( f;) 
' 

for all 

dt is a /,-system and {i) ~ 'Jf by (2). 

\(fl>) c $:'. 

D E <;j) • 

c E le(~)! 8 

Hence A. (V) ~ .1{' a:11d accordingly ~-( ~ ) a"ld /- (~)) are inde­

pendent. 

Remark: If· ~ and V _ are ------
are independent (p:roIJ. 7). 

( ,, 
rr-sys tems, then a ( (;; ) a"ld 

The above results are easily generalized to arbitrary collections 

of families. We recall that if T is an indez set, then the 
( 

families f1, t : t E T ar2 saicl to be independent if for every 

finite set l ' -'- l c fjl ' '\,; 1 ' .... ' I,,_ - -~ • 11 
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DEFINITION 10. 

Let u 
I be a signed measure on a measurable space Cx,00 . 

We define the norm of f-1. by 

llµll = su_p !J fdp ! = 
11 fil,:::1 

Sup i f-11• j l-r-'· 
11 f!l::;1 

(the supremum is taken over all measurable real functions on 

(x ,(Jl) such that II fl! = sup j:f (x) l ::; -i ) 
:x:Ex~ 

We observe that if µ is a non-negatj_ve measure, then 

111-Lil = µ(x) .. 

DEFINITION 11. 

Let (x? CO be a measurable spacs. 

JVl COO is the Elet of _finit_e signed measures defined on CJ/ (i. eg 

measures with finite norm) .. 

t (CJ) is t112 set of boundocl measurable functions on (x, Ol) . 
The spaces defined above are obviously linear spaces. 

DEFINITION -12. 

Let Cx., OZ) , (;}. ., lB) be measurable spaces. 
~ ~ ~ 

_A.n V< -measurable mea~_..Ql:l ll'.1 is a function p from w )< X 

to R such that 

(i) for each ::;: E ·.J( 1 p ( o \x) E J,{ (\.B) 

and supJ1 p ( o !x)!l < o,,; 

JcE~;~ 

( -ii· ) f 1~ B N (BI ) E (\'-· (QV) 
.J., or eacll E \J,..) , p : o ... Y · 1.- • 
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If p is non-negative and satisfies 

p ( 1J \x) < 1 fo:i.., all x C: x , then p is called a sub-Markov 
-~ 

kernel. 

If p ( o \x) is a probability measure for each x E x , then p 

is called a Markov-kernel. 

;g:~.§:.PE1£: Let v E JJl ( tB) • If we define p 

p (B jx) = v (B) 1 B E QS , x E X ~ 

CB >< x ....,, Fl by 

then p is an a -:meaE:urable measure o:.:: cB such that each 

fm1ction p (Bl o) is constant. 

Markov kernel::: may be considered as conditional probabilities. 

LE1'1JYIA 1 3 • 

Let (x/Jn, ( U ,CB) be measurable spaces and p an O{ -measur­
d' 

able measure on 63 . 
Let h E l.'-' ( (1 ;< 63 ) . 

(· 

Define g(x) = jh(x~y)p(cly!x) • 

Then g E .): ( 00 .. 

/~") 
Proof: For each x E X9 h(x, a) is l.r'J -measlu,aole. The inte-

gral definin_g O' c-. is thus wcll-def inecl for all 

Since h is bounded, \h I ;:5 N for soI':le 0 < M < c.:i Now 

!g(x) \ = M\Jh(~~,y) p(d.y\x) l:;:; Hjlp( 0 \x)li 

by definition 10. The boundedne:ss of g is nm·r a consequence 

of definition 12(i). It remains to prove that g is measurable. 

We prove that g is meas1.:1.:r·able whenever h is an indicator 

function. The lemr11a then follows by sta.l'ldard extension to siaple 

functions and monotone limits of simple functions. 
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The collection q) of sets in x CB such that the lemma holds 

for h = ID (the indicator function of D) is a /,-system 

(A.1) is trivially satisfied. 

(~2) holds since 

= p (';j- \x)-JID(x,J )p (dy \x) , which is a measurable 

function of 

follows since = 0 , implies 

g11 (x) = JrJJ (x,y)p(dy!x) are measurable function for 
n 

11=1,2, •••• Set D = 

cc 
U D .• 

. 1 J_ J_::::: 

Obviously ID 1 ID • AJiplication of the monotone convergence 
n 

theorem to the positive ancl negative part of the signed measure 

p ( o \x) yields 
r· 

g11 (x) ~ JID(x,y)p(dylx) 9 x Ex 

which proves that D E<j_) , since the limit of a sequence of 

measurable functions is measurable. 

Let f5 be the set of rectangles .A X B? A E aL , B E frS • 
(!".._''. t~I It is now enough to prove that & ;:: .~) • If this is the case~ 

then since ~ is a n-system, 

so the lemma holds for all ID : D E Ol x d:3 • 
Let now C = A >'. B, A E Ql , B E(£ • Define 



Then 

= IA(x)Jp(dyjx) = IA(x)p(B!x) 
B 

B.9 

which is a product of two measurable functions and hence 

measurable. 

Thus f3 ~ ~D • 

NOTATIONS 

Let f be a measurable fm1ction on the measure space (x /J/. y µ). 

The following notations may all be used for the integral of 

w.r.t. µ : 

Jfdµ J (clµ)f Jf(x)µ(d.x) 

J(µ(dx))f(x) µ(f) µf 

fµ (f )µ 

For C E x x Y.. we def 1ne 
<:: 

.o 
.L 

ex = l y E 4:J- : (x, y) E c} called the section of C w.r.t. x • 

From now on, let (x,(Jl) and ( ~ ~ffi) be given measurable 

spaces. 

LEMM.A 1 4 • 

and let p be an Cl -measurable measure on (2, • 

Define µ x p on Olx M by 



(3) µ >,~ p ( C) = l p ( C T Ix)µ ( dx) for C E .()t x 
,; },_ 

Then µ ><. p rwi "' is the unique Deasure on Uf x Co such that 

(4) µ >< p(A >< B) = Jp(B\x)µ(dx) 

A 

for each rectangle A x B E Ql x @ • 

Berri_;§rk: If p ( o \ x) ia inde:penden t of x ~ then p may be con-
/Q 

sidered as a measure on lD and in this case (3) is nothing but 

the usual product measure on CTt >< C£ . 
(4) may then be written p >~ p (A >< B) = µ (A)p (B) • 

E CJL ~~ (£ (.A B)_,,_ f B if v E A Proof: Let A './ l3 Then .!>. ,,, • '"' = I -'~ 0 if x ~ A 

Hence (4) follows from (3) by letting c = A >< B • 

It no-vr suffices to prove that µ x p as defined in (3) is a 

finite signed measur,_:-:: o The uniqueness will then follow by the 

extension theorem for measures (see eg. Royden: Real .Analysis 

Ch. 12.2). Since 
f' 

p ( Cx Jx) = J I.0 (x,y )p (dy Ix) , the measu-rability 

of p (C !x) follovrn froni lemma 1.3. x 
Let c1 , c2 ~... be a sequence of disjoint sets in (Jl x (}3 . 
Since 

co 
( u c.) 

. 1 1 x l= 
2.J.ld 

cix' c2x'... are disjoint, ·we have 

Set 

co 
µ x p( u c.) 

. .., l 
1=1 

n 

r· oo r· c... 
= J ~·(( u 0. )"',. \x)p(dx) == J 2: p(C.~ \x)µ(d.x) 

i=•J l ~.~ i=1 J..X· 

I: p(C.~ !x) • 
. ·j lX l= 

. 



Now 

n 
= ! Z p(C;v\x)! 

j_=1 ~-"-

< sup/Ip ( o lx)Jl 
- I 

so the dominated conve:cgence theorem may be ap:pliod to give 

00 

µ x p ( u c . ) = J' 1 im f ( x ) l--l ( c1x ) = 1 im r f·,,,l ( x ) !J. ( dx ) 
i=1 2 n 11 n " J., 

co 
:::: L: µ x p(C.) ey 

. 1 l l= 

PROPOSITION 15. 

Let the situation be as in lemma 14 and let h E JA. (ex >< ~) @ 

Then 

(5) lhd(µ 
J 

, I 
>< p) = J [J h (x, y) p ( dy Ix) ]µ ( dx) * 

Proof: The expression on the right is well-defined by lemma 13. 

By the preceding le:rnrna 3 (5) holds for indicator functions. The 

statement follovrn by stan.dard extension to simple functions and 

monotone limits of simple functions. 

Remark: If p ( o \x) is independent of x , then (5) states the 

same as Eubini's theorem. 

COEOLLARY 16. 

µ X p E.}v't(Ol><C9) • In fact, lllJ. ><pl\< lJpli sup Jjp(o jx)!I • 

Proof: Let h E Jvl (OZ>< G ) , /lhll :5: 1 • 

Then 
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J11d(µ >< p) == JCJh(xgy)p(dylx)Jµ(dx) :5: JJµil s~pllp( 0 \x)ll 
-''-

by definition 10, since for each x E x 

l J h C x , y ) p ( dy Ix ) I ~ 11 p ( 0 l x ) 11 

(again by def. 10). 

DEFINITION 17. 

Let µ E }''\, (()() and let p be an al - measu:::..·able measure on 

We define l-1P on CB by 

µp(B) = µ x p(x x B) = jp(Bjx)µ(dx) for BE 03 . 

µp is obviously a measure, since µ x p is • 

Remark: If p(B\x) is considered as the conditional probability 

of the event B 9 givsn x , and µ is the pro1Jabili ty distri-

bution of x , then w.p is simply the unconditional probability. 

PROPOSITION 1 ~~ 

( i) Let f E ~ ( (£) • Then 

(fl. p ) ( f ) = J [ J f ( y ) p ( dy l x ]P ( dx ) 

(ii) Jlµpll ;;;. !lµ[I osup!lp ( 0 jx)I! • Thus µp E JVt CCB) • 
x 

Equality sign holds if p is a Markov-kernel and p ?;, 0 • 

(iii) The mapping µ ~ µp is a linear mapping J'{ COU ~Jvt Cffi) 

Proof: By the definition of µp , (i) clearly holds if f is 

m1 indicatoi· function. (i) is now proved by the standard exten-

sion procedm~e. 
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The proof of the inequality in (ii) is similar to that of 

corollary 17. 

Assume now that p is a Markov kernel and µ a non-negative 

measure. Then f-tp is obviously a non-negative measure, so 

llli 1-l p 11 = ( µ p ) ( ~ ) = J p ( ~ Ix)µ ( dx) = J µ ( dx ) = 11 l-L H • 

The linearity of the mapping µ ~ µp follows at once from the 

definition. 

DEFINITION 19. 

Let g E S: (lb) and let p be an 0( -measurable measure on (f3 . 

Define for each x E x 

(pg)x = Jg(y)p(dy!x) 

Remark: If p is considored· as a conditional probability then 

(pg)L is the conditional expectation of g , given x • 

PROPOSITION 20. 

(i) pg E j:- (()l) 

(ii) The mapping g ~ pg is a linear mapping ~ ( (£) ~ )::' (Cl) . 

Proof: (i) follows from lemma 13. 

The linearity of the mapping g ~ pg is obvious by definition 

19. 

PROPOSITION 21. 

Let µ E }1. (Of.) , g E J:: ( 63) and p be cill al-measurable 

measure on (g, • Then 

(µp) (g) = IJ. (pg) • 
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Hence parantheses may be Olil_i tted c:-wd the express]_on ppg is 

well-defined as a bilinear functional in µ and g • 

Proof: 1J_(pg) - f (pg) __ ,_µ(dx) = J('[Jg(y)p(dy[x)J\-.L(d:x) = 
iiJ .L:i.. ' 

(µp)(g) 

by prop. 1 9 ( i) • 

Remark: Let µ and p havo the same meaniJJ_g as in the :eemark 

succeeding definitions 17 and 19~ Then prop. 21 states that the 

expectation of g may be found either by integrating g w .. r.t. 

the unconditional pro'bability µp or by integrating the co:n-

ditional expoctation of g given x w.r.t. the probability 

distribution µ of 
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THE WEAK COMPltGT'I\TESS LEMMA c 

DEFINITION 1 

An indexed f ar.aily { o<l : fl E I} of real rai.'1.dom vaxie.ble3 on a 

probability space Cx ,(J/. ,P) is said to be u..12i:1.2.fml_y integrable_ 

if 

PROPOSITION 2 

The f am.ily [6 } 
(l 

is uniformly jntegrable if ~~d only if the 

following two conditions are satisfied: 

(i) 

( .. \ 
ll,i 

Proof: 

~1·. Is:. 1,:1u sup 1 u u.r: 
j CJ, 

a. 

To any E: > 

P(A) < T1 => 
E: 

··only ifll: 

<co 

0 there is a T\~ > 0 
c. 

lJo0_dP[ < E: for all 
A .n. 

such that 

a:.EI" 

For a suitable c > 0 , 
r 

sup ! 1 o I < 1 • I I (l 

ct lo a.1 >c 

Hence~ for eny a E I , 

l I o I --
J a. I 

r 

J Ioctl < c + 1 , so (i) follows. 

16 \>c 
CL -

Let e: > 0 a.nd choose c so that 
r 

sup j I o o:. I < e /2 
et I oa. l>c 

Let A. E a o Then 

cP(A) ., e:/2 



Choosing rie = 2c and P(A) < rie yields l \ 0 I < e 
c· Q.. 

for any 

a. E I .. A 

''if;j: Let e > 0 and choose ri so that ("1) holdso Then, if 

P(A) < ri , for any a. E I , 

(2) 

= 
r 
j. 0 I + 

. ,,., l 
...... 

r 6,_, < 2e 
·J !,,\, 

An{o >O} a.- M{oet <0} 

By the generalized Chebycheff's inequality, 

fl o I sup J a. 
< 0. 

c 

so for some c > 0 P([oa.l ?- c) < ri for all a.EI by (i)o 

Hence, by letting A = [ 16 I > c} a.. - in (2), uniform integrability 

is proved .. 

THEOREM 5 . (THE WEAK C01'1PACTNESS LEM£1A) 

Let (x,a ,l?) be a probability space e.nd let { o : a. E I} a. 
be a net (generalized sequence) which is uniformly integrable .. 

Then there is a subnet {o 0} and an integrabel o so that 
r i 6 hdP ... i ohdP for all h E T. (P) 

j ~ " --o::J 

(i .. e .. for all (essentially) bounded measurable functions h ) .. 

Proof: It is enough to consider non--negati ve 5' s. Let 

\lhll = ess sup h 

For each a E I we define a linear functional Fa. on Lco(P) 

by 

F (h) = . r o hdP 
(]. J a. 

Now, tF (h) 1 < 11-\h!l lo -dP < c 0 \lh!l1 a. - ,1 J Q. - I I 



where c = sup r o dP <cc by prop~ 2. 
a j a 

Hence l\Fa!I < c for any a E I (i. eo F is continous)'"' - Cl 

a_l'ld F E TI [-ci\h\I , c\\h\\J 
a hEL00(P) . , 

which is compact by Tychonoff 's theorem (Royden Ch .. 9). 

Hence, there is a subnet [FS} so that 

(3) F8(h) ~ F(h) for all h E L::o(P) for some fm~ctional F • 

F · is obviously linear, since it is a. (pointwise) limit of linear 

functionals.. Furthermore, l!F\\ < c since 

F(h) E [-c\lh!I ~ c\!hil] for each h • 

Hence F is continuous. 

Since the 6 1 s are non-negative, it foll01:·r:::1 that F > 0 (i.e. 

h > 0 => F(h) ~ 0 )o 

We will now prove that there is a 6 > 0 so that 

F(h) = :hodP for all h E Lx,(P) .. The lemma will then follm~r 

f r0m CA) j • 

Define a set-.fu..l'lction OY) 
.L~ CJ( by rr; (A ) = F ( I ) 

'i" A for all 

Clearly cp ;:, 0 • By prop. 2 (ii), to any E: > 0 there is a 
r 

f1 > 0 such that P(A) < Tl ==> : o 8I 1, < E: for all ~ • 
_, t 1. 

This is equivalent to F,.,(I,,) < E: for all )3 , which again 
~ .;-i. 

implies cp(A) ; F(IA) < 8 • 

Hence 

(LJ..) P(A) < YJ => cp(A) < 8 • 

A E(J_ 

This fact, together with the fact that cp is finitely additive 1 

implies that cp is a-additive. 
(' 

Furthermore, cp(x) = F('1) = lim J 013 < c .. 

Thus cp is a finite non~negative measure on (x,(JZ) and by (4), 

cp << p e 

By Radon-Nikodym's theorem there is a measurable fu.nction o > 0 

so that 



It follows that 

r· 
= : odP , 

J 

A 

f 
jhdtp = lh6dP for any 

0 
h E 1to(P) ~. 

Finally, we ha.ve to prove that 

(5) F(h) == Jhdcp for all h E Lro(P) o 

By the definition of cp , (5) holds for indice.tor functions and 

h<snce by lines.rity for simple functionsc 

Sine(~ ]' is continuous, 

F(lim h) = lim F(h) and thus (5) follows from the fact that 

each h E L (P) 
CD 

may be written as a sequence of simiJle functions c 

I/E1'1ARK 4-

If we in adQ;_ tion require 

sup\\ <\:t!b < cf:> , then the lemma wi::'...l hold for all h E L_1 (P) 
a 

(iaec the set of measurable functions which are integrable 

This· is easily proved by approxim2.ting h E L1 (P) with 

fi.m_ctions in Lr..,/P) " 
~J 

The .,~rec:tk compactness lemma (::md the extension :c-icited in remark 4) 

has an analogue where .in2t • is replaced b;;r "sequence Clild 

11 subnet i: is replaced by ;i subsequence'' o 'l1he pToof of the· 

sequentiel version of the weak compactness lemma may be found 

in [8] in the case where Q is separa.bel (L,eo C5l_ = cr(63) 

for a countable family (9 of subsets of x ) o The proof in 

tl · 1 · . . . r ,,I '7 ] le genera case is given in ._ ; • 
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Consider agau1 theorem 3@ we shall say that the ,subnet [ 6~} 

con~-~.!'..&~.§._J::rnakly to 6 if the conclusion of the theorem holds o 

(Similarly for the sequential case.,) 



. APPENDIX D 

P.ESEARCH PAPEHS. ABSTPtACTSo 

COMPARISON OF EXPEHD1E..~TS WHEN TfIE PA.RAI''.IETER SPACE IS I'INITEo 

By E.N. Torgersen. 

Z. Wahrscheinlichlrnitstheorie verw. Geb .. 16, 219 - 24-9 (1970) .. 

The c.onvex function criterion for .;being more informative· for 

k-decision problems is generalized to a convex function 

criterion for €-·deficiency for k-decision problems o The 

:particular case of compRrison by testing problems is discussed. 

A theorem of Blacl~well on comparison of dichotomies is general­

ized and a problem on products of eA'-periments raised by 

Blackwell is settled by cou...11ter-example. Pairwise comparison 

of experiments and minimal combinations of experiments are 

discussed. The problem of composing and decomposin;s exp0riments 

by mixtures is treated. It is shown that any experiment with 

finite parameter space is a mixture of complete experiments, 

and the comp:i..ete eJCperiments are characterized. 

COJ:'IPARISON OF TRAl~SLATION EXPERIMENTS. 

By E.No Torgersen. 

Ann •. Math. Statist. 43, 1333 - 1399 (1972). 

In this paper we treat the problem of comparison of translation 

experiments. The "convolution divisibility" criterion. for 

"being more informative·· by Boll (Ph. D. dissertation, Stanford 

Univ., 1955) is generalized to a ·· E:-cofrrolution divisibility" 

criterion for e-deficiency. We also generalize the "convolution 

divisibility" criterion of Vo Strassen (Ann .. Math .. Statist. 36, 

423, 1965) to a criterion for ,; e-convolution divisibi1it;:-r' .. 



It is shown, provided least favourable "e-factor,s' can be found, 

how the deficiencies actually may be calculated" As an appli"-

cation we determine the increase of information ~ as measured 

by the deficiency - contained in sn additional number of 

observations for a f ev'! ex:periments (rectangular 1 ex:poner.ctial ~ 

multivariate no:r:·m.al 1 one way layout)o Finally we consider the 

problem of convergence for the pseudo distance introduced by 

LeCam (1964) [7]n It is shown that convergence for this distance 

is topologically equivalent to strong convergence of the 

individual probability measures up to a shift o 

LOG.AL COMPAHISON OF EXPERIMENTS \ivr:HEN 1r:EIB PAPJLl'IBTER SE'? IS ONE 

DIMENSIONAL. 

By E.N. Torgersen. 

St2,tist. Resear·c::-., Report, Inst. of Math .. , Univ o of Oslo, Noc 4? 

Thi,s paper treats comparison of e:x.---periments within infini tesi-

:rnal n.eighbourhoods of a fixed point e0 in the parameter set. 

If 6 8 is the deficiency in LeCam [7] within [ 00 ~ s, 80 -1 e] , 
0 

then 6 /2e 
8 

-> 0 as E: -> 0 provided strong derivatives exists .. 
0 0 0 

Related to 5 i.s a pseudo metric ~ 6 is a · deficiency'' 

betw·een pseudo experiments i c eo .; experiments'' where the basic 

measures are not necessarily probability measureso Some known 

results on experiments are extended to pseudo experiments .. 

Various characterizations, deficieneies and pseudo distanc:es 

for the relevant pseudo eA.'})eriments are considered.. Particulari-

l~r intei~esting representations are: probabili t;y- distributions 

with expectation zero (thi:3 representation converts products to 

convolutions), concave functions describing the relationship 
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between size ai'ld slope for testing ; 3 = 90 ·; against ,; O > 80 '; 9 

and strongly uniIJ.odal distributions. Condi tiono.l sxpectation 

- and factorization criterions for sufficiency are given. 

LOCAL C01'1PARISON OF EXPERII1ENTS .. 

Statisto Research Heport, Insts of :r-'.btho, Univ. of Oslo, No. 5~ 

1972. 

In thi:::: pape::c we gene.:calize most of the re.sul ts in Eeses.rch 

Report No. '~t, 19T~ to the case of a finite dimensional parameter 

MIXTUPi.E ih~D COMPLETENESS PROPERTIES O:B' DOMINATED PSEUDO 

EXPEEF.t.ENTS. 

By E.H. Torgersen. 

Statist. Ee search Heport, Inst. of Math., Univ. of Gslo, No .. 7, 

In this paper we generalizes some of the results in section LJ-

in Torgersen [16] to the case of dominated (pseudo) experiments. 

Convex combinations of (pseudo) experiments are defined, and it 

is shown that a (pseudo) experiment has the e2ctreme point 

property (for t 1 equivalence) if and only if it admits a 

boi.mdedl;y complete and sufficiu1t sub a algebras .. 

Dominated models for independent observations x1 , 0 .. " , x_ 
' l'l 

ad-

Bitting boundedly (or L ) comnlete an.cl sufficient statistics, p ~ 

are consideredc It is shown that a sub set - say x1 ?"""''Xm 

where m < n ~ has the same property- provj dec1 a certain 

regularity condition is satisfied.. This condition is auto~ 

matically satisfied when the observations a.re identically dis~ 

tributed.. The proof ~ in the case of bouw:led completeness -



utilizes the fact that products of experiments e.re distributive 

Woroto mixtureso Somewhat more involved arguments are needed 

for L completenesso p 

COMPARISON OF LINEAR NOPJ'1AL EXPE}UMH'JTSo 

By Ole Hav&.:.::d Ha11sen aJ1c1 EolT o Torgerseno 

Consider independent and normall;y- distributed random ·variables 
/) 

X1 ,ooo~X such that 0 <Var X. = cr'-
n i 

i = /1 ? o o o , k and 

where l\ i 
Ll. is a knov..rl'.l n x k Lmtrix 

an unknown colwnn. matrixo [The prime 

and 

denotes transpo::::i tion] o The cases of known and totally 1u-llmown 

a2 are considered simultaneously. Denote the 
(,, 

t ,~ . Let 
LL 

tained by obse:i:-vin.0ri- :X: X by 
~1 ~ ... " " 9 n -

matrices of, respectively, dimensions n,, >< lz:: 
.d. 

~~ (if 
·::i 

1h11.known ) Then~ if CJ is knm·n1~ a~- is 

formative than ~ B if and only if .1:'\..A' ,_ BB' 

definit (and n~ > nT) + rank(AA 1 ~ BB' ) ) • 
J:\. - l.J 

ASYMPTOTIC BEHAVIOUR OF POWERS OF DICHOTONIES. 

By EoN o 'l'orgerseno 

ex:periment ob--

A and B be 

and nB x k • 

<G, is more in-m GA 

i.s non negative 

Statista Research Heport, Insto of Matha, Univo of Oslo, Noo 6, 

Consider random vs_riables X, Y, o. o whose distributions are 

known except for rui unknown parameter G belonging to a known 

two-point set" 

observations of, respectively, 

and Y.1, Y2 , "o. be independent 

X and Y • How doE~s the in--

formation ;yielded by (X1 ,x2 ~ • .,. ,Xn) compare with the in-

formation yielded by 

Let J1 a and J/l i 
(Y-1,Y2 ,.o .. ,Y) when n is large? , n 

den.ate, respectively, a totally informative 
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al'ld a totally uninform-stti Ve experiment e Furthermore denotG by 

!J the distance ·between experiments introduced b:v :SeCam '1964.., 

Then, for any va.riable X : 

Combining this inequality with Chernoff 1 s result on the e:t,_rpo-

nential D?cte of as;ymptotique Baye 1 2 risk we find the.t 

n -- I 

\ / A ( ( V X \T ) ( Y V Y '\ )- . ( ) · w "- , 1,_,1 , :;::i , • @ • , .il-__ , ,., , .... 2 , •• o , . j _, max Cv-, c~~ , _ .1.1 1 _ n _Ii. r 

provided the e:1..rperiments defined by X and Y are not 

equivalent. Here ex( cy) denote the greatest lower bow.'ld of 

the Hellinger tre.:-Qsf orm of X(Y) • 

In order to obtain inequalities for concave approximations to 

the kernel of the Hellinger tranE:'form 1 we generalized the sub 

linea~ function criterion as follows. Let c?.:nd 

(J , 63) be meaDU:rn'ole spa.ces With, respecti Vely, probabilit;y 

measures 

[0?1] ' 

I ) T' -_1,r,....... 
c.. 

and 

is (8 1 ,s2 ) deficient w.r.t. 

Then, for any convex function· cp on 

s1 [cp 1 ('1)~-(cp(1)--cp(O))] + e2 [(cp(1)~cp(O))- cp' (O)] ~4~-tpd(T-S) 

where S is the distribution of 

and T i;:3 the distribution of 

(It follows directly from the te.sting criterion 

for comparison that it suffices? in order to verify ( 8_1 ., 8 2 ) 

deficiency, to consider functions cp of the form: X _. IX~ G l 
wher·e r; E ] 0 ~ 1 [ , ) 



COMPAl-USON OF EXPERH1E2'TTS BY FAC'J.:iORIZATION 

By E.N. Torgersen 

Statist. Research Report, Inst. of Math., Univ. of Oslo, 

Consider random variables X,Y, .•• whose distributions are 

known except for an unknown parameter 8 belonging to a known 

finite set ® . Identify each variable witt, the experiment it 

defines and write \T ". y if x and -.;r are equally i:nf orma-J\.. j_ 

tive. ~le give first, for given x and v a functional J_ 

' 
criterion for the existence of a Z , independent of X 

such that Y,.., (X,Z) • Combining this with a result on con-

sistent families of experiments 9 we prove that has the 

property that any more informative Y is ,...,, (X,Z) for some 

z indenendent of x • .P y " i- . ..p t' l.1. a.1.10. on ::l l . .L nere is a such 

that: 
,..,, 

(i) X is, with probability 1 , a non e~pty sub set 

of G M 

(ii) Each 8 belongs to some possible value of 

(iii) If u1 f u2 are possible values of X then 

'i~ ( u 1 r: u 2 ) ~ 1 • 

(iv) If u 1 = u,,u21···,u are n+. n n possible values 

of X such that uin ui+ 1 f ¢; i = 1, .•. ,n 

then 0u j_ f Jz5 • 
l 
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