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Preface

With the publication of "On the problem of the most
efficient tests of statistical hypotheses" by J. Neyman and
E.S. Pearson in 1933 (Philosophical Transactions, series A,
vol. 231) a new era emerged in the development of the science
of statistical inference, The importance of this paper lies
partly in the creation of now canccpts, like the "power function",
partly in the discovery that for important model situations it
was possible to derive statistical methods with stipulated
optimal properties which were quite obviously acceptable.

The "model situations" treated by Neyman and Pearson were
such as to require certain partial differential equations to
be fulfilled by the probability densities, It was later realized
that theserequirements were essentially equivalent to assuming
the Darmcis - Koopman exponential family of distributions".

Based on this assumption the modern Neyman-Pearson theory
was developed by many authors in the 1950~-s, resulting both in
a simplification and generalization of the original presentation.
It is this theory which is presented in the present memoir.
The main result, which is essentially the result obtained by
Neyman and Pearson in 1933, is given as theorem II.D.2 (page 38).

The memoir is an adaption of the notes of lectures given
at this University at regular intervals since the beginning of
the 1950-s, of course with many major alterations, in particular
in the 1950-s when new results were steadily forthcoming.

March 1971,

Erling Sverdrup.
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Ie Some special families of distributionse

Ao Factorized families.

Let X be a random variable in a sample space X ;
X& 3. A sigmafield e is defined in J, and @ is a
famiiy of probability measures (distributions) P overcyﬂfc

Suppose that é;D is dominated by a sigmafinite measure
Ms 1i.e. each Pe€ é‘P is absolutely continuous with respect
to ALy hence dP = fp(x)éfg If there exists a real
measurable function h(x) from ¥, a measurable function
Y{x) (statistic) from 3f to a space ‘%; with sigmafield
43> and for each P &% a measurable real function gply)

from Ljf such that

8

fpix) = gp(¥(x))h(x) (1) -

then & is said to be factorized. Eﬂe shall agree to call

a real function h from & space ()(,u@) measurable if

h'1 (Borelfig¢ld) < ¢4']. Examples of factorized
families will be given in sections B and C belowe.

There are of course many presentations
(1) if 5 is factorized, since a factor H(Y(x)) could
be transferred from Ip to he Obviously we may take
h{x) =2 0, and will do so below.

We now have

Theorem I.A-1. If &0 is factorized, there exists a

- en o oD @ oD D e WS OGP @ T

probability measure 7/ and a g, such that



dP = gp(¥{x))d 7 (2)

Proof: It can be proved that we can always chocse h
integrable &M)- Since the proof of this is rather tricky
and since this is almost always easily verified in special
cases, we shall assume this tc be true. Since P(3) = 1,
we have Sh(x)Q/$,>O, and we may then take the integral
to be 1. Then d7% = h{(x)ds defines 7% as a probability
measure, and by the chain rule for the Radon-Nikodym
derivative we get (2).

In many situaticns which we shall consider the family

¢S will be homogeneous, i.e. any two measures in %5 are

absolutely continuous with respect to each other. Then the
proof of thecrem 1 is simple without making use of the fact
that h may be chosen integrable. Indeed, in that case we
may choose as // any measure in . Taking '?p(x) = dP/d %,

we then have

dP = ?P(x)d uo= ?p(x)gﬁiY(x))h(x)Q/a
On the other hand
dP = gp(Y(x))h(x)d e

Combining, we get, since q?(Y(x))h(x) > 0, ases (),

_ 6p (Y(x)) _ N
fplx) = 5;1?1;77 = gplY(x)) a.e. ()



Hence dP = EP(Y(X))d7T, which proves theorem 1. Further-
more, choosing h = %ﬁ;j, we get dP = EP(Y(X))F(x)qM, so
it is obvious that in the homogeneous casey, h in (1) could
be chosen integrables

In the homogeneous case we might take 7€ 8a - Notey,
however, that in the general case this may not be possible.
(Consider, for example, the class of all uniform distri-
butions over (0,T) , with varying t).

1

From (2) the sampling distribution PY ' of Y(X) is

easily found to be given by

-1

dPY™ ' = gp(y)th'1

(3)

(It is assumed that the reader is familiar with
Appendix D: "A more rigorous treatment of some fundamental
statistical concepts" (§ 1-2) in Erling Sverdrup: Laws and
chance variations, vol.II, p.292.)

We shall now prove

Theorem I.A.2. If the family @ of distributions is

factorized with raspect to a statistic Y(X) (i.e. dP is

given by (1)), then VY(X) is sufficient for & ; i.e. the

conditional distribution of X given Y(X) 1is independent

of Pg¢ éz’(or rathery, "could be chosen independent of P").

Proof: We shall use theorem 1 in the proof, assuming
that h{x) in (1) can be chosen integrable. Let f(X) have

finite expectation for any Pe % . Then, we have for the



expectation with respect to P

Epf (X) = EpEpl£(X)]Y) =

1

IEp(f(xn y)dpy”
On the other hand we have by (2) and (3)

Epf(X) =ff(x)dP = [f(x)gp(Y(x))d "=

E,Jf X)ap(Y(x))] = EJop (YIX)E (£ () 1Y)] =

=! C.lp(y)E.x(f(X)ly)czlr.r\f'1 =

/]

B -1
-]E?,(f(x)ly)dPY

Hence, combining the two expressions for Epf, we get

~ -1 _
J'Fp(fly)—Eﬁ,(f lyJjapy™" = 0 .

Now, let IB(y) be the indicator function for a set

Ble #2). Take f(x) = g(x)IB(Y(x)). Then EP(fIY) =
IB(Y)EP(le). Hence, substituting in the integral,

- -1
- dp =0.
é(LEp(gly) EE_(gly)] Y
Since this is true for all Be 43, we get

Eplgly) =E/7(gly)
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o€ (PY-1) . We now choose in particular g(x) = IA(X) in
which case we get

P(aly) = m(aly)

8.€, (PY-1) . This proves theorem 2. (The obvious require-
nents of measurabilities of functions and sets will not be

explicitly stated here, or below.)

This is a special type of a factorized family of distri-
butions relatively to an s-dimensional statistic
Y(x) = (Y1(X),...,YS(X)) . A member of the family P is given

by
T r.Y.(x
j——"1 J J( )

aP_ = A(r)e n(x)dy , (1)

and the family is generated by varying 7 = (74,...,7 ) in

a set (O giving a one-to-one correspondence between O and JE .
It is easily seen that we may assume, without impairing

generality, that (i), Y1(X),,..,Ys(x) are linearly independent,

(ii), there are at least s linearly independent vectors Tt € Q,

(iii), A(r) >0 . Then h(x) > O and since P(3¥) =1, we

must have A(T) > O .
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Example_1. X = (X1,X2,ooo,xn) has independent

components which are normal (£,5). We then get

2
‘hff e nE ;x Zx
_ - 2cr
d?? = (2w) o e e dx1.....dxn (2)
Hence we have a D.-K. exponential family (1), with
Y(x) = (¥, x), Y, (x)) = (0.2, 0k:), 2= (79, 7) = 15y =2 )
= Xy 9 1o = WXy 9 [Xyls 0= Wqa s Zag, 2
L ?1.;2
-5 L h
A(z) = (2;7) 6- e 262 9 d/(-= dxlooe.dxn’ h =1
If ¢ is fixed = 1, then we have a D.-K. exponential

family relatively to Y = ZXio In that case

-15x.2
h =e 2 J

All families of distributions in the case of linear-normal
models, i.e. all mecdels in regression analysis and variance
analysis; both those with fixed and those with random effects;
are De.-K. families of distributions. This is left to the

rzader to verify.

Example 2. X = (X1,X2,no0,xn) has independent

components which are gamma-distributed with density (for

x >0)
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where Lx,/3>>0. It is easily seen that the family of
distributions of X = (X1"'°’Xn) is De.=K. exponential

relatively to the statistic

Y(x) = Exj, Slog xj)

Example_3. The components of X = (X1""’Xn) form
a Bernoulli trial sequence, i.e. they are independent and

s = O) = pn Then

Pr(Xj =1) = 1-Pr(XJ
Zx.
J:

\ .
o e}leog oo

X

. Ne=
Pr (X5 = x5)) = p I (1-p) (1-p

if all xj are either O or 1. Thus the probability
measure P is given by (1) with Y = Ekj, = log T%B,

A(T) = (1-p)" and . (C) = number of points x = (Xq50005%,)
in C for which all components are 0O or 1. Thus

.1log B

Tx
£73 T-p d s

dp = (1-p)" e

(Note that when writing dP = f da it is always understood
to mean P(C) = ) f due Choose in particular C =-{x}'= the
set consisting og the one point xo)

All ordinary models in multincmial trials, e.g. when
testing independence or homogenity, are families of D.-Ke.

exponential types. This is left to the reader to verify.



Example 4. The components of X = (X4,...,X ) are
independent and Poisson distributed with common mean X\ .

It is easily seen that we have a D.-K. class of distri-
butions with Y = ¥ Xj and T = log \ .

Thus many of the classes of distributions commonly
considered in statistics are of the D.-K. type. Exanples
of classes of distributions which are not of D.-K. are
classes of rectangular distributions with unknown endpoints,
hypergeometric distribution with unknown population size.
0f course the non-parametric situations are examples where
the classes of distributions are not D.-K.

We now return to the general theory. It is seen that
if PT(A) =0, then h(x) =0 a.,e, for x € A , hence
P.,(A) = 0 . Thus 7° is homogeneous. We may assume that
T=0¢€Q , since this could be obtained in any case by
changing origin for T . Furthermore, since A(T) > 0 we
may assune A(0) = 1 , since this can always be obtained by
transferring a constant factor from A +to h . Hence we
have dPO = hdy and by the chain rule for Randon-Nikodym
derivatives

S
by T.Yj(X)

- j=1
dp, = A(T)e P (2)

The sampling distribution of Y(X) is given by

E T.Y.
- S T | -
dap, Y L A(T)ed 1 ap_Y 1 ‘ (3)

0f course we have



-1 (g5 (3 '
[A(r)] = Ie dp_ = Ie dp_Y (4)
It has been tacitly assumed, of course, that the integrals
in (4) converge. Thus £l 1is a subset of the region < oof
all ¢ for which (4) converges, i.e. (1) defines a
probability measure. We now have

——

Theorem I.B.1: The set C! of all ¢ for which (1)

defines a probability measure P?_ is convexe.

U= cl'+(1-c)r" (1 >c¢c >0),

Sy (e T+ (1-c) V)
] = \Ie“ I I ap vl =

S_y.T.' c yy.Z‘." 1-c
( [m-“J Ie‘ 33 dPOY'1)
by Holder-Jensen's inequality. Hence 77e Sl sy QeEeDo
[@61der-Jensen°s inequality: If f1(x),f2(x) 2 0,

0 <c <1, i a measure, then
1-c gy, ' -
.If1°f2 Cous. £ (If1d/u)c(ﬂjf2c{/1x)1 c (5)

Proof: The case where fiqftz O for i=1 or 2

is trivial. Hence we assume [fiQ/4> 0 and introduce
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9; = fi/ Ifidyo The above inequality then takes the form:

c_ 1=c , !

ng 95 q/Lz 13 [ giiﬁLz 1o (5)

Consider now the function F(t) = t°. It is concave for
t > 0. Hence its tangent for t = 1 1is wholly above the

curve,; i.e.
t¢ £ ct+(1-c)
Inserting t = g1/g2, we get

1-c

91092 £ Cg1+(1"c)92

By integration we now get (5f:]
Let f(X) be any statistic, the expectation of which

N

exists for all 77€¢ S1. We shall consider the function

7Y (x)
G(2) = Ef(X) = If(x)dp‘ = A7) TRRIEE R b, ()

which may also be written

7~4

i

elo) = EEE()IY] = Eg(v) = A(2) Ig (y)e&jyjcilvoy"1 (7)

r -
where glY) = E?Lf(x)?Y, by theorem I.A.2 is independent of

o

~—

(e
In particular if f(X) equals a testfunction o(X)
then [(3(Z) is the powerfunction.
. iy

We now denote by {1° +the set of all vectors
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(7= 9+ig = (§ﬁ+i63,o.o,§}+i;§) with complex components for
which @ = (91,0..,§s)cf(). It is seen that the integral
expression in (6) and (7)

Y2 Y 4 (X) Y
B(?) = Ef(X)e SR Eog(Y)eL}j ) | (8)

~3
exists for all ¢ ¢ Q '« In particular this is true for
f = 1, identically. Hence A(?) can be defined by (4) and
p(T) (7) for all € 0 €. We shall prove

Theorem_I.B.2. B(Z) given by (8) is an analytic function
of each component of " for all inner points " of {LC,
Its derivatives of all orders can be found by interchanging
derivation and integration. If, in addition, A(T) is

finite then (3 (T) = A(7)B(T) is analytic and

%(Z) _ A7) If,(y)ezfﬁyjdp =N
. - o]

™~

5Y5. g

+A(T)I glyly.e ] JdPOY‘ (9)

Proof: Consider BI(7) = B(77) as a function of the

_____ ¢ T
component ?; of 7. We shall prove that B is an analytic
functicn of ?;. We have

B(¢+z )-B(2-) 2Yp . YTy
Lo ~ r_ - Ig(y -e——;—l e J JdP Y™ -1 (10)

We now have with z = u+iv
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2y [ul-ly_|
T ulely
e -1
az
[?his is seen as follows: < =1 .
= (e"%.cos va-1+ie"%esin va)/z =
ua .
_ e =1u cos va=1 v . sin va _ua
= 0 2 cos va + ST + 1 -

Obviously I% | and | % | £ 1. By the mean value theorem

fer derivatives

[ggélll = laé%lal < 'al e|u’-lal where [u1| £ }u'
}£9§7¥§:11 = ]a sin v a ﬁé Ia’ where lv1| £ Iv,

Isinava’ p ’a‘

Hence

If:’_a_z.:_l}é Ja!e!u,°{aj+}al+,a]elul°]a, 2 3la]e‘ul°la'

which is the same as (11),]

For any & > 0 we can always choose K such that

b
oRey

lv; | 2 ké . with [ 5

!z[ < 5 we then have

N\

= |
21y
Z const.e ! r‘ (12)

Thus the integrand in (10) has modulus

7 2y .
é'const.lg(y)[é:lyr‘+§)JyJ

loft i

where 33 = the real part of 3 But since ( 1is an inner
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point of £2° the integral of )’ 535 JdP \'a converges
if ?r is replaced by S‘ + £ for £ sufficiently small.

By the Lebesgue dominated conveigence theorem we then have

~ Z’.y. -
a—%é—‘l = fyrg(y)e J JdPOY 1 (13)
r

Hence we have proved analyzicity. Since the proof holds for
any POY'1-integrable gly)y, we have in particular for

-1 s analytice. Hence if A(Z)~ ;l 0,

g =1 that A(T)
we have that {3(?ﬂ = A(B(?) is analytic. (9) follows from
(13). The statement about derivatives of higher order is
proved similarlyy Q<E.Ds

A family Ep of distributions is said to be complete

if for any f
dep =0 for all P€ ¥ (14)

implies that f =0 a.e. (&),
A Darmois-Koopman family of distributions
¢>_ SP 1 is said to be regular 1f.§1 contains inner
U2 ipe Q)

points. Obviously we can, and will, in that case take

= 0 € 5 as an inner point.

Theorem I.B.3: In a regular Darmois-Koopman family of

distributions the class of sampling distributions for the

sufficient statistic Y 1is complete.

oy .
Proof: By assumption & = %P.{N}{\é () contains

e

0 as an inner point. We shall prove that
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1

I
o

]g(y)dp}y'

P
for all 7€ 5;1 implies g 0 ases (POY'1). Using (3)

this equation can be written (since A#) >0):
. ) ‘_T.y.
jg(y)eZJ Jap v =0 (15)

Now, the left hand side and the right hand side of (15) can
be considered as functions of ?;,o°°,7;, which are both
analytic when " is an inner point of Qe, They are
identical for all ¢ when each ?} is real and is contained
in an open interval (-a,+a). By a famous theorem about
analytic functions we then have that the identity (15) is
true for all 2?=f>+i€' satisfying the condition

-a< @ < a. Hence we have in particular for =it (t

real)

iSt.y

I glyle ~ y deOY-1

=0

We write g = g+-g', splitting g in its positive and
negative parts. Hence

i“t.y i}ﬁ.y. _
25 I ap v L (16)

|

J[g+(y)e deGY'1 = fg'(y)e

and in particular

]

K =j g+dP0Y-1 J".‘ g'dpoy"1 (17)
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If K= 0, then g+ =g =0 a.e. and everything is

proved. Assume now K > 0. Then p+ and = defined by
- - IQ: =1 - ﬂ: -1
yB) = ) %% apy", 97(8) = | & dp.y

are probability measures since
J_ci ~1 Ig' -1
K dPOY T = < dPOY =1

Dividing by K, we can then write (16) by the chain

rule for Radon-Nikodym derivatives

iYt.y. i)t.y.
jelz 3y3§f+ = Ielz Jde@' (18)
' )

Hence by the inversion theorem for characteristic functions,

0" (B) = gT(B) for all BE 43, i.e.

f

B

-1 _ | a
dp Y™ = £ w dP_Y

-1

A%

for all B. Thus g' = g~ a.e., and g = 0 (contradicting
that K >0), Q<E.Ds
From this theorem it follows that two test functions

51(x) =-A1(Y(X)) and 52(x) =-ﬁ§(Y(x)) which are based on

the sufficient statistic Y and have the same power function

must be equal a.e. 431(y) =-42(y), aelo

It also follows that if

%}m(y) = 4 (¥) (19)



then m(Y(X)) is the only unbiased estimator for { ) based

on the sufficient statistic. Furthermore it is a Markov estima-
tor, i.e. if M(X) is any other unbiased estimator for/AL(zﬁ,
then wvar M(X) 2 wvar m(Y) for all ¢~. These are immediate
consequences of the results in Erling Sverdrup: Laws and chance
variations. Vol. II. Ch.III 2.2, where also examples are given
of estimands/AU(?d connected with Darmois-Koopman families of

distributionse.

C. TIhe_non-parametric_family of distributions.

We shall be primarily concerned with Darmois-Koopman
families of distributions. However, in order to throw light
on the general nature of some of the principles used we shall
occasionally consider other classes of distributions.

Let %?

be the class of distributions of X = (X1,o..,Xn),
where the components are independent with the same density f,
with respect to the Lebesgie measure, and f is any among a
class of densities {1l , dex = 1. For the time being let =L

be the class of all densities. The density of X 1is
f(x1)°f(x2)°=°f(xn)° The density of the order statistic

Y(X) = (Y (X)yeeeyY (X)); where Y,(X) 2£Y,(X) £ cov 2Y (X)

are X1""’Xn arranged in non-decreasing sequence; is then,

ntflys)eeefly,) (yg € eee 2vy,) (1)

Theorem I.C.1. In the non-parametric family of

distributions the class of distributions of the order statistic

is complete.
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Proof: We have to prove that Efg(Y) = 0 for all

densities f, implies that gly) = 0 a.e. Consider then

Efg(Y) = n! Ig(y1,ooo,yn)f(y1)ocof(yn)dy1ouodyn = O

Y1f£2f°-°iYn
(2)

Let now h(x) = g(Y{(x)). We see that h(x) may be written in
this form if and only if hi(x) 1is symmetric in XgpeeesX 5 loee
hixggeeesx ) = h(xi1,ooo,xi ) for all permutations ijyeee,i

n
of 142,e0.,0. Hence (2) may be written

Eh(X) = Iooo jh(x1,ooo,xn)f(X1)ooaf(xn)dX1oooan =0 (3)

for all f. We thus have to prove that if (3) is true and h
is symmetric, then h =0 a.e.

We now insert a particular f in (3). Let IjseeesIy
be n arbitrary non-overlapping finite intervals with lengths
L,,,o...,Ln respectively, and let PpseeesPy be arbitrary non-

negative numbers such that ij = 1. Then we define

f(x) = pj/Lj if X éIj; j = 1,2,-0:,“ (4)

f(x) =0 otherwise

(Note the peculiarity that the density f of any single Xj

depends on n.) We see that jf(x)dx = 1 and we find

n
Eh(X) = Z p. ooop- Q(i o0 i ) = O (5)
i1,o-o,in=1 11 ln 1, ’ n

fOI all p1,°‘°’pn aﬂd 11’000,10, Where




. Y
Q(i1’o‘o,ln) = If—jé—t—- J e o6 _g h(x1’-o.’xn)dx1ooodxn
i °=i I. I.
1 n 11 1n

(6)

From the symmetry of h follows the symmetry of Q. Hence the
value of Q is determined by giving the number of i1’°°°’in
which are eeual to 1,2,.0.4n, respectively. Let this be
Myyeeoym 5 X m; = n. Thus we can write

Qliqgeceyi) = Klmyyeoo,m ) (7)

(5) may now be written

= M M
> p1 oaopn K(m1,oco,mn) =0 (8)

i1’e:o ,in

Let us now collect the terms in (8) leading to the same
Mgyoooyl e Assume that there are N(m1,oo-,mn) different

- . . . 3
(11,050,].“) ieadlng to (m‘l"..’mn)" (QbVlOUSly N = m1!r:o omn!).

Set C = KN. We then get

- m m
2 p1 1oaopn n C(m1’000,mn) = O \9)
m1+°°=+mn=n

n
for all I45e-.5I_  and all Pyseeesp, such that . p; = 1.

We assume p_ > O and divide (9) by pnn,

bes M4 M1
Z ty Teeet 7} C(m1,.n.,mn) =0 (10)
m,,,ooo,mn

where tj = pj/pnn Thus (10) is true for all tj 2 0. We now

+°0 ‘+l
2™ Mh-1

At m M
1

L] oc‘btn-1
Clmyyeoeym ) = O after putting all ty = 0. Hence, since N > 0,

operate with on the identity and obtain
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K(ngyeeapm ) = 0 and Q(i1,...,in) = 0 . Thus we get from (6)

n

J o] mtxg,aooxaxg . ax = 0 (11)
I. I,

11 ln

Now, it is seen that the class of n-dimensional intervals of
the type I, X...xI. (which is not an arbitrary interval) is
1 _

n
a basis for the Borel class. Thus

J ...I h(x1,...,xn)dx1...dxn =0 (12)
B

for any Borel set B ., TFrom (12) it follows that

h(X-],-on,Xn) =0 | a.e.; . QCEQDO

D. The existence of a conditional probability measure.

e e s em e s e B S > ewm b G0 Gmm D G oGNS e M CRo Gpm e OHD 6B w5 S5 Cup mao aso ews Hhn G Gro 6GD NI G ems ey Cw S SR W G5 =S GO W @O S8 G50

We shall make a remark concerning the existence of a

conditional probability measure. (See E. Sverdrup: ILaws and

Chance Variations, volum II, appendix D.) Given a probability
space (9(,d¢5jp) and a measurable function Y(x) from this
space to a space (%£,03) , we define P(Aly) = Pr(X € A|Y = y)

as the measurable function of y such that

P(An Y (B) = [ m(aly)apy™'; A e B e ®B .
B
This conditional probability P(A§Y) is known to have "almost"
the properties of a probability measure. However, in general it
need not be a probability measure and this fact will cause mathe-
matical difficulties in stating and proving some general results
(e.g. theorems II.C.2, II.D.1-2, II.G,1). In special cases it

is easily verified that ©P(A)y) does exist as a proper measure,



and we shall be content with that.

There are sever:l courses to follow: (1) Prove that
ir K is Euclidian then the conditional probability measure
does indeed exist. Then we should assume to be Euclidian.
(ii) Add the assumption "if P(Aly) exists as a probability
measure" in the theorems below, We shall do neither. In-

stead we shall (iii) state once and for all that we assume

everywhere below that the conditional probability measure

does exist.
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II. Testing by Darmois-Koopman families c¢f distributions

e e D w G G e D =D e D D G D e SO S0 G eme @I D wwo G35

We shall briefly state and prove & theorem which is

known as "Neyman-Pearson's lemma¥

Theorem II. A.1. Tet f,,f5,...,f ,f be m+l real-
valued functions, integrable with respect to a measure u
and let CqseneeCp be real numbers. Consider the class A

of test functions 8 which are such that

[ .
jofjdu=cy 3 1i=1,2,...m (1)
Suppose that 60 € A is such that for some k1,...,km 5
m
6O(X) =1 if f(x) > if1kifi(x) (2)
m
5,(x) = 0 if f(x) < i§1kifi(x) (3)
then
"5 fau > | &fdu (4)
J 7o =

for all & € A

[o fau - jofau= [(s,-8)(f - Tk 2,)au (5)

and since, by (2) and (3), the integrand on the right hand
side is > 0 for all x , (4) follows, CQ.E.D.

It is easily seen that if "=" 1is replaced by < 1in
(1) for all i for which k., > O , then the conclusion (4)

still remains true.
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We assune the reader to be familiar with the use of this
lemma in the case of testing simple (completely specified)
hypotheses. The case m = 1 1is well known from elementary
texts., Then Cq = level of significance, f1 = density under
the null-hypothesis and f = density under the alternative.

The existence of an optimum 60 is not guarantced by
the lemma. It can be shown to be the case 1f the space 1is
Fuclidian, u is sigma-finite, and there are (of course)
certain restrictions on CloeesnsCo o This result will not be

needed in the sequel.
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B. Conditional testing.

Let X be an observed random variable the distribution
P of which is known to belong to a family & . The problem is
to construct a test o(X) with level & for testing the null-
hypothesis Pe @% where ‘@% is a subfamily of &. Hence we
search for an optimum test éo among all & satisfying
Séﬂx)dP”5 £ for P E‘?é, and perhaps some other side conditions.
Conditional testing is said to be performed if a test é

is constructed in the following manner. First a statistic Y(X)
is chosen and the conditional distributionP(Aly) is considered

for all ]?e(gbo Hence for each y an apriori family ﬂ?y
6D

O

of distributions P(A]ly) 1is generated by varying P in & and
similarly a family ﬂ?oy is generatad by varying P& EE,
Now, for each y a tastfunction o (e5y) of x is

constructed such that

(SCsy)apl-ly) <& if Pe D

If Y(X) =y, the null hypothesis is rejected with probability
$(x3y) when X = x 1is observed. But this is the same as rejecting
the hypothesis with probability 6(x;Y(x)) =&(x) if X = xXe
Writing 4 (x) in the form :5(x;Y(x)) does-not,; of coursey

restrict O(x), but we have in addition

EF%(X)’Y(X) = ngg for pe (1)

So this is really the condition defining conditional testing.

Of course, we then have for P e.@%,
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ES(X) = EE(SxX)]Y) < & |

so that the test has indeed level £ .

Sometimes it is argued that if is a priori reasonable to
perform conditional testing given a very specific statistic
Y{(x)s Then a tast procedure for testing P(-]y)e Q?OY against
Plely)e @Py—gzy, is constructed. The last optimum problem is
sometimes much simpler, involving just onz parameter, namely the

one of interesto

Example 7. Xy9X, are independent and Poisson-distributed
with EX, = Aﬂ, EXy = Aga We shall test ;kzif aA1 against
: A
Ay >atye

We transform from parameters ‘A1,?5 to parameters

> A ' a1,
Ir= m ’ A= ;\1+>‘2° Thus we shall test // 2 T = 770

against 27'<;7%3 = 27;= We condition with respect to.
X = X1+X2o Given X = n the distribution of X4 is binomial
(ny7’) and we have a simple problem of testing the probability

7 in a binomial distribution. In the conditional testproblem

_—
only the parameter of interest /# is involved. The nuisance

parametar A = 31+;5 has been eliminated. Furthermorey; in this

case the variable X with respect to which we hav2 conditioned
depends only on the nuisances parameter However, this is not a

gencral property of the conditional test.

Examgle:l,x1,X2 are independent and binomially distri-

buted, respectively (01,‘32) and (n2,vl'r\'/2)° We want to test

ﬁ? < ﬁ; against /?} > ﬁé. Again by conditioning with respect

to X = X1+X2 we get a distribution which depends only on 27;/775,

and if ﬁq = ,JE, this distribution is hypergeometric. However,

in this case the distribution of X depends effectively on both
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Example 3, X1’°°°’Xn are independent normal (§,6)e A
A
test of the null-hypothesis Cg = ng against §4>l<52 is

2

wanted. Since V =‘§Xi’ Y =ZXi is a set of sufficient statistics,

we will confine ourselves to consider families of distributions
for (V,Y).

We introduce ¢ = */62 and shall thus test ( against
8'> Ke In order to obtain a test problem involving just Y (and
not ¥ ), we consider the conditional model given Y = Ex&z

) The joint distribution of V =:EXi and Z = E(Xi-Y)Q =

Y"¥T is well-known. Transforming to (V,Y) we obtain for the

joint density of (V,Y)

1 v-nZy 1 < Xn v
v e 52 e U ) 24

where g 1is the standard Gaussian density and \” -1 is the
chi-square density with n-1 degrees of freedom. Now, we know
that YA§2 is chi-square distributed with n degrees of freedom
and eccentricity A = n%?/52o Hence we can write down the
density of Y and divide (2) by it. We then obtain for the

conditional density of V given Y,

n-3
2 2
. 1 1 v 1Tv
Balviys©) = =T, = " hy Q(a?? vyl
\mp\_z ) VY \/' J— (3)
WiZV yn';

where o ) [Nj4—l)
Qlt) = > =t “
. =0 (23)% 4 n, -
J= /(5 i)

(4)

We have a test problem involving just one parameter ZT; <3 has

disappeared. Furthermore it is seen that we have a Darmois-
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Koopman class of distr butions relatively to the sufficient
satatistic V = ZXi .
The test problem is now easily solved by means of

theorem II, A.1. We find the uniformly most powerful condi-

tional test among all level ¢ - ftests, given by the rejection

region V > c(Y) , where c(y) is determined by
0

J‘ ﬁn(v;y,K)dv = € (5)

c(y)

This test could be given a different form by introducing

the Student statistic

(@)
e

T =X, [n/s (

where X = V/n  and 52 - %2/(n-1) . Since we can write
_— ‘
Jost (7)

n \/V 72!
- 1

and this is increasing with V , it is seen that the region of

T =

rejection could be written T > t(Y) , where +(Y) is given

by replacing (T,V) by (t(¥), c(Y)) din (7). Thus we have

o)
conditional Student testing given ITX.~ .

Consider now the special case with X = 0 . Then we have
2 Student test situation of testing & = 0 against & > 0 .

Under the null hypothesis T = K = 0 , the density (3) reduces

to n-3
n 2
NG 1
B, (v3y,0) = /_?) 1 Q::(1— %y)
(LY [~ T n=1 J
r(d), /a3
The conditional density of W = V/J?ﬂ given Y , is obtained

by a simple transformation from V to W , giving,



H (w) '—-—Eing— ( W2)n-3 ( y
_ Wy 2 <
" Vor' T E%~ n " )

which is independent of Y . By (7) T /ﬁ Mzﬂ Hence

Vi

Student's T = XVE/S_and £X.° are independent if £ = 0 .

We now have from (5), when % = 0
e = Pr(V>c(Y)!Y=y) = pr(V/y >c(Y) /yly =y) =
pr(V/Y >c(y)/yi¥=y) = px(V/Y>C(y)/y) = Pr(T>t(y))

Hence +t(y) = t dis independent of y and we have obtained

the ordinary Student test. Trivially it is a conditional test

given ZXi2 , 8ince T is independent of ZXiz . What is,

however, interesting is that it is the uniformly most powerful

level € test among all conditional tests given ZXiE_.

C. Unbiased and similar tests,.

As in section A we consider a situation where it is a
priori known that the observation X has a probability distri-
bution P which belongs to a class 5@ of distributions. Ve
want to test the null hypothesis that P ¢ éﬁg , Where <§a <3B
An arbitrary test is exhibited as a function 6(x) giving the
conditional probability of rejecting the null hypothesis given

that X = x . The power function of § is

B(P38) = EL6(X) = J!r("‘.(‘:)d]? (1)

e
and, as in section A, we shall require that 6 has level € ,

i.e,
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@(P;:&)f & for PE 33 (2)

In this section we shall also require that é is unbiased,

i.€o

Gpid) 2 € for peB-R (3)

O

o

The important implication cf such a requirement is given in the

following theorems.

Theorem II.C.1. Suppose that it is possible to define a

topology in & (i.e. a limit ccncept for F) such that (%(P;é)
is a continuous function c¢f P for each S, Let 395' be the
class of boundary "points" for g; according to this topology.
Then any test £ which is unbiased with level e must be similar

> ! . s .
on oy, with level &, i.es

piest) =5 for Pl “

Ny

(s 1 X
f; such that

I\

Proof: Sunpose that there exists a P< U

™ D .
®(P;&) <E. We can then find a = J?-ﬁn sufficiently close to

P such thst (5(?;5)-( 5, which vinlates (3). In the same maanner
N . “y Lo N (:) 1 - .
it is seen that (ﬁ(P;a}>g£ for P& leads tec a virlaticn

Of (2}° Q"EODO

We chall now investicate the cecnsequence cf similarity on

e
_é) when this family of distributions is of the regular Darmois-

Koopman exponential type, 1.e. $3' = SPx‘Sr 3 where
0 Lodre w
K E5Y5ix)
dp, = A7) dFgs )

. . b . .
and o contains ¢ = 0 as an inner pointe.
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Thenream I11.8.2. Ccnsider a reogular Darmois-Kcopman

exponential family of distributions {R\ - relatively to the
L e e

statistic Y(x), where ¢> has (=0 as an inner pcint. A

necessary and sufficient conditicn fcr & to be similar

ralatively to the familyy i.e.

3,

Q

3

(x)dP, = & (6)

E

S

e—

4X) =

“~J

for all ¢ ¢, is that it is a conditional test given Y; i.e.

(7)

It
1N,
)
®

Eo (8(x) 1y)

or equivalently

E(ﬂéix)!y) (8)

I
Q
W
o

Pro~f: By theorem I.A.2 we kncw that Y is sufficient

such that E (5(X)’y) ie¢ independent of y. Thus (7) and (83)

s
are squivalent. Furthermcre

E_S(X) = E E,q[é(x)‘,y—{ = E E‘!b(xﬂy’
& iR P B -

Hence it is seen that a necessary and sufficient condition for

& to be similar with level £, is that
( [ 1 s
EEs ﬁg(x) _JY_J!-C_,_ (=0 (9)

However, (7) obviously implies {(9). Vice versa, if (9) is true,

then it follows from the cocmpleteness prcperty of '{%»Y-ﬁ .
S CE G

(see theorem I.B.3) that (7) must be true, since Eo[S(X}[Y]—E:

is a function of Yo Q.EeDo
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Example. The result of a trial can be clascified
according to two factors A and B with levels AgseeesA,
and B1,o-e,Bs respectively. The results of n such trials

could then be given in a table as follows,

\\\E\
A B1 52 oo o Bs
A %99 X192 X1s X1
Ay | %04 K99 Xog Xoe
Ar Xr,] Xr2 CRCIEC) er \(rn
qu \<°2 500 X°S n
Thus Xij is the number cf times the levels Ai and Bj
appear together in a trial. We define
X = Z (. = ;;.
X . : Xiys X, 5 i_xij (10)
and have
— < el
Z. X.I.J = L Xl° :ZX°J = n (11)
i4] 1 J

We want to test if A and B are "independent" factors. e shall
consider two different meanings of this concept, according as we

use model I and model II helowe.

Model I {Independence testing). We have one multinomial

trial sequance of n independent trials. In each trial we have

(a. 0 B.) = p..
Pri{A BJ) Py ; . (12)

and hence

= p, . {(13)
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Thus we have

- ' 8 %11 Xrs
Pr[ M . = x--)] = P cenoaD (14)
i,3 ij 1] XqqieeeX, o2 1 TS
¢
(whera ixij} is a set of natural numbers with Zf xij =n). We
ie]

want to test if A and B are stochastically independenty, i-.e.
if

pij = P3. paj (15)

Obviously the assumption cf theorem 1 is fulfilled in this case
and thus unbiasednecss leads to similarity under the null-
hypothesis (since i?; =q§g Jo In crder to see if the assumption
of theorem 2 is fulfilled, we write (14) when (15) is true as

|

T .
2 x: log p, + x, 109 p,:
n_i=1 * 1 j=1 J J

dP = (rs) e dP0

Y

where P and Pc are the joint probability distributions of

and Pis = L

all X;. respectively when Pij = Pj.° P —c°

J °J
Ncwy this does not immediately show that we have a regular
Darmois-Koopman class of distributicnsy since Zbi. =1y 1i.ee.
there is a functional relationship between the parameters
appearing in the exponent. Howevery, by means of {11) we get
r-1 Ps ., s=-1 D,
> x;.log ;;l*- * 2 x,slog 5—'1
n_i=1 Te j=1 °g
dP = (rs propos) e J dPO (16)
which is obviously of the form (5) with the assumpticn ¢f theorem
2 fulfilled. We have Y = (X1G,X2°7°°°3Xr_1°9X°17X.27°°°9X=5_1)

in this cases. Thus we are led to crnditional t=sting civen all

marginals in the table above.



lodel II (Homogenity testing). Ve have r multinomial

trial sequences, called A1,...,Ar respectively. In sequence

A, there are n, = X, triale and in each trial the probabili-
ties of B1,...,Bs are  Qiqseeesdig s respectively; ? qij =1
A1l n trials are independent., We find
[ fg\ n.. Xsq X.
PI’ ﬂ (X. = X) = = o Q-l --cq-ls (17)
i,j 13 ij ] iz FiqleeeXigl i1 is
when {x..} is a set of natural numbers with ¥ x.. = n. for
1] j 1] 1

each i ). The null hypothesis is to the effect that the =

trial sequences are identicel; i.e.

q1j CI qrj for all (18)
From (17) and (18) we get, with Ui = qj s
g-1 Q.
_Z1x;j log al
ap = (sqs)n ed”™ S dP (19)

where P and PO are the joint probability distributions of
. 1 .
all Xij respectively when qij = qj and qij =3 - It is

seen that the assumptions of thecorems 1 and 2 are true with

Y = (X.1,...9X.s_1) . Thus we are again led to conditional

testing given the marginals,

We shall find the conditional distributions encountered
above under models I and II respectively. Under the nullhypo-
thesis, we have for the joint distribution of the marginals, in

the case of model II,

X b'e
. ~ ni o1 *S
Pr[ S(X.J - X.J)] - IC.'IIGQQ}C.Sl q1 ‘.'qs (20)
Hence, dividing (17) (with qij = qj) by (20) we get for the

conditional elementary probability functicn



r n.!
i
! i X
l=1 110.00 iso
h(x) = n! ‘
X 1£ ...A. l'
(when {xi.} is a set of natural numbers with ¥ X..= X .
J i 1J °J
for all j , ?x&j==ni for all i), which is the multivari-

able hypergeometric distribution.

In the case of model I, we first find the conditional
distribution given the marginals (X1.,.,.,Xr.) = (n1,...9nr)

by dividing (14) by

ni *1. Tr.
X ] x Vp1. "'pr.
1'00.. I...
We then obtain (17)with q = Qg. = p i.e., model II is

1] J 3’

obtained by conditioning on X1,?...,X . Conditioning again

I‘O

with respect to X'1,...,X. s, We cbtain, as shown above, the

s
hypergeometric distribution (21). Thus both under model I and

model II, the unbiasedness of the test & implies that

E S(x)h(x) = ¢ (22)

(for each possible set of marginals)., The adjustment to level <

should be made by means of the hypergeometric distribution.

D. Unbiased one-sided tests. Neyman-Pearsons fundamental
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Ve shall consider how to find unbiased tests which are
power optimal relatively to a certain alternative. The situa-
tion and notations are the same as those described in connec-

P

tion with theorem II. C.Z2.
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Theorem II, D.1, We make the same assumptions as in

theorem II.B.2., Let P ¢ 5@_ 32 be a specific alternative and
assume that P 1is absolutely continuous with respect to the

Il
distributions under JFZ , such that 4P = i‘(x)dP0 . Let

éo(x) be such that

8 (x) = 1 if £(x) > e(¥(x)) (1)
;

5,(x) = 0 if £(x) < e(¥(x))

B (5, (¥)!Y] = ¢ 2)

Then 50 is the most powerful test relatively to the alterna-
tive P amcong all similar tests with level e , If it is un-

biased then it is also most powerful among all unbiased tests.

Proof: The last statement follows from the first and the

fact that unbiasedness implies similarity (theorem II.C.1).
Since similarity implies conditional testing (theorem II.C.2)

we know that if 6 is similar, then

B [8(X)1Y] = ¢ (3)

Consider now the power of & under P .

Bps(X) = E 6(X)E(X) = E B [8(X)£(X)!Y] (4)
It follows that we can maximize
B [6(X)£(X)]Y] (5)

with respect to & under the side condition (3). By Neyman-
Pearson's lemma we are then led to (1) as a sufficient condition
for optimality. More precisely it follows (as in the proof of

Neyman-Pearson's lemma) from (2), (3) and (4) that



Epd, (X -EoSx) = Eg| (8, ()-500) L (x)-e (Y (x)))] (6)

From (1) it now follows that the "integrand" on the right hand
side is > 0. Hence Epéo(x):g EP8(X), 0.E<Ds

—

Example 1. The components of X = (X 5¢.03X ,Z2) are
indepasndent. All Xj are ncrmal (0,%) and 2/52 is eccentric
chi-square distributed with m degrees of freedom and eccen-
tricity A . Aand 6 are the unkncwn parameters. We want to
test the nullhypothesis A= 0.

A priori the joint density of X1,ooo,xn,z can be
written

_n 452 \

27) 252 e 2 e 28 Ty (2421 (122 (7)

where Y:n is the central chi-square density with m degrees cof

freedom and

®» J

(%)
A (t) =/(3) jzo :

. m .
371G +3)

e leot P, be the probability distribution when € = 1, A= 0.
We then cet for the distributien P of X under an arbitrary

alternative

an (V2757 )3 (8)

Thus, if A = 0 we have a Darmois-Koopman family of distri-
butions with Y = ZX12+ZD It is easily fcound in the general case
that the powerfunction of a test must be a continuous function

of )‘o Let us now maximize the power relatively to (A,¢) with

A>0. From fix) >clvix)) with £ =9/dp_ given by (8)



we get
At 1 1., 2
D) (= ==) 12X, “+Z)
6, 12/6%) > 2™ o 247 20T o5 %) =
= C1 (2‘:)(124'2)

Since a is increasing, this inequality could bhe written

z > K('5x12+z) (9)

We chouse «50 =1 if and only if (9) is true, and 50 =0
octherwise. The function K{y) must be adjusted such that the
conditional level is 2;5 i.eo such that (2) is true. We then
need the conditional distribution ¢f Z agiven Y = ZX12+Z when
A= 0, S= 1. From the fact that Z and U =‘§_Xj2 have joint

density “Vm(z)°75(u), we find the conditional density of Z

given Y equal to

=-1 5 -
e 37-3)‘ (1- %)7 (0 <y < z) (10)
B(is'ﬁ)
Thus it is seen that the conditional density of W = Z/Y given
Y is,
m n
L 2.y
’) - 1 2 2 [ - < \
Zn, W) " (1-w) 0<w <1) (11)
B\72_92)

iee W = Z/Y and Y are independent. From (2) we now get

£= Eolfio(x)iv =y| =Pz >KVY =y) = pi§ > MUy = y) =
= p > &l (12)

(w)dw = £ - We reject the
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2

+Z), le@a

hypsthesis if Z >'c(ZXi

_Z_n_h_c _
F= ¥X Zm o m T-¢c - fm,n ' (13)
i
where f is the 1-.. fractile of the Fisher distribution

myn
with m and n degrees of freedom. The test is independent of

th2 alternative from which we started. Hence Ep50(X)E: Epé&X)
for any P ¢ {3’)0 and for any o(X) which is unbiased with level
. Letting in particular o(x) =5, we get Epéb(x)ﬁ >

Thus éo is unbiased and it is the uniformly most powerful

amcng all unhiased testse.

Remark: Undar an arbitrary (A,€), denote the distribution of

F by Km’n(f;%)o (It is independ:nt of o .) Thus the power of

N a_ )
@" L Km,n(fm,n”)

where

Km,n(fm,n5o) = 1-&

Consider now a test 60‘ with r=jection region

¢ n' 2
n . .
A 5, > f .
2T KT 2 myn*
i=1

where nf < n. The power (b7 of this test is less than (3 ,
according to what we hav: just proved. From this we get the

fellowing inequality for the eccentric Fisher distribution

K (f ’ni;l) > Km,n(fm,n;,\) (14)

if n¥ < ne This is a useful inequality when discussing designs
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of experiments.,
We shall now consider Darmois-Koopman alternatives and

obtain the very famous result by Neyman and Pearson (1933).

Theorem II, D.,2. Neyman-Pearson's fundamental theorem

Let it be a priori known that X has a distribution PT 0
. 3

given by 5
.§1Tij(X)+pV(X)
dPT,p = A(T,p)ed” ap, (15)
where T varies in w , and p varies in an interval [A,B]
where A <O and B >0 . Assume that 71 = 0 1is an inner
point of w . For testing the null-hypothesis p < 0 , there
is a uniformly most powerful unbiased level e test

5o(X) = ¥(V(X),¥(X)) ; where

i(v,y) =1 if v > c(y)
v(vyy) = v(y) 1if v = c(y) (16)
p(v,y) = 0O if v < c(y)

and where c(y) and vy(y) are given by Eo[w(V,Y)]Y] = e .

Hence

1-F(e(y)1y)+v(y)[Pe(y) ly)-Ple(y)-0ly)] = ¢ (17)

where PF(vly) = PO(V < viv = y) .

The test is also uniformly least powerful relatively to
values of p < 0 among all unbiased level ¢ tests, i,e. the
chance of false rejection is less than for any other unbiased
test,

Proof: Consgider first testing p =0, T € w against a
particular alternative (p4,74) , where o, >0 and 74 € w .

By applying (1) we then get the rejection region
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3
-7, Y. (X)
0,V 3173

e | > C(Y(X))A(T4,04) e 1 = ¢ (¥(X)) ,

which is equivalent to V > ¢(Y(X)) . Hence we obtain from
theorem 1, equations (16) and (17). The existence of such a
test &, i.e, of a c(y) and a vy(y) , is easily seen from
equation (17)., Since the test 8, 1s independent of (p1,T1)
it is the uniformly most powerful test among all similar tests.

Hence EpsTéo(X) > E'o TG(X) for all tests for which Eo,Té(X)ze'

J

In particular if 5(X) is the trivial test &(X) = e , then

(X) > B e =¢ . Thus & is

(since it is similar) E
0,7 0

p,Téo
unbiased. Since furthermore any unbiased § is similar, we

have proved that éo is the uniformly most powerful unbiased

test for the hypothesis o = 0 .

Consider now minimizing 3 TS(X) for p < 0 subject
oy

to similarity, i.e. E (X) = ¢ . This is the same as maxi-

0,75
mizing Ep T(1-5(X)) with respect to 1-8 subject to

EO T(1-6(X)) = 1-¢ ., By means of theorem 1, we obtain in the
9

same manner as above that 1-60 =1, i.e, 60 =0, if

eDV > ¢ (Y) , i.e. V < c(Y) , etc., where EO(1-5O§Y) = 1-¢ ,
i.e. EO[SO!Y} = ¢ ., Hence we have precisely the same 60 as
above., This 50 is the uniformly least powerful for p < O
among all similar tests. Hence comparing again 60 with the
trivial test & =z ¢ , we get Ep,Téo(X) <e for p <0 . Thus

60 really has level ¢ relatively to the null-hypothesis o0 <0.

(The measurability of c(y) and vy(y) as defined by (17)
needs proof. We leave out this annoying detail, since it is
obvious in each particular application.)

Example 2. Consider the example of II.C with model I and

r =85 =2 , Thus we have a nmultinomial trial sequence with
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two factorsy, A and B, each with two levels, A, A" . and

" respectively. The definition of the relevant probabili-

By, B
ties and the observed result of n trials ¢an be summarized

in the following tables

B B B B®
# *
A P o P oo A W N-W N
L n-"L n

Thus L = V+W, M+N = n. The joint elementary probability

function of V, M-V, Wy N-W isc

ni V M-V w N=W
VI (M-V)iwe (N-wJ)s P11 P2 Poq Poo (13)

We chall test independencz, i.e. the null hypothesis
P19 = (Pgq*Py) (Pyq¥eq) (19)
which is equivalent to

- ?
Pqq Poo = Pig Poy (19)

against the one sided alternative that there is “positive"

dependence bhetween A and B,

P1q > (Pyq¥Pyo) tPyq¥pyq) (20)

i.e. in the long
e A and B occur together more often than would be the

case if they were independent. (20) is equivalent to

Pyq Po2 > Pqy Poy (20)*
Now, denote thz measur: cerresponding to (18) by P, and the
measure corresponding ¢ P11 = P1p = Ppq = Pop = % by PO.
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Then (13) can he written

M2, +LT o+
aF = (4py,) e T2 ap (21)
wherea
~ P12 > P21 - P11 P22
. = log —=, <. = log y = log ——== (22)
L Ppo” 2 L P10 Ppq

Thusy we shall test ¢= 0 against j?-> Oy and accecrding to

i

theorem 1 we shall cendition with respect te (M,L). We arc

led to rejecting when

V = (number of A (i B)‘>~c {23)

and rejection with probability Nif Vo= cy where

M .
;} flv)+Yfic) =2 (24)
cF
and (M\,n—M)
i\
flv) = k=¥ (25)
()

The test is the uniformly mcst powaerful uanbiased test. This is

also true akout the same test in the case of homcgenity testing,
where there are two bincmial trial sequenc=s with M and N
trials. respectivaly.

Example 3. X,3X5se003X,  ar:z indipendent normal (?,g)o
We shall test

?,5’02 (26)

against % >Kﬁ2o {See the example of section B.) We hav=e
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- 2 Lt
>y, :
3 f "x 1 * '?Z'}ll
dP = A=z dPO {27)
whers P cecrrespends to a general (3,6), P. corresponds
b :
to (Ca) = \Ky1), 7= % - —15, Q= %% - Ko Honce we shall test
o’ 2 F
§2 0 against § > 0. We are led to ccnditincnal testing

givan Y’z:EXiz and we obtaln the test developped in the

example in section A. Thus the conditional Student test

2

given ‘Exi is the uniformly most powerful unbiased test. In

particular this is the cacse when K = 0, 1in which case we get

the ordinary Student test, since T and ,Exiz are inde-

pendent when S = 0.

Example_4. quooo,Xn are independent normal (fgd)o

We shall test &=4

. 2gainst 6’>2£o We find

T . 2
rpx.+0T%

Tx,
dP = Ae YY1 dP, (28)

where P 1s the measure corresponding to an arbitrary (ggﬁﬁ

and PO ccrresponds to (ggé) = (0,6;)5 Furthermore
- o
y = (N g 77 = *4420 By theorem 2 we cshall reject if
_ ] ) { 4
200 25
and only if
2%:2 > c(Fx.) (29)
i ks |

where c¢(y) should be determined such that the conditional

srobability of ({29) given ,in =y 1is £ . Subtracting

%(Zki)Q on both sides of (29) we ohtain
R =23 N
2

Now, since Z(X_ X) and ZX& are independent we conclude

i

that ¢, does nct depend on 2 X,

i and that we can adjust C4
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to an unconditional level Eﬁ, hencs Cq = zg;z, where 2z 1is
the 1-4 fractile c¢f the chi-square distribution with n-1

degrees of freedom. Hencs the test with rejection region

2 X,

T2 o L, 2
l-/\) % Z"-; ‘ (30)

is the uniformly most powerful unbiased test.

We have seen in several examples that it was possible
to change a conditional test into an unconditiocnal one by
transforming the variable V into a new variable which is
indep=ndent of Y. The advantage of this was obvious. We shall
now state and prove a theorem which is useful when trying to
find such transfcrmaticns and which explains why such trans;

formations often exist-.

Theoram 110903(Basu)o Lat 35= {P% be a class of

probability measures and let Y be a sufficient and complets
statistic relatively to @ (ioeo<§?Y-1 = ng-1§ is a complete
class of measures). Suppose that the distribution of W 1is

the same for all Pe . Then Y and W are stochastically

independent for all PeiP.

Prcof: Let {fiW) be an arbitrary function for which

Epf(w) exists for all Peé% . We then have for all P and

. ey
= o 1n "

-

cp = Epf{W) = ELE

po(W)]{] = EpEpo[f(w)fgj

sinca Y is sufficient. Hrowevar, Ce is independent nf P

since the distributien of W 1is independent of P. Frem



it then follows that

—~

EPCLf (W) iy] = of

a.e. In particular, we then get if f is the indicator

function ¢f a set D 1in the W-space,

e; =P (DIY) = Pr(we DJy)
D

But this proves the theorem, since ey does not depend cn Yo
D

Qe-EoDs

Examples. Let X,500¢,X  be independent normal (8y¢) .

Consider the class of distributions for (X190093Xn) obiained

2 X
by varying g and keeping ¢ fixed. In that case X = —Ei is

seen tc be complatz and sufficient. But ZKXj-Y)z has a
distribution which is independent of % 3 Since we can write
;(Xj—i)z = ZXYj-7}2, where Y, = Xj-<§ is normal (0,&). Hence
X, Z(Xj?S(')2 are independent.

Suppose now that %,: 0  and consider the class obtained

by varying & . In that case .ZX.2 is crmplete and sufficiente.

1
tvARtaral o3 | Y — e -—""
On the other hand T = &8 o X yiaiy) = L¥nla=1)
o f w2 R
X, 2 (3, -%) VE(y,-Y)
where Y, = Y/s is nrrmal  (0,1). Henca the distribution of

T is independent of ¢ and it follows that T and Exiz are

independent if .é = 0o

Let 21/52 and Z21f2 be independent and chi-square
distributed with 0, and Do degrees of freedom. Consider the
class of distributions of (Z,,Z,) obtained by varying <, It

is seen that Z,]+Z2 is complete and sufficient, where as
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Z, n
P = '2‘1‘ ﬁ-?- has a distribution which is independent of o .
o By

Hence Fisher's statistic and Z1+Z2 , the sum of the numerator

n
and denominator in IFﬁl ,_are independent,
5 i

The independence of a regression coefficient and the resi-

dual sum square can also be proved by means of Basu's theorem.

Furthermore in the binormal case, the empirical correlation
coefficient is independent of the means and empirical variances
of the two variables if the theoretical correlation coefficient
is 0 .

The way of applying Basu's theorem to situations described
in theorem 2, is as follows.

Suppose that we obtain a rejection region of the form

V > c(Y) (non-randomized). Then one should try to find a

v

W = T(V,Y) which, (i) for each Y is an increasing function
of Vv, (ii) has a distribution independent of 1 when © =0.
In that case the uniformly most powerful unbiased test takes

the form W > c, where c¢, is such that PO(W > c1) = ¢ .

o e o D G0 T D R e GO0 D e G B G D A B D e G S R e S S B oo a9

(i) Statement_of_ the result_to_be proved. We shall apply

theorem II.D.2 +to show that in linear normal situations the

one-sided Student tests are uniformly most powerful unbiased

tests.

Assume that the observations X1,X27...,Xn are independent

normal with variance o and

E. = EX. = T a..8. (p <n) (1)

where



1Y
Y 8.c.,.. =0 s k= 1,260, <
j=1k‘] ik s PR y I P (2)
and we want to test
g B <0 inst E B
.C. agains B.c. >

Sk I 28505 > 0 5)

J J
We write also C4 = Cipyq and assume that a = {aij} and

C . a ® ‘ o 0@

{ .Jl}j=1929-o- P;1=1929o.. r+1 re of full rank 9 Sl’ Bp

are the unknown parameters, a.. , ¢ are known,

1J
We shall include the case when there are no relations (2)

ik

(r=0). Note that we have included the situation where

?aijgj =0 i=1,2,... p ; and we want to test Eaigj <0 .
We then only set a =1 ;| i.e, ﬁXi = éi = Bi .

Typical situations are such as the two sample Student
hypothesis, the testing that a main treatments effect a1<J),etc.
The standard test applied in such situations could conve-
niently be described as follows, We find 81,...,§p by mini-
mizing
+ 2 )

i'?i k.
1 k= J

2423

i ma

153031{ (4)

Wer., %, 81,...,Bp 5 k1,...,kr . The estimator S of o is

now given by

2 1 IR
S = n—:-b‘:r— Z(Xi- J:.Z_']ale]r)J) ° (5)

A A
BiseossB are known to be linear functions of X1,..,,Xn, hence

A
var 8, = Kjoz , (6)
defining X. . The Student test with level € now consists

in stating Zejcj > 0 if and only if

3 2k s = (7)
Biey /ey K38 ¢

M

j=1
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where t 1is the 1-¢ fractile of the Student distribution
with p-p+r degrees of freedom. We shall show that this

test has the stated optimum prcperty.

(1i) Reformulation of the result to _be proved. Let

(O1k""’cpk) s k =1r+2,...,p Dbe such that (C1k""’cpk) ;

k=1,2,.,. p are linearly independent, Define
p

Thus §£ =0; k=1,2,,.0,r and we shall test
8.9 S0 against B4 >0 (9)

We write (1) and (8) , & = EX = ap and 3 =c'g , respectively,

and get

-]~ 1Y ~
£ = EX = a(c") 1§ = ¥ g.8.

j=r+1 44
where we have introduced Brpqsees gp . We now see that (7)
could be written
A

B / AS > t

A
where B is the least square estimator of B.. and
var § = A2~2
i = T,

Changing the notations and changing the meaning of Bj we

write the above

q_
é:EX:g,"’, = ng. N (10)
j=14 4

where we shall test
B4 <0 against B8, >0, (11)

and where ¢q = p-TI , g1,.,.,gq are n-dimensional vectors and
X 1is an n-dimensional vector with components X1,...,Xn .

The test criterion (7) may now be written
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T = f, /AS >t | (12)
where @1 is the least square estimator of B1 s

var é\1 = 14962 (13)
and t 1is the 1-¢ fractile of the Student distribution with
n-q degrees of freedom. It is well known that A2 is the

leading element in the matrix (g’g)"1 ;

(iii) Reduction of the situation to canonical form.

A e om0 G D D D TR Red G D e Con e D AXD GAD G S GED A GeD L D Gmn m -0 0D WD emn AN Con e Em) G0n G G

Let now H denote the "boundary" hypothesis By = 0 and let
Q, and QH be respectively the minimum of Q = Z(Xj— gj)z a
priori and under H . We then know (see Erling Sverdrup: "Laws
and chance variations" wvol, II, p.211=-215 eq. 7.23 and T7.27 ;

"Lov og tilfeldighet" bind II p.191-195, lign (23) og (27))

that W2
G - Q= By /45 (14)
2 s A2
= (n- = - . B 1
Q, = (n-q)8 351(}(3 jf1g1:; Bs) (15)
% = (n-) (- Q,)/ Q, (16)

where {gij} =g .

Let now ¢ be such that c'g'gec = I and introduce

v = c_1B , gc =b . Then vy has least square estimator
A -14
Yy =c 8., We get

9

EX = 3= g8 = bc™ 8= by = _21ijj (17)
J:

. 1
b'b =1 , 1i.e., bj bj = 6ij (18)
where the definition of bj is obvious. TFrom B = cy it is

seen that the hypothesis (11) can now be written
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o)

By = j§1c1jyj <0 (19)

We now define bq+1"“’bn such that B = (b1""’bn) is
orthogonal and we introduce Y by
n
X = BY = i§1biYi (20)

We find trom (20) and (17) that

y
[1
EY:B‘EX:JYq
\ 0
0
\
i.e
BY, = vy ; 1= T,2,000 a3 BY; =03 i=a+T,..n (21)

Finally we transform from Y +to Z orthogonally by means of

2. = g .
17 5484575 5 3= 12,0050
Zj_:Yi ; j "—'Q_+1,...,1’l
where e1j = 01j (and of course {éij} is orthogonal) . We

introduce EZi = Ci and obtain the following canonical form

of our situation

Zyyeeeyly, are independent normal, var 2, = 02 » B2 = (.,

[V, s ez

i=12,...50 3 EZ; =03 1i=ga+l,.,.n. To test that

et

€4 =0 against ¢ > 0.

(iv) Construction of the optimum test. Relatively to

Z1""’Zn , let now P denote the probability measure a priori

and P_  the probability measure when o = 1 , {4 =ce¢= Cq =0 .



We then have

22, % Y2740 (22)
o - 7,
1 J J=1 02 J 0

1
aP = exp| (4 -—15)
o J

no
s

From the fundamental Neyman-Pearson theorem (II.D.2) we see
that the uniformly most powerful unbiased test of €1 £ 0 con-

sists in rejecting whenever 7, > c(Y) , where

P L2, > c(Y)]Y] = ¢ (23)

and where

250 Taen B

This Y is in a one-to-one correspondcnce with

2 B9
Y' = (2.4 S 25, %nuid
( 1 q—+1 J S 29 9 q)

Hence Y may be replaced by Y' in (23). Now it is seen that

(ZZ""°Zq) is independent of Z, and
n ]
Y = Z,I2 + T ng = Z12 +U (24)
Jj=a-+1

Hence the conditioningzg in (23) could be made with respect to
Y  and c(Y) would depend on Y!: only through Y . Thus Y
may be replaced by Y  in (23). We intvoduce W = Z1/J§;‘ and
s | f
the test amounts to rejection whenever W > K(YO) = c(YO)/QfO

where K(YO) is given by

p (W > K(EO)§YO) = ¢ (25)

Let us now consider the situation for any specification
consistent with H . Then VW has a distribution which is inde-
pendent of all the parameters gzg...,gq,c , Where as

(Yo,zzp...,zq) is a sufficient and complete set of statistics.



By Basu's theorem (II.D.3) we then kmow that W and (Y ,Z,,...,%
0 29 9
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Q)
are independent, hence W and Y are independent, It follows

O

that K(YO) = K independent of YO is determined by
PO(W >K) = e . Introducing
[ 1 n -
T =2 n-d/fu0 , U= 25, (26)
0 { v grl 3
this is equivalent to PO(TO > t) = ¢ . Hence we shall reject
when To >t where t is the 1-¢ fractile of the Student

distribution with n-q degrees of freedom,

This completes the construction of the optimum test.

(v) Identification of the optimum constructed test with the

o > = D o o G e D o D G G A G NP G ED S owo SO w0 @0 M c C U S S wE =D O wes WO GID CID WD 05 M S D D D SN0 oms w655 GN) S D e ems D ew e

standard test., The standard test was described in (i), eq. (7)
and was proved to be equivalent to (12) in (iii). Thus we have
to show that our optimum test is equivalent to (12), where T
is also given by (16).
Now we have from the canonical form in (iii),
n o,
Q = q§1Z; U, Q-0 =2 (27)

Comparing with (14) and (15) we obtain
U = (n-q)8° (28)

A .
and 7, = & 51/’A . But then (, =% 51/’A . Now (¢, <0 1is

equivalent to 61 < 0 , hence we nust have + sign, i.€,

7, = By /4 (29)

Introducing (28) and (29) in (26), we see that (26) is equiva-

lent to (12).
Q.E.D.
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F. Performance unbiased three-=decision tests.
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We have above only considered situations where there is
a choice between two decisions, either rejecting the null
hypothesis or saying nothing. We shall below consider an
important type of three-decision problems. However, first we
shall make some remarks about a general type of decision
situations.

We shall consider a situation where it is a priori known

that the observed random variable X has a distribution
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P which is contained in a class % of distributions. The
purpose of the investigation is defined by means of a decision
space D, where the points d in D are the possible results
of the investigation. Very cften the decisicns d could be

. PN . a7 P (e . .
identifizd with a statement P& bé whera '53:: &, This is the

case in classical test problems where GJ = 5 when d =
"reject", where as E?d =% if d = "do not reJect"° Note that

the differant ﬁh may be overlapping and cne §Sh may even be
a subset of ancther.
In order to define a randomized statistical procedure,
we introduce a sigmafield Qﬁ% in D, which contains all one-
point sets Ed%o An arbitrary randomized procedure W(DIX)
gives the conditional probability cf choosing a d & D given
X, for all ﬁéFwiDo (Of course, W is measurable as a function
of X for each Dy, and a measure as a function of D for
each X.) The unconditional probability of chcosing a d in
D is now

UDP‘;L g (1)

This is the performance functicn. The eoffort of a statistician

should be aimed at finding a Y which makes (& "nice".
Y/hen we are chocsing a decision function @, we must

consider the possible errcnsous intarpretaticns. These may bhe

of twec kinds. Fer any (P,d)s, the decisicn d may, if it is

erroneous, either be considered to be a false statement (error

of type I) or an error by default (error of type II, "unnlatel-

sessynd" ). Thus error of type II implies failing to discover
an interesting feature of Po

We make a false statement if we state d,; when i$d
does not cover P. Let Df{P) be the class of all d & D

which are false relative to P. The level of a procedure is
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e if

piot(p) W < 8 (2)

for all P. 1In order to definz performance unbiasedness we
would have to exclude d, = "no statement" (if there is such a

d in D). A procedure is performance unbiased, if

e

p(p-0f (P)-{d

fd 5l iz £ (3)

for all P. This requirement gives a minimal safeguard against
errors hy default. One might try to exclude some other d be=
sides d0 in (3). In particular one might consider "strictest
statements" under P. d 1is a strictest statement under P if

Pe ®, and there i 4 such that 2 & & a ¥, cd
& &g an ere 1s nc dy such tha P E& d, an "d1\“ d°

Under appropriate cempactness precperties abocut D this would
be a statisticallv meaningful ccncept. Let D°(P) be the class
of strictest statements corresspondincg to P. It is clear that

P(DS(P)]¢0 shculd be largey but it would in most cases be

AV

asking too much to r=quire that it should be o . (Seg,
however, the three-decision prchlems treated helow.)
An example of a procedure satisfying (2) is Scheffé’®s

multinle comparisecn procedurae.

Let us ncw consider a situation where we are interested
in a parameter ¥ =7 (P). Ve have a choice between the three

decisions,

dy = state that § = 0; d, = state that ¢ Z 0;

d3 = make no inferenca.
We define in this case the statistical methed & by gui(x) =

the cnnditicnal probability cf cheosing d.l given X;

i = 1,2,30 Thus
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i

The perfermance function of 1/ is now

Pr{choosing di) = EpVﬁ‘X) (5)

considered as a function of i = 1,2,3 and P ¢ ® for given
]
w.

In this case it is natural tc require,

Cotimum reguirement A

(i) The leval shculd be ¢, i.e. the probabilities of

falsely stating § <0 and ¥ Z 0 should be at most & .

EpY (X) € for @(P) >0
) - J (6)
EgfhiX) Z¢ for ¢(P) <O

(ii). The probabilities of correct statements should

be at least £ .

-

E.4 (X) 2 § for ©(P)< 0
P (7)
EPSLQ’\X) > ¢ for _gP(P) >0

This is the rzquirement of performance unbiasedness.

(iii). Among all {J satisfying (4), (6) and (7) we
want to find one {// which maximizes EP(Q(X) fer 57(P) < 0
and maximizes E W,(X) for £p) > o.

It is seen that if we disregard (4) we have really two
separate problems of finding unifcormly most pecwerful unbiased
tests ¢ﬁ and 972 raspectively. If we sclve these problems
and (hopefully) obtain %ﬁ+}g <1 for all x, then we may set
%@ = 1-9%-?5, and we have obtained a procedure which uniformly

maximizes the performance among all performance unbiased level

£ procedurese.
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The above could be taken as an intarpretation of what
we ars r=ally intzrested in when we want to test if :? is
"significantly" different from O.

Another well-known (classical) intzrprstation is the
follcwina. We want to decide if P # 0 or nct. Let the test

é he definad by <§(X) = the conditional probability of stating
that {4 0 given X. Then we want, |
Uotilmum raguirement B

(i) Ep8lXx) £ € for g(P) =0

(ii). Ep(x) 2 g for p(P)% O

(iii). We want to maximize EPA(X) for ¢(P) % 0
subject to (i) and {(ii).

A method ¢ could be compared with a method V) since
Vﬁ+¢é is the conditional probability of rejecting =0
under . Thus,; any three-decisicn method 99 is also a test cof
significance with test function ‘8 = ¥%+4§o On the other hand,
any é combined with scme "go~d" pecint estimator \5; would give
raise to a three-decision function W; since it is "understood"
that, provided \3 is significantly different from 0, then we
should state that §<o0 if§< O and that £ >0 if:Q\ > 0.
Thus ¥ (X) = 8(x)1§<0, Yx) = é(xn§> or where I g
and {é};,o are indicator functions for the sets (§ <0)
and B? >0}, respectively. (We assume here, for the sake of
cenvenience, that Pr(d$¥ 0) = 0),

Under optimum requirement 5 we are interested in
making

Eps(X) = EPé(X)Ié\ < O+ Epg{X}I\Sg\) 0 (8)

large. However, for @€ (P) < 0 it is only the first term we

want larga, and for wg(P)4> 0, it is only the second term which
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we want large. Thus, it seems, thal in mnst circumstances

.

the classical optimum requirement B is inadequata.

Example 1. X,5ee0,X ~ are independent ncrmal (g,c)o

We want to decide if g .g >0 or if nc statement should

be made. Regarding this as two separate testincs,; applied

<0,

simultaneously, we cbtain from example 3 of section II.C that
A
we chould stata % <0, § >0 or make no statement, according

e
[P~

o S/, oz S, — 1T S, p—
Ko<-ty_g /\Vn, X >t1_8 /s 1K< t1_s/\( 0 (9)
~ wiere
7 _ 15 ) 2 _ Ty 52
X =q2X;  (n=1)8% = 2 (x5-X)%,

and t,_s 1s the 1-& fractile in the Student distribution
with n-1 degrees of freedom. This method has the uniformly

laroest performance among all performance unbiased methods

vith level €. Rejecting §£=0 if [X] >t1_85/v“n"' is the

uniformly mcst powerful unbiased level 2% testy, as we shall

see later. Since X is the "natural" estimate of § y we are

N
i

‘led to the same method whether we use optimum requirsment A

cr B aboves

However, the following example shows that this is not

always the case,

Example 2. X,y0203X  are independent normal (g,cdo

‘e want to decide if <3'<ob, 0’7’05 cr no statement should he

made. We obtain as in example 1, by using the result of

example 4 in section II.C, that we should state that O‘<105 or
. 3 2 . 1.2 c:72

a >(TO accerding as {(n-1)S™ =< 2%, or > 29.5% where

2 is the &-fractile of the chi-square distribution with
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n-1 deorees of freedom. Utherwice we should state nothing.

fiancs w2 have aoain chtained a performance optimum taste

Hrwevery as we shall see below, the unhisged power cplinum

o ' . . . . P Lol 2

tast would consist in rejecting o = oL if {157 < z°<%
' 2

or >z" o9, where z' and z" are detsrmined by

- =7 . o .
/n_1iz‘)+1— 5_1(2") =28, z'Y _4(2%) = 2"y _,(z"} Here/fZ/

an¢ ¥, are respectively the cumulative prehability function

Y
and the probability density of the chi-square distribution with
~ decrees of freedom. Now, combining this with the fact that
52 is an unbiased estimate of 52, we are led to stating

2 2 or > Z"€g2o

¢ <@ or & > S, according as (n-1)S° < 2966
This last method is hased cn the requirement that
Pr(stating o < 66)+Pr(stating s > 65) > 28, and that this
expression should be maximized for 6‘#2559 However, as we
have pointed cut above in a general context, if & < 66 it 1is
only the first term we want to maximize, and if & >'o6 it 1is

only the last term we want to maximize.

G, Unbiased two-sided tests.

We chall consider the same family of distributions
'as in section II.C, but we are now interasted in testing }9 =0

“against two-sided alternatives\j’ﬁé 0.

Theorem II.E.1. Let it be a priori known that X has

a distribution Pf{f given by

s?~

: LY - +

ba JYJ(x) fN(X)

A j=1
dPg_,f = A(f,y)e

dp, (1)



-§{9-
whers € w and ¢ beloncs to an interval coataining 0 as

an innsr point. Assume also that = 0 ig an inner point of
(e For testing the nullhypothesis ¢ = against S?HE O,
theAuniformly m:st powerful unbiased leval §£- tast is

é 9D\V(X Y{X))y whers

yy(v,y) =1 if v < c1(y) cr > c2(y),
Wlvyy) =7 ly) if v =c.ly); i = 1,25 (2)

Wlvay) =0 if coly) € v <cyly),

and where cq(y), c2(y), T](y), Té(y) are determined such that

E[é(X =L,

b

Eq[v(x 1\/] gto[v(x)l\g,

(3)

i.e. such that

F(c140)+1—Flc2)¥Y1LF(c1)—F(c1-Oz]¥Y;[}(c2)—F(c2—O;] =

vdF {v) +V c [F(c )=F( OE} +Y2c2[P(c2)-F{c2~OT[ =

o »
& { var(v) (4)

(&9

~+0

Here F(v) = PO(V < V’Y = vy) and c; = ci(y), Yi = Ti(y)o

Proof: It can, in fact, be proved that we can always

determine ci(y), Y}(y) from (4). Thus, there is always a
uniformly most powerful test éo' We shall content ourselves

with proving that if a ) can be found satisfying (4), then

0
it is the uniformly mecst powerful unbiased level & test. We
first prove that any & which is unbiased with level & must

satisfy (3). However,
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'EC[S(x)lY]: g | | | (5)

follows iﬁmediately from theorems II.B.1 and.2. As to the

second equation (3), let us consider the power f3= E o0y é(x)

of & . It is an analytic function cf § (see theorem I. B«2).
Hence it has continucus derivatives. Since ﬁ% shall attain

the minimum value & for £= 0, we have §?If —o = 0. Further-
mcre, the derivative caA be found by derivation under the

integral sign in the integral expression for ;'% « We get

5Y; (x)+5vnx) thyj (x)"'j\/(x)dp

Po DA £,
37?:&_}){;()()8 A2 +A\5(x)v(x)e

e

Hence for any §

5rv. (x) 2TV (X)

3—,@','5,_*“, = A BE(8)e T T T rAIDIE (EXIV(x)e T 3T, (6)
a?,‘\--.‘ c (o]
where A(P) = A(0), (T) |§ o° In particular for

_ Sij;(x; o1
é(x) = 1y since Ee J =A(c") sy we get

YT IX)
A (T) = -A(T) E (vix)e= 733 ) (7)

Introducing this expression for Aq in {6), we find

‘ 0{\

/
09= _

| Jry. (x) Y
z*)[eoétx)v(x)e 3] -A(TIE 8 (X)e 375 EOV(X)e J

When & is unbiased with level £ we can substitute
o 25Y;
= l =0 and A(?)Eoé(x)e =2 in (8). We get

YT¥. (X)
- Eo[(é(x)-vtx)-evtx))e I J



]

aa Q' I =

Hencey multiplying by A(2)

0 = B BX)VUGBVI] = & Eolr(s'.x.\v LX)-EV(XJ));-J

Since this is true for all (7@ ., and the class {Po,r}

is compliete, we get ree
EO[V(:\')&X}I‘{T =£ EO[V’(X)’YT, (3)
et ‘ oad

£

which is the second equation (3) for an arbitrary unhiased S .
We shall now use the side conditicns (5) and (9)

N o o - { - "

incstead of the original ones that o should be unbiased with

level £ . Maximizing the power under a particular alternative

(§1567)5 §q F 0

| - 20515 X) - FviX)
E, w0(X) = AE_|e Ele Svaly)l,
;‘)»p‘-? S8 0
leads to maximizing
M &vix) ]
Eo‘e' (XY
‘ .,

subject te (5) and (9). By the analogue to Neyman-Pearson's

9,V

lemma, we then get
5 1 if e > alY)jv+hiY)
284 {(10)

S

S,=0 if & <al(y)vinly)

il

where alY) and bi{Y) should he determined such that (3) is

fulfilled. More explicitly and precisely we get from (3), (5)

and {9)
T e
20 Y5 gy
8 (x)-E ) = ake TN L (Ven (Y NS -
5075 S0 X)Eg o BX) = AT (e” | ~a(e)V-nly NS -8) (11)

It is seen from (10) that the integrand in (11) is non-negative,



henca E ?lé (X) > E . F.,LS:{X). Mow, (10} is equivalent to
. j‘«;? 1 0 j']i“"i
{2} Assuming that ciiy} and 'YZiy} could be determined

i
such that (3) is truey we have 3 test ﬂgp which is independent

e

of (jH,ZH). Thus 40 is uniformly most powerful among all

tests satisfying (9) and (9}, i.e.

{
Eo .0 (X) > E
Eo .0, X) > E

(X)) | (12)
Jgd

i
S LT

-

if O satisfies (5) and (9). Suhstituting in particular
Y \ b . S [N b ( 2
G6(X)j=§£ , we conclude that Ef,?,aoxr\) 2 &o Thus o, is

unbiased. Since the class of all unhiased tests is a subset of

|.4

the class of all tests satisfying {5} and {9), the assertion

in the theorem fcllows, (teEsDo

Example 1. w2 consider again example 2 in secticn II.C

I(D

where we winted to -test the dependence of two factors A and
B, which each attained two levels. Usging th2 same notativns
as in II.C we shall test the null-hypothesic Reg =
= leyq*Pypi PyqtPy) 293105t by Fpgypyp) (pyytogy)e By
IL.Co2q.(21) and {2Z2)we can apply the thecrem above, and we
obtain that we snall reject independence if V = {the
frequency of 2 #1B) is <cy or >cye We shall reject with
probability vy, if Vo= c;3 1= 1,2« UCtherwise we shall not
reject that A and B are independent. Here ¢, and Y}
depend on the marginals M aad L,and are :determined by (4),
where

Flv) = ZO DI (13)

Example 2. (X1,.u.,xn} ar2 independent normal (g,dﬂ-

-y o we e

- < . A . . , .
W2 shall test 5= 0 against £ § 0. Using the theorem just

proved and I1.Cs2G.{27) with K =0 we ¢hall reject if and
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only if ij 3 cq‘zY 2) or = cq{zszj, where c1( ) and

c,{ ) are determinad by (3),; i.e.

-~ .
E !‘Mvmlﬂ = &
Eof ViV, ) Y] = £ g tv]Y)

{14)

with V = 2 j and Y =lng2 as usual. Now; by Basu's

theorem f{or II. @) W = *::‘-./:.,-' and Y are independent if % =
Y

Hance, introducing v’Wl&\/sf"'?§UE§Y) we get from the first

equation (14)

§= Eo(qu;Y);y = y) = EG(@(W,y}EY =vy) = qunw,y) (15)

"1

Dividing the last equation (i4) by VY, we get similarly

& EM = Ec(go(w,y)W) (16)

From these two equaticns it is seen that gﬁzw,y) =@ W),

independently of vy. (= (//is either 0 or 1 accoxdinc as
{ /

W is inside cr ocutside a certain interval. Hence (13) and

{16) may be written

k
"2
} & iw)dw = T=7s
k
1
fk2 '
2 w&ﬁw)dw = {(1-2)E W,
k1

where 3 is the density of Wy, given in II.A. It is seen
that Sf{w) =(~w) and E W = C. Hence, the last equation
is satisfiad when ky = -k, = -k, and the first equation

1 .
reducas to 3 -f(w)dw = =©. Intrcducing



h

which is an increasing

4
R

have obtained the

function of W,

noo T2

VgL B2

’{ (i

it is seen that we

Student equal tailed test. This test is

thus the uniformiy mnoct

DOWET

rful

by ~

unhiased teste

Example 3. X,

we want to test § =

Quo-,xn

are independent normsal {Qgs).
#
FRN < . ~
agajnst T F=%. By means of II. D.

eq. {28) and the theorem just proved, we obtain that the test

fuaction Y should be O

inside or ocutside a cartain interval depending on £ X, .

interval is determined by

We introduce Z = L{ﬁj-f)“ =
.. . . oo, 2
first equatizn by rerasy

then get

Poer oy - \\
ED\'{I' W L)" 1Z X
where we have intioduced 95

independent of 2 X;,

or 1

and subtract from the lasts

¥ x.2

e
i 18

according as

1

e eE (X 2 1Ex)

~1{EX1)2 multiply the

Yie

Ty -
AP N I N
ey
-
i1 = o E L Eki)
i

y/. Since Z is

we can leave cut the conditioning and

write y/(zq %X i) l{z), where fis 0 or 1 according
. 3 1 )

as 2/062 cl2%,2%) or Zs62 %:(z’;7“}, and z%, z" are

detsrmined by

This
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~ 4 :
/ ? . /k -
Aogten)+1- 1 (2t = £ (15)
A - ) 5
gV ( )dz-*‘ 2T 1{z)d:: =5 B2/ = (n~1)5  {16)
6’ (g1 Z" = O

}ﬂ

Here /~ and ¥, are respectively the cumulitive chi-square
functien and the chi-square density with v degrees of

" fraedom. It is easily seen that (16) may be written

/7 '
/ L8 - By ~ -
arplel i n+’l(z ) =¢
Applying
’ 2 .Y+ T
/ o lz) =z ¥a23+,,v\2)

{obtained by integration by parts) and {15), we get

) : . .
Zi(n_'](z;) = Z'" ,:lm"\zu) « (17)

(15) and (17) determine 2' and 2z". Thus 5::C% is
~ o)
rejected if either 7 <.z‘i;“ or > z" &%, and this methed

is the uniformly most powsrful unhiased test.

Let us now study the situaticn wher» we are interested
in testing several of the garameters in the exponent
simultanecusly, not only one as in theorem II.E.1.

We then writz the probability measur2 of X

NSEEE A AN
~ . 3%1 3Y5ix Bt MR
Qr?s = A\.{jj e dPC (18)

where ?“ € G, and each \Pj varies in an interval having O
as inner point. We shall test & = «e0 =9 '=0. As in
theoram II.E.1 we obtain that a neczscary condition for

unbiasedness is that



(19)

E (¥, (XS0 ]y =gE(vj(x)I‘{); J = 1,2yce0,r

Maximizing the power for a particular alternative ifgtfoj
leads to maximizing

\; 7 AV

23,%v; ()

E (e 17 0y)

If we use (12) as side conditionsy we are led to a test

L'go '\X_) = ﬁf"'("\ItX):‘{(x})i where

3o 0
V. .
Plvyy) =1 if e 7T Iz Fo; lylvy+aly)
2.7 0] (20)
.7v, _
Whvy) =0 if e T T Fe tylvi*gly),
whaere the g3 and g should ke determined such that (19)

is satisfied. If such a determination is possible we have
obtaianed a test independent of %, It is thus the most
poweriul test for any alterriative (?gfo)g TESNS amoné all
tests satisfying (19). Hewever, if r > 1, we get in general
no uniformly moest powerful unbiased test.

To solve this dilemma Neyman ano Pearson in 1838
replaced the requirement of high power everywhere, with the
regquirement of large curvatura upwards of the powersurface
= 0. We shall nct deal with this method

5(ﬁ,ﬂ.ut0) for

(
n Vi

hers.
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H. Testing_of ncn-regular Darinois-Koopman

- e e en ee O s o e e e D o e ee D A D D e e en G D e D E Gh = e on b e e S

clasces of distributicne

e D oo Sn Am w0 e 0D @S mn SO o D ol E5 D an @ «S an e

Suppose that under the null—hybcthesis {or the

boundary points for the null-hypothesis; the class of

~

distribution is th<}Z%?a§ where pE’,is given by II.Be.eqge

(1) but where the parameter set <J contains no inner pointse.

This is the situaticn if there are "functional" ({(non-linear)

relations between the parameters ‘bg,oon,Z;a It may be

possible to write ?i = 23(8); i = 1424000453 where
g= (61,.0.,ﬁr) varies in an open set (r <s).

In that case, even if unbiasedness implies similarity,
similarity may not imply conditional testing (see theorem

11.0.,2)-

There are important situations where this is the case.

Example 1. (Behrens-Fisher's problem). Xq9XggeoosX s

Yi50005Y  ~are independent. Each X; is normal (%,53) and

1
each Y is ncrmal (ﬁ,ﬁa)c All parameters g,q561,65 are
unknown. A test for %,:rv is wanted. Then under the null-

hypothesis, the probability measure P of X1,ooo,Yn is

- o A
A1 Ny 2, 41 2, 9 % IRy
g g2t T gl S ket Ly
dP = Ae dpP,
where P 1s the measurs corresponding to & =9; = 0,
a, = 3, = T« Hence it is seen that the four parameters

quocogzz depend on the threse parameters ca,ﬁé,i; in a nen-
linear manner. Thus conditioning with respect to Y =
(5x;%, 2v;%, %, LY,) is not justified and would indeed be

absurd, since Y is sufficient also under the a priori
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assumptions. Hence the ccnditional distribution would be

independent of all parameters and would render no informaticn

about % -%,

Example_2. (Testing the "probit"). Let X ,..e,X  be
independent normal (g,s). We want to test % = Kg. This

kind of test problem arises when we want to test if

Pr(X, < 0) = p; i.e. Gl-5) =p; i.e. & = -G7'(p)s.

It is easily seen that the same kind of difficulties arise. as
in example 1.

The important problem in these situations concerns
the explcration and construction of the class of similar testse
To find the "structure"'" of the tests in the regular case is
easy, it amcunts to stating that EO(:§WJ =&. In the non-
regular case, some results have been obtained; which give
interesting descriptions of the class of similar tests.
Howevery, until now they have not proved very useful and we
shall not deal with them here.

It should be pointed cut that the tests which are
commcnly used in the Behrens-Fisher situation ars not similar,
see e.g. the test described in E. Sverdrup: Laws and Chance
Variations, volo.Ii, p.166. Then they are nct unbiased, which
means that relatively to scme alternatives they will have

very lcw power. They have proved useful anyhowo
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III. Power optimum tests in non-parametric situations.

We have observations X1"“’Xn . Under the null hypo-

thesis they are assumed to be independent and identically dis-
tributed with an unknown probability density. Hence we may

write for the probability measure of X = (X19...,Xn) under

the null hypothesis.

dP,. = f(X1)...f(Xn)dx1...dxn (1)

Let w, Dbe the class of all f defined by I.C. edq. (4) and

let w O Wy e

We shall assume that under the hyvothesis f could be any

member of w .

As in I.C we introduce the order statistic Y(x) =
(Y1(x),..,,Yh(x)) for a sampie point X = (X19...,Xn) . We
now have for the conditional probability of X given Y ,

ﬁ% if (X1,...,Xn) is a permutation
PI‘(X = X!Y = 37') = Of (y4'90009yn)
(2)

0 otherwise

Thus the conditional probability is indepcndent of f , hence

Y is sufficient for £ . We have proved in I.C that Y is

also complete for f; i.e., the class {PfY'1}f.€w is compiete,.
Suppose now that a test ¢ is required to be similar over

w with level € . As in II.C.2 it follows that a necessary

and sufficient condition for this to be the case is that &

is a conditicnal test given Y 3 i.e,

Bo(8(X)IY = y) = ¢ g.ee; T € w. (3)
Let R(y) be the class of all permutations (x1,...,xn) of

Yqseees¥, - Then it is seen from (2) that (3) may be written



2. d(x) = ns & {4)

Let us now consider the case where ¢ 1is the clacss of

all densities which are continuous almcst evaerywher=. Then

obviously G)Tkoo and the results above ars valid.
The class of alternatives to the nullhypothesis is given

by
de,? = f(X1‘t19)nonf(xn—tny)dx,looodxn (5)

where f and ¥ are unkncwn. f is known to belong tc <o
and ~P is any real number. t,],o”,tn are a pricri specified
numbers, not all equal. Let M be the median for the density f.

Then it is seen that

median (X, ) ;A&f?ti (6)

Thus the alternative to random sampling is that there is
"median regraession" between Xy and t;e The null hypothesis
now takes the form ¢= 0. |

A special case is the "two sample situation", wherz a
priori Xq,oao,xm have a common distribution and Xm+1,°°°,Xn
alsc have a common distribution. This case is ebtained by
= 13 1 = m+Tgecegne

setting ty = 03 1 = 1y250009m5 ty

Fer canvenienca we shall sometim~g write
f(x,l—t,l.}’])aoof(xn-tn;)) = p(x—t}g;f)
In general, the power of a test © can be written

)1(?) = J‘I.rooojg(x,l’ oougxn)ka,]"t,]?)ooof(xn“tnj')dx,' ° o odxn =

~

- J{é(x)p(x-ty;f)dx (7)
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f 1is continuous almost everywhere, henca
lim p(x-?g;f) = plx;f) ao€o (3)
=0

It then follows from Scheffé&'s theorem, that

p(x-tj;f)fﬁ p{x;f) in the mean, i.e.

Slp(x—?t;f)-p(x;f)ldx - 0

Hence we have

1€ Lei-ploj| < “p(x-t?;f)-p(x;f)ldx - 0,

«

S0 G(f) is continuous for j’z 0 (and evazrywhere). It

follows that all unbiased tasts must ke similar for 5? = 0,

We have proved above that similarity implies congitional

testing. Assuming that we want a level & unkizsed test, we

can limit oursslves tn conditional tests. Sincs the conditional

distributions have the form (2)s we are led to "cocmbinatorial"

testsy i.e. the tests of the type which has besn generally
recognized as "goned" in non-parametric situationse

We chall now maximize the power. We then need the
conditional distribution of X given Y under {5;.

Suppose that Xq9e°03X, are all differant and that
YqseeeaY, aTe XgseocyX, arrancged in an incrsasing sequence.
We make Lx1,ooosé% so small that ;}1 (x; < X; & x5+A )

contains no two points the coordinazes of which are permu-

tatiens of =2ach cther. We then get as all dy, =0,



..;de -

\I _
Pr[(i. (xi < X< xi+4i) Jy] =

lim Prl Q (xi < X< xi+Ai)vi (1 (yi <Y -f__yi+dyi)] =

Pr( f](xi

Ih

Xy € xg*rdy; )

yi+dyi))

=1

9

im
Pr( ﬂ (Yi < Yi

N

since for sufficiently small dyj., (xi < X f-xi+dyj.) is a

i i
subset of (x; <X, f.xi+ﬁi)° Here (yj1,,°°,yjn) = {x1,o”,xn)°
Hance we get

PriX = x|Y = y) = plx-tp;£)/ 2 p(x*-tQ;f) (9)

x'€ R(y)

if x e Rly). Otherwise Pr{X = x|Y =vy) = 0. If p =0 it
is seen that (9) reduces to (2). (9) could also easily have been
derived from the more sophisticated definition of conditional
probability. |

We ar2 interested in finding a <§ which maximizes the
power Ef{fé(x) for }7=f 0O subject to <§ being unbiased with
level £ . As we have done several times before, we shall
maximize the power subject to the weaker condition (4). Now

since

Efgfé(x) - Ef,gEf’S)[g(X)hj

we shall maximize

N

el Sy = v = S (x)plx-to;£)/ & (x-to; £ (10
[ ) yj e Rly) x)px=tg; XGR(y)px ¢3f) )

subject tc (4).
According to Neyman-Pearson's lemma we shall then reject

the hypothesis if



p(X~t§5f)/ p(x‘—?f;f) > clY), (11)

>
x'e R(Y)

reject with probability Y (Y) if we have "=" ia (11), and

not reject if we have " <" in (11)- Hznce we shall use a

d; defined by

f-de
=

cSO(X) = 1 p(X—tj;f) > diY),

,-—~
-
N

Q..

§ X)) = Yly) if pX-tg3f) = d(v),

0
&, X) =0 if p(X—‘tSQ;f) < di{Y),
where d{Y) and Y {Y) are determined such that 4] is

4
- . ' . ( s
satisfizd with & =& -

~
el

Fer given Y = y consider the n! quantitiss

p(x—tf;fj ¢btalned by letting x run throuch all points in

Eiy). Let us order them in a decrzasing seguence,
1 (2) int) : L . .
p( )Sp} lyeeey,pt™ 7/, and let the cerraspending permutaticns
of Y be
(1) _l2) {né
x et e e x ! .) (13)

For c¢iven f. ¢ and Y, the sequence {13) can in principle
_ : 3 : !

alwaye "e found, even if the numerical werk will bz prohibitive

Ly
)

if o is larce.

L2t us now determine k and TV by

-

k+Y= ni § 0 =Y < (14)

ices k 1is the intager part and Y the decimals in nlge.
W now see from (12) and {4), that acccrding to <5ﬁ, we shall
o
reject the hypothssis if VYI(X) =y and X is one of the pcints

(1) (k) |
X yreogX - Y2 shall reject the phypothesis with probability




e

x(k+1)°

Vs if Y(X) =y and X = Otherwice when Y(X) =y

we shall not reject the hypothesiss

This method is the mcst powerful test relatively tc the

particular alternative (fy) ameng all similar tests with
J

level £ .

Unfortunately, however, the sequence (13) depends on f .
and J?n Hence ‘go depends on f and ¥ . e have therafere
not obtained a uniformly most powerful test. In :any cases it

Ee

would not even be unhiased. It seems as if the methcds applied
in the case of the regular Darmois-Kcrpman expenential class
of distributions cannect ke applied in the ncn-parametric

situaticnss
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IV. Estimation in connection with Darmois-Koopman classese.

Ae Some mathematical resultse.

Let Xi be a real random variable with distribution P

belonging tc a Darmois-Koopman class @P', We now assume that

each Z} is a function of a parameter 9= aeq,,,,,éi) (r <s):

Hiviwm
~)
-
<
=<
;:

dPe(xi) = Ai?(@))ej 1

dP;(x.) (1)
Here & 1is known to belong to a set in the r-dimensional space
P
containing an open subset (H'. without restricting generality, we
-~ N A - .
have arranged that & =(J& (H , and that ?}(GU,OOO,(;(Q) are
linearly indepencdent. Howevery at present the space.f) obtained

by varying 7 may contain no open subsets, i.ee. Q? may nct be

regular. By introducing fb = log A{(7T), (1) can be written

S
0,100+ 2 LUB)Y, (x)

— o =1 J D
dP8 = 2 J dko (2)
e will now assume that all derivatives
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exist and are continuous functions of & . Cenoting 33; by L
C
we introduce the notations
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y - <fleg L _ T+ C. Y. (3)

m d5m om Ty dm J



- 76 -

2 S
3°log T
W = — >~ = . .
mn T 38,20, o om T K Tym ¥ (4)

In matrix notations equation (3) may be written

V=0Dr°+ (Dr)'Y (5)

where the definitions of the matrices of derivatives and of Y
follow by comparison with (3). We now assume that the region

r ZT.Yj(X)

of convergence ( of je J dPO contains all points

(71(9),...,75(8)) as inner points. Then EV_, EW_  and

- EY.
n i

5
exist, and we may differentiate dePO = 1 by taking differen-
tiation under the integral sign (according to theorem I.C.2).

We then get from j-;%LdPO = 0 that
m

BV, = T o+ ji1ijnj =0 (6)
2 2
1 3 L 3L
and from W = =V V += = and | = dP = 0 that
m,n mn" L 36 360, J v9 20, O
- = - TV
A E(van) = men
. (7)
= =T = o . .
omn j:1Tgmnn3

TLet o be the covariance matrix for Y :
.. = B(Y. = n. =] . 8
9 5 (T3 = ;) (¥5=ny) (8)

By o = B(Y-EY)(Y-EY)' , (5), (6) and (7) we get

A = EVV' = (D7) 'o(D7) (9)
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of convergence Q of je J dPO contains all points
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exist, and we may differentiate dePo = 1 by taking differen-
tiation under the integral sign (according to theorem I.C.2),
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omn j=1T3mnn3

Let o Dbe the covariance matrix for Y :
.. = B(Y. = n. ) (Y.=. 8
955 (T3 = ;) (Ty=ny) (8)

By o =ERB(Y-EY)(Y-EY)' , (5);, (6) and (7) we get

A = EVV' = (D7)'o(D7) (9)
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By theorem I.B.2 we may differentiate the equation

- _ I
ny = BY; = Y, (x)LdP

by taking differentiation under the sign of integration. This

gives us
N, :
= o T 2L _ T dlogl
Nim = 33 = JY3(X) $5m AR, = Y4(x) =551 ap
= E(Yij) 5
or by (3) and (6)
z s s
Nym = (Yj(Tom + i§1Tiin)) = E(in§17im(Yi' ni))
s S
- i:1TimE(Yj- qj)(fi-ni) - if1ojiTim .
which, after introduction of the matrix Dn = {njm} , for the
system of derivatives of n may be written
Dn = o(D7) (11)

B, The information matrix.
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It is well known from the asymptotic properties of the
maximum likelihood estimates, and from the Frechet inequality,

that the matrix

_ir’\ ' .\‘,
- (B 4

; (12)
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is of special interest. A 1is sometimes called the information
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matrix. From (9) we get

S

3
= - J.. 7\ ‘C 13
>\ mn iz‘: j%:',] 1] 1im jn ( )

<. . .
We now assume that & is regular, so we may take derivatives

with respect to ?a,ooo,?go This gives

dlog L &(B .
= + Y . : = e 00 4
tﬁf'\)'(‘i o (3 id 1 »S (14)

((, is considered as a function of 7 ;.05 ), and as

)
E ___l.\."_?:Q_L = O,
(W ‘.i
4 _ — '1\)2‘0
Yy = EY; = ERY (15)

Furthermore, as an analogue to (7), we have

D 22
sy = E(-240a L 2loa L) poloal (16)
1) Ay T 0¢i A3

2 .
42 e
But from (14) we find S.long = xP . which by (13) and (16)
inO.j < (it.(j
gives us
e S
Ama == 2. TAisE Ym%n (17)
i,j 0y 245 J

Thusy; no integration is needed in order to find the Frechet
lower bound of variance of unbiased estimators or the asymptotic

covariance matrix of maximum likelihood estimatorso.



7 P
e g ‘e
é

Ce Fisher-consistent estimatese.

We return to the general theory, with % not necessarily

being regular.
Assume now that we have observed X = (X1,.,.,XN)“ where

XqoeeesX are independent each with probability measure P . The

N
probability measure of X 1is now given by

s
]_N_ . NZ (g)+N jéqrj(a)yj TN " |
| dP. (x.) = e - I dP_(x. (18
i=1 6 1 i=1 9 1
where _ ] N
Yj = N'iéq Yj(xi)i J = Tyeceys

An estimate @1* of @1 is said to be Fisher-consistent if
(i) 61* = f(Y) depends on X only through Y, and f is

independent of N.

(11) E(Tyyeees L) =6, (19)

3,
{iii) f has continucus derivatives fj = ;f
. v/j

= QG, and by (iii) f 1is continuous. From

Now, plim Y.
N-> o 9
Slutsky’s theorem it then follows that

plim Sd* = plim f(?1,°°o,?s) = 81 (20)

N = N-2cn

- Thus, every Fisher-consistent estimate is consistent.

We introduce the notation

By means of the mean value theocrem, we get



ok = £(T) = 8, + %1(§.-nj>fj<n-m<?-n>> (21)

where R 1is a stochastic vector with components !Ril <1, from

which it is seen that Jﬁ(e?- 8,) has the same limit distribu-

tion as 2(?j-nj)Jﬁfj(n) , and that consequently any Fisher-
d

consistent estimate e? is asynptotically normal with mean 91

and

as.var 0} = ¢ PEEJLE +(D£) 1o (DF) (22)
1,3

where we have infroduced the notation Df for the set of
derivatives of £ .
We shall find a lower bownd for (22) under (i), (ii) and

(iii). By differentiating (19) with respect to B, we get

S T, m=1

R
L fin, = (23)
j=1 J IO 0, n > 1

which may also be written

(Dn) ' (DE) = € = (24)

Q eawe O _\4

~

Tet ue first minimize (22) with respect to Df subject to (23).
Since (i), (ii), (iii) is at least as restrictive as (23), this
will certainly give us a lower bound for (22), We use the
Lagrange multiplicator rule, starting with minimizing

T S
T f.fo.. =-2% aw (T fin. =064)
i,y 17374 meq] Wy oqT1im Tm” 2

(25)

where Miseee, ®,, are the '"multipliers" and 61m =1 if

m =1, otherwise 0 . The winimizing f1,...,fs and the

values of Fgaeesy M, ATC found as solutions of the equations
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S r
3§1f3013 = mz'] nmﬂim =0 H 1 = 1,...,5 (26)

and (23), Now (26) can also be written as

a(Df) = (Dn)»

hence Df = 0—1(Dn) #  which inserted in (24) gives

S

(Dn)’c"1(Dn) = ¢ or no= [(Dn)'c'1(Dn)]'1e and finally

Df

-1 -1 T

o™ (Dn) = o~ (Dn)L(Dn) o™ DnI e (27)
Substituting this in (Df)'o(Df) and applying (11) and (9),
we get

min(Df) 'o(Df) = &7(Dn) o~ (Dn)] e = e'A” e

Hence any Fisher-consistent estimate has asymptotic variance

1 -1 1, =1
> T e'N € = '"T'(,x ).]1 (28)

=i

fwhere ()C'1)11 denotes the leading element in the matrix x‘1].

D, The maximum likelihood estimator,
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Returning to the model defined by (18), the maximum likeli-
./\ I’\ /\
hood estimate 8 = (91,...99r) of # is defined as the solu-

tion of the equations

S

A‘ y \\ -' —— o —
Tom(e) + j§1ij(e)¢j =0 ; m=1,,00,r (29)
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(without recgard to whether 69 actually maximizes (18)). We
-

assume that the equations (29) have a unique solution ) . It is
“}

seen from (29, that the estimate §i for ﬁi satisfies condition

(i), from (6) that it satisfies (ii), and from the assumptions
/\

about the derivatives ?jmn that {iii) ie catisfied. Thus ei

is Fisher-counsistent, and especially

Y
plim & =
N7 oz

g .

3
-

-

Now the asymptotic multinormality of & is eacily seen in
the following manner.

By the mean value theorem we have

A

T _
AR = 4 ; £) ,:"1 5
Gy + 7t T, B+s (7T
)+ 3 E 007 Evsi89))

with fSil'< . Intreducing this, we see that (29) can be

4]

IOV T 0s0-8) =0 (30)

r o -
VRV + y VNG
i n:::

whers fcr convenience we use the neotaticn ?n = 1o

i "\

. ~ . . o
Hewever, since ( . 1s ccntinucus and plim v = 2, we
. Jmn T ¢ n
} (- . - . _ N ..} i
ave im /. (+S{7-M))) = -, V7] = . 3
have Fl}m Gt SH )) “San ) tsppe  Furthermers:
N - o0
plim ?j = %5. By the central limit theorem, the limit cumulative
. . . . T e i = . ,
distribution function of ¢ N V = / N{VyseeesV )? 1s the

cumulative multincrmal distribution with mean O and covariance
matrix A . Hence by (30), the limit cumulative distribution
function of VN(A-3 is that of T = (T1,nn°5Tr)', where T

is given by

=0 (31)
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and where U = (U1,...,Un)' is multinormal (0,2), and ‘70 = 1.

Combining (31) and (7) we get

U= AT | (32)

Hence T =,A'1U, ET = 0, and the covariance matrix of T 1is
A-1“MA'1)‘ =;\°1. Thus T is multincrmal -(0,%f1). e conclude
that:

The limit cumulative distribution functinn nf VN{2-4) as

N - « is the cumulative multinnrmal with expnectati~n O and
’\

. . =1 . S, . .
covariance matrix ) i d.e. U is asyapteotically multincrmal

(6.(1/N)A°1), and in particular fﬁ1 ie asyuntotically ncrmal

with mean 51 and variance (2'1}11/N,

as.var[;':]1 = %(ﬁf1}11 {33)

Comparing this with (28) we may conclude that the maximum

likelihcod estimate of 6% has asymptotic variance less than or

equal to that of any other Fisher-ccnsistent estimate fer 91;
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