
An operational semantics for a
weak memory model with
buffered writes, message
passing, and goroutines

Daniel Fava, Martin Steffen, Volker
Stolz, and Stian Valle

Technical report Nr. 466

IFI
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

April 21, 2017

An operational semantics for a weak memory
model with buffered writes, message passing, and

goroutines

Daniel Fava, Martin Steffen, Volker Stolz, and Stian Valle

21 April 2017

Abstract

In this paper, we formalize an operational semantics of a weak memory
model similar to the one in Go, concentrating on buffered writes, i.e., ignor-
ing the possibility of buffered reads.

keywords: operational semantics, goroutines, weak memory model, write
buffering, partial store ordering.

1 Introduction

Concurrency is central to modern hardware platforms and programming languages.
The usefulness of independent simultaneity of computations is limited, as many
interesting problems require communication and synchronization. Very generally,
communication relates to the transfer of data between computational units, while
synchronization relates to curbing interleavings on computations and limiting ob-
servable data values. One fundamental mode of communication is shared variable
concurrency, where the value written by a thread1 to a shared variable may be
observed by another thread that reads from that same shared variable. The exact
values and the circumstances under which these values can and cannot be observed
are laid down in a memory model. The memory model is specific for a given
platform, language, or a combination of the two. In one of the simplest mem-
ory models, shared memory is interpreted as 1) a shared global repository mapping
variables or locations to values where 2) the read and write actions of the individual
threads appear to be effected atomically in some global total order (i.e., as one in-
terleaving of global read and write events). This corresponds to Lamport’s notion
of sequential consistency [14]; it is also sometimes known as the von Neumann
model and corresponds to Single Instruction stream, Single Data stream (SISD) in

1We use the words processes and threads interchangeably when referring to units of concurrency.
In the formalization later, we introduce goroutines, a neologism use in Go and a play on words on
the notion of coroutine. Conceptually, like processes or threads, goroutines are an asynchronously
executing unit of concurrency.

1

Flynn’s classification [8]. Though sequential consistency is conceptually simple
and has become a baseline for other memory models, it is much too restrictive: it
does not reflect current hardware and enforcing it in software would preclude many
established compiler code optimizations. Consequently, numerous relaxations to
the basic interleaving model of sequential consistency have been proposed, inves-
tigated, and implemented. For a tutorial on various memory models, see Adve and
Gharachorloo [1].

The design of a proper memory model is a balancing act. Rigor, conciseness,
and intelligibility are undoubtedly desirable attributes. It is less clear, however,
how to design a model that captures a variety of different concrete implementations
without committing too narrowly to one particular solution or technology. On one
hand, the model should be lax enough to allow common current optimization and
potential future ones. On the other, the more lax the model, the greater the chances
it allows for unintuitive behavior, which in turn increases the burden on developers.
Unfortunately, a comprehensive and generally accepted “universal weak memory
model” is not in sight. Neither there exists an uncontroversial comprehensive spec-
ification of the C++11 [4][5] or Java memory models [15] [20]. Though the right
balance between relaxation and intelligibility is up for debate, models should, in
principle, preclude definitely unwanted behavior. One class of unwanted behav-
ior is called the out-of-thin-air behavior [6]. Intuitively, these are results that can
be justified via some sort of circular reasoning. According to Pichon-Pharabod
and Sewell [19], however, there is not even an exact, generally accepted definition
of out-of-thin-air behavior, and even doubts have been cast upon a general style
of defining weak memory models. For example, Batty et al. [3] point out limita-
tions of the so-called candidate of execution way of defining weak memory models,
whereby first possible executions are defined by way of ordering constraints, where
afterwards, illegal ones are filtered out. The distinction between “good” (i.e., ex-
pected behavior) and “bad” (i.e., outlawed behavior) is usually given as a list of
examples or litmus tests. According to Batty et al., the problem is that there exist
different programs in the C/C++11-semantics with the same candidate executions,
yet their resulting execution is deemed acceptable for some programs and unac-
ceptable for others.

There exist several approaches to formalizing a memory model. One widely
followed approach, called axiomatic semantics,2 describes the semantics of a set of
parallel threads as a number of memory events with various relations between them
— the shortly mentioned per-candicate execution approach falls into this camp.
Depending on the memory model, different classes of relations are taken into ac-
count. The most straightforward relation is known as program order, which, as
the name suggests, reflects the order in which instructions appear within the pro-
gram. Besides this basic relation, various others may enter the picture depending
on the choice of the memory model and the selection of instructions onto which

2The notion is not directly related to Hoare-style axiomatic semantics based on pre- and post-
conditions.

2

it has bearing. Typically, a model takes into account various synchronization op-
erations like locks, different forms of fences, atomic memory accesses, and also
channel sends and receives. Often the program order and an appropriate combina-
tion of other relations (like a “synchronize-with” relation) are combined into one
happens-before relation [13]. This relation captures a form of causality between
events. Lamport introduced the happened-before relation not in the context of
shared variable concurrency but in a message the passing setting [13]. In that con-
text, the relation captured the union of program-order and a form of causality be-
tween channel sends and receive, requiring a channel send event to happen-before
its corresponding receive.

The happens-before relation is a technical vehicle to define the semantics of
memory models. It is important to note that just because an instruction is in a
happens-before relation with a second one, it does not necessarily mean that the
first instruction actually “happened” before the second. Consider the sequence of
assignments x := 1;y := 2 as an example. The first assignment “happens-before”
the second (as they are in program order), but it does not mean the first instruction
is actually committed (i.e., its effect becomes observable) before the second.3 For
instance, a compiler might choose to change the order of the two instructions.
The processor may also rearrange memory instructions so that their effect may
not be visible in program order. To avoid the confusion between the technical
axiomatic happens-before relation and our understanding of what happens when
the programs runs, we speak of event e1 “happens-before” e2 in reference to the
technical definition as opposed to its natural language interpretation. Similarly for
“happens-after.”

This paper presents an operational semantics of a weak memory model that
bypasses the out-of-thin-air problem. It utilizes the happens-before relation when
reasoning about possible read values. The ideas here are a rework of the Valle’s
master thesis [23]. Apart from changes of representation and notation, the paper
covers channel creation/disposal and non-deterministic choices. This brings us a
step closer in the direction of a realistic formalization of the memory model for the
Go programming language. Our goal for future work is to further relax the model,
yet, at the same time, keeping out-of-thin-air behavior at bay.

The remainder of the paper is organized as follows. Section 2 discusses aspects
of weak memory models (especially of Go’s memory model) that are relevant in the
context of this paper. Section 3 introduces the syntax of the calculus, concentrating
on goroutines, shared-memory interaction, and channel communication. Section
4 represents the operational semantics of the calculus. The concluding Section 5
briefly discusses future work.

3Assuming that x and y are not aliases in the sense that they refer to the same or “overlapping”
memory locations.

3

2 Background

The Go language [9] [7], supported by Google, recently gained traction in net-
working applications, web servers, distributed software and the like. It promi-
nently features goroutines (i.e., asynchronous execution of function calls resem-
bling lightweight threads) and buffered channel communication in the tradition of
CSP [11] or Occam [12]. The happens-before relation is used in the Go memory

Listing (1) Erroneous synchronization
1 var a s t r i n g
2 var done bool
3

4 func s e t u p () {
5 a = ” h e l l o , wor ld ”
6 done = t rue
7 }
8

9 func main () {
10 go s e t u p ()
11 f o r ! done { }
12 p r i n t (a)
13 }

Listing (2) Channel synchronization
var a s t r i n g
var c = make (chan i n t , 10)

func s e t u p () {
a = ” h e l l o , wor ld ”
c <− 0

}

func main () {
go s e t u p ()
<−c
p r i n t (a)

}

Figure 1: Example of shared variable and channel communication [10]

model to describe which reads can observe which writes to the same variable [10].
For example:

Rule 1 (Single Thread) Within a single goroutine, the happens-before relation
boils down to program order. In other words, within a single goroutine, reads
and writes behave as if they executed in the order specified by the program.

Consider the code snippet of Listing 1 where a main function calls a setup func-
tion. The keyword go is used to specify that the call to setup should execute
asynchronously (one can think of setup running on its own thread). Rule 1 tells
us that, within setup, the write to variable a happens-before the write to done. The
Go memory model is, however, a relaxed memory model, and “the execution order
observed by one goroutine may differ from the order perceived by another” [10].
Therefore, the main function may observe a different ordering of the assignments
to a and done because read and write events in the asynchronous call to setup are
not related to the remaining reads and writes in main. As a result, the print of a on
line 12 of Listing 1 may print an uninitialized value as opposed to “hello world.”

If the effects of a goroutine are to be observed by another, a synchronization
mechanism must be used in order to establish a relative ordering between events
belonging to the different goroutines. The Go memory model advocates chan-
nel communication as the main method of synchronization. Rule 2 describes how
sends and receives on a channel establish an ordering between events across differ-
ent goroutines [10].

4

Rule 2 (Channel) A send on a channel happens before the corresponding receive
from that channel completes.

In the example of Figure 1, the channel Rule 2 can be used to establish a relation
between the write to variable a by the asynchronous setup and the use of a in
main. Since a read on an empty channel blocks, setup’s send of 0 on channel c
will happen-before main’s read of channel c completes, in other words, c<-0 @
<-c where @ represents the happens-before relation. We can now conclude that
the print in Listing 2, which uses channel communication for synchronization, will
indeed print “hello world” as follows:

a=’’hello world’’@ c <- 0 (by rule 1)

c<-0@ <-c (by rule 2)

<-c@ print(a) (by rule 1)

a=’’hello world’’@ print(a) (by transitivity of @)

Finally, rule 3 helps us reason about bounded channels.

Rule 3 (Channel capacity) The kth receive on a channel with capacity C happens
before the (k+C)th send from that channel completes.

The operational semantics described on Section 4 mirrors rules 2 and 3 by ac-
counting for bounded channel creation (R-MAKE), disposal (R-CLOSE), and sends
and receives on channels (R-SEND and R-RECEIVE). The operational semantics
also respects rule 1, meaning that, from a goroutine’s point of view, its reads and
writes happen in program order. This is done by keeping track of values of previ-
ous writes that should no longer be visible from the goroutine’s read perspective.
We call writes that are no longer observable as shadowed writes. A write of value
v to variable z, represented as n(|z:=v|) where n is a unique identifier, is shadowed
by another write n′ if n and n′ write to the same variable and n@ n′.

In order to support the behavior like that of Figure 1, where the write to variable
a on line 5 is perceived as happening after the write to done on line 6, one needs
to let go of sequential consistency. As shown in the hierarchy of Figure 2, write
delays are a step away from Sequential Consistency (SC) and in the direction of
increasing relaxation. The Total Store Order (TSO) model is a well known model
that “allows a read to return the value of its own processor’s write even before the
write is serialized with respect to other writes to the same location” [1]. Partial
Store Ordering (PSO) is a further relaxation from TSO that allows writes to differ-
ent memory location to appear out of order [24]. In addition to delaying the effect
of writes, one can obtain greater relaxation by also delaying the effects of reads.
The Go memory model falls in the delayed read/write category.

The proposed memory model of Section 4 is relaxed enough to allow for de-
layed writes as in a partial store order model. Writes are delayed by being placed
on a global pool; a subsequent read can read any previous write from the pool as

5

!"

#!$ %&'()*+

,"

,!$

-./01

,2345,"

Delayed write

Delayed read/write

Figure 2: Hierarchy of memory models

long as the write is not considered shadowed from the reader’s perspective. In fu-
ture work we plan to relax reads with the goal of obtaining an operational definition
of a delayed read/write memory model that is even closer to the Go memory model.

3 Abstract syntax

The abstract syntax of the calculus is given in Table 1. Values are written generally
as v. Note that local variables (or registers) r counts among v. Additionally, names
or references n are values, representing here channel names. These are dynamically
created and therefore are run-time system (thus represented underlined as n in the
grammar). Later, we often use c specifically for references to channels. We do
not explicitly list values such as the unit value, booleans, integers etc. further.
Expressions includes local variables r.

We omit introducing compound local expressions like r1 + r2, which would be
straightforward to add. Shared variables are denoted by x, z etc, and load z repre-
sents the reading the shared variable z into the thread. The syntax for reading global
variables makes the shared memory access explicit in this representation (unlike in
the concrete Go surface syntax). Especially, global variables z, unlike local vari-
ables r, are not expressions on their own. They can be used only in connection with
loading from or storing to shared memory. Especially, expressions like x←load z
or x← z are disallowed. That way the languages obeys a form of at-most-once
restriction [2], where each elementary expression contains at most one memory ac-
cess. A new channel is created by make (chan T,v), where T represents the type of
values carried by the channel, and the non-negative integer v the channel’s capac-
ity. Sending a value over a channel and receiving a value as input from a channel
are written respectively as v1← v2 and← v. After the operation close, no further
values can be sent on the specified channel. Attempting to send values on a closed
channel leads to a panic. The expression pend v represents the state immediately
after sending a value over a channel. Note that pend is part of the run-time syn-

6

tax as opposed to the user-level syntax, i.e., it is used to formulate the operational
semantics of the language. Starting a new asynchronous activity, called goroutine
in Go, is done using the go-keyword. Guards g (also called communication cases
in the Go language specification [9]) are specific expressions used in combination
with the select-statements. In Go, the go-statement is applied to function calls only.
We omit here formalizing function calls, asynchronous or otherwise, as orthogonal
to the issues at hand. See [22] for an operational semantics dealing with goroutines
and closures.

For the branches of select statements, only communication statements, i.e.,
channel sending and receiving, or the default-keyword are allowed as guards (in
Go, general expressions are allowed). The restriction imposed in the calculus is
in line with the A-normal form representation and does not impose any actual re-
striction in expressivity. The select-statement, here written using the ∑-symbol,
consists of a finite set of branches (called communication clauses in the specifica-
tion [9]), which are guarded threads. For each select-statement, there is at most
one branch guarded by default. It is allowed that a channel is mentioned in more
than one guard. Also “mixed choices” [17] [18] are allowed, in that sending and
receiving guards can be used in the same select-statement. We use stop as syn-
tactic sugar for the empty select statement; it represents a goroutine that is perma-
nently blocked. The stop-thread is also the only way to syntactically “terminate”
a thread, i.e., it’s the only element of t without syntactic sub-terms. The let-
construct let r = e in t combines sequential composition and the use of scopes
for local variables r: after evaluating e, the rest t is evaluated where the resulting
value of e is handed over using r. The let-construct is seen as a binder for variable
r in t. It becomes sequential composition when r does not occur free in t. We use
semicolon as syntactic sugar in such situations.

v ::= r | n
e ::= t | v | load z | z := v

| make (chan T,v) | ← v | v← v | close v | pend v
| if v then t else t | go t

g ::= v← v | ← v | default
t ::= let r = e in t | ∑i let ri = gi in ti

Table 1: Abstract syntax

Remark 1 (Select statements and side effects) In line with the design of the ab-
stract syntax, the guards are side-effect free. Go’s concrete syntax does allow side
effects in the guards, no matter how dubious such practice may seem. The side
effects may include sending and receiving of channels itself. Evaluation of guards
is phased: in the first phase, each guard is evaluated exactly once and they are eval-
uated in source order. In the second phase, one of the enabled branches is taken, if

7

any; otherwise the default branch is taken, if present. This has the effect of disal-
lowing side-effects and making the evaluation order explicit in the A-normal form
style of syntax [21].

4 Operational semantics with write buffering

In this section we define the operational semantics of the calculus. The semantics
delays the write to main memory, thereby realizing a form of write buffering that
roughly corresponds to the well-known notion of partial store order (PSO) (see
Section 2 for a discussion). PSO is a generalization of total store ordering or TSO.
While both assume that writes to the memory are buffered, PSO only imposes order
on a per memory location basis [24]. Therefore, writes to different location are not
necessarily executed in FIFO order.

Before giving the operational rules in Section 4.2, we fix the run-time config-
urations of a program. Besides goroutines running concurrently, the configuration
will contain “asynchronous writes” to shared variables in particular.

4.1 Local states, events, and configurations

Let N represent an infinite set of names or identifiers with typical elements n, n′2.
As mentioned earlier, for readability, we will use names like c, c1 for channels. X
represents the set of variables. A run-time configuration or program is given by
the following syntax:

P ::= 〈σ , t〉 | n(|z:=v|) | • | P ‖ P | νn P . (1)

Programs consist of the parallel composition of goroutines 〈σ , t〉 and write
events; • represents the empty configuration. The ν-binder, as known from the
π-calculus [16] indicates scoping. Later, we’ll introduce channels as part of the
run-time configurations and, besides write events, also read-events.

Definition 1 (Write events) Write events n(|z:=v|) are 3-tuples from N×X×Val.

A write event simply records the shared variable being written to and the written
value, together with a unique identifier n. In the current semantics, unlike writes,
read accesses to the main memory cannot be delayed. Consequently, there are no
read events.

In addition to the code t to be executed, goroutines 〈σ , t〉 contain local infor-
mation about earlier memory interaction (cf. equation (1)). We call this the gor-
outine’s local state σ . In first approximation, the local state contains information
about events which occurred earlier. Local states are tuples of the form (Ehb,Es);
the first component Ehb contains the identities of all write events that have hap-
pened before, at the current stage of the computation of the goroutine. To help in
bookkeeping, the set Ehb does not just remembers the identities of the write events
but pairs (n,z), thus remembering the variable written to in the event n as well.

8

That makes Ehb a set of type 2N×X . The second component Es of the local state
represents the set of identities of write events that, at the current point, are shad-
owed (i.e., writes to variables for which another write event had happened after the
shadowed one but before the current point in time).

Definition 2 (Local state) Local states σ are are tuples of type 2(N×X)× 2N . We
use the notation (Ehb,Es) to refer to the tuples, and abbreviate their type by Σ. Let’s
furthermore denote by Ehb(z) the set {n | (n,z) ∈ Ehb}. Let furthermore Ew

hb = {n |
(n,z) ∈ Ehb} represent the set of names of write events from Ehb. For a local state
σ = (Ehb,Es), let σw stand for Ew

hb. We write σ /0 for the local state (/0, /0), containing
neither happens-before nor shadow information.

4.2 Reduction steps

The operational-semantics-as-transitions-between-configurations is given in sev-
eral stages. We start with local steps, i.e., steps not involving shared variables.

4.2.1 Local steps

The local steps are given modulo structural congruence ≡ on configurations. The
congruence rules are standard and given in Table 2. Besides specifying parallel
composition as binary operator of Abelian monoid and with with • as neutral ele-
ment, there are two additional rules dealing with the ν-binders. They are likewise
standard and correspond to the treatment of name creation in the π-calculus [16]
of Milner et al..

P1 ‖ P2 ≡ P2 ‖ P1
(P1 ‖ P2) ‖ P3 ≡ P1 ‖ (P2 ‖ P3)

• ‖ P ≡ P
P1 ‖ νn P2 ≡ νn (P1 ‖ P2) if n /∈ fn(P1)
νn1 νn2 P ≡ νn2 νn1 P

Table 2: Structural congruence

Reduction modulo congruence and other “structural” rules are given in Table 3.
The basic steps of the relations and −→ will be defined in the following, starting
with local steps .

Local steps (cf. Table 4) reduce a thread t without touching shared variables.
The corresponding reduction relation is straightforward and can be formulated
without referring to a local state. Rule R-LOCAL (from Table 3) “lifts” the local
reduction relation to the global level of configurations.

9

t1 t2
R-LOCAL

〈σ , t1〉 −→ 〈σ , t2〉

P≡ −→≡ P′

P−→ P′

P1 −→ P′1

P1 ‖ P2 −→ P′1 ‖ P2

P−→ P

νn P−→ νn P′

Table 3: Congruence and reduction

let x = v in t t[v/x] R-RED

let x1 = (let x2 = e in t1) in t2 let x2 = e in (let x1 = t1 in t2) R-LET

if true then t1 else t2 t1 R-COND1 if false then t1 else t2 t2 R-COND2

Table 4: Operational semantics (local steps)

4.2.2 Shared variable interaction

Table 5 contains the transitions for the basic interactions with main memory, i.e.,
read and write steps.

σ = (Ehb,Es) σ ′ = (Ehb +(n,z),Es +Ehb(z))
R-WRITE

〈σ ,z := v; t〉 −→ νn (〈σ ′, t〉 ‖ n(|z:=v|))

σ = (,Es) n /∈ Es
R-READ

〈σ ,let r = load z in t〉 ‖ n(|z:=v|)−→ 〈σ ,let r = v in t〉 ‖ n(|z:=v|)

Table 5: Operational semantics: Reads and writes

Rules R-WRITE and R-READ deal with the two basic interactions of threads
with shared memory: writing a local value into a shared variable and, inversely,
reading a value from a shared variable into the thread-local memory. Writing a
value in rule R-WRITE simply records the corresponding event n(|z:=v|) in the
global configuration, where n is freshly generated in the write step. The write
events are remembered without keeping track of the order of their issuance. In
other words: as far as the global configuration is concerned, no write event ever
invalidates an “earlier” write event resp. overwrites a previous value in a shared
variable. This results in an out-of-order execution of memory instructions. Thus,
the global configuration accumulates the “positive” information about all available
write events which potentially can be observed by reading from shared memory.

10

Values which never have been written at all cannot be observed. Whereas the
global configuration remembers all write events indefinitely, filtering out writes
which are no longer observable is handled thread-locally. In other words, which
writes are observable depends on the local perspective of the threads, and having
different versions of write events available in the global configuration leads to a
multi-copy interpretation of shared variables.

The local perspective regarding which events are observable and which are not
is represented by the local state σ of a goroutine. In a conventional setting with a
“strong memory model”, a local state of a thread contains “positive” information
mapping each variable to its current value, or perhaps more generally, to a set of
possible values. Here, the local state contains information about which write events
(or later also read events) have happened before. But the local information about
the history of prior events is primarily used in the form of negative information:
which observations cannot be made. A read can observe all write events except for
those shadowed. So, issuing a write command in rule R-WRITE with a write event
labelled n updates the local Ehb by adding (n,z). Additionally, it marks all previous
writes to the variable z (i.e., all writes which are known to have happened-before
according to Ehb) as shadowed, thus enlarging Es accordingly.

Compared to writing, the treatment of reading from main memory is simpler
(cf. rule R-READ) because reading is not delayed. It’s simply checked whether
there exists a write event to the intended variable, whose identity is not black-
listed in the Es-set of the thread executing the load. So, loading a value from
shared memory into local memory can take the value of any previous write event
to the variable in question, unless the variable is shadowed for the goroutine is-
suing the read-command (see rule R-READ). Perhaps counter-intuitively, that has
the following consequence: if a goroutine reads the same shared variable repeat-
edly, observing a certain value once does not imply that the same value is read
next time (even if no new writes are issued to the shared memory). This is because
all subsequent readings of the variable are independent and non-deterministically
chosen from the set of write events which are not yet shadowed. This reflects that
the memory model allows out-of-order reading (and writing) of shared variables.

Remark 2 (Local representation of Ehb) With access to the global configuration
containing all global write events, there would be no need to store in Ehb the vari-
able z given that the name n uniquely identifies the global event. To arrive at a
local formulation of the reduction rules without need to refer to the totality of the
global configuration, the thread-local set Ehb records the variable names of the
write events (cf. Definition 2). It is therefore a global invariant that for each ele-
ment (n,z) in the local state of a thread, there exists exactly one global write event
n(|z:=v|) for some value v. Note in passing that the inverse does not hold: For each
global write event n(|z:=v|), there may be more than one local representative (n,z)
in the Ehb-sets insofar that the knowledge that this event happened-before may be
available to more than one thread. Propagation of this happens-before knowledge
is done via synchronization statements, discussed later. Given an event n(|z:=v|)

11

present in the global configuration, there is at least one thread, though, which is
aware of that fact, i.e., one thread which contains (n,z) in its Ehb-set. This thread is
the one that issued the write event, and it reflects the fact that the so-called program
order is part of the happens-before order.

4.2.3 Channel communication

Channels in Go are the primary mechanism for communication and synchroniza-
tion. They are typed and assure FIFO communication from a sender to a receiver
sharing a channel. In Go, the type system can be used to actually distinguish “read-
only” and “write-only” usages of channels, i.e. usages of channels where only re-
ceiving from resp. sending to that channel is allowed. Very little restrictions are
imposed on the types of channels. Data that can be sent over channels include
channels themselves, more precisely references to channels, and also closures, in-
cluding closures involving higher-order functions. Channels can be dynamically
created and be closed again. Channels are bounded, i.e., each channel has a finite,
fixed capacity. Channels of capacity 0 are called synchronous.

Our semantics ignores that channel values are typed and that only values of
an appropriate type can be communicated over a given channel. We also ignore
the distinction between read-only and write-only channels. We incorporate chan-
nels into the global configurations, i.e., the configurations P from equation (1) are
extended by channels:

Definition 3 (Channels) A channel is of the form c[q1,q2], where c is a name
and (q1,q2) a pair of queues. The first queue, q1, contains elements of type (Val×
Σ)+{⊥}; the second, q2, contains elements of type Σ+{⊥}, where⊥ is a distinct,
separate value corresponding to the “end-of-transmission.” The first and the second
queues are also referred to as forward resp. backward queue. Furthermore, we use
the following notational convention. We write c f [q] to refer to the forward queue
of the channel, and cb[q′] to the backward queue. We also speak of the forward
channel and the backward channel, but they are both considered named by c (not
by c f or cb). We write [] for an empty queue, a :: q for a queue with a as the element
most recently added into q, and q :: a for the queue where a is the element to be
dequeued next. We denote with |q| the number of elements in q. A channel is
closed, written closed(c[q])), if q is of the form ⊥ :: q′. Note that it is possible for
a non-empty queue to be closed.

Channels can be closed, after which no new values can be sent, otherwise a
panic ensues (panics are a form of exception in Go). Values which are “on transit”
in a channel when it’s being closed are not discarded and can be received as normal.
After the last sent value has been received from a closed channel, it’s still possible
to receive “further values”. As opposed to blocking, a receive on a closed channel
returns the default value of the type T (in Go, each type has a well-defined default
value). In order to help the receiver disambiguate between: 1) receiving a default
value on a closed channel and 2) receiving a properly communicated value on a

12

non-closed channel, Go offers the possibility to check whether a channel is closed
by using so-called special forms of assignment. Performing this check is a good
defensive programming pattern, even though it is not enforced in Go. Instead of
using this “in-band signaling” of default values and special forms of assignments,
we use a special value ⊥ designating end-of-transmission. Note that there is a
difference between an empty open channel c[] and an empty closed one c[⊥]. The
value ⊥ is relevant to the forward channel only.

As mentioned, without the possibility of synchronization, the model based only
on loads and stores is intolerably weak. The primary means of synchronization in
Go is via channel communication. In the operational semantics, this is captured
in that sending and receiving of values additionally exchanges happened-before
and shadowing knowledge between the communicating partners. Considering the
fact that the role of the “positive” happened-before information is auxiliary to ade-
quately track the local shadowing information, synchronization in this (and similar)
models performs the following dual tasks. First, it restricts the enabling of certain
commands, meaning, unlike reads and writes, sending and receiving operations
over a channel are not uniformly enabled. Second, it restricts the observability
of certain write events. The first role, therefore, is to narrow the choices of com-
mands which can be executed; this narrows the set of possible “interleavings” of
steps. The second role is to narrow the set of possible data values being readable.

Creating a channel is covered by R-MAKE and does not involve synchroniza-
tion. The forward channel is initially empty but the backward part is not: it is
initialized by a queue of length cap(c), which corresponds to the capacity of the
channel. The element of the queue contain no happens-before or shadow informa-
tion (represented by σ /0).

Remark 3 (Initial state of a channel) After creation of a channel of capacity k,
the backward part of the channel contains k elements σ /0. The backward chan-
nels are used to realize the synchronization in connection with the boundedness of
channels. In particular, to realize the stipulation of Go’s memory model that the ith

receive on a channel with capacity k happens before the completion of the i+ kth

send to that channel (see rule 3 of the Background section). Assuming that channel
sends and receives are indexed starting with 0, the first k sends to a new channel
then complete after the “sends” −k,−(k− 1), . . .− 1 occur. That’s an empty re-
quirement, as there are of course no sends with negative indices. For uniformity of
the semantics, the back-channel is therefore filled initially with k “dummy values”
σ /0. These dummies contains no happens-before information and, therefore, acts as
unity with respect the +-operation on location states, i.e., σ +σ /0 = σ . Cf. also
rule R-PEND.

Sending a value over a channel c does not change the local state (cf. rule
R-SEND). Besides that, sending can be done only on a channel which is not yet
closed. In the post-configuration, the goroutine enters a “pending” state, denoted
by the run-time syntax pend. The pending state is used to realize the two-way

13

handshake communication though which the happens-before information is ex-
changed.

For receiving a value from a channel (cf. rule R-RECEIVE), the communication
channel must be non-empty. The communicated value v is stored locally (in the
rule, ultimately in variable r). Additionally, the local state of the receiver is updated
by adding the sent information. Furthermore, the state of the receiver before the
update is sent back via the backward channel.

Executing a receive on a closed channel results in receiving the end-of-trans-
mission marker ⊥ (cf. rule R-RECEIVE⊥) and updating the local state σ in the
same way as when receiving a properly sent value. The “value” ⊥ is not removed
from the queue, so that all clients attempting to receive from the closed channel ob-
tain the communicated happens-before synchronization information. Furthermore,
there is no need to communicate happens-before constraints from the receiver to
a potential future sender on the channel: after all, the channel is closed. Conse-
quently the receiver does not propagate back its local state over the back-channel.
Closing a channel resembles sending the special end-of-transmission value ⊥ (cf.
rule R-CLOSE). An already closed channel cannot be closed again. In Go, the
attempt would raise a panic. Here, this is captured by the absence of enabled tran-
sitions.

q = [σ /0, . . . ,σ /0] |q|= v
R-MAKE

〈σ ,let r = make (chan T,v) in t〉 −→ νc (〈σ ,let r = c in t〉 ‖ c f [] ‖ cb[q])

¬closed(c f [q])
R-SEND

〈σ ,c← v; t〉 ‖ c f [q]−→ 〈σ ,pend c; t〉 ‖ c f [(v,σ) :: q]

σ ′ = σ +σ ′′
R-PEND

cb[q2 :: σ
′′] ‖ 〈σ ,pend c; t〉 ‖ c f [q1]−→ cb[q2] ‖ 〈σ ′, t〉 ‖ c f [q1]

σ ′ = σ +σ ′′ v 6=⊥
R-RECEIVE

c f [q1 :: (v,σ ′′)] ‖ 〈σ ,let r =← c in t〉 ‖ cb[q2]−→ c f [q1] ‖ 〈σ ′,let r = v in t〉 ‖ cb[σ :: q2]

σ ′ = σ +σ ′′
R-RECEIVE⊥

c f [(⊥,σ ′′)] ‖ 〈σ ,let x =← c in t〉 −→ c f [(⊥,σ ′′)] ‖ 〈σ ′,let x =⊥ in t〉

¬closed(c f [q])
R-CLOSE

c f [q] ‖ 〈σ ,close (c); t〉 −→ c f [(⊥,σ) :: q] ‖ 〈σ , t〉

Table 6: Operational semantics: message passing

Note that R-SEND is enabled independent from the capacity of the channel.
That makes the forward queue an unbounded data structure (likewise for the back-
wards queue). Of course, executing a send does not imply the sending process can

14

proceed unconditionally; the sender needs a value (containing the happens-before
information) from the backward queue, and the sender blocks if this value is not
yet available. As far as the sizes of the queues of a channel in connection with the
channel’s capacity are concerned, the semantics assures the follow invariant.

Lemma 4.1 (Invariant for channel queues) Let c be a non-closed channel cre-
ated with capacity k. Let furthermore p be the number of goroutines pending on c
in a configuration, i.e., goroutines where rule R-PEND is enabled with pend c as
next step. Then the following global invariant holds,

|q f |+ |qb|− p = k . (2)

Proof: By straightforward induction on the steps of the operational semantics. The
invariant holds initially upon creation of a channel (cf. rule R-MAKE), and rules
R-SEND, R-PEND, and R-RECEIVE preserve it. The invariant is stated only for
non-closed channels; thus R-RECEIVE⊥ (which applies only to channels previ-
ously closed) and R-CLOSE are both covered. The rest of the rules don’t change
the state of any channel nor change the number of pending thread.

In the invariant from equation (2), the size of the queues are actually not bounded
by the capacity; they are bounded by the number of goroutines instead. Therefore,
given that goroutines can be created dynamically, we cannot, in general, put a cap
on the size of the queues.

The “coordination” between senders and receivers on a channel is captured by
the invariants of Lemma 4.2. In particular, equation (4) captures the boundedness
of channels.

Lemma 4.2 (Invariant for channel communication) Assume a non-closed chan-
nel c with capacity k. Let s1 denote the number of applications of R-SEND to
the channel, s2 the number for R-PEND, and r the number of applications of
R-RECEIVE. The semantics maintains the following invariants.

s1 ≥ r (3)

s2 ≤ k+ r . (4)

Proof: By induction on the steps of the operational semantics.

Remark 4 (Receiving from a channel) In the formulation of rule R-RECEIVE,
the value of the local state sent back is σ , i.e., the state before doing the receive-
step. In particular, it is not σ ′ after receiving σ ′′. For a synchronous channel, i.e.,
a channel of capacity 0, this would not make a difference as the information is
“bounced back” to the original sender (therefore taking σ ′′ into account would not
add any “new” information to that particular goroutine). The treatment as in rule
R-RECEIVE corresponds to the formulation in the Go memory model [10], which
postulates that sending on a channel happens-before the corresponding receive on
the channel completes (see rule 2 of the Background section).

15

Remark 5 (Channel capacity) Channels in Go are of bounded capacity. The
rules of semantics do not impose such a restriction explicitly, meaning, the corre-
sponding rules R-SEND, R-RECEIVE, and R-PEND do not impose an upper bound
on the queues in the forward resp. backward channels c f [q1] and cb[q2]. Indeed,
given an unbounded number of threads, there is no upper bound on the number
of elements in a forward queue; analogously for the backward queue. One could
change the rule R-SEND by adding the premise:

|q1| ≤ cap(c) (5)

where q1 is the forward queue of the involved channel and cap(c) its capacity.
Analogously, rule R-RECEIVE could be changed by adding as premise

|q2| ≤ cap(c). (6)

Adding these premises, however, would cause no observable difference in behav-
ior. The only impact would be that the number of elements actually stored in the
channels, both the forward as well as the backward channel, would be bounded and
the maximal number of elements in each queue would be cap(c)+1.

In the semantics from Table 6, the boundedness of communication is nonethe-
less implicitly assured by the fact that each completed communication of a value
from a sender to receiver consists of a kind of two-way handshake, in that the
sender cannot proceed until it has received some data from the backward channel.
In the semantics here, the data in the backward channel consists of happens-before
information used to update the local information of the sender thread.

The picture of two-way handshake communication is completely fitting only
for synchronous channels. There, the sender cannot proceed until it has received
the acknowledgment back from the receiver processes. For channels with a higher
capacity, the happens-before information from the back channel does not need to
originate from the thread that fielded the value in that send-receive pair of commu-
nication.

The conceptual boundedness of the communication is assured then by the fact
that the channel is initially created with only a finite number of elements, namely
σ /0, which regulate the possibility to proceed for the senders and receiver and thus
couple their relative speed. The semantics maintains the invariants from Lemma
4.2. In particular, equation (3) corresponds to the causality axiom of the mem-
ory model, that the send happens-before the corresponding receive. The second
invariant (4) reflects the boundedness of the channels. For a synchronous channel
with k = 0, in particular, it means each completed send has to be preceded by a
corresponding reception.

5 Conclusion

In this paper, we presented an operational semantics in a concurrent setting with
write buffering and message passing with bounded buffers. The semantics can

16

be seen as an operational representation of a memory model inspired by the Go
memory model, based in a happens-before relation, but concentrating on write-
buffering. The semantics here therefore resembles a memory model with total
store order (TSO) [24]. In future work, we plan to further relax the model towards
obtaining a definition of a delayed read/write memory model that is yet closer to
Go.

References
[1] Adve, S. V. and Gharachorloo, K. (1995). Shared memory consistency models: A

tutorial. Research Report 95/7, Digital WRL.

[2] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley.

[3] Batty, M., Mamarian, K., Nienhuis, K., Pinchion-Pharabod, J., and Sewell, P. (2015).
The problem of programming language concurrency semantics. In Vitek, J., editor,
Programming Languages and Systems: 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, volume 9032 of
Lecture Notes in Computer Science, pages 283–307. Springer Verlag.

[4] Becker (2011). Programming languages — C++. ISO/IEC 14882:2001.

[5] Boehm, H.-J. and Adve, S. V. (2008). Foundations of the C++ concurrency memory
model. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). ACM.

[6] Boehm, H.-J. and Demsky, B. (2014). Outlawing ghosts: Avoiding out-of-thin-air
results. In Proceedings of the Workshop on Memory Systems Performance and Correct-
ness, MSPC ’14, pages 7:1–7:6, New York, NY, USA. ACM.

[7] Donovan, A. A. A. and Kernighan, B. W. (2015). The Go Programming Language.
Addison-Wesley.

[8] Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960.

[9] Go language specification (2016). The Go programming language specification.
https://golang.org/ref/spec.

[10] Go memory model (2016). The Go memory model. https://golang.org/ref/

mem.

[11] Hoare, C. A. R. (1978). Communicating sequential processes. Communications of
the ACM, 21(8):666–677.

[12] Jones, G. and Goldsmith, M. (1988). Programming in occam2. Prentice-Hall Inter-
national, Hemel Hampstead.

[13] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

17

https://golang.org/ref/spec
https://golang.org/ref/mem
https://golang.org/ref/mem

[14] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691.

[15] Manson, J., Pugh, W., and Adve, S. V. (2005). The Java memory memory. In Pro-
ceedings of POPL ’05. ACM.

[16] Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, part
I/II. Information and Computation, 100:1–77.

[17] Palamidessi, C. (1997). Comparing the expressive power of the synchronous and the
asynchronous π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM.

[18] Peters, K. and Nestmann, U. (2012). Is it a “good” encoding of mixed choice? In
Proceedings of the International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS ’12), volume 7213 of Lecture Notes in Computer
Science, pages 210–224. Springer Verlag.

[19] Pichon-Pharabod, J. and Sewell, P. (2016). A concurrency-semantics for relaxed
atomics that permits optimisation and avoids out-of-thin-air executions. In Proceedings
of POPL ’16. ACM.

[20] Pugh, W. (1999). Fixing the Java memory model. In Proceedings of the ACM Java
Grande Conference.

[21] Sabry, A. and Felleisen, M. (1992). Reasoning about programs in continuation-
passing style. In Clinger, W., editor, Conference on Lisp and Functional Programming
(San Francisco, California), pages 288–298. ACM.

[22] Steffen, M. (2015). A small-step semantics of a concurrent calculus with goroutines
and deferred functions. In Ábrahám, E., Huisman, M., and Johnsen, E. B., editors,
Theory and Practice of Formal Methods. Essays Dedicated to Frank de Boer on the
Occasion of His 60th Birthday (Festschrift), volume 9660 of Lecture Notes in Computer
Science, pages 393–406. Springer Verlag.

[23] Valle, S. (2016). Shared variables in Go. a semantic analysis of the Go memory
model. Master’s thesis, Faculty of Mathematics and Natural Sciences, University of
Oslo.

[24] Weaver, D. and Germond, T. (1994). The SPARC Architecture Manual (version 9).
Prentice Hall.

18

Index
≡ (structural congruence), 9
• (empty configuration), 8
⊥ (end-of-transmission), 13
n(|x:=v|), 9
n(|z:=v|) (write event), 8
cb[q] (backward channel), 12
c f [q] (forward channel), 12
c[q1,q2], 12
Ehb, 11
Ehb (happens-before set), 9
Ehb(z), 9
Es, 9
σ (local state), 8, 9
σ /0 (empty local state), 9
σ /0 (empty local state), 13
π-calculus, 8
|q| (number of elements in q), 12
 (local transition step), 9
 (local transition step), 9
Ew

hb, 9

A-normal form, 8
at-most-once property, 6

channel, 12
closed, 12
receive, 15

channel capacity, 16
channel name, 6
closed, 12
closed channel, 12, 13
communication, 1
communication clause, 7
concurreny, 1

enabledness, 13
end-of-transmission, 13

Go, 1

let, 7
local state, 8, 9

local variable, 6

memory model, 2
strong, 11

message passing, 3

N (names), 8

out-of-order, 11
out-of-order execution, 10

panic, 6
Partial Store Order, 5
pend, 6
program order, 12
program orde, 2
PSO, 8

read event, 8
receive from a channel, 15

sequential composition, 7
sequential consistency, 1
SISD, 2
source order, 7
stop, 7
structural congruence, 9
synchronization, 1, 13
synchronous channel, 12

Total Store Order, 5
total store order, 17
two-way handshake, 14

value, 6

write event, 8

X (variables), 8

19

	Introduction
	Background
	Abstract syntax
	Operational semantics with write buffering
	Local states, events, and configurations
	Reduction steps
	Local steps
	Shared variable interaction
	Channel communication

	Conclusion

