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Preface 

With the publication of "On the problem of the most 

efficient tests of statistical hypotheses 11 by J. N~man and 

E.S. Pearson in 1933 (Philosophical Transactions~ series A" 

vol. 231) a new era emerged in the development of the science 

of statistical inference. The importance of this paper lies 

partly in the creation of novr ccncc:pts, like the "power function"~ 

partly in the discovery that for important model situations it 

was possible to derive statistical methods with stipulated 

optimal properties which were quite obviously acceptable. 

The 11 model si tuations 11 treated by Neyman and Pearson were 

such as to require certain partial differential equations to 

be fulfilled by the probability densities. It was later realized 

that these requirements were essentiall;y equivalent to assuming 

the Darmois - Koopman exponential family of distributions". 

Based on this assumption the modern Neyman-Pearson theory 

was developed by many authors in the 1950-s~ resulting both in 

a simplification and generalization of the original presentation. 

It is this theory which is presented in the present memoir. 

The main result; which is essentially the result obtained by 

Neyman and Pearson in 1933 9 is given as theorem II.D.2 (page 38). 

The memoir is an adaption of the notes of lectures given 

at this University at regular intervals since the beginning of 

the 1950-s~ of course with many major alterations 9 in particular 

in the 1950-s when new results WGre steadily forthcoming. 

March 1971, 

Erling Sverdrup. 
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I., Some_spe,s!_al famil,ies_gJ distri~;utions!l> 

A@ Factorized families~ 
~·-~~--~-~--~-------~-----

Let X a random variable in a sample space ~i 

X ~ )f.. A sigmafield ~ is defined in J-f, and g) is a 
/ 

family of probability measures ldistributions) P over~ e 

Suppose that ~ is dominated by a sigmafinite measure 

fA.; i .. e .. each Pe ,§~ is absolutely continuous with respect 

to ;tl' hence dP = fp(x)~@ If there exists a real 

measurable function h{x) from_;;(", a measurable function 

Y(x) (statistic) from 3( to a space l~ with sigmaf ield 

PE~ a measurable real function 9p{y} cf3, and for each 

f rorn t0. 
J 

such that 

( 1 } -

then ~ is said to be £9ctorized" [we _shall_ agree to call 

a real ft..mction h from a space (jf ,~) measurable if 

Examples of factorized 

f amilie~ will be given in sections B and C below,, 

There are of course many presentations 

(1} if ~is factorized, since a factor H(Y{x)) could 

be transferred from 9p to ho Obviously we may take 

h(x) ~ o, and will do so below. 

We now have 

Theorem I .. A .. 1 .. ------<!IL!l<il$ _____ _ If <if?' is factorized, there exists a 

probability measure 1T and a 9p such that 



dP = 9plY(x))d JI (2) 

Proof: It can be proved that we can always choose h 

integrable (µ)* Since the proof of this is rather tricky 
,/ -

and since this is almost always easily verified in special 

cases, we shall assume this to be true© Sinca P(~) = 1, 

we have ) h (x )dr > o, and we may then take the integral 

to be 1e Then d ~~ = h(x)d/L defines ~ as a probability 

measure, and by the chain rule for the Radon-Nikodym 

derivative we get (2) 

In many situations which we shall consider the family 

~will be homoqeneous, i~ee any two measures in 'S'J are 

absolutely continuous with respect to each other. Then the 

proof of theorem 1 is simple without making use of the fact 

that h may be chosen integrableo Indeed, in that case we 

may choose as // any measure in ~ s Taking fp(x) = dP/d I?', 

we then have 

On the other hand 

dP = 9p(Y(x))h(x)d)'4-

Combining, we get, since g_(Y(x))h(x) > o, 
I/ 

9p(Y(x)) 
= ~~(Y(x)) = 9p(Y(x)) 

II 



- 3 -

Hence dP = 9p(Y(x))d which proves theorem 1@ F r-
• /"J' 

~ d /I - -
more, choosing h = dfL-, we get dP = 9p(Y(x))h(x)d/f' so 

it is obvious that in the homogeneous case, h 

be chosen integrable* 

( 1) could 

In the homogeneous case we might take '!/ E. ~ " Note, 

however, that in the general case this may not be possible~ 

(Consider, for example, the class of all uniform distri­

butions over (O~T) ~with varying T). 

From (2) the sampling distribution PY- 1 of Y(X) is 

easily found to be given by 

(3) 

(It is assumed that the reader is familiar with 

Appendix D: "A more rigorous treatment of some fundamental 

statistical concepts" (§ 1-2) in Erling Sverdrup: Laws and 

chance variations, vol$II, pc292@) 

We shall now prove 

Theorem I .. A ... 2a ------------- If the family So of distributions is 

factorized with respect to a statistic Y{X) (i~ee dP is 

given by (1)), then Y(X) is sufficient for f9; imec the 

conditional distribution of X given Y{X) is independent 

of P € J.P {or rather, 11 could be chosen independent of P") .. 

Proof: We shall use theorem 1 in the proof, assuming 

that h{x) in (1) can be chosen integrableo Let f(X) have 

finite expectation for any P~ '&'. Then, we have for the 
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expectation with respect to P 

On the other hand we have by l2) and (3) 

Epf (X) =ff (x)dP = rf (x)gp(Y(x) )d 'ii= 

= E Jt (X ) g p ( Y (X ) )] = E':'.,[ g p ( Y {X ) ) Ey { f (X ) I Y n = I/ .... ,, ,, -

= f gp(y)E:)f(X)jy)dl?-Y- 1 = 

:::: f Et' ( f (X )t y )dPY- 1 

Hence, combining the two expressions for Epf, we get 

f f:p(fly)-E_(f lyfjdPY- 1 = 0. •r H ~ 

Now, let I 8 (y) be the indicator function for a set 

B{E i/j). Take f(x) = g(x)I 8{Y(x))o Then Ep(fiY) = 

IB{Y)Ep(glY)o Henc8, substituting in the integral, 

Since this is true for all BE <£3, we get 

Ep(g jy) =E~{gly) 
I/ 



a.e. (PY-1) • We now choose in particular g(x) = IA(x) in 

which case we get 

P(Aly) = rr(Aly) 

a .. e. (PY-1 ) • This proves theorem 2§ (The obvious require-

ments of measurabilities of functions and sets will not be 

explicitly stated here, or below@) 

This is a special type of a factorized family of distri-

butions relatively to an s-dimensional statistic 

Y(x) = (Y1(x), ••• ,Y8 (x)) ~ A member of the far:1ily ff is given 

by s 
.r T .Y .(x) 

dP = A(T)eJ= 1 J J h(x)dµ 
T 

( 1 ) 

and the family is generated by varying T = (T 1 , ••• ,T 8 ) in 

a set giving a one-to-one correspondence between and cf' ~ 
It is easily seen that we may assume 1 without impairing 

generality 1 that ( i)' are linearly independent, 

(ii), there are at least s linearly independent vectors T E n, 

(iii), A(T) > 0 • Then h(x) > 0 and since P(}E) = 1 , we 

must have A(T) > 0 • 



= 6 = 

x -
components which are normal 0)~ We then get 

Hence we have a O@-Ko exponential family (1), with 

A ('.t) h = 1 .. 

If er is fixed = 1, then we have a D .. -K" exponential 

family relatively to Y = Lxi. In that case 

1 '\: 2 
- 2 1_X. 

h = e J 

All families of distributions in the case of linear-normal 

models, i@eo all models in regression analysis and variance 

analysis; both those with fixed and those with random effects; 

are D.-K@ families of distributionse This is left to the 

r2ader to verifyc 

X = (x~,x2 , ••• ,x ) has independent 
I (1 

components which are gamma-distributed with density (for 

x >- O) 
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'l easily family of where l(~ f; o® It is seen th the 

distributions of x = (X1' " .. " ,xn) is D .. -K,, exponential 

relatively to the statistic 

a Bernoulli trial sequence, ioeo they are independent and 

Pr(X. = 1) = 1-Pr(x. = 0) = p .. Then 
J J 

if all x. 
J 

measure p 

are either 0 or 1o 

is given by (1) with 

Thus the probability 

v = ix j , t-= i og ~' 
A(?) = (1-p) 0 and p. (C) = number of points x = (xp .... ",x0 ) 

in C for which all components are 0 or 1~ Thus 

(Note that when writing 
( 

dP = f d1,u.. it is always understood 

to mean P (C) = ) f dj . .ie c , Choose in particular 

set consisting of the one point Xe) 

( '· 
C = tXJ = the 

All ordinary models in multinomial trials, eogo when 

testing independence or homogenity, are families of Do-Ko 

exponential typesG This is left to the reader to verify6 



~~~~E±~-1· The components of X = (X19 •• 9 Xn) are 

independent and Poisson distributed with common mean A. • 

It is easily seen that we have a D.-K. class of distri-

butions with and 'T = log A. • 

Thus many of the classes of distributions commonly 

considered in statistics are of the D.-K. type. Examples 

of classes of distributions which are not of D.-K. are 

classes of rectangular distributions with unknown endpoints 9 

hypergeometric distribution with unknown population size. 

Of course the non-parametric situations are examples where 

the classes of distributions are not D.-K. 

We now return to the general theory. It is seen that 

if P.,.(A) = 0 , then h(x) = 0 a.e. for x E A , hence 

P 'T 1 (A) = 0 • Thus ~ is homogeneous. Y~e may assume that 

'T = 0 E O 9 since this could be obtained in any case by 

changing origin for 'T • Furthermore 9 since A(T) > 0 we 

may assune A(O) = 1 9 since this can always be obtained by 

transferring a constant factor from A to h • Hence we 

have dP = hdµ and by the chain rule for Randon-Nikodym 
0 

derivatives 

(2) 

The sampling distribution of Y(X) is given by 

2:: 'T . y. 
1 J·-1 J J -1 dP y- = A(1)e - dP

1
_Y 

-'T u 
(3) 

Of course we have 



s 
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7::· J 
( x) 

s 

dP v- 1 
0 

(4) 

It has been tacitly assumed, of course, that the integrals 

in (4) convergeo Thus f'l. is a subset of the region .c'l. of 

all l' for which l4) converges, i.,ee {1) defines a 

probability measureo We now have 

-
Theorem 10801: The set Q of all 

...,_, 
<. for which {1) 

defines a probability measure P~ is convex. 

Proof: 
---~--

Let "lo.. 'i . II £::.. (\ r ~ C \_ ....,j_e Then we have for 

l = c '2" 11 + ( 1 - c ) c" ( 1 > c > o ) , 

by Holder~Jensengs inequalityo Hence Len ' QcEoDo 

(tiolder-Jensen 2 s inequality: If f 1 {x),f2 (x) ~ o, 
0 <. c < 1 , iL a measure , then ,,.. 

(5) 

PE22f: The case where ff id/l = 0 for i = 1 or 

is trivial. Hence we assume f f 1d.J-l> 0 3nd introduce 
J 

2 
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g. = f./ ff.due The above inequality then takes the form: 
l l. 1 ! 

Consider now the function F(t) = tc. It is concave for 

t > O@ Hence its tangent for t = 1 is wholly above the 

curve, L.eo 

tc L ct+(1-c) 

Inserting t = g1/g 2 , we get 

By integration we now get (5 /ol 
Let f (X) be any statistic, the expectation of which 

(··-, 

exists for all ~E ~lo We shall consider the function 

= E f (X) 
7: 

f f 5°1".Y.(x) 
= f(x)dPC-= A("t) f(x)e- J J dP 0 

which may also be written 

(6) 

where g(Y) by theorem IoAe2 is independent of 

(""--
. " 

In particul0r if f (X) equals a testfunction b(X) 

then 0([) is the powerfunctiono 
I 

We now denote by :;1 c the set of all vectors 
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= 51 +i a·= ( S.)1 51, .. e" 'Js +i 1) with complex components for 

which 1~= (~p"u')s)e:Q@ It is seen that the integral 

expression in (6) and {7) 

(8) 

~c 

exists for all l~ E: (1 .. In particular this is true for 

f = 1, identically" Hence A (l') can be defined by (4) and 

t?J( l') by (7) for all ?:E S2 c.. We shall prove 

of each component of 

given by (8) is an analytic function 

?"' for all inner points Z°' of .fl c .. 

Its derivatives of all orders can be found by interchanging 

derivation and integration .. If, in addition, A ( y is 

finite then (3 (n = A(l.")B(t') is analytic and 

{ 9) 

Proof: Consider B(r) = B(?-") 
r as a function of the 

component 
......... 

of t o We shall prove that B is an analytic 

function of r r" We have 

B ( t;+z )- BU-;) 
z 

( 10) 

We now have with z = u+iv 
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( 11 ) 

[rhis is seen as follows: ::; 

- (eua.cos va-1+ieua 0 sin va)/z = 

= eua_1 ~ cos va + cos va-1 y + i sin va ua 
u z v z v e 

Obviously I ~ I and I Y.. I ~ 1 • z z By the mean value theorem 

for derivatives 

l e u :-1 J -- l a eul a I L I a I e I u I · I a I h /. I L. I I w ere u1 - u 

J cos ;a-1 I = } a sin v1 a I~ I a I where I v1 I ~ /v J 

J sina va j .f J a J 

Hence 

/ ea;-1 J~ }a/e/u/ 0 laJ+/aJ+la/elu/ 0 /aJ t_ 3 ja/elu/•lal 

which is the same as ( 11) o] 
For any E .:> 0 we can always choose K such that 

>-: 

\ . I . - -~·2 iY r I 
y~ ~Ke .. With 

X· 
I I / ~. 

z = 2 we then have 

/ ..,, Ir I sly 1· 

= const.e ( 12) 

Thus the integrand in (10) has modulus 

l I i I Yr \+~f·Y· 
~ const. g(y),e - J J 

where Jj = the real part of ?J· But since 
........... 
l is an inner 
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-'o) c point of l_ the integral of converges 

if 0 is replaced 
)r ? r.:t t for ~ sufficiently small .. 

By the Lebesgue dominated convergence theorem we then have 

{ 13) 

Hence we hava proved analyzicityo Since the proof holds for 

any P0 Y- 1-integrable g(y), we have in particular for 

g = 1 that A('T) - 1 is analytic .. Hence if A( . ..r)-1 j o, 

we have that [3 ({) = A{?iB(f-') is analytic .. (9) follows from 

(13). The statement about derivatives of higher order is 

proved similarly~ QeEoDo 

A family SSJ of distributions is said to be complete 

if for any f 

J fdP = 0 for all P t- S9 ( 14) 

implies that f; 0 a@eo (~). 

A Darmois-Koopman family of distributions 

~J= Sp 1 is said to be regular if .1.1 contains inner ( r ) r"c ~;_ 
points. Obviously we can, and will, in that case take 

( = 0 f- S,1 as an inner point .. 

Theorem I .. B .. 3: ... __ ...,.. ___ ...... ____ _ In a regular Darmois-Koopman family of 

distributions the class of sampling distributions for the 

sufficient statistic Y is completeo 

Proof: By assumption ~ = ~Pi""] (vf._ Q contains 

'C= 0 as an inner point~ We shall prove that 



Jg ( y) dP" 
l 

1 
-- 0 

for all "f E ~l implies g = 0 

this equation can be written (since 

r '1:._?:. Y · 1 
'g(y)e J Jdp_y- = 0 
J u 

(Po y-1)" 

A~) >O): 

Using (3) 

( 15) 

Now, the left hand side and the right hand side of (15) can 

~ r be considered as functions of ( 1 , .. o@, • 5 , \1Jhich are both 

analytic when C is an inner point of .fl c" They are 

identical for all C- when each r r is real and is contained 

in an open interval (-a,+a)s By a famous theorem about 

analytic functions we then have that the identity (15) is 

true for all satisfying the condition 

-a< 9 r < a" Hence we have in particular for -r- = it { t 

real) 

We write + -
g = g ~g ' 

negative partso Hence 

and in particular 

splitting 

= 0 

9 in its positive and 

( 16) 

( 17) 
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If K = O, then + g = g = 0 

proved. Assume now K >o@ Then p+ and 

are probability measures since 

rg_K+ dP y~1 = 
• 0 

dP Y- 1 = 1 
0 

is 

P.- defined by 

Dividing by K, we can then write (16) by the chain 

rule for Radon-Nikodym derivatives 

t 18) 

Hence by the inversion theorem for characteristic functions, 

for all 

f _sL dP y-1 
B K o 

for all Thus + 9 = g g = Q (contradicting 

From this theorem it follows that two test functions 

and which are based on 

the sufficient statistic Y and have the same power function 

must be equal aoe .. A 1 (y) = Li 2 (y), 3090 

It also follows that if 

( 19) 



then m (Y {X)) is t_he only unbiased estimator for #{ Q based 

on the sufficient statistic® Furthermore it is a Markov estima-

is any other unbiased estimator for 

then var M{X) ~ var m(Y) for all ['-. These are immediate 

consequences of the results in Erling Sverdrup: Laws and chance 

variationss Vol. II. Ch~III 2.2, where also examples are given 

of estimands /-.1A 21 connected with Darmois-Koopman families of 

distrH,utions .. 

We shall be primarily concerned with Darmois-Koopman 

families of distributions@ However, in order to throw light 

on the general nature of some of the principles used we shall 

occasionally consider other classes of distributions. 

Let ~ be the class of distributions of X = (X 1 , o o o ,xn), 

where the components are independent with the same density f, 

with respect to the Lebesg~e measure, and f is any among a 

class of densities fl , Jfdx = 1. For the time being let il 

be the class of all densities. The density of X is 

f(x 1 ) 0 f(x 2 ) 000 f(xn)~ The density of the order statistic 

Y (X) = ( Y 1 (X) 7 o o", Y n (X) ) ; where Y 1 (X) :'::: Y 2 (X) :=._ .... ~ Y n (X) 

are x1,.o.,X0 arranged in non-decreasing sequence; is then, 

( 1 ) 

Theorem IoCs1o In the non-parametric family of 

distributions the class of distributions of the order statistic 

is completee 
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Proof: We have to e that Efg(Y) = 0 for all 

densities implies that g(y) = 0 Consider then 

Let now h(x) = g{Y(x))g We see that h(x) may be written in 

h{:x: 1pce7X0 ) = 

of 1,2,ua,no 

h tx. ~ ~ Q ~ ,x. ) for all permutations 
1 1 1 n 

Hence (2) may be written 

for all f. We thus have to prove that if (3) is true and h 

is symmetric, then h = 0 a.e. 

We now insert a particular f in (3). Let I 1,ogo,I0 

be n arbitrary non-overlapping finite intervals with lengths 

L1,oo•,Ln respectively, and let p1,eoo'pn be arbitrary non-

negative numbers such that E p. = 1 o Then we define 
J 

f {x) = p./L. 
J J 

if 

f (x) = 0 otherwise 

(Note the peculiarity that the density f of any single Xj 
f depends on no) We see that Jf(x)dx = 1 and we find 

Eh{X) = 

( 2} 

(4) 

(5) 



{6) 

From the symmetry of h follows the symmetry of QQ Hence the 

value of Q is determined 

which are e•ual to 1,2~"·~,n, respectively~ Let this be 

m1 ,oco,m ; ! m. = n. Thus we can write 
n J 

l5) may now be written 

Let us now collect the terms in (8) leading to the same 

m1,oo.,m0 • Assume that there are Ntm1, 0 •• ,m0 ) different 

leading to 

Set C = KN., We then get 

for all 

We assume p '> 0 n 

and all p1,c.o,p0 

and divide (9) by 

m 

(0bviously 

such that 
n 

Pn ' 

> m1 n-1 + + C (m 1 , • o a , m0 } 0 ~ 1 0 .,;;; <il ""'n-1 = 
m1, o. o ,mn 

where t. = p ./p " Thus ( 10) is true for all t. ~ 
J J n J 

n 
L P· = 1 .. 

i=1 l 

OG We now 

operate with on the identity and obtain 

(8) 

(9) 

( 10) 

t. - o. 
J 

Hence, since N > o, 



( 11 ) 

Now, it is seen that the class of n-dimensional intervals of 

the type I. x ••• xI. 
11 in 

(which is not an arbitrary interval) is 

a basis for the Borel class. Thus 

J ... J h(x 1 ~ ••• ,xn)dx1 ••• dxn = 0 

B 

for any Borel set B • From (12) it fol::ows that 

h(x1 , ••• ~xn) = 0 a.e.; QeE0D. 

( 12) 

We shall make a remark concerning the existence of a 

conditional probability measurE}_. (See E. Sverdrup: Laws and 

Chance Variations, volum II, appendix D.) Given a probability 

space ( 1( 9 J/.. 9 9) and a measurable function Y(x) from this 

space to a space (1;} 9 (}3) 9 we define P(Aly) = Pr(X E AIY = y) 

as the measurable function of y such that 

P (A n y- 1 ( B) ) = J P (A l y) dPY- 1 ; A E Jh B E OD • 
B 

This conditional probability P(L!y) is lmovm to have 11 almost 11 

the properties of a probability measure. However 9 in general it 

need not be a probability measure and this fact will cause mathe-

matical difficulties in stating and proving some general results 

(e.g. theorems II.C.2, II.D.1-2, II.G.1). In special cases it 

is easily verified that P(A)y) does exist as a proper measure, 
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and \V<2 shall be content with that. 

'Ihere are sever:,l 2ourses to follow~ (.~) Prove that 

if JE is Euclidian then the conditional probability measure 

does indeed exist. Then we should assume if to be Euclidian. 

(ii) Add the assumption "if P(A!y) exists as a probability 

!:leasure" in the theorems belc.1v. We shall do neither. In-

stead we shall (ii~) ~-~J2...l}~ _§-~_J_or all that we as~ 

ev.s:_ry:vhere below that the condi ti,.Q_;.'lal_J?robabili ty measure 

does exist. --
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II. Testing by Darmois-Koopman families of distributions 
' . =n=-c-- "'""""'~-~. -~~---·--.. -

We shall briefly state and prove a theorem which is 

known as "Neyman-Pearson 1 s lemma1! 

Tt_~~m II~-~· Let f19 f2 ?···~fE,f be m+1 real­

valued functions 9 integrable with respect to a measure µ 

and let C19•••"Cm be real mxmbers. Consider the class 

of test functions 6 which are such that 

r 
i 1 ~ 2 9 ••• ( 1 ) J of. du = c. 0 = m l . 1. 9 

Suppose that 60 E 6 is such that for some k 19 ••• 9 km 9 

m 
60 (x) = 1 if f (x) > I:k.f.(x) 

. 1 l l 
l= 

(2) 

m 
6 (x \ = 0 if f (x) < L: k.f.(x) 

0 J . 1 l l l= 

(3) 

then 
r J I) fdµ J o fdu > 

0 - (4) 

for all 0 E 6 . 

Proof: 

J :i . fd u - Jr 6 fd 11 = Jr ( o - o ) ( f - r, k . f . ) dµ 
() . . 0 l l 

(5) 

and since? by (2) and (3) 9 the integrand on the right hand 

side is > 0 for all x 9 (4) follows 9 Q.E.D. 

It is easily soen that if Ii_ I! is replaced by < in 

!:;,, 

(1) for all i for which k. > O 9 then the conclusion (4) 
l 

still remains true. 
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We assune the reader to be familiar with the use of this 

lemma :inthe case of testing simple (completely specified) 

hypotheses. The case m = 1 is well known from elementary 

texts. Then c .1 = level of significance 9 f 1 = density under 

the null-hypothesis and f = density under the alternative. 

The existence of an optimum 50 is not guarant,Jed by 

the len1ma. It can be shovm to be the case if the space is 

Euclidian, ~t is sigma-finite, and there are (of course) 

certain restrict~ons on c1 ' .• • 'c • m This result will not be 

needed in the se~uel. 



B. Conditio 

Let X be an observed random variable the distribution 

P of which is known to belong to a family SS' The problem is 

to construct a test 

hypothesis 

c~ (X) 

where 

with level £ for testing the null­

~ is a subfamily of ~·.. Hence we 
0 

search for an optimum test 60 among all ~ satisfying 
( ( co 
)c,(x)dP:= 2- for PE .: 0 , and perhaps soml'.O' other side conditions .. 

Conditional testing is said to be performed if a test ~ 

is constructed in the following mannero First a statistic Y(X) 

is chosen and the conditional distributionPtA!y) is considered 

for all PE <J;:• o Hence for each y an a priorii family CJ!Y 
of distributions P(Af y) is generated by varying p 

similarly a family '1{ 0 Y is generated by varying p E: 

Now, for each y a tastfunction J (•iy) of x is 

constructed such that 

if 

If Y(X) = y, the null hypothesis is rejected with probability 
,. 
6lx:y) when X = x is observed@ But this i~ the same as rejecting 

-' 

the hypothesis with probability btx;Ylx)) = 6(x) if X = x. 

Writing J (x) in the form :~) (x;Y(x)) does.not, of coursej 

restrict ~(x), but we have in addition 

So this is really the condition defining conditional testing. 

Of course, we then have for 

( 1 ) 
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Eb(X) = E E(£{x)!Y) < £:: 

so that the test has indeed level 

Sometimes is argued that if is a priori reasonable to 

perform conditional testing given a very specific atistic 

Y(x)., Then a test procedure for testing P( 0 iy)E Cf?0 Y again!it 

P( 0 ly)f.. c:\)Y_<(> Y is constructed. The last oo, timum problem is - v vo ~ 

sometimes much simpler, involving just one parameter, namely the 

one of interesto 

~~~~P!~ 1 x1,x2 are independent and Poisson-distributed 

with EX 1 = .A1 ~ EX2 = A.2 ~ We shall test A- 2 ~ a.A.1 against 

A..2 ) a ) 1 o 

We transform from parameters )\1,-; 

~ :.\1 -::. ::\ ,~ 
II= ::\1+ '; , "'= ,,,. 1+ 2 o Thus we shall test 

to parameters 

7f ?; _L ·= '7/ 
1+a o 

. .-.,.,,, ,, 1 /-
against 11 <. 1 +a = 1/ 0 • We condition with respect to 

X = x1+x2 c Given X = n the distribution of x1 is binomial 

(n, ll') and we have a simple problem of testing the probability 

h~ in a binomial distribution. In the conditional testproblem 
___, 

only the parameter of interest ~ is involved@ The nuisance 

parameter A= ~ 1 +~2 has been eliminated@ Furthermore, in this 

case the variable X with respect to which ~e hav~ condit~om~d 

depends only on the nuisance paramete.r However, this is not a 

genGral property of the conditional test. 

g~§~P1~2.x 1 ,x2 are independent and binomially distri­

buted, respectively tn 1, 711 ) and (n2 , ~). We want to test 

1/1 <:: l~ against ;/.,,1 > li-;. Again by conditioning with respect 

to X = x1+x2 we get a distribution which depends only on r,> Tt2 , 
..-...# •• -......, 

and if 111 = 1/ 2 , this distribution is hypergeometric .. However, 

in this case the distribution of X depends effectively on both 
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1 a 

g~§~E1~ x1, ••• ,xn are independent normal [~, A 
~~ 2 ~.~~ 2 test of the null~hypothesis c...3 - K,5 again / K5 is 

wanteda Since V =}Xp Y = 2Xi 2 is a set of sufficient statistics? 

we will confine ourselves to consider families of distributions 

for (V, Y) e 

We introduce ?:- = §162 and shall thus test t...._ = K against 

?:--> K. In order to obtain a test problem involving just ?- {and 

not C), we consider the conditional model given Y =~Xi 2 ., 

' - - 2 The joint distribution of V = ,x1 and Z = ~{Xi-X) = 
v2 

Y- n is well-knowno Transforming to (V, Y) we obtain for the 

joint density of (V,Y) 

(2) 

where g is the standard Gaussian density and Y 11 _ 1 is the 

chi-square density with n-1 degrees of fr8edom. Now, we know 

that Y/e2 is chi-square distribut2d with n degrees of freedom 

and eccentricity A= n'i}lc? a Hence we can write down the 

density of Y and divide (2) by itQ We then obtain for the 

conditional density of V given Y~ 

where 
co 

o(t) = E 
j=O 

tj (1U+~) 
( 2 j ) ! /I ( ~ + j ) 

We have a test problem involving just one parametar 7::; CO"' has 

disappearede Furthermore it is seen that we have a Darmois-

{3) 

(4) 



Koopman class of distr butions relatively to the sufficient 

8tatistic V = I:X .• 
l 

The test problem is now easily solved by means of 

theorem II. A.1. We find the ~rnlx_most 12owerful cond_:h­

tion_al test amo_pg al~ __ _l_e~J--~~::,,_~est_s_, given by the rejecticm 

region V > c(Y) ~ where c(y) is determined by 

c:o 
r 
J 

c(y) 

( 5) 

This test could be given a different form by introducing 

the Student statistic 

T = X /;_JS 
'V 

( 6) 

h X- V/ d ,Q 2 = ~/( 1) w ere = n an ,._, - LJ n- Since we can write 

T = /;;:1'v_ V ~ 
n . vc:.. 

{ - --- n 

( 7) 

and this is increasing with v 9 it is seen that the region 

rejection could be written T > t(Y) 9 where t(Y) is given 

by replacing ( T 9 V) by (t(YL c (Y)) in ( 7 ) . Thus we have -----
conditional Student testin~ Piven :'.-.Q-~---

of 

Consider now the special case v1i th K = 0 • Then we have 

a Student test situation of testing ~ = 0 against s > 0 . 

Under the null hypothesis T = K = 0 

to 
n r(-) = --· ___ :.2.L_ __ _ 

"1 p_,_) .1';; r ( 11-:'.'_!.) 
\ ~ ,, ' ..I.. -- ... f) 

! c:_ 

the density (3) reduces 

n-3 
2 -2-

_1·(1-2:_) Yi ny 

The conditional density of W = Vj{I' given Y 51 is obtained 

by a simple transformation from V to W , giving, 
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,.., n-3 
We:,~ 

(1-~-) .:::: , n (w 2 fn) 

which is independent of Y • By ( 7) T = fii:?f' ---.:! . 
'l/n , r-v'?21 v1- -n 

Hence 

Student Is T = x rn /S and I:X .2 are independent if E = 0 • 
~~ ......... ~---~1~-=.,,,.·:~ ....... ·-~-=-------

We now have from (5) 9 when ; = 0 

e = Pr(V>C(Y)JY=y) = Pr(V/Y>C(Y)/Y!Y=y) = 

Pr ( V /Y > C ( y ) / y l Y = y) = Pr (IT /Y > C ( y) / y) = Pr ( T > t ( y) ) 

Hence t(y) = t is independent of -~l and we have obtained 

the ordinary Student __ :test. Trivially it is a conditional test 

is independent of I:Xi 2 • What is 9 given 2 l:X. 9 since 
l 

T 

however 9 interesting is that ~~he .. uniform~x_ most :eowerf.1!-._l 

level 8 te~~mon~ all.2.9ndj.tional~~s given rxi:_. 

C. Unbiased and similar tests. 

As in section A we consider a situation where it is a 

priori known that the observation x has a probability distri-

bu ti on p which belongs to a class 
~ 
u of distributions. We 

want to test the null hypothesis that p E lf 9 where !f: c fJ~ 
0 0 

An arbitrary test is exhibited as a function 5(x) giving the 

conditional probability of rejecting the null hypothesis given 

that X = x • The power function of o is 

S(P;5) = Ep6(X) = Ja(x)dP 

and, as in section A~ we shall require that o has level e 9 

i.e. 



( 2) 

In this section we shall also require that ~ is unbiased, 

for ( 3) 

The important implication cf such a requirement is given in the 

following theorem" 

Theorem II.C.1. Suppose that it is possible to define a 

topology in ""¢> ,_,. (Le. a limit concept for P) such that C· tP;;) 

6 '(.) I 
is a continuous function cf p for each 0 Let VO be the 

class of boundary 11 pointsu for ~5.; according to this topology. 
0 

Then any test c( which is unbiased with level S must be similar 
d"":;J I 

on c.:• 
0 

(' with level c> ~ Le. 

- C' - ./ for 

Proof: Suppose that there exists a 

w~ can then find a 

l4) 

such that 

sufficiently close to 

P such that l?; (P;6) < ~~, which violates (3). In tho? same :nanner 

it is seen that (2i(P;(~)>E· for leads to a vi, laticn 

of (2). 

We shall now inv8stigate the consequence cf similarity on 
((~l 
u when this family of distributions is of the regular Darmois­· o 

'<':; I ( . { 
Koopman exponential type~ Le" ~, - ( P\.) .. ~ where 

- 0 l (_ ?·6 w 

t5) 

and (.._) contains C = 0 as an inner pointo 



Theor?m 11.C.2. Consider a regular Darmois-Kcopman 

exponential family of distributions {p<.,_ t ?-E c:' relatively to the 

st at i st i c Y ( x ) ~ w her 1) (-_) h a s l = O as an inner pcint. A 

necessary and sufficient conditicn fer ~ to be similar 

relatively to the family, i.e 

r 
E? q X ) = J 6 ( x ) d P/, - S, l6) 

- ,>._ 
for all ( E ~) 1 is that it is a conditional test given Yi i~eu 

E0 (~(X)lyJ = r;- aoeo 
!_/ t7) 

or equivalently 

E:t([(x)!yJ 
........ 

- . :::::,, aoe • 
( 

{8) 

for all rE Qo 

By theorem I.A.2 we knew that Y is sufficient 

such that is independent of y. Thus (7) and (8) 

are equivalent. FurthermGre 

E b(X) 
C' 

Hence it is seen that a necessary and suffiLient condition for 

:; to be similar with level S, is that 

However~ (7) obviously implies {9)o Vice versa, if 

then it follows from the completeness property of 

(see theorem Io8o3) that (7) must be true, since 

is a function of Yo 

t 9) 
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£:~§:!!!21:~ 0 
The result of a trial can be classified 

according to two factors A and B with levels A1 ,." .. ,A . r 

and B1,•@•,Bs respectively. The results of n such ials 

could then be given in a table as follows~ 

"" I 
A {I B1 B BS 2 

A1 I X11 X12 ... X1s x 1 0 

v 
X2s X2• A2 X21 J\.22 

0 0 

0 0 

I 0 . 
Ar x r1 x r2 x rs t x 

" r• 

x 
0 1 x ·2 x 

0 s n 

Thus x .. 
lJ 

is the number cf times the levels A· 
l 

and B. 
J 

appear together in a trial. We define 

and have 

x. =Lx ... 
1° j lJ, 

> x .. =Lx. 
lJ l 0 i,j i 

x . 
•J 

= Z. X . = n 
j •J 

( 10) 

l 11 ) 

We want to test if A and B are 11 independent 11 factors. We shall 

consider two different meanings of this concept, according a~ we 

use model I and model II below. 

Model I (Independence testing)a 'vve have one mul tinomia 1 

trial sequence of n independent trials. In each trial we have 

and hence 

Pr {A, ) _.. = IP·. = P· ' j lJ l • 

P·. 
lJ 

'!;'.""" 

Pr (BJ. ) = L p. . = 
i lJ 

( 12) 

( 13) 



Thus we have 

(X .. 
J. J 

s ( 14) 

(where s x ~ 
l ij j is a set of natural numbers with I x .. = n). We 

i,j l.J 
want to test if A and B are stochastically independent, i.e. 

if 

P· · = P· • P · 1.J l" OJ 
( 15) 

Obviously the assumption of theorem 1 is ~ulfilled in this case 

and thus unbiasedness leads to similarity under the null-
c-- _a;:-i1 hypothesis (sine·? ~~ - """' 0 ) • In r.rd:::r to see if the assumption 

of theorem 2 is fulfilled~ we write ( 14) when ( 15) is true as 

L s 
L x1 .log Pia + 2:: x .log P.j 

(rs) 0 e i=1 j=1 
OJ 

dP = dP0 

where p and pc are the joint probability distributions of 

all x .. respectively when and 1 
P·. = pi 0 0 P.j P·. = -. lJ lJ l. J rs 

Nc1w, this does not immediately show that we have a regular 

Darmois-Koopman class of distributions, since 

there is a functional relationship between the parameters 

appearing in the exponent~ However, by means of {11) we get 

r-1 Pio s-1 ~ > x1 .log -- + ~ x .log 
[l i;;1 Pr• j=1 •J Pos 

dP - (rs 0 p ) '" dP •ro o5 ·- 0 
( 16) 

which is obviously of the form (5) with the assumption cf theorem 

2 fulfilled. W0 have Y = (x 1.,x2 ., ••• ,xr_ 1.,x. 1,x. 2 , ••• ,x. 5 _ 1 ) 

in this case. Ihus we are led to c0nditional t~stinq oiven all 

marginals in the table above. 
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!'!12~~!~!~ (Homogeni ty testing). \f!e have r multinomial 

trial sequences 9 called A.1 9 ••• ~Ar respectively. In sequence 

A. there are n. == X. trials anc1 in each trial the pro·babili-
J. 1. l.. 

ties of B 1 ~ ••• 9 B8 are qi 1 , ••• ,q18 , respectively; 

All n trials are independent. We find 

J?r[ fl (X .. . . l.J 
1. ~ J 

r n. ! 
= x .. )J = n , l -, 2J . 1 x. 1 •••• ::;c. ,, 

x. 1 x. 
l l.S 

q_i1 • •• qis 
i= 1 is 

when {x .. } 
1J 

is a set of natural numbers 

each i ) • The null hypothesis is to the 

trial sequences are identical; i.e. 

for all j 

From (17) and (18) we get 9 with g_ ~ ~ = lJ 

s-1 q. 
I: x .J. log ~:::..J. 

n J'=1 qs 
dP = (sq ) e dPO s 

with 2: x .. 
j lJ 

effect that 

= 

2:: q .. = ·i • 
j 1J 

( 17) 

n. 
l 

for 

the r 

( 18) 

( 19) 

where p and po are the joint probability distributions of 

all x .. respectively when and 1 
It is qij = q. q .. = - . 

1.J J lJ s 

seen that the assumptions of theorems 1 and 2 are true with 

Y = (X. 1 ~ .•• 9 X. 8 _ 1) • Thus we are again led to conditional 

testing given the marginals. 

We shall find the conditional distributions encountered 

above under models I and II respectively. Under the nullhypo-

thesis 9 we have for the joint distribution of the marginals 9 in 

the case of model IIj 

Pr[ n(X . = x .)] - ~ ,n! ~ , 
. "J "J -"-1••00.A. J • * s 

(20) 

Hence, dividing (17) (with qij = qj) by (20) we get for the 

conditional elementary probability function 
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r n. ! 
n :;;--;--2 £' I 
i=1 ..c~i1···· is• 

= ~------ .. -~ h(x) 
n 

(when [x .. ) 
1J 

is a set of natural numbers with r. x .. = x . 
i lJ *J 

for all j , 'Ex .. = n. for all i ) 7 which is the multi vari-
j J.J l 

able hypergeometric distribution. 

In the case of model I, we first find the conditional 

distribution given the marginals (X1• 3 ••• ~xr.) = (n 1 9••·~nr) 

by dividing (14) by 

n! 
x1 • ! . • . xr. ! 

We then obtain (17)with 

x r• 

i.e. model II is 

obtained by conditioning on x 1 .y ••• ,Xr• • Conditioning again 

with respect to x. 1 ~ ••• 9 X. 8 , we obtain~ as shown above 9 the 

hypergeometric distribution (21). 

r o(x)h(x) = e 
x 

Thus both under model I and 

(22) 

(for each possible set of marginals). The adjustment to leY.,els 

should be made by mean~of t~l~~E£.8_.£!!letric distribution. 

D. Unbiased one-sided tests. Neyman-Pearsons fundamental -----------------------------------------------------
theorem. 

We shall consider hovir to find unbiased tests which are 

power optJ.mal relatively to a certain alternative. The situa-

tion and notations are the same as those described in connec-

tion with theorem II. C.2. 
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'l1heorem II. D. 1. We make the same assumptions as in 

theorem IL B. 2 ., Let be a spec c alternative and 

assume that P is absolutely continuous with respect to the 
CJ I 

distributions under ~ 0 9 such that dP = f(x)dP 0 • Let 

o (x) be 
0 

such that 

6 (x) = 1 if f (x) > c(Y(x)) 
0 

6 (x) = 0 if f (x) < o(Y(x)) 
0 

( 1 ) 

E r6 (X)lyl = e 
o~ o ' ~ 

(2) 

Then 60 is the most powerful test relatively to the alterna­

tive P among all similar tests vd th level t: • If it is un­

biased then it is also most powerful among all unbiased tests. 

Proof~ The last statement follows from the .first and the 

fact that unbiasedness implies similarity (theorem II.C.1). 

Since similarity implies conditional testing (theorem II.C.2) 

we know that if 6 is similar 9 then 

E ro(X)!Y]::; € 
0 - . 

Consider now the power of .~ 
v under P • 

It follows that we can mnximize 

(3) 

(4) 

( 5) 

with respect to 6 under the side condition (3). By Neyman­

Pearson1s lemma we are then led to (1) as a sufficient condition 

for optimality. More precisely it follows (as in the proof of 

Neyman-Pearson's lemma) from (2) 9 (3) and (4) that 



- 35 ~ 

Epa0 (X)-Ep~(X) = E 0 [(J;0 (X)-~tX)) (f(X)-ctY(X)) )] (6) 

From (1) it now follows that the 11 integrand 11 on the right ha 

side is > o. Hence Ep~o (X) ) E t 1X). / Fo1. ' 

~r-~ I hle componeni:s ~?E~!I1I?1~_1 • 

independent. All X, are normal 
J 

of X = (X 1 ,., •• ,x11 ,Z) are 

2 
( 0~ 15) and ZI() is ecc2ntric 

chi-square distributed with m degrees of freedom and eccen­

tricity A • ~\and O are the unknown parameters. We want to 

test th.:: nullhypothesi s A= O. 

A priori the joint density of x1 , ••• ,xn,z can be 

written 

' 1 2 _.!1 .:'.:... ----;-; 2 x . ' 
, 2 ,,..~) 2 ~--n-2 2 e 2rrL. iv· 1 z;,2-)q i/lz 1..-::-2) 
t 11 u e 1rn1. u m' tt (7) 

where y 
m is the central chi-square density with m desrees of 

freedom and 

Wr? let P0 be the probability distribution wh0n i:"f = 1, )\= O. 

We then get for the distributi~n p cf under an arbitrary 

alternative 

dP 

• - /~ 

2 ___ -m-n = e C) 

( 1 1 ) 1 \ 2 ) --- -,... 11X. +z 
2 2 6,: - l ,... (A z I _2 ) ,..i p· 

e ~m '6 ~ o (8) 

Thus, if ) = 0 we have a Darmois-Koopman family of distri-

butions with It is easily found in the general case 

that the powerfunction of a test must be a continuous function 

of .A. Let us now maximize the power relatively to t,,1,o) with 

From ftx) >c(Y(x)) with given by (8) 



we get 

Since qm is increasing~ this inequality could be written 

(9) 

We choose '~ = 1 
0 

if and only if (9) is true, and 

otherwiseo The function K{y) must be adjusted such that the 
(". conditional level is 0 ~ Leo such that (2) is true@ We then 

need the conditional distribution of z given Y = Ix. 2+z when 
i 

',\ = O~ 6= 1. Frcm the fact that Z and U = ~X. 2 have joint 
J 

density Y (z) •'( (u) ~ we find the conditional density of Z m n 
giv2n Y equal to 

!.12 - 1 
1 .1(~)2 

(m n y y B -,-) 2 2 

( 0 '.'.S. y ,(_ z) ( 10) 

Thus it is seen that the conditional density of W = z/y given 

Y is~ 

and " 1 

f1 . 

2 - 1 
(1-w) tn~w5.1J l 11 ) 

are independent. From (2) we now get 

P (Z > K (Y) i Y = Y) 
G 

P '~ ,8.Yl:v = y) = - 0 \y ,/ y ! J. 

v I"\ = p (W '· ~) 0 ..-- y 

Thus K(y)/y - c wher2 
1 
\ (3 ( w) dw ::; ~) o ·' , m, n c 

( 12) 

We reject the 



hyp~thesis if Z 

( '! 3) 

is the 1-:~ fractile of the Fisher distribution ,_, where fm,n 

with m and n degrees of freedom. The test is independent of 

th·~ al terna ti ve from which we started o Hence Ep6 0 lX) 2: Ep~(X) 

for any and for any ~(X) which is unbiased with level 

Letting in particular we get 

Thus is unbiased and it is the uniformly most powerful 

§ffiCnq all unbiased testso 

Remark: Under an arbitrary (~,6), denote the distribution of 

F by (It is independ:-nt of cs.) Thus the power of 

~o is 

where 

Consider now a test 

[1 ~ 

m 

with r~j ection region 

n~ 

z/ Z x. 2 > f ~ 
i=1 i m~n 

wherr~ n~ < n. The power [4) 9 of this test is less than (J , 

according to what we haV'3 just provedo From this we get the 

fellowing inequality for the eccentric Fisher distribution 

( 14) 

if n' < n. This is a useful inequality when discussing designs 
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of experiments 

We shall now consider Darmois-Koopman alternatives and 

obtain the very famous result by Neyman and Pearson (1933). 

Theorem II. D.2. Nex_rgan-Pe~~.f}Uldamental theorem 

Let it be a priori known that X has a distribution 

given by 
s 

dP T 9 P 

r: 'f .Y. (x)+pV(x) 
. -1 J J 

= A(T,p)eJ- dP 
0 

(15) 

where T varies in w and p varies in an interval [A,B] 

where A < 0 and B > 0 Assume that T = O is an inner 

point of w • For testing the null-hypothesis p .:::; 0 , there 

is a uniformly most powerful unbiased level e test 

o (X) = 1l; (V(X) 9 Y(X)) 0 where 
0 ' 

*(v9y) = 1 if v > c(y) 

wCv~y) = y(y) if v = c(y) (16) 

1jr(v,y) = 0 if v < c(y) 

and where c(y) and y(y) are given by E0 [w(V 9 Y)jY] = e • 

Hence 

1-F(c(y)!y)+y(y)[F(c(y)!y)-F(c(y)-OJy)] = 8 (17) 

where F(v!y) = P (V <: v!Y = y) • 0 -~ . 

The test is also uniformly least powerful relatively to 

values of p < O among all unbiased level e tests 9 i.e. the 

chance of false rejection is less than for any other unbiased 

test. 

Prnof ~ Consider first testing p = O, T E w against a 

particular alternative (p 1 ~r 1 ) , where o1 > 0 and r 1 E w o 

By applying (1) we then get the rejection region 
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= C 1 (Y(X)) 9 

which is equivalent to V > c(Y(X)) • Hence we obtain from 

theorem 1 9 equations ( 16) and ( 17). CL1he existence of such a 

test 60 9 i.e. of a c(y) and a y(y) ~ is easily seen from 

equation (17). Since the test 60 is independent of (p 1 ,T 1 ) 

it is the uniformly most powerful test among all similar tests. 

Hence E ,,.o (X) > E 6 (X) for all tests for which E 6(X) = c;. 
p,, o - P~'f 0 9 T 

In particular if 6(X) is the trivial test 6(X) s e , then 

(since it is similar) Ep.~oo(X) > E 8 = € • 
, I Q 9 'f 

Thus 5 
0 

is 

unbiased. Since furthermore any unbiased 5 is similar 9 we 

have proved that o 0 is the tmiformly most powerful unbiased 

test for the hypothesis o = 0 . 

Consider now minimizing E 5 (X) 
[J ~ T 

for p < 0 subject 

to similarity 9 i.e. E r<S(X) = e • This is the same as maxi-
09 

mizing E (1-&(X)) with respect to 1-o subject to 
p ~ f 

E (1-o(X)) = 1-e . By means of theorem 1~ we obtain in the 
011'1" 

same manner as above that 1-6 = 1 9 i.e. 
0 ov 

e > C1 (Y) ~ i.e. V < c(Y) 9 etc. 9 where 

6 = 0 9 if 
0 

E (1-.5 !Y) = 1-€ G 

0 0' , 

i.e. E rt> I Yl = o- 0. J 

e • Hence we have precisely the same 60 as 

p < 0 above. This o 
0 

is the uniformly least powerful for 

among all similar tests. Hence comparing again 50 with the 

trivial test o = e ~ we get E 0 (X) < e for p < 0 • Thus 
p9'T 0 --

60 really has level e: relatively to the null-hypothesis p < 0. 

(The measurability of c(y) and y(y) as defined by (17) 

needs proof. We leave out this annoying detail, since it is 

obvious in each particular application.) 

~~~~E!~_g. Consider the example of II.C with model I and 

r = s = 2 • Thus we have a multinomial trial sequence with 
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two factors~ A a with two levels, A, and 

B.. s* t · l N respec ive,y~ e definition the relevant probabili-

es and observed result of 

in the following tables 

B B* 

A p 11 p 12 

A*- p 21 p 22 

n 

A 

..... • 1 
L.ria~s 

B 

v 

A* w 

L 

s* 
M-V M 

N-VJ N 

n-L n 

Thus L = V+W, M+N = n. The joint elementary probability 

function of v, M-V 1 w, N-W is 

We shall test independence, ioe. the null hypothesis 

which is equivalent to 

against the one sided alternative that there is 11 positive 11 

dependence hetween A and B, 

P11 > (p11+p12){p11+p21) 

i®e. in the long 

nf! 1">.. and B occur together more often than would be the 

case if they were indepeodentc (20) is equivalent to 

Now, denote the measur2 corresponding to (18) by P, and the 
1 measure corresponding tc p11 = p12 = P21 = p22 ~ ~ by P0 ° 

(18) 

{ 19) 

l 19)' 

l20) 



Then (18) c3n be written 

( 21 ) 

where 

( 22) 

Thus~ we shall test . 0 -., 0 <?= 0 against .J / , 
_, and according to 

theorem 1 we shall condition with respect to (M,L). We ars 

led to rejecting when 

V = (number of A ri B) > c 

and rejection with probability ""(....- if V - c, where 

M 

and 

f ( v) = 

f(v)+'\flc) 

(M \ 1 n-M) 
v J 'L-v 

( n) 
L 

(23) 

t24) 

(25) 

The test is the uniformly most powerful unbiased test. This is 

also true about the same test in the case of homcgenity testing, 

where there are two bincmial trial seqLlenc~s with M and N 

trials~ respectivaly. 

v ,, x 
1'~1'f ... 2~0"Q' \n are ind~pendent normal 

'Nr~ shall test 

(26) 

against (See the example of section i.) We hava 



(27) 

vvhere crrrespands to a general corresponds 

to { ,1 \ \ 1 \ r.,." ,. i = l K ~ 1 ; , ?· = 2 ·1 
-2, = ~ - Ko ~~nee we shall test 
2 ... -.. :o 

,r, 
·~·· 

against q > o. 
-~l 

\Ve are led to ccnditional testing 

given Y =Ix12 and we obtain the test dev9lopped in the 

example in section A. Thus the conditional Student test 

given >x. 2 
"-- l is the uniformly most powerful unbiased test. In 

particular tnis is the case when K = o, in which case we get 

the ordinary Student test, since 

pendent when ~ = O. 

We shall test against 

- -- ' 2 
f'- 2 .x. +f'fx. 

T and are inde-

6 >.~. We find 

dP = AP l J -- l d p 
0 

(28) 

where P is the measure corresponding to an arbitrary (5jo) 

and P 0 ccrre spond s to ( 5, o) = (0 ~ 6 0 ). Furthermore 

1 1 !:'1 ' 2 -- r - -;, · By theorem 2 we shall reject if 
2 6 2 - 2 (12 ' '· - 6 0 

S= 
0 

and only if 

Ix. 2 > c(\x.) l · L l (29) 

where cly) should be determined such that the conditional 

~robability of (29) giv~n Ix. = y is 2) o Subtracting 
1 

~ t.fx1 ) 2 on both sicies of (29) we obtain 

Now~ since >-(x,-x) 2 and ~ independent conclude .c:..-X· are we 
.L l 

that c1 does net depend r.'n \ and that adjust ti' x. we can 
- 1 c1 



to a11 u;;c :ndi tional level ~ ~ henc~ 
2 

c1 = z<:r t 
~ 

where z 

the 1-~ fractile of the chi-square distribution with n-1 

degre2s of freedom. Hence the test with rejection region 

is 

(30) 

is the uniformly most powerful unbiased testo 

Wa have seen in several examples that it was possible 

to change a conditional test into an unconditional one by 

transforming the variable V into a new variable which is 

independent of Y. The advantage of this was obviouse We shall 

now state and prove a theorem which is useful when trying to 

find such transformations and which explains why such trans-

formations often existc 

Theorem rr.D.3(Basu)o (p) 
'L ~ be a class of 

probability meas0res and let Y be a sufficient and complete 

t t . t . l t . l t ~ ( 0 (]7"', y- 1 ( py- 1 ,) . l t s a~lS~lC re a ive y o o; i.e., ·v- = i i is a comp e· e 
' ) 

class of measures). Suppose that the distribution of W is 

the same for all Pc: ·~if. Then Y and VJ are stochastically 

independent for all PE[;~. 

Prcof: Let f (W) be an arbitrary function for which 

exists for all We then have for all P and 

D • :(<> 
L 0 in 'W O 

cf= E f(W) =EE lf(W)!Yl P PPt.... _.i--

sine~ Y is sufficient. H•wev~r, cf is independent of P 

since the distribution of ''1 v. is independent of 
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E p \E p 0 ~ l ii) / ~ ~cf\ = 0 

it then follows that 

aoe. In particular, we then get if f is the indicator 

function cf a set D in tha W-space, 

= P0 W- 1 (D\YJ = Pr(WE DjY) 
CID 

But this proves the theorem, since c1 does not depend on Yo 
D 

Consider the class of distributions for 

by varying and keeping () fixed. In that case 

obtained 
~xi 

X = - is n 

seen to be complete and sufficiento But - 2 
~(Xj-X) has a 

distribution which is independent since we can write 

[(X.-X) 2 = [(Y.-?) 2 , where 
J J 

is normal (0,6). Hence 
. - 2 

X1 I(Xj-X) are independento 
A Suppose new that ~ = 0 and consider the class obtained 

by varying c·. In that case 

On the other hand 

where y. = 
l 

- .---'I ·r x y n = -s- = 

is nr.rmal 

T is independent of 6 and it follows that T and 'x 2 / . 
- 1 

are 

independent if ~ = Oo 

2 Let z115 and he independent and chi-square 

distributed with n1 and n2 degrees of freedomo Consider the 

class of distributions of obtained by varying It 

is seen that z1+z2 is complete and sufficient, where aa 
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z1 n2 
F - - - has a distribution which is independent of tJ - z2 n 1 

fien_s:e lli~is~ic and ~1~2~g~ sum_~ 

d d . t . F n 1 . d d ' an enorp.~ or in n 2 .2....,_are _=!::P.,..!!J?~n _e~. 

The independence of a regression coefficient and the resi~ 

dual sum square can also be proved by means of Basu 1 s theorem. 

Furthermore in the binormal case 9 the empirical correlation 

coefficient is independent of the means and empirical variances 

of the two variables if the theoretical correlation coefficient 

is 0 • 

The way of' applying Basu 1 s theorem to situations d.escribed 

in theorem 2, is as follows 

Suppose that we obtain a rejection region of the form 

V > c(Y) (non-randomized). Then one should try to find a 

Vl = T(V ~ Y) which~ UJ for each Y is an increasing function 

of V 9 (ii) has a distribution independent of T when cp = 0 • 

In that case the uniformly most powerful unbiased test talces 

the form W _:: c 1 where c 1 is such that P (W > c 1 ) = e • 
0 -

(~) §~~~~~~~~-2f_~~~-E~~~~~-~2-E~_EE~Y~~· We shall apply 

theorem II.D.2 to show that in linear normal situations the 

tests. 

Assume that the observations X19 X21 ••• ~Xn are independent 

normal with variance a2 and 

s. = EX. = 
l l. 

where 

p 
I: a .. [3. 

j=1 lJ J 
( 1) 



p 
r s.c.k = o 

j= 1 J J 

and we want to test 

p 
~ ~.c. < 0 

j=1 J J 
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against 
p 
E (3.c. > 0 

j="l J J 

(2) 

(3) 

We livri te also c. = c 
J jr+1 and assume that a = [ aij} and 

(c. ·1J. 
J J=1 9 29H• p; l= 1 ~ 2 j ••• r+1 

are of full rank. (J 
7 Si 71 ·.SP 

are the unknovvi1 parameters. a .. 
l J ~ c ·1 J c 

are known$ 

We shall include the case when there are no relations (2) 

(r=O)G Note that we have included the situation where 

Ea .. s. = 0 ; 
j lJ J 

i = 1 9 2~··· p; and we want to test 

We then only set a = I , i.e. I;X. - F - Q l ~ -.,i - 1-'i • 

z::a.s. < o. 
l J 

Typical situations are such as the two sample Student 

hypothesis, the testing that a main treatments effect a1 < 0 9 etc. 

The ~tandarcl test applied in such situations could conve-,, /\ 
niently be described as follows. We find s1 , .•• ,~p by mini-

mizing 

r: ( X. - t a .. f3 . ) 2 + 2 ~ :..1( . t. ~ . c .1,_ 
i ]. j = 1 l J J k= 1 -J = 1 J J 

(4) 

vr.r. t. s1 9 ••• , Sp 9 A. 1 ~ ••• ~ \.r . The estimator S of a is 

now given by 

8 2 1 p /\ 2 
= -- I: ( X . - I: a . . J . ) • 

n-p+r :t j=1 lJ' J 
( 5) 

are known to be linear functions of x1 9 ••• ~Xn 9 hence 

defining 

in stating 

K. • 
J 

The Stuclen t ti::-s t 17ith level 

L:s.c. > O if and only if 
J J 

pr\ /2 ·1 

Z: 8. c . / /c. K. S > t 
j=1' J J \ J J 

( 6) 

now consists 

(7) 
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where t is the 1-€ fractile of the Student distribution 

with p - p + r degrees of freedom. We shall show that this 

test has the stated optimum property. 

k = r+2~·3·~P be such that (c1k9•••,c,) p.& 

k = 1,2 9 ••• p are linearly independent. Define 

p 
sk = E p. c .1 k = 1,29•••,P 

j=1 J JC 
(8) 

Thus sk = 0 k = 1 9 2~ ••• 9 r and we shall test 

;3r+ 1 < O against (9) 

Vle write (1) and (8) 9 s =EX= a$ and f3 = c'S 9 respectively~ 

and get 
1N p s =EX= a(c 1 )- S = ~ g.p. 

j=r+1 J J 

where we have introduced 

could be written 
/\ ,,.., 

Sr+ 1 / AS > t 
/\ 
~ 

We now see that (7) 

v:.'her~ Pr+1 is the least square estimator of Sr+1 
,._, 2 2 

and 

var Sr+! = A rr • 

Changing the notations and changing the meaning of 13j 

write the above 

s = EX = g8 ·-

where we shall test 

q_ 
r_: g.G. 

j =1 J J 

against 

( 10) 

( 11 ) 

we 

and where q = p-r 9 g 1 ?···~gq are n-dimensional vectors and 

X is an n-dimensional vector with components X 1 ,~ •• ~Xn $ 

The test criterion (7) may now be written 
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/\ 
T = 01 I AS > t (12) 

/\ 
where s1 is the least square estimator of s1 ~ 

var ~1 = A 2a2 

and t is the 1-e fractile of the Student distribution with 

n-q degrees of freedom. It is well knovm that A2 is the 

leading element in the matrix (g 1 g)-1 • 

Reduction of the situation to canonical form. 

Let now 

Q and a 

H denote the 11 boundary;i hypothesis 

QH be respectively the minimum of 

s1 = 0 and let 

Q = 2: ( X . - s . )2 a 
J J 

priori and under H • We then lmow (see Erling Sverdrup~ "Laws 

and chance variations 11 vol, II; p.211-215 eq. 7.23 and 7~27 

11 Lov og tilfeldighet 11 bind II p.191-195~ lign (23) og (27)) 

that 2 /\ 

A2 QH - Qa = 'p' 1 I ( 14) 

Qa 
2 n r A 2 

( 1 5) = (n-q)S = l.:(X.- 'Eg .. S.) 
j = 1 J j=1 l.J J 

T2 = (n-q) ( QH- Qa) I Qa (16) 

Let now c be such that c 1 g 1 gc = I and introduce 

y = c-1~ gc = b Then y has least square estimator 
/\ -1 :\ 

We get y = c 0. 
-1 

q 
EX = J = gS = be i3 = by = L:: b.y. (17) 

j=1 J J 

b 1 b = I i.e. ~ b . 1 b. = \~ .. ( 18) 
J J lJ 

where the definition of b. 
J 

is obviouso From f3 = cy it is 

seen that the hypothesis (11) can now be written 
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( 19) 

We now define bq+11 ••• 1 bn such that B = (b 1 , •.. ,bn) is 

orthogonal and we introduce Y by 

l'.l 

X = BY = E b.Y. 
. 1 1. 1. 1.=, 

(20) 

We find trom (20) and (17) that 

EY = B EX 

f ;1 
= Yq 

u 
i.e. 

EY . = y . ; i = 'I ~ 2 9 • • • q ; EY1. = 0 ; i = q + 1 9 • •• ,n ( 2 1 ) 
]_ 1. 

Finally we transform from Y to Z orthogonally by means of 

where 

q z. = 
1. . I:1 e .. y. 

J= 1.J J 

Z. = Y. 
l l 

(and of course is orthogonal) We 

introduce EZ. = r. 
1. "'l 

and obtain the follov.ring canonical form 

of our situation 

2 are independent normal? var z1 = a , EZ = c 1 ~ 

EZ. = 0 ; 
l 

i = q+1 9 ••• n • To test that 
-·------
c1 ~ 0 against c1 > 0 • 

(iv) Construction of the optimum test. 
-----~-~~-~~-------~-~--------~~ 

Relatively to 

z 1 ~.*~'Zn , let now P denote the probability measure a ~riori 

and p 0 the probability measure when cr = 1 9 c1 =•• 6 = Cq = 0 • 



We then have 

dp [ /J ·1 ) :!; z 2 q ' j J = ex p , 2 ~ ~2 L; . + Z: Z . d P 
· 2a j=1 J j=1 -;2 J o 

(22) 

From the fundamental Neyman-Pearson theorem (II.D.2) we see 

that the uniformly most powerful unbiased test of , 1 ~ O con­

sists in rejecting whenever z1 > c(Y) 9 vvhere 

(23) 

and where 

n 2 
y = ( 2-: Z. ~ z2 9 * .. Zn) 

j::: 1 J ':)_ 

This Y is in a one-to-one correspond~.::nce with 

2 n 2 
Y' = (Z 1 + 2::: Z. , Z290 .qZn) 

q_+1 J '1 

Hence Y may be replaced by Y' in (23). Now it is seen that 

is independent of 

n 2 2 
Y = z1 + l: Z. = 

0 j=q+1 J 

and 

z 2 + u 1 (24) 

Hence the conditioning in (23) could be made with respect to 

Y0 and c(Y) would depend on yi only through Y0 • Thus Y 

may be replaced by Y0 in ( 23). VTe intJDoduce W = z 1/ Fa and 

the test amounts to reJ·ection 1vhenever VT > K(Y ) = c(Y ) 1.1? 
0 0 I 'V 0 

where K(Y0 ) is given by 

P (W > K(Y_)iY) - s 
0 u ' 0 

(25) 

Let us now consider the situation for any specification 

consistent with H • Then VT has a distribution which is inde-

pendent of all the parameters , 2 , ••• ?,q?cr 1 where as 

(Y09 Z 2 ?···~Zq) is a sufficient and complete set of statistics. 
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By Basu 1 s theorem (II.D.3) we then know that W and (Y09 Z2, •• ,,,Zq) 

are independent hence W and Y 
0 

are· independent. It follows 

that K(Y0 ) = K 

P (W > K) = e • 
0 

independent of 

Introducing 

this is equivalent to p (T > 
0 0 

is determined by 

(26) 

t) - e • Hence we shall reject 

when T > 
0 

t where t is the 1-e fractile of the Student 

distribution with n-q degrees of .freedom. 

This completes the cons-tri:wtion of the optimum test. 

standard test. The standard test was described in (i)? eq. (7) 

and was proved to be equivalent to (12) in (iii). Thus we haYe 

to show that our optimum test is equivalent to (12) 9 where T 

is also given by (16). 

Now we have from the canonical form in (iii)j 

n 2 
Q = l: z. = u 

a q+ 1 J 
(27) 

Comparing with (14) and (15) we obtain 

(28) 

/\ 
and z 1 = ± s 1 I A Now '1 < 0 is -
equivalent to s1 < 0 9 henco we must have + sign? i.e. 

(29) 
,\ 

Z1 = 8, I A 

Introducing (28) and (29) i:n (26)~ we see that (26) is equiva­

lent to (12). 
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F. Performance unbiased three-decision tests. 

We have above only considered situations where there is 

a choice between two decisions~ either rejecting the null 

hypothesis or saying nothing. We shall below consider an 

important type of three-decision problems. However, first we 

shall make some remarks about a general type of decision 

situations. 

We shall consider a situation where it is a priori knovm 

that the observed random variable X has a distribution 



P which is contain0?d in a class 0§ of distributions. The 

purpose of the investigation is defined by means of a decision 

space D, where the points d in D are the possible results 

of the investigation~ Very cften the decisions d could be 

identified with a statement 

case in classical test problems where 

:;{:} -
C)d c 

7~ 
-00 

<:0 • w_ This is the 

when d 

11 reject 11 , where as if d = "do ncit .reject 11 • Note that 

the di ff er:::nt may be overlapping and one b'd may even be 

a subset of anoth~r. 

In order to define a randomized statistical procedure, 

we introdl.lce a sigmafield C/t0 in Dj which contains all one­

point sets [dj. An arbitrary randomized procedure tj;'(DIX) 

gives the conditionci.l probability of choosing a d ,c 
'- D given 

x~ for all 
- . ,1 

(Of D '- . 4l course, c. D" (/.J 
' 

is measurable as a function 

of x for each D, and a measure as a function of D for 

each Xo) The unconditional probability of chcosing a d in 

D is now 

(t ( i5; P, Y,1) = -~ If{ B I x ) d P ( 1 ) 

This is the 12erformance f unctiono The effort of a statistician 

should he aimed at finding a Ip which makes (2. "nice 11 c 

When we are choosing a decision function ~' we must 

consider the possible i::rreneous int2rpret~!i9.£l§.o These may be 

of two kinds. For any (P,d), the decision d may, if it is 

erroneous, either be considered to he a false statement (error 

of type I) or an error by default (error of type II, 11 unnlatel­

sessynd11 )a Thus error of type II implies failing to discover 

an interesting feature of Po 

We make a false statement if we state when 

does not cover Po Let Df [P) be the class of all d ED 

which are false relative to Pe The level of a procedure is 



E if 

t2) 

for all P$ In order to defina performance unbiasedness we 

would have to exclude d = 11 no statement" (if there is such a 
0 

d in D),. A procedure is .e&rformance unbiased, if 

(3) 

for all Pa This requirement gives a minimal safeguard against 

errors by defaulto One might try to exclude some other d 

sides d 0 in (3)@ In particular one might consider "strictest 

statements" under Po d is a strict<?st statement under P if 

P t:~ 'b~d and there is no d1 such that 

Under appropriate ccmpactness properties about D thi~ would 

be a statistically meaningful ccncepto Let D5 (P) be the class 

of strictest statements corresponding to Po It is clear that 

P(D 5 tP)J4.Ji) should be large, but it would in most cases be 

' asking too much to require that it should be ,>' ,·, 
- (.,e (Se~ 7 

however, the three-decision problems treated belowDJ 

An example of a procedure satisfying (2) is Scheff§'s 

multiole comparison procedu~o 

Let us now consider a situation where we are inter8sted 

in a parameter J = 1? (P) o We have a choice between the three 

decisions, 

d 1 - state that f ..:. O; d2 = state that _f > O; 

d 3 ~ make no inferenc~. 

We define in this case the statistical method ~ by p1 (x) = 
the cnnditional probability of cheesing givGn X; 

i = 1,2,3 .. Thus 



3 
y 

i:;-1 

-5 

(X) - 'l 

The performanca function of 

Pr(choosing 

(4) 

is riow 

(5) 

considered as a function of i = 1, 2, 3 and P c 'i§J for given 

In this CdSe it is natural to require, 

Uotimum requirement 8a 

(l._)o The lev8l shculd be ;~ ~ Le .. the probabilities of 

f als2ly statin~; ,J . .::=:. 0 and 3 2: 0 should be at most E e 

Ep~ (X) < c;-, for 
- l./ 

r:: 1./), IX ) "' r- for '-'Pi 2 \ - (./ 

('(P) > O _, (6) 
O (P) < 0 

....; 

(ii)o The probabilities of correct statements should 

be at least .So 
E {f,1 lX) > ,--·~. 

for C? (P) <.. 0 C./ p 1 (7) 
Ep'f--2 lX) ,>. ,-, for ("' t p \ > 0 '(:,, :< J 

This is the r:~quirem,9nt of performance unbiasednesso 

{iii)o Among all (/) satisfying (4)ll (6) and (7) we 

want to find one If' which maximizes Ep lJ1 (X) fer )' (P) < 0 

and maximizes Eptp2 lX) for f\P) > Oo 

It is seen that if we disregard (4) we have really two 

separate problems of finding uniformly most powerful unbiased 

tr:;;osts y.;1 and y 2 respectivr:?ly. If w·c; solv::> these problems 

and (hopefully) obtain ri+ ~ -::=: 1 f~,;r all x, then we may set 

1tJ3 == 1- )t,j-Y'?_, and we have obtained a procedure which uniformly 

maximizes the performance among all performance unbiased level 

£, procedures" 



we are r~ally int~r~st8d in when we want to t~st if is 

11 signi f.icantl y 11 clif L-~rent from 0 o 

Another well-known (classical) int2rprstation is the 

follcwing. We want to d2cide if S :f 0 or net@ Let the test 

J he defined by ~ {X) = the conditional probability of stating 

that J 4 0 given x. Then we want, 

ti). Ep &tx) < £::, for g (P) = o 

(ii)o Epb{X) ~ 8 for _f(P)"¥ 0 

(iii) o We want to maximize Epd(X) for S (P) f 0 

subject to (i) and (ii). 

!\ method 6 could be compared with a method Y-1 since 

\01 +~2 is the conditional probability of rejecting j= 0 

under VJ. Thusj any three-decision method ljJ is also a test of 

significance with test function 6 = ¥>1 + ~ o On the other hand, 

any 6 combined with some "go rd 11 point estimator j would give 

raise to a thrae-deci sion function lp; since it is 11 understood 11 

that~ provided J is significantly different from o, then we 
-. A 

should state that J <o if!:/< 0 and that J' > 0 if J > o. 

Tnus Y-; tx) ::: ~(X)~§ <.Qj )U2(XJ = btx)I§> o~ where Ar;< 0 

and I§> 0 are indicator functions for the sets ( f "' 0) 

;:i.nd i.J"" > 0) 9 respectively. (We assume here, for the sake of 
,, ... 

convenience, that Pr(J>= O) = O), 

Under optimum requirement B we are interested in 

making 

E P ~ l x ) = E P .£i t x Ho' ..-- 0 + E P s { x ) r A ...) ..... s-';;;.o (8) 

large .. I-Jr:wever, for f' ( P) ..::. 0 it is only the _fir st term we 

want larga, and for _j'(P) > o, it is only the second term which 
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we want larqe. Thus, it seems, 

g~~~P!~_ja X1'"""'Xn 

We want to decide if _5 < 0 ~ 

a L in ::10 st c1rcu;-risL1nces 

are independent ncrmal , a)o 

> 0 or if no statement should 

be m3de. Regarding this as two separate test~ngs 1 applied 

simultaneously, we obtain from example 3 of section II.C that 

we shot1ld stat:? or make no statement, according 

JS 

wile re 

2 - ::- 2 (n-1)S = \(x.~x) ~ L J -

and t 1_(t: is the 1-~ fractile in the Student distribution 

with n-1 degrees of freedoma This method has the uniformly 

larqest performance among all performance unbiased methods 

1Jith level £; o Rejecting 2 =O if lxJ > t 1 _ 85;~7 is the 

uniformly mcst powerful unbiased level 28test, as we shall 

see later@ Since X is the "natural 11 estimate of S , we are 

led to the same method whether we use optimum requirement A 

er B aboveo 

Howeverj the following example shows that this is not 

always the case~ 

We want to decide if <J -<:er , C- /'er r:r no statement should be 
0 0 

madeo We obtain as in example 1, by using the result of 

example 4 in section IIoC, that we should state that o- < (} 
0 

or 

a >er according as (n-1 )S2 < d' 2 or > d'"2 where z C; 0 z 1 ,,..,, ' 0 -t,, 0 

z«. is the G(,.=f ractile of the chi-square distribution with 



11-1 c{eg.re es of f r•:-edom~ utherwi se '.P.Je should st :1 te nothing q 

:'e11cr: ·".'?J h1ve J·"?,2.n chtained a performance o.c:.-timum t.:?st~ 

Hrwever, as we sbill see below, the J~bi3sed power cptimum 
.. 2 2 

t2st would consist in rejecting '7":;;;: e.'t.· if {n-~·1 )S .::::.. z" <{ 
where z v and z" are d c}rmined by 

Z f '( ( Z f ) =.:: Z 11 -( ( Z II ) ~ 
11-1 n-1' 

anc ~ .. ~He respectively the cumulative probability function 

and the prohahility density of the chi-square distribution with 

' ~ degrees of freedom, Now, combining this with the fact that 

52 is an unbiased estimate of we are led to stating 

or according as 2 (n-1 )S < 2 z 9 (] 
0 

This last method is based on the requirement that 

Pr(stating ·S <:. <Y0 )+Prtstating 

expression should be maximized 

eJ > 6. ) ~ 2~, and that this 
0 -- ._.. 

for 6 ~o o However, as we 
0 

have pointed out above in a general context, if it is 

only the first term we want to maximize~ and if it is 

only the last term we want to maximize. 

G,., Unbiased two-sided testso 

We shall consider the same family of distributions 

as in section IIoC, but we are now interested in testing } = 0 

against two-sided alternatives 5-/- O. 

Theorem II.Eo1o Let it be a priori known that X has 

a distribution 

{ 1 } 



wher:- w and belcn9s to an interval cc~taining 0 as 

= O is an inner point cf 

?or 'testing the nullhypothesis against S-:/= o, 

tlie uniformly 1Tl':st powerful unbiased lev":)l S t:,~st is 

~ 0 { X ) :-= If' ( V ( X ) ~ Y ( X ) ) ~ w Iv:: r :=? 

~(v, y) = 1 if v < c 1 ( y) c.r > c2(yJ, 

!l'lv,y) = y. (y) if v = ci(y); i = ·1 '2; l 
(2) 

!pl v, y) - 0 if c 1 \ y) ~v <c2(yJ, 

E0 [60 (X) Jyj = [, . 

Ec{_V(X)(\ (X)/{j =f: EI V(X)I ~' 
( 3) 

ioe~ such that 

F(c 1 :...o)+1-F(c 2 )+l1 [F(c 1 )-F(c 1 -oD+Y2 ~(c2 )-F(c2-o)} = 8, 
c 1-0 ti;,) 

_ _f vdF(v) + j 0vdF(v)+¥;c 1 [F(c 1 )-F(c 1 -o~ +1;c 2 [F(cfFtc2-o)1 = 
"" c + - ~I 

2 
+ (.\0 

S \ vdF(v) (4) 

Here F(v) and = i.(y). 
l 

Proof~ It can, in fact, be proved that we can always 

determine c1 {y)~ Yi ly) from (4)~ Thus, there is always a 

uniformly most powerful test ~ • We shall content ourselves 
0 

with proving that if a <:5 0 can be found satisfying {4), then 

it is the uniformly most powerful unbiased level ~ test. We 

first prove that any J which is unbiased with level 8 must 

satisfy (3)c However, 



lows immediately 

second equation (3) 1 let us consider the power lX) 
, 

cf b .. It is an analytic function of J 
Hence it has coni:inucus derivat es .. Since (3 shall attain 

e..·~ 
the minimum value £: for J:.;; o~ we have J} J J =O = 0§ Further-

mere:\! the derivativa can be found by derivation under the 

integral sign in the integral expression for ~ a We get 
J 

~f:;~,o ~ A1 lC)Eo(b(X)e 
(X) kZ":Y.(X) 

) +A ( 'lJ E 0 ( 0 ( X ) V ( X ) e J J ) ~ ( 6 ) 
,, 

where A(?') = A (C', 0), A1 {?') =gt I q = 0 @ In particular for 
>t"· Y.(x) _: .. 

~' ( x ) : 1 , since E 0 e ,_ J J = A ( ~") - 1 , we get 

~7) 

Introducing this expression for P..1 in t6J, we find 

~)I),/, 

01!~= 0 '°' 

._. J ·[ ( E~-Y · lX) ~ t.Y 0 (X) i'Z:'".y _, lXJl 
= A(2"') E0 ClX)V(X)e _ J J -A(f'JE0 ~(X)e J J E0 V{X)e J .; ..J 

When .S 

~I oJ _g= o 

is unbiased with level £, we can substitute 
~y. (X) 

= 0 and A(?)50~(X)s J J = ~ in (BJ® We get 

I\ ~t'.y'. (Xj 
0 = E I ( d(X)V(Xj- eVtX) )e J J OL 

(8) 



by A(~) 

0 ~~ E,._ UtX)'f ;--SV 
l [ 

Sine~ this is true for all ~~ l l E w and the c ass 

is complete> we get 

(9) 

which is the second equation (3) for an arbitrary ~nbiased 

w~ shall now use the side conditions (5) and (9) 

instead of the original ones 
( 

that C) should be unbiased with 

level f:, .. Maximizing e power under a particular alternative 

leads to maximizing 

subject to {5) and t9J. By the analogue to Neyman-Pearson~s 

lemma, we then get 

fi>o 
9,.v 

= 1 if e I .> a (Y )V+b (Y) 
? v t 10) 

f. 0 if ~ 1 
<: a(YJV+b(Y) 0" 

:::: iC 
"' 

where a {Y) and b (Y) shn'11d be dot e.:-:nined such that t 3) is 

fulfilled9 More explicitly and precisely we get from (3) 1 [5) 

and t 9) 

It is seen fr·om l10) that the integrand in {11) is non-negative, 



flEHH.:;3 ) E ~(X) • valent to 
\? 1 'P 'I 

( 2) .. Assuming th3t c. \ y) 
l 

and 1 1y) could be datermined 

such that {3} is Ll2~ we have a e+ 6 which is independr:nt ~ ~ -(;; 

of 
( 

Thus 6 is uniformly M~st powerful 
0 

tests satisf ng l5) and t 9), i .. e o 

if s 
6(X) ~ 

{X) > E 
0 --

) 

t ' t~ · 15 J' and 1 9) o "" h · · "" + · · t · l sa is 1es , , 0u st1Lu_1ng in par icu ar 

r 
Thus ;;::; 

0 
is 

all 

{ 12) 

U.."lbias~d .. Sine~ the class of all unbiased tests is a s1..1bset of 

the class of all tests satisfying [5) and '9), the assortion 

in the theo~em followE, 

Ex~mole 1. ~~ c~nsider aqain example 2 in secticn II.C 
...... rt. .. --k---- --

whe1·e we wzn ted to test the depend~rnci?. of two factors A and 

B, which each attained b\IO levels o Usir.g th\? s;:11ne notati:. 1ns 

a~ in II.C we shall test the n~ll-hypothesis 0 11 = 

= lP11+P·12HP1f+-P21) 3 9 3 inst P11 +~ {P.1f'"P12H;:i11+P21J 0 By 

TT t'"" /"'·1) d (')"'I 1 th 'h l ...l ~~o~oeqo lL1 an .~L;we can aPP~Y e ~ eorern a Jove, an~ we 

obtain that we snall reject independence if V = {the 

prob.:ih.i.li ty , t: 
.1 ~ Otherwise we shall not 

reject th~t and are independent. Kere and '(. 
l. 

depend ~n the marginals and L,and are :determined by (4), 

wher~ 

F',_v' = ~ ,M)(li-M11(n1 , L l'-J ·r _r,1 L' 
-.J=O ~ 

( ·13) 

g~~~21!L?@ (X.1,"" • ,~\~) ar.~ independent normal (g,ff) .. 
~ ,~ . . 

w~ shall test ':"'.'·;,: 0 against C:1 t o.. Using the theorem JUSt 
.... 

proved and rr.c.eq. (27) with K = 0 we Sh3ll reject if and 



with 

r 
E0 Llf'tV 1 Y) J Y 

and 

f Y J 

Y = fx. 2 as usual., . J 

l 14) 

Now~ by Basti's 

theorem {or II@ 0) 
H~nce, introducing 

TN == ·~;!,- and Y "f .i,, 0 are independent i ~ = • 
~ y' 

<.J,.1~v; (V}t .i ~ cptwsi Y) we get from the first 

equation t14J 

Dividing the last equation l '14) hy \ ---. :' y ,; we get similarly 

t 16 J 

From these two equa ti.0n s it is s~>?li that y (VJ, y) = rp !~'!), 
independently of ye ({)::= U/ is either 0 or 1 according as 

i I 

W is inside or outside a certain interval. Hence [15) and 

{16) may be written 

where ~ is the densi. ty c,f W, ~~ivc~n in !I .. A.. It is seen 

that af { w) =~..:.lf(-w) and 

is satisfied when k = 
/-0 1 

reduces to ~ •-f (w)dw -­
k 

Hence, the last equation 

-k, and the first equation 



which is an increas function of w, it is seen that we 

§!§~P!!-~· x 1 ,.@~,xn are independent normal a). 

We want to test o= Cf aga:l ost ':) =r~~ "o.. By means of II., D .. 
0 

eq.{28) and the theoreo just proved, we obtain that the test 
·- 2 

function Y-1 should be 0 or 1 according as Z Xi is 

inside or outside a certain interval depending on [X1 e This 

interval is determined by 

tr i!f r ; 2 \ l \' 2 II I\ v ~I ' \, 21r ) E , 1.-~Jx, , /. x .. , '-x. .l··· \ :.:; ('E:-. l1-X, x1. "L t~ i .-. i i. i...i !.,. .: .... 

We introduc~ Z _ ');" r,.. \')~~ "\~X 2 1 ('X )2 
' - ,_ \.1'·1· -,, :::;: /...J • - -· i. . ' 

1 n 1. 
multiply the 

first equati~n by and subtract from the last~ w~ 

then get 

wher·e we havr:: int:i.oduced <p if1stead of y.i.. Since· Z is 

independent of ~ x~ f we can lea-ve out the COfiditioning and 
..I, 

write 'f {z, ~xi) ~cp(z), 

as 2!t)'"o2 E:,{z 9 ,z") o:r 

determined by 

where C/) is 0 
I 

z / 6 2 4- ( Z ~ L Ji I 
1 0 7' ~-'' 

or 1 

and are 



~ b5'~-

., b:') + 1- ~~ 1 (z 11 } ""' 8 

.- '.i{J 

If I • ' + \ z ~ .... ,1 \Z )dz J 
.. ·- . !I z 

{ 16 j 

a:re :t:r::!.Specti" e.l y the cumuJ ...-1ti ve chi- square 

function and the chi-square density with ·~ degrees of 

fraedom. It is easily seen that l16) may b~ w~itten 

Applying 

(obtained by integration by parts) and (15), we get 

{ 17) 

( 15) and ( 17) dGteLrnine 7. ~ and Z II~ Thus 6;:::; O' is 
0 

r; ,..., 

rejected if either z <. z ~ ,.-: .:.. or > z ,, e;. .::. ' <3.0d this method 
(J c 

Let us now study the situaticn wher~ we are interested 

in testing several of the parameters in the exponent 

simultaneously, not only one as in theorem II.Ea1. 

We then writ~ the prob3bility measur2 of X 

( 'IB} 

where ?"' E- (J, and each J j vari".!s in an interval hd ving 0 

as inner point. lNa shall test S1 = ... " ::: Jr = (),, As in 

theorem II.E~1 we obtain that a nec~ssary condition for 

unbiasedness is that 



Maximizing the power fcrr a p.;i:c·ticular al tern,3tive V-° ')o) 
leads to maximizing 

DV·· (XJ I 
J Iv) 

I • 

If we use (19) as side conditions, we are led to a test 

1.\, (X) = ¥"C11 {X), Y (X)) ~ where 

v~y) = 1 

~<!.ov. 
)U{ v ~ y ) = 0 i f e - J J < r 9 i { y J \Ii +g ( y ) t 

where the g. 
l 

and 9 should be determined such that {19J 

is satisfied. If such a determination is possible we have 

bt ' d t . ' d t f .. 0 o .a1ne . a tes i.naeper. en o r ~ It is thus the most 

{20) 

powerful test for any alternative among all 

tests satisfying (19)~ However, if r > 1, we get in general 

no uniformly most pt)'1Nerful unbiased test .. 

To solve this d ile:nm~ tfoyman anti Pearson in 1938 

replaced the requin:mient of high powf'r everywhere~ with the 

requirement of large cur~atura upwards of the powersurfac~ 

f;( J1 ' """,Yr} for JJ = O.. v-.;~ shall net deal with this method 

her~ .. 



I~~~iQ~- f =~20:E~9~~~£_Q~!~Q~~:622E~~Q 
classes of distribution. 
=~=~=-~~~~~~~~~-~-~=~~~ 

Suppose that under the null-hypothesis lor the 

boundary points for the null-hypothesis) the class of 

distribution is frt }tEu] where Pt'. is given by II.B"eq" 

( 1) but where the parameter set {..J contains no inner points. 

This is the situation if there are 11 functional 11 (non-linear) 

r·:?lations between the paramet,2.rs {-"1 ~ ••• , '?;'5 • It may be 

possible to write 2~i - 2j_ (B); i = 1,2, ••• ,s; where 

B= (e1 , ••• ,Br) varies in an open set (r <:.s)o 

In that case, even if unbiasedness implies similarity, 

similarity may not imply conditional testing (see theorem 

There are important situations where this is the case. 

are independento Each 

each y. 
J 

is ncrmal 

x. 
l 

is normal and 

are 

unknowno A test for is wantedo Then under the null-

hypothesis, the probability measure P of x1, ••• ,Y0 is 

is the measur8 corresponding to ~ -- !); - 0 
-~;- ,- _., 

01 = ()2 = 1. H0nce it is seen that the four paramet·2rs 

/'­·' 1 , 0 0 0 j '4 depend on the three parameters 
,., 
c. .. , in a nC'n-

linear manner. Thus conditioning with respect to Y = 
2 - 2 ' -(~Xi , .l.Yi , ! x1 , 2:. Yi) is not justified and would indeed be 

absurd, since Y is sufficient also under the a priori 
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assumptions. Hence the conditional distribution wo he 

independent of all parameters and wou 

about § -1;. 

render no 

independent normal w~ want to test 

kind of test problem arises when we want to test if 

ormation 

This 

PrtX1 < 0) = p; . ..\ IC.-1 i ) 6 
l o e. r, = -u 1 p .. 

It is easily seen that the same kind of difficulties arise as 

in example 1. 

The important problem in these situations concerns 

the exploration and construction of the class of similar tests. 

To find the 11 structure 11 of the tests in the regular case is 

easy~ it amounts to stating that " E lo)Y) =So 
0 

In the non-

regular case~ some results have been obtained~ which give 

interesting descriptions of the class of similar testse 

However, until now they have not proved very useful and we 

shall not deal with them here. 

It should be pointed out that the tests which are 

commonly used in the Behrens-Fisher situation arc~ not similar~ 

see e.g. the test described in E. Sverdrup: Laws and Chance 

Variations, vol.II, p.166. Then thAy are net unbiased, which 

means that relatively to some alternatives they will have 

very low powero They have proved useful anyhow. 
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III. Power optimum tests in non-parametr:i_c situations. 
"'l'"T'!ffnz"'S _..,.. ___ ~ ,_, - ~---··=-~-.- ,,~ 

We have servations X13 ••• 9 Xn., Under the :null hypo~ 

thesis they are assumed to be independent and identically dis­

tributed with an unknovn1 probability density. Hence we may 

write for the probability measure of under 

the null hypothesis. 

dP,.. = f ( x 1 ) ••• f ( x ) dx 1 ••• dx 
1 - n n 

( 1 ) 

Let w 
0 

be the class of all f defined by I.e. eq. ( 4) and 

let W ~ w0 • 

We shall assume that under the h;ygothesis f could be any 

member of w • 

As in I.C we introduce the order statistic Y(x) = 

now have for the conditional probability of X given Y 

Pr(X = x!Y = y) = 

1 
n! 

if (x1 9 ••• 9 xn) is a permutation 

of (y1p•09Yn) 

0 otherwise (2) 

Thus the conditional probability is indepo:ndent of f , hence 

Y is sufficient for .t:' 
.J.. • VVe have proved in I.C that y is 

also £_Qmplete for f ; i.e. the class [P fy- 1 JI E w is complete. 

Suppose now that a test o is required to be similar over 

w with level e • As in II.C.2 it follows that a necessary 

and sufficient condition for thj_s to be the case is that 5 

is a condi tic·nal test <?~22.__! __ ; i.e. 

a.e.; fEw. (3) 

Let R(y) be the class of all permutations (x1 ,.e. 5 Xn) of 

;y 1 ~ ••• ,y11 e Then it is seen from (2) that (3) may be written 



L btx) = n~ 2 
x ~R(y) 

Let us now consider the case where is the class of 

all densities _which are continuous almr,st r-?v2ry1111her2.. Then 

obviously and the results above are valido 

The class of alternatives to the nullhypothesis is given 

by 

( 5) 

where f and .J are unknown o f is known to belong to W 

and .J> is any real numbero t 1 :1 • •• ,t0 are a priori specified 

numbers, not all equaL Let /I.A.,. be the median for the density f ~ 

Then it is seen that 

{6) 

Thus the alternative to random sampling is that thera is 

"median regrassioni: between and t 0 • 

l 
The null hypothesis 

now takes the f'.'.:,rtrrl J = 0 • 

priori 

/:\ special case is the utwo sample situation 11 , whera a 

x1 ,.o.,X m have a common distribution and 

also have a common distrib0tione This case is nbtain~d by 

Fer conveniencF> we shall sometim:-·s \Nri te 

' In general, the power of a test d can be written 

ei(?) = J 0 0 0 J ~I t X 1 ' 0 0 0 q x n ) f \ )( 1- t 1 9) CO 0 f { X n"" t nJ') d x 1 0 0 0 d x n = 

::.:: j£(x)p(x-tf;f)dx 
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f is co inuous almost everywhere, he~c2 

(8) 

It then follows from Scheff~'s theorem~ that 

p(x- ;f)-7' p(x,f) in the mean~ i.eo 

Hence we have 

so 0lfl is continuous for J = 0 (and everywhere). It 

follows that all unbiased tests must be similar for 9 = Oc 

We have proved above that similarity implies conditional 

testingo Assuming that we want a level 8 unt1Jsed test, we 

can limit ourselves ta conditional testso Sinca the conditional 

distributions have the form (2)~ we arc; led to 11 combinatorial 11 

tests, i.ee the tests of the type which has been ganerally 

recognized as "gocd" in rYn-parametric situations,, 

~e shall n0W maximize the pcwera We then ne2d the 

conditional distribution cf X given Y under (5). 

s~ppose that x1 , ••• ,x11 are all differ?nt and that 

y11 o•o,y0 are x1, ••• ,xn arranged in ~n incraasing sequence. 
n 

We make LJ. 1,. ~. ~.6.n so small that () (x. < x . .c_. x.+A.) 
i= 1 l - l - l ]. 

contains no two points the coordinates of which are perm1.1-

tations of '?ach othere We then get as all dyi 70, 



' ... -
Pr [ (i! (x . < X. 4 x . + ) j yl. . = 

l -- .1. - l J 

= lim Pr[-(
1
\. (x. < x. < x.+Lt) I (1 (y. ~ Y.-"- y.+dy. )] = 

1~ 1- l, l l'- i-·1 1 

Pr ( (' (x. x. ~ x.+dy. ) ) I ) L. 
1 - 1 -- l J. 

lim 1. = 
Pr t n (y. 

l 
<- y, 
- 1. 

.,,,, y. +dv. ) ) 
:: l I l 

since for sufficiently small 

subset of (x. < X. <: x.+/.-.) ~ 
l -- l - l l 

Hence we get 

dy. ~ 
J· l. 

Here 

' 

if x e R(y)o Otherwise Pr(X = x!Y = y) = Oe If J = 0 it 

is seen that (9) reduces to (2)s (9) could also easily have been 

derived from the more sophisticated definition of conditional 

probabilityo 

We are interested in finding a ~ which maximizes the 

power Ef, _)~(X) for f f 0 subject to J being unbiased with 

level 8. As we have done several times before, we shall 

maximize the power subject to the weaker condition (4)o Now 

since 

we shall maximize 

E r.b ( x ) 1 y = y 1 = z 6 , x ) p t x - to ; f ) 1 ~ p , x - t p , f ) t 1 o ) 
L' 1J xE.R(y) .) xcR(y) ) 

subject to (4)o 

According to Neyman-Pearson 1 s lemma we shall then reject 

the hypothesis if 



t 1'I ) 

reject with probability {Y) if we have 11 -'1 in l11), and 

not reject if we have 11 < 11 in ( ·1 'l). H~nce we snall use a 

cf0 defined by 

( 

O 0 {X) = 1 d l y) ~ 

a 0 (X) ~ f(Y) if p[X-t~ifJ - d(Y), 

<:: (X) = 0 
D Cl 

.lf 

where d(Y) and lYJ ar2 determined such that (4) is 

satisfiQd with S = ~ . 
(' 
I.,' 

For givsn Y = y consider the nl qua~tities 

( ~ 2) 

p(x-tfif J cbtained by letting x run thrGU£h all points in 

Ely)o Let us orcier them in o. dt?cr . .::asing seJtuence, 

(1) t2) ~(rd) p ,p , ••• ,p , and let the corresponding permutations 

of Y be 

( 1 3) 

For given f. f~ 

\" and v 
l q the sequence { 13) can in principle 

-' 

a lvJays 1--,e f·~Jnd, even if th::: numerical wcrk will be prohihiti v.2 

L~t us nc1'.1 determine k and -v hy 

k+-·-f=c: nl S 0 c: -i// ~ 1 
- ' ( 14) 

Leo k is the int2ger p<Jrt and Y the decimals in n!Sa 

~2 new see from (12) and (4), that acccrding to d , 
0 

we shall 

• _,_ J h j' th . . f \/(\',:) :=_ y d ,. . f th . t reJeCl. c;, •:? 1ypo s-sis i i ,._ - _ an .x_ is one o e pc1n §. 

t1)' tk) 
x , •• a,x • We shall reject the hypothesis with probability 



'\( i· f Y (X) = v and X - x ( k + 1 ) - (it h · i- \{ ( v) 
7 · __ -- L , ".ervnss vv11en .1, - y 

we shall not reject the hypothesis~ 

This method is the most powerful test relatively to th~ 

particular alternative (f,j:f) amcng all similar t,3sts with 

level 2. • 

Unfortunately, however, the sequence (13) depends on f 

and J o Hence £0 depends on f and 'Y • _, We have ther~f 0re 

not obtained a uniformly most powerful test" In !.tany cases it 

would not 2v,:in be unbiasede It seems as if tne methcds applied 

in the case of the r8gular Darmois-Kcr:pman ex0onential class 

of distributions cann0t he applied in the non-par~metric 

situations. 



IVo Estimation in connection with Darmois-Koopman classesQ 

A~ Some mathematical resultso 

Let x. 
l. 

be a real random variable with distribLltion p 

belonging to a Darmois-Koopman class ~· c We nc.w assu:ne that 

each " l · J 
is a function 0f a parameter (r :::. s): 

s 
'>- T·l8)Y.(x.) 

dP6 (x 1 ) = A\'f(8J)ej;;1 J J 1 dPctx1 J t 1) 

Here 9 is known to belong to a set in the r-dimensional space 
"W1 

containing an open subset ~y. Without restricting generality, we 

have arranged that 8 == (] E @ and that C1 l8), o o o, ~ t8) are 

linearly independent. However 1 at present the space i1 obtained 

by varying { may contain no open subsets, Le@ W may not be 

regularo By introducing ( ==log Alt), 
0 

t1) can be written 

s 
( [@)+ ~ 

dP = A O j=1 . e -
f(S)Y.(x) 
J J dP 

0 

We will now assume that all derivatives 

7' . jm l. 
Jffifl 

j = 

exist and are continuous functions of fJ a C'2noting 

we introduce the notations 

= d leg L _ 

d8m 
(~m + 

s 
[ 

j=1 

by 

( 2) 

L 

(3) 
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s 
r 0 mn + ~ r. Y. 

j=1 Jmll J 

In matrix notations equation (3) may be written 

v = D1° + (DT) 1 Y 

(4) 

(5) 

where the definitions of the matrices of derivatives and of Y 

follow by comparison with (3). We now assume that the region 
r °LT. Y. (x) 

of convergence O of Je J J ~dP0 contains all points 

(r 1 (9)~··· 9 T 8 (9)) as inner points@ Then EVm 9 EWmn and 

fl. = EY . .., 1 
,; u 

exist~ and we may differentiate JLdP 0 = 1 by taking differen­

tiation under the integral sign (according to theorem I.C.2). 

We then get from that 

and from 

EV m 
s 

= T + l: T. fl .. 
om j= 1 JID J 

::: 0 

= -V V + l ~ o2L 
m n L 09 o9 

and 
m n 

s 
=-'f - I:T. 'rl· 

ornn j=1 JIDl'l J 

Let a be the covariance matrix for Y 

a . . = E ( Y-: - 11. )(Y .-'fl . ) 
lJ ...b l J J 

By a= E(Y-EY)(Y-EY)' 9 (5)~ (6) and (7) we get 

A= EVV 1 = (Dr) 1 cr(Dr) 

( ... ) o, 

that 

(7) 

( 8) 

(9) 
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s 
T + ~ T. Y. omn Jnm J j=1 

(4) 

In matrix notations equation (3) may written 

V = Dr 0 + (Dr)'Y (5) 

where the definitions of the matrices of derivatives and of Y 

follow by comparison with (3). We now assume that the region 
r ~r.Y.(x) 

of convergence a of je J J' dP0 contains all points 

(r1(9), •• ,T 8 (9)) as inner points. Then EVm, EWmn and 

ri. = EY. 
''J J 

exist, and we may differentiate JLdP 0 = 1 by taking differen-

tiation under the 

We then get from 

integral sign (according to theorem I.C.2). 

r 0 L dP = 0 that J 0 em 0 

and from 

s 
EV = T + L: ·r. Tl· = 0 

j =1 Jill J m om 

1 o2L 
= -vmvn + L 'Z,e ae 

m n 
and 

s 
=-T - I:r. fl. 

ornn j=1 Jillll J 

Let a be the covariance matrix for Y 

a . . = E ( Y.; - Y1; ) (Y. -ri · ) 
lJ ..L - J J 

By cr = E(Y-EY)(Y-EY) 1 , (5L (6) and (7) we get 

A= EVV 1 = (Dr) 1 cr(Dr) 

(6) 

that 

(7) 

(8) 

(9) 
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By theorem I.B.2 we may differentiate the equation 

n . = EY . = Jf Y . ( x) .LdP 'IJ J J. 0 

by taking differentiation under the sign of integration. This 

gives us 

= r y . ( x) o 1 og L L dP 
J J oA o m ( 10) 

or by (3) and (6) 

s s 
nJ·m = E(Y.(r + L T.mY.)) = E(Y. Er. (Y. - ~.)) 

J om i= 1 1 i Ji= 1 im 1 i 

s 
= !: r. E(Y.-r1.)(Y.-11.) --

i=1 im J J i 1 

;,vhich~ after introduction of the matrix DTJ = [rijm} 1 for the 

system of derivatives of 11 may be 1vri tten 

( 11 ) 

B. The informati0n matrix. 
---~-~---------~-~-~-------

It is well knovm from the asymptotic properties of the 

maximum likelihood estimates~ and fro;n the Frechet inequality, 

that the matrix 

r 
A.= - ·E 

r . "'\ 
·,EW .. J' 
l l.J 

( 12) 

is of special interest. A is sometimes called the information 



matrix@ From l9) we get 

A mn = 
:;l_ s "".". ~, 
\ r· CT •• (, (. 
L L 'lJ lffi Jn 

i=1 j=1 

We now assume that 
('.°';) 
,~· is regular, so we may take derivatives 

with respect to (1 ~ "o ~, ~" This gives 

( ~ is considered as a function of lo 

E 61oq L 
,)-Ci 

= o, 

.)To 
d{1 

Furthermore, as an analogue to (7), we have 

l'"f, • 
. J.J 

= Et .j log L 
A·;· . 
' ' J. 

and as 

t 13) 

( 14) 

( 15) 

t 16) 

But from {14) we find = 
'· -. " - ' ( ( i <: (j 

which by (13) and l16) 

gives us 

/). = 
"mo 

d2 lo 

<:'<l J(j 
z: [. 
im Jn ( 17) 

Thus, no integration is needed in order to find the Frechet 

lower bound of variance of unbiased estimators or the asymptotic 

covariance matrix of maximum likelihood estimatorso 



Co Fisher-consistent estimates., --------------------------------
We return to the general theory, w (i(i'J 0 l 

0 not necessari y 

being regulare 

Assume now that we have observed X = (X 1 ~ .. @., ,XN) v where 

x1 , .... .,,xN are indepe ent each with probability measure P ~ The 

probability measure of X is now given by 

where 

s 
N N[ ((j)+N L 7:.(8)Y. N 
.~- ' ) o j = 1 J J ri J I dP xi = e 

i=1 fJ i=1 

y, 
J = 1 

N 

N 
[ 

i=1 

An estimate 11 * 01 of G 1 is said to be Fisher-consistent if 

(i) B1* = f (Y) depends on X only through Y~ and f is 

independent of 

(ii) 
' c'j 

f { /01 7 e o o j ,' >;,. ) = lj 1 ' ,5 

,J .c: 
) IJ l. (iii f has continuous derivatives f. =-A~ o 

J 0 ~j 
Now, plim Y. = 0-, and by (iii) f is continuouso From 

N-7 J) J J 
Slutsky 1 s theorem it then follows that 

plim 61 * = plim 
N ~ '(' N --::;;,. Ch 

= p - 1 

Thus, every Fisher-consistent estimate is consistento 

We introduce the notation 

By means of the mean value theorem, we get 

( 18) 

( 19) 

(20) 
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where R is a stochastic vector with components 

( 2 ·1) 

IR. I < 1 • from 
l - < 

which it is seen that . ./N( e;~- - e1 ) has the same limit distribu­

tion as r(Yj-rij)jNfj(~) s and that consequently any Fishe~~ 

consistent Astima~_j,~ is as;y:r:1;pt_~icag;y normal with mean &,1 

and 

as • var e; = ~ r: f . f . a . . = -N1 ( Df) 1 a ( Df) 
,l'li~jlJlJ f 

(22) 

where we have introduced the notation Df for the set of 

derivatives of f . 

We shall find a lower bound for (22) under (i), (ii) and 

(iii). By differentiating (19) with respect to em we get 

s f 1 ~ 
r. f .ri. = l 

j = 1 J Jill 0 ~ 

m - 1 
(23) 

m > 1 

\'vhich may also be written 

(Dri) I (Df) (24) 

Let us first minimize (22) with respect to Df subject to (23). 

Since (i), (ii)~ (iii) is at least as restrictive as (23), this 

wiJ.l certainly give us a lower bound f c.)r ( 22). We use the 

Lagrange multiplioator rule, starting with minimizing 

r s 
~f.f.o .. -2 2:: :~ ( l:f.fl. -01), 

. . i J i J 1 m 2. "" 1 1 im , m 
i 9 J m= ---

(25) 

where 1{1 ' ••• ' x. 
r are the nmultipliers 11 and 51m 

:::: 1 if 

I:l = 1 otherwise 0 e The liiinimizing f1, ••• ,fs and the 

values of ?~ 1 9 • gi • 9 x. 
r arc found as solutions of the equations 
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(26) 

and (23). Now (26) can also be ViTritten as 

a(Df) = (Dri) x 

hence Df = a-1 (Dn) ~ which inserted in (24) gives 

:::: € or ;;, = [ (Dri) 1 cr- 1 (Dri) ]-\: and finally 

Df __ "-1(·n~) -1( )[' ) -1 3_, 
v • 1 x. = cr Dri t D11 1 cr D11 e; (27) 

Substituting this in (Df) 1 cr(Df) and applying (11) and (9), 

we get 

Hence any Fisher-consistent est:i:,!~8:..~e has asymptotic variance 

1 -1 1('-1) 
~ N e'\ E = N ~ 11 (28) 

[where ()1. - 1 ) 11 denotes the leading element in the matrix A. - 1]. 

D. The maximum likelihood estimator. 

Returning to the model defined by (18), the maximum likeli-
/\ /\ /\ 

hood estimate e = (91~··•?8r) of e is defined as the solu-

tion of the equations 

/\ s .\ -,. ( e) + r 'f. ( e )-::- . = o 
om j=1 Jlli J 

m = 1 1 ••• ,r (29) 



"I 

(without r~.:gard to whether {)actually maximizes {18))0 We 

assume that the equations (29) have a unique solution It is 
;l 

seen frcm (29) that the estimate A tLl ~i for Ji satisfies condition 

'i) ' from (6) that it satisfies (li), and from the assumptions 
4 

about the derivatives (. that (iii) 
Jrnn 

A iE. satisfied., Thus .... 
l 

is Fisher-consist~nt~ and especially 

'\ 

Plim 9- = e .., 1 
i· T ._::, ·:·· I>- -
.i,\ / \.,, .. 

;j 

Now the asymptotic multinormality of 8 is easily seen in 

the following ~anner. 

By the mean value theorem we have 

with I 
l .. Introducing this, we see that (29) can be 

written 

r ~ s 
\[ff V + ) fN (D0 -6n) l Y. ·z.-J. mn t 8+s (G- 6) ) = O 

m -1 · O J n= J= 

where fer convenience we use the notation y = L 
0 '\ 

is continuous and olim C 
;\,. ....... ,..,.. n 
1' / -'-' 

- r~ - ··n' Hcwever, since -~ jmn 

havG plim ?. (f1+s (t~·- 0)) 
n ~, :-c Jmn 

. ..., .. ) = ~-·-l · t 1j J:nn 
r = I.· o Jmn FurthermorJ 

(30) 

we 

plim Y j = ·?/j o By the central limit theorem, the limit cumulative 

distribution function of 

cumulative multincrmal distribution with mean 0 and covariance 

matrix ,.\ o Hence by (30), the limit cumulative distribution 
-"'\ 

function of \r N ( .9- ,~) 

is given by 

is that of 

u + m 

r s 
T ,- -,. "':-' = 0 

n r~ lj'jmn j=O 

where T 

( 31 ) 
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and where U = (U111 .. u ,ur,) ~ is multinormal (O, A), and 170 = L. 

Combining (31) and (7) we get 

{32) 

Hence T = A- 1u, ET = o, and the covariance matrix of T is 

,1-1 )\{/\ -1 ) v = ), -1 Thus T is multincrrnal .(o?;-.,- 1 )@ We conclude 

that: 
A "'\ 

The lirni t cumulative distribution functinn r.f v'N(~.:-5') ~ 

is the cumulativ~ multin;rmal with exoectati~n 0 and 
~ 

covariance matrix '' 
1...· is asv:nptctically mul tinr.rmal 

L\ " 1 ( o, ( 1 /N ) 1\- ) , and in particular ~-:• 1 is asy~iiptotically normal 

with mean f) 1 d . I A-1 ' /"l an var1ancr• v; 1 11~ 

as.var:) 1 
1 ·-1 \ = ;:-:l.-'\ j11 
.~ 

(33) 

Comparing this with l28J we may conclude that the maximum 

likelihc0d estimate of 91_ has asymptotic variance less than or 

equal to that of any other Fisher-ccnsistent estimate for e1~ 
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